

Proceedings
of the

Digital Equipment
Computer Users

Society

USA Spring 1987

Papers Presented at
Spring, 1987 Symposium

Nashville, Tennessee
April 27, - May 1, 1987

Printed in the U.S.A.

ALL-IN-1
BASEWAY
DATATRIEVE
DEC
DEClab
DECmate
DECnet
DECpage
DECSYSTEM-10/20
DECUS
DECwriter
DIBOL
Digital logo

"The following are trademarks of Digital Equipment Corporation"

FALCON Q-bus
!AS Rainbow
LAlOO RSTS
MASSBUS RSX
MicroPDP-11 RT
M icroPower/Pascal UNIBUS
Micro/RSX VAX
MicroVAX VAXcluster
Micro VMS VMS
PDP (et al.) VTlOO (et al.)
PDT Work Processor
P/OS WPS-PLUS
Professional

Copyright '°DECUS and Digital Equipment Corporation 1987 All Rights Reserved

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation or DECUS. Digital
~~quipment Corporation and DEC US assume no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DEC US PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER PRODUCT
WILL NOT CONTAIN TECHNICAL DATA/INFORMATION THAT IS PROPRIETARY. CLASSIFIED UNDER U.S. GOVERNED BY THE U.S. DEPARTMENT
OF STATE'S INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (/TAR)."

DECUS and Digital Equipment Corporation make no representation that in the interconnection of products in the manner described herein will not infringe on any existing
or future patent rights nor do the descriptions contained herein imply the granting of licenses to utilize any software so described or to make, use or sell equipment con­
structed in accordance with these descriptions.

Ada is a trademark of the U.S. Government. XEROX, and XNS are trademarks of Xerox Corporation, IBM, PROFS, PC-XT, and BITNET are trademarks of International
Business Machines Corporation, UNIX is a trademark of AT&T Bell Laboratories, CP/M, PL/I are trademarks of Digital Research, Inc., MS-DOS is a trademark of Mic­
rosoft Corporation, TSX-PLUS is a trademark of S&H Computer Systems Inc, R:BASE.4000 is a trademark of Microrim, Intel 8088 is a trademark of Intel Corporation,
LOTUS 1-2-3 is a trademark of Lotus Development Corporation, MULTIPLAN is a trademark of Microsoft Corporation, Mylar is a trademark of E. l. DuPont deN emours
& Co .. PLOTLN is a trademark of Image Research and Compugraphic Corporation, MUMPS is a trademark of Massachusetts General Hospital, Macintosh is a trademark
and licensed to Apple Computer, Inc .. Multibus is a registered markoflntel Corporation. 8086 is a trademark Intel Corporation, VEN IX is a trademark of Ventur Com., Inc.
Appletalk, and Apple II are a trademarks of Apple Computers, Inc .. INGRES is a trademark of Relational Technology, Inc, Scribe is a trademark ofUnilogic Ltd, UniLINK
is a trademark of Applitek, HYPERchannel is a trademark of Network Systems Corporation, TI way is a trademark of Texas Instruments, Inc, TCP/IP is a trademark of
Darpa. 32000 is a trademark of National, Cyber 180 is a trademark of Control Data, Modbus is a trademark of Gould, Inc, 68000 is a trademark of Motorola, Inc.

The articles are the responsibility of the authors and therefore. DECUS and Digital Equipment Corporations, assume no responsibility or liability for articles or informa­
tion appearing in the document.

The views herein expressed are those of the authors and do not necessaily express the views of DECUS or Digital Equipment Corporation.

l

I

I

Table of Contents

Artificial Intelligence SIG

A Visual Rule Editor - Rule*Calc
.John R. Thorp. John W. Lewis

DAARC SIG

....... 1

Laboratory Environment for the Development of
Mkroprocessor-Based Fluidic Sensor Systems
Steven .J. Choy 7

A Report Generation Language for Control
Engineers
David H. Geer .• Jay A. Turner 13

Spatial/II - A Technical Overview
Mark L. Palmer

DATATREJVE/4GL SIG

Advanced DAT ATRIEVE Record Definitions

. 25

Bart Z. Lederman 35

Solving Equations in DATATRIEVE
Hart Z. Lederman 45

VAX DATATRIEVE Security Using Environment
Accounts and ACLs
Michael G. Graham 53

EDUSIG

Making an Inexpensive Rainbow Workstation for a
Chemistry Lab
.John D. Bak. David M. Hayes. 63

Student/Faculty Communications by Computer
Claude M. Watson. 69

Faculty Retraining: A Report from the Front
Edward A. Boyno 73

Using VAX/VMS to Teach Computer Organization
Linda Lankewicz. 79

Graphics Applications SIG

Readability of VMS Documentation: Then and
Now
C. Eric Kirkland, William P. Brenneman . 89

Overview of Human
Engineering
C. Eric Kirkland

Factors and Software

.... 95

Postscript Applications Using a MNC/DEClab-23
Computer
0. Guetta, D. Fortney, A Dubois 103

IAS SIG

Experiences with an IAS-VMS DECnet System
Frank R. Borger 119

Large Systems SIG

AMAR - A TOPS Performance Monitor
Betsy Ramsey 12 5

Planning and Implementing a Large Network
Leslie Maltz 133

Table of Contents

High End VAX System Update
Warren Sander 137

A Practical Exercise in System Sizing
Warren Sander. Daniel A. Deufel 147

High End VAX Configuration: Putting the Pieces
Together
High Performance Systems Group 153

DECSYSTEM-20 Technical Update
Mark Pratt. 1 73

TOPS-10/20 MS/MX Internals
Mark Pratt

VMS Internals
Programmers
David Wager. . .

for TOPS-10/20

Languages & Tools SIG

Developing LSE Source Code Templates

. . 177

System

. . 179

.Tames M. Briggs, Raymond J. Bentz .. 245

VAX/VMS Application Performance
Louise Wholey 251

Networks SIG

Transferring Data Between Heterogenous
Computers: A Tool to Maintain the Integrity of
Foreign Data
Steven .J. Kempler. 285

Gaining Control: Information Distribution in a
!\ T ulti-Vendor Corporate Environment
Tom Cheatham 291

VMS. XENIX, UNIX and MS-DOS Transparent
Resource Sharing
E. Berelian. L. Farmer. H. Kilman. P. Schoen.
P. Wang. J. Vij. 295

Office Automation SIG

Documenting Single-Package Systems
Michael J. Doyle 311

RSX SIG

Introduction to the RSX, P/OS. and RT Indirect
Command File Processor
Thomas R. Wyant. III 317

Programming in the RSX Indirect Command
Language
Thomas R. Wyant. III,
Arnold S. De Larisch 3;31

RT-11 SIG

Moving Decision Points Outward From
Applications and Utilities and into Command
Level
Maarten van Swaay 34 7

Site Management and Training SIG

Analysis of VMS Accounting Data for
Determination of Computing Resource
Consumption
Nancy J. Martin 353

Computer Room Design and Construction: A Case
History
Brent Teeter 359

UNI SIG

Wading Through Net.News: There's Gold in Them
Thar Hills!!
Kurt L. Reisler 365

VAX Systems SIG

Integration of Input/Output Devices Using Silicon
Compilation
Dr. Robert Couranz. Edwin Rogers.
Laurence Specter 3 73

Defending Against Trojan Horses. Viruses and
Worms
Robert A. Clyde 381

VAX Systems Coexisting in a Multivendor
Environment
Robert C. Groman. 387

The Allocation and Mounting of Magnetic Tapes
Under VMS
Clyde T. Poole 391

Mysteries of VAX/VMS System Parameters
Revealed
Steven Szep 395

An Introduction to VAX/VMS System Tuning
Steven Szep 409

Table of Contents

Unnatural Resources: Working Sets, Quotas, and
Limits
Steven Szep 415

Utilizing VAX Uptime
Steven Szep

Hisk Assessment in System Security

419

Steven Szep 427

Linda: A Tuner's Home Companion
Steven Szep 433

An Evaluation of Record 1/0 Versus Block 1/0
From a Programmer's Viewpoint
Darylene Colbert. 443

VMS Disk Performance Management
Wef Fleischman 453

On-Line Security Monitoring System
Marino J. Niccolai, Linda B. Lankewicz.

Refereed Paper Compitition Submissions

. . 461

Estimating Development and Run Time
Resources: A Practical Example
Anthony C. Picardi 463

Improving Technical Manuals through Reader
Analysis
Thomas L. Warren , .. 475

FOREWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DECUS has approximately 56,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels to fulfill its primary functions of advancing the art of computation and
providing a means of interchange of information and id~as among members. Two major technical
symposia are held annually in the United States.

For information on the availability of back issues of U.S. Chapter Proceedings as well as forthcoming
DECUS symposia, contact the following.

DECUS U.S. Chapter
219 Boston Post Road, BP02
Marlboro, MA 01752-1850

All issues of past Proceedings are available on microfilm from:

University of Microfilms International
300 North Zeeb Road
Ann Arbor, Ml 48106

PREFACE
This volume of the Proceedings contains papers which were presented at Symposia sponsored by the
Digital Equipment Computer Users Society during the Spring and Summer of 1987. It includes sub­
missions from the Spring National Symposium.

The Spring 1987 Symposium was held at the Opryland Hotel in Nashville, Tennessee, from April 27
through May 1, 1987. 5730 DECUS members met in Nashville for a week of education, information,
cooperation, sharing, and a good deal of camaraderie.

Digital Equipment Corporation is a very large company. Long overshadowed by the enormous bulk of
International Business Machines, Digital adopted a small-town mentality for many years - - kids selling
computers to kids. But Digital has been growing at a tremendous rate. Financial analysts are beginning
to recognize the trends that Digital users have seen brewing for three years. Last year's computer in­
dustry slump, combined with Digital's quadrupling of stock values over a three year period, has let the
rest of the world see that Digital is ready to play ball with the big boys.

DECUS, in many ways, has not taken Digital seriously enough. Most DECUS leaders remember Digital as
it was five years ago, and their attitudes and decisions are based on their own lifetime of working with
Digital. As natural attrition works on this group, though, replacements are coming from a new community
of business people (men AND women) that have always known Digital as a corporate computing re­
source. If seventy percent of DECUS worked for a University or Research and Development center five
years ago, then seventy percent now work for corporations, software and hardware vendors, and one­
man consulting outfits (specializing not in real-time data acquisition, but corporate MIS planning). These
new members (and new leaders) not only change the face of DECUS; they ARE DECUS.

Mark Grundler, who has admirably led the Communications Committee since 1984, has resigned to
spend more time with his new wife and child. All of us send our best wishes to Krista and Mark, and
thank him for his dedication and hard work. Beverly Welborne has agreed (via unanimous acclamation!)
to take up the baton.

My thanks on behalf of the attendees of the Spring National Symposium go out to Scott Pandorf and
Emily Kitchen, the DECUS volunteers who led the Symposium Committee. They worked together with
DECUS staff members Nancy Wilga, Joanie Mann, Gloria Caputo, Maria Hance, Rosemary Lupo, and
Beverly Dandeneau to put together the Nashville meeting. The leadership of the entire Symposium
Committee is sincerely appreciated. Judy Mulvey deserves my special thanks for her exhausting work for
the Communications Committee and all of our congratulations on her recent marriage. My colleague,
Cheryl Smith did the production and layout work for the Proceedings, and her time and energy is most
sincerely appreciated.

A Visual Rule Editor - Rule* Cale™

John R. Thorp
John W. Lewis

Martin Marietta Laboratories
1450 S. Rolling Rd.

Baltimore, Md 21227

ABSTRACT
Most current expert system tools require a middleman, the knowledge engineer, to code and test

the thousands of rules that constitute the expert system. This knowledge acquisition process typically
requires hundreds of tedious code and test cycles. The visual rule editor, Rule*Calc ™, is an environ­
ment for developing rule-based systems without the continuing assistance of a knowledge engineer.
Rules can be entered on the screen in a Lotus 1-2-3® style format via a syntax similar to that of tradi­
tional decision tables. The semantics of the rules is derived from that of the EMYCIN system. Rule
entry/debug time is well below that required by the expert to formulate rule content.

INTRODUCTION

The most critical resource of expert system
design has been the domain expert, i.e., an individual
whose degree of proficiency in some trade is of great
value to his or her organization. With the maturing
of expert system technology, it has become computa­
tionally feasible to codify the expert's knowledge and
use this information to emulate the expert's decisions.
However, experts often have neither the time nor the
inclination to learn how to codify their knowledge.

Therefore, the task of transferring the
knowledge from the expert to the machine is typically
performed by a second individual, a knowledge
engineer, who knows how to translate expert's
knowledge into software. The knowledge engineer
must then run through several cycles of interviewing
the expert, coding the knowledge, and verifying the
validity of the rules. Each iteration may require
several days, and the entire process is normally
repeated successively to build more complex versions.
The resulting system may contain hundreds of rules.

There are several disadvantages to this
approach: first, the services of a knowledge engineer
are an added expense; second, the expert may not be
available for the uninterrupted meetings necessary for
the transfer of knowledge; and finally, as the size of
the expert system grows, it will begin to suffer from
many of the problems that currently plague large
software projects.

Our proposed solution, Rule*Calc ™, solves
these problems by providing the expert with a
straightforward interface to the machine.

Proceedings of the Digital Equipmenl Computer t 'sers Society

FUNDAMENTAL CONCEPTS

Directed acyclic AND/OR graphs were selected
for Rule*Calc ™'s conceptual representation of
expert systems since most users are familiar with pro­
positional logic. This representation thus provides an
interface that can be effectively used by individuals
from different disciplines. A tabular screen interface
was also created to access and manipulate the graphs.

AND/OR Graphs

An AND/OR graph contains a hierarchy of nodes
with inputs coming from level N + 1 and outputs going
to level N-1, where N is the node's depth in the
graph. Each node performs some test on its inputs
(i.e., and, or, not) and, when a particular input
configuration occurs, "fires" and sends new values to
its neighbors.

It is computationally beneficial to view graph­
oriented logical operations differently from linear log­
ical expressions. Thus, nodes do not need values on
all inputs to determine the output values. Short-circuit
evaluation may be used to determine the node's value
as soon as it is firm. For instance, should the first
input to an OR node be true, the value of the output
must be true. It is unnecessary to know the values of
any other inputs to the OR node A similar statement
may be made about an indeterminate value on one of
the inputs to an AND node.

Since our inference engine uses a tri-state logic
(true, false, and unknown), special conventions are
needed in addition to those used in traditional logic
(Table 1). Our model uses an open-world assumption

Nashl'i//e, TN - 1987

so that if a node's value cannot be deduced, its value
is set to unknown.

AND OR
NOT T F ? T F ?

Tm T T F ? T T T T
F T F F F F F T F ?
? ? ? ? F ? ? T ? ?

Table 1. Truth tables for Rule*Calc ™'s standard
logic operations.

Mapping AND/OR Graphs to Expert Systems

From the designer's viewpoint, an expert system shell
can emulate a forest of AND/OR graphs. The roots
of the graphs correspond to goals in the expert system
and terminal nodes map to facts which obtain their
values from a source outside the system. All other
nodes in the graphs are intermediate nodes, which
receive values from lower level nodes and send
values to higher level nodes.

For this analogy to work, it is necessary to
place some restrictions on the configuration of the
graph. Rule-nodes AND the values on level N + 1 and
fact-nodes OR the values on level N+l, as was
described above for AND/OR graphs. The top level,
level 1, of a graph always contains only fact-nodes;
thereafter, even-numbered levels of the graph contain
rule-nodes, and odd levels, fact-nodes.

Digraph Oriented Chaining Methods.

Rule*Calc ™ uses a combination of forward
and backward chaining to carry on a dialogue with
the user. The algorithm begins by selecting a top­
level goal and back-chains from it to a terminal node
(or fact). This fact receives a value, either from the
user or an embedded procedure. The new value is
then projected as far as possible through the graph
via forward chaining. If a goal-fact is not satisfied,
the process starts again.

The backward-chaining algorithm consists of
one procedure and one loop.

SELECT-BEST goal-fact
REPEAT-UNTIL current fact is a terminal

SELECT-BEST rule related to current fact
SELECT-BEST fact related to current rule.

The SELECT-BEST function is discussed later.

The system propagates newly set values by
moving the values up the rule/fact graph according to
the standard logical operations. However, to avoid

2

incorrectly deducing that a fact is unknowable, it
does not set facts to unknown unless ALL immedi­
ately subordinate rule-nodes are unknown or false.

Search Strategies

The inference engine is wholly contained in a single
subroutine, allowing it to be removed and replaced by
a functionally equivalent module. Using this feature,
we have implemented several "graph following" algo­
rithms behind the uniform screen interface.

The first method used to navigate the graph was
a left-to-right, depth-first search (DFS).1 This is the
simplest and most straightforward method of coding
the high-level back-chaining description. The graph's
traversal path is selected at each node based on the
evaluation of a desirability function (i.e., SELECT­
BEST), thus allowing the path to be dynamically
reconfigured.

The desirability function for each node is calcu­
lated from the cost of test of the node's subordinates,
the possibility that traversal of the node would lead to
a correct solution and the percentage of the subprob­
lem represented by the node that has been solved.
Weights are assigned to each of the criteria and
varied to tune the system and reflect the importance
of each parameter. Specifically, these parameters are
designated Node_ Cost, Node _Possibility, and
Node _Percent_ Solved. A simple desirability function
can be described as follows:

When multiple subordinate nodes exist, the infer­
ence engine will select the node with the highest
certainty factor (CF), where:

CF=Node Possibility/Node Cost.
When a choice must be made between several
facts with equal CF's, facts closest to the top of
the table are selected first. Similarly, when the
engine must choose between several rules, rules
with lower rule numbers take priority.

Alternate search strategies with identical desira­
bility functions were tested, including branch and
bound and A* algorithms. While both algorithms
reduced search time and mean queries before solu­
tion, they also made it more difficult for designers to
ensure the coherence of the questioning in end-user
dialogues. Therefore, DFS is installed in the current
version of Rule*Calc ™.

Conventional forward chaining was enhanced to
include the desirability function and percolate values
forward. New costs and probabilities for related,
unset nodes were recalculated from the minimum and
maximum values, respectively, of the remaining
subordinate nodes.

THE EDITOR INTERFACE

The editor's user-interface consists of three
parts, each of which serves to edit some property of
the facts. In some cases, there are custom editors
tailored to facilitate changes to properties of a partic­
ular type. Fact actions and fact relationships, two of
the more important properties which may be manipu­
lated in the editor, each have their own editor for­
mat.2

The Fact-Relationship Editor

To facilitate learning, the relationship between facts
and rules is displayed in a tabular format.
Specifically, the rule-editor screen is seen as a matrix
whose columns and rows correspond to rules and
facts, respectively. If there is no relation between a
fact and a rule, the entry in the matrix is blank.
However, if the fact is involved in the rule, the inter­
section is filled with the symbol representing the rule
operation to be performed on the fact.

Valid rule operations are:

Category Entry Key Action

Antecedents = = Test if fact is true.
-= - Test if fact is false.

Consequents 1-T t Set fact to true.
1-F f Set fact to false.

Most operations in the editor may be performed
by a single key stroke, including fact/rule access,
fact/rule cut and fact/rule paste.

The Fact-Action Editor

Actions are blocks of text that are executed or are
placed on the screen when events related to the fact's
value occur. This editor provides a means of mani­
pulating the actions associated with a given fact. All
actions related to a fact are displayed in windows on
one screen, and the user may move between these
windows or between screens to perform editing
operations.

The Run-Time Environment

Users' run-time needs differ widely: designers need a
flexible environment with rule-tracing facilities;
novice end-users need a system that provides clear
queries and statements with additional explanations
when necessary; and more sophisticated end-users
may wish to direct the system to pursue a particular
line of reasoning.3

In Rule*Calc ™, the expert system designer
can switch between the end-user environment and the
editor with a single key stroke. This ability enhances
the rule-testing and repair facilities. In the end-user
environment, the programmer has access to the

J

query-dialogue window, as well as a rule-stack
debugger. The debugger may be used to dynamically
trace chaining and observe fact value assignments.

Alternately, the end user has access to two
query modes: novice and skilled. The novice mode
provides an interface that will guide the user to the
proper conclusion, while the skilled mode allows the
experienced technician to enter facts already inferred
or tests already performed and thus guide the system
in a particular direction.

In addition to optional conversation styles,
Rule*Calc ™ offers several different interface styles.
The standard keyboard/CRT combination is sup­
ported, as well as a mouse and menu interface on ter­
minals that support the mouse. Furthermore, the sys­
tem may query the user via a speech synthesizer and
will accept responses entered through a standard tele­
phone keypad.

CODE GENERATION

Rule*Calc ™ serves as a standard representa­
tion for expert systems that can be translated into
other computer languages. The run-time environment
can be recreated by programs written in traditional
languages, and Rule*Calc ™ has the ability to
automatically generate these programs. This feature
may be used to port the expert system to other
machines or other operating systems.

To demonstrate this capability, we selected
Common LISP as our target language.'l The generated
code allows users to add application-specific code to
the output program to customize screen formats or
direct the program to acquire data from peripheral
devices. This function of Rule*Calc ™ has generated
several application programs in the diagnostic and
maintenance area. 5

The language generation feature may be
tailored to write in a target language that is a general
purpose computing language. Initial investigations
indicate that it is feasible to generate expert systems
in PASCAL, ADA, PROLOG, FORTRAN 77, and C.

CONCLUSIONS

Several ideas incorporated in the final design of
Rule*Calc ™ have aided the production of in-house
expert systems. Providing a visual editor capable of
single key commands increases the interactivity of the
program and allows the user to see the effects of a
change immediately. Presenting forward and back­
ward chaining as graph operations allows the designer
to grasp these concepts with a minimum of training
time.

In addition, Rule*Calc ™ offers several solu­
tions to common expert system problems. Due to the
style of interface, domain experts may code the
expert system without help at their convenience. The
high-level language code-generation facility elim­
inates the task of recoding the developmental proto­
type to a distribution-grade program, and the gen­
erated code automatically reduces the number of
software design errors by providing a structured base
for a larger custom system.

Trademarks for Rule*Calc™ and Lotus 1-2-3®
are owned by Martin Marietta Corporation and Lotus
Development Corperation, respectively. The software
presented in this report is for Martin Marietta use
only and not intended for public release.

REFERENCES

[1] Aho, A. V., Hopcroft, J.E., and Ullman, J.
D., The Design and Analysis of Computer
Algorithms, Reading, Mass.: Addison­
Wesley, 1974.

[2] Lewis, J. W., "An effective graphics user
interface for rules and inference mechan­
isms," in, Human Factors in Computing
Systems, Amsterdam, Netherlands: North­
Holland, 1984.

[3] Waterman, D. A., A Guide to Expert Sys­
tems, Reading, Mass.: Addison-Wesley,
1986.

[4] Steele, G. L., Jr., Common USP: The
Language, Hudson, Mass.: Digital Press,
1984.

[5] Lewis, J. W., and Wysocki, E. M., "Appli­
cability of Expert System Technology To
FAA Maintenance," ATCA Fall Confer­
ence Proceedings, 1986.

4

Laboratory Environment for the Development
of Microprocessor-Based Fluidic Sensor Systems

Steven J. Choy
U.S. Army Laboratory Command

Harry Diamond Laboratories
Adelphi, MD 20783-1197

Abstract

The Harry Diamond Laboratories Fluid Control Group uses a variety of embedded
microprocessors as an integral part of its realtime control systems. Typical processors
include the Digital Equipment Corporation (DEC) Jl l and the Motorola MC68000
integrated into a GESPAC G64 bus-based system. A laboratory environment for the
development of these fluidic sensor systems has been established which consists of a
DEC VAX 11n80 computer, loosely coupled to a DEC µPDP 11n3 controlling a vari­
ety of analog and digital devices, attached to a IEEE-488 bus. The hardware/software
components of the laboratory environment and how they are being used to develop
new realtime systems are presented. The discussion also focuses on insights acquired
and problems experienced when dealing with interfaces between DEC and non-DEC
components.

Overview

As microprocessor hardware technology becomes faster, more
complex, and available in smaller and cheaper packages, the
domain -of applications to realtime systems has become un­
bounded. General-purpose microprocessors with tremendous
computing abilities can now be affordably integrated into tiny
rcaltime systems where, not too long ago, this was not consid­
ered feasible. The hardware possibilities appear to be endless.

This "utopia" of microcomputer processing does not
come without cost. It takes a considerable amount of time
and effort to design, develop, integrate, and test these proces­
sors into a workable and usable system. In order to harness
this computing power into a useful productive system in a
timely manner, a flexible development environment must be
established, allowing an engineer to experiment and analyze
the possibilities for integration of these microprocessors in an
embedded realtime control system. This paper discusses a lab­
oratory environment developed by the Fluid Control Group at
Harry Diamond Laboratories {HDL) for the explicit purpose of
designing and developing prototype realtime control systems
using embedded microprocessors. The discussion presents an
overview of both the laboratory hardware and software.

Fluidics, A Brief Summary

Fluidics is a technology that uses liquids and gases to per­
form sensing, logic, amplification, and control functions with­
out moving mechanical parts. Fluidics is finding its way into
systems that require high reliability because of the absence
of moving parts, and low maintenance costs. Some of the

Proceedings oft he Digilal Equipme111 Computer : 'sers Sociel_\' 7

applications pioneered at HDL, for this technology include
temperature sensing, hydraulic stabilization, and angular rate
sensing. The last of these applications can be used for build­
ing low-cost, reliable, autonomous navigation systems. (Since
the theory of operation behind these devices is beyond the
scope of this paper, the reader is referred to reference [1] for
more background in this area.) The discussion in this paper
focuses on the laboratory environment devised at HDL for us­
ing microprocessors and fluidic elements in developing such
navigation systems.

Laboratory Hardware

The laboratory hardware can be divided into two major cat­
egories: (1) there is the digital processing hardware used for
both development and for the actual application, and (2) the
analog interfacing hardware used for measurement and con­
trol. Some of this hardware is for development and testing,
and some of this hardware is an integral part of the application.

The interrelationship of the various laboratory hardware
components is shown in Figure 1. The digital processing hard­
ware involves three systems:

1. An embedded application processor (i.e., DEC J11, Mo­
torola MC68000) for controlling the realtime application.

2. A DEC VAX 11nso system for cross-development of the
embedded microprocessor used in the application system.

3. A DEC µPDP 11n3 system for data acquisition and en­
vironmental control used for testing and simulating the
application system.

Nash1·i//e, TN~ 1987

SERIAL LINK

DEBUG TERMINAL NAVIGATION
PROCESSOR I BAROCELLS ~~+ -- ..,

1

COUNTER/TIMER
Vpump --· FLUIDIC SERIAL -----------

I I
DOWNLINK BOARDS PCO COUNTS SENSOR

VAX 11nso TO RAM PUMP D/A i----- --- ---- --- PACKAGE
RTD SIGNAL

RTD t---- --- ---- ---
CONTRAVES
RATE TABLE

PROGRAM IEEE-488 BUS WITH
DEVELOPMENT

I µPDP-lln3 I
SERIAL DATA

TRANSLATION DATA
LINK A/D,D/A
(Kermit) BOARDS &

SOFTWARE

ENVIRONMENTAL
CHAMBER

IEEE-488 BUS J Ps
CON1ROL
LOOP PRESSURE SIGNALS (volts)

~----------------------

-----------------------·
Ps SETPOINT
CONTROL

DATAl\
SERVO

1ETRICS
VALVE

CONTROLLER

Figure 1: Laboratory hardware configuration

The analog hardware is made up of control components
for simulating various environmental parameters as well as
measuring components for analyzing the system response to
different controls. Connected on an IEEE-488 bus is a Con­
traves combination temperature control chamber and rate ta­
ble, used for sensor testing under different environmental
conditions. Also attached to this bus are several Hewlett­
Packard multi-meters and a platinum temperature probe for
high-accuracy temperature readings.

Connected on the Q bus via a DTI (Data Translation Inc.)
interface is a 12-bit, digital-to-analog converter (D/A) used for
servo pressure control. On the input side of the interface are
a number of counters to collect data from the ftuidic oscil­
lators, along with several analog-to-digital converters (AID)
for monitoring the Barocell pressure transducers, ftowmeter
inputs, and other miscellaneous sensor inputs.

The Embedded Processing System

The embedded processing hardware used by the navigation
system is built around a G-64 bus-based system available from
Gespac Inc. This hardware was chosen because of it is rela­
tively small and compact and has low power requirements (ow­
ing to the use of CMOS parts). In addition, Gespac provided
boards with a wide range of powerful processors, including the
DEC Jll, the Motorola 680XO, the National Semiconductor
32010, and the Intel 80X86. These processing boards, along
with the availability of various supporting peripherals such
as counters, parallel and serial input/output (1/0) interfaces,
A/D's and D/A's, and other digital support devices, made it
possible to quickly assemble and arrange a prototype system
without lengthy hardware development times.

The particular example navigation system described in
this paper uses an 8-MHz M68000 processing board with 16

Kbytes of random access memory (RAM) and 128 Kbytcs of
electrically programmable read-only memory (EPROM). Fig­
ure 2 shows the basic layout of the system and its supporting
devices. In this system, a realtime clock is used to set a fixed
rate (usually in the range from 10 to 100 Hz) to sample two
realtime inputs.

The angular rate of the system comes from the fluidic rate
sensor via a 32-bit counter, and the distance traveled comes
from a distance sensor via a 16-bit A/D. The distance direction
is a transitor-transitor logic (TTL) level that is connected to
the CTS pin of an RS-232 port on the multifunction 1/0 board.
The system communicates to an operator by way of a 64 by
256 pixel flat panel liquid crystal display (LCD) overlaid by a
4 by 10 sectioned touch panel. Two serial ports are available
for interactive terminal debugging and program downloading
from the VAX to the on-board RAM. During the development
stage, an extra 32-Kbyte memory board is used along with an
IEEE-488 bus interface for communication to the µPDPl 1.

The Cross Development System

Software for the embedded processor hardware is developed
on a VAX 11/780 (running VMS, not ULTRIX) using a cross
compiler system. As shown in Figure 1, the two systems arc
linked via a standard 9600-baud RS-232 serial link. During the
program development phase, the test programs for the embed­
ded processor are loaded into RAM over the serial link. When
the program logic has been "debugged," the object module is
converted to hexadecimal and sent to a DATAIO EPROM pro­
grammer connected to the VAX on another serial interface.

Using the VAX as a software development system (as
opposed to using the embedded processor) provides several
advantages:

1. The VMS operating system provides an excellent envi-

ON/OFF b[TERMINAL STRIP J

POWERCUBE +
J I I r- r--1

POWER SUP.
+1

Power 0 +12v

'- Board 0 -12v

10-15 Vdc

CGND
___ :D r- IJ 0 +Sv

0 GND

.__

RATE
SENSOR SIGNAL+

SIGNAL-

r-j+- BTIRY
TERMINATOR t--- +12V

j+-GND

'-
SIGNAL+

SIGNAL-
DISTANCE
SENSOR +12V

r1-f A/D BOARD
~ ~

.__
}coNVJSTART

~
MULTI-
FUNCTION "'----+

BACK-UP _+ _____ :D
SIGNAL -· 0 I/O

11 HITAOilLM2nB 1 ~r----34 PIN_FLA:_T CAB_LE _ 0
· · LCD GRAPHICS

DISPLAY

rl

.....,
J

INDUSTRIAL
I/O

ALPHA­
NUMERIC
I/0

RS232

CPU
RESET

~=
I [,____

c::[

P2

68000
CPU

Pl

...____.

Figure 2: Embedded processor hardware

ronment for program development, including support for
program source code preparation, debugging, documen­
tation, management, and backup.

2. The VAX is a multi-user system, allowing several persons
to work on the software development simultaneously.

3. Since the VAX does not require the use of the embedded
processor, hardware development can also be occurring
simultaneously with the software development.

4. The VAX has a variety of shared peripherals available
such as line printers, plotters, and disks, which are not
normally connected to an embedded processor.

5. Since most of the software development is in a high­
level language, device-independent algorithms can be de-

9

bugged completely without the actual hardware ever hav­
ing to be used.

6. By having a central repository for all software, much of
the developed program code is easily reused and shared
among different systems. This reduces the development
effort significantly for subsequent systems.

In addition to providing cross-development facilities for
the embbeded processor, the VAX can also be used as a file
server for the embedded processor during data collection pe­
riods. Through a simple, compact protocol on the serial inter­
face, test programs loaded into the embedded processor can
make file system service calls to open, close, read, and write
transparently to VMS files.

The Environmental Control System

The µPDPl 1 is an RSXl IM based system that is responsible
for all the test measurement and control in the laboratory. It
is also used for analyzing collected test data and producing
calibration information for the fluidic sensors. The calibration
information is forwarded to the VAX via a serial link to be
incorporated into the embedded processing software. The in­
formation is usually in the form of numerical tables that are
reprocessed and converted to binary images on the VAX and
eventually burned into PROM's. The data can also be ana­
lyzed further and plotted on the VAX, where /1igh-quality laser
plotters are available.

As described above, most of the test and measurement
hardware is connected to the µPDPl 1 via an IEEE-488 bus.
The remaining components are connected to the µPDPl 1 via
interface hardware on the Q bus provided by DTI. In the lab­
oratory setup, the collection of data requires the cooperation
of two processors.

• The main control processor (the µPDPl 1) establishes and
monitors the test environment.

• The embedded application processor (the M68000) col­
lects the data in realtime and forwards the data to the
µPDPll.

In a typical setup, the embedded processor is downloaded
with a data collection test program that communicates with
the µPDPl 1 over the IEEE-488 bus. The µPDPl 1 sets the
environmental test chamber (also connected on the IEEE-488
bus) to the required test conditions and then commands the
embedded processor to begin data collection from the fluidic
sensor. The sample size and the sample rate along, with other
variables involved in the data collection, are all settable by
the embedded processor via commands from the µPDPl 1. The
collected data values are buffered in the embedded processor's
memory and sent to the µPDPl 1 via the IEEE-488 bus.

This cooperative processing configuration allows an engi­
neer to easily test the application system in different environ­
ments via hardware simulation in the laboratory. In addition,
the µPDPl 1 can be used to monitor the fluidic sensor output
in parallel with the application processor to provide a perfor­
mance reference for the application system. This performance
information can be used to calibrate individual application sys­
tems.

Support Software

As mentioned in the previous section, using the VAX as a cen­
trally located program development system allows much of the
developed software to be reused in subsequent systems. The
HDL fluidics control group uses its own "generic" embedded
realtime operating system, which provides an ever-expanding
library of system-level support, such as device drivers for dif­
ferent peripheral chip interfaces, memory management, task
management and communications. In addition, application
software libraries have been developed to support such func­
tions as graphics display, user interfacing, operator input, and
command parsing.

JO

Most of the software is written in the C language using
a cross compiler. Because of the special attention given to
processor independence, most of the code can be transported
to different target processor boards. The cross-development
system provides for a universal linker and librarian. Thus
the same linker and librarian may be used for different target
processors, providing uniformity for the program development
process.

Two target processors have been used thus far, the DEC
Jl 1 and the Motorola M68000. From a software viewpoint,
the two processors are architecturally similar. Both proces­
sors provide several general-purpose registers, using similar
addressing modes. Both use memory mapped I/O, along with
privileged and user operating modes.

The Jl 1 has the advantage of providing hardware-assisted
floating-point math in both single- and double-precision
modes. The M68000 only provides for integer calculations.
In the context of the navigation software, in order to minimize
drift error, the nature of the mathematics requires a high level
of precision over a wide dynamic range. The double-precision
math processor in the Jl 1 is ideal for this calculation. In order
to implement the same calculations on the M68000 in realtime,
it is necessary to construct abstruse integer math algorithms
that operate on even more abstruse integer representations of
the data structures.

However, the M68000 has the advantage of being able to
directly address more memory than the J11 because of its log­
ical 32-bit architecture. The Jl 1 requires the programming of
a memory management unit when addressing beyond the abili­
ties of the 16-bit program counter. This advantage is minimal
for the navigation systems since the programs rarely extend
beyond 48 Kbytes.

The Embedded Processor Operating System

The HDL-developed embedded realtime operating system is
not only being used on various G-64 bus-based boards, but is
also being used extensively with VERSABUS- and VMEBUS­
based processor boards, as well as in-house-designed processor
boards. The transportability of the system is attributed to the
use of high-level language programming and system modular­
ity. Features of the operating system include

• multitasking or foreground/background system configu­
rations including support for multiprocessor as well as
uniprocessor systems;

• memory management utilities to support dynamic stor­
age allocation and the manipulation of data on stacks,
heaps, queues, and dequeues (linked or contiguous data
structures);

• integral runtime debugging utility;

• extensive runtime library support; and

• modular software components, making the system adapt­
able and reconfigurable to small, minimal configurations
as well as large, complex ones;

Depending on the particular system being developed, the
operating system can be configured for multiple task support or
for foreground/background support. Often the overhead (both
processor and memory) incurred by multitasking is undesir­
able, and so some systems are configured without this feature.
In addition to using less overhead, foreground/background sys­
tems are often less complicated to use (depending on the ap­
plication).

However, multitasking support provides dynamic creation
and deletion of tasks along with task prioritization and several
forms of intertask communication. Dynamically created mes­
sage systems and shared data sections are available, along with
semaphores for intertask synchronization and shared resource
protection. The software library also includes a message sys­
tem for intertask, interprocessor communication. When mul­
tiple processors are used, the operating system provides con­
structs for remote booting of a task to another processor along
the system bus (i.e., VMEBUS).

Although the embedded operating system has no disk
drivers or file system support, these functions, when needed,
can be fulfilled in one of two ways. Drivers are provided to
make the VMS file system transparently available to the em­
bedded operating system via an RS-232 serial interface and
standard C language I/0 library calls. Using this method,
the VAX can act as a file server to several different slave
systems. The disadvantage to using this method is the slow
transfer rate of the data. However this technique is useful for
quickly generating programs to log test data onto the VAX for
later analysis. It is also useful for building command files of
comprehensive diagnostic sequences that are normally expect­
ing interactive command input from a terminal. It provides
the functionality of a disk file system during the development
phase without the need to actually interface a disk drive and
associated controller hardware to the embedded processor sys­
tem. Using familiar C language I/0 library functions such as
fprintf() andfscanf() provides an easy-to-use interface to the
file system.

When an application requires an integral disk drive with
the system, then the embedded operating system is used as a
bootstrap to a commercially available, reconfigurable, UNIX­
Iike operating system that provides complete file system sup­
port. At this point, the HDL-developed operating system dis­
appears and is replaced with the "UNIX clone" operating sys­
tem. This method requires writing appropriate disk controller
device drivers. Currently no disk devices are used on the
GESPAC bus-based systems. However, drivers are written to
support disk controllers from Interphase, Inc., and Motorola,
Inc., on both VERSABUS and VMEBUS.

The Software Library

The software library provides support for a variety of hard­
ware interface chips. Drivers are available for a number of
serial interfaces (UART's) as well as counters, timers, periph­
eral interface adapters (PIA's), D/A's, and A/D's. Some of
the UARTS currently supported include the NEC7201, the
MC8650, the SIG2661, the MC68681, the SCN2681, and
the Z8530. Counter chips supported include the 28536, the

II

Global Data
Collection Area

Data Acquisition
Task (IEEE-488)

~-----------------------------

Data Analysis
Task (IMSL)

Data Display
Task (GRAPHELP)

Figure 3: Memory resident RSXI IM software modules

MC6840, the AMD2915, and the INTEL8254. Drivers are
also written for the INTEL IEEE-488 bus chip set.

Higher level application software libraries exist to support
bitmap graphics, including vector-to-raster routines and soft­
ware font character generators. These routines are useful for
driving flat-panel displays such as the one used in the fluidic
navigator. Routines to provide vector graphics using Tektronix
4010 protocols are also contained in the application software
library along with VTIOO screen manipulation routines (ANSI
X3.64 escape sequences) and easy to use command parsing
routines. These functions, along with the standard C language
library functions for formatted I/0 and character manipulation,
make it easy to quickly generate custom interactive hardware
diagnostic and testing packages for new systems.

All the functions are stored in modular object libraries for
easy access and reusability. When a new function is required
that is almost provided for by a pre-existing library routine,
the source code of the original library function can be accessed
and tailored to the modified requirement. In this manner the
software development time is still shorter than for developing
a completely new function.

Data Acquisition Software

The data acquisition and analysis software is written com­
pletely in FORTRAN-77 running under RSXllM on the
µPDPl 1. The software is broken into four basic memory res­
ident modules, as shown in Figure 3. There are three tasks
that communicate with each other via a single RSXl 1 M global
data section.

The data acquisition task is responsible for the environ-

mental control and collection of data along the IEEE-488 bus.
Note that all software related to device interaction was built
upon already existing interface libraries provided by the hard­
ware manufacturers (i.e., DEC for the IEEE-488 interfacing,
and DTI for the D/A's, A/D's, and counters). Once the data
values are stored in the global data section, a second task
can be activated to analyze the data. In reality, there are
several different analytical tasks built upon a commercially
available subroutine library called IMSL. A third task is avail­
able to display raw and processed data on a medium reso­
lution (1024 by 800) graphics display terminal. The display
software is built on an in-house-developed graphics package
called GRAPHELP which runs on both the µPDPl 1 and the
VAX. The reader should see reference [2] for more information
about the graphics support.

It should be noted that the original data acquisition system
was developed under RTI 1. With that system, the three tasks
were run separately, passing data between them through tem­
porary files. The multitasking nature of RSXl lM allowed the
system to be redesigned as three memory-resident tasks shar­
ing a fixed memory-resident data area. In addition to saving
disk space, this structure eliminates the need to perform un­
necessary, time-consuming file 1/0. The practice under RT11
was to collect lots of data onto the disk before invoking the
analysis and display tasks. Under RSXl lM the data sets are
analyzed as they are collected, and only data sets of "signifi­
cant interest" are stored on the disk.

Conclusions

The HDL tluidics control group has found the laboratory en­
vironment described in this paper to be an extremely useful
tool in developing embedded microprocessor-based realtime
systems. The close integration of the test hardware with the
application hardware has made it possible to quickly and easily
develop and test new systems in a timely fashion.

The use of modular software libraries and high-level lan­
guage programming has made it easy to evolve the system and
application code to new processor systems and new application
systems as new technology becomes available. The reusability
of software has become an important factor in developing new
application systems.

Future plans include the migration to embedded proces­
sors that run at higher clock rates and support floating-point
calculations. These will probably not include the Jl 1 be­
cause of its low availability in a commercial product. In
addition, work is on-going to provide better integration and
reconfiguration for multiprocessor systems. The application
software library will continue to expand. It is also believed
that closer coupling between the VAX development system
and the µPDPl l environmental control system via a DEC­
NET/Ethernet interface (as opposed to the RS-232 serial in­
terface currently in use) will enhance the overall system de­
velopment process.

12

References

[1] Stephen Tenney and John Grills, Development of a
Low-Cost Navigation Aid, Proceedings of The Amer­
ican Society of Mechanical Engineers, Winter 1986,
86-WA/DSC-4.

[2] Steven Choy, Interactive Graphics Support For Mini­
computer Systems, Proceedings of the Digital Equip­
ment Corporation Users Society, Winter 1978.

A Report Generation Language
for Control Engineers

David H. Geer
General Electric Co.

Schenectady, NY 12301

Jay A. Turner
Digital Equipment Corp.

Albany, NY 12203

Abstract

Report Generator Language (RGL) is a tool for retrieving data from a controls data
base and producing printed reports from that data. It is targeted at Control Engineers
and plant operators, who have used computers but whose specialty is not computer
programming. RGL features include (1) ease of access to the plant data base, (2) a
menu-driven interface, (3) detailed, English error messages, (4) structured program­
ming, (5) powerful output formatting constructs, (6) arithmetic functions, and (7)
subroutine capability, including recursion.

RGL has been successfully used for formatting reports of current and historical
data from plant sensor data bases, monitoring plant equipment, billing, and diagnosis
of equipment failures. Because RGL is easy to learn and requires less coding and less
debugging, it is a powerful tool for the users of control systems. This paper discusses
the development of the RGL language, its features and its benefits.

Introduction

Modern power plants require many kinds of printed reports.
Daily, weekly, and monthly production reports are used by op­
erations management. Thermal performance reports are used
by plant engineers to monitor the health of plant equipment.
Maintenance management reports keep track of parts inven­
tory and equipment running time to aid in scheduling planned
maintenance. Emission reports monitor combustion products
in the exhaust gas for regulatory agencies. All of these re­
ports require changes from time to time as plant equipment,
operating practice, and regulatory requirements change.

Before RGL was developed, plant engineers had two
choices: either learn to program in FORTRAN, BASIC or
PASCAL, and learn to use the complex subroutine library sup­
plied by the computer vendor, or rely on the vendor to pro­
vide the complete logging package. The first approach meant
diverting control or instrument engineers from their normal
duties for many months of training. The latter meant static
formats for logs and reports, or software development charges
from the vendor each time a change was made to plant equip­
ment, process, or administrative procedures.

With RGL control engineers can write their own logs
after only three days of training. The toolkit guides the user
through the phases of editing, compiling, and testing. The
familiar syntax and powerful formatting features allow him
to learn to use the language quickly and produce exactly the

Proceedings of the Digital Equipme111 Compuler l 'sers Societ) 13

output he wants.
The Plant consists of a collection of equipment such as

boilers, turbines, pumps, valves, and motors. The plant is
monitored by Data Acquisition Systems or DASs. These are
special purpose microcomputers which are designed to moni­
tor sensors, convert their readings to digital form, and transmit
the data samples to the Station Computer for processing and
storage. The station computer is a VAX or Micro-VAX, de­
pending on plant size.

A single sensor is called a point. A sensor reading is
called a data point, or sample. The Station Computer main­
tains a file called the Data Dictionary that lists the names of the
DASs, the names of each point, and the information needed
to convert samples of each point for printing.

The Station Computer maintains two data bases: The
real time data base, which contains the most recent value
of each point, and the historical data base, which contains
a record of the data points that the system has received over
time. The real time data base is keyed on point name, and the
historical data base is keyed on point name and time.

What is a Report Generator?

A Report Generator is a system of programs that are designed
to make it easy to produce printed output. RGL components
are shown in Figure 1.

Naslm'/le, l/\ - 1987

+-------+
I Text I --->
I I
I Editor!
I I
+-------+

+------+
I RGL I
I Source I
I Code I
+------+

--->
+--------+

RGL
+

I Compiler I
I I
+--------+

--->
+----------+

RGL
I Executable I
I Code I
+----------+

Figure 1: RGL Components

RGL programs (reports) read data and format the results
into the output (view) file. The output file is processed with
the Report Viewer program to produce printed output and color
plots. RGL data flow is shown in Figure 2.

The Viewer program lets the user preview the output be­
fore printing or plotting.

Ease of Access to Plant Data

RGL provides routines to get data from the historical and
real time databases as well as from the data dictionary file,
Maintenance Management files and ASCII text files. In all,
RGL supplies over forty data access procedures. The most
commonly used procedures for data access are CURRENT,
LEVEL, EDGE, and SEARCH.

CURRENT is used for real-time database access.
The syntax is: .CURRENT PointName, UnitName,
LatestValue, Time,EngUnits,Status

A sample of CURRENT code and output is shown in Fig­
ure 3. The PointName and UnitName specify the sensor and
Data Acquisition System (DAS) where the sensor is located
The CURRENT procedure returns the value of the most recent
sample of a point, along with the time at which the sample
was taken. The engineering units of the point (e.g. DEG C,
or PSI), and a status code (indicating success or failure) are
also returned.

To read the value of a specific sensor from the histori­
cal database at a specific time, LEVEL is used. The syntax
is .LEVEL PointName, UnitName, Time, Value,
EngUnits, Status

A sample of LEVEL code and output is shown in Fig­
ure 4. The "Level" procedure returns the value of the sample
at or before "time" of the point "pointname".

The EDGE procedure is used to search for many occur­
rences of a given point in a time range. A sample of EDGE
code and output is shown in Figure 5. To begin the search
the FIRST parameter is passed with the value TRUE. In sub­
sequent searches it must be passed FALSE.

Edge returns only transitional values. This includes
changes of state of logic signals and changes in value of other
points. The syntax is . EDGE PointName, UnitName,
First, StartTime, EndTime, Value, Time,
EngUnits, Status.

The SEARCH procedure expands on the EDGE proce­
dure by providing a means to search for many occurrences of
any of several points on several units. A sample of SEARCH
code and output is given in Figure 6. An array of point

14

names and an array of unit names is passed to the procedure.
The point name and unit name are returned with the point
value. The values a.re returned in ascending time order. The
syntax is .SEARCH PointList, UnitList, First,
StartTime, EndTime, Value, Time, EngUnits,
PointName, Unit, Status

Menu-driven Interface

The Report Generator can be used either through a menu­
driven interface, called the Toolkit, or via DCL commands.

The main menu of the Toolkit provides an interface to
the EDT editor, RGL compiler and run time system, and the
Report Viewer. The user selects options on the menu screens
by moving the selection arrow (==>) to the desired option
with the arrow keys and pressing RETURN or SELECT. The
main menu is shown in Figure 7.

The Toolkit keeps track of what reports are available, and
maintains a series of menus from which the user may select
a report. The Toolkit remembers the last report selected, and
will assume that the user wants to edit, compile, or run that
report when he selects a menu option. If there is no current
report as yet, then an option that requires a report name will
put up the Report Selection Menu. The Report Selection Menu
is shown in Figure 8.

Since the user actually is creating a multitude of files in
his current directory, and since he may not be familiar with
DCL, a Maintenance Menu is provided to help him manage
his directory. The Maintenance Menu provides selections to
purge or delete reports, and to list the directory. The Main­
tenance Menu also allows the user to check schedule status
for periodically scheduled reports. The Maintenance Menu is
shown in Figure 9.

Reports produce intermediate output files that may or may
not be directly printable. The Report Viewer allows the user to
preview his text or graphic output, and allows him to produce
plots, printouts and screen copies of his report output.

Detailed, English Error Messages.

One very important design goal for the Report Generator was
that its error and warning messages be as helpful as possible,
and that they not be in cryptic computerese. It is assumed that
the average user of the Report Generator will not be familiar
with VMS error messages, and will need to be told not only
what is wrong, but what to do about it.

+----------+
RGL

I Executable I
I Code I
I I
+----------+

+----------+
---> Report

I Generator!
I I
+----------+

+----------+
Plant
Data
Base

+----------+

+--------+
---> I View

I File
I
I
+--------+

+----------+
---> Report

Viewer

+----------+

Figure 2: RGL Data Flow

.Current "VARS","GTG101",vars,time,units,status
.if status=l
.then
.display vars;" ";units;" at ";time

.else
.display "Error status=";status

.end

Output:

12.3 MVARS at 03-MAR-1987 09:13:59.02

Figure 3: CURRENT Procedure

Sample:

.Level "VARS","GTGlOl","02-Feb-1987 13:00:00.00",­
vars,units,status

.if status=l

Output:

.then
.display vars;" ";units

.else
.display "Error status=";status

.end

12.3 MVARS

Figure 4: LEVEL Procedure

15

Sample:

.Set First=True

.Repeat
.Edge "VARS","GTGlOl",first,­

"02-Feb-1987 13:00:00.00",­
"02-Feb-1987 23:59:59.99", -
vars, time, units, status

.set first=false

.if status=l
.then

.display vars;" ";units;" at ";time
.end

.until status<>l

.if status<>3
.then

.display "Error status=";status
.end

Output:

0.0 MVARS at 02-FEB-1987 13:00:00.00
0.5 MVARS at 02-FEB-1987 13:23:41.35
3.2 MVARS at 02-FEB-1987 17:28:01.27
1. 0 MVARS at 02-FEB-1987 23:11:12:41

Figure S: EDGE Procedure

16

Sample:

.table points(3) "L52GX","L4","L30B"

.table units(4) "GTG101","GTG201","GTG301","GTG401"

.Set First=True

.Repeat
.search points,units,first,­

"02-Feb-1987 13:00:00.00",­
"02-Feb-1987 23:59:59.99", -
value,time,engunit,point,unit,status

.set first=false

.if status=l
.then

.display unit;":";point;"=";value;" ";engunit;

.display " at ";time
.end

.until status<>l

. if status<>3
.then

Output:

.display "Error status=";status
.end

GTG20l:L52GX=l.0 at 02-FEB-1987 15:41:32.21
GTG301:L30B=O.O at 02-FEB-1987 17:00:32.99
GTG101:L52GX=l.0 at 02-FEB-1987 24:11:37.17

Figure 6: SEARCH Procedure

+---+
Report Development Toolkit

==> Create a new report
Edit the report source file
Compile the report
View the compilation log file
Test run the report
View the report source listing
View the report output
Switch the scheduling status
Maintenance Menu
Select a different report

Make a selection, then press return.

+---+

Figure 7: Main Menu

17

+--+
Report Development Toolkit

DD LOCAL2 PNTSEARC
80COL DISPLAY LONG POWER
ADDT DUMMY LYSHIFT PRINT
ALPHA ==> ECHO LYSHIFT2 PRTAB
ARGSORT EDGE MMIO PU
ARITH ELSE MMI02 READINT
ARITH2 ERR MMI03 REPEAT
ARRAY EV MMI04 RETURN
ARUN FACTORIAL NESTED RL2TM
CALLl FOR NESTED2 SD ANAL
CALL2 FORWARD NOT SEARCH
CALL3 IF NOT2 SET
CALL TAB IF2 OPERAND SHIFT
CAT INC PAREN SINCOS
CON CAT INCLUDE PASSWRONG STRING
CTIM LOCAL PERIODIC SU ANAL

Make a selection, then press return. MORE ...

+--+

Figure 8: Report Selection Menu

+--+
Report Development Toolkit (Maintenance)

Purge a report
Purge all reports
Delete a report

==> List the Directory
Schedule status

Make a selection, then press return.

+--+

Figure 9: Maintenance Menu

18

+--+
SiteName REPORT VIEWER ll-FEB-1987

Report text appears here for previewing

<UP>
CURRENT PAGE: l CURRENT LINE: 13 LAST PAGE COMPILED: 2 <RIGHT>
PAGE SELECT : 1 LINE SELECT : 13 <DOWN>
<NEXT-DISP>:NEXT PAGE <Fll>:SEL PAGE <SET-UP>:SETUP MENU <F13> : FIGURE
<PREV-DISP>:PREV PAGE <F12>:PRINT <EXIT> :RETURN <Fl7> : PLOT

+--+

Figure 10: Report Viewer Menu

The error messages are also site tailorable. In other
words, the customer can change the error messages, and for
example, translate them to his native language. In fact, the
source language of RGL is tailorable and extensible. (A Span­
ish prototype exists.)

For the Pascal program shown in Figure 10, the standard
VAX Pascal compiler produces a much more cryptic set of
error messages than does RGL.

The RGL program shown in Figure l l is functionally
identical to the Pascal program, but the error messages that
RGL provides tell the user in plain English what was wrong
and what needs to be changed.

The RGL compiler produces the messages shown in Fig­
ure 12.

This example also shows that RGL is a more compact
notation than Pascal. The Pascal program required about
55 percent more keystrokes to enter than the RGL program
(144 vs. 93).

Structured Programming

The RGL flow constructs lend themselves to structured pro­
gramming. REPEAT/UNTIL,
FOR/NEXT, IF(fHEN/ELSE/END, and SUBROUTINE/END
constructs encourage structure, and hence encourage readabil­
ity and software maintainability. There is no GOTO statement
in RGL. The only statements that produce jumps are RETURN
and EXIT. RETURN is used to jump to the end of a subrou­
tine, and EXIT is used to terminate the program. Syntax for
RGL structures is shown in Figure 13.

l'J

Powerful Output Formatting Constructs

The RGL language provides output to the terminal and an
output file. The most commonly used constructs are listed
below.

Unformatted print
.. PRINT
.PRINTUSING
.DISPLAY
.DISPLAYUSING
.ECHO

Unformatted printing is a what-you-see-is-what-you-get
mode of output. RGL source lines that do not begin with a
dot are printed directly as is. Such lines may have variables
embedded in them by preceding the variable name with a dol­
lar sign. In this case the formatted value of the variable is
substituted for the variable name in the output.

Unformatted printing prompted the use of the dot prefix
for RGL language statements, as an easy way to distinguish
between unformatted print lines and statements. A sample of
unformatted print is shown in Figure 14.

The .PRINT and .PRINTUSING statements are similar
to their BASIC counterparts. Their output normally goes to
the output file. The .DISPLAY and .DISPLAYUSING output
goes to the terminal or log file.

The ECHO statement is used to divert the output from
the output file to the terminal, or to echo the output to both
the terminal and the output file. Unformatted print lines, and
statements such as PRINT and PRINTUSING (but not DIS­
PLAY or DISPLAYUSING) are affected by ECHO .

. ECHO 0 - Write to the output file
only.

Program Simplest(input,output);
var

i:integer;
begin

readln(i);
if i>O

end.

thenn
writeln (' i=', i)

else
writeln('abs(i)=' ,-i);

Pascal produces the following error messages:

00007 0 1 thenn
1

%Pascal-E-SYNTHEN, (1) Syntax: THEN expected
%Pascal-E-ENDDIAGS, Pascal completed with 1 diagnostic

.getkb str

.str2int str,i

.if i>O
.thenn
.print "i=",i

.else
.print "abs(i)=",-i

.end

Figure 11: Simple Pascal Program

Figure 12: Simple RGL Program

20

.THENN

An unresolvable problem was found on source line number 4.
Unknown directive or boolean operator,"THENN".

A DOT (.) was found, but it was not part of a real number or a
known keyword. Check and see if you misspelled a directive or
boolean operator (.AND, .OR, or .NOT) .

. PRINT "i=",I
!

Source line number 5 may not produce the desired results .
. THEN expected.

The .IF directive has been found without a matching .THEN directive .
. THEN has two forms:

and
.IF condition .THEN

.IF condition
.THEN

No statements may come in between the .IF and the .THEN.

RGL finished with 1 warnings, and 1 errors
No object file has been produced.

%DT_X00RPT-F-ABORT, report generator terminated abnormally

.REPEAT
statements

.UNTIL condition

.FOR variable = Start,End
statements

.NEXT

.IF condition .THEN
statements

.ELSE
statements

.END

.SUBROUTINE name parameters
statements

.END

.RETURN

.EXIT

Figure 13: Error Messages

Figure 14: RGL Program Structures

21

Name: $name
$addressl
$address2

$date
Addr:

Monthly fuel bill:

Gas used:
Oil used:

$gasused $gasunits @ $gasprice
$oilused $oilunits @ $oilprce

Total billable = $$billable
Pay by : $payduedate

$$Gasbilled
$$0ilbilled

==

Figure 15: Unfonnatted Print Example

.ECHO 1 - Write to both display and
file.
.ECHO 2 - Write to the display only.

Forms may be drawn on the screen using ECHO and
unformatted print statements, for example. RGL provides the
keyboard input routines needed to handle simple fonns.

Arihmetic Functions

RGL provides expression evaluation for a a small set of arith­
metic operators and functions. These were created specifically
to give the plant engineer the tools to write thennal perfor­
mance calculations. Perfonnance reports can be written using
either real time data or historical data.

Binary operators:

+ Addition
Subtraction

* Multiplication
I Division

Exponentiation

Unary functions:

.SIN x sine of x

.cos x cosine of x

.TAN x tangent of x

.ATAN x arctangent of x

.ABS x absolute value

.LN x natural log of

.LOG x base-10 log of

. EXP x e"x .

.SQRT x square root of

of
x
x

x.

All angles are in radians.

x

22

Subroutine Capability

As RGL was used by engineers for more and more sophisti­
cated applications, it became clear that RGL needed subroutine
capability. Programs were becoming longer and longer, and
typically contained repetitive code.

Subroutine capability was added in the last major release
of RGL.

RGL supports subroutines with strongly-typed arguments,
and with local variables stored on the stack to pennit recursion.

Since a subroutine's name and argument list must be de­
clared before it can be used, RGL has a FORWARD statement.
This allows a subroutine's body to be defined separately from
the declaration of its name and arguments.

RGL's subroutine syntax is somewhat of a cross between
FORTRAN and Pascal, but without the parenthesis.

Figure 15 shows the .FORWARD construct, while Fig­
ure 16 shows recursion.

Conclusions

The Report Generation Language (RGL) has been very well
received by its customers. Easy access to plant data using only
a few function calls has encouraged experienced programmers
to use the language, rather than learn dozens of complicated
subroutines in Pascal or Fortran. The menu driven Toolkit and
English error messages have made the language accessible to
engineers and others who are not trained programmers. The
use of structured flow control statements results in code that
is easy to read and maintain. Powerful output formatting con­
structs, like unfonnatted print and printusing, allow users to
compose the output directly on their screens.

RGL provides an easy, understandable, and cost-effective
way to produce plant reports. This approach has made it suc­
cessful.

.SUBROUTINE A INT:INTEGER

.FORWARD

.SUBROUTINE B
.FOR I=l,10

.CALL A I
.NEXT I

.END

.SUBROUTINE A
.PRINT INT

.END

.CALL B

Figure 16: Example of FORWARD Construct

23

.SUBROUTINE FACTORIAL X:INTEGER,Z:INTEGER

! X IS THE INPUT AND Z IS THE OUTPUT

.IF X>l
.THEN

.CALL FACTORIAL X-1,Z

.SET Z=Z*X
.ELSE

.SET Z=l
.END

.END ! of FACTORIAL

.SUBROUTINE FACT I:INTEGER

! ANOTHER WAY TO WRITE FACTORIAL

.LOCAL J:INTEGER

.IF I>l
.THEN

.SET J=I-1

.CALL FACT J

.SET I=I*J
.ELSE

.SET I=l
.END

.END ! of FACT

! here is the main body of the program
.set i=S
.call fact i
.print "Fact 5 ";i

.set fact = 0

.call fact fact

.print "fact 0 =";fact

.call factorial 5,i

.print "Factorial S=";i

.set zero=O

.call factorial O,zero

.print "factorial O=";zero

Figure 17: An Example of Recursion

24

SPATIAL/II - A TECHNICAL OVERVIEW

Mark L. Palmer
Digital Equipment Corporation

Marlboro, Massachusetts

ABSTRACT

This paper briefly discusses what a
spatial database is and is used for,
and describes the components of Digital's
Spatial Database product, Spatial/II.

SPATIAL DATA

Spatial data is any information
which requires specification of
locality in a dimensional frame of
reference. In particular, it is
information which represents
entities existing in 3 dimensions.

Spatial data may exist implicitly
in a collection of data the purpose
of which does not require that the
spatial elements be managed per se.
An example of this might be a
customer database application which
stores customers' street addresses
along with their financial figures
and order information.

A large and growing number of
applications, however, need to
perform operations on the
geometric, or spatial, entities
"behind" the other data they
manage. In the above example, the
"address" data provided would not
be enough to write a program which
finds possible delivery routes
connecting a group of customers
within a given area. By making the
spatial data associated with the
street addresses explicit in terms
of coordinates, representing
certain spatial relationships, and
performing operations on this data,
the problem could be addressed.

Pmceedings ofthe /Jigital !:1111ipme11t Computer Users Society 25

Some application areas with needs
to manage spatial data explicitly
are:

o Astronomy

o Automated Cartography

o Robot Vis ion

o Geological Exploration

o Facilities Management

o Molecular Modelling

o Automated Navigation

o Land/Geographic Information
Systems

Much progress has been made towards
isolating the set of operations
required and common to all spatial
entities, and providing them in
systems designed to manage spatial
data explicitly. These operations
apply and are useful regardless of
whether the spatial entities in
question represent railroads or
molecular structures.

Nash1·ille, TN - 1987

SPATIAL DATABASES

Current data and database models
are proving inadequate for managing
spatial data as needed by the
above-mentioned application areas.
Here are some reasons why:

1. Size - A typical spatial
application uses tens of gigabytes
of data. Current database
implementations aren't built to
handle these amounts, or if they
do, access based on locational keys
is too slow to provide interactive
response.

2. Graphics - Management and query
of spatial data is inherently a
graphic operation. The ability to
work with pictures of geometric
entities is essential. Traditional
database models don't provide
utilities which allow graphic
plotting and manipulation of their
contents based on coordinates.
Systems which produce images from
the data and store them separately
are not adequate, since the images
don't reflect successive changes to
the data and become incorrect.

3. Cost of data capture - Obtaining
spatial data is expensive. It is
labor-intensive (e.g. digitizing)
or requires expensive technology
(e.g. remote sensing). Traditional
data models make it difficult to
preserve this investment. They
provide no means of isolating
spatial data for use with different
sets of thematic data.

4. Storage utilization - Spatial
entities are composed of widely
varying amounts of coordinates
which are needed in queries. Most
traditional models require
definition of fixed numbers of
numeric attributes.

26

5. Spatial Operations - Certain
operations are essential to query
and manage spatial data and occur
so frequently that they must be
fast.

These operations in tradtional data
model implementations are too slow
or are not feasible within the
model itself. Some examples:

o recognizing entities partially
or fully inside of others

o finding line segment
intersections over large areas

o recognizing, representing, and
using connectivity between
entities

o neighbor finding

o quick, locationally-based search
for entities.

SPATIAL/II

Digital's Spatial/II product is
intended for use as a standard for
representing and accessing spatial
data, providing diverse
applications utilizing spatial data
a common base on which to build.

The product consists of a file
structure, a callable interface to
routines which manipulate the file
structure, a library of geographic
and cartographic routines for use
in processing the data, and a set
of utilities which allow generic
spatial data manipulation and
management.

Data Pool

Each Spatial/II file has a set of
components which work together to
provide access to the data:

o Header
o Tables
o Index
o Data Dictionary

Means of manipulating (creating,
modifying, and deleting) each
component are available both via
the callable interface and also
interactively, via use of the
utilities.

Header

The "Header" component provides
storage for information about the
file as a whole: its bounding
figures, creation date, size,
topic, password, etc. Part of the
header is maintained by Spatial/II,
the other part is available for
user-defined purposes.

Tables

The "Tables" component allows users
to store formatted "matrices" of
information which are used in

27

processing their data. A table may
define what graphic symbols are to
be used when displaying a file, or
the format for displaying records
as text. It may also be used to
store "filters", which are ways of
specifying spatial and attribute
constraints for a set of records to
express queries. Tables may be
transferred between files.

Index

The "Index" component allows
storage of indices, which are lists
of record numbers. users may
generate and use indices in many
ways, for example to mark the
subset of records which satisfy a
given filter in order to access
them quickly in the future, or to
provide multiple orderings for
different types of spatial
processing on a file.

Data Dictionary

The "Data Dictionary" component
keeps track of the organization of
attributes on each record. User
definitions created to extend the
information kept about the spatial
data are stored here.

A distinction is made between
Locational, Topographic, and
Thematic attributes. Locational
attributes are those which specify
position of an entity (these are
usually coordinates or quantities) •
Topographic attributes consist of
pointers to other records which
have specific spatial relationships
(e.g. "parent" and "neighbor"
relationships) • Thematic
attributes are those which provide
information about what a spatial
entity represents (e.g. street
name, oil well output, etc.).

Locational and Topographic
attributes are defined and managed
by the Spatial/II software.

Dl
s::
I-· ..-
a..
m ,

~
Cl tU ,

t"i--tD n
Ill t-f 1-.... ..

t-· ::I :3::
::I I-· t-f

~ m N
U1 m

:3:: ,
~ Ill

::I
Ill
tD

~ m , m
a..
I-·
n-
D ,

28

Thematic attributes may be defined
by the user. The data dictionary
allows synonyms, or "aliases", for
attribute nrunes to be created; it
also supports multiple versions of
an attribute within a record.

The last and largest component of a
Spatial file is the data itself,
which the other components exist to
assist in manipulating. This is
the set of actual records with
Locational, Topographic, and
Thematic attributes.

Spatial/II file structure employs a
vector-type representation.
Topographic operations are
especially facilitated by using VMS
indexed files for direct access -
records keep "pointers" to
topographically related records by
using actual record numbers.
Locational attributes need not be
continually processed to guide
access since topographic
relationships are explicitly
represented. In most cases,
Topographic information may be
automatically generated and is
preserved by the operation of the
various utilities.

Data Entities and Structure

A Spatial/II file may contain one
of the following data types (listed
in order of increasing complexity):

o Point
o Resel
o Chain
o Polygon
o Triangluated Irregular Network

(TIN)

Points are simply X,Y, and Z
coordinate triples with which
Thematic attributes may be
associated. Points are typically
used to represent objects such as
oil wells and telephone poles.

29

A Resel is a rectangular plane
defined within a grid coordinate
system • The Res e 1 s in a f i 1 e
completely cover all grid cells in
the coordinate system. Each resel
is defined by lower left and upper
right corners. Resels are useful
for data in "map sheets" format,
for example to represent areas of
different ground elevation.

Each Chain is a set of coordinates
which have an order and a
direction. At least 2 Points
(start and end) are needed;
intermediate points are called
"Detail Points". Topographically,
Chains may have parents and may
share end points. Locational
attributes such as width and length
are provided. Chains are useful for
representing land features such as
roads and rivers, or for molecular
structures.

A Polygon is a set of Chains which
may share endpoints but do not
otherwise intersect. Topographic
attributes include: parent, child,
and right and left neighbor.
Locational attributes include type
(convex or concave), center, area,
status (open or closed) etc.

Polygons are of ten used in
cadastral maps to identify land
parcels.

TIN files are typically used in 3D
modelling of land surfaces such as
mountains or multiple layers of
geologic substratum. A Triangle is
a plane in three dimensions
enclosed by three Chains.
Locational attributes of Triangles
include centroid, area, slope, and
direction. Some Topographic
attributes are: parent, child,
vertices (points), neighbor, and
nesting level.

The primary entity represented by a
file is made of a hierarchy of
components which are usually
present as data. Polygons are made
of chains, which are made of nodes.
Triangles in a TIN may be grouped
into polygons; the sides of a
Triangle are Chains. Corresponding
entities between data types are
homologous, i.e. Chain records
found in Triangle, Chain, and
Polygon files have common
attributes.

Each entity and its components has
a set of system-defined attributes
which are maintained by the
utilities supplied; further
attributes may be added by users,
extending the record structure.
This is why Chains can be used to
represent rivers as well as
chromosomes. A standard attribute
naming scheme is used, so the only
difference between attributes
across file types is in the names'
prefix.

CALLABLE INTERFACE

The callable interface allows
programs to access and manipulate
records which make up spatial
entities, as well as providing a
libary of geometric and
cartographic procedures which
operate on the records. The routine
library supplied is used to by the
utilities, which allow users to
manipulate data interactively.

Each component of Spatial/II has a
group of procedures which provide
the set of operations required to
manipulate that component.
Procedures are supplied which
create, delete, and modify entries
in the data dictionary, indices,
tables, and file management
components.

30

Since the Spatial/II routine
library is written in FORTRAN, it
is very easy to call from VAX
FORTRAN. The documentation gives
examples of how these calls are
made from VAX FORTRAN.

UTILITIES SUPPLIED

All of the utilities interact with
the user via a common user
interface, called the Command,
Input, and Messaging Interface
(CIMI).

The menu structure associated with
controlling any utility is
non-hierarchical. A function may
be executed by typing almost any
abbreviation of its name from
"anywhere" in the menu. Most
functions are named with two short
words which are unique enough that
they can usually be abbreviated
using two letters.

The menu structure is also easily
changeable by users interactively.
A user may, for example, rename a
function to his liking and relocate
the function to a place in the menu
tree which is more suited to his
purposes without exiting the
utility.

Manager

The Manager provides for
manipulation of the data at the
"file" level, and management of
file access to various users. info
kept about each user, or "owner",
and each file, including passwords
for both owners and files.

The utility allows file creation
and deletion, modification of
information associated with each
file, as well as "import" of data
into the system. User accounts may
be similarly manipulated.

Builder

Builder allows "fleshing out" the
topographical information in a file
by analyzing existing info to
determine relationships which are
then stored. For example,· Builder
allows generating polygons from
chains.

Organizer

This allows manipulation of spatial
data on the file level while
preserving topographic data in the
file. Organizer allows files to be
split apart and later rejoined, and
for previously unrelated files to
be merged.

Editor

The Editor provides access to
individual files on a record basis
and is the most complex utility.
It allows users to graphically
display and manipulate their
spatial data.

Each component of a Spatial/II file
is accessible:

o Tables
o Indices
o Data Dictionary
o Header
o graphic data editing (add,

delete, modify)

By defining and activating
"filters" (part of the tables
component) spatial queries may be
conducted and their results made
available graphically. Also, the
display arrangements for graphic
and textual information to specify
labelling, coloring, symbol use,
etc. in accordance with ranges and
limits set up using the Editor.

31

Scanner

The Scanner is used to detect
locational and topographic errors
in the data, and also derives
geometric locational data (areas,
bounds) by processing existing
locational info (eg bounding poly,
rect, flow, etc}, and adds this
information to the other spatial
information already stored.

Advanced DATATRIEVE Record Definitions

B.Z.Lederman
ITI World Communications
New York, NY 10004-2464

Abstract

This session is intended to illustrate some of the more advanced features of DATA­
TRIEVE record definitions. Lower case text indicates commands typed in by a user,
upper case is printed by DTR or is material stored in the COD. Please keep in mind
that most examples are "stripped down", showing only the fields necessary to illus­
trate the principles being demonstrated: "real applications would require additional
fields, and in most cases more descriptive field names. Most of these examples use
advanced features found in VAX-DTR and DTR-20, and unfortunately will not work
in DTR-11 (or PRO-DTR).

Introduction DEPENDING ON REC LEN.

Reading a file whose records differ in length and field layout
is a common problem. In the following sample file, there are
records whose total length is not given directly by a field in
the record.

$ type var.seq

01 10 bytes.
02 15 byte record
01 10 bytes.
03 This is 20 bytes ...
02 15 byte record
04 This is 25 bytes long .•.
01 10 bytes.
03 This is 20 bytes ...
02 15 byte record
01 10 bytes.
04 This is 25 bytes long ...
01 10 bytes.

You can just define a text field the length of the longest
record, but you get "Record too Short ... " error messages, and
the short records are padded with blanks or zeroes. Also, it
would be hard to look at the individual data items within each
record. A first try at a better record definition could be:

DTR> show var rec

RECORD VAR REC
01 VAR REC.

10 TYPE PIC 99 EDIT STRING Z9.
10 REC LEN COMPUTED BY

TYPE VIA VAR LEN TAB.
10 TOP.

15 VARIABLE OCCURS 0 TO 30 TIMES

Proceedings of the Digital Equipment Computer Users Society 35

20 VTEXT PIC X.
10 A REDEFINES TOP.

20 FILLER PIC X.
20 NBRA PIC 99 EDIT STRING Z9.
20 FILLER PIC X.
20 TXTA PIC X(6).

10 B REDEFINES TOP.
20 FILLER PIC X.
20 NBRB PIC 99 EDIT STRING Z9.
20 FILLER PIC X.
20 TXTB PIC X (11) .

10 C REDEFINES TOP.
20 FILLER PIC X.
20 TXTCl PIC X(7).
20 FILLER PIC X.
20 NBRC PIC 99 EDIT STRING Z9.
20 FILLER PIC X.
20 TXTC2 PIC X(8).

10 D REDEFINES TOP.
20 FILLER PIC X.
20 TXTDl PIC X(7).
20 FILLER PIC X.
20 NBRD PIC 99 EDIT STRING Z9.
20 FILLER PIC X.
20 TXTD2 PIC X(l3).

This record definition depends upon a table that converts
the record type to a record length. This happens to be in a
domain table in this example, but could also be in a dictionary
table.

DTR> show var tab rec

RECORD VAR TAB REC
01 VAR TAB REC.

Nashl'ille, TN - 1987

10 TYPE PIC 99 EDIT STRING Z9.
10 LENGTH PIC 99 EDIT STRING Z9.

DTR> show var len tab

TABLE VAR LEN TAB FROM VAR TAB DOM
USING TYPE : LENGTH
END TABLE

DTR> print var tab dam

TYPE LENGTH

1 10
2 15
3 20
4 25

If you print this domain, you get the first field by default.

DTR>

TYPE

1

2

print var

REC
LEN VT EXT

10

15

1
0

b
y
t
e
s

1

5

b

y
t
e

r
e
c
0

r

d

and so on. This is very useful in cases where you want to
get each character in the record separately, such as for "pars­
ing" data, and you get the length of the text without having to
add an FN$STR.-1.ENGTH function to DTR. However, if you
want all of the data in a single field:

36

DTR> for var print a

NBRA TXTA

10 bytes.
15 byte r
10 bytes.

Illegal ASCII numeric "Th".
0 s is 2

15 byte r
Illegal ASCII numeric "Th".

0 s is 2
10 bytes.

Illegal ASCII numeric "Th".
0 s is 2

15 byte r
10 bytes.

Illegal ASCII numeric "Th".
0 s is 2

10 bytes.

and the same happens for all other REDEFINEd fields, because
the numeric fields don't "line up". One alternative is to use
a CHOICE statement in a procedure to get the proper field
to print out. (You can also use IF-THEN-ELSE statements to
accomplish the same result, and that approach will also work
with DTR-11, but CHOICE is more compact.)

DTR> show var-print

PROCEDURE VAR PRINT
FOR VAR BEGIN

END

PRINT TYPE, CHOICE OF
TYPE 1 THEN A
TYPE 2 THEN B

3 THEN C
4 THEN D

TYPE
TYPE
ELSE " "

END CHOICE

END PROCEDURE

DTR> :var-print

TYPE

1

2
1

3
2
4
1

3
2
1
4

10 bytes.
15 byte record
10 bytes.
This is 20 bytes ...
15 byte record
This is 25 bytes long ...
10 bytes.
This is 20 bytes ...
15 byte record
10 bytes.
This is 25 bytes long ...

1 10 bytes.

This suits many applications, but is sometimes inconvenient.
An alternative is a record definition (actually a VIEW) that will
print out the proper fields by default. (See figure l following.)

This has the slight drawback that, since there is nothing
which identifies unique records in this example, all records
of a given type are obtained for each record in the view. In
cases where there was an additional field with a unique key,
this would not be a problem: in this case, however, some ad­
ditional work can solve the problem. (See figure 2 following)

This is one way to one complete set of records. Another
method is:

DTR> find vari

[12 records found]

The following is not quite what we
want.

DTR> for current print av

NBRA TXTA

10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.

Execution terminated by operator.

but you can do this:

DTR> select first

Now, you can do some interesting things, like separating
the different groups of similar records.

DTR> print av

NBRA TXTA

10 bytes.
10 bytes.
10 bytes.
10 bytes.
10 bytes.

DTR> print bv

37

NBRB TXTB

15 byte record
15 byte record
15 byte record

DTR> print CV

TXTCl NBRC TXTC2

This is 20 bytes .. .
This is 20 bytes .. .

DTR> print dv

TXTDl NBRD TXTD2

This is 25 bytes long .. .
This is 25 bytes long .. .

Nonnally I would discourage the use of FIND and SE­
LECT, but in this case it can be used to sort and separate all
records of a given type.

Still, this is not quite what we were looking for. If you
can put a CHOICE statement into a procedure, why not put it
into the record definition.

DTR> show cvar rec

RECORD CVAR REC USING
01 CVAR REC.

10
10

10
10

TYPE PIC 99 EDIT STRING Z9.
REC LEN COMPUTED BY TYPE VIA
VAR LEN TAB.
FILLER PIC x.
TOP.

15 VARIABLE OCCURS 0 TO 30
TIMES DEPENDING ON REC LEN.

20 FILLER PIC X.
10 A REDEFINES TOP.

20 ANBR PIC 99.
20 FILLER PIC X.
20 ATXT PIC X(6).

10 B REDEFINES TOP.
20 BNBR PIC 99.
20 FILLER PIC X.
20 BTXT PIC X(ll).

10 C REDEFINES TOP.
20 CTXTl PIC X(8).
20 CNBR PIC 99.
20 CTXT2 PIC X(9).

10 D REDEFINES TOP.
20 DTXTl PIC X(8).
20 DNBR PIC 99.
20 DTXT2 PIC X(l4).

10 TEXT COMPUTED BY CHOICE OF
TYPE = 1 THEN ATXT

DOMAIN VARI OF VAR USING
01 VARIX OCCURS FOR VAR.

10 TYPE FROM VAR.
10 REC LEN FROM VAR.

02 AV OCCURS FOR VAR WITH TYPE 1.
10 NBRA FROM VAR.
10 TXTA FROM VAR.

02 BV OCCURS FOR VAR WITH TYPE = 2.

02

02

10 NBRB FROM VAR.
10 TXTB FROM VAR.
CV OCCURS FOR VAR WITH
10 TXTCl FROM VAR.
10 NBRC FROM VAR.
10 TXTC2 FROM VAR.
DV OCCURS FOR VAR WITH
10 TXTDl FROM VAR.
10 NBRD FROM VAR.
10 TXTD2 FROM VAR.

DTR> print vari

REC
TYPE LEN NBRA TXTA NBRB

l 10 10 bytes. 15
10 bytes. 15
10 bytes. 15
10 bytes.
10 bytes.

2 15 10 bytes. 15
10 bytes. 15
10 bytes. 15
10 bytes.
10 bytes.

1 10 10 bytes. 15
10 bytes. 15
10 bytes. 15
10 bytes.
10 bytes.

TYPE = 3.

TYPE - 4.

TXTB
byte record
byte record
byte record

byte record
byte record
byte record

byte record
byte record
byte record

Execution terminated by operator.

TXTCl NBRC TXTC2 TXTDl NBRD TX
Thia i.s 20 bytes ... Thia i.s 25 bytes
Thia i.s 20 bytes ... Thia i.s 25 bytes

Thia i.s 20 bytes ... Thia i.s 25 bytes
This i.s 20 bytes ... Thia is 25 bytes

Thia is 20 bytes ... Thia is 25 byte a
Thia is 20 bytes ... Thia is 25 byte a

Figure 1: Example

38

OTR> show print-first-vari

PROCEDURE PRINT FIRST VARI - -
DECLARE N PIC 9.
N = 1
FOR VARI BEGIN

ENO

WHILE N = 1 BEGIN
N = N + 1
PRINT

ENO

ENO PROCEDURE

OTR> :print-first-vari

REC

TYPE LEN NBRA TXTA NBRB
1 10 10 bytes. 15

10 bytes. 15
10 bytes. 15
10 bytes.
10 bytes.

TXTB TXTCl
byte record This is
byte record This is
byte record

NBRC TXTC2
20 bytes ...
20 bytes ...

TXTOl NBRD TX
This is 25 bytes
This is 25 bytes

Figure 2: Example

TYPE 2 THEN BTXT
TYPE 3 THEN CTXTl 111 CTXT2
TYPE 4 THEN DTXTl 111 DTXT2
ELSE ""
END CHOICE.

10 NUMBER EDIT STRING Z9 COMPUTED
BY CHOICE OF

TYPE 1 THEN ANBR
TYPE 2 THEN BNBR
TYPE 3 THEN CNBR
TYPE 4 THEN DNBR
ELSE 0
END CHOICE.

DTR> print cvar

REC
TYPE LEN
NUMBER

1 10
2 15
1 10
3 20
2 15
4 25
1 10
3 20
2 15
1 10
4 25
1 10

TEXT

bytes.
byte record
bytes.
This is bytes ...
byte record
This is bytes 1.ong ...
bytes.
This is bytes ...
byte record
bytes.
This is bytes 1.ong ...
bytes.

Just to prove that NUMBER is really numeric

10
15
10
20
15
25
10
20
15
10
25
10

39

DTR> for cvar print fn$1.ogl0(number)

1.000
1.176
1.000
1.301
1.176
1.398
1.000
1.301
1.176
1.000
1.398
1.000

Now we finally have the data in the form we want. Some­
thing which is not visible when you look at this print-out on
paper is that the field TEXT always prints out the length of
the actual field: it does not pad short records with spaces or
zeroes which is what would happen if you just defined one
field of 25 bytes (you also don't get the "Record too Short"
error messages).

There are a number of applications where data validation
in the record definition is desired. In this example, the em­
ployee number contains a sort of "check sum", where the last
two digits are the sum of the first two. This sort of thing is
sometimes done to verify that the data does not contains er­
rors (I'd rather depend on the operating system facilities, but
some people would prefer this). This particular check sum is
a bit crude, and done only to demonstrate the methods which
may be used. If you were going to do this a lot, it would be
worthwhile to define a new FN$-- function to do the compu­
tation, especially if the check method was more complicated

such as some sort of "rule of 11 '', but not everyone wants to
add functions to DTR. The interesting part of all this is that
you can define a VALID IF clause to work on parts of the
same field it validates, and that the fields used can be defined
after the VALID IF clause.

DTR>show empno_rec

RECORD EMPNO REC
01 EMPNO REC.

10 EMPLOYEE NUMBER PIC 99999
VALID IF CK = (Nl + N2 + N3) .

10 NBRS REDEFINES
20 Nl PIC 9.
20 N2 PIC 9.
20 N3 PIC 9.
20 CK PIC 99.

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32308

EMPLOYEE NUMBER.

Something that users don't always realize is that a COM­
PUTED BY field can be anywhere in the record definition, and
does not have to be computed from fields that come "ahead"
of it in the definition. DTR will read and parse the entire
record definition to resolve all field names before doing any­
thing with the record: thus, a field can, in some cases, even
be computed by itself.

With this definition, you can prevent invalid numbers
from being stored.

DTR> store empno
Enter EMPLOYEE NUMBER: 32301

Validation error for EMPLOYEE NUMBER.
Re-enter EMPLOYEE NUMBER: 32308

You can also find out if all the numbers currently in the
domain are still valid (something which a normal VALID IF
won't do):

DTR> for empno print ck, (nl + n2 +
n3)

CK

06
17
24
02

6
17
24

2
01 1
08 8
08 8

Now look at what happens if an invalid number is present
in the domain.

40

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32301 [this number is invalid]

DTR> print empno with ck ne (nl+n2+n3)

EMPLOYEE
NUMBER

32301

We can use DTR to go in and fix any checksums. (I would
advise looking at the data first to be certain it really is valid,
unless you want to do something like this to add checksums
to data that was stored previously without checksums.)

DTR> ready empno modify
DTR> for empno with ck ne (nl+n2+n3)
begin
CON> modify empno using ck = nl+n2+n3
CON> end

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32308

While thinking up stuff for this presentation, I came up
with the following example which, quite frankly, I didn't think
would work.

DTR> show sci rec

RECORD SCI REC
01 SCI REC.

10 SCI NOT USAGE REAL
EDIT STRING 99.99.

10 N2 COMPUTED BY *."N2".

Depending upon how you access the domain, you can be
prompted for N2 once per record (might be used to make the
system pause during loops), once per domain, or not at all.

DTR> for sci print sci not

SCI NOT

00.01
00.88
01.20
09.80
23.40

DTR> print sci
Enter N2: 30

SCI NOT N2

00.01 30
00.88 30
01. 20 30
09.80 30
23.40 30

DTR> for sci print sci rec

SCI
NOT N2

Enter N2: 30

00.01 30
Enter N2: 20

00.88 20
Enter N2: 10

01.20 10
Enter N2: 1

09.80 1
Enter N2: 0

23.40 0

Having done this, I'm not at all sure what I would use
it for, but one possibility might be to calculate prices from a

41

stored price list where the discount might change for different
customers, or where you might have to convert prices into for­
eign currencies (where the exchange rate changes daily). The
factor by which the prices are multiplied could be entered as
the prompted field, and then this field can be used to multi­
ply the stored price into a COMPITTED BY field with the net
price.

Some COMPITTED BY fields are more useful than oth­
ers. For example, if several departments share a data base and
you want to make sure that each department enters the correct
sequence of numbers (this example assumes a valid r.mge of
numbers for each department, just to make it more difficult):

DTR> show po_rec

RECORD PO REC
01 PO REC.

10 DEPT PIC XXX.
10 PO NUMBER PIC 99999 VALID IF 1 = CHOICE OF

(DEPT = "AAA" AND PO CHECK BETWEEN 01 AND
20) THEN 1;

(DEPT = "BBB" AND PO CHECK BETWEEN
40) THEN 1;

(DEPT = "CCC" AND PO CHECK BETWEEN
60) THEN l;

ELSE 0
END CHOICE.

10 PO CHECK REDEFINES PO NUMBER.
20 DEPT NO PIC 99.

DTR> print po

PO
DEPT NUMBER

AAA 01001
BBB 21001

DTR> store po
Enter DEPT: AAA
Enter PO NUMBER: 01002
DTR> store po
Enter DEPT: BBB
Enter PO NUMBER: 01003

Validation error for field PO NUMBER.
Re-enter PO NUMBER: 21002

21 AND

41 AND

This isn't bad, but it could be better. Why store the
department number and verify it, when you could change the
record definition and force it to always be correct? (This time
I'm assuming one prefix per department.)

DTR> show po_rec

RECORD PO REC
01 PO REC.

10 DEPT PIC XXX VALID IF DEPT= "AAA",
"BBB", "CCC".

10 HIDEIT.
20 FILLER PIC 999.

10 REAL STUFF REDEFINES HIDEIT.
20 DEPT_SEQ PIC 999.

10 PO NUMBER PIC 99999 COMPUTED BY CHOICE
DEPT = "A.AA" THEN DEPT_SEQ + 01000
DEPT = "BBB" THEN DEPT_SEQ + 02000
DEPT = "CCC" THEN DEPT_SEQ + 03000
ELSE "00000"
END CHOICE.

OF

We can also force the sequence number to be correct.

DTR> show store-po

PROCEDURE STORE PO
DECLARE MAXSEQ PIC 999.
DECLARE TMPDEP PIC XXX.
TMPDEP FN$UPCASE(*."Department")
MAXSEQ = MAX(DEPT_SEQ) OF PO

WITH DEPT = TMPDEP
STORE PO USING BEGIN

DEPT = TMPDEP
DEPT_SEQ = MAXSEQ + 1

END
END PROCEDURE

DTR> :store-po
Enter Department: bbb
DTR> print po

PO
DEPT NUMBER

BBB 02001
BBB 02002
AAA 01001
BBB 02003

DTR> :store-po
Enter Department: bbb
DTR> print po

PO
DEPT NUMBER

BBB 02001
BBB 02002
AAA 01001
BBB 02003
BBB 02004

If you try to store a department which has no records yet,
you get an error message, but you also get the correct result
anyway:

DTR> :store-po
Enter Depar~ment: ccc

Can't take MAX,MIN,or AVERAGE of
zero objects.

DTR> print po

PO
DEPT NUMBER

BBB 02001

42

BBB 02002
AAA 01001
BBB 02003
BBB 02004
CCC 03001

Something which I have run into, and which others have
asked for at past Q&A sessions, is how to get non-VMS date
strings into the VMS/DTR date type, especially when you
are not able to restructure the data. The following very non­
standard date and time is the type of data I've actually en­
countered.

$ type date.seq

86:01:02 1003A
85:03:14 120P
86:09:29 llOOP
86:11:11 332A

DTR> show date rec

RECORD DATE REC
01 DATE REC.

10 INPUT.
20 I YEAR PIC 99.
20 FILLER PIC X.
20 I MONTH PIC XX.
20 FILLER PIC X.
20 I DAY PIC 99.
20 FILLER PIC X.
20 T HOUR PIC XX.
20 I HOUR PIC 99 COMPUTED

BY T HOUR.
20 I MINUIT PIC 99.
20 I AP PIC X.

10 0 DATE COMPUTED BY
FN$DATE (I_DAY I "-"
I MONTH VIA MONTH TABLE
"-19" I I_YEAR).

The date part is easy: you just need a table to turn the
numeric month into an upper case alphanumeric month.

DTR> show month table

TABLE MONTH TABLE
01 "JAN",
02 "FEB" I
03 "MAR",
04 "APR",
05 "MAY",

06 "JUN",
07 "JUL",
08 "AUG",
09 "SEP",
10 "OCT",

11 "NOV",

12 "DEC"

END TABLE

DTR> print datei

I I I T I I I 0
YEAR MONTH DAY HOUR HOUR MINUIT AP DATE

86 01 02 10 10
85 03 14 1 01
86 09 29 11 11
86 11 11 3 03

03 A 2-Jan-1986
20 P 14-Mar-1985
00 P 29-Sep-1986
32 A 11-Nov-1986

Not too bad: but when you have to add the time things
get a little bit more complicated. I've shown only the hour
and minuit here, but you can add seconds and fractions of a
second as well. Note that I'm also using FILLER to hide the
input fields, so by default only the wanted fields print.

DTR> show date rec

RECORD DATE REC
01 DATE REC.

10 HIDEIT.
20 FILLER PIC X(14).

10 INPUT REDEFINES HIDEIT.
20 I YEAR PIC 99.
20 FILLER PIC X.
20 I MONTH PIC XX.
20 FILLER PIC X.
20 I DAY PIC 99.
20 FILLER PIC X.
20 T HOUR PIC XX.
20 I HOUR PIC 99 COMPUTED BY

T HOUR.
20 I MINUIT PIC 99.
20 I AP PIC X.
20 A HOUR COMPUTED BY CHOICE OF

(I_AP = "A" AND T HOUR = 12)
THEN 00

(I_AP = "P" AND T HOUR < 12)
THEN T HOUR + 12

ELSE T HOUR
END CHOICE.

20 B TIME COMPUTED BY
((A_HOUR * 60) + I_MINUIT) *
600000000.

10 0 DATE COMPUTED BY
FN$DATE (I_DAY I "-" I
I MONTH VIA MONTH TABLE
"-19" I I YEAR I I I
FN$TIME(B_TIME)).

The hard part is converting the AM/PM time to a 24 hour
time, then getting it to print in the proper format. There are
a number of ways it might be done depending upon the exact
input fonnat: in this case I convert the hour and minute to
"clunks", then use FN$TIME to put it back to characters long
enough to use FN$DATE to put the date and time back to

43

clunks. This might seem a bit "clunky", but it's actually the
easiest way to get it to work. every time. The alternative is
to make all of the fields "print" in the FN$DATE function the
way the day and year do. (It is sometimes also possible to
do this sort of thing in DTR-11: though there are no FN$­
functions, DTR-11 will handle dates with embedded times in
clunks.)

DTR> print datei

0 DATE

2-Jan-1986
14-Mar-1985
29-Sep-1986
ll-Nov-1986

7-Aug-1986
4-Jul-1976

DTR> for datei print i_hour, i_minuit,
CON> i_ap, fn$time(o_date)

I I I
HOUR MINUIT AP FN$TIME

10 03 A 10:03:00.00
01 20 p 13:20:00.00
11 00 p 23:00:00.00
03 32 A 03:32:00.00
12 01 A 00:01:00.00
12 58 p 12:58:00.00

The net result is that O..DATE now contains the complete
date and time in VMS format, and all of the normal DTR
Boolean comparisons will work..

Solving Equations in DATATRIEVE

B.Z.Lederman
ITT World Communications
New York, NY 10004-2464

Abstract

This paper highlights some of the methods of solving equations by using the mathe­
matical, logical and statistical functions available in DATATRIEVE. This paper will
not attempt to teach equation solving, but will highlight the facilities available in
DATATRIEVE, demonstrate some approaches to solving problems, and will point out
some of the difficulties or limitations to the process.

Why?

The first question many people will ask is: "Why would any­
one want to solve mathematical equations in DATATRIEVE?
Isn't DATATRIEVE a data retrieval and reporting language?"
The answer, briefly, is that there may be applications which
are totally non-mathematical (perhaps a library card catalog)
that would be implemented in DATATRIEVE with no math
functions; and some totally numerical applications (such as
a computer controlled milling machine or Fourier analysis of
a video image) that would probably not be implemented in
DATATRIEVE; but there are no sharp boundaries between data
retrieval which is totally non-mathematical and data retrieval
which requires some math. It is perfectly reasonable to imple­
ment applications which primarily store and retrieve data in
DATATRIEVE which also require some math, such as inven­
tory control, accounting, payroll, and probably as many other
applications as there are people using DATATRIEVE, and it
may be easier to implement the entire application in DATA­
TRIEVE than to do some pieces in DATATRIEVE and other
pieces in some other language. There is also the practical con­
sideration that many people who are able to quickly learn and
use DATATRIEVE do not have any "traditional" programming
backg,round, and may not have access to other programming
resources and are faced with the prospect of doing it entirely
in DATATRIEVE or not doing it at all.

One Alternative: Callable DATATRIEVE

There is an alternative for programs which require a large
amount of math but for which you would still like to use
DATATRIEVE for data storage, retrieval, and reporting, and
that is to use the call interface. You can write a program in
most, if not all, VAX languages (and with some limitations,
PDP-ll and TOPS) and have it call DATATRIEVE: this al­
lows you to write the math portion in your favorite language,
and then have it pass data to or retrieve data from DATA­
TRIEVE and execute DATATRIEVE statements from within
your program. It is even possible for the DATATRIEVE task

Proceedings of the Digital Equipment Computer Users Society 45

to be running on a separate system linked to yours via DEC­
net, which is often advantageous. Solving equations in other
languages is outside the scope of this presentation, however,
and this is mentioned here simply to inform you about some
of the alternatives available.

Basic Requirements

DATATRIEVE has all of the basic requirements for solving
mathematical or logical equations, which are:

• Mathematical Operators, such as addition, subtraction,
multiplication, and division

• The ability to control the flow of calculations by logical
(Boolean) operators (IF-THEN-ELSE).

• The ability to repeat an action until a condition is met
(FOR and WHILE).

While this may not seem to be a very large repetoire, it is
enough to solve almost any equation: it is, in fact, all that any
computer has, or what any person would have if the equation
were to be solved by hand.

Other Functions

"Traditional" computer languages (such as FORTRAN, BA­
SIC, Pascal, etc.) may have exponentiation (which can be
added to DATATRIEVE), but otherwise they generally have
only the same basic math operators. For convenience, most
languages have libraries of functions for commonly used com­
plex calculations (such as Logarithms, Trigonometry, Statis­
tics, etc.), and so does DATATRIEVE. In addition, it is pos­
sible to add new functions to DATATRIEVE, either as "true"
functions, or by writing procedures which are then used like
subroutines or functions. (Unfortunately, DATATRIEVE-11 I
PRO-DATATRIEVE doesn't have "true" functions, but users
can still write their own procedures that are used like subrou­
tines or functions.)

Nash1•i//e, TN - 1987

First Example

In order to illustrate the process, I will set up a sample domain
and run through a series of examples. The record definition
is:

01 SAMPLE REC.
03 ITEM PIC 9.
03 A PIC 999 EDIT STRING ZZ9.
03 B PIC 999 EDIT STRING ZZ9.
03 C PIC 999 EDIT STRING ZZ9.
03 Tl PIC 9999 EDIT STRING ZZZ9.
03 T2 PIC 9(6) EDIT STRING

ZZZ,ZZ9.

The domain is SAMPLE, and ITEM is a keyed field. This
very simple domain is for demonstration purposes only.

The first example will be to calculate T 1 by the formula
Tl = (A + B) * c. While this could easily be done by
making Tl a COMPUTED BY field it serves as a simple start­
ing point. (In DATATRIEVE-11, it is not possible to sort on a
computed field, but it will be possible to sort on Tl.) The FOR
statement will be used as it is the easiest way to perform the
same calculation for every record in a domain or collection.

For demonstration purposes, I've put the following data
into the sample domain.

ITEM A B c Tl T2

1 3 5 7 0 0
2 7 5 3 0 0
3 2 6 4 0 0
4 7 3 4 0 0

A possible command sequence is to perform the calcula­
tion is:

READY SAMPLE MODIFY
FOR SAMPLE MODIFY USING Tl = (A + B) *
c
PRINT SAMPLE SORTED BY DESC Tl

After the commands, it looks like this:

ITEM A B c Tl T2

1 3 5 7 56 0
4 7 3 4 40 0
2 7 5 3 36 0

3 2 6 4 32 0

Next: Running Totals

Something which will find a greater range of applications than
the first examples is running totals: for this, it is necessary to
store data from one record to another in some sort of variable
or field, and this raises the first important point concerning
"programming" in DATATRIEVE, which is that there are no

46

default variables as there are in BASIC or FORTRAN. All
fields must be DEFINEd in a record or DECLAREd, and you
must make the field large enough to hold the data planned
for it. Starting with the same sample domain, the commands
would be:

DECLARE RUNNING PIC 9(6).
RUNNING = 0
FOR SAMPLE MODIFY USING Tl (A + B) *
c
FOR SAMPLE SORTED BY DESC Tl

MODIFY USING BEGIN
RUNNING = RUNNING + Tl
T2 = RUNNING
END

Since the running total will be in field T2, RUNNING has
been declared to be the same size as T2 (though it doesn't
have to be: it just has to be large enough to hold the largest
number which will be encountered). Notice that RUNNING
must be initialized to zero: DATATRIEVE does not initialize
any fields, though sometimes you get lucky and get a blank
area of memory. In this example, the data is placed in the
current collection rather than storing the running totals as the
collection is being totaled by field Tl rather than by the pri­
mary key field of the sample domain. The domain (sorted by
descending T 1) now looks like this:

ITEM A B c Tl T2

1 3 5 7 56 56
4 7 3 4 40 96
2 7 5 3 36 132
3 2 6 4 32 164

The running totals are now in place, and the current col­
lection is ready for the report writer. Since the original ver­
sion of this paper other methods of obtaining running totals
in reports have appeared, but this method is still useful for
obtaining running totals outside of the report writer, or when
you want to obtain totals to store into a new domain or for
other calculations.

More Difficult: Square Roots

The next step in difficulty will be to calculate the square root
of a number (this is useful for standard deviation and other sta­
tistical calculations) using the Newton-Raphson method. First,
to test my algorithm, I will make a procedure which will ac­
cept a number and calculate the square root, printing out the
value to see if it's correct.

DEFINE PROCEDURE TEMP
DECLARE Tl PIC 9999

EDIT STRING ZZZ9.
DECLARE ROOT PIC 9999V99

EDIT STRING ZZZZ.Z9.
DECLARE TRY PIC 9999V99

EDIT STRING ZZZZ.Z9.
DECLARE DIF PIC S9999V99

EDIT STRING SZZZZ.Z9.
Tl = *.INPUT
TRY = 2
DIF = 1
WHILE DIF > 0.01 BEGIN

ROOT=Tl/TRY
TRY=(ROOT+TRY)/2
DIF=ROOT - TRY
IF DIF<O DIF=DIF*-1
PRINT ROOT,TRY,DIF
END

PRINT Tl,ROOT,TRY,DIF
END PROCEDURE

There are several important points in this procedure.
First, to repeat a previous statement, it is necessary that all
fie\ds be declared, and that they be large enough to hold the
expected data. Notice that ROOT, TRY and DIF all have 2
decimal places reserved: if they did not, the square root would
be calculated to the nearest whole number only. Note also that
DIF has space reserved for a sign, as the difference between
the last try and the present try could be positive or negative.
Again, TRY and DIF must be initialized as DATATRIEVE
does not initialize variables.

The WHILE statement is indispensable for this type of
calculation as there are no labels and no GOTOs in DATA­
TRIEVE. There is generally only two methods of performing
repetitive calculations: the FOR statement which is used to
perform some operation once on each record of a domain, and
the WHILE statement for other repetitive calculations as it is
not tied to a domain. In this case, the WHILE statement re­
peats until DIF (the difference between the present guess and
the previous guess) is less than .01, this being the chosen limit
of accuracy as the numbers were declared to have two decimal
places. Incidentally, the constant 0.01 could be another field
or variable, but if it is explicitly stated as it is here, it must
have the leading zero.

The next three lines are the algorithm: divide the num­
ber by a guess and average the difference between the guess
and the answer to form the next guess, repeating the pro­
cess until the required accuracy is obtained Notice that while
spaces around math operators are usually optional, if you en­
ter the second line as DIF = ROOT - TRY DATATRIEVE
will tell you that field ROOT_TRY is undefined or used out of
context. I have deliberately "squeezed" everything together
in this example to show that DATATRIEVE is reasonably tol­
erant of variations in programming "style", but I recommend
using spaces between items to make things more "readable",
to avoid the minus sign versus dash problem, and it usually
makes things easier to edit.

The next line forces the value of DIF to be positive (the
absolute value) to meet the condition of the WHILE statement,
otherwise any negative value for DIF would end the calcula­
tion prematurely. The loop ends not when DIF is calculated
but at the end of the block, which is how most "do loops"
operate. The print line within the BEGIN-END block is a de-

47

bugging aid: by placing a print statement here I can watch the
values for each variable for each pass through the loop and de­
termine if my logic is correct. When the procedure is correct,
this line may be removed so that the final answer is printed by
the last PRINT statement. Another method of debugging is
to place the commands in an indirect command file: this way
syntax errors are more visible as each line is printed when
read in by DATATRIEVE. (Remember to$ SET VERIFY to
see things happening on a VAX.)

Two samples of the printout (with debug) look like this:

DTR> :TEMP
Enter INPUT: 25

ROOT TRY DIF

12.50 7.25 5.25
3.44 5.34 1. 90
4.68 5.01 .33
4.99 5.00 .01

Tl ROOT TRY DIF

25 4.99 5.00 .01

DTR> :TEMP
Enter INPUT: 35

ROOT TRY DIF

17.50 9.75 7.75
3.58 6.66 3.08
5.25 5.95 .70
5.88 5.91 .03
5.92 5.91 .01

Tl ROOT TRY DIF

35 5.92 5.91 .01

DTR>

One of the advantages of DATATRIEVE is that it ap­
pears to the user as an "interpreter", like the original BASIC:
this means that you can take statements and execute them
immediately without having to go through some intermediate
compilation process. Since you can also edit your procedures
from within DATATRIEVE, and examine your data before and
after executing the procedure within DATATRIEVE, the devel­
opment cycle can be quick, and the user only has to work with
one product (or two, if you count the editor separately). If you
are working on a procedure, like this one, you can run it, see if
it's correct, make whatever changes are necessary, and re-run
the procedure all from within DATATRIEVE.

Making the Procedure Useful

Now that this procedure works, I will put it into a form where
it can be used elsewhere, and call it SQRT. This is a way to
build up a library of "functions" or "subroutines" usable in
DATATRIEVE (which will even work in DATATRIEVE-11).

DEFINE PROCEDURE SQRT
IF Tl LE 0 ABORT "No Negative Numbers"
DECLARE ROOT USAGE IS REAL.
DECLARE TRY USAGE IS REAL.
DECLARE DIF USAGE IS REAL.
TRY = 2
DIF = 1
WHILE DIF > 0.01 BEGIN

ROOT = Tl / TRY
TRY = (ROOT + TRY) / 2
DIF = ROOT - TRY
IF DIF < 0 DIF = DIF * -1
END

END PROCEDURE

The print statements and definition of T 1 have been re­
moved: Tl must be defined before the procedure is called
(so the calling procedure will make the space reservation and
assign a value to it before calling this procedure), and ROOT
will contain the answer when finished. As there are no argu­
ment lists as there may be when calling subroutines in other
languages, it is the responsibility of the person writing the pro­
cedure to document carefully the fields which must be defined
before the procedure is used, what types of fields they should
be, and what field will contain the answer when finished.

The first line in this procedure is very important: in order
for any equation to yield the correct answer, the' input data
must be correct (remember Garbage In, Garbage Out?). Since
negative numbers have no real square root, it is necessary
to insure that input to this procedure is not negative. The
variable declarations are also slightly different. Rather than
limit the range and accuracy of the procedure, the use of REAL
variables allows these fields to accept very large or very small
values: this is very handy for cases when you may not know
just what values the variables will have, and it occupies less
space than a large number with one character per byte (the
default DISPLAY data type). This procedure is now ready to
be used as part of another procedure. For example, let us put
the sum of A, B and c into Tl, and 100 times the square
root of Tl into T2.

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl A + B + C
:SQRT

T2 100 * ROOT
END

48

The current domain now looks like
this:

ITEM A B c Tl T2

1 3 5 7 15 387
2 7 5 3 15 387
3 2 6 4 12 346
4 7 3 4 14 374

It should be noted that there are alternate methods of
dealing with an incorrect value for Tl. One method is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
ROOT = 0
WHILE Tl GT 0 BEGIN

DECLARE --- variables as before

--- initialize variables
WHILE ...

---- procedure as before
END

END
END PROCEDURE

In this case, the entire procedure will be executed only
if Tl is greater than zero, otherwise nothing is done, and
ROOT defaults to zero (the rest of the procedure is unchanged).
Another alternative is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
IF Tl GT 0 BEGIN

procedure as above
END ELSE

ROOT 0
END

END PROCEDURE

Here the IF-THEN-ELSE statement is used to execute
the procedure if Tl is valid, and return a dummy value of
zero for the root if T2 is invalid. The last three lines could
be condensed into one, but writing it this way brings it closer
to "normal" programming. One caution: most "structured"
programmers would put the ELSE statement at the beginning
of a new line, to clarify the structure. This is not possible in
DATATRIEVE: the veib ELSE cannot be the first word on a
line. (Generally speaking: there are some "tricks" that can be
done, but they generally aren't worth doing.)

The last example could also be performed in this manner:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
IF Tl GT 0 BEGIN

procedure as above
END
IF Tl LE 0 ROOT = 0

END PROCEDURE -

This appears to be both less structured and less effi­
cient than the previous version, but it has one advantage
in that it "compiles" faster under some circumstances (and
uses less pool space in DATATRIEVE-11, though this won't
bother VAX-DTR or DTR-20 users). In the first version, all
of the statements from the IF to the last END (before the
END_pROCEDURE) must be "compiled" before any part of
the IF statement is executed, including evaluation of the IF
condition itself, and this takes time (and pool). In the sec­
ond version, each IF statement is "compiled" separately and
executed separately. If you are going to be going through a
repetitive series of calculations many times, it's usually faster
to put all of the statements into one big WHILE statement or
BEGIN-END block, let it all be compiled once when you en­
ter the routine, and then let it run. The program may seem to
"stall", while the statements are compiled, but once done the
procedure will run very fast, about as fast as code compiled
in other languages. Although it sometimes appears to be one,
DATATRIEVE is not an intetpreter (like the original BASIC)
where individual lines of code are intetpreted and executed be­
fore moving on to the next line: each "block" of code is com­
piled, then executed. If, however, you have a procedure which
will probably be executed once only (or once in a while), and
it contains a large number of IF conditions, it may be better
to put them in as separate IF statements so you won't waste
time compiling everything just to execute one small statement.
[For DATATRIEVE-11 users, in this example, the savings in
pool will be small because the second IF statement is so short,
but with more complicated IF-THEN-ELSE conditions this
method of breaking up the computations into smaller segments
can save a considerable amount of pool, and is especially use­
ful in DATATRIEVE-11.]

It should be noted that the statement

WHILE DIF > 0.01 BEGIN

could have been written in many different ways. One could
also say WHILE (DIF > 0. 01 OR DIF <
-0.01) BEGIN,orWHILE DIF BETWEEN -0.01 AND
O. 01 BEGIN, or any other valid Boolean expression. If any
of these had been used, the line

IF DIF < 0 THEN DIF = DIF * -1

which converts negative values to positive values would not
be required.

It should also be noted that the procedure name SQRT
isn't really very descriptive. It would probably be better to call
it something like SQUARE_ROOT or even SQUARE_ROOT_2
(for 2 decimal places), and place it in a common dictionary
for everyone to use once it has been debugged. The above
example of use would then look more like this:

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl = A + B + C
:CDD$TOP.USER$LIBRARY.SQUARE_ROOT
T2 = 100 * ROOT
END

49

(DATATRIEVE-11 procedures will look like the original
examples.)

Procedures versus Functions

The next important question is: should this be a procedure, or
should a function be added to DATATRIEVE? This is going
to depend a lot on what other facilities are available, how
often the function will be used, and on how many systems the
function will be used.

Adding a function to DATATRIEVE is not at all difficult,
especially if you are adding one of the VMS library routines,
as you don't have to write any code. Doing the calculation
in a function is often more efficient as DATATRIEVE doesn't
have to "compile" the code each time it's used, and this is es­
pecially important if the function is going to be used often. If
you want to add a function of your own, however, the first step
is to write a subroutine to implement the function in some pro­
gramming language that supports the VMS calling standard
This is going to be the first stumbling block for many DATA­
TRIEVE users, who don't have a· traditional "programming"
background. Next, the function must be linked into the DATA­
TRIEVE image: this isn't difficult, but many system managers
resist change. Of more practical difficulty is what happens
if your DATATRIEVE procedures have to be distributed to
many different systems (for example, if you have developed
something that is going to be throughout a company or cor­
poration). If you do everything as DATATRIEVE procedures,
you can distribute the DATATRIEVE code and be certain it
will work: if you depend upon special functions, then you
must be certain that those functions have been built into ev­
ery DATATRIEVE image where your code will run. This can
be especially difficult if the cotporation is widely distributed,
and, as often happens, different systems are running different
versions of the operating system and DATATRIEVE.

An Application: Least Squares Data Fit

One more example of this type of operation will be fitting a
trend line to data in a domain. This is the "least squares"
method of fitting the best line to a set of data points, and is
often used for such things as predicting future growth. Though
there is a least squares fit for many plots in DATATRIEVE,
the values are not retrievable for use within DATATRIEVE
and this procedure will make the values usable for storage in
a domain or other use.

The procedure is:

DEFINE PROCEDURE TREND
DECLARE SUMX USAGE IS REAL.
DECLARE SUMY USAGE IS REAL.
DECLARE SUMXY USAGE IS REAL.
DECLARE SUMXSQ USAGE IS REAL.
DECLARE SUMYSQ USAGE IS REAL.
DECLARE SLOPE USAGE IS REAL.
DECLARE INTERCEPT USAGE IS REAL.
DECLARE FIT USAGE IS REAL.
DECLARE TEMP USAGE IS REAL.

DECLARE N USAGE IS INTEGER.
N = 0
SUMX = 0
SUMY = 0
SUMXY = 0
SUMXSQ = 0
SUMYSQ = 0
READY SAMPLE
FOR SAMPLE BEGIN

SUMX = SUMX + ITEM
SUMY = SUMY + Tl
SUMXY = SUMXY + (ITEM * Tl)
SUMXSQ = SUMXSQ + (ITEM * ITEM)
SUMYSQ = SUMYSQ + (Tl * Tl)
N = N + 1
END

TEMP= ((SUMX * SUMY / N) - SUMXY)
SLOPE= TEMP/ ((SUMX * SUMX / N) -

SUMXSQ)
INTERCEPT = (SUMY - SLOPE * SUMX) / N
FIT = SLOPE * TEMP /

(SUMYSQ - (SUMY * SUMY / N)
PRINT SLOPE USING ZZZ9.9999,

INTERCEPT USING ZZZ9.9999,
FIT USING ZZZ9.9999

FINISH SAMPLE
RELEASE N
RELEASE TEMP
RELEASE FIT
RELEASE INTERCEPT
RELEASE SLOPE
RELEASE SUMYSQ
RELEASE SUMXSQ
RELEASE SUMXY
RELEASE SUMY
RELEASE SUMX
END PROCEDURE

The procedure follows the same rules as before as to
declaring all variables and initializing them. The FOR state­
ment is used to process the domain and sum up some values
which will be required for the calculation. The question might
arise as to why the procedure is summing up the values for
X (ITEM) and Y (Tl) and counting up the number of
items in N when it could simply FIND the domain and then
use the SUM and COUNT commands to have DATATRIEVE do
the work. The answer is that the procedure has to go through
the domain once anyway to sum the squares of the variables
and the products of the two variables, and it is more efficient
to also sum the other values at the same time than to have
DATATRIEVE make additional passes through the domain to
to the summing and counting, especially if this were to be done
on a large domain. It is a good general rule to gather as much
data at one time as possible to save time in processing (but
don't store values you won't need). This is also shown by the
use of an intermediate calculation for the value of TEMP: this
expression is used in two other places, and it is more efficient

50

to use four bytes of pool to store the value than to calculate it
twice, and it is also faster. The data now in the domain and
the answers look like this:

ITEM A B c Tl T2

1 0 0 0 1200 0
2 0 0 0 1800 0
3 0 0 0 1600 0
4 0 0 0 1900 0
5 0 0 0 1800 0
6 0 0 0 2100 0

DTR> :TREND

SLOPE INTERCEPT FIT

137.1429 1253.3334 0.6954

DTR>

The statements which were missing from previous ex­
amples but are included here are FINISH and RELEASE. In
DATATRIEVE-11, pool is always a scarce resource, it is good
practice to free up pool space by closing out domains and re­
leasing space reserved for variables which are no longer used.
On the VAX, it is often thought that, since the system uses
virtual memory, there is an unlimited supply. This is not true:
memory is not unlimited, and keeping around structures you
don't need will eventually cost you something. Although only
global variables actually require explicit release, it is best to
get into the habit of releasing resources as soon as possible: in
this example, if the RELEASE statements were not included,
the variables would still be stored in pool after the procedure
was finished.

A Few Suggestions

At this point, the reader should have a grasp of what is pos­
sible in the way of equation solving in DATATRIEVE. More
complex problems may be approached by breaking them down
into smaller sections, each of which should yield to one of the
methods presented. For those who plan to go further with
this approach, the following subjects in the DATATRIEVE
manual will be of interest: the ABORT, DECLARE, FOR,
WHILE, CHOICE, and IF-THEN-ELSE commands; arith­
metic and Boolean expressions; (procedures and indirect com­
mand files; optimization; and especially the section dealing
with the USAGE clause, which describes the internal format
of the different types of numbers. COMP {INTEGER, BYTE,
WORD, LONG, QUAD} is usually the most efficient type of
storage; for real numbers REAL {FLOAT} and DISPLAY (the
default) should be the next most efficient. The author recom­
mends avoiding COMP_{PACKED}, COMP_{ZONED}, and
COMP _6 except when needed to read data written by other
programs, and DATE (except for date calculations).

Where to find Equations

Reade.rs may be interested in knowing where to find equa­
tions in suitable fonn for solution in DATATRIEVE (or other
computer languages). Books on the particular subject (for ex­
ample,. a book on statistics for standant deviation or trend line
fitting) are a good beginning, especially the older books which
give instructions for solving the equations by hand; and even
better, books which show how to solve the equations on pocket
calculators. When such calculators were more expensive than
they are now, and most had only four functions (rather than
the specialized math or financial calculators now available), a
number of books showing how to break down trigonometric
functions, financial equations, etc. into a fonn which could
be solved on a four function calculator were published, and
these methods should be easily transferred to DATATRIEVE.
They will also give worked examples, so the user can com­
pare the answer obtained in DATATRIEVE with the answers
in the book to detennine if the equation has been correctly
solved. Another good source is the manuals provided with
programmable pocket calculators, (if you can still find one)
which often give the fonnula and a worked example: the trend
line example was obtained in this way. There are also books
published for high-school and college math classes containing
nothing but formulas, and some have functions expanded into
series, which are particularly suitable for solution by computer.
Finally, for those wishing to solve trigonometric functions, the
Fortran-IV (Fortran-77) manual set contains an appendix de­
scribing the methods used to provide those functions and the
accuracy obtained.

Built-In Functions

VAX-Datatrieve has the following built-in functions which
might be used for mathematical operations (not including the
date functions):

FN$ABS FN$ATAN FN$COS FN$EXP
FN$FLOOR FN$HEX FN$LN FN$LOG10
FN$MOD FN$NINT FN$SIGN FN$SIN
FN$SQRT FN$TAN

Many users appear reluctant to use these functions as they
are not "english-like" as is the rest of DATATRIEVE, but in
fact are really quite simple to use. For instance, the square
root example could be reduced to:

FOR SAMPLE MODIFY USING BEGIN
Tl A + B + C
T2 = 100 * FN$SQRT(Tl)

END

or, if you aren't really interested in the intermediate value
of Tl:

FOR SAMPLE MODIFY
USING T2 = 100 * FN$SQRT(A + B + C)

51

Or you can modify the original record definition:

01 SAMPLE REC.

C) •

03 ITEM PIC 9.
03 A PIC 999 EDIT STRING ZZ9.
03 B PIC 999 EDIT STRING ZZ9.
03 C PIC 999 EDIT STRING ZZ9.
03 T2 COMPUTED BY FN$SQRT(A + B +

Or, if you don't want to store the value:

FOR SAMPLE PRINT FN$SQRT(A + B + C)

Functions thus have the advantage that they can be in­
corporated into places where procedures cannot be used, or
cannot be easily used.

To add your own functions to DATATRIEVE, you have
to modify a file, DTRFND . MAR, supplied with DATATRIEVE.
When installing DATATRIEVE, you are asked if you want to
save certain customization files: say YES to save the func­
tion file. Although this is a Macro-32 language source file,
it doesn't really look like assembler language as it simply
consists of function definitions. For example, the following
function definition adds a function which raises a nwnber to
a power.

FN$POWER - Raise a real number to
a real power

Output is a floating value in RO, Rl
Input is two floating values
passed by immediate value

DTRFUN_DEF FN$POWER, OTS$POWRR, 2
DTRFUN_OUT_ARG

TYPE = FUN$K_VALUE,
DTYPE = DSC$K DTYPE F - -

DTRFUN_HEADER HDR = <"Power">
DTRFUN_IN_ARG

TYPE = FUN$K_VALUE,
DTYPE = DSC$K_DTYPE_F, ORDER

DTRFUN_IN_ARG
TYPE = FUN$K_VALUE,
DTYPE = DSC$K_DTYPE_F, ORDER

DTRFUN_END_DEF

1

2

In this instance you don't have have to write your own
routine to do the work as it uses a routine in a library sup­
plied with VMS. More function definitions like this, and a
DATATRIEVE procedure that generates the definitions, may
be found in the DATATRIEVE I Fourth Generation Languages
SIG Library tape, which is in the DECUS library and on the
VAX SIG Symposia tape.

\ 1A.X DA.TATRIE\TE s~curity U siug

Euviro11IIH'Ut A.ccou11ts a11cl A (~L · s

by Mich<H'I C. Graham

San<krs Associa1<'s

9.~ Canal Str<'<'1

~asl111a, NII o:H>G 1

Abstract

Tht· ;;ecnrity and iut.egrit) of dat.;1 l1;1H· ;;y,.:t.t•111 informal.ion i;; paramo1111t, part.inilarly ;1,.: it applil'" t.o pt'1",.;0111wl
and fi11a11cial record,.; of group,; and, or c<>111pa11ie,.:. External :<ecurit.y 1'1d1a11n·1rn•11t,; 11ow i11d11d1· ,.;11d1 dt•vin•" a:<
IJ£:fcnder II type ,;ecurit,y call-hack :;d1t·11ie,;, which require t.he ll>'t' of >'JH'cial pa,.;,;word" a11d havi11g t lw cu111p11tt·r
call hack the u;;er, if connect.ed t.o t.lw ,;y::'l.em by modem. This pre,;ent a.lion a.ddn·,;se::' t lw i,-sue of 'I.nit rrwl
:<ecurit.y, that. of preventing ot.herwi,-e authorized syst.ern users from acct':<:<i11g Sl'1Jsit ivl' data ha,.;1• i11for111at iou
re:<iding 011 the 111achi11e. Thi:; prt>,.;eut.a.t.iuu cont:ern>< it.:;elf ,.:pecifica.lly with DATATHlEVE Sen1rit.y. Tl1t> ,.;d1t•111t>
deli1wd lwn•in uses a two-fold approach.

Siun· DATATHIEVF.dat.a file:< re,.;ide withiu VAX :vMS "11h-dired.orie,.,, and si11ce t.he DATATHIEVE Domaiu
a11d HPcord l),•finit.ion,;, Proci>duri>:<, arnl Table,; rt',.:idt· withiu the Commou Da.t.a Dictiona.ry (CDD), ,.;ecnrit.y
preca11t.io11" fur hot h 11111,.;t. be implemeut.ed. It i,.; a:;,.;11111ed t.hat. t ht• da.t.a is to be shared by some but not. all
syst.ern usi>rs. Security fort.he act.ua.l d;it.a file,; will lw hr,.;t disrnssed, followed hy a discussion of DATATRIEVE
security and a layt'r<'d approach t.o dat.a integrity.

Data File ACL's

Th<' ordinary SET PHOTECTION sd)('lll<' for files is
11111lifiPd wit hi11 a11 l·~11,·1ro11111c·11t Acco1111t. ThP c•11t.ire·

purpose of t.h<' E11viro11111c·11t is t.o allow users wit.hi11
a rormnor1 11c·c·d t.o ac(·c·ss fi!Ps within that. E11viro11-

me11t. llow<'V<'r, t.hpre· a re· st.ii I i nst.a11cPs w Ii Pre in cPr­
t.ai n dat.a fil<'s may r<'quirc• restrictio11s. lirnit.i11g the'
access t.o specified users within t.h<' group. This can
be accomplished by the use of FILE and/or DIREC­
TORY ACL's. The ACL offers a way to match the
specific access you want to grant or deny to specific
users for each object.

ldent.ifiers are t.hP means of specifying the users rn
ACL. There are three types of identifiers:

Proceedings of the Digital Equipment Computer Users Society 53

• UIC identifiers that. d<•pend on th<' l :s<'r ld(•Jlt i­
fication Code (UIC) that. uniquely idPnl ify <'acli
user on t.hP system.

• General identifiers that. are defined by the Secu­
rity Manager in tJI<' syst.em rights databasP to
idc'11t.ify groups of usns 011 tfw syst.<'m.

• System-defined identifiers that describe certain

types of users (BATCH, NETWORK, DAIL UP,
INTERACTIVE, LOCAL, REMOTE).

UIC identifiPrs conform to the specific UIC's. The Se­

curity Manager crpates and assigns the general iden­
tifiers and UIC's to the system users with the Au­
thorize Utility (AUTHORIZE). System-defin<'d iden-

Nashville, TN - 1987

tifiers are automaticaliy defined by the system when

the rights database is created at system installation

time.

The ll<'Xl stc·p in this protection scheme is to define

what acc<'ss 1.0 grant or deny to the holders of each

<>I' tlwsC' idPntifiPrs, for Pach file that needs this level

of protect.ion. Because there may be mor<' than a frw

idPrrtifi<'rs lll'e<IPd t.<> represent diffrring access n<'cds

f()r <·ad1 <>h.J<•cL it is fairly con1111on to cr<•al<' a wh<>k

lis1 <>f 1·11t riPs, c·adr of which ddirl<' gro11ps of acc<•ss

rights t<> grarr1 or deny. Such a list is called an access

C<lfllrol list (ACL), and l'ach c•nt.ry within tlw lis1 is

calll·d an accc·ss corrt.rol list entry (ACI·~). ACL's <>lrer

t.l1e IJS<'r an opp<>rt.1rnity to firw-tllfH' th<' act.ion t.ake·n

wlwn acn•ss is S<lllght t<> an <lhject. Yo11 can provid<'

arr ACL <>II any <lhjl'ct 1o 1wrrni1 as r1111ch or as little·

acc<'ss as is de·sirahil' in <'ach cas<'. The·y can <'V<'ll

calls<' sccurit.y <1.l<1rr11s I.<> IH· se•1 off wlwrr access to an

object succe•pds or fai Is.

The obvious advanl.ag<· l.o having an intricate scheme

of file ACL's also has its negative side, While file

ACL's enhance the security of the system, the pay­

ment comes in user time required to generate and

maintain them and the processor time required to

perform the functions that ACL's mandate.

For a full description of File ACL's, tlwir use· and

implementation, refer to the VAX/VMS DC/, Uirlio­
nary and th<' VA X/V M,S' lltildic8 Hefernu·1 Alarrnnl.

ENVIR.ONMENT Accounts

An Environrnc·nt Account can be implemented on any

VAX system, and it permits the designated "owner"

to define who may or who may not access the files

residing within that account. When a user logs into
an Environment Account, it is essentially the same

as logging into a rf'gular account., with the exception

th at passwords are not normally used. An Environ­

rnen1 Account usually appears as a suh-dirc·clory 1.o
S<Jllll' ''us<'r'' account on the• syst.e•rr1. W lros<' acco11n1

1 h<' Environment is establislr<'d in is 11s11ally dictalPd

by th<• n<·e·ds of th<' group, dq>ar1.m<'nt, <'IC .. which

54

will be acce·ss1ng the· database•s and data. An e·xar11-

ple of an ac1.ual Environrnent Acco11nt is diagrar11mPd

below for illustration:

Account 24402

(t 1
Sub-dir (A) ENVIRONMENT ACCT

(24402.FESERVICE]
Sub-dir(B)

etc.

In the above illustration, a user account [24402] (my
corn pany Clock Nu mhcr) contains several sub-di rectories.

Orr<' oft ho-;<• s1ili-dir<'ctori<'s is named "FESl•:BVI< ~I·;''
arrd is an Environment Account .. Tlw acco11nt even

corrtairrs a LO<; IN.COM fik so that srwcifically tai­

lorc·d comrr1a11ds can Ii<' incluekd, as W<•ll as S<'1.t.irrg

111<· ckfaul1 CDD dictionary for DATATRll•:V I•: 11se'.

Ar1ot.ll<'r part of 1.11<' l•:nvironme·rit. i11cl11d<'s an

I·:~\· llSEHS.DAT Iii<', which wl1<'11 us<'d with sp<'cific

co111111;urds, allows t.11<· "owner'' Lo A DD, IH:LETI·:,

MODIFY, and PHINT the list of us<'rs wlro hav<' au-

1 horize~d accc•ss to t.lw l•;nvironrn<'rrt. From this point,

;tdditional s11b-dir<'c1.ori<'s can lw built as rcquire·d.

Tire int.nC'st ing f<'aturc· here is that the normal pro­

cess of <1ccpss lo user filc-s is bypassed, all otlwr suh­

direc1orie·s in \01rr \"1\1S acco1rnt can he prote•ct<'d ;io.;

de·sired. arrd onl~ t lrose· individ11als who arc· <>II t lw

Autl10riz<'d Accc·ss List to the Errv-ironrncnt may h<'

allowed into I he• l·:11viro1111w11I.. You may also wish L<i

kn•p a record of who acc<•sse•d t.11<· Enviror1111!'n1 Ac­

co11nt and wlH·n. Fig11rc 1 illusLratc·s arr example of

a .COM fill' which I wrote for that. purpose. As each

Environment. Account user acce•sses th<' account., lw
is a11tor11atically loggc·d into a rc·cord file, which is

p<'riodically scann!'d for S<'Cllri1y a11d accourrti11g pur­
poses. This .('.OM file· is one· of 1 he ir1111wdia1.C'ly <'X­

ecuted fi!Ps as t.lw user ae-cpsse•s 1 h<' account. Figure

2 illustrate•s the· LO<; ll\ .('OM Iii<' as I hav<' it irnpk­

rrwnted on rrry account. Any bell and whistle· you wish

1.o add can, of course, IH' don!'.

To have an Environment Account established within

your own User Account., you must S<'<' your System
Managc•r. Tll<' ManagPr will also provide you wit.Ii

$CONTEXT=

$PID =

$TIMEIN =

I $NAME

" "

F$EXTR.ACT(O,l 7 ,F$PID
(CONTEXT)'

F$EXTR.ACT
(O,l 7,F$TIME())

F$GET.JPI(PID,
"'USER.NAME'")

$OPEN I APPEND OlTTFIL

DISK:[24402.FESERVICE]TIMEIN.LOG

$WRITE OUTFIL "USER: ",NAME,
"LOGON: ",TIMEIN1

$CLOSE OUTFIL

Figure 1
------------ --------···-··-----

full inst r11c1.im1s as t.o t.hc• lll<'f.hods t.o rnaint.ain the

acc·ll11nt. You arc· 11ow, i11 e·ff<'ct. a11 Account Ma11-

a~1·r. If your DATATHIEVE acrn1111t. is st.rue·t.11r<'d

s11cli t.liat. the· full dict.io11ary pat.h 11a111e· is specific·d in

tll<' Domain Definitions for all your DATATHIEVE
dat.a files (which it. should I)('), t.he·n t.hosc· dat.a files

which are t.o be• sharc•d by your E11vironr11c·11t. llsNs

must. r<'sicfo wit.hir1 t.he' E11viror11rl<'nf.

To illustrate my point, my DATATRIEVE account for
the Field Engineering Services Department has the

CDD pathname CDD$TOP.USERS.FESERVJCES.
Wit,hi11 that dict.ionary object. are sub-dictionaries.

OrH• such dict.ionary is PERSONNEL. Within the sub­
dirc•ct.ory PERSONNEL is a Domain entitled FSE.
Th<' Dornai11 OC'finit.ion for that, database, following
t.hc· abm·p guicJc.lin<'. is:

""DOMAIN FSE USING FSE R.EC ON
DISK: [24402.FESER.VICES.DBASE J
FSE.DAT" 1

1 N<>f.e: Th<• a.h•we example W(•Hld lw t.yp<'d "Ii "Ii<' !in<>.

55

You can also sc•e that. t.here is a sub-dired.~ry wit.hi11

the environment entitled ".DBASE".

Within that sub-directory, all DATATRIEVE dat.afiles

reside. By always specifying the full pathname for the

.DAT file, you ensure that only those who have ac­
cess to the Environment can access the file, as well as
reduce confusion if a person has neglected to set. his

default direct.ory to the right place.

$SET NOON

$SET PR.OT=(S:RE,O:R.WED,G, W)
/DEFAULT 1

$DTR =="$SYS$SYSTEM
:DTR.32.EXE'" I

ASSIGN /PROCESS ""CDD$TOP. USERS
.FESERVICES" CDD$DEFAULT 1

$ASSIGN DISK:[24402.FESERVICE.HLP]
RESUME HLP$LIDR.ARY 11

$RESET

$BASE

$USERS

$HLP

$VID*EO

$CAI

:==SET DEF DISK:[24402
.FESERVICEJ 1

:==@DISK:[24402
.FESERVICE.DBASE]
DBASE.COM1

:==@DISK:[24402
.FESERVICE. USER.SJ
USERS.COM 1

:==@DISK:[24402
.FESERVICE.HLP]
HLP.COM2

:==l<~DISK:[24402

.FE SERVICE. VIDEO]
VIDEO.COM 1

:==SET DEF DISK:[24402
.FE SERVICE.CAI] I

-continued-

Figure 2

$SHORT

$LONG

$SHORT

$C<~TIMEIN

:=:-=SET TERM/
WIDTH=80

:==SET TERM
WIDTH=132

$WRITE SYS$01JTPUT ""W<'ko11w to th<'
FESERVICE Envir011111<'ut Ar<'a."
'"In cas<' of disast<•r. call Mik<• Graharn,
X-5206 1

$WRITE SYS$0lTTPlJT "" "

$TYPE DISK:[24402.FESERVICE]NOTICE
.TXT 1

$WRITE SYS$0UTPUT '" "

$EXIT

Fignr<' 2, continued

DATATRIEVE Security

The CDD also has a protection enhancement which
allows tJ1c "ownn" of Uw Dictionary Object to pro­

tect il in a variety of ways. Essentially, there are

thirteen different levels of protect.ion which can be

implemented on any dictionary object. The choices,
and how to implement them, can be somewhat con­
fusing. Protecting the data files within the Environ­
nwnt Account is only closing one of the barn doors.
To keep the cows at home, to ensure that only autho­

rized personnel have> access to both data and CDD
objects, Access Control Lists (ACL's) should be im­

plemented within DATATRIEVE. The new DA TA­
THJE\1£ l!ser'R Guide (a super book, by the way)

contains a rather lengthy discussion on implementing

56

Access Controls. However, through experience and a

lot of plain knocking my head against brick walls, I
have devised a rat.her simple•, but quite effective case

met. hod of CD D item protection. Two overall general

ru ks apply:

• ThC're arc· only /1110 pc·<ipk a11t.hori:r,ed l.o crc•al.c•
sub-dictionarie·s. de•fine Domains and Hecords,

and create P ron•d 11 n·s and Tab ks.

• All other users arc confined to reading writing

to, or modifying established databases.

lf this perhaps sounds restrictive, it is meant Lo. Tlw
principl<'s involved here arc based on military and

gove·rnrne·nt control systems. The reason for hav­
ing two f11ll-accC'ss personnel is r<'ally self-<'xplanat()ry

l'eople gPt ill. tak<' vacations, have hahi<'s, <'le. Th<'r<'
should IH' a backup person with full accPss 1() man­
age• tf)(' database• system in I,\)(' eVPllt of the 11.n/1.rnf'!y

r/r mi.'r of 11)(' Sysl<'lll Ma11ag<'r. It is also a proV<'ll fact

t hal th<' polc·11t ial for sysl.t'lll c11111prornise i11cr<'ases in

dirC'Ct proportion 1.<> t ltC' nllllllWr of !H'<>Jll<' who haV<'

11nIi111 it <'d sy st <'Ill acc\'SS.

Tli<' following illustration is of a DATATHIEV ft~ sys­

l<'lll 11sing the CASE method of impknl<'nLing DATA­

THH~VE security. Th<' syst<'rn uses six cases. Each

cas<' provides for a C<'rLain kvel of sec11fily within

th<' systC'lll. To vie•w, add, or eklc-t.c· 11am<'s fro111 !ht'

DATATHIEVI·; ACL's, th<' following DATATHl!t:VE
I t'rrns ar<' used:

DEFINEP d<>fiiw an ACL for a giv<'n
individual or THC.

DELETEP d<'l<'t<' :m iwlividnal frorn t lJ<•
ACL for tlw ohj<'d.

SHOWP list th<' ACL for tlw sp<'citiPd
ohj<•ct.

The normal rn<'lltod of d<'fining an Acce·ss Control Lisi
consists of adding IJS<'rs lo each olijc·ct in t.hc• following
111a1111e•r:

DEFINEP [ohjPctnam<'] [position#]
GRANT= [priv].DENY=[priv].
DANISH= fpriv Jc

ThP rrwt.hod of dC'lc>t.ing namc·s from th<· ACL is of th<•
form:

DELETEP [ohj<'ctu:rnH'] [positiou# J

T" \i(·w the· A<:L for a givc·11 olij(·ct (\VOMBAT):

SHOWP WOMDAT

In all, as prc·vio11sly 111c·11t.io11<'<L Lh<'r<· <tr<' U1irt.<·Pn dif­
fprc•nt Acc<•ss Controls which can h<" i111pkm<·t1L<'d. It.
is so111di11H's f'onfusi11g. Without going int.o great. d<'­
t.ail. Lh<· following six CASl·:S ca11 IH' usC'd Lo apply
\J\J.9('-(of all your sc·curity n<'<'<k Th<·y are:

CASE #1 GRANT=ALL
(grant all privileges)

CASE #2 GRANT=P,DENY=
CDER.SlTWX (pass-through only)2

CASE #3 GR.ANT=PR.S,DENY=
D,IlANISH=FG (allow pass­
through, vi<•w ohj<'cts)2

CASE #4 GRANT=EPRSW ,DENY=
D,IlANISH=FG (allow writ<•,
r<'ad objects/ data) 2

CASE #5 GR.ANT=EPR.S.DENY =D,
IlANISH=FG (allow n•ad
ohj<'ct /data)2

CASE #6 DENY =ALL (<l<'ny all privilc>g<•s)

L<'l 's apply t.ll<'rn t.o a DATATH.IEVE account. which
1 a kc·s t Ii<' form:

I
SUB (A)

CDDSTOP.USERS.YOURNAME {level O}

I 1 I I
SUB (B) SUB (C) SUB (D)

{level 1}

I I ' OBJECT 1 OBJECT 1 OBJECT 1 OBJECT 1
OBJECT 2 OBJECT 2 OBJECT 2 OBJECT 2
etc. etc. etc. etc.

{level 2}

LPH·I () ca11 h<' ro11sidc•rc•d a gal<•way. At. this h·vel, all
t l1at should lw sc·c·11 ar<• t.hc· s1d1-dictio11a.ries IH'low it..
Do not. include· any olijc·ct.s at. t.his l<'vc•I.

Level l objects are 011 ly t.h<' su b-d ict,ionari<'s. They
can be named whatev<•r you pl<•ase, but. certain thoughts
should he considered. OrH' sub-dictionary should con­
tain t.he Domain and RPcord Definitions for t.IH' sys­
tem. On<' su b-dict.ionary shou Id be for t.hc Sy st.Pm
Manag<·r's use in creating new objects. (TIH'y can I><'
relocat.<·d lat.<-r.) The other sub-dictionaries might b<'
for functional groups within your division, etc.

LPvd 2 objPct.s a.re• th<· Domains, B.ecord Definitions.
J>rocedurPs. and Tables.

Assume' four us<'rs:

YOUR.NAME

SMITH

WESSON
ACES

(you're thc> SYS
MGR/programmer/ <'tc.)

(two r<~al pistols,
read/writ<• /modify)

(only a reader of data ...
rnanager typ<')

!\ow let's implement. at each IPvel using th<• CASES:

At Lc·vC'I 0. <'VC'ry 11s<•r for the• syst<·m gc•t. in:

YOUR.NAME gets CASE 1.
SMITH, WESSON, ACES get CASE 2.
Auyon<' els<' gets th<• hoot!

DEFINEP YOUR.NAME 1 USER=
YOURNAME,GRANT=ALL2

DEFINEP YOUR.NAME 2 USER=
SMITH,GR.ANT=P,DENY =CDERSlJWX2

DEFINEP YOUR.NAME 3 USER=
WESSON,GR.ANT=P.DENY=CDER.SlTWX2

DEFINEP YOUR.NAME 4 USER=
ACES,GRANT=P,DENY=CDER.SUWX2

DEFINEP YOUR.NAME 5 lJIC=
[*.*].DENY=ALL
.,

'·N·•t.(•: At P"~it.i 0 >11 ;, i~ t.lw h··••t! Thi~ i~ CASE #(i. It i~
t.he k(•y t .. • t Ji,. ent.in' A('L ~chem<'. It. prevPnt.~ :111y•)ll<' eJ,e
<>t.lwr t.h:1n t.h"'(' li~t.ed fr,.111 :irce~~iuµ; y .. 11r DATATRIEVE
W• •rk~pacP.

At Level 1, peoplP can go different. directions, de­
pcnd i11g on how you structure th<' ACL's for each
s11h-dir<'ct.ory. S11ppos<' SM ITI I ;rnd W l·;SSON have'

a llC'<'d t.1> acc<•ss t.lr<' l'rocedur<'s of dat.ahas<'S in Sll I~
(A), hut. not ACl•;S. ny tlw sarrH' t.ok<'n, only ACES
l1as ;wc·l'ss t.o tire• ohj<'cLs i11 SUI~ (H). l•;vPryo1w lras
il('('('SS lo sun (C) (t.h<' Donrain and l~('('ord Ddini-

1 io11s n·sid" t.ll('r<', or at !Past t.lr<' 111ast.C'r dat.a.bas<~s

do). Only YOl'HNAMI·; has access t.o SUH (D).

DEFINEP SUD (A) 1 USER=
YOURNAME,GRANT=ALL2

DEFINEP SUD (A) 2 USER=
SMITH,G RANT =PRS,DENY =D,
DANISH=FG 2

DEFINEP SUD (A) 3 USER=
WESSON,GRANT=PRS,DENY=D,
DANISH=FG 2

DEFINEP SUB (A) 4 UIC=
[*, *],DENY=ALL2

llere again, not<' posit.ion 1. Th(' cat.chall is usC'd at.
tlr<' <'lid of nll'r1J A C'L.".' At t.lris kv<'I, SM ITll and
\\'l•:SSO!\J ca11 pass i11to Sl;H (.!\),/\('ES can't, a.11d of

cours<' YotrHNAMI·: is 11/11J,,y.~ tlr<'r<' Tl)(' <~ASl·:s at
t.l1is IPvC'l 11s<'d WN(' ('AS!·: I for YOliHJ\Al\H:, (:AS!·;

:\for S!\11Tll a11d \\'l·;ssol\, CASI•: (i for <'V<T,vo11"
(•Is" To d"fi11" t Ir<' ACL 's for Sll H (I~),(«). a11d (D),
y1i11 would 11s<' t.lr<' <'Xa.ct. sa111<· fornrat. 0111,v clra1q?;ing
t.lr« n<tlll<'S:

DEFINEP sun (D) 1 USER=
YOTTRNAME,GRANT=ALL2

DEFINEP snn (ll) 2 TT SER=
A<:Es.<.;RANT=PRS.DENY=D,
IlANISH=FG 2

DEFINEP SUD {ll) 3 THC=
[*,*],DENY=ALL2

DEFINEP SUD (C) 1 USER=
YOTTRNAME,GRANT=ALL2

58

DEFINEP SUD (C) 2 USER=
SMITH.GRANT=PRS,DENY =D,
DANISH=FG 2

DEFINEP SUD (C) 3 USER=
WESSON ,GRANT=PRS,DENY =D,
DANISH=FG 2

DEFINEP sun (c) 4 USER=
ACES.GRANT=PRS,DENY=D,
DANISH=FG 2

DEFINEP SUD (C) 5 UIC=
[*,*],DENY =ALL2

DEFINEP SUB (D) 1 USER.=
YOlJRNAME,GRANT=ALL2

DEFINEP SUB (D) 2 lJIC=
[*,*],DENY =ALL2

At each Level 2, <'aclr object, be it Domain Ddinit.ion,
Hecord D<'fi11it.ion. l'rocedurP, or Tahl<', must IH' dc•­
firrc'd. This is part ic11larly t.fl)(' i11 t.lrosC' ar,'as wl11'r"
all p<'rso1111d will lrav« accc·ss t.o t,IH' sanw datahasc·s.
For <·xa111pl(-. <llUE<'TS I and :2 wit.lrirr st:n (<')
ill'<' a D1i111ai11 <i11d Hl'cord Ddirritiorr r<'>'IH'c·t iv<'ly. yo11
would 11s" ('_\:-;!: 1 for SMITll a11d \Yl•:SSON. ('\:-;!:

:i for A< 'l•:S. ;111d of co11rsc>, CASI•; (i as t IH' last. ('111 ry.
Exarrrplc·:

DEFINEP OD.JECTl 1 TJSER.=YOUR.NAME
,GR.ANT=ALL2

DEFINEP OD.JECTl 2 TJSER.=SMITH,GR.ANT
=EPR.SW ,DENY =D,DANISH=FG

DEFINEP OD.JECTl 3 TTSER=WESSON,GRAN'I
=EPR.SW ,DENY =D,DANISH=FG

DEFINEP OD.JECTl 4 USER.=ACES,GRANT
=EPRSW ,DENY=D,BANISH=FG

DEFINEP OD.JECTl 5 UIC=[*,*].DENY=AL14

User ACES can only access the database for read priv­
ilPges, whPrC'as 11sc•rs SMITH and Wl1~SSON can ac­
c<•ss th<' sa111c• dat.alias<' for rc•ad/writ.<•'r11odif'.v priv1-
IPg<•s.

llow<'v<·r. none of the users except YOUBNAME (rP­
memlH'r, the boss! has privileges which would al­
low t,hem to modify, delete, create, or otherwise per­
form actions within the sub-dictionary which could
be detrimental to the system. Absolute control over
the system is retained by th<' System Manager. 011<'
additional thought: the above scheme also proves th<'
argument that. a SMITH and WESSON beats ACES
always!

Th<' alphal>C't soup of !Pt.t.c•rs usc·d in conjunct.ion with
the• IH~FJNEJ> cormnand rrier<'ly ckt.c·rn1irws the· ex­
t.cut of priviJc.g<·s within your DATATRIEVE account.
If care• is takc•n, you can us<• Lii<' CASE rrwthod for
most applications. If otlr<'r pri vi kge·s ar<' recp1 i rc·d,
co11s1dt tire· IJA TA TH n'\'/<,' li8rr ';;Guidi·. This particular
sd1<·1n<• has been in effect for ovC'r thrc•<' y<'ars at. my
co111pa11y on an extrc•m<'ly large· dat alias<' system, and
it 11;1..; ll<'V<'r fail<•d. 11 doc•s. h<>wc•vc·r. place· ;1 liurdP11
<>II t llC' ~.vste·111 Mana.ge·r I<> c•11..;11n· 1 hat :\('.L's arc· kPpl.

<'lllT<'lll.

111 <'<>twl11sio11. Ii) <'<>111l>i11i11g 1 llC' 11sc· of illl l·~11viro11-

111t·11t :\cn>1111t a11d File- A< 'L's to pr<>t<'ct. 1.11<' DATA­
THIE\ I·~ data liks, a11d l1y using t.11<' CASE 11wtlrod
t.o crc·at.<· :\CL's within a laye·re·d DATATBIEVl1~ a.c­

cou11t. _vo11 can afford your DATATBll<~VI•; syst.<·111 tire•
111ax111111111 111 intc·rnal sC'curit~.

59

Making an Inexpensive Rainbow Workstation for a Chemistry Lab

John D. Bak and David M. Hayes
Department of Chemistry, Union College

Schenectady, New York 1230B

Abstract

Chemical kinetics is the study of how quickly and by what means chemical
reactions proceed. Some reactions are so fast and complicated that data
must be taken very quickly and then lengthy calculations done to get results.
Computers speed these studies greatly. The system described herein uses a
DEC-Rainbow microcomputer as a terminal for a workstation. The system may
collect Bk of buffered data at a rate of lMHz and then upload the data to a
VAX for analysis using the same Rainbow as a graphics terminal. The program
for data analysis will then accept the data and also other information about the
chemical reactions in the same symbolic format that chemists use so that the
analysis may be done.

Introduction

This system was specifically designed to collect and
analyze data from an instrument called a flash photolysis
spectrophotometer, but it may also be used with other
instruments. The way the ''flash rig" works is that the
chemicals to be reacted are put in a glass container, and
then flashed by high intensity light from a xenon flash
lamp or a laser. The length of this flash is typically less
than 10 microseconds. Some of the energy of the light is
absorbed by the chemicals and causes them to react. The
reactions studied by this method may go to completion in
as short a time as a hundred microseconds. The reaction
is monitored by passing a continuous probe light through
the sample cell and measuring the variation in transmitted
intensity at a particular wavelength as a function of time.
The transmitted light intensity can usually be correlated
with the concentration of particular reactants, transients
or products in the sample cell. This transmitted light is
first converted to an electric current by a photomultiplier
tube and then converted to a voltage by passing the
current through a known resistance. This voltage is
directly proportional to transmitted light intensity at the
selected wavelength through the sample cell. This is the
input the interface circuit between the instrument and the
Rainbow.

There are two basic needs that we want this system
to fulfill. First we want to be able to collect data by
computer. Second, we want to be able to analyze this
data using the college's VAX cluster. The basic system
is an instrument connected to an interface circuit with a
buffer which is connected to a Rainbow. The Rainbow
acts as the data collection station and also as a VAX
terminal for the school's VAX cluster, where data analysis
software resides. These two basic components, the data

Proceedings of the Digital Equipment Computer Users Society 63

collection system and the data analysis software will be
described herein.

Data Collection

System Requirements

There are several characteristics that this system has to
have in order to be used to study the reactions that we
have in mind. The minimum needs are:

• Variable timing: lMhz maximum rate
• A 2000 data point buffer
• Greater than B bits per data word
• Capability to upload data to VAX
• Graphics with hardcopy
• Must be inexpensive

The core of our system is a Rainbow microcomputer
with a graphics board and an LA50 printer. This gives us
our graphics and hardcopy capabilities as well as being a
terminal to the VAX, so that data may be uploaded right
after it is collected. The analog to digital (A/D) converter
in the interface between the instrument and the Rainbow
is a HAS1201 made by Analog Devices. This converter
has a maximum rate of l.05MHz at 12 bits per word. We
wanted more than B bits to give us the sensitivity to make
accurate readings in areas where the converter's full range
was not being utilized. To get variable timing an 8253-5
programmable interval timer is used. It is configured in
such a way that it gives us data sampling intervals ranging
from lµsec to about B.9 years(more about how that is
done later). The interface circuit has a 16k byte buffer
so that it gives Bk words. Finally an B251A USART is
used to communicate between the Rainbow and the buffer
circuit. The cost for the interface circuit was under $1000
(this excludes the price of the Rainbow and printer). The

Nashville, TN - 1987

most expensive item was the A/D converter at $512. The
final characteristics we ended up with are:

• Variable sampling rate from lµsec to 8.9 years per
data point

• 8k word buffer for data
• 12 bit per data word
• Rainbow graphics and LA50 printer
• Also usable as a VAX terminal
• Inexpensive: less than $1000

Using the System

The system has an 8085 microprocessor which receives
commands from the Rainbow and then acts on them. To
use it one first sets up the internal registers of the circuit
by sending them commands from the Rainbow. The data
collection process is started either by sending a command
from the Rainbow, or through the remote start input
on the circuit itself. The circuit then sends the data it
collects back to the Rainbow and the process can start
over again.

The circuit operates in three possible modes :
• Buffered operation.
• Real time operation.
• Programmed operation.

Buffered Operation

This mode allows rapid collection rates of up to lMHz.
This is possible because all the data is first stored in the
8k buffer before it is sent to the Rainbow. The number
of sets of data to be taken must first be specified. Each
of these sets of data will be taken in succession after the
start collecting signal is received. This is a very nice
feature because the rate at which each set is taken can
be different, so that in the beginning data may be taken
quickly, but at the end data may be taken more slowly as
the reaction slows. After the number of sets of data to
be taken is loaded, the periods for each set are loaded.
The restriction on the data collection intervals is that
each period after the first must be an integer multiple
of the period before it. In other words, the period for
data set two will equal the period for data set one times
the number entered for data sets two timer register, and
data set three's period will equal the period for data set
two times the value entered for data set three's timer
register. The number entered for period one is in halves
of microseconds-1 and is between 0 and 65535. So if a
period of 60µsec is desired the register is loaded with 119,
and if a rate of lMHz is desired a 1 would be loaded. The
next thing to be loaded would be the number of points
to be taken for each set. The total number of points
taken cannot exceed 8191 points because of the buffer
size. Finally, the remote start input would be enabled
if the start collection signal is to come from outside, or
the data collection could be started from the Rainbow.
After data collection, the data would be transmitted to
the Rainbow where it may be stored on floppy disk.

64

Real Time Operation

This mode is only usable at lower rates of data collection.
Because the data words are 12 bits long, two bytes are
required to transmit one word, so the maximum rate of
data transfer into the Rainbow is about 600 words per
second at the rate of 9600 baud. To use this mode the
timer registers are loaded with the period of the sampling
rate as before and then either the remote start is enabled
or the timer is started from the Rainbow. Now the circuit
will send each data word to the Rainbow as it is collected
without buffering it. To stop the process, a command to
stop is sent from the Rainbow.

Programmed Operation

Since there is an 8085 microprocessor m the interface
circuit, small programs may be loaded into the circuit.
This option is included for completeness and maximum
flexibility.

Commands

The commands that the interface circuit can accept are:
• Stop and reset

• Get 1,2 or 3 sets of data
Set up to take buffered data at one, two or three
different rates

• Set up for real time collection

• Get one data point
• Load timer register 1,2 or 3

Loads the timer registers. Each register is 16 bits

• Load count registers 1,2 or 3
Loads number of points to be taken with each rate
for the buffered data. Total cannot exceed 8191.

• Select timing from counter 1,2 or 3
When taking real time data, selects which timer the
timing will be taken from.

• Start/Stop Timer
Starts or stops timer without waiting for remote
start.

• Allow /Disallow remote start

• Load Temporary program
May load a temporary program. Up to 15 may
be loaded as long as they fit into the memory
restrictions.

• Run Temporary program.

• Run diagnostic tests

• Load Status Register
This is an important register with hardware switches.

More will be explained later.

Hardware Design

The interface circuit itself is a small microprocessor system
with DMA (Direct Memory Access) capabilities for storing
data from the A/D converter. The CPU is an 8085A and
is used to control the states of the circuit and also to
generate a 2MHz system clock from which all the timing
is derived.

The A/D converter is a HAS1201 made by Analog
Devices. This unit has a l.05MHz maximum conversion
rate, internal track and hold circuitry and 12 bit resolution.
The one drawback to this unit is that there is no end of
conversion signal. This is gotten around by tying the start
conversion signal and the register strobe together so that
the start conversion signal is also used as a pseudo end
conversion signal. This does mean that the output will be
delayed one period of the clock but this is only a minor
problem that can be compensated for by programming.

The system's DMA control circuitry consists mainly
of two sets of four 74LS191 presettable up/down counters.
The first set is operated in count-up mode and is used to
generate the addresses for DMA operations. When the
CPU is held, the outputs of these counters are put on the
address lines and they are incremented every time there is
a start conversion signal. The other set is preloaded with
the number of data points to be collected and then counts
down with each start conversion signal until it reaches
zero and then it interrupts the CPU.

The system has four memory chips. The first one
is an 8k EPROM with the operating system on it. The
next is an 8k RAM for variables, the stack and a ny
temporary programs that might be loaded. The last two
are set up for DMA operations to be preformed on them.
One chip stores the most significant byte (MSB) and the
other stores the least significant byte (LSB) of the A/D
converter's data word. These two chips share the same
address space when the CPU is held, but not the same
data bus, but when the CPU is operating, one chip is in
the 8k past the other and the two data busses are linked
into one.

The USART (Universal Synchronous/ Asynchronous
Receiver/Transmitter) is the circuit's link to the outside
world. The data received pin of the chip has been tied
to the RST5.5 interrupt on the 8085A, so that whenever
a command is received, it will be able to get the CPU's
attention. This allows the chip to be stopped in the
middle of an operation.

The timing circuitry is the most complex part of
the circuit. The heart of the circuitry is the 8253-5
programmable interval timer. This chip has three 16-bit
gated, presettable repeating down counters. The outputs
of these counters are tied to the clock input of the next
counter, with the first tied to the 2MHz system clock.
Timer one has a 2MHz input, timer two gets its input
from timer 1 and timer 3 gets its input from timer 2. This
gives the chip the range of a 48 bit counter, but more
flexibility, because the outputs of these counters are also
multiplexed so that the counter that the start conversion

65

signal is derived from may be chosen from among the
three. The fourth input to the multiplexer is taken from
the dev_ice select logic for the A/D converter, so that a
conversion may be started by the CPU directly. The
gates for the counters are active high and the flip/flop
that controls this may be set either from the remote start
~ignal, or from a bit in the status register. The flip/flop
lS reset when a terminal count is reached in the DMA
counter for the number of points to collect, or when it is
reset by setting the status register bit to zero. The final
piece of the timing circuitry is the status register. This
important register is used to set the modes of operation
for the circuit. Its contents are as follows:

Bit: Use:
0, 1: Used as address for multiplexer to get start conversion

source.
2 : 1 allows remote start for timer,

0 remote start gives a CPU interrupt.
3: Start timer
4: DMA/CPU.
5: Remote start mask: 0 blocks remote start completely.

6,7: Unused
Bits 2 and 5 work in conjunction with each other

where bit ? ~ill block the remote start signal completely,
but when it is set to allow the signal in, bit 2 will select
what happens with the signal, a 1 starting the timer
and a 0 interrupting the CPU. Bit 3 will start the timer
regardless of what else is on. Bit 4 selects what happens
when the timer starts. If it is a 1, then the CPU is held
and a DMA operation will be performed to collect the
data, otherwise the start conversion signals will also be
sent as CPU interrupts so the CPU will be able to collect
the data from the A/D converter directly. Finally bits O
and. 1 are used to encode the multiplexer, a 00 being the
device select for the A/D converter and the other numbers
being the respective timer registers on the 8253-5 timer.

Buffered Data Collection Process

The multiple data sampling rates of the buffered data are
achieved through programming. First the timer registers
are each loaded. The first timing rate is put into timer
register one, the second into two, and the third into three.
Then the number of points to be taken is loaded into
the DMA register and the DMA address register is set
to the beginning of the DMA memory. Next the status
register is loaded to allow remote start on the timer and to
select DMA operation and finally start conversions from
timer 1. When the remote start comes, the data will be
collected until the end count is reached and the CPU will
be interrupted. The end count register will now be loaded
with the number of points to be collected at the second
rate and then the status register will be loaded. DMA
will be selected with the start conversions from timer 2
but this time the start timer bit will be set so that ~
soon as the register is loaded the timer will start and the
CPU will be held again. Now data collection will proceed
and when the terminal count is reached, the CPU will

be interrupted again. Now if a third set is to be taken
the process will be repeated but with data for the third
collection rate. The neat part of this system is that the
address register is only loaded at the beginning of the
process, so that it will continue to be incremented as the
data is taken, but the first point taken in a set of data
will be right after the last point taken in the previous set
because the register still contains the old number. After
the last set is taken the data will be sent out to the
Rainbow.

Data Analysis

The program that was written to analyze the data
is in FORTRAN-77 and uses routines from IMSL
to integrate the equations and RGL (ReGIS Graphics
Library) to make the graphics output on the Rainbow.

Some Basic Chemistry

In order to understand the program it is necessary to
first understand how equations for the rates of chemical
reactions are derived. First, all chemical reactions can
be broken down into a series of steps which describe the
reaction. These steps describe the interactions between
each of the species in the reaction. For example, take the
following reaction:

A+B+C--+D+E

This equation means that reactants A, B and C combine
to give products D and E. This might be broken down
into the following mechanism:

A+B~F

F+C~G

G~D+E

F~A+B

G~F+C

D+E~G

A+C~H+l
Reactions 1 to 3 are the basic mechanism which gives

us the products but there are other processes which also
occur. Reactions 4 to 6 are the reverses of 1 to 3, and
7 is a reaction that uses the reactants up, but does not
contribute to the system of interest; this is a competing
or side reaction. All of these things must be taken into
account when developing chemical mechanisms. The k's
over the arrows are called the rate constants. This is a
proportionality constant that helps tell how quickly each
step of the mechanism proceeds with respect to the others.

These mechanism steps are important because they
can be easily converted into differential equations showing

66

the rate that the step proceeds at. There are four types
of mechanism steps:

A~ products

A --+ products

A + B --+ products

A+ B + C--+ products
These may be converted to a rate equation as follows:

v = <f>Ia

v = k[A]

v = k[A][B]

v = k[A][B][C]
In these equations the v is the rate of each step in the
mechanism above. The first equation is a photochemical
reaction so it is different from the rest. Here the rate
is proportional to the amount of light absorbed (Ia) and
the quantum yield (if>) which is the ratio of the number
of molecules that react to the number of photons of light
absorbed. The other ones are easier. The rate of the step is
proportional to the product of the concentrations (denoted
by the square brackets) of the reactants. Since the rate
for each step is proportional to the concentration of the
reactants, the rate constant converts this proportionality
to an equality. The rate constants are very important
quantities because a mechanism step does not depend
on what mechanism it is in. If the rate constant for a
particular mechanism step can be found in one mechanism
it will be exactly the same if that mechanism step is found
in an entirely different chemical reaction.

Now that we have the rates for each step in the
mechanism we can find the rate of change of each species
in the reaction. This is done by adding together the rate
of all steps where the species is formed and subtracting
the rate of all steps where the species is used up. For
example, .take this sample mechanism:

A+B--+C+D

C+E--+F

F--+C+E

C+D--+A+B
With rate equations:

V1 = ki[A][B]

V2 = k2[C][E]

V3 = k3[F]

V4 = k4[C][D]
From this we can see the rates of change for the some of
the species in the reaction would be:

These are a set of coupled non-linear differential equations
which can be numerically integrated, using the Gear
method because of the sizes of the terms involved, to give
concentration versus time for each species in the reaction.

Now that concentration versus time data can be
generated for a given mechanism and set of rate constants,
we can compare this with the experimental data for the
same reaction. When we find agreement between the two
this shows that we have discovered a plausible mechanism
and the corresponding set of rate constants. This approach
is used in the program to solve for the mechanism and
rate constants. One puts in a proposed mechanism and
rate constants, the computer integrates the differential
equations corresponding to that mechanism and then plots
both the experimental data and the calculated data on
the screen. The mechanism and rate constants can then
be modified until there is agreement between the two.

Running the Program

In order to use the program, the experimental data must
first be loaded into VAX data files. For photochemical
reactions, a VAX file must also be created giving the
light intensity versus time profile for the incident light.
After this is done the program may be run. It is
menu driven to make it easy to use. A mechanism, a
set of rate constants, and the initial concentrations are
entered into the program. They may be saved for later
use. The program will then automatically calculate the
differential equations so that they may be integrated.
This is an improvement over other kinetic simulation
programs where the differential equations are coded into
subroutines of the program and every time the mechanism
is changed that subroutine has to be rewritten. When
the program is run, it will plot both the experimental
and simulated concentration versus time data for any
chemical species in the reaction. Changes may be made
to the mechanism and the data may be replotted, all
interactively, until agreement is reached between the
experimental and simulated data. The program also gives
hardcopy of the graphs and the mechanism, as well as
tabular results of the data.

How the mechanism is stored

The data structure that was developed for storing the
mechanism is interesting. It consists of a series of arrays
where maxm is the maximum number of steps that can be
stored in the mechanism:

rtype(maxm):
nlhs(maxm):

lhs (4 ,maxm) :

nrhs (maxm) :
rhs(4,maxm):

Type of reaction step.
Number of reactants in step.
Internal code for each reactant
in the step.
Number of products in step.
Internal code for each product in
the step.

67

The data structure is simple and it allows a general
routine to evaluate the velocities (v) for each step as
follows:

function evalv(eqn, j, i,t ,c)
implicit none
integer eqn, j, lp

C eqn is the step being evaluated
double precision t, c(j), i

C t is current time, c(j) is concentration
C of each species in the reaction

external i
C evaluates light intensity at time t

include'commondef.for/nolist'
C data structure for mechanism

goto(10, 20, 30, 40), rtype(eqn)
write(6,*)' Error, no mechanism step'
write(6,*)'type 1 ,rtype(eqn)
stop

10 evalv= k(eqn) * i(t)
return

C photochemical
20 evalv= k(eqn) * c(lhs(1,eqn))

return
C single reactant

30 evalv= k(eqn) * c(lhs(1,eqn) *
* c(lhs(2,eqn))
return

C two reactants
40 evalv= k(eqn) * c(lhs(l,eqn) *

* c(lhs(2,eqn) * c(lhs(3,eqn))
return

C three reactants
end

This function will return as its value the velocity of
the mechanism step specified. It may be called by another
routine (see below) that evaluates the first derivative of
the function called by the DGEAR integration routine in
IMSL. This subroutine is defined as follows:

subroutine evmech(j, t, c, de)
integer j, q, r
double precision t, c(j), dc(j),

* v, evalv
C c(j) is concentration of each species
C dc(j) is the first derivative returned by
C this routine.
C t is current time

external evalv
C function for velocity of mechanism step

include 'commondef.for/nolist'
C mechanism and other information

do 5 q=l,j
5 dc(q)=O.OdO

C zero array
do 10 q=l ,m

v=evalv(q, j, t, c)

These same techniques can be applied to the process
of evaluating assignments. When the material is due,
it can be collected electronically with the date and
time included. The speed and accuracy of collection
and evaluation provides better and more timely feed­
back to the student.

The ease of comparison of students programs makes it
easier for the instructor to identify duplicate code,
indicating undesirable collusion, while still en­
couraging students to work together to help each
other learn.

A spread sheet is maintained in the "leader account"
that is linked to one in the student library. The
student can examine a complete and up-to-date pro­
gress report at any time without access to the
source record.

Course Preparation of a Computer Course

Tests, handouts, syllabi, problems, solutions, and
sample programs are prepared by instructors using
the editor - word processor and the language inter­
preters and compilers. The heirarchical directory
structure encourages the cataloging of this material
in appropriate subdirectories. The instructor
accounts are assigned in groups by subject matter.
The normal default access protection is to share
the reading and executing of all files and direc­
tories with the other member instructors in the
staff account group. However, protection can be
changed when privacy is desired. The normal group
access encourages the sharing of materials. Team
activities frequently evolve. These can be formal­
ized for better organization by assigning a coordina­
tor to multi-section classes. The team approach
better reaches the part-time and night time instruc­
tor. The syllabus and handouts with dates, recom­
mended deadlines, and grading standards are collec•
ted and prepared by the course coordinator and dis­
tributed electronically to the individual instruc­
tors. These can be edited, added to and tailored
by each instructor.

Common problems can be detected and dealt with as a
group without the necessity of scheduling a group
meeting.

These management activities are a bonus in that they
place little, if any, burden on the computer system.
Most of the activities take place at off peak times
when there is no contention for ports. Instructors
with modems can do much of their activity at times
when there are few, or no, other users on the sys­
tem.

Some of these activities can be performed by stand­
alone micro computers, but many of the benefits are
lost without the communication and central file
storage system provided by a minicomputer. The
specifics required for an operating system to sup­
port the endeavors described above are: Multi­
tasking capabilities, heirarchical directories, and
a modifiable command language such as UNIX or VMS
with adequate protection schemes. The new wave of
micro computers based on 32 bit processors should
provide superb and cost effective delivery systems.

70

APPENDIX

Managing a Class Leader account

Example: Leader account name [BASQ.BASQOO]
student account names [BASQ.BASQOl] to [BASQ.BASQ30]
Library access LIB:
Master library CPSLIB:

Local VMS commands

UP
DOWN
NEXT
HOME
CAT

Commands for viewing student directories

$ DIR or CAT [BASQ.BASQ*]
$ DIR or CAT (BASQ.BASQlO]
$ DIR or CAT [BASQ.BASQ*]*.BAS
$ DIR or CAT [BASQ.BASQ*]*.EXE

Commands to view student files

$ TYPE (BASQ.BASQ*]*·*

All accounts in group
student number 10
All source code files
All executable files

All files

$
(Unwise to type EXE files)

TYPE (BASQ.BASQ*]*.BAS All source code
$ TYPE (BASQ.BASQ*]*.OUT All output files
$ TYPE [BASQ.BASQ*]PROBl.* All PROBl files

$ TYPE [BASQ.BASQ*]PROBl.OUT PROBl output files

Commands to check the operation of a student file

$ RUN [BASQ.BASQlO]PROBl.EXE
$ PRINT (BASQ.BASQ*]PROBl.BAS

Runs a student program
Prints students source

Commands for checking errors by bringing students source file
to the instructors account.

$ DIR [BASQ.BASQlO]
$ COPY [BASQ.BASQlO]PROBl.BAS PROBl_lO.BAS
$ BASIC

Ready
RUN PROBl 10.BAS

The above commands print to the screen. A file of this
output can be created for later printing by using a simple
command procedure that redirects the screen output to a file.
This process is controlled by assigning a short symbol to run
the command procedure.

FIGURE 2

71

$!
$1
$!
$!
$!

Procedure directs system
directory to a temporary
restores the terminal to
by Claude M Watson May

output of commands made in default
file in the default directory then
normal operation.
2, 1985

$ DEFINE SYS$0UTPUT TEMP FILE.PRT
$ SET TERM/NOANSII/NODEC-

$ I Pl I I P2 I I P3 I

$ DEASSIGN SYS$0UTPUT
$ SET TERM/ANSII/DEC=2

!Assigns system output to a file.
!Sets terminal to ignore escape
!sequences
!Accepts up to three words
!Returns system output to terminal CRT
!Resets terminal to recognize escape
!sequences

Sample of files in LIB: the 9th week of the Winter Term 1987.

$ @PRINTSCREEN CAT LIB:

$ PRINT TEMP FILE.PRT

Directory L$CPS_:[L$CLS.L$BASQ]

BUBBLE.EXE;! 10/10
LAB5.DIA;2 3/3
LOGIN.COM;! 1/1
MESSAGE.DOC;l6 2/2
MESSAGEl.DOC;l 1/1
MESSAGE2.DOC;l 1/1
MESSAGE3.DOC;l 2/2
MESSAGE4.DOC;l 2/2
MESSAGES.DOC;! 1/1
MESSAGE6.DOC;l 1/1
OLD.DIR;! 2/2
PIC2.DAT;l 14/14
PIC3.DAT;l 13/13
PIC4.DAT;4 13/13
PIC5.DAT;3 15/15
PIC6.DAT;3 9/9
RESUME.QUES;l 1/1
SAMPLE.BAS;! 2/2
SES.EXE;! 9/9
SORT.EXE;2 20/20
STRING2.S86;10 17/17
STR EXAMP.BAS;ll 4/4
STR-EXP.BAS;3 7/7
STR-EXP.EXE;l 10/10
T2_Q22.BAS;l 4/4
TAB.DAT;l 11/11
TRANS.DAT;4 1/1

Total of 27 files, 176/176 blocks.

FIGURE 1

72

31-MAY-1986 17:41 (RWED,RWED,RE,RE)
13-FEB-1987 15:19 (RWED,RWED,RE,RE)
12-MAY-1986 08:25 (RWED,RWED,RE,RE)

9-MAR-1987 12:10 (RWED,RWED,RE,RE)
9-JAN-1987 15:48 (RWED,RWED,RE,RE)
5-FEB-1987 11:00 (RWED,RWED,RE,RE)
6-FEB-1987 07:52 (RWED,RWED,RE,RE)

16-FEB-1987 11:49 (RWED,RWED,RE,RE)
17-FEB-1987 13:36 (RWED,RWED,RE,RE)
27-FEB-1987 11:46 (RWED,RWED,RE,RE)

7-JAN-1987 14:04 (RWE,RWE,RWE,RE)
21-MAY-1986 08:27 (RWED,RWED,RE,RE)
21-MAY-1986 08:27 (RWED,RWED,RE,RE)
10-JUN-1986 12:40 (RWED,RWED,RE,RE)
10-JUN-1986 12:41 (RWED,RWED,RE,RE)
10-JUN-1986 12:42 (RWED,RWED,RE,RE)

9-JAN-1987 15:53 (RWED,RWED,RE,RE)
10-FEB-1987 09:56 (RWED,RWED,RE,RE)
25-MAY-1986 12:20 (RWED,RWED,RE,RE)
19-MAY-1986 09:17 (RWED,RWED,RE,RE)

5-JUN-1986 12:13 (RWED,RWED,RE,RE)
2-JUN-1986 10:00 (RWED,RWED,RE,RE)
4-JUN-1986 15:01 (RWED,RWED,RE,RE)
4-JUN-1986 16:22 (RWED,RWED,RE,RE)

16-FEB-1987 16:14 (RWED,RWED,RE,RE)
16-NOV-1986 21:28 (RWED,RWED,RE,RE)
30-JAN-1987 10:26 (RWED,RWED,RE,RE)

FACULTY RETRAINING

Edward A. Boyno
Montclair State College

Upper Montclair, New Jersey 07043

Suggestions on programs for retraining faculty in Computer
Science from someone who has been through such a program.

There are 21 colleges and Universities of the a former "teachers' college" that now offers a full

state of New Jersey ranging from Princeton Universi- range of liberal arts courses and grants masters de-

ty on down to unaccredited schools, and a score of grees in several areas including computer science.

two year institutions. For reasons that are similar I am exactly the person that the FRP was aimed at (I

everywhere, they have difficulty attracting and re- almost said "designed for" but "aimed at" is more

training instructors of Computer Science. During accurate). I was one of thirty persons that began

the past 10 years, enrollment in their Computer Sci- the program. All but three of us held a Ph.D. in

ence programs has mushroomed. The only staffing one of the natural sicences, the other three held

solution available before 1984, and still the most masters degrees in mathematics. All but three of us

used solution, was the employment of adjuncts for held tenure, and almost exactly half of us were in

many of its courses. A solution that I suspect is the senior ranks. We were not a shabby group.

widely used elsewhere. Because of the number of About half were mathematicians, and most had had

"high tech" industries in our region (Bell Labs, for no previous experience with computing beyond the hob-

example) as well as a number of pharmeceutical and byist level. Its fair to say that I was the modal

insurance companies we are, in general, able to get student (if not a model one).

high quality part-timers, but the situation is still The program consisted of a fifteen month course

not good. of study from June 1984 to August of 1985 held at

In 1983, The Department of Higher Education Stevens Institute of Technology in Hoboken, New Jer-

(DHE) proposed to increase the pool of available, sey resulting in an MS degree. The curriculum was

full-time, Computer Science instructors by retra:Ln- developed by the DHE in conjunction with Dr. Lawrence

ing certain of its existing faculty. I was a par- Levine, the programs director, and the Computer Sci-

ticipant in the first year of the "Faculty Retrain- ence faculties at Rutgers and Stevens.

ing Program" (FRP), an admitted guinea pig. It is Stevens is a Ph.D. granting institution that is

this program that I'd like to speak about today. widely reputed, at least in the East for its Engi-.

I hold a Ph.D. in pure mathematics from Rutgers neering and Applied Mathematics programs. It is one

University. Prior to the summer of 1984 I had had of the Colleges and Universities that have a special

zero experience with computers and I was (and am) a relationship with DEC. Every incoming freshman must

full-time faculty member at Montclair State College purcahse a PR0-350, at a very low price, and more

73
Proceedings of the Digital Equipment Computer Users Society Nashville, TN- 1987

recently, they've received a grant to, essentially,

network the entire campus. In passing I must note

that Stevens possesses THE most spectacular view

imaginable of the New York shyline.

As you might guess, the hardware availabe to

us was exclusively from DEC. Levine had wangled the

exclusive use of nine 350's for us. There were sev­

eral other 350's one of which was connected to a

VAX, used by other Levin~ students for CAI develop­

ment and were occasionally had accessible to us.

We were also given student accounts on a DEC-10 that

is available for instructional purposes.

The courses we took were with a couple of nota~

ble exceptions usual graduate courses that is we

weren't spoon fed special courses. We were, however

placed in special sections, took our courses in lock

step and (importantly, it turned out) were not

given the freedom to choose our instructors.

The faculty for the program for the most part

full-time Stevens staff (for whom, though, we were

well paid overload). We did have two adjuncts, one

of whom was a "regular" part-timer, the other being

a special import.

For the duration of the program, a variety of

undergraduate students were available to help us

learn the machines we used and with programming

difficulties. I'm going to have some not-particu­

larly-pleasant things to say about Stevens, but no

criticism at all can be attached to these "kids".

They were unifonnly pleasant, bright, knowledgeable

and PATIENT.

Last, but by no means least, is the method in

whjch the program was financed. Tuition at Stevens

for an MS degree. is something over $10,000. The

DHE, fearful that we would take our degrees and run,

refused to grant us the money preferring to LEND it

74

to us and then to forgive the loan at the rate of

25% per year, thus binding us to the State for four

years. When I joined the program, I did not under­

stand the nature of the fiscal responsibility I was

accepting, believing the assurances of the DHE and

Dr. Levine that all would go well in the long run.

It was not until a month after we had all signed

promissory notes for the first half of our tuition

that the excrement hit the fan. The awakening came

in the nature of the loan forgiveness agreement that

the DHE had promulgated. It seemed that if FOR ANY

REASON we were unable to complete the program in the

allotted time, we would become liable for the entire

loan. Completion of the program was defined to be

the successful receipt of the MS degree. There was

absolutely no provision made for someone leaving the

program because of illness or family emergency.

There was no provision made for people who simply

found the program unsuitable to their needs. There

was no provision for anything! Needless to say, we

were more than a little unhappy with this and nego­

tiation did produce a marginally acceptable agree­

ment, but I still can't go on sabbatical without

risking abrogation of the agreement. If there's any

lesson to be learned from the Stevens program it is

that other ways must be found to finance such pro­

grams if faculty are going to join them. I might

add that in a second cycle, when all the monetary

facts were known to the participants AND an escape

provision that we did not have was added, only

twelve people joined the program. A third cycle has

had to be cancelled.

As I begin my discussion of the program per se,

I'll ask you to keep in mind that, at all time, all

of us were aware that if we washed out, it would

have been in a sea of red ink.

For me, and I reiterate that I consider myself

the absolute average participant, the fifteen months

that I spent in the program were a nightmare. A

year later I can see the worth of what I've received

much more clearly, but the rate of return will have

to accelerate if I'm ever to recover the physical

and psychical costs.

It is clear to me that I myself was responsible

for at least some of my problems. Most mathemati­

cians view computer science with disdain. I've

learned the hard way that it's a discipline of its

own. However, in June of 1984 I still thought that

I would breeze through the next year or so with lit­

tle if any effort, I would even go so far as to say

I was anticipating a year and a half of vacation.

Thus, I was completely unprepared for the shock of

being a student again.

I resented having to fight with other students

for parking places. I'd forgotten what it's like to

wait on line for an hour at a college bookstore, or

what it's like to argue with a clerk in the business

office over an error in a bill. I learned the joy

of being all ready to get to work only to find that

the terminal room was locked and the only secretary

who had a key had just left for a two hour lunch.

I found it terribly hard to have to study some­

thing that I wasn't an expert at. Subnitting to

someone else's classroom discipline was also very

hard and taking tests again was dreadful experience,

especially when I got a "B" on my very first one.

In short I HATED being a student.

Any program of this sort is going to involve a

certain amount of "Student Shock Syndrome" but in

our case absolutely nothing was done to alleviate

it. If good financial arrangements is lesson nlllll­

ber one of ~training prograJ!ls, then making provi-

75

sion for easing the participants back into the class­

room must be lesson number two. I understand that

the original plans for such programs called for

counselors to be available to minimize ego damage we

certainly could have used one.

Let me turn my attention for a second to the

actual course of study that we followed. As I said,

it's been a year now, a year in which I've taught

several Computer Science courses, and I look back on

the curriculum with somewhat more expert eyes.

Our first summer was designed to "bring us up

to snuff" mathematically and computer-scientifical­

ly (?). We were given courses in discrete math

structures, probab.i.lity and "Intro. to Computer Sci­

ence I and II", one of only two courses specifically

created for us. What we weren't given was a course

in programming! The "Intro." course did contain a

small programming component but for the most part we

were expected to learn PASCAL on our own. Lesson

number three: give the retrainees a programming

course. The lack of same haunted many of my fellows

for the rest of the program.

In the fall of 1984 we took three courses:

Data Structures, Machine Architecture and Program­

ming Languages I. I have no complaints about any of

these but in hindsight it would have been much better

to eliminate the ill conceived summer courses and

replace them with a real programming course and Data

Structures. The only exposure to assembly language

programming I've had to date was tiny little bit

of "MACRO 10" (The "quaint and curious" MACRO 10 as

one of my colleagues called it) in the "Architec­

ture" course and while I haven't yet noticed a pro­

nounced gap in my background, I really wish we'd

been given a real course in a "real" assembly lan­

guage. Typical of the program as well, the assembly

language segment of the curriculum which could have

come almost anytime after the first two weeks. was

postponed until the last three weeks to ensure that

we'd have the maximum competition with other stu­

dents for machine time!

The spring of 1985 was consumed by Finite Auto­

mata, Operating Systems and Programming Languages

II. Which later turned out to be a course in Com­

piler design. In that semester, I taught two grad­

uate courses, wrote an operating system for a simu­

lated machine and wrote a compiler for a subset of

PASCAL. It nearly killed me.

Lesson number four: Give faculty full releas­

ed time for the retraining program.

Lesson number five: If you violate lesson num­

ber four at least organize the courses so that the

programming intensive course don't all fall in the

same time period.

Spring '85 was very bad time for me an many of

my colleagues. The stress had accumulated to a ter­

rible level. As bad as my description of this sem­

ester might sound, it was much worse.

To explain some of our distress, I have to

spend a few minutes talking about the men who staff­

ed our program. I really expected that Stevens

would trot out their best and brightest faculty for

this program ••• after all, I'm in a position to

counsel students on their choice of graduate pro­

grams, so if for no other reason than adveritising,

I expected to be dazzled. What we got was pretty

much a cross section of their faculty. Two were ab­

solutely brilliant, others were good, some were aw­

ful. We saw an instructor who sometimes seemed

uncertain of his SUBJECT matter and another who no

more belonged in the classroom than I belong in the

Green Berets. We had an instructor who threatened

76

to fail some of us if we didn't stop complaining

about him. We had an instructor who put a question

on an exam that couldn't be answered with the given

infonnation (his solution for the problem was bla­

tantly fallacious). A couple of our instructors

literally played favorites. Pet students didn't

have to do all the work that the rest did. In an­

other course, all of programming assignments were

graded by other, "regular", graduate studnets and

I'll go to my grave believing that this one, merci­

fully anonymous person, assigned grades by counting

the number of comments in the program. I hope you

can understand that we often had the feeling that

grades were being distributed in a essentially ran­

dom manner. If you recall, we could be expelled

from the program (thus assuming what was by now a

debt of over ten thousand dollars) if, for any rea­

son, we didn't complete the masters program on time!

At the time, I considered it completely possible

that one of these capricious instructors would give

me an F for no other reason than that I had been a

very vocal critic of the program. (By this time I

had already published a highly critical article in

the New Jersey AAUP newsletter). Some of my col­

leagues were struggling along with exactly "B" aver­

ages, for them a "C" would have been fatal. Let me

add that same of my impressions of the program have

softened after a year or so, but I'm still convinc­

ed that the grading at Stevens Tech is a stochas­

tic process.

Lesson six: Choose your faculty very careful-

ly.

I can't emphasize this too strongly. A class­

room full of experienced college faculty members is

a far different audience than the run of the mill

graduate class. We were very demanding consumers.

We could spot lack of preparation, bluffs, laziness

and all of the other bad habits that poor instruc­

tors fall into, and, as I've alluded to, we com­

plained loudly. Moreover, our weaknesses were not

the weaknesses of a "nonnal" class nor were our

strengths. One instructor constantly berated mem­

bers of my group for being poor programmers but made

no attempt to improve our programming skills, anoth­

er spent hours teaching us Boolean Algebra when it

was clear that most of us knew a lot more about it

than he did. The people at Stevens were clearly un­

prepared for a class such as ours. Very little was

done to shore up our weak points and nothing was

done to take advantage of our considerable

strengths. In fact, I think it's fair to say that

they :3eemed surprised we possessed skills that might

be of use to the program.

Lesson seven: Tailor the program to the stu­

dents ..

Let me return to my main narrative. Most of us

did survive the Spring of 1985 despite the fact that

we often felt like the characters of Sartre's No

Exit.

summer of '85 was an anti-climax. Levine had

managed to provide a selection of courses for us to

choose from, allowing us to select two of "Expert

Systems", "Database Management", "Computation Chem­

istry" and for the mathematicians, "Program Verifia­

bility and the Theory of Computation" (the second of

the specially provided courses and an absolutely

brilliant course it was). We finished the program,

agai.n in lock step, in "Systems Programming" and

"Algorithms". As before, I've since learned the

value of these courses and have no quarrel with any­

thing except the fact that they came last. The

"Systems Programming" course probably should have

77

come before either the "Operating Systems" or the

course in compilers.

This last leads me naturally to the most seri­

ous flaw in the program (after the financial ar­

rangements) the overall lack of coordination and

planning. In the course of fifteen months I wrote

no fewer than four machine simulators (interpretors)

for four different courses. It seems to me now that

it would have been so easy to agree on a simulator

so that students could write practice operating

systems and the like and to use that simulator for

the entire program building on it as they went a­

long. I know of at least one such simulated machine

that is specifically designed for that purpose.

I'm going to hazard a final piece of advice:

Lesson eight: Plan carefully.

There are many substantive questions that have

to be asked and answered before any project of this

sort is undertaken and I'd like to pose some of them

for you. What ought to be the most obvious (but did

not seem to occur to any of the people involved in

planning the Stevens project) is "What sort of

Computer Science are we talking about?". At Rut~

gers, Stevens and in fact at Montclair State, our

programs are highly mathematical as opposed to what

one might call Data-Processing-intensive. It's very

clear to me now that the lack of mathematical back­

ground was a great handicap to the non-mathemati­

cians in my group. Those of you with training in

mathematics will understand that there is a "mathe­

matical" way of thinking about things that many

"laymen" have difficulty acquiring. (It is my per-

sonal belief that the ability to think "mathematic­

ally" is a talent like drawing or hitting a baseball

that some very intelligent and/or gifted people just

don't have.) There is some mathematical component

in any reasonable Computer Science curriculum but

I'm sure that it could be minimized.

This first issue leads me directly to the sec­

ond: Which faculty will you retrain? There are a

good number of college presidents right now who

would love to turn their Geography departments into

a nest of computer scientists but even if the Geo­

graphers were willing, I'd question whether the

transition could be successful on a side scale.

Most Sbcial Scientists and experts in the Humanities

that I know simply don't have the mathematical back­

ground to just jump in an study Computer Science.

I can see a Computer Science program with no course

in Finite Automata and maybe you could avoid a

course in algorithms, but I can't see leaving out

Data Structures and I can't see Data Structures

without very mathematical things like "Trees" and

"Recursion".

Rumor has it that the DHE originally planned

to invite ANY faculty member in the state to join

the program. Mercifully, wiser heads prevailed!

Another important consideration, I think is

the matter of awarding degrees. Few of the programs

that I've seen offered to do so. A year ago I would

have agreed that the "training was the thing", but

now I'm not so sure. I'm glad to have the formal

recognition of my accomplishment and Montclair State

is pleased to display my new credential in its cata­

log. People in academia seem to place great store

by letters after ones name.

Finally, and I always seem to wind up here, i~

the matter of paying for the whole thi.ng. It seems

to me that an organization that benefits frOlll a re­

training program ought to be the one that pays for

it. That seems simple enough, but at least one of

the people that started at Stevens with me but who

78

had to leave at the half way point is paying off a

$5000 bill.

It is my strongly held belief that any such

program should be completely funded by the agencies

that sponsor them. Books and other materials should

also be paid for (mine were not) and the grant should

be as free of strings as possible.

Using VAX/VMS to Teach Computer Organization

Unda Lankewicz
Spring Hill College
Mobile, Alabama

Abstract

V AXNMS provides tools which enhance the teaching of Computer Organization
and increase the likelihood of achieving the course objectives. These include the
Debugger, the TPU editor, and System Services and Run Time Library routines.
Students need concrete experiences when mastering material in a foundations course.
Using these VMS features, the professor can provide students with sufficient materials
so that they can grasp the details and have an opportunity to consider the broader
picture of the operating system environment.

Computer Organization is the first upper division course
taken by computer science majors. The course prerequisites
are two programming courses in which students solve prob­
lems using a high-level language. Computer Organization in­
troduces students to computer architecture and the machine
instructions used to invoke activity within the framework of
that architecture.

The course is a hurdle in the computer science curricu­
lum which must be mastered before continuing in the pro­
gram. Based upon their success in the course, students decide
to major or minor in computer science or to change majors.
Students consider the course difficult because of the amount
of material that must be covered and because of the unfamil­
iarity of the subject. Faculty consider the course difficult to
teach because the students' experience is limited and because
there are few supporting instructional materials available. The
professor would like to stimulate the students and challenge
them without discouraging them.

While some students will take a second organization
course later, the goal of the first course is to introduce stu­
dents to the underlying organization of a computer. The first
course covers

• the representation of infonnation in the computer

• processor and memory structure

• assembly language programming

• the operation of the assembler and the linker

The tendency might be to spend most of the time on the
syntax of an assembly language. One would prefer that stu­
dents leave the course with more than that. When a subject
has as many intricacies as assembly language, students be­
come immersed in details. They tend to see the trees rather
than the forest, intent on the brackets used in the displacement
mode rather than considering the advantages of selecting one

Proceedings of the Digital Equipment Computer Users Society 79

addressing mode over another. While it is difficult to over­
come this, students should be given the opportunity to reach
a higher level of understanding.

The goal in a Computer Organization course is that the
student understand the relationship between a computer's orga­
nization and programming. In reaching that goal the objectives
for the student include the following:

• understand how infonnation is represented in a computer
system

• understand how simple data structures such as pointers,
arrays, and stacks are implemented

• understand how programming features such as procedure
calls, recursion, and macros are handled

• program in an assembly language

When devising course objectives, one should consider
how the course fits into the curriculum. The goal of Com­
puter Organization is not so much to provide students with
proficiency in another language, but to give them the foun­
dation for understanding a computer system which will be
needed in the Data Structures, Organization II, and Operating
Systems courses.

Students should leave a Computer Organization course
with a clear picture of the utility of data structures such as
pointers and stacks. In this course, students can see how these
data structures are implemented on a machine. This view
will be helpful when using the data structures in a high-level
language. Students in Computer Organization should become
comfortable with calling procedures and passing parameters
from both internal and external modules including modules
written in different languages. These ideas can be expanded
later in the Operating Systems course to demonstrate principles
of interprocess communication and synchronization.

Students need concrete experiences when mastering ma­
terial in a foundations course. VAX VMS provides tools which

Nashl'ille. TN - 1987

enhance the teaching of Computer Organization and increase
the likelihood of achieving the course objectives. These in­
clude the Debugger, the TPU editor, and System Services and
Run Time Library routines. Using these VMS features, the
professor can provide students with sufficient materials so that
they can grasp the details and have an opportunity to consider
the broader picture of the operating system environment.

The Debugger is an excellent tool for programming at
any level. Students should be introduced to the Debugger in
their first programming classes. But the Debugger is espe­
cially effective for teaching Computer Organization. Using
the Debugger at the beginning of the course when considering
how information is represented in a computer allows students
to see the twos complement representation of negative num­
bers; the binary, hexadecimal, and decimal representation of
integers; and the difference between the ASCII, integer, and
floating point representation.

The Debugger command to examine data in memory
is EXAM1NE. The qualifier /BYTE, /WORD, /LONG, or
/QUAD can be used to specify the size of the memory to
be examined. The qualifiers to specify the data type include
/ASCII, /INTEGER, /BINARY, /HEX, and /FLOAT. The de­
fault display consists of integer longwords in hexadecimal.

In the assembler program shown below, memory is desig­
nated for the variables ATWO, ITWO, FrWO, NTWO which
contain the ascii, positive integer, floating point, and negative
integer representations of the number two.

atwo: .ascii /2/
itwo: .long 2
ftwo: .float 2
ntwo: .byte -2

.entry program, "m<>

movl fl,rO
ret
.end program

Using the Debugger, a student can observe how these
representations differ. The command EX/BYTE/BIN .IITWO
displays the ascii two stored in ATWO. One byte is displayed
in binary as 00110010. The command EX/LONG/BIN ITWO
displays the longword integer representation of ITWO in bi­
nary while the command EX/LONG/BIN FrWO displays the
floating point representation of the number two. The command
EX/BYTE/BIN displays the twos complement representation
of a negative two as shown in figure 1.

The Debugger can be used for class demonstrations in­
teractively or by capturing a Debugger session. A captured
session is safer when it is important to ensure that specific
material is covered in class. The commands to capture De­
bugger sessions are listed below. The commands and resulting
output of the Debugger session will be recorded in a file, and
that file may be displayed for the class in an editor or printed
on overheads.

DBG> SET LOG filename
DBG> SET OUTPUT LOG

80

Capturing Debugger output does not provide students with the
full-screen display that is useful when stepping through ma­
chine code. The interactive use of the Debugger can stimulate
discussion if students are asked "what if' questions about the
outcome of Debugger sessions. For the source code shown
below involving subtracting, incrementing, and adding values,
students can discuss the outcome of each instruction while the
professor steps through the code interactively.

w: .byte 0
x: .byte 127
y: .byte 9
z: .byte 11

.entry program,"m<>

subb3 z,y,w
incb x
addb y,z

movl fl,rO
ret
.end program

When discussing the processor structure, interactive De­
bugger displays are useful because the contents of the regis­
ters can be seen. The register display on the upper right of
the screen can be invoked with the command DISPLAY REG
or with the keypad keys PFl 7. Registers 0 through 15 are
displayed along with part of the stack and the Process Status
Word (PSW).

While stepping through code, students can see how the
Program Counter (PC) maintains the location of the next in­
struction. In the Debugger display shown in figure 2, the PC
is pointing to address 0000020D which is the next instruction
to be executed as indicated by the arrow in the source code.

Also apparent is the use of register 0 for a status code
at the end of each program. Moving the number one into RO
indicates the successful completion of a program. Students
can move other numbers into RO to see the resultant error
messages. They begin to understand that their source code
is a routine that executes within a larger framework of the
operating system.

A classroom demonstration of how the PSW bits are set
when negatives, zeroes, overflows, or carries are encountered
helps students understand how branching is accomplished. For
the same source code shown above, the register display pro­
vides information as to the setting of the PSW bits. Students
can see the bits change as each instruction is executed. See­
ing the effect of each instruction on the PSW bits leads to
a discussion of branching. In the example shown above, the
subtraction instruction has been executed subtracting 11 from
9 giving -2. The negative and carry bits have been set. A
branch-if-negative (BNEG) instruction at this point would re­
sult in a branch because the N bit of the PSW is set.

The Debugger is also useful for demonstrating how point­
ers work. Students can see that an address of a value is placed

-OUT -output---
.MAIN. \ATWO: 00110010
.MAIN.\ITWO:
.MAIN. \FTWO:
.MAIN. \NTWO:

00000000 00000000 00000000 00000010
00000000 00000000 01000001 00000000
11111110

Figure 1: Debugger Output

INST -scroll-instruction REG
00000206: SUBB3 B" .MAIN. \Z IRO:OOOOOOOO Rl0:7FFEODD4 @SP:OOOOOOOO

>00000200: INCB B" .MAIN. \X JRl:OOOOOOOO Rll:7FFE33DEC +4:00000000
00000210: ADDB2 B".MAIN.\Y JR2:00000000 AP :7FF473CC +8: 7FF4 73CC
00000215: MOVL S"#Ol,RO JR3:7FF47394 FP :7FF47384 +12:7FF473BB
00000218: RET IR4:00000000 SP :7FF47384 +16:000008A7

IR5:00000000 PC :00000200 +20:000005FF
IR6:7FF47049 @AP:00000006 +24:00000005
JR7:0001E4DD +4:7FFE6440 +28:00000204
JR8:7FFED052 +8:7FF9802C +32:00000000
JR9:7FFED25A +12:7FFE640C +36:00000001
JN:l Z:O V:O C: 1 +40:00000000

Figure 2: Debugger Output

in a register or in memory and referenced indirectly. Often
students have a vague idea of how pointers work when using a
high-level language. Once they view pointers at the Debugger
level, they understand the concept.

The advantage of using pointers can be shown with an
example using arrays. Students might be asked to consider
the addition of the contents of two arrays. They might suggest
adding each item in one array to the corresponding item in the
second array as shown below. For word arrays containing 100
items, it would be necessary to have 100 ADDW instructions.
(See figure 3)

Then students can be shown how to accomplish the task
by using registers to hold the addresses of the arrays as shown
in figure 4. The arrays are added by referring to them indi­
rectly using the registers. Students can see that the amount of
code is reduced since each array item can be referenced in a
loop by the register name rather than by individual memory
locations. The advantage of using a pointer becomes apparent
since incrementing the pointer enables one to reference the
entire array.

The source code for the above treatment of arrays is
shown below. Stepping through this code with the Debug­
ger allows students to see how RO is used as a counter for
looping, how array addresses are stored in RI and R2, and
how these pointer registers are incremented by two in order to
reference the next words in the arrays.

num=4
arrayl:
array2:

.word

.word
5,2,8,9
4,6,9,2

81

.entry program, "m<>

start: movw #num, rO
mo val arrayl, rl
mo val array2, r2

loop: addw (rl) , (r2)
addw #2, rl
addw #2, r2
de cw rO
bgtr loop

movl #1, rO
ret
.end program

This demonstration can be altered to cover autoincre­
ment, indexed, and displacement addressing modes. For ex­
ample, the ADDW instruction shown above can be altered
to ADDW(Rl)+, (R2)+ for autoincrement mode. Students
have difficulty perceiving why addressing modes are neces­
sary. Using the Debugger the professor can present a natural
progression of addressing modes for handling large blocks of
information.

One problem associated with teaching assembly language
is how to accomplish I/O before students have been introduced
to macros or procedure calls. 1/0 routines can confuse the
issues at early stages of the course. Students need to examine
contents of memory and registers, to view results in binary or
hexadecimal, and to step through a program to see branching
in terms of the PC and the PSW. 1/0 routines alone would not

ARRAYl ARRAY2
5 4 ADDW ARRAYl, ARRAY2
2 6 ADDW ARRAY1+2, ARRAY2+2

8 9 ADDW ARRAY1+4, ARRAY2+4
9 2 ADDW ARRAY1+6, ARRAY2+6

Figure 3: Arrays

ARRAYl ARRAY2
Rl: address of -> 5 R2: address -> 4

of 2 of 6
ARRAYl 8 ARRAY2 9

9 2

Figure 4: Arrays

provide these experiences.
Even after students use macros or subroutine calls for I/0,

the Debugger is useful for demonstrating the following:

• subroutine branches vs procedure calls

• referencing arguments by AP or SP

• passing parameters by value, by reference, or by descrip­
tor

• internal and external routines

These ideas are important for later courses. A Data Struc­
tures class may require that a user stack be created for the
passing of parameters. An Operating Systems course may
demonstrate the readers and writers algorithm for interprocess
communication by calling system routines. Students under­
stand these concepts better when they have worked with them
at the Debugger level.

In the source code shown below, four arguments are
pushed onto the stack: the address where the result will be
stored, the number 4, the number 3, and the number 2. The
subroutine CALC is used to multiply the first two arguments,
add this to the third argument, and store the result in memory.

result: .long
.entry

pushal
push!
push!
push!
jsb
addl

program,"'m<>

result
t4
t3
.fl:2
calc
.fl:l6, sp

82

calc:

ret

mull3
addl3
rsb

4(sp),8(sp),r6
r6,12(sp),@16(sp)

.end program

The arguments are referenced using the SP. The three
numeric arguments are referred to as 4(SP), 8(SP), and 12(SP).
In the Debugger display shown below, students can see why
these arguments are referenced in this manner. They see that
the JSB command causes the address needed for the return
from the subroutine to be placed on the stack so that the first
argument would be 4(SP). The use of@ 16(SP) for storing the
result could be confusing, but the Debugger display shows that
l 6(SP) contains an address for the result, making it necessary
to use @16(SP).

The PC in the display in figure 5 is at 21F. The return
from the subroutine (RSB) is accomplished by popping the
return address 215 from the stack. After the return from the
subroutine, the instruction ADDL #16,SP is used to change
the SP rather than popping the arguments off the stack.

This same program can be altered to demonstrate the use
of CALLO and CALLS. In the source code shown below, the
code for CALLS appears to be almost identical to that using
JSB. However, the differences become apparent when using
the Debugger. The CALLS causes a call frame to be pushed
onto the stack. This call frame contains the masked R6, the
old FP and AP, and the address 216 for restoring the PC after
returning from the CALC routine. The arguments which were
on the stack are now referenced by the AP. Thus the multiply
instruction becomes MULL3 4(AP),8(AP),R6.

INST -scroll-instruction REG
00000204: ENTRY MASK AM<> IRO:OOOOOOOO Rl0:7FFEDDD4 @SP:00000215
00000206: PUSHAL BA.MAIN.\RE IRl:OOOOOOOO Rll:7FFE33DC +4:00000002
00000209: PUSHL SA#04 IR2:00000000 AP :7FF473CC +8:00000003
0000020B: PUSHL SAf03 IR3:7FF47394 FP :7FF47384 +12:00000004
00000200: PUSHL SAf02 IR4:00000000 SP :7FF47370 +16:00000200
0000020F: JSB LA .MAIN. \CA IR5:00000000 PC :0000021F +20:00000000
00000215: ADDL2 S"flO,SP IR6:00000006 @AP:00000006 +24:00000000
00000218: RET IR7:8001E4DD +4:7FFE6440 +28:7FF473CC
00000219: MULL3 B"04 (SP), B" IR8:7FFED052 +8:7FF9802C +32:7FF473B8

>0000021F: ADDL3 R6,BAOC(SP) IR9:7FFED25A +12:7FFE640C +36:000008A7
00000225: RSB IN:O Z:O V:O C:O +40:000005FF

Figure S: Debugger Output

result: .long
.entry program, Am<>

pushal result
pushl t4
pushl t3
pushl t2
calls f4,calc
ret

calc: .word Am<r6>
mull3 4(ap),8(ap),r6
addl3 r6,12(ap),@16(ap)
ret
.end program

Using the Debugger students can see how returning from
the CAILS causes the removal of the call frame from the stack
and the restoration of the registers to their prior states. This
idea is important in understanding how recursion and context
switching are implemented.

A similar demonstration can be used with the CALLG
procedure call. An argument list is created instead of using
the stack. The CALLG instruction includes the names of the
argument list and the called routine.

result:
args:

;

;

calc:

.long

.long

.address

.entry

cal lg
ret

.word
mull3
addl3
ret
.end

4,2,3,4
result

program,"m<>

args,calc

"m<r6>
4(ap),8(ap),r6
r6,12(ap),@16(ap)

program

Students should know how a stack differs from an array
after examining both data structures. They should be able to

83

discuss differences between implementation methods for sub­
routine and procedure calls. They should know how recursion
works after they stepping through short recursive programs to
see how call frames are pushed onto and popped from the
stack.

In addition to the Debugger, VMS provides the TPU Ed­
itor, another tool for the Computer Organization course. In
any programming environment, the editor should worlc hand
in hand with the Debugger. At Spring Hill College our system
manager, Glenn Bell, modified the TPU Editor to permit the
use of the Debugger within the Editor. This improves the De­
bugger experience since students can modify assembler code
and view the results in the Debugger without having to exit
and enter the editor repeatedly. While in the F.ditor, the code
can be compiled and linked with or without the DEBUG op­
tion. Additionally, the programmer can spawn a process to
pop out of the F.ditor to read mail or word process, then pop
back to the same location in the F.ditor.

This modification of the TPU F.ditor simplifies the edit­
debug experience for the student and encourages the use of
the Debugger. Students can modify code in multiple windows
and view the effect in the Debugger without exiting the TPU
Editor. In addition, output is produced in a window so that it
may be saved as a file for display or printing.

The third VMS enhancement for a Computer Organiza­
tion course is the availability of system routines. Many of the
Computer Organization textbook examples are trivial. Stu­
dents want to do more than add or sort two lists of numbers.
The VMS Run Time Library and System Services routines
open the door to many interesting programming assignments.
These system routines increase students' understanding of how
information is represented in the computer, how to use the
stack, and how to pass arguments to a procedure.

Listed below are some of the System Seivices and Run
Time Library routines which may be used by students at this
level. A programming assignment might require students to
write a MACRO program to set an alarm. The solution would
involve spawning a process which would schedule its own
wakeup, hibernate, wakeup at the prescribed time, and ring
a bell. This could be accomplished by calls to the routines
LIB$SPAWN, $SCHDWK, and $HIBER.

INST -scroll-instruction REG
>00000219: MULL3 B" 0 4 (AP) , B" IRO:OOOOOOOO Rl0:7FFEDDD4 @SP:OOOOOOOO

0000021F: ADDL3 R6,B"OC(AP) IRl:OOOOOOOO Rll:7FFE33DC +4:20400000
00000225: RET IR2:00000000 AP :7FF47370 +8:7FF473CC
00000226: HALT IR3:7FF47394 FP :7FF47358 +12:7FF47384

IR4:00000000 SP :7FF47358 +16:00000216
IR5:00000000 PC :00000219 +20:7FF47049
IR6:7FF47049 @AP:00000004 +24:00000004
IR7:8001E4DD +4:00000002 +28:00000002
IR8:7FFED052 +8:00000003 +32:00000003
I R9: 7FFED25A +12:00000004 +36:00000004
IN:O Z:O V:O C:O +40:00000200

Figure 6: Debugger Output

Activity SS or RTL Routines
hiber/wake a process $HIBER, $WAKE, $SCHDWK
set a timer
spawn processes
use event flags

$SETIMR
LIBSPAWN
LIB$GET _EF, LIB$FREE_.EF,
$W AITFR, $ASCEFC

Later Operating Systems class projects might include us­
ing event flags to synchronize the reading and writing of in­
formation to an area of memory ($CREMBX, $MGBLSC),
queueing an 1/0 request ($ASSIGN, $DASSGN, $QIO), lock­
ing resources ($ENQ), or obtaining information about pro­
cesses ($GETJPI).

One set of Run Time Library routines which students
particularly enjoy is the Screen Management routines (SMG).
With calls to SMG routines windows can be created and in­
versed, blinking, or large characters can be displayed Exer­
cises using SMG calls require that students be proficient at
passing parameters by value, by reference, and by descriptor.
For example, to write a line of double-width text on the screen,
the routine SMG$PUT _CHARS_lllGHWIDE is called and the
arguments listed below may be used.

Argument Type Access Mechanism
IDENTITY longword unsigned RIO reference
TEXT character string RIO descriptor
LINES longword signed RIO reference
RENDmON longword unsigned RIO reference

The arguments include an identity name for the display,
the text to be displayed, the number of lines to advance after
the display, and a rendition mask whose bits indicate whether
the text should be blinking, bolded, reversed, or underlined.
These parameters have different data types, and they are passed
with different mechanisms. The identity, advance lines, and
rendition mask are passed by reference. If a CALLS instruc­
tion is used, the address of identity, advance lines, and rendi­
tion mask are pushed onto the stack.

A descriptor must be created for the text to be displayed.
The Run Time Library documentation provides the details. A
descriptor is created in memory consisting of the length of
the text to be displayed, the type and class of the descriptor,
and a pointer to the actual text. The address of the quadword
descriptor is pushed onto the stack.

The source code shown below contains the descriptor

84

DSC_ VAX which points to the text to be displayed named
VAX_MSG. The actual message to be printed on the screen in
large letters is "VAX-11(750."

dsc vax: . word
.byte
.byte

len_vax_msg
dsc$k_dtype_t
dsc$k_class_s

.address vax_msg

vax_msg: .ascii I VAX-11/750
I

len_vax_msg = .-vax_msg

In order to call the SMG routine to print the large letters,
the arguments are pushed onto the stack in reverse order. In
the example below, the address of the rendition mask is pushed
onto the stack followed by the address of the number of lines
to advance, then the address of the quadword descriptor and
the address of the display identity. The CALLS instruction
contains the number of arguments.

pushal
pushal
pushaq
pushal
calls

renmask
one
dsc vax
display_idl
#4,g"smg$put_chars_highwide

A class assignment might require the creation of a login
menu using calls to the Screen Management routines. The
menu choices might include word processing, editing, or the
use of a database. Selection of a menu item would spawn
a process for the chosen activity then return the user to the
menu.

Students enjoy a programming experience in which they
can apply the things they have learned in the course. Such
programming requires that students understand how data types
are represented in the computer, how to use pointers and stacks
for arguments, how to execute procedure calls, and how to use
macros to make repetitive code more efficient.

VMS provides a means for students to put the concepts to
use and see the practical rationale for them. VMS is effective

in an academic environment because of its openness. Students
get a perspective of the operating system which is not easily
gained on other systems. They begin to see the operating
system as a set of layered modules. At the end of the Computer
Organization course, students should be able to program in
assembly language and understand its execution within the
organization of the computer.

85

Readability of VMS Documentation
Then and Now

C. Eric Kirkland, Ph.D.
Integrated Microcomputer Systems

Rockville, Maryland

William P. Brenneman
Computer Systems Resource

Charlottesville, Virginia

Abstract

This article introduces the methods and theory of numerical analysis of text known
generally as readability analysis. The foundations for readability are presented, along
with current competing formulae. To illustrate the discussion, selected VMS docu­
ments for Version 3.x will be compared and contrasted with corresponding Version
4.x sections. Though readability analyses per se should not be used as a basis for
rewriting documents, techniques for improving documentation are summarized

Introduction

A longstanding, significant criticism of computer systems is
that the overall quality of the training manuals and techni­
cal documentation is quite low. (Maynard, 1979; Nickerson,
1982) Often the personnel who would most benefit from an
automated system may prove the least likely to read any of
the documents. What may be the oldest joke in computing
is the pithy statement "When all else fails, read the manual."
Unfortunately, there has been little effort to comprehensively
address this problem either in the education of technical writ­
ers or other professionals. (Wright, 1977)

One method for addressing this problem is the analysis
of the actual readability of the documentation. This can be ac­
complished using computer programs for counting unfamiliar
words, sentence length, and so forth. From these measures,
a prediction of the readability of the text may be calculated.
The analytic methods also may be used to predict the efficacy
of various revisions of a text.

Readability

Historically, the study of readability has been the province of
composition. A unifying principle of composition, as stated
by Herbert Spencer, is "so [to] present ideas that they may
be apprehended with the least possible mental effort." (1881,
p. 11) To this end, the use of familiar words in short, simple
sentence structures provides the maximum economy of the
reader's attention and, therefore, the best comprehension.

A definition of readability is difficult to prepare. On the
one hand, the authors understand that a definition is critical
to understanding. But on the other hand, once a definition
is offered, one is faced with a seemingly endless series of

Proceedings (~/the !Jig ital Fquipmenf Computer l/sers .).ociel_\' 89

exceptions and modifiers. Notwithstanding these reservations,
here is a definition the authors have found useful.

Hirsh suggested that readability refers the the "easiness
with which a reader understands a text". (1977, p. 9) Given
that two texts could convey identical meaning, the text which
evoked the meaning with the lesser effort would be judged the
more readable.

A convenient method of judging readability is the com­
prehension test. The literature includes studies which have
sought to measure readability in a direct, comprehension­
referenced method using standard texts and either multiple­
choice or completion tests.

But this approach may be unfeasible or too expensive.
For example, the body of documentation to be studied may be
too voluminous or may require an expert in a given field as the
reader. In such circumstances, readability analysis provides an
alternative.

Readability analysis is the application of a computational
formula to produce an index that predicts the difficulty or
ease with which people will be able to read and comprehend
the material. The index is calculated from the surface struc­
ture of the text. Features of the surface structure include the
words themselves, the punctuation, spelling, sentence length,
and so forth. Typically, the prediction is expressed as a grade­
equivalent index indicating the level of skill required of the
reader to reach a given level of comprehension.

Readability formulae stem from the advent of formal, sta­
tistical analysis of text. This may be traced to the explosive
growth and diversity of interest in mental measurement fol­
lowing World War I. The success of standardized tests and an­
alytic methods provided a paradigm for the the further study
of human abilities.

Nashrille, TV - 1987

In 1921, Thorndike published a volume entitled The
Teacher's Word Book which provided 10,000 words that had
been laboriously stratified by the frequency of occurrence in
texts. This provided the springboard for the numerical analy­
sis of text factors related to human comprehension by Vogel
and Washburn.

Vogel and Washburn (1928) used multiple regression
analysis to isolate factors that were most highly correlated
with comprehension scores. They found the number of dif­
ferent words, the total number of prepositions, the number of
words not in the Thorndike list, and the number of simple
sentences (Simplicity was judged by the authors.) produced
a multiple correlation of 0.845 with comprehension scores.
Thus, these four factors account for roughly two-thirds of the
variance.

Of course, few ideas are entirely new to mankind. Quite
similar factors had been suggested by Herbert Spencer in 1881
as being important in writing. His list of factors included word
length in syllables, familiarity of words, abstract level of words
and sentence length.

Nonetheless, the technique of counting various text fac­
tors, particularly vocabulary familiarity, has been carried for­
ward in a number of formulae as general factors which affect
readability. However, before getting too involved in the vari­
ous formulae, an overview of factors that affect comprehension
is needed.

Factors Affecting Comprehension

The syntax of the written composition will have a major
influence on the comprehensibility of the text. Convoluted
sentences with multiple prepositional phrases and embedded
clauses require more effort to understand

Of course, semantics will impact understanding. The
more difficult the writer's predicate (intention), the harder it
is to express in words. Consequently it is more difficult to
understand the full meaning.

The reader's motivation, ability and interest will have a
profound effect, too. These are major compounding factors in
the comprehension studies that attempt to measure readability.
For example, does the testing itself invoke a set of enabling
or disabling attitudes and motivations that affect the ability
to pass the comprehension test that looms at the end of the
session?

Readability Factors

The general method for developing readability formulae has
been to take a standard text, give comprehension tests to read­
ers, and then utilize a multiple regression approach to develop
a formula that predicts the scores that would be obtained by
other readers.

Two common factors are sentence length in words and
number of unfamiliar words. The sentence length may be
viewed as a measure of syntactic complexity. Procedurally,
word familiarity is judged by the percentage of words absent
from a list common words. The unfamiliarity of the words
may be viewed as a measure of semantic complexity.

90

Note that because the reading materials have to be de­
veloped with a given audience in mind and because the test­
takers are representative of only a restricted population, most
readability indices have a limited range of grade-equivalent
scores that can be obtained. Thus, the text book for a gradu­
ate course in physical chemistry might be given a readability
index of ninth grade if it were assessed using a formula that
could not provide a higher estimate of difficulty.

Two Formulae

Two of the many formulae will be given additional coverage in
this section. These are the Dale-Chall and the Flesch. Both are
all-purpose measures with grade-equivalent ranges that would
include most adult readers' abilities.

Dale-Chall

Edgar Dale and Jeanne Chall introduced a readability formula
in 1948 that is still one of the most widely used readabil­
ity formulae. With this formula, syntax is approximated by
sentence length in words; semantics is approximated by com­
puting percentage of words not include in the Dale list of 3, 000
common words. A multiple correlation of 0. 70 with scores on
the McCall-Crabbs "Standard Test Lessons in Reading" was
originally obtained.

Flesch

A contemporary of Dale and Chall, Rudolf Flesch published
a formula known as the Reading Ease Formula in 1948. It
also obtained a multiple correlation of 0.70 with the McCall­
Crabbs (above) using the number of syllables per 100 words
and the average sentence length in words as the independent
variables. This formula has an unusual scale of scores wherein
100 is considered easy "for any literate person" (1948, p. 229)
and zero (0) is considered virtually unreadable. Flesch did,
however, provide a table for converting the scores to grade
equivalences.

Peter Kincaid has revised the Flesch to create a new for­
mula that produces grade level equivalent scores for adult
reading materials. This has subsequently been adopted as a
Department of Defense (DoD) standard for military specifi­
cations: MIL-M-38784A, Amendment 5, 24 July 1978. A
more recent edition of the standard, MIL-M-38784B, 16 April
1983, includes procedures for calculating this index in Section
4, Quality Assurance Provisions. This formula, therefore, has
been rejuvenated and given new importance.

VMS Documentation

The preparation of any large body of documentation such as
the VAX/VMS series requires the concerted effort of a large
number of people. These people have a monumental job facing
them with a comprehensive product such as that provided by
DEC with VMS and all its layered products. The dedicated
technical writing and documentation staff which DEC obvi­
ously has employed are to be congratulated for the progress

they have made in the usability and completeness of their fin­
ished product.

Even a cursory inspection of the VMS 3.x and the VMS
4.x documents reveals some startling differences. For exam­
ple, with VMS 4 the graphic layout of the pages was dra­
matically changed with multiple type fonts, graphics, holding
and other graphic devices. These presentation features may
affect the usability of the documents. Also, these changes can
be implemented with a documentation template system, hence
economically.

But what exactly is DEC doing about the readability of
their documents?

To analyze the complete set of VMS documentation
would be straightforward, but the authors neither had the time
nor the resources to invest in this effort. Instead, a sample
of DCL commands was obtained by asking co-worlcers to list
their favorites. Admittedly, this is neither scientific nor partic­
ularly comprehensive. Therefore, the results presented below
should be viewed purely as applying to these command ONLY
and not the complete set of VMS documentation.

DCL Commands Analyzed

COPY RUN
DELETE SET DEFAULT
DIRECTORY SHOW DEFAULT
HELP SHOW DEVICES
PRINT TYPE
PURGE

Table 1

The following table is based on the results of the analyses.
The scores for the Dale-Chall and DoD analyses are in grade­
equi valents. Flesch scores range from 0 (unreadable) to 100
(easily read), as was noted above.

Readability Analysis

DOCUMENT READABILITY FORMULA

DALE FLESCH DOD

VMS 3.x 13.99 54.09 10 .04

VMS 4.x 14.22 56.02 9.71

Table 2

Clearly, there is not much difference; but no test of sig­
nificance was warranted given the relatively poor sampling
technique.

Before the analysis was conducted, the authors' intuition
was that the VMS 4 was much more readable than the VMS

91

3 documents. This apparently was driven by the presenta­
tion factors, not the verbal content. This intuition was simply
incorrect. Appearances were deceiving.

Composition

Before any readability analysis can take place, the document
has to be written. This may seem obvious, but the predeces­
sor of readable text is a well-prepared composition. No appli­
cation of readability can replace good composition. Finding
skilled writers is a major challenge.

The documentation life cycle commences with the re­
quirements analysis phase and continues through the final ac­
ceptance of the system. Each major milestone is marked by
a written deliverable to the customer. Indeed, guidelines for
programming emphasize that programs are written to read by
people; and, therefore, clear, concise and relevant comments
are required in the code itself.

Yet system developers often neglect the documentation
or delay it as much as possible. Documentation has some­
how come to be viewed as a last moment - or optional -
accompaniment to the product rather than an ongoing record
of accomplishment and usability.

Often the actual deliverable documents are poorly con­
ceived and executed. Alphonese Chapanis, a world-renowned
human factors engineer, suggested the following:

Report rejected. Too windy, too hard to read, too
long. Final payment on this contract is being held
up until a readable report is received. (1965, p. 14)

In the development of any complex system, humans play
the critical role; and, according the principle of least effort,
people will find the easiest solution to their work. Since
the computer system and its considerable documentation will
doubtless be part of the overall man-machine system, make
it easy on the people who will use the system by adopting
standards, being consistent, and using plain language that they
understand

General Guidelines

The resolution to improve documentation must be a cotpo­
rate commitment in order for the effort to succeed The skills
required for writing effective prose must be nurtured and re­
warded, and the corporation must consider the documentation
an integral part of quality assurance. Without corporate lead­
ership, any effort will likely fail.

Standards

Given the commitment, the first step toward improving docu­
mentation is to adopt a standard for deliverable and develop­
mental documentation. The standard must include both pre­
sentation and content guidelines. Ideally, it will include stan­
dard tables of contents and outlines for writers to follow.

One standard with which the one of the authors (Kirk­
land) is intimately familiar is DoD STD 7935 for automated

data processing (ADP) systems. The objective of 7935 is to
provide managers and developers of automated systems with a
uniform set of documents that address milestones in the soft­
ware life cycle. These uniform documents serve to guide the
customer with the progress of the project, and provide a perma­
nent record of the technical achievement of the project. Later
these documents are used to guide maintenance and, possibly,
general deployment of the ADP system.

Note well, however, that the use of standards neither lim­
its creativity nor forces formulaic documents. Instead, stan­
dards ensure the development of a consistent set of deliver­
ables to the customer that is organized and presented in a
consistent manner subsystem by subsystem.

Writing

Documents are written to be read by people. Readers often
are not familiar with the programs and the systems. Each doc­
ument, therefore, must provide essential background context
to allow the document to be read and understood.

Ideas for improving the quality of technical writing have
been offered by many authors. Seldom have these ideas been
backed by experimental evidence to support them.

One refreshing report was offered by Hartley, Trueman
and Bumhill (1980), in which they give a list of suggestions
for improving technical writing that they had found to have no
effect on comprehension. These non-effective rules included
using the active voice, using simpler wording, shortening sen­
tences, shortening paragraphs, and providing procedures in
numbered lists.

But these suggestions look like they were taken directly
from a "How to Write Good Technical Documents" guide. In
their final analysis, however, these changes did NOT make the
text any easier to comprehend!

Also, note that we can infer that certain of these sugges­
tions would have the effect of reducing the computed read­
ability indices for the given text. For example using simpler
(in the sense of more common) words and shorter sentences
is guaranteed to reduce the predicted readability.

It is for reasons such as these readability analyses should
NEVER be used to guide rewriting. By examining the for­
mulae discussed above, an author could quite easily lower the
readability index and yet not improve the comprehensibility.

There are several handbooks, however, that these authors
suggest should be standard accessories for writers. The list
includes Hirsh (1977), Strunk and White (1972), The Chicago
ManLWl of Style (1982), and the Harbrace College Handbook
(1986). (See references.) Strunk and White's is the authors'
favorite.

Sentence Composition

The following suggestions are adapted from the Harbrace Col­
lege Handbook. A similar list could be made from other texts.

• Write in complete sentences using correct grammar.

• Make relationship between coordinate clauses clear.

92

• Place idea to be emphasized in independent clause, and
subordinate idea in dependent clause.

• Avoid ambiguous references using pronouns.

• Express parallel ideas using parallel grammatical form.

• Eliminate superfluous words.

• Limit the use of the passive voice.

• Vary the length and format of sentences.

Composition of Longer Texts

The need for modular structure is obvious in programming.
But often the modular structure of text is ignored. The ba­
sic module is the paragraph. The following, again adapted
from the Harbrace College Handbook, gives some insights
into paragraphs, and longer chunks of connected discourse.

• Limit paragraphs to a single topic.

• Clearly state the topic, generally near the beginning of
the paragraph.

• Arrange the details of a paragraph according to some plan.

• Develop the paragraph with supporting details.

• Strengthen the coherence of paragraphs by using connec­
tives and linking expressions.

• Group related ideas together. Arrange the groups using
an outline.

Presenting Technical Information

Patricia Wright (1977) has suggested a number of things to
improve the presentation of technical information so it can be
remembered. Some of these are summarized below.

• Present information verbally rather than using flowcharts
or tables.

• Verbal lists using short sentences are effective.

• Provide introductory verbal outlines of the material that
will follow.

• Use Headings in Table of Contents and Body of the
text. Number them using arabic numerals separated by
"points".

• Minimize the use of serial numbers, acronyms and neol­
ogisms.

Note that outlines are important both for the writer and
for the reader. Writers should use them to guide the writing,
so the general outline should be part of the standard. The
outline should be presented to the reader, possibly in the form
of the Table of Contents.

Consistency

In addition to these general guidelines listed above, the im­
portance of consistency cannot be over stated. Use standard
English. Use correct grammar and punctuation. If the ap­
plication being developed is industry-specific, then use the
vernacular of the target population.

Beta Test

No document is ever complete the first time off the printer.
Just as the system should be beta tested, so should the docu­
ments. Unfortunately, the beta testing of the documentation is
a universally neglected activity.

If the users do not spontaneously provide feedback on the
documents, then ask for reader feedback using a simple form
or checklist. DEC includes a reader's comment form in every
manual.

Also, collect the beta test documents and study them.
Did the users highlight things? Did they write interpretations
or notes? Are some pages dog-eared and stained? These are
important bits of information that will help during the rewriting
and, hence, will lead to a better product.

Rewriting

Having left a document for one or more days, a thorough re­
reading will highlight its weaknesses. Also, the collection of
the beta test documents will provide important clues for the
sections that need the most work.

One of the principles of writing that has proved quite use­
ful to these authors is the notion of linearity as was suggested
by Hirsh (1977).

• Organize ideas into related clusters and present them as
a group.

• Make one idea carry forward logically to the next idea.

• Make connections between ideas clear.

• Minimize demands on memory by frequent closure of
ideas.

Taking an analogy from programming, though it is stan­
dard to use subroutines, avoid them in writing documentation.
State what needs to be stated in-line, sequentially.

Summary and Recommendations

It is important that a set of mutually-supportive goals are de­
veloped to bridge systems development and technical writing
about the systems. The two activities are complementary and
interdependent. Lacking documentation on the available soft­
ware tools, developers would be stuck in the endless task of
reinventing the tools.

The extremely limited study reported herein suggests the
readability of the VMS documentation has not been addressed.
This would be most unfortunate because as system designers

93

and developers we must be assured our personnel can use the
operating system and related tools effectively.

Though this study suggests the documents are compre­
hensible by high school graduates, the issue of their routine
comprehensibility remains. Can system users understand the
documentation under non-test conditions? Do they have the
necessary cognitive skills to read comfortably at a twelfth
grade level in their normal work environment? Will they be
able to use the tools provided by DEC after reading the in­
structions or will they be forced to experiment?

The understandability of the VMS documentation can
only be improved by careful rewriting by skilled writers. This
would be an anluous and expensive process, but the benefits to
the user community would, in these authors opinion, be worth
the effort.

DEC has made considerable progress in applying the
graphic effects that improve the appearance of the VMS doc­
umentation. These changes may improve the usability of the
documentation.

All of us can improve the usability of our documentation
by providing an index and a table of contents for reference,
by using highlighting techniques to help the reader focus on
the important factors, and by writing the document for linear
cognitive processing. VMS provides a free set of tools that can
be used to meet these requirements: text editors (EDT(fPU)
and RUNOFF. So among VMS users, no one can claim they
do not have the means for providing these improvements to
their documents.

Finally, never write a document without asking yourself
if it will make sense to the readers. "Write so you can be
understood by your elders!" (Hopper, 1987)

Acknowledgements

Special thanks are due Maureen E. Kane for her contributions
to this effort. She developed the graphics that accompanied
the original presentation at DECUS, and she provided editorial
assistance in the final writing of this article.

References

Chapanis, A. Words, words, words. Human Factors,
1965,7, 1-17.

Dale, E. and Chall, J. A formula for predicting readability.
Educational Research Bulletin (Ohio State), Jan 21 and Feb 17,
1948, 11-20 and 37-54.

Department of Defense. Automated Data Systems Docu­
mentation Standards. DoD-STD-7935, Feb 15, 1983.

Flesch, R. A new readability yardstick. Journal of Ap­
plied Psychology, 1948, 32(3), 221-233.

Hartley, J., Trueman, M. and Burnhill, P. Some obser­
vations on producing and measuring readable writing. Pro­
grammed Learning and Educational Technology, 1980, 17(3),
164-174.

Hirsh, E. D., Jr. The Philosophy of Composition.
Chicago: University of Chicago Press, 1977.

Hodges, J. C. and Whitten, M. E. with Webb, S. S. Har­
brace College Handbook (10th ed.). New York: Harcourt
Brace Jovanovich, 1986.

Hopper, G. M., Admiral (USN, Ret). Personal commu­
nication. March 31, 1987.

Maynard, J. A user-driven approach to better user manu­
als. IEEE Computer, 1979, 12, 7275.

McCall, W. and Crabbs, L. Standard Test Lessons in
Reading. Teachers College Record, 1925, 27(3).

Nickerson, R. S. Why interactive systems are sometimes
not used by the people who might benefit from them. Human
Factors, 1982, 24, 509-519.

Spencer, H. Philosophy of Style. New York: D. Appleton
and Co, 1881.

Strunk, W., Jr. and White, E. B. The Elements of Style
(2nd ed.). New York: Macmillan, 1972.

The Chicago Manual of Style (13th ed). Chicago: Uni­
versity of Chicago Press, 1982.

Thorndike, E. The Teacher's Word Book. New Yolk: Bu­
reau of Publications, Teachers College, Columbia University,
1921.

Vogel, M. and Washburn, C. An objective method of de­
termining grade placement of children's reading materials. El­
ementary School Journal, 1928, 28, 373-381.

Wright, P. Presenting technical information: a survey of
research findings. Instructional Science, 1977, 6, 93-134.

94

Overview of Human Factors and Software Engineering

C. Eric Kirkland, Ph.D.
Integrated Microcomputer Systems

Rockville, Maryland

Abstract

This article provides a general overview of Human Factors Engineering and its rel­
evance to Software Engineering. It is assumed the reader has only a very limited
knowledge of human factors engineering and a considerable knowledge of software
engineering. Due to its multidisciplinary nature, only a brief coverage of human fac­
tors is possible; however, areas of emphasis were selected which are most germane
to software engineering. These include the parallels between structured design prin­
ciples and those of human factors, and practical guidelines for improving the design
of systems.

Introduction

Human Factors Engineering (HFE) is an applied science that
concerns itself with the design of things that people use. In
particular it studies people and their relationship with machines
and environments. Outside the United States, HFE is com­
monly known as ergonomics. Though distinctions between
the two have been offered, today the distinction is so substan­
tially blurred that for the purposes of a general introduction
they may be considered identical.

The focus of HFE is the design and creation of objects,
facilities, products, equipment and environments that are us­
able by people. Included are the procedures for carrying out
work and other activities.

The objectives are to enhance effectiveness, to improve
efficiency, to maintain or enhance human values, and to satisfy
human needs. Examples that come to mind immediately are
health, safety, and job satisfaction.

The approach is to synthesize knowledge about hu­
man abilities, behaviors, characteristics, and motivations with
knowledge of job performance requirements. The goal is to
design and build an harmonious working system that includes
the person, the machine and the work environment.

To apply HFE approaches and techniques to software en­
gineering is quite straightforward. The first and most impor­
tant step is to always strive to include the person as an integral
component of the system. With this perspective, the human
needs are the principal motive for the actual development pro­
cess.

Historical Perspective

During World War II, the discipline of HFE emerged as a
distinct discipline of importance. This emergence was in re­
sponse to the need for training young men to control complex
weapons systems. (McCormick and Sanders, 1982) The HFE

Proceedings of the Digital Equipment Computer Users Society 95

focus on optimizing the combination of humans and machines
was a natural accompaniment to the increased complexity of
the tasks at hand. For example, these weapons systems often
exceeded the complexity of any machine the recruits had ever
seen. These men had to be trained quickly and effectively
to meet the demands of the war. Once trained, their skill in
the use of the systems would profoundly affect their chances
of survival. So the HFE emphasis on modifying the machine
to make it more understandable and usable by people was an
obvious choice: There simply wasn't enough time to modify
the men.

Of course, as long as people have used tools, there has
been an interest in improving the safety and efficiency of the
tools. Prior to modern medical advances, even a blood blister
from too rough a handle was life threatening. Since the human
musculature provided the power for the tool, improvements in
efficiency lessened the immediate burden of worlc.

Between 1750 and 1890, machines became dominant in
industry. Jacquard revolutionized the textile industry with the
punch-card controlled loom, thereby providing Hollerith with
a paradigm that marked the path that would later lead to com­
puters. With machines human muscles no longer supplied
the power; the human brain, however, continued to provide
control. Interestingly, the then-current technological forefront
came to be considered a model for the way the human brain
functions: The brain was termed a thinking machine.

Between the last quarter of the nineteenth century and the
onset of World War II, the telecommunications, automobile,
and aviation industries flourished Everyone needed a motor
vehicle and a telephone. The impact of the telephone was such
that the brain came to be compared to the switchboard.

Much of this period leaves man in control of the machine,
however human strength and endurance are not issues because
the machine provides the power and a portion of the control.
The human role is reduced to a more supervisory or monitoring
function.

Nashl'ille, TN - 1987

The advent of the computer further changed the role of
workers by assuming more of the control functions. In many
highly complex activities, such as flying commercial jet air­
craft, the human being has become little more than an inter­
ested observer. Thus, vigilance becomes an important prob­
lem: It simply is not easy to maintain the level of interest
required. Also, the quality of work life may be negatively
affected by the automation of the system.

Computers aid, relieve and extend human capabilities in
ways that otherwise could not be imagined. Unlike any ma­
chine that has come before it, a computer helps a person ana­
lyze data and make decisions. The computer is an assistant for
thinking; but, as would be predicted, the computer has become
the model for human brain function.

In addressing these many areas of human-machine sys­
tems, several academic disciplines and professions contribute
techniques, tools and understandings. The sciences include
psychology, sociology, anthropology, physiology, biology,
mathematics and statistics. The professions include industrial
engineering, architecture and education. With such a mixture
at its foundation, HFE understandably brings many diverse
views to the problem of building human-machine systems.

Task Analysis

One of the principal tools of HFE is task analysis. Task anal­
ysis produces a carefully specified description of a task and its
constituent processes. The tools required and the flow of in­
formation from one portion of the task to another are included,
as are the environmental and economic constraints.

The technique of hierarchical decomposition is critical
to the success of task analysis. The decomposition yields a
system specification that includes a list of sub-functions and
procedures that can be used in the detailed design of the overall
system. Task analysis may be used to provide a list of skills or
training requirements that will be needed by the system users.
In addition, the task requirements may be shaped into a job
design description that guides personnel selection.

Herbert Simon has argued that all complex systems in­
volving humans are artificial in the sense that they are "man­
made, as opposed to natural". (1969, p. 4) Furthermore, all
complex systems either are hierarchies or can be depicted as
such.

Hierarchies allow the designer the tremendous freedom
to focus on the goals and functions of a system without be­
coming embedded in the details of any particular sub-function.
Once the overall functional description of the hierarchy is com­
pleted, the designer may exit the process altogether, leaving
the details to other crafts people. In order for this technique to
succeed, however, the designer must carefully and completely
describe all the necessary interfaces between sub-functions and
processes.

Software Engineering

The hierarchical decomposition of tasks described above ap­
plies equally well to software engineering (SE). Indeed, the

96

reader could easily have thought the above was taken from a
text on structured analysis and design. The common thread of
both efforts is the specification of complex systems in terms of
discrete process descriptions and interfaces between functional
components.

One of the techniques of structured analysis and systems
design is the data flow diagram. [For details on data flow
diagramming techniques, see De Marco (1979) or Teague and
Pidgeon (1985).] Figure 1 presents a data flow for the analysis
and design phases of the information life cycle.

Upon receipt of the user request, a survey is initiated to
identify the user needs. A feasibility report is generated to
describe the system that is being requested and to present rec­
ommendations to the organization. This report and the organi­
zational goals are then incorporated in a requirements analysis.

The requirements analysis is the crucial step in the life
cycle. It produces three key components: (1) Functional De­
scription, (2) Physical Requirements, and (3) Budget and Sys­
tem Development Plan.

The Functional Description is a complete specification of
required functions and system interfaces. The entire environ­
ment, including both manual and automated systems already
in use, must be clearly described. The physical requirements
for the system must be discussed because these will affect the
hardware that will subsequently be selected. Of course, the
budget and schedule will have to approved by management
before any work takes place.

Interviews and checklists are useful in the collection of
user requirements. Simple observation of the people as they
work provides valuable insights, too. Who works with whom
and for whom? Who really does the work? Who is responsible
for doing the work? Seldom will an analyst find an organi­
zation where the official chain-of-command is the only one to
consider.

The preliminary design of the product produces a system
specification that guides the preparation of the detailed sys­
tem design. During this phase the analysts prepare an overall
system configuration plan, select an implementation language,
identify major modules and their interfaces, establish controls
and data structures, and provide a test plan. A system hard­
ware configuration and performance requirement document is
forwarded to the hardware study.

The hardware study produces an order for equipment, so
it must incorporate user requirements, perfonnance, and con­
figuration information from the preliminary design. Budgetary
limits and product availability impose additional constraints on
the selection of the vendor. The final system configuration is
forwarded to the detailed design process.

The detailed design phase produces a structurally decom­
posed system at the level of individual modules. These spec­
ifications must include data structures, algorithms, internal
program controls, interface requirements, interprocess com­
munications techniques, and other factors that influence the
overall program design. Also addressed are factors affecting
projected sizes, required timing, storage, and other hardware
environment constraints. Standards for test data and a plan
for testing are very important as system constraints. Not only
must the formal technical specifications "describe everything

User~
Request '

Organizational
Obje<t;ve• \

User--~
Requirements

_____ ,
Budget & Development

Schedule

Detailed
Design

Program
Specs

System
Specifications

Figure 1: Infonnation Life Cycle

the user does see, including all interfaces; it must refrain from
describing what the user does not see." (Brooks, 1975, p. 62)

Note that the human factors related to the system have
been given very little attention. Few texts on systems analysis
and design offer any guidance on including human beings in
the design. Certainly, humans are interviewed and feedback
on the design is solicited. Once the user requirements phase
is completed, however, little interest in the ultimate users re­
mains. The human engineering issues aside from performance
simply are not given the importance they deserve.

Synthesis

Human-machine systems are the focus both of HFE and soft­
ware engineering. Both disciplines rely on the hierarchical
decomposition of complex systems. Both disciplines seek to
produce an efficient, safe, usable system. There should be
tremendous hannony between these disciplines. It is entirely
possible, however, that many software engineers have given
only cursory attention to the human component of their system
designs.

Often the software engineer seeks to develop a completely
automated system. There is no analysis of what functions
would be left for the person who uses the system. Such sys­
tems often leave only trivial tasks for the human being. For
example, the system users' primary jobs may be just monitor­
ing the system. Even worse, the humans who use the system

97

may have been given nonsense "make work" of no conse­
quence at all.

Of course, humans perceive their inconsequential role in
such systems quite quickly. Their reactions may range from an
initial frustration and anger with the system to a final state of
resignation and apathy. This can be catastrophic in situations
where the system designers have left failure override in human
hands.

Though the designer may have envisioned the workers
suddenly springing into action to "save the day", the overall
system failure may be unavoidable because the workers really
are not able to bring their full abilities to the problem in a
short period of time. The lack of meaningful work may have
caused such general mental and physical fatigue that the people
simply are not equipped to handle the emergency.

It is this author's personal philosophy that this state of
affairs should never exist. People should be given meaningful
work that contributes to their personal satisfaction with their
work and their self-esteem. This should be done even if it
means taking work away from the automated system. People
need jobs to help them attain their own individual potential.

Integrated Design

In approaching the integration of Human Factors Engineering
with Software Engineering it is important that a set of explicit
goals be developed. The designer must systematically address

not only the user requirements but also human factors. The
following list can be used to assure basic human factors have
been included in the analysis. (Meister, 1971)

1. What are the system outputs and inputs?

2. What operations produce the outputs from the inputs?

3. What system functions can be assigned to the human?

4. What level of training and skill is required of the users?

5. Are the tasks compatible with human capabilities?

6. What interface will be used between the human and the
system?

7. Are the machine and the human smoothly integrated?

The collection of outputs and inputs is part of the require­
ments analysis phase. The actual target users are the source
of this information.

Each of the operations that are required to produce the
output can be established by preparing a data flow diagram
or worlc breakdown structure. Task analysis techniques are
useful, too.

Once the system data flow is established, the partition­
ing of those functions to be assigned to the human can be
completed De Marco has suggested that the diagram of the
system be partitioned to highlight the domain of change. (De
Marco, 1979)

Next, consider the training, skills and human capabilities.
Can a person actually function in the ways required? Would
the human have to be modified to use the system? Of course,
re-designing the machine would be far easier and more eco­
nomic than re-designing the human being.

The issues of the integration of the man and the machine
are important. How can the system be designed such that the
human and machine subsystems complement each other, an­
ticipate each others requirements, and share the worlc? With
automated systems it is possible the machine will worlc sub­
stantially faster than the human being. Will the human being
be pressured by the machine's prompt for more input? Per­
haps the software could be modified to occasionally provide a
break in the monotony.

Task Allocation

The partition of the overall system functions to allocate cer­
tain tasks to the automated system and other tasks to humans
must be undertaken early in the design phase. In making this
partition, it is important that the human be given paramount
importance. Kantowitz and Sorlcin use the phrase "Honor Thy
User" (1983, p. 13). This means that the most important
thing the system designer can do is to provide the human a
meaningful role that is designed to maximize the value of the
human in the system.

One approach to the partitioning task is to first assign
tasks to the machine for which it has a "natural" advantage.
Then examine the remaining tasks to insure those left for the

98

human are useful and reasonable. If not, then give certain
functions back to the human. This approach will counteract
the overwhelming tendency to automate every function of a
system.

Models

Another approach to the problem of including people in the
design is model building. Indeed model building is one of the
tools in common to the disciplines of HFE and SE. Models
provide an abstraction of the overall system and its compo­
nents such that the users can understand the system and such
that the developers can build the system.

Rubinstein and Hersh (1984) suggest that a "Use Model"
should be developed that describes how people will use the
system. This model should specify the problems the sy~tem
will solve and how it will integrate with the worlcers envuon­
ment. It should depict the relationships of the people using
the same system and explain how their efforts interrelate.

Starting from the Functional Description, the developer
must build a system model that is representative of the domain
of worlc. The model must be understandable by the users, who
must be able validate both the manual and automated functions
that are specified. The model should reflect the sociological
and political influences that shape the worlc environment. In
other words, the model must be ecologically valid.

If the users cannot understand the model when it it pre­
sented by the designer, then quite simply the model is useless:
Go build a better model. Simplify the design, and limit the
scope of proposed system. It also may be helpful to decrease
the conceptual load on the users by making the model more
relevant to their worlc and their knowledge. Though the au­
thor has found data flow diagrams to be approachable by most
users, this is not always the case.

Rubinstein and Hersh also suggest that a system "myth"
(metaphor) be developed, much like the "desk top myth" has
been developed for office worlcers. But be sure to pick a myth
that is representative of the worlc being done. It is intuitive
that a "kitchen myth" would not have succeeded in the office
environment. But what of the desk top myth on a shop floor?
Is it ecological valid?

Once this model is understood and accepted, it will be
the major input to the design phases that follow, and it can be
used for the development of a prototype.

User Characteristics

As part of the overall requirements analysis, the detailed char­
acteristics of the user population must be collected The fol­
lowing items are a minimum set of questions that must be
answered.

1. Who are the users?

2. What level of knowledge to they have?

3. What capabilities are required?

4. What skills must they have?

5. What attitudes must they have?

6. What types of training will be needed?

As may be obvious, these questions quickly become in­
tertwined. If the user population includes business managers
and executives, then the answers that would be obtained are
quite different from those that would be obtained if the user
population was data entry clerks and typists.

In 1973 James Martin listed management and executive
user characteristics with an insight that remains interesting
today. (p. 438) He stated that these users are highly intelli­
gent, will not remember mnemonic commands, are too busy
to attend a training course, and are highly impatient. They,
also, will reject a system if it is confusing or does not provide
worthwhile results. This suggests a system for these users had
better be well-designed and easily usable.

There are other characteristics of the users that should
be considered. Bloom's Taxonomy (Bloom, 1956) provides a
useful hierarchy of human cognitive powers.

1. Knowledge

2. Comprehension

3. Application

4. Analysis

5. Synthesis

6. Evaluation

As the hierarchy is traversed from knowledge to evalua­
tion, the concomitant load on the users' abilities is increased.
This increase in cognitive load must be carefully considered.

Knowledge is the possession of facts, possibly only by
rote memorization. Comprehension is the capacity to actually
use the knowledge (facts) stored away in memory. It implies
an ability to thread together the facts such that the pieces fit
into a whole that is usable.

Application is a demonstration that the person has the
comprehension of the matter at hand. In contrast, comprehen­
sion only implies the person could apply the knowledge; not
that he or she will.

Analysis implies the breakdown of the information at
hand into its constituent parts and the detection of their in­
terrelationships.

Synthesis is defined as taking the pieces and building a
coherent whole. Generally, this implies taking the pieces of
previous experience and previous analyses and recombining
them to form something new.

Evaluation rests on the foundation of human judgment.
Both criteria of performance and standards are applied. Solu­
tions are questioned and competing strategies are weighed one
against the other. It involves judging the accuracy, complete­
ness, economy, and efficiency of solutions.

Most people function most comfortably at only so high a
level in this hierarchy. Having worked closely with the people
in developing the functional description, the analyst should be
able to pick the conceptual level that fits the user population.

99

Usability Specifications

John Whiteside of DEC has offered the appealing suggestion
that a key component of a system specification should be a
usability specification. The usability specification must pro­
vide a set of clear and measurable factors related to system
performance and usability under actual conditions.

Setting usability as a goal for designers does not make it
happen. Designers must be given the time and the corporate
commitment to usability that will afford usability the same
priority as other engineering factors.

Whiteside notes that "usability of a system is more a
function of quality than style. Indeed ... the best indicator of
usability relates to the strength of an interface's design and
amount of effort put into refining and debugging it." (1986,
p. 28)

Model building and prototyping (above) complement us­
ability analyses by establishing a low-cost platform for users
to experiment with the system and for the usability measures
to be collected

Language and Documentation

One of the most common mistakes in building systems (and
therefore one of the most common complaints) concerns the
language used both by the system and in its documentation.
The author provides a thorough description of this problem
area elsewhere in these Proceedings, so a repetition here is
unwarranted. A summary of factors that will improve the
documentation and the language include the following:

1. Provide an End User's Manual as a first deliverable.

2. Provide overviews, an index and a table of contents.

3. Use graphic devices to highlight important points.

4. Beta test the documentation.

5. Rewrite.

The understandability of a document is improved by pro­
viding overviews: "Most documents fail in giving too little
overview." (Brooks, 1975, p. 165) Also, the usability of the
documentation is improved by providing an index and a table
of contents and by using highlighting techniques help focus
the reader's attention to important points.

Beta test the documentation along with the system. If
the users do not spontaneously provide feedback on the docu­
ments, then ask them for suggestions to improve the compre­
hensibility and usability of the documents.

Rewrite the documentation following beta test. Unless
this is included in the original plan, the time it takes will likely
preclude its happening. But unless rewriting is undertaken,
then poor manuals will continue to plague computer system
users.

Of the standard three structured programming notions (se­
quence, selection and iteration), only sequence is applicable
to writing. State what needs to be stated in-line, sequentially.

Make each idea carry forward logically to the next. Explic­
itly link ideas. Minimize demands on the reader's memory by
frequent closure of ideas: Do not leave ideas unresolved and
unclear while expounding a tangential or interjectory idea.

Summary

Human factors engineering is an applied science that stud­
ies people and their interaction with machines. Since the
most pervasive human-machine interaction today is likely the
human-computer interaction, human factors offers a number
of approaches and tools that complement software engineer­
ing. This is particularly true for the initial design, and the final
delivery and acceptance phases.

This article has listed a number of additional, human fac­
tors that should be included in the design of automated sys­
tems. These include an analysis of the user characteristics, a
task allocation plan, a system model, and usability specifica­
tions.

An integrated information life cycle, also, addresses the
comprehensibility of the system and its documentation. Im­
provements in the individual documents, both language and
presentation factors, can help. The consistency and pre­
dictability of the dialog can be improved, too.

The traditional life cycle management approach ignores
the user population during much of the course of system de­
velopment. Often the functional description is the only doc­
ument delivered to the end user population before the system
is developed. The integrated approach advocated in this paper
shifts the focus from the system per se to the users of it; and it
adds an End User's Manual, which should be a key deliverable
following the approval of the preliminary design.

Figure 2 is a data flow diagram for an integrated infor­
mation life cycle that includes these additional factors.

One final hierarchy of interest is the hierarchy of human
needs specified by Abraham Maslow. The lowest level of
Maslow's hierarchy is physiologic survival. Directly above
it are safety and then love. These are the most basic three
human needs. As system designers we have a responsibility
to design systems that do not endanger the people who use
them, but other than that there is little we can do with respect
to these three needs.

The next higher three needs are self-esteem, information
and understanding. It is here that our system designs can have
the most impact. Our systems must provide people tools that
enhance their self-esteem by providing them the expression
of meaningful work, work that serves a purpose and does not
denigrate their ability or their stature as fellow human beings.

As a final, simple technique, place yourself in the end
user's situation. Ask yourself if the system is reasonable and
has internal consistency and integrity. Ask yourself if the work
will be meaningful and satisfying. If your own human values
and needs are supported by the system, then, to at least that
extent, your efforts at improving the human factors will have
been successful.

100

Acknowledgements

Special thanks are due Maureen E. Kane for her contributions
to this effort. She developed the graphics that accompanied
the original presentation at DECUS, and she provided editorial
assistance in the final writing of this article.

References

Bloom, B. (Ed.) Taxonomy of Educational Objectives.
Handbook l: Cognitive Domain. New York: David McKay,
1956.

Brooks, F. The Mythical Man Month. Reading, MA:
Addison-Wesley, 1975.

De Marco, T. Structured Analysis and System Specifica­
tion. Englewood Cliffs, NJ: Prentice-Hall, 1978.

Kantowitz, B. and Sorkin, R. Human Factors: Under­
standing People-System Relationships. New York: John Wiley
and Sons, 1983.

Martin, J. Design of Man-Computer Dialogues. New
York: Prentice-Hall, 1973.

McCormick, E. and Sanders, M. Human Factors in En­
gineering and Design (5th ed.). New York: McGraw-Hill,
1982.

Meister, D. Human Factors: Theory and Practice. New
York: Wiley, 1971.

Rubinstein, R. and Hersh, H. The Human Factor: De­
signing Computer Systems for People. Bedford, MA: Digital
Press, 1984.

Simon, H. The Sciences of the Artificial. Cambridge, MA:
M.l.T. Press, 1969.

Teague, L., Jr. and Pidgeon, C. Structured Analysis Meth­
ods for Computer Information Systems. Chicago: Science Re­
search Associates, 1985.

Whiteside, J. Usability engineering. Unix Review, June
1986, 4(6), 22-37.

User
Characteristics

Task
Allocation

Plan

Organizational
Obje<t;ve' \

Figure 2: Integrated Information Life Cycle

IOI

Budget & Development
Schedule

Order
Hardware

Program
Specs

POSTSCRIPT APPLICATIONS USING A MNC/DECLAB-23 COMPUTER.

0. Guetta, D. Fortney, A. Dubois
Uniformed Services University of the Health Sciences

Medicine Department
Bethesda, MD 20814 USA

Abstract:

POSTSCRIPT is a high-level interpretive programming language
designed to describe the appearance of text and graphics on printed
pages and to be implemented on printers. However, to transfer
POSTSCRIPT programs and data from a mass storage device to the
printer, a link between the printer and a computer is necessary.
Therefore, we connected the printer to the printer port of a
MNC/DECLAB-23 computer, which is using an RT-11 operating system
and supporting FORTRAN IV. POSTSCRIPT codes and their
corresponding data were sent to the printer using 1/0 routines written in
FORTRAN. The emulator of the printer interpreted the printing
instructions and processed the data to produce the desired formatted
output pages. We developed a batch word processing program written
in POSTSCRIPT to format and print text files (abstracts, articles,
documentation, ...). The text files were created and edited using a
terminal. They contained, in addition to the text, several sequences of
characters describing their output format. Other applications, such as
listing programs and tabulating, plotting and curve fitting experimental
data, were also written in POSTSCRIPT. This method allows freedom
and flexibility to develop POSTSCRIPT programs, and can be used to
connect any printer with a POSTSCRIPT emulator to the serial output
port of any computer.

INTRODUCTION interpreter executes it and prompts for the next
statement. While the user is sending a Postscript
statement, the interpreter echoes characters and
provides error messages; therefore, this mode is useful
for experimenting with Postscript. Another advantage of
this mode is that, thanks to the Postscript language, the
printer can be used as a general purpose personal
computer. However, this mode is not convenient to
transfer large Postscript files or data files.

The Postscript language 1 is a high-level interpretive
programming language designed to describe the
appearance of text and graphics on printed pages. The
Postscript interpreter is implemented on the printer.
The present paper describes a method used to operate
the printer and develop Postscript programs, and
demonstrates some of the applications that we have
developed.

OPERATING MODES OF THE PRINTER

The two operative modes of the printer are the
interactive mode and the batch mode.

1. Interactive mode
The interactive mode is the mode by which a user

may interact with .the printer from a terminal connected
directly to it. A job consists of a dialogue in which the
user issues a Postscript statement and the Postscript

Proceedings of the Digital Equipment Computer Users Sociely 103

2. Batch mode
The batch mode is the mode by which a user may

operate the printer as a printing device for another
computer. The printer is in this case connected to an
open port of the computer. A job consists of the
execution of a Postscript program sent by the computer
to the printer. A Postscript program generally consists
of two parts:

a - the prologue, containing specific definitions and
procedures, but not executed immediately;
b - the script, that consists of references both to

Postscript operators and to definitions made in the
prologue, and interspersed with operands and data

Nashville, TN~ 1987

required by the procedures.
The batch mode allows development of programs

with large data input, and is therefore the mode we used
in our applications.

MATERIAL

To develop Postscript programs, we used:
1 - a DIGITAL MNC/DECLAB-23 computer, with an

RT-11 interactive, single user, real-time operating
system and FORTRAN IV programming language;

2 - a DIGITAL PDP 11/44 computer, with an RSX-11M
interactive, multiuser, multitasking, real-time operating
system and FORTRAN 77 programming language;
3 - an APPLE LaserWriter Plus printer with Postscript

emulator that was connected to the printer port of either
the computer or the terminal.
The advantage of connecting the printer to the printer
port of the terminal is that whatever is sent to the printer
is visible on the screen, and messages coming back
from the printer can be read. The drawback of this type
of connection is that the printer port of the terminal has
to be opened, and therefore the keyboard cannot be
used during the time of the transfer. In a single job
environment, if the user inadvertently hits one key on
the keyboard, it will echo on the screen and be sent to
the printer, then crashing the program. In a multitasking
environment, for the same reason, the user would not
be able to run another task at the same time.

The applications presented in this paper have been
developed on the MNC computer with the LaserWriter
connected to the printer port. However, the method that
we use to develop and transfer Postscript files to the
printer is independent of the type of computer or
printer.

METHOD

The data to be printed are first stored in a data file.
The Postscript program that will be used to print the
data with the desired format is then developed,
debugged and stored in a Postscript file. At the time of
printing, the Postscript prologue followed by the script
and its corresponding data are sent to the printer from a
program using 1/0 routines written in Fortran. The
interpreter interprets and executes the printing
instructions contained in the Postscript program and
processes the data to get the desired output page. This
method is useful to print large data files, and also allows
the insertion of new Postscript statements (for instance
to save and restore given states, to reset variables, ...)
between different data sets.

104

POSTSCRIPT APPLICATIONS

1. Printing a file

The first application is a program that prints a listing
of a file.
Figure 1 shows the Postscript prologue, which contains
three main procedures:

1 - rd is a procedure that reads a line of characters
terminated by a newline character from the current file,
and stores these characters in the string called char,

2 - pr is a procedure that first decreases y1 (vertical
printing position), then sets the current point to
coordinates (x1 ,y1), and finally prints the string char,
3 - pr1 is a procedure that first sets the current point to

the left top of the page and prints the title of the file
stored in the variable title, then sets the current point to
the right top of the page and prints the value of the page
counter ip.
This Postsc::ript prologue is stored in the file named
OGLT9.POS.

Figures 2a and 2b show a listing of the Fortran
program that transfers OGLT9.POS and the data file to
the printer.

- Unit 5 corresponds to the terminal port, unit 7
corresponds to the printer port.

- After a few lines of declarations, the program asks
the user the name of the data file to print, and stores it
into NAME1.
- File OGLT9.POS is opened; each line of this file is

read and immediately sent to the printer, until the end of
file is reached and the file is closed.

- The name of the file to print, stored in NAME1, is sent
to the printer and stored in the string title. Statement
215 demonstrates one way of passing a Fortran
variable to a Postscript variable.

- The file to print is then opened, and the line counter
NBL is set to zero.
- Each line of the data file is then read with an 132A 1

format corresponding to the line width of the terminal
and stored in the string LINE. Statement 225 sends the
Postscript procedure pgr to the printer, which is
executed immediately and expects a line of characters
in the current file. The Fortran variable LINE is
therefore sent to the printer immediately following pgr
procedure. We demonstrated here a second way of
passing a Fortran variable to a Postscript variable.

- NBL is then incremented:
* If it is less than or equal to 45 (maximum number of

lines per page taking into consideration the vertical
spacing and the font height chosen), another line is read
and the same loop is again executed.

* If NBL is greater than 45, statement 245 sends
procedure pr1 to the printer, which prints the title and
the page number, and the showpage command which
allows the current page to be printed. Statement 255
increments the page counter ip and resets the vertical
position y1. Another line is then read until the end of file

is reached and the file is closed.
At the same time, the listing of this program

illustrates an output page.

2. Plotting a signal

The second application is a program that plots a
signal over time. The peaks are determined using a
peak routine and marked with a + sign on each graph,
as illustrated in figure 3. The signal, which is the output
of an AID converter, consists of a sequential file in
which all the points are evenly spaced over time. The
time of each peak found by the peak routine is stored in
another sequential file. In order to avoid printing too
many pages but to have good resolution, the aim of the
program is to plot 3 graphs per page, each graph
representing 8 minutes of the signal. The time between
two consecutive points is known from the rate of
digitization. The minimum and maximum values are
calculated for each signal.

The Postscript program contains three main
procedures:
a - the first procedure initializes each graph by defining

the position of the origin, drawing a box around the
graph, reading from the Fortran program the title of the
study and the minimum and maximum values, placing
ticks on the axes, labeling the axes, and initializing the
current point;
b - the second procedure reads from the Fortran

program the time and amplitude of a point and traces a
line to this point. This procedure is invoked for each
data point;
c - the third procedure reads from the Fortran program

the time of each peak and prints a + at this location.
The Fortran program divides the time signal into 8

minutes segments. For each segment, the program
sends to the printer the command to initialize the graph,
the command to plot a point immediately followed by the
time and amplitude of the point, and the command to
plot the peak followed by the time of the peak. The
Fortran program also sends to the printer commands to
reinitialize Postscript variables, move the origin of each
graph, and restore given states.

3. Tabulating data

Another important application for biomedical
research is a data tabulation program.

a - Figure 4a shows an example of a formatted data
file. The first line represents the title of the study,
composed of 80 alphanumeric characters. The second
line is the number of measurements in the file. The
following lines represent the different measurements,
each one composed of 9 numbers written with a specific

105

format.
b - Figure 4b shows one type of output. The title of

the study is printed in bold characters and therefore
emphasized; on top of each column is written what each
number represents in the column; in each column, the
numbers are right-justified.
The Postscript program used to generate this output

contains two main procedures:
* one procedure to print the box, the title of each

column, and the title of the study transferred from the
Fortran program;

* another procedure to read the 9 numbers to print
from the Fortran program, to move to the right column,
and to print each number.
The Fortran program first sends to the printer the

commands to initialize the page, then reads each line of
the data file and sends the commands to execute the
second procedure immediately followed by the 9
numbers, until the end of the file is reached.

Figure 4c shows a second type of output, which uses
the same data file for input. Each parameter is plotted
over time, and marked with a + on each graph. The
points are connected with a line that allows visual
determination of major variations of a parameter.
The Postscript program contains two main procedures:

* the first procedure initializes each graph by
positionning the origin, drawing the box, writing the title
of the study, placing the ticks on the axes, labeling the
axes, and initializing the current point;

* the second procedure reads from the Fortran
program the time and amplitude of a point, prints a + at
this location, and traces a line from the previous point to
this point.

For each graph, the Fortran program first sends to the
printer the command to initialize the graph, then for
each point the command to plot it, immediately followed
by its time and amplitude. The Fortran program also
sends to the printer commands to reinitialize Postscript
variables, to move the origin of each graph, and to
restore given states.

Figure 4c shows that some of the peaks seem to
occur at the same time on different tracings, suggesting
a correlation between some of these parameters.
Figure 4d examines this possible correlation and shows,
using the same input file again, a third type of output.
Each of these four graphs represents a plotting of the
two variables K solid and K liquid as a function of one
parameter (mean frequency for graph 1, motility index
for graph 2, relative amplitude for graph 3, and area for
graph 4). Each point is marked with a + (for solids) or
with an x (for liquids). For each variable, correlation
coefficients are calculated using a linear regression
program and printed under each graph. The two
regression lines (solid line for solids and dotted line for
liquids) are traced on each graph.
Both Postscript and Fortran programs are similar to the

programs of the previous output.

4. Word-processing

The last application described in this paper is a
program that we call batch word-processing program.
The aim of the program is to allow the user to print any
document (abstract, article, memo, ...) with a specific
format by using only the editor to create the text file.

Figure Sa shows a listing of a text file. The file
contains, in addition to the text, several sequences of
characters describing the output format.

The Fortran part of this word-processing programs
reads the text file and sends to the printer each word
separately. A word is considered to be text delimited by
a space on each side.

The Postscript part of this program contains
procedures that analyze each word received from the
Fortran and procedures that interpret the instructions
hidden in the special characters describing the desired
format.

Figure Sb shows the output produced by the
word-processing program using the text file shown in
figure Sa, and illustrates some of the available features.

CONCLUSION

This method allows freedom and flexibility to develop
Postscript programs that can be used to interface any
computer with any printer supporting Postscript.

REFERENCE

Postscript Language Reference Manual, Adobe
Systems Inc. Addison-Wesley Publishing Company,
Inc., Menlo Park, CA, 198S.

106

OGLT9.POS

g,.
0

% Initialization
g,.
0

/str 200 string def
/inch { 72 mul } def
/ip 1 def
/xl .8 inch def /yl 10 inch def
/Courier-Bold findfont 12 scalefont setfont
g,.
0

g,.
0

page 1

% Procedure rd reads line of characters from current
% file and store characters in string char.
g,.
0

/rd { currentfile str readline pop
/char exch def

g,.
0

g,.
0

} def

% Procedure pr prints string char.
g,.
0

/pr { /yl yl height 8 mul 7 div sub def
xl yl moveto

g,.
0

g,.
0

char show
} def

% Procedure pgr combination of rd and pr.
%
/pgr { rd pr } def
g,.
0

g,.
0

% Procedure prl prints file name and page number.
g,.
0

/prl { .8 inch 10.3 inch moveto title show
6.5 inch 10.3 inch moveto
(page) show ip cvlit str cvs show

} def

Figure 1 - Printing a file: Postscript prologue
107

OGLT9 .FOR page 1

c
C Unit 5 = terminal ; Unit 7 - printer
c
C Initialization
c

BYTE LINE(l32),NAME1(28)
135 FORMAT(132Al)
145 FORMAT(1X,132Al)
c
c
C Ask name of the file to print and store it in NAMEl
c

115

125
c
c

WRITE(5,115)
FORMAT(' ENTER NAME OF THE FILE TO PRINT
READ(5,125) (NAMEl(I),I=l,28)
FORMAT(28Al)

C Send OGLT9.POS to the printer
c

OPEN(UNIT=l,NAME='OGLT9.POS' ,TYPE='OLD')
10 CONTINUE

READ(l,135,END=ll) (LINE(I),I=l,132)
write (7' 145) (LINE (I)' I=l, 132)
GO TO 10

11 CONTINUE

c
c

CLOSE(UNIT=l)

C Save current state of printer's VM
c

write (7,205)
205 format (' /statel save def')
c
c
C Send filename to printer
c

write (7, 215) (NAMEl (I), I=l, 28)
215 format (' /title (' ,28Al,') def')
c

Figure 2a - Printing a file: Fortran pogram (1)
108

' '$)

OGLT9.FOR

c
C Open file to be printed, set NBL to 0
c

c
c

OPEN(UNIT=l,NAME=NAMEl,TYPE='OLD')
NBL=O

C Read one line from file:
C if end of file GO TO 99
C if not send to printer 'pgr' and LINE
c
20 CONTINUE

READ (1, 135, END=21) (LINE (I), I=l, 132)
write (7,225)

225 format (' pgr')

c
c

write (7, 145) (LINE (I), I=l, 132)

C Increment NBL and test for end of page
c

NBL NBL+l
IF(NBL.LE.45) GO TO 20
NBL=O
write (7,245)

245 format (' prl showpage')
write (7,255)

page 2

255 format (' /ip ip 1 add def /yl 10 inch def')
GO TO 20

c
c
C End of printing: print title, show page,
C restore state, close file
c
21 CONTINUE

write (7,265)
265 format (' prl showpage statel restore')

CLOSE (UNIT=l)
END

Figure 2b - Printing a file: Fortran pogram (2)
109

Cl)
't>

::::s
!::::
Q.
E
<(

Cl)
't>

::::s
!::::
Q.
E
<(

Cl)
't>
::::s
!::::
Q.
E
cl:

MK 7020. 12 MARCH 87. SK 20-22. CONTROL .30-.85 RESIN. LP001 + HP001 FILTER.

200

180

160

140

120

100

80

60

40

20

0

200

180

160

140

120

100

80

60

+ + + + + + + + + + + + + + + + + + + ++ + ++ + + + +

0 120

-I+ + + +

- (\
I \
I I

- I i,
I i\ I

-f\J \I~
- \J

--1
I I
; J
i !

Ii

+

240 360 480 600 720 840 960

+ + + + + ++ + + + + + + + + + + + + + + + + + 1--

1--

(\/' f­

l--

1--

40 --1

20 -I

0

i I
\!

v
1--

I-

960 1080 1200 1320 1440 1560 1680 1800 1920

200

180 + + + + + + + + + + + + + + ++ + + + + + +++++++ + +

160

140

120

100

80

60

~ ~
I I ~ 1

v1 rvvrvc. 1 i ~ (\ rJ \ ~\ (vv) \
1
1 v . ~ Ii I v \J I I I

!J 'J' \ v ,: i \ v '
I I I ,I . v

40

20

0
1920 2040 2160 2280 2400 2520 2640 2760 2880

Time In half seconds
1 integer equal 6.0 mcV or mg

Figure 3 - Plotting a signal
110

MK 225S. 16 JAN 87. SK 22-23. CONTROL WATER PH 7. CORRELATION FILE.
22

3. 92.499 90.575 2.5991 3.2997 0.00 0. 0. 0.
6. 77.226 43.432 6.0154 24.4994 3.36 440. 131. 80.

11. 71.969 19.991 1.4100 15.5183 3.00 235. 78. 35.
14. 72.677 19.452 -0.3263 0.9111 3.75 294. 78. 39.
17. 71.187 18.360 0.6700 1.8687 2.61 272. 104. 35.
21. 70.582 17.706 0.2184 0.9280 2.71 168. 62. 23.
31. 70.937 17.229 -0.0502 0.2731 4.00 290. 72. 43.
41. 70.424 14.618 0. 0726 1.6434 3.49 406. 112. 59.
51. 48.039 9.137 3.8252 4.6992 3.00 468. 156. 63.
62. 20.522 3.030 7.7320 10.0343 3.74 383. 103. 60.
71. 18.803 2.745 0.9720 1.0976 3.65 496. 136. 73.
81. 17.723 2.526 0.5915 0.8314 2.84 209. 73. 34.
91. 17.159 2.461 0.3234 0.2607 0.00 0. 0. 0.

102. 16.851 2.504 0.1647 -0.1575 3.00 354. 118. 57.
111. 7.761 1.546 8.6144 5.3580 0.00 0. 0. 0 .
122. 1.473 1.159 15.1074 2.6192 3.82 444. 117. 70.
131. 0.949 0.935 4.8850 2.3863 0.00 0. 0. 0 .
142. 0.940 0.885 0.0872 0.5031 3.51 356. 104. 51.
151. 0.996 1.062 -0.6377 -2.0091 3.00 331. 110. 46.
161. 0.916 0.778 0.8373 3.1118 4.10 470. 116. 62.
171. 0.865 0.941 0.5729 -1.9022 1.71 212. 124. 49.
181. 1.131 1.077 -2.6813 -1.3499 3.47 406. 117. 67.

Figure 4a - Tabulating data: Formatted data file

111

MK 2255. 16 JAN 87. SK 22-23. CONTROL WATER PH 7. CORRELATION FILE.

TIME % SOLID % LIQUID K SOLID K LIQUID FREQ. MOTILITY REL. AMP. AREA
min % O/o cpm µVxcpm µV µVxmin/min

3. 92.499 90.575 2.5991 3.2997 0.00 0. 0. 0.
6. 77.226 43.432 6.0154 24.4994 3.36 440. 131. 80.

11. 71.969 19.991 1.4100 15.5183 3.00 235. 78. 35.
14. 72.677 19.452 -0.3263 0.9111 3.75 294. 78. 39.
17. 71.187 18.360 0.6700 1.8687 2.61 272. 104. 35.
21. 70.582 17.706 0.2184 0.9280 2.71 168. 62. 23.
31. 70.937 17.229 -0.0502 0.2731 4.00 290. 72. 43.
41. 70.424 14.618 0.0726 1.6434 3.49 406. 112. 59.
51. 48.039 9.137 3.8252 4.6992 3.00 468. 156. 63.
62. 20.522 3.030 7.7320 10.0343 3.74 383. 103. 60.
71. 18.803 2.745 0.9720 1.0976 3.65 496. 136. 73.
81. 17.723 2.526 0.5915 0.8314 2.84 209. 73. 34.
91. 17.159 2.461 0.3234 0.2607 0.00 0. 0. 0.

102. 16.851 2.504 0.1647 -0.1575 3.00 354. 118. 57.
111. 7.761 1.546 8.6144 5.3580 0.00 0. 0. 0.
122. 1.473 1.159 15.1074 2.6192 3.82 444. 117. 70.
131. 0.949 0.935 4.8850 2.3863 0.00 0. 0. 0.
142. 0.940 0.885 0.0872 0.5031 3.51 356. 104. 51.
151. 0.996 1.062 -0.6377 -2.0091 3.00 331. 110. 46.
161. 0.916 0.778 0.8373 3.1118 4.10 470. 116. 62.
171. 0.865 0.941 0.5729 -1.9022 1.71 212. 124. 49.
181. 1.131 1.077 -2.6813 -1.3499 3.47 406. 117. 67.

Figure 4b - Tabulating data: Output 1

112

'6.0

12.2

84

4.6

0.7

·3.0

25.0

19.4

l 13.8
32
:I
g 8.2

...
I
l
c :
2

i
u ..
>
~

i
1
:
i
j

.:
E

i ..
>
~

2.6

-3.0

500

420

340

260

180

100

500

420

340

260

180

100

200

160

120

80

40

0

100

80

60

40

J 20

0

0

0

0

0

o

\
\

\

0

MK 2255. 16 JAN 87. SK 22-23. CONTROL WATER PH 7.

+

l
I

30 60 90 120 150 180

30 90 120 150 ~80

30 60 90 120 150 180

\
I I \

30 60 90 120 150 180

30 60 90 120 150 180

30 60 90 120 150 180

Time In mlnuta

Figure 4c - Tabulating data: Output 2

113

25.0

221
#-
.5 19.4

E 16.6
"O
"3 13.8
g

11.0 ~

• 8.2 + - 5.3 J!
0 2.6 •
~

-0.2

-3.0

100 140

Solid(+,-):

Liquid (x,..) :

--.j>.

25.0

22.1 .,.
.5 19.4

E 16.6 -

J!
:J 13.8 g

110 ~

• 8.2
~
"O 5.3
~ 2.6 •
~

-0.2

-30

0 20

Solid(+,-):

Liquid (x, .) .

x

CORRELATION GASTRIC EMPTYING I GASTRIC MOTILITY

MK 2255.16 JAN 87. SK 22-23. CONTROL WATER PH 7.

25.0

.,. 22.1

.5 19.4

E 16.6
+ J! I g 13.8

~ 11.0 --x • 8.2 -+ + -

x +

x
+

+

--.----I---~-;----------------- 5.3 I -----------1----------------:---~--x 2.6 • * -1•: ,+
~

-------· "' + ' + + -0.2 --
x x x : x

-3.0

180 220 260 300 340 380 420 460 500 100 140 180 220 260 300 340 380 420 460 500
U..n frequency cpm x 100 MoUllty Index mcV x cpm

Nb points = 18 Eq: Y= 0.017X- 3.609 R= 0.24 Solid (+,-): Nb points = 18 Eq: Y= 0.015X- 3.125 R = 0.36

Nb points = 18 Eq: Y= 0.014X- 1.195 R= 0.13 Liquid (x,..) : Nb points= 18 Eq: Y= 0.012X- 0.792 R = 0.18

25.0

22.1 .,.
.5 19.4 --

E 16.6 x + J! I x +
:J 13.8
g

x ~ 11.0
I x • 8.2 +

~
-

J! 5.3
0 2.6 •
~

-0.2

-3.0
I I I I I

40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 100

Relative amplitude mcV Area mcV x min I min

Nb points= 18 Eq: Y= 0.041 X- 2.442 R = 0.25 Solid(+,-): Nb points = 18 Eq: Y= 0.113X- 3.999 R = 0.43

Nb points= 18 Eq: Y= 0.029 x + 0.435 R = 0.11 Liquid (x, ..) : Nb points= 18 Eq Y= 0.130 x - 3 307 R = 0.30

Figure 4d - Tabulating data: Correlation

OGPOS.012 page 1

@13, 16, ff ff f 10, ff f 1, • 9, 7•6,10 .1, 2 • 6, 0 • 05
This batch word-processing program allows formatting
and printing of any text file. Each text file is
created and edited using a terminal and contains,
in addition to the text, several sequences of
characters describing the output format. ALAL
@24,22,,1.5,5.5
At any time,A040
@9
a change of font is possible,A040
@29
even in the middle of a sentence or a
w
@8
0

@29
rd. AL
@33,16,,3,2.25
AL
Text can be printed at any place on the page,
with or without right justification, AL
@,,,,,3
or centered. ALAL
@9,,,1,6.5,1,,,,1
Underlining is available
@,,,,,,,,,2
, and a box can be drawn around the text. ALAL
@13
Superscript and subscript are available: AL
AQ5.040 (X+Y)A3742A375=XA3742A375 + 2XY + YA3742A375 AL
A05.040 \123A374i,A040i=l,10A376
(aA374iA376 + bA374iA376) -
\123A374i,A040i=l,10A376 aA374iA376 +
\123A374i,AQ40i=l,10A376 bA374iA376 AL

Figure Sa - Word-processing: Text file

115

This batch word-processing program allows formatting
and printing of any text file. Each text file is created and
edited using a terminal and contains, in addition to the
text, several sequences of characters describing the
output format.

At any time, a change
font is possible, even
middle of a sentence or a word.

'Ie-;ct can 6e printea at any

p{ace on tfie page, witfi or

witfiout rigfit jutification,

or centered.

of
in the

Underlini~g is available, and a box can be
drawn around the text.

Any character not available directly from the keyboard
can be printed by using the asciicircum character
followed by its octal code (for example, "276 prints a).
A symbol is printed by using the backslash character
followed by its octal code (for example, \252 prints .t.).

Superscripts and subscripts are available:
(X+ Y)2=X2 + 2XY + Y2

Lj, i=1,10 (ai + bi) = Lj, i=1,10 ai + Lj, i=1,10 bi

Figure Sb: Word-processing: Output

116

Experiences with an IAS-VMS DECNET system

Frank R. Borger
Michael Reese - University of Chicago

Center for Radiation Therapy
Chicago, Illinois

Abstract

The Michael Reese - University of Chicago Center for Radiation Therapy
currently supports two VAX 11/750's running VMS and a PDPll/44 running
IAS version 3.2. The three machines are linked with DECNET to provide ease
of communication between the systems, and to ease the transition involved
in transferring treatment planning software to the VAX systems, (where the
addressing limits of the PDPll has been a serious limitation.

This paper will discuss the tribulations involved in getting the system up,
along with problems and work-arounds inherent in running a mixed (version 3
and version 4) DECNET system.

It all started innocently enough. We postulated, "Of
course we need the two VAXes linked with DECNET, but
we want the PDPll system included too." It was a battle
to get funding for DECNET-IAS, but as it turned out, it
was more of a battle to get it up, after we won the battle
to get the software.

I have had people look at me ascance when I said
I LIKED programming in machine language, but I just
experienced something that even I have to admit was a
painful experience. I installed DECnet on our IAS version
3.2 system. Without having installed DECnet before.
Without having any software support. And, it turns out,
I installed what was a version 3.1 DECnet which I had to
update to match version 3.2 of IAS.

In response to an angry letter to DEC concerning
my problems I was told that DECnet has been put on
hold. (Now they tell me, after I have it up and running.)
DEC finally has released a version 3.2 DECnet, so this is
somewhat academic, but its a good horror story of how
not to send out a product.

The AUTOPATCH proceedure

After I copied all the standard DECnet distribution
to our system disk, I copied the contents of the
AUTOPATCH tape we received to [225,200] and tried
to execute the autopatch proceedure as documented in
[225,200]DECNET.DOC. The write-up on the autopatch
tape showed a complicated proceedure which copied
everything from [225,200] to the appropriate UIC using
the /NV switch and then did a full generation of
DECNET. The actual command file only tried to copy the
updated files to the correct account, and also kept failing
with the error message:

Proceedings of the Digital Equipment Computer Users Society 119

NGN -- UNDEFINED SYMBOL <EXITST>
.IF <EXITST> = <SUCCES> .RETURN

If I had to do it over again, I would just look at the
command file and do manually what the command file
tries to do. There are only about 6 accounts that need
updating.

Generating the NETPLN command file

Once I had copied the updated files over, I followed the
standard NETPLN command file. This was the only part
of the proceedure that executed correctly.

Generating the command build files

Next I tried to generate the DECnet command build
files via a NGN @[11,67]NETGEN. NGN had all kinds
of errors with .IFNINS commands for PIP, LOA, UNL,
UFD, LBR, MAC, TKB and STK (slow TKB.) I finally
installed all the things NGN tested for and commented out
the .IFNINS commands. (Our system has been modified
to do flying installs of tasks such as LBR, TKB etc to
save on pools space, and this may have been a factor
in the problem.) I also commented out some .IFNLOA
commands concerning source and destination disks.

• Since I had commented out NETGEN.CMD's call
to BLDNET, during one of the previous bombs, I
then directly executed BLDNET.CMD via a NGN
@BLDNET. That is when the first main problem
developed. Many of the TKB commands generated
errors of the form:

TKB - *DIAG*-Load address out of range in module

Nasht'ille. TN - 198 7

This turned out to be due to one of the new ''features"
of the new task builder. Examination of the maps of the
several tasks in question disclosed that the problem was
due to the following.

• The new TKB links all RW modules alphabetically,
followed by all the RO modules, and then changes
any RO modules to RW. (Even if one applies the
"/RW" switch.) This mainly has an effect upon
psects named $$name or .. name.

• The version 3.2 HNDLIB has all modules in psect
$$HNDL rather than in the .blank psect.

A quick solution to this problem was to copy the
version 3.1 HNDLIB object library to the new system
disk as HNDLIBV31, and edit any command file that
referenced HNDLIB to use the version 3.1 library.

The Network Loader Task Abort

The last and greatest bug occured when everything had
built correctly and we tried to bring up the system. The
network loader task would consistently abort with an odd
address trap. A day or so of debugging finally found the
error. Its actually been around for a long time, but only
surfaced due to the new ordering or modules by the new
TKB. Bear with me and I will explain what went wrong.

• The routine $PRIO in NTL was doing a BAD thing.
IT was doing a 1000 byte read into a 2-byte buffer
in psect .. BUF. (Evidently the designer wanted to
be able to change the size of the buffer, probably
by a explicit expansion in the TKB command file.
Unfortunately they didn't do it.)

• This would never have worked except that:

o Under the version 3.1 ordering, psect .. BUF was
the last thing in that overlay segment.

o There were longer overlay sharing the same space
as the one containing $PRIO and .. BUF.

o The longest overlay segment was followed by a
second root of a co-tree.

• Under version 3.2 TKB, psect .. BUF, (the last RW
psect,) was followed by the first RO psect, which
contained general SYSLIB routines, notably $MUL
among others. $MUL was promptly overwritten with
garbage.

This final problem was fixed by expanding the psect
to its proper size adding the following command to
NTLBLD.CMD (the TKB command file for ... NFT.)

EX TS CT= .. BUF:776

Your friendly DEC salesperson

After the system was finally up and running correctly, I
got a call from our friendly DEC salesman telling me I
could never get the system up unless I bought software
support and got update B. (It turns out update Z wouldn't
have helped, what I needed was an update to the DECnet

120

package, not to IAS.) I strongly objected to this in a letter
to DEC in Maynard, stating that I believed that either

• When we bought version 3.2 of IAS it should have
supported all layered products

or

• When we bought DECnet IAS we should have
received a package that worked on the current version
of IAS, version 3.2.

Conclusions concerning installation

In any case, my final analysis is that DEC's field test
sights could not have included any DECnet users, else
they would have known there were problems and would
(or should) have included some notification in the release
notes to warn users that DECnet would not function.

A final disclaimer from my end. Our DECnet
installation is an end node connected to a couple of
VAXes, so we have not been able to test routing, down
line loading, or virtual terminals. The problems with the
new TKB and version 3.2 HNDLIB would probably bomb
some other tasks that we didnt need.

For anyone who desperately needs DECnet up on
version 3.2, doesn't have the money to buy the 3.2 version
(which is now out,) let me summarize what needs to be
done.

• Copy the version 3.1 DECnet update to [225,200] and
then manually copy the files to the correct account.

• Make a copy of version 3.1 HNDLIB.OLB, (called
HNDLIBV31 for example) and edit any TKB com­
mand file that references the library to use the version
3.1 edition.

• Edit NTLBLD.CMD to include the line:

EXTSCT= .. BUF:776

An alternative method that should also work would
be to link the version 3.1 TKB and SLOTKB under 3.2
and use them to generate the DECnet components.

Now It's Working How Do We Use It ?

Although VMS has been designed around DECnet, IAS
antedates DECnet. Commands for file access on VMS
are almost transparent. (You just add "NODENAME::"
before the normal filespecification.) For IAS to VMS
transfers it isn't so easy. The solutions were different at
each end of the network.

At the IAS end, you used NFT {Network File
Transfer) instead of PIP to transfer files. NFT wanted
a network specification of username and password in its
command line, which is not a good idea. {You can leave
it on the screen of a CRT or on the paper of a hard-copy
terminal when you leave.) The alternative is to use the
ALIAS facility under DECNET-IAS. The Alias facility
lets you define a short alias for the long access string
necessary for DECNET access. In our case, as part of

the Network startup command file, I define the following
Alias:

SET ALIAS FRANK DESTINATION ...
MRVAX/username/password:: SCOPE GLOBAL

Note that the appropriate account must be set up on
the vax in question, and that MRVAX is the node name
of the Michael Reese VAX 11/750. This alias then can be
used to transfer files. The following command will get a
file from the remote vax, edit it, and put it back.

MCR>NFT SY:=FRANK: :PROGRAM.FOR
MCR>KED PROGRAM.FOR
MCR>NFT FRANK::=PROGRAM.FOR

Some other problems do exist:

• IAS version numbers are octal, VAX version numbers
are decimal. A ';*' transfer from the VAX to the
PDP can really screw up.

• Transfers to the IAS system do not default to the
highest version number if a file exists, but NO
WARNING MESSAGE IS GENERATED.

• Wild card file name transfers will run into the 9
character limitation of 9 characters.

For copying files from the VAX end of the network,
We developed a slightly different method. Our login.com
file defined the following symbol:

$ getll :== @[frank.com]getll

The getll.com command file contained the following:

$! get file from pdp11 via decnet
$ fra : = "fra"
$ han : = "han"
aa := "copy mrspot'"'user pass"":: '"p2' sy:
bb :="copy mrspot""user pass""::"'p2' sy:
$ if 'p1' .eqs. 'fra' then 'aa'
$ if 'p1' .eqs. 'han' then 'bb'

This allowed us to transfer the same file from the PDPll
to the VAX using the command:

get 11 fra program.for

Similar command files allow us to send files to the
PDPll, and to delete files on the PDPll, as in:

putll fra program.for delll fra program.for;*

This is somewhat unsatisfactory in that the username
and password are available in the command files.

Set Host

The SET HOST command is one of the greatest things
about DECNET. Unfortunately it does not work well
across the network for the following reasons.

The RMT remote terminal handler works well con­
necting to other IAS systems. It unfortunately does not
know about VMS systems, and will not connect to a VAX
system.

Set host from VMS to IAS almost works. It fails (in
our case,) for the following reasons:

• RMT (or more specifically HT) do not support the
IO functions 'read with timeout', 'send XOFF', and
'read with special terminator'.

• Our system had somewhat older versions of MCR
and PDS which we had adapted to our uses some
time ago. These programs did a 'read with timeout'
when getting the user's command.

• The absence of a 'read with special terminator'
command precluded our using our fancy command
line recalling and editing MCR, (ECR.)

• HT.... does not pass the ESC character properly.
This has a minor effect that you can not terminate
MCR command lines with an escape to make MCR
go away, and has a major effect in that you can't
use KED, etc over the network. The minute you
go into screen mode, you cant issue escape sequence
commands from the keypad, ergo you can't get out
of KED. Nice catch-22 DEC.

Other Minor Fixes and Enhancements

• We ended up redoing MCR to not do a read with timeout.

121

The task is installed as ... RCR, and the network terminals
HTO: thru HT3: are set to use this CLI via the command:

MCR>SET HTnn:/CLI=RCR

• None of the command files know about MCR mode
IAS. We had to change many install commands

from: ins xxxxxx/task=$$$xxx
to: ins xxxxxx/task= ... xxx

• We set DECNET up to use a different copy of the
PDSUFP file. Currently there is a copy of PDSUPF
on disk SDO: that is used for normal terminal logins
and another copy on disk LBO: that is used for
network logins. This restricts the access to only those
users we want to have cross system access.

What's Really Nice About DECNET

I have a poor-man's DECserver for my terminal. It's a
three-way RS-232 switch that enables me to connect to
the IAS 11/44, the VMS VAX/750, or the 11/10 in my
office running RTl 1 or diagnostics. (Trying to remember
the subtle differences between the 3 systems, differences
between KED/RT and EDT/VMS, etc. really makes my
day.) But have you ever needed to debug a task that does
fancy screen 1/0 ? You have to do it running the debugger
at another terminal. With DECNET, I do a SET HOST
MRSPOT from the VMS system, and presto, I have both
parts running at the same terminal, just switch back and
forth from IAS to VMS.

The IAS DECNET Wishlist

• Hopefully, DEC will get their act together and fix HT
for the latest release of DECNET IAS.

• Why can't RSXllM mail be installed on IAS? This
would really make my day. Now if I have prepared
a document on IAS, I must DECNET it over to an
account on the VAX before I can put it in the VMS
mail system.

• Although SET HOST now works from VMS to IAS,
the reverse still does not work. Supposedly an
usupported version if RMT knows how to talk to
VMS systems. I would like to see it.

• Under VMS I can copy the context of a SET HOST
session to a disk file. Unfortunately this does not
work for a SET HOST to the IAS system. I wish it
would.

• I know that transfers to the PDPll where names are
longer than 9 characters won't work, but give me a
switch that does the following:

o Truncates names to 9 characters and types to 3.
o Lists changes that are made, (possibly to a file.)
o Possibly prompts for a new filespec if names or

types are too long.

• HT is a handler, and DEC had distributed sources
to handlers for a long time. Why can't I get sources
to HT ? (If necessary, I WILL disassemble the
damn thing.)

122

AMAR-A TOPS Performance Monitor

Betsy Ramsey
American Mathematical Society

Providence, RI

Abstract

AMAR is a DEC-written utility in the public domain which collects system
performance data on a DEC-10 or DEC-20 computer, analyzes and reports on
the data, and maintains the data in historical databases. AMAR is used at the
American Mathematical Society to answer capacity planning and load balancing
questions, and to justify additional hardware purchases.

Overview

AMAR is an acronym for Automatic Measuring, Analysis,
and Reporting.

AMAR is a DEC-written product that monitors system
usage and workload dat.a on a continuous basis. It has
reporting modules that also attempt to analyze the system
usage data items. AMAR rolls up the raw data records
into historical records which are maintained in database
files. AMAR can retain up to one year's worth of data.

Because the American Mathematical Society is a DEC-20
site, t.his paper will describe AMAR-20. AMAR-10 has
similar ca.pabilit.ies.

History

In the early 1980's, the American Mathematical Society
was experiencing severe performance problems on its DEC-
20 computer. Digital software engineers analyzed our sys­
tem performance using WATCH, the bundled TOPS-20
performance tool (similar to the VMS Monitor utility).
AMS was informed that the machine needed more mem­
ory. The memory was purchased, but performance re­
mained bad. Further analysis revealed that the machine
was at the limit of its CPU capacity. The AMS Board
of Trustees was forced to make au unexpected and un­
welcome purchase of a second DEC-20 to relieve the load.
Knowing how unhappy we were, our salesman asked Digi­
tal if there wasn't something they could do to ensure that
this wouldn't happen to us again. The salesman was told
that DEC had an internal tool called AMAR that could
track system utilization over a period of time, and t,J1at
would predict when certain thresholds would be exceeded.
AMAR was expensive, but AMS gladly purchased it. The
American Mathematical Society hae been running AMAR

Proceedings of the Digital Equipment Computer L'sers Society 125

since early 1983.

In spring 1983, Digital announced that the 36-bit line of
computers was going to be phased out, but that they would
continue hardware and software development for five years,
until 1988. Accordingly, DEC made new releases of the
TOPS-10 and TOPS-20 operating systems in 1986. Un­
fortunately, those new releases required changes to AMAR
which, because of personnel changeover, DEC no longer
had the expertise to make. At the demand of those cus­
tomers who had purchased AMAR, DEC sent AMAR to
Systems Concepts, a third party hardware/software shop,
to be updated for TOPS-10 V7.03 and TOPS-20 V6.1.
The TOPS-20 upgrade was completed in June 1986. The
TOPS-10 upgrade will be finished soon.

Digital has placed AMAR in the public domain. The
TOPS-10 V7.02 and TOPS-20 V5.x versions of AMAR are
available from the DECUS Program Library. The V7.03
and V6.x versions will be submitted to the Library as well.

The Two AMARs

AMAR comprises two components: System AMAR and
Workload AMAR.

System AMAR continuously collects data on system per­
formance and utilization variables. These variables include
most of those collected by the WATCH program, such as
USED, FILW, SKED, NRUN, UPGS, and so forth. In addition,
System AMAR collects device data on disks and tapes.

Workload AMAR continuously collect.s job-specific data
such as job number, terminal number, user name, account
string, program name, CPU utilization, working set. size,
and page fault act.ivity.

Nashl'il/e, TN - 1987

AMAR works as follows:

• Data collection programs run continuously, usually as
a SYSJOB subjob.

• Dat.a hase management. programs run once a day to
process the raw data. Hourly data is rolled up into
daily, weekly, monthly records. Old data is deleted.

• Report generation programs run to generate auto­
matic daily, weekly and monthly reports. Ad hoc
reporting is available as well.

AMAR is intended to replace the TOPS-20 WATCH util­
ity. It collects much of the same data as WATCH, but
has the ability to synthesize it. In addition, because of its
monitor snoop space requirements, AMAR cannot be run
simultaneously with WATCH.

AMAR is not intended to replace the SYSDPY utility.
SYSDPY is an excellent tool for in-depth examination of
a performance problem at the time it is occurring.

ln many ways, AMAR is similar to the VAX SPM tool.
SPM offers more reporting mechanisms for system data,
but it lacks AMAR's comprehensive workload coverage.

Reports

The best indication of AMAR's abilities are in the reports
it generates.

System AMAR Reports

System AMAR can produce five standard reports.

• System Utilization

This report summarizes system utilization for one day,
a week, or a month. It is useful for monitoring system
performance and spotting problems. The report con­
sists of a graph of system utilization, a summary of
user-specified key utilization items in prime and non­
prime time, and a breakdown of the key items over
an appropriate interval (hours for daily reports, days
for weekly reports, and weeks for monthly reports).

• Typical Day

This is a composite report which summarizes weekly
or monthly data into a "typical day" . It contains
much the same information as the System Utilization
Summary reports, but uses average values rather than
actual values.

• Trend Analysis

This report presents a summary of system usage over
the past 13 weeks (for weekly reports) or the past 12
mouths (for monthly reports), iucludiug a summary

utilization graph for the period. The monthly reports
attempt to predict trends in utilization. These reports
are useful for capacity planning.

• Disk

This report, available on a daily, weekly or monthly
basis, summarizes utilization of the disk subsystem.
It reports mount time, use time, and read, write, seek
and other statistics for both logical structures and
physical drives. It is useful for balancing disk I/ 0
across available channels.

• Tape

This report summarizes tape drive use and MTIO's.

The contents of these reports can be tailored slightly by
modifying a Report Description File (.RFD). Through the
use of this file, names of key utilization items can be
changed, and their threshold values and warning messages
altered. The number and order of key utilization items
can be modified for each report. The format of the re­
ports cannot be changed, however.

Workload AMAR Reports

Workload AMAR reports are generated with user-specified
report parameters, and are thus more flexible than System
AMAR reports. By selecting the appropriate database
file and group and sort items for the report, the user can
examine the system workload in a variety of ways.

Some of the items which may be used for grouping and
sorting a Workload AMAR report are as follows.

JOB
TTY
USR1 ... USR3
ACT1 ... ACT3
PNAM
BATCH
CPU%

job number
terminal number
user name (up to 15 chars)
account string (up to 15 chars)
program name
batch job indicator
CPU percentage {USED)

AMAR at AMS

The American Mathematical Society has been using
AMAR for almost four years. We find it to be an invalu­
able tool for tracking system performance and performing
capacity planning functions.

AMS Tailoring

AMS has tailored the nightly batch control files so that
AMAR generates only those reports that we find useful.
We have modified the System AMAR .RFD file so that
the reports are easier to interpret.

126

Figure 1: AMS Two-Year CPU Utilization Summary Report, derived from AMAR data.

I
II Cfmf\ft' cL. _ u11<'I ,'1\G:b\e) _ J I

I r ---- ~"'\ I

~ I ,. 1 I '---- I ' I ; " : , I ,,,,. ,,r , .,, , i ,...--1 "" I/ ""

.. /'~ ~ / \/ v \,• I\ ,,..JJ i I I ""t', /'-''f \,.,,11
..., I ,, '-' I I ' I (" I I I

\~ ,,.., i
i [~ \J~-rnrne~1<;.q~e

AMS generates these AMAR reports:

• System AMAR

System Utilization Summary daily, weekly, monthly
Typical Day monthly
Trend Analysis weekly and monthly
Disk weekly and monthly
Tape weekly and monthly

• Workload AMAR

User/Program Shift Report
User Shift Report
Program Shift Report
Report on All Programs
Report on All Users

daily, weekly, monthly
weekly and monthly
weekly and monthly
monthly
monthly

AMS does not use the System AMAR report description
file (xxxxDR.RFD} as supplied on the distribution tape.
Instead, we use a modified version which renames all the
system utilization items to their WATCH names. (For ex­
ample, we renamed item % IDLE IO TIME to be FILW.}
This makes it easier to interpret the data, since all of
DEC's TOPS performance literature refers to this data
by WATCH names.

The Workload AMAR reports are double-spaced. To save
paper and disk space, AMS edits these files after they are
produced to make them single-spaced.

I

Use of System AMAR

AMS uses data from the System AMAR reports for a num­
ber of purposes.

Track System Utilization

AMS defines system utilization as the percentage of the
CPU that is not idle. AMAR reports the IDLE figure for
prime and non-prime periods, and AMS uses that to com­
pute the system utilization value. This figure is added to
an ongoing data file which is run through a set of Fortran
programs. These programs produce a laser printer graph
(Figure 1) of system utilization over the past two years,
where each point on the graph is a weekly four week aver­
age of the system's utilization. This graph allows us to see
past trends, and to determine how much capacity remains
on the system.

The System Utilization reports call show us exactly how
our system is bei11g used. For example, Figure 2 shows the
prime time breakdown of CPU utilizatio11 into USED, the
amount of time the system spent executing user processes;
system overhead (SKED and BGND}, which is large 011 this
system because we have over 90 users logged i11 during the
day; I/O wait (FILW and SWPW}; a11d IDLE, the amount of
time the CPU was totally idle.

127

Monitor Daily Performance

If a system experiences a particularly bad clay, the Daily
Utilization Summary permits us to determine the hours
when there was little or no extra CPU capacity. Armed
with that da.ta, we can turn to Workload AMAR to deter­
mine the cause.

Monitor Memory Demands

WATCH, with its Active Swap Ratio, still provides the
best indication of memory demand. System AMAR al­
lows us to come close to that, however. AMS looks
at two figures: swap rate (SWPW) and the swap ratio
(UPGS/UMEM). We have used these figures to justify
the purchase of additional memory.

Monitor I/O Load

The Disk report allows AMS to determine whether the
disk traffic is balanced over the 1/0 channels. AMS has
twice rearranged the disk drives on the channels as a result
of AMAR data. The 1/0 load is now distributed as evenly
as possible over the channels.

Use of Workload AMAR

Despit.e the lengthy list in the previous section, AMS is
much more dependent on Workload AMAR than System
AMAR. WATCH can provide basic system data, and that
type of data is relatively easy to summarize. Workload
data is very bulky, however, and much more difficult to
roll up and report.

AMS uses Workload AMAR for several purposes.

Capacity Planning and Load Balancing

AMS has two DEC-20s, both of which average between
80% and 95% system utilization during prime time (in
the winter). For load balancing purposes, the Computer
Services Division (CSD) is often called upon to answer
the question "What if we put additional people on system
A? Can it handle it?". AMAR allows us to answer that
que!:'tion.

First, we find out which existing user(s) the new users will
behave like, a surprisingly easy thing to do ("Oh, they'll be
doing the same thing as John Doe."). Then we use Work­
load AMAR to determine how much of the system the ex­
isting users are consuming (Workload AMAR reports the
WATCH USED figure), and we compute the appropriate
value for the new users. With that <lat.a in hand, we can
look at the System AMAR data to see if the system can
handle it.

Monitor Daily Performance

When System AMAR indicates a period where t.J1ere was
little or no extra CPU capacity, Workload AMAR can re­
port which users and programs were running at the time.
Applications which "hog" the system can be spotted, and
possibly run at some other time.

Track Application Growtli

By examining Workload AMAR reports from previous
years, AMS can determine how the use of their applica­
tions has changed over the period.

Provide Information for Management

With two heavily loaded systems, users, which at AMS in­
cludes top management, become disgruntled at times over
system performance or the lack of it. Workload AMAR
allows CSD to inform these users of exactly the purposes
for which the system is being used. Workload AMAR has
proven itself to be a priceless political tool.

Operational Considerations

There are some things to consider before deciding whether
or not to run AMAR. These considerations point out both
positive and negative aspects of AMAR.

128

• AMAR <lat.a collection involves much less overhead
than WATCH.

For a prime time interval (8am-5pm), the System
AMAR and Workload AMAR data collection pro­
grams together use between two and three minutes of
runtime. WATCH, by comparison, uses between six
and seven minutes of runtime during the same period.

• AMAR data occupies a great deal of disk space.

The data collection files must reside on a
permanently-mounted structure. These files occupy
between 3000 and 4000 disk pages.

The historical database files and most AMAR pro­
grams can reside on any structure. Depending on the
database configuration you select, these files will oc­
cupy between 7000 and 25000 pages.

• You must rebuild your monitor.

If you support a full 128 users on your system, you
will have to rebuild your monitor to contain 22 pages
of snoop space. (The monitor contains only 12 snoop
pages by default). You can usually free up enough
monitor space by eliminating monitor support for de­
vices you do not have (such as physical plotters, card

punches, extra tape drives).
ter Workload AMAR reports,
JOBPNM table resident.

In addition, for bet­
you should make the

The AMAR installation guide contains information
and suggestions on how to go a.bout this, but it
assumes that you know how to build the monitor
(sources a.re not required).

• Once AMAR is installed, it requires very little main­
tenance.

AMAR has failed only rarely in the four years AMS
has run it. Most of its failures were due to a cor­
rupted raw data file. We simply deleted the file, and
AMAR corrected itself. The default batch jobs sup­
plied with AMAR do a fair amount of error checking
and correcting. Once you have AMAR tweaked t.o
your satisfaction, the reports will be generated and
the database files managed without user intervention.

AMAR reports generated at AMS are appended to the end
of this pa.per.

Figure 2: Prime Time CPU Usage

129

- AMAR -
FROM: 17-MAY-87 (SUNDAY)
THRU: 23-MAY-B7 (SATURDAY)

WEEKLY UTILIZATION SUMMARY REPORT

AMS SALES DEC-29
SYSTEM: SALE PRIME TIME: el!ee - 1799

--------- CPU UTILIZATION (•) OVERHEAD (#)

100ll ••• I
91!ll

•••• I
•• I I Bell

1ell

•••••• :: :.:::::::::: Ill
eell

61!ll

••••••• •••••• •••••••••• ••••••••••••• I
30X • :;:;::: •• ::;;;:: • :;111::.:. ;11::::::: :::::;::::::: ::::: I
211ll I.. •###11 •#####.. •##U#••••• •#####••••• •#####••••••••••••• I

I•• •• •••###UI•••• •#11#11• •• •##11## •######••#• •####11••##1#•#11•••• 1
te•ll I•• •••••••#••#l#####•••••#ll#l##•l•••##ll#H••••#l###UHU HH#l##U###•H#ll•• I

I l####Ul#lflU###f#l##U#H###H#####f#ll##ll#llllU##IUUlll ###Ufll#Hf#U###f#f I
• - - - + - - - • - - - • - - - + - - - + - - - + - -- + - - - +- - - • - - - ·--- + --- • -- - • - --· - - - + - - - + - - - + - - - • --- + - - -·- - -+ -
I SUN I MON I TUE I WED I THU I FRI I SAT I

-------------------------- EACH COLUMN REPRESENTS 2 HOURS -------------------------

------- ----- ----- -- SUMMARY OF KEY UTILIZATION ITEMS -----------------

-------AVERAGE--- - -
CPU USED SKEO BGND FILW SWPW TCOR IDLE NRUN -

----PRIME TIME----- 72ll 4ell 9ll 13ll ell all .2ll 22!1
---NON-PRIME TIME-- 41ll 34ll d 2ll ell 0ll . Ill 63ll

-- --- --AVERAGE-----
UMEM UPGS OMRO DMWR DKRD DKWR TTYU PTYU

----PRIME TIME----- 3977 . 4464 . 6 • 7 2 Be
---NON-PRIME TIME-- 3977 . 2817 0 0 9 " 16

- AMAR -
FROM: 17-MAY-87 (SUNDAY)
THRU: 23-MAY-B7 (SATURDAY)

WEEKLY UTILIZATION DETAIL REPORT

AMS SALES DEC-20
SYSTEM: SALE PRIME TIME: el!ee - 1709

PRIME TIME

ll!l!ll

91!ll

Bl!ll

79ll

eell

60ll

••ll

30ll

20ll

10ll

NBAL

AVERAGE OF---------------.------------- DAILY AVERAGE -----------------------------
CURRENT

KEY UTILIZATION ITEMS -WEEK- -SUN- -MON- -TUE- -WED- -THU- -FRI- -SAT-

CPU 72X e3ll e9ll 76ll 82%• 73!1
IJSED 46ll 39ll 43X 47ll 62ll 61ll
SKED 9ll 8ll 9ll 9ll 1ex 8ll
BGND 13X llll 12ll t6X• 17ll• llll
FILW 6X BX 7ll ell ell 6ll
SWPW 3ll 4ll 4ll 3ll 3ll 3ll
TCOR .2ll • lll .2ll .2ll .2ll .2ll
IDLE 22ll 30ll 24ll 19ll 13ll 22ll
NRUN 2 2 2 3 3 2
NBAL 3 2 3 • 4 3
UMEM 3977 397B 397B 397e • 3976 • 3978 •
UPGS 4464 4479 • 4449 • '4448 • 4399 • 4496 •
OMRO 6 4 6 6 6 • DMWR • 4 6 6 6 3
DKRD 7 7 8 B B e
DKWR 6 6 4 6 6 • TTYU 2 1 1 2 2 1
PTYU 0e 77 B6 B6 Bel 71

NON-PRIME TIME

A VERA GE OF---------------------------- DAILY AVERAGE -----------------------------
CURRENT

KEY UTILIZATION ITEMS -WEEK- -SUN- -MON- -TUE- -WED- -THU- -FRI- -S"T-

CPU Hll 9ll 3Bll 32ll 36ll 44ll 8""• etll
IJSED 34ll ex 31ll 2ell 29ll 37ll e9ll 62ll
SKED 4ll lll 4ll 4ll 4ll 4ll Sll ex
BGND 2ll lll 2ll 3ll 3ll 3ll 3ll 3ll
FILW ell 2ll 6ll ell ell 7ll 9ll ex
SWPW "" "" l!ll '"' ell "" ex "" TCOR . lll .llll • lll • lll .1" .1'1 • lll . lll
IDLE 63ll B9ll 67ll 62ll 66ll 49ll llll 32ll
NRUN I " 1 1 1 1 1 1
NBAL 1 " 1 1 1 1 2 2
UMEM 3977 • 397B 3978 3978 3977 • 3978 • 3978 • 3978 •
UPGS 2817 2318 2739 2798 2996 3894 2949 3936
OMRO " II " " " 0 " e
OMWR 0 " 0 " " " " 1
DKRD 9 1 10 8 B lel 12 14
DKWR 3 1 4 3 • 7 • 3
TTYU " " " e " 1 " " PTYU 16 13 18 17 17 17 18 16

OVER LONG TERM LIMITS GREATER THAN OR EQUAL TO < = LESS THAN OR EQUAL TO

130

PAGE:

PAGE:

- AMAR -
FROM: 26-MAY-86 (SUNDAY)
THRU: 23-MAY-87 (SATURDAY)

MONTHLY TREND ANALYSIS REPORT PAGE:

AMS SALES DEC-211
SYSTEM: SALE PRIME TIME: 8"9"811 - 17811

CPU UTILIZATION (o) OVERHEAD (f) AND BOTH (0)

PRIME TIME AVERAGE FOR PAST 12 MONTHS NON-PRIME TIME AVERAGE FOR PAST 12 MONTHS

l00ll I
I

90ll I
I

8C!Jll I ..
I

.
lllC!Jll I lC!JC!Jll

98!1

I
9C!Jll

80!1 Billi
..•.

..•.
7C!Jll I• ... •. •... "'. 70ll I 70ll

I
Billi I

I
6C!Jll I·. 6C!Jll ..•.

61lll I
I

4C!Jll I

6C!Jll

I
.•. . .•...•... 60ll ..•...•.

4C!Jll 4C!Jll

' I
3C!Jll I 30ll I 31lll

I ·•·
2C!Jll If ...•.

lC!Jll I
I

2C!Jll I 20ll
If .

l0ll I ·•· 10ll

........
- - - - + - -- + - -- + - - - + - --+-- - + - - - + - - - + -- - + --- + - --+ - - - + ---+ - ----+ - --+-- -+- - -+- - -+ - - - + -- - +- - - +- - - + - - - +-- - + -- - + - - - + -

MONTH JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY
ENDING 26 23 27 26 22 27 24 21 28 26 23 28 23 27 26 22 27 24 21 28 26 23

PRIME TIME AVERAGES OF KEY UTILIZATION ITEMS

FISCAL MONTH ENDING QlM1W4 Q1M2W4 Q1M3W6 Q2M1W4 Q2M2W4 Q2M3W6 Q3M1W4 Q3M2W4 Q3M3W6 Q4M1W4 Q4M2W4 LONG
JUL 26 AUG 23 SEP 27 OCT 26 NOV 22 DEC 27 JAN 24 FEB 21 MAR 28 APR 26 MAY 23 TERM

ITEM M-lC!J M-C!J9 M-C!J8 M-07 M-C!J6 M-C!J6 M-C!J4 M-03 M-02 M-01 M-00 LIMIT

CPU 68 67 76 67 69 76 76 76 84• 86• Bh)80ll
USED 48 47 61 46 47 60 62 49 63 66 62)80ll
SKED 11 10 11 9 9 10 lfll 10 12 12 11)13ll
BGND 7 8 10 9 9 lfll 11 14 16• 18• 14)16ll
FILW 7 8 8 8 7 6 6 6 6 4 6)20ll
SWPW 2 3 3 3 4 4 3 3 3 2 3)6ll
TCOR .2 .2 .2 .2 .2 .2 .2 .2 .3 .3 .2)l.0ll
IDLE 26 26 19 28 24 19 18 18 11 11 16 (10ll
NRUN 2 2 4 2 2 3 3 3 6 6 4)30
NBAL 3 3 4 3 3 4 4 4 6 6 4)20
UMEM 3977• 3792• 3977• 3978 3978 3978 3978 3978 3963• 3978 3978 (3977
UPGS 438•h 4182• 4387• 4423• 4386• 4317• 4326• 4363• 4291• 4339• 4404•)3978
DMRD 4 4 6 6 6 6 6 6 6 6 6)40
DMWR 4 4 6 4 6 6 6 6 6 6 6)40
DKRD 9 lfll 9 8 9 9 8 8 9 lfll 9)40
DKWR 6 6 6 6 6 6 6 6 6 8 6)40
TTYU 32 24 26 22 24 19 14 4 1 1 1)4C!J
PTYU 32 38 64 68 69 63 64 81 89 87 84)9C!J

EXCEEDS LONG TERM LIMIT GREATER THAN OR EQUAL TO LESS THAN OR EQUAL TO ---------- CONTINUED NEXT PAGE ----------

- AMAR -
FROM: 26-MAY-86 (SUNDAY) MONTHLY TREND ANALYSIS REPORT PAGE:
THRU: 23-MAY-87 (SATURDAY)

AMS SALES DEC-2C!J
SYSTEM: SALE PRIME TIME: lflffllC!J - 17C!JC!J

PRIME TIME TREND OF KEY UTILIZATION ITEMS
PREDICTED

--11 MONTH- PERIOD WHEN
FIRST LAST -- TREND -- PREDICTED RANGE OF VALUES LONG TERM LONG

MONTHLY MONTHLY GROWTH LINE WHERE AVERAGE WILL FALL IN LIMIT TERM
ITEM AVG TABLE OF RELATIVE USAGE PER MONTH AVG /MONTH FIT 88 MONTHS 12 MONTHS REACHED LIMIT

CPU 68 8 7 8 7 8 8 8 8 9 9 9 88 +1.88 71!1 8C!J-1C!JC!J BY 870CT)81l
USED 48 8 8 9 8 8 8 9 8 9 9 9 62 ERRATIC VALUES)81l
SKED 11 8 8 9 7 7 8 8 8 9 lll 8 11 ERRATIC VALUES)13
BGND 7 6 6 8 6 6 7 8 10 12 12 111 14 +0.93 86ll 17-28 BY 87JUL)15
FILW 7 18 lC!J 8 lC!J lC!J 8 8 8 1 8 7 6 -ll.29 7C!Jll C!J-6 NONE LIKELY)20
SWPW 2 6 8 7 9 10 11 7 9 8 6 8 3 ERRATIC VALUES >6
TCOR .2 7 6 9 7 7 9 9 9 11 lC!J 8 .2 ERRATIC VALUES)1.0
IDLE 26 11 11 8 11 10 9 8 8 6 6 7 16 -1.37 71ll 0-14 BY BBMAR (10
NRUN 2 6 6 9 8 6 8 9 8 11 12 9 4 ERRATIC VALUES)30
NBAL 3 6 7 9 8 6 9 9 8 11 12 9 4 ERRATIC VALUES)20
UMEM 3977 8 8 8 8 8 8 8 8 8 8 8 3978 ERRATIC VALUES (3977
UPGS 4384 8 8 8 8 8 8 8 8 8 8 8 44114 ERRATIC VALUES)3978
DMRD 4 8 6 9 8 8 9 8 9 1'11 10 9 6 ERRATIC VALUES)40
DMWR 4 6 6 9 8 8 8 8 9 1l!l 9 9 6 ERRATIC VALUES)40
OKRD 9 9 9 8 7 8 8 8 8 9 9 8 9 ERRATIC VALUES)40
DKWR 6 (9 8 8 7 8 8 8 8 9 9 9 8 ERRATIC VALUES)40
TTYU 32 p: 14 16 12 13 11 8 2 1 0 1 1 -3.37 92ll fll-0 NONE LIKELY)41l
PTYU 32 6 7 7 8 8 8 11!1 11 11 11 84 +6.67 92ll lC!J8-146 BY 87 JUL)91l

NON-PRIME TIME TREND OF KEY UTILIZATION ITEMS
PREDICTED

--11 MONTH- PERIOD WHEN
FIRST LAST -- TREND -- PREDICTED RANGE OF VALUES LONG TERM LONG

MONTHLY MONTHLY GROWTH LINE WHERE AVERAGE WILL FALL IN LIMIT TERM
ITEM AVG TABLE OF RELATIVE USAGE PER MONTH AVG /MONTH FIT 08 MONTHS 12 MONTHS REACHED LIMIT

CPU 66 (10 9 9 7 7 8 8 9 10 8 8 48 ERRATIC VALUES)60
USEO 44 10 9 9 7 7 7 8 9 10 9 8 39 ERRATIC VALUES)80
SKED 9 14 11 9 8 8 6 7 8 9 8 8 6 ERRATIC VALUES)13
BGND 2 8 8 9 6 7 7 8 9 11 9 9 3 ERRATIC VALUES >16
FILW 13 17 9 8 7 7 7 7 8 7 7 7 8 ERRATIC VALUES >20
SWPW " 2 8 1 1 1 63 1 1 8 1 1 0 ERRATIC VALUES)6
TCOR .1 10 10 11 8 8 8 10 11 12 10 10 .1 ERRATIC VALUES)1.0
IDLE 31 6 7 8 Ill 10 9 9 8 7 8 8 48 ERRATIC VALUES Oil
NRUN 1 11 10 9 8 8 6 7 9 11 9 9 1 ERRATIC VALUES)30
N8AL 2 11 10 9 8 8 8 8 9 11 9 8 1 ERRATIC VALUES)20
UMEM 3977 8 8 8 8 8 8 8 8 8 8 8 3978 ERRATIC VALUES (3977
UPGS 2887 9 8 9 8 8 8 8 8 9 8 9 2922 ERRATIC VALUES)3978
OMRO 0 11 11 8 6 6 6 8 8 11 7 7 Ill ERRATIC VALUES)41l
DMWR 1 11 10 9 6 6 8 8 9 11!1 8 9 Ill ERRATIC VALUES)40

PREDICTIONS ARE ONLY MADE USING MONTHLY DATA.
GIVEN THE CURRENT TREND, THERE IS A 9C!JA CHANCE THAT THE ACTUAL VALUES WILL FALL WITHIN THE PREDICTED RANGES.
UNCHANGING VALUES: REFERS TO RELATIVELY CONSTANT VALUES. ERRATIC VALUES: REFERS TO THE LACK OF A STRONG LINEAR PATTERN IN THE DATA.
• = EXCEEDS LONG TERM LIMIT > = GREATER THAN OR EQUAL TO < = LESS THAN OR EQUAL TO ---------- CONTINUED NEXT PAGE ----------

131

- AMAR -
FROM: 17-MAY-87 (SUNOAY) WEEKLY DISK REPORT PAGE:
THRU: 23-MAY-87 (SATURDAY)

AMS SALES DEC-29
SYSTEM: SALE PRIME TIME: 9l!99 - 1799

GENERAL USAGE SUMMARY

PRIME NON-PRIME
TIME TIME

HOURS THEORETICALLY AVAILABLE 45 :00 123 :99
HH:MM SYSTEM WAS UP 46 :99 121 :91
HH: MM AMAR MEASURED THE SYSTEM 46:99 119:47

DKRO 7 9
OKWR 6 3
OMRO 6 9
OMWR 4 9
SWFS 69ll 90ll

PRIME TIME PACK SUMMARY

TOTAL TIME(HH:MM) ll OF TIME " MOUNTED PACK PACK PACK PACK PACK
PACK 'NAME MOUNTED - IN USE MOUNTED - IN USE TIME IN USE LURO LUSK LUWQ LUFS_ LUWR

CASS 0 4: 41 - I :20 10ll - 3ll 28ll 0 9 .9 96ll 0
CSD 0 44: 39 - 19:26 99ll - 43ll 43ll 0 9 .9 14ll 0
02 0 44: 39 - 18:68 99ll - 42ll 42ll 0 9 .9 8ll 0
FS 0 44: 39 - 24: 64 99ll - 65ll 66ll 1 9 .9 ell 0
PS 0 44: 39 - 44: 37 99ll - 99ll 109ll 9 9 .9 2ll 7
SA 0 44: 39 - 38: 69 99ll - 66ll 87" 2 I .9 16ll 1

TOTAL TIME(HH:MM) ll OF TIME " MOUNTED UNIT UNIT UNIT UNIT UNIT
UNIT NAME MOUNTED - IN USE MOUNTED - IN USE TIME IN USE PURD PUSK PUWQ PUFS PUWR

RP999 44: 39 - 19:25 99ll - 43ll 43ll 0 9 .9 14ll 0
RP091 44: 39 - 24: 54 99ll - 65ll 66ll 1 9 .9 8ll 0
RPl2U'2 44: 39 - 18:56 99ll - 42ll 42ll 9 9 .9 8ll 0
RP004 2: 17 - 9:29 5ll - lll 21ll 9 9 .9 96ll 0
RP995 2: 24 - 0: 51 6ll - 2ll 36ll 9 9 .9 96ll 1
RP191 44: 39 - 44: 37 99!1 - 99ll 190ll 9 9 .9 2ll 7
RP291 44: 39 - 38: 59 99!1 - 66ll 87ll 2 I .9 16ll 1

NON-PRIME TIME PACK SUMMARY

TOTAL TIME(HH:MM) ll OF TIME " MOUNTED PACK PACK PACK PACK PACK
PACK NAME MOUNTED - IN USE MOUNTED - IN USE TIME IN USE LURD LUSK LUWQ LUFS_ LUWR

AMAR 9 I :21 - 9: 41 1ll - Ill 61ll I I .9 24ll I
CASS 9 6: 21 - 9:06 4ll - 0ll 2ll 9 0 .9 97ll 0
cc 9 I: 44 - 9:26 Ill - "" 26ll I 9 .9 18ll 0
CHECKD9 9:26 - 9:26 9ll - 0ll 109ll 16 5 .9 12ll 1
CSD 0 118:20 - 9: 16 99ll - 8ll 8ll 9 9 .9 13!1 " 02 9 118:33 - 15 :92 99ll - 13ll 13!1 9 9 .9 8ll 0
FS 9 118:13 - 24 :44 99ll - 2lll 21ll 2 I .9 9ll 9
PS 0 118:55 - 69:32 99ll - 58ll 58ll I I .9 2ll I
SA 0 118:46 - 40 :32 99ll - 34ll 34ll 4 I .0 17ll 2

---------- CONTINUED NEXT PAGE ----------

... .
AMAR WORKLOAD REPORT

SITE: AMS SALES DECSYSTEM-20 SYSTEM: SALE

REPORT DESCRIPTION: WEEKLY REPORT BY PROGRAM (PRIME SHIFT) - THREE MINUTE CUTOFF

INPUT FILE: 87424 .DB0 (FISCAL YEAR: 87 QUARTER: 4 MONTH: 2 WEEK: 4 WEEKDAYS) ...
7: 69 - 16:59 WEEKDAYS (-HOLIDAYS) FROM: MON 18-MAY-87 TO: FRI 22-MAY-87 (5 DAYS) MEASURED: 1'"'" = 40.90 HOURS

GROUPED BY: PNAM
SORTED BY: CPUll CUTOFF: 0.63ll OF CPU
JOB FRK AVG AVG IN DEMO USER ACCOUNT PRGRM PAGES CPUll SWAP FILE IFA RSP SEC SR B TTY

JOBS FRKS MEM NAME NAME NAME (WS) PF/S PF/S /MIN /RSP
88.8 307. 3 105 .0 2.80 •••••••••••INTERVAL TOTALS•••••••••••• 48.8 43 .16 4. 1 6.2 59 1146. 6 0.1

43 .4 138. 8 41.C!I 0. 75 ???????? ??????????? EXEC 45. 2 14.06 1.0 2.9 64 161.1 9.2 4
12.8 46.6 18 .2 0.67 ??????? ???-??????? EMACS 45.6 9.91 0.8 9.9 89 397.2 0.1 4 T
15. 1 41.1 16.5 0.19 ???? ???-??????? MM 33. 3 2.68 0.5 0.4 44 69.5 0.2 4
!. 2 4.9 2 .9 0.13 ??? ???-?????? NC PC AL 91.6 2.22 0.1 0.1 115 72. 7 0.1 3 T
1.0 18.2 8.0 0. 22 OPERATOR OPERATOR SYS JOB 22.9 2.01 9. 7 0.4 39 261. 7 0.0 3 T DET
1.0 7.9 2 .0 0 .10 OPERA TOR OPERATOR MMAILR 34. 7 !. 35 0.2 0.3 40 14. 5 0.4 5 T
0.0 0.2 0.2 9.95 ???? ???-??????? RUN 84 .1 !. 29 9.9 0.2 62 !. 5 0.4 4
9.2 0. 4 0.3 0.03 ??? ???-????? PRJRPT 107 .0 0. 72 0.0 0.1 129 !. B 0.2 4 T
1.0 7 .0 1.3 e.e3 OPERATOR OPERATOR SYSJBl 26.9 9. 71 9. 1 9.1 65 16. 7 9.1 2 T
9.0 0.2 0 .1 0.04 ??? SFS-MAINT FNDREC 38.0 0.66 0.0 0.3 24 0.1 1.6 24 T 371

75 .7 263. 5 69.5 2. 22 ••••••••SUBTOTALS THRU CUTOFF••••••••• 45.8 35. 51 3.5 4 .6 61 986.9 0 .1 4
13. 2 43. 8 15 .5 0.57 ••••••••SUBTOTALS AFTER CUTOFF•••••••• 49. 7 7 .64 0. 7 1.4 51 158.6 0.1 6

132

LOGIN AT
DAY TIME"

Planning and Implementing a Large Network
Leslie Maltz

Stevens Institute of Technology

ABSTRACT
Planning and implementing a large corporate or campus­
wide network is a complex task. should be taken into
consideration during the planning process. Specific exam­
ples are cited from the campus-wide network that is being
implemented at Stevens Institute of Technology. nodes
ranging from microcomputer workstations through highend
systems from a variety of vendors. costs, support chal­
lenges, organizational structure, and budgetary
implications.

SESION SUMMARY:

WHAT IS A NETWORK'?

Networks were:
Small jnumber of nodesl
Timesharing systems
Point to point connections
Homogeneous systems
Managed facilities

WHY NETWORK?

This is a key questions that should be answered at
the onset of the planning process. The answer
depends on the individual institution. Answers
range from cost saving for communications to
competetiveness with other organizations. with
many other possible answers.

CONCERNS:

The following is a partial list of concerns that
should be considered as part of the planning
process:

Capabilities
Installability
Ease of use
Performance
Reliability
Maintainability
Compatibility
Evolvability
Growth potential
Cost
Timeliness
Institutional goals
Bandwidth
Security
Functionality
Management
Extensibility

Proceedings of the Digital Fquipment Complller Users Society 133

NEEDS ASSESSMENT:

Much work should be done to answer basic
questions associated with a needs assessment
survey. Some of these questions cover establishing
the reasons for networking. determining what
forms of networking already exists, the
development of a master plan for computing re­
sources. estimating usage and patterns, identifica­
tion of communities of interest when possible.
ssessing existing computing resources. areas of
risk, security requirements, etc.

NETWORK FUNCTIONALITY:

Below is a possible list of network functionality.
Each institution should determine its own pro­
posed list.

Task-to-task communications
Resource sharing
File transfer
Electronic mail
Gateways
Specialized resources
Standards
Support for a multi-vendor environment
Estimated maximum number of nodes
Acceptable level of security

SITE SURVEY:

Related to the needs assessment is the need for
accurate information on the building and grounds
that will be wired. This survey should include the
identification of the number and location of pro­
posed connections; collection of accurate blue­
prints: determination of regulations. codes. and
zoning rules: identification of restrictions: inter/
intra-building status; identification of existing
wiring: geography of area to be networked

Nashville, TN - 1987

POPULATION:

Who are the current and potential users of the
proposed network? What are their work patterns;
what are their mobility patterns? Are there iden­
tifiable groups or communities of interest? How
much can be said about the hours of usage. re­
sources needed/used, growth potential, needs of
any kind?

TOPOLOGY AND TECHNOLOGY:

Once all the surveying and assessments have been
completed, it soon becomes apparent that compro­
mise is necessary. It will likely be necessary to
weigh tradeoffs in performance versus costs; in op­
timal versus affordable solutions.

PROTOCOLS:

Networks are usually capable of supporting mul­
tiple protocols. The limitation is often the number
than can be supported by the network support
staff as opposed to a maximum number. Some
protocols being supported at sites with large
quantities of computing resources are DECnet,
TCP/IP, XNS, SNA, and RSCS. The specific
protocols that should be supported at an institu­
tion depend on the answers to the questions asked
as part ofthe site survey, needs assessment, and
concerns, and functionality surveys.

PROTOTYPES:

Whenever feasible, the development of and experi­
mentation with prototypes can be extremely valu­
able. and may result in considerable savings in the
long run. Prototypes may include sub-networks
and clusters of systems or workstations, file serv­
ers, projections systems, print/plot servers, mail
servers, and more. The specific implementations
depend on the scope of the plan, funds available for
prototyping, timing, and prior experience.

MULTI-VENDOR ENVIRONMENT:

Many institutions are committed to supporting a
multi-vendor environment. At Stevens the list of
vendors includes DEC, IBM, H-P. AT&T, SUN
and many others. Decisions regarding the design
and implemention of the campus-wide network are
based on the requirement of the support of a multi­
vendor environment.

GATEWAYS:

With a growing need for communication and con­
nectivity with individuals and resources outside
our own institutions, it is important to provide
access to external networks and facilities. This is

134

often accomplished via gateways. Some of the ex­
ternal networks include BITNET, NSFNET.
ARPANET, CSNET, and CCNET.

STANDARDS:

Standards are the one thing that makes it possible
to design and implement large networks. The
recognition of established external standards such
as those of ANSI, IEEE, and OSI is essential.
There is also a need to establish internal standards
to facilitate the design, implementation, and
growth. The establishment/adherance to standards
will permit controlled evolution and growth, multi­
vendor support, and ease of support.

SUPPORT:

While many possible permutations of support or­
ganizations may exist and function well, the distri­
bution of a variety of resources on a network can
often be supported by a centralized support organi­
zation. This can be quite successful as well as eco­
nomical. An alternative would be distributed
support.

SERVERS:

A full function network includes a variety of serv­
ers. Some of the possible servers are file, compute,
communications, print, plot, name, and time.

MANAGEMENT:

Networks are not only a complicated resource to
plan; they require an ongoing effort to manage.
This function includes the following management
activities:

Configuration
Fault isolation
Security
Accounting
Performance
Documentation
User assistance/training

INFORMATION DISTRIBUTION:

It is important to keep all members of the institu­
tion well informed on all aspects of the design,
implementation, and support processes. Much sup·
port for the effort is gained through adequate in­
formation flow. The lack of such information can
result in misinformation and resentment.

LICENSING:

With the implementation of large networks, it is
becoming increasingly important to have realistic,

consistent, and affordable licensing policies. Many
vendors do not currently have such policies. One
consequence is the proliferation of unlicensed
software.

CONCLUSION:

Proper planning before beginning implementation
is a must. Many potential problems can be avoided
through the development of a detailed plan. This
phase of the effort should not be minimized.
Lacking of planning can result in limitations in
functionality and growth, and costs can be sub­
stantially higher.

135

High End

VAX system

Update

Warren Sander
High Performance Systems

•
•
•
•
•

This session's objectives are:

•

•

Review High End VAX processor
announcements for the last six
months

Review VAX Software changes in
the last six months

Current Hi&:h End Processors

VAX 8500/V AX 8530

VAX 8600/V AX 8650

VAX 8550N AX 8700

VAX8800

VAX 8974N AX 8978

VAX8530

• Announced March 5th

• VAX 8530 replaces VAX 8500

• 30% to 50% faster

• 4 to 4.5 times the VAX 8200

• Backplane supports up to 80MB
memory

• VMS Version 4.5 I Ultrix Version 2.0

Proceedings of the Digital Equipment Computer Users Society 137

VAX 8600 and VAX 8650

• MS86-DA New 64MB memory boards

• Mother/daughter boards

• Up to 260MB main memory
• 4MS86-DA
• 1 MS86-AA

• VMS 4.5/Ultrix 2.0 support 128MB

• Future VMS supports full 260MB

YAX8974

The VAX 8974 is complete system

including hardware, software, and

support services providing up to 25

times the performance of the VAX 8200.

•

•

•

•

•

VAX 8974 Features and Benefits

High Availability Configuration

Mainframe Class 1/0 Subsystem

Enhanced system management
features

Easy incremental growth

Significant price/performance and
cost of ownership features

Nashville, TN - 1987

VAX 8974 Hardware

• 4 VAX 8700 central processors
Up to 512 MB memory
Up to 16 V AXBI channels

• 2HSC701/0 processors
12 disk 1/0 channels
2 tape 1/0 channels

• Dual Ported SA482 storage array

• Full CI and Ethernet support

• V AXcluster Console System

VAX 897 4 Software

• VMS

• DECnet

• VAX Volume Shadowing

• VAX Performance Advisor

• All VAX/VMS software products
available at signficant savings

VAX 8974 Services

• Pre-installation site evaluation

• Customer Support Plan

• Hardware and Software Installation

• DECstart, Media and Documentation

• 1 year resident Systems Engineer

• 1 year hardware warranty

• 1 year software support

YAX 8978

The VAX 8978 is a complete system

including hardware, software, and

support services providing up to 50
times the performance of the VAX 8200.

VAX 8978
Features and Benefits

• High Availability Configuration

• Mainframe Class 1/0 Subsystem

• Enhanced system management
features

• Easy incremental growth

• Significant price/performance and
cost of ownership f ea tu res

VAX 8978 Hardware

• 8 VAX 8700 central processors
Up to 1024 MB memory
Up to 32 V AXBI channels

• 4 HSC70 1/0 processors
24 disk 1/0 channels
4tape1/0 channels

• Two dual ported SA482 storage array

• Full CI and Ethernet support

• VAX Cluster Console System

VAX 8278 S2ftwar~

• VMS

• DECnet

• VAX Volume Shadowing

• VAX Performance Advisor

• All VAX/VMS software products
available at signficant savings

138

VAX 8978 Services

• Pre-installation site evaluation

• Customer Support Plan

• Hardware and Software Installation

• DECstart, Media and Documentation

• 1 year resident Systems Engineer

• 1 year hardware warranty

• 1 year software support

SA482

The SA482 Storage Array is Digital's

newest high capacity, high

performance, online storage solution.

SA482

• 2.5 GB in 5.5 square feet

• Connects to HSC50, HSC70, UDA50,
KDB50, KDA50

• Four independant spindles

• One-year warranty

• Lower cost per Megabyte

• Reduced maintance fees

SA482 Performance

• Peak Tran sf er Rate
2.4 MB/sec/spindle

• Average Seektime
24 milliseconds/spindle

• Rotational latency
8.3 milliseconds/spindle

139

• Average access time

32.3 milliseconds/spindle
VMS Update

VMS Version 4.4

• Faster V AXcluster state transitions

. Requires new CI port driver

. Requires CI microcode, Revision 7 .0

• Cluster node name via ALIAS

• VAXcluster support ·for:

. VAX 8200/V AX 8300

. VAX 8500/V AX 8550

. VAX 8700/V AX 8800

• HSC70 Support
VMS Version 4.4

Networks

• Cluster node name via ALIAS

• NETNODE.DAT broken into LOCAL
and REMOTE database files

• NCP parameter TRANSMIT PIPLINE
with DMRlls provides more efficient
use of satellite links

• Multiple network support in VAX PSI
configurations

• Sysgen LRPSIZE set to 1504 instead
of 576 if Ethernet is present

•

•

•

•

VMS Version 4.4
MONITOR Features

MONTIOR remote nodes within a
VAXcluster

New CLUSTER class

Record and playback multiple nodes
in a single file

New output format for the recording
file

VMS Version 4.4
SECURITY Enhancements

• New DYNAMIC attribute

• SET RIGHTS_LIST

• New System Services:
$GETUAI
$SETUAI
$CHECK_ ACCESS

• Node specific identifier, created at
boot time

SYS$NODE _ nodename

. Limit access to layered products

. Restrict users in a non-homogeneous
VAXcluster

• US Department of Defense C2 security
certification

•

•

•

•

•

•

•

VMS Version 4.4
HSC Based Volume Shadowin2

Two Compatible Disks are logically
identical

Provides High Data availability

Transparent for FILES-11 and ODS-2
volumes

VMS Version 4.4
RMS Enhancements

Support for decending keys

Fully shared sequential files

RMS performance improvements like
adaptive locking

File specifications may now include
a hyphen("·")

VMS Version 4.4
Miscellaneous Chan2es

• DCL commands for subroutine support

140

• Debugger enhancements

• Vertical windows

. New keypad definitions

Support for VAX DIBOL

&VAXSCAN

. New SHOW STACK command

. Debugging permitted for shareable

images

• System Dump Analyzer

• ATTACH and SPAWN commands

New EVALUATE, EXAMINE

and SEARCH commands
VMS Update

VMS 4.5 is a maintenance release

consisting of 105 separate updates.

VMS 4.4 must be installed before a

system can be updated to VMS 4.5

VMS 4.5 can be installed in a

V AXcluster as either a rolling or

concurrent update but VMS 4.5 cannot

coexist in a cluster with VMS 4.3.

VMS 4.5
CI Port Driver

The new version of the CI Port Driver

Image (Version 7.0) fixes the following

problems:

Miscellaneous Error #5, Internal Queue Retry
Expired

• Arbitration Timeout

• Buffer Length Violation

You can identify which version of the

microcode you are running as follows:

$SHOW CLUSTER/CONTINUOUS

COMMAND> ADD RP _REVIS

The low-order word is the RAM version

and the high-order word is the PROM

version.

VMS 4.5 Permanent
MONITOR Server Process

Creating a permanent MONITOR server

process on each member in a cluster at

bootstrap can significantly reduce the

startup time for MONITOR/CLUSTER

commands

To create a detached server process, add the following

lines in SYS$MANAGER.:STARTUP.COM:

$DEFINE /SYSTEM I EXECUTIVE_MODE VPM$SERVER_LIVE TRUE

$RUN /DETACH/PAGE_FILE=IOOOO SYS$SYSTEM:VPM.EXE

VMS 4.5 DMB32
Layered Product Support

VAX 8200/8300/8500/8550/8700/8800

systems that include DMB32

communications processors must install

the DMB32 layered product in order to

use the SYNCHRONOUS port.

This software is not included in the

VMS Update Kit

ULTRIX

UL TRIX Version 2.0 now supports all

V AXBI based systems:

141

VAX 8200/8250

VAX 8300/8350

VAX 8530/8550

VAX 8700/8800

with KDB50 connections to disks.

VAX Performance Advisor

The VAX Performance Advisor (VPA) is

a ruled based performance analysis tool

that runs as a layered product on
VAX/VMS.

VP A gathers data from all nodes on a

V AXcluster and identifies and reports

possible performance problems which it

substatiates with its data and

recommends solutions to the problems.

VMS Update

VMS 4.6 is focused on Maintenance

but the kit has been remastered so it is

a complete distribution

• Scheduled to submit to SDC in June

• FCS starting in July (for the US)
VMS Version 4.6

Major New Features

• VAX Volume Shadowing: 3 Member
Shadow Sets

• Local Area VAXclusters: Up to 26
Satellite Members.

• Full 260MB Memory Support for
VAX 8600 & VAX 8650

• Processor support for VAX 8250,
VAX 8350, & VAX 8530

VMS Version 4.6
Other New Features

• SET TIME/CLUSTER Command

• AUTOGEN Enhancements

• LAT/VMS New Features

• Limited Support for Dual-ported HSC
Tapes

• NCP SHOW CIRCUIT Command
Changes

• New Debugger Features

SET TIME/[nolCLUSTER

The SET TIME/(no]CLUSTER command will update the

time on ALL nodes present in the V AXcluster to the

time specified or to the time on the node the command

is executed on if no time is specified

Example:

$ SYNC_CLOCKS:

$ SET TIME /CLUSTER

$ WAIT 6:00:00

$ GOTO SYNC_CLOCKS

This procedure sets the time on all the cluster nodes to

the value obtained from the local time-of-year clock,

waits, then resets the time again.

AUTOGEN Enhancements

A user specified startup file can now be defined in place

of SYSTARTUP by using the symbol STARTUP in

MODPARAMS.DAT

Example:
STARTUP= "SYS$MANAGER:MY_STARTUP.COM"

AUTOGEN will now calculate a value for QUORUM

using either the current value or the initial cluster

quorum.

142

AUTOGEN now understands and manipulates secondary

page and swap files in MODPARAMS.DAT

Example:
SWAPFILE2_NAME = "SWAP$DISK:[SWAPFILE]SWAPFILE.SYS"

SWAPFILE2_SIZE = 30000

You still need to use SYSGEN to install the secondary

files in SYST ARTUP.COM but the files will be created if

they don't exist

LAT/VMS Features

VMS Version 4.6 includes new Local

Area Transport (LAT) software which

includes support for asynchronous

printers connect to LAT terminal

servers. The support consists of a new

LAT port driver, LAT control program

and LAT print symbiont.

VAX/VMS Software Announcements
New Products

VP A - VAX Performance Advisor

VAX Data Distributor

VAX SQL - Structured Query Language

SSU - Session Support Utility

VAX Software Project Manager

VAX/VMS Software Announcements
New Versions

VAX ACMS V2.1

VAX TDMS Vl.7

VAX INFO Vl.2

VAX DECalc V3.0

VAX RALLY Vl.1

VAX DECreporter V2.0

VAX VTX V3.0

VAX COBOL V3.4

VAX DBMS V3.2

VAX RdbNMS V2.2

VAX Datatrieve V4.0

VAX DECalc-PLUS V3.0

VAX TEAMDATA Vl.1

VAX SCAN Vl.1

ALL-IN-1 V2.2

VAX COBOL Generator Vl.1

VAX Performance Advisor
version 1.0

• VP A analyzes system workload data and makes
recommendations on how to improve performance.

• Support for both a single VAX processor and V AXcluster
systems is provided.

• Analysis of data can be performed from any VAX processor
in a V AXcluster system.

• VP A identifies system bottlenecks as well as processes that
may be using inordinate amounts of system resources.

• User can request data to support recommendations made by
VPA.

• Histograms of CPU utilization, physical memory usage, disk
1/0 and terminal 1/0 for each node in a V AXcluster system
are available.

• User can define collection intervals for automatic collection
of performance data

VAX Data Distributor
version 1.0

• Centralized Storage of Definitions, Schedules, and Status
Information

• VAX Data Distributor Syntax
_ Define transfers, specifying the locations of source

and target databases

- Select records and fields to extract and replicate

_ Transfer data automatically through user-defined
schedules or execute the transfer on demand

- Show transfer and schedule definitions and status

_ Perform automatic retry if network failures occur

_ Enable logging to record transfer events if desired

• Database Security

- Transfer Database

- Source Database

- Target Database

VAX Data Distributor Version 1.0 requires:

• Rdb/VMS V2.2 or later

• Micro VMS or VMS Version 4.4 or later

• DECnet (if Data Distributor will be run on multiple nodes)

VAX SOL
Version 1.0

• VAX SQL is layered on DSRI.

• VAX SQL is designed for compatibility with other SQL
products.

• VAX SQL may be used with remote as well as local
databases.

143

• VAX SQL includes an interactive DML and DDL utilities

• Includes language preprocessor support for VAX COBOL,
VAX FORTRAN, and VAX PL/I.

• Dynamic SQL can accept or generate SQL statements at run
time

• VAX SQL can read or write metadata from the CDD

VAX Software Project Manm:er
Version 1.0

Graphical, Multi-user, software development project
management tool

• Fully integrated planning, controlling and estimating
functions

• Includes CPM, WBS, PERT, GANTT and precedences and
Estimation based on Boehm's industry-standard COCOMO
model

VT330 and VT340 Session
Support Utility

version 1.0

• Allows a VT330/VT340 to operate two session over one wire

• SSU runs under VMS 4.4 or later

• SSU runs on and valid VAX/VMS host configuration

VAXACMS
Version 2.1

• Improved performance

• VAX Language-Sensitive Editor (LSE) support

• Supports ACL's

• Major New Documentation

• Major documentation changes, including:
-- "Design for Performance" chapter in ACMS Design Guide
-- Error Messages now available via DCL and ACMS HELP

VAX DBMS
Version 3.2

• Doubles Performance in some cases

• Adding AREAS without unloading/reloading

• FIND/FETCH/STORE by Database Key (DBKEY)

• UNIQUE clause

• Enhanced statistics package

VAX Datatrieve
Version 4.0

• Support for the VAX Language-Sensitive Editor (VAX LSE)

• A new OPTIMIZE qualifier

• New sample domain and record definitions

• New VAX DAT A TRIEVE PLOT commands

• New arguments to specify object types for EXTRACT/EDIT

• A SHOW FIELDS enhancement for RMS sources

• A logical name to define default READY access

• Several improvements to the DAB.PAS file

• A new function called FN$DCL

• A logical name to set stack size

• New arguments for the DEFINEP command

VAXTDMS
version 1.7

• VAX Language-Sensitive Editor support

• DEFINE KEY capability with full LK201 support

• Improved performance for USE FORM

• Enhancements to the RETURN instruction

• SPAWN and ATTACH commands from RDU and FDU

• Enhancement to the OUTPUT instruction

VAXRdb/VMS
Version 2.2

• Reduced I/O for small update transactions

• New precompilers -- VAX C and VAX Pascal

• Support for VAX Data Distributor

• Support for VAX SQL

• Miscellaneous features
-- True V AXcluster wide database shutdown
-- Additional RDO and precompiler support for DSRI

VAX RALLY
Version 1.1

• Improvements to Documentation and Sample Applications

• Brief Application Report Option

• Improved Performance with AFILE Creation

144

VAXinfo I. V AXinfo II. & V AXinfo III
version 1.2

New version of V AXinfo including the newest versions of all
products:

V AXinfo I Vl.2 V AXinfo II Vl.2 V AXinfo III Vl.2
(Q*740) (Q*ABl) (Q*738)

CDD V3.3 CDD V3.3 CDD V3.3
Datatrieve V 4.0 Datatrieve V 4.0 Datatrieve V4.0
TDMS Vl.7 TDMS Vl.7 TDMS Vl:7
RdbNMS V2.2 RdbNMS V2.2 DBMS V3.2

ACMS V2.l ACMS V2.l

VAX DECalc
V~rsiQn ~.o

• Enhanced performance and reliability.

• Enlarged grid size -- to 9999 rows by 702 columns (Al to
ZZ9999).

• New name format -- grids are stored as VMS filenames.

• Nested IF{fHEN/ELSE function and logical operators AND,
OR and NOT

• Consolidation of multiple grids

• Sorting -- "Block" sorting similar to Lotus 1-2-3.

• Moving -- "Block" moving similar to Lotus 1-2-3.

• "$" absolute and relative cell referencing similar to
Lotus 1-2-3

VAX DECalc-PLUS
Versfon 3.0

• Interactive debugger support for external routines

• More performance and reliability dealing with external
routine templates

• Larger grid size -- 9999 rows by 702 columns (Al to
ZZ9999)

• Consolidation of multiple grids

• Sorting -- block sorting similar to Lotus 1-2-3

• Moving - block move similar to 1-2-3

• Spread sheets stored as VMS files

• "$" absolute and relative cell referencing similar to
Lotus 1-2-3

• Nested IF{fHEN/ELSE function and logical operators AND,
OR, and NOT

YAX TEAMDATA
version 1.1

• VAX Xway Support

• Improved Performance - memory use reduced by 20%

• Improvements and Additions to Documentation

VAX DECreporter
version 2.0

• Multiline titles (up to 4 lines of text in each title)

• Ability to specify subtotals, average, maximum or minimum
statistics

• Auto formatting (allows the user to automatically set column
positioning)

• User selectable 80 or 132 column report width

• Print queue menu selection allows the user to specify an
output printer

• Parenthetical computation expressions

• Boolean selection criteria

VAX SCAN
version 1.1

• VAX SCAN VI. I is a maintenance release that adds support
for newly announced processors

VAXVTX
version 3.0

• New VISTA (VTX Infobase Structure Tool and Assister)
enables IP's to build and maintain infobases more effectively
in an interactive environment

• New ALL-IN-I Terminal Control Program (TCP)

• WPS-PLUS to VTX Print Queue

• Up to 32,767 continuation pages

• Context-Sensitive Keywords

• Template pages

• Support for 132-column mode

• Performance Enhancements

• Support for additional terminals

145

ALL-IN-1
versjon 2.2

• Includes.WPS-PLUS, VAX PMS V2.3 and Message Router
VMSmail Gateway V2.1

• Same performance as ALL-IN-I V2.I

• VAX VTX 3.0 can be fully integrated

YAX COBOL
versjon 3.4

• Fixes an error found in the V3.3 ANSI validation.

• Validated and a high level with NO errors against 1974 ANSI
and PIPS PUB 31-1 (amended 2I-2)

• Current ANSI 1985 features:
-- Contained Programs
-- Scope delimiters

•

-- EVALUATE verb
-- In-line PERFORM
-- REFERENCE MODIFICATION statement

YAX COBOL Generator
versjop 1.1

Can use RMS files or Rdb/VMS databases

Print files from within the generator

GENERA TE DOCUMENT to produce documentation to
support the application design

A Practical Exercise
In System Sizin2

Warren Sander
Daniel Allen Deufel

High Performance Systems

Objectives Of This Session

• Understand the Basics of System Sizing

• For an arbitrary case, design a system that meets the
functional objectives

• Be able to select relevant data for base system sizing

The Convention Center System

A Practical Description

The Convention Center System is intended to supply a number

of computing services to a major convention and conference

center. The system will provide services to the three major

groups:

The Convention Center Management

The Convention Promoter

The Convention Attendee

• Provide Convention Promoter facilities to

maintain and manage show information

• Provide the Convention Center with

automated planning services

• Provide show visitors with (perceived)

instantaneous response to requests and

queries

Proceedings of the Digital Equipment Computer Users Society 147

• Provide a redundant service environment

Convention Center Mana2ement
Requirements

The Convention Center management needs tools to help it plan

the various events, exhibits, sessions, and logistics that are

associated with a conference or convention. In addition, the

Conference Center will provide visitor reservation and hotel

reservation services to their clients.

Convention Promoter
Services

The Convention Center will be offering a series of services to

the promoters using the facilities. When the promoter schedules

a show, a number to tools are made available to enable him to

begin scheduling facilities, organizing display areas, etc. As the

show date approaches, the Convention Center System will be

used to pre-register visitors.

During the show the Convention Center System will be used to

reqister arriving visitors, provide Telephone Message Services,

handle visitor Literature Requests. Staffed Information Desks

will be located around the Convention Center to handle visitor

queries.

Finally, the system will give the promoters tools to oversee their

show as it runs its course.

Nashville, TN- 1987

Convention Attendee
Services

During a show, the Convention Center System will provide

visitors with a number of services. These services include an

Electronic Mail system, on-line convention news, a literature

request system, and information about local attractions and

places to eat. These services may be obtained at 200 terminals

located in the Convention Center and the major hotels in the

area.

Convention System Functional
Description

The CCS (Convention Center System) allow the Convention

Center Staff to provide all Convention Promoters with an

integrated system which can plan all phases of a convention.

The CCS will also provide the Promoter with a full range of

convention services for not only the convention staff and

exhibitors but for the attending population also. CCS integrates

all convention related functions into a single menu driven

environment that is easy to use for both experienced and

inexperienced promoters and exhibitors.

Convention System
Applications

The following applications are proposed:

• Exhibit, Session and Event Planning System - (PLAN)

• Visitor Registration and Logistics System - (VRLS)

• VIP and Facilities Scheduling - (VIPS)

• Information Desk Support - (INFO)

• Telephone Message Services - (TELS)

• Literature Order/Request and Fullfilment - (LITO)

• Information System for Population at Large - (PALS)

• Promoter Administration Services - (PADS)

148

Subsystem P1annin2

For this exercise we need to examine the demands each of the

applications will make on the following pieces of our system:

• CPU Capacity

• Memory Capacity

• Channel I/O Capacity

• Spindle 1/0 Capacity

• Storage Capacity

Key User Groups

~ l.!.im #(estimated) Totals

PLAN - Exhibit, Session and Evem Managers 5
- Content Specifiers/Planners 30

35

VRLS - Pre-registration Data Entry Operators 8
- Event Check-in Supervisors and Managers 6
- Event Check-in Operators 50
- Convention Process Managers JO

(Security,logistics,event sizing etc.)
74

VIPS - V!P's 20
- VIP Secretaries 15
- Facilities Coordinators and Managers 5

40

uro - Literature Abstract Writers

INFO - Information Desk Supervisors and Managers 5
- Information Desk Operators 20

25

TELS - Telephone Operators
- Message Center Operators

10

PALS - PAL "Hostesses" 20
- Convention Visitors 50000

500cO

PADS - Key Promoter Management 30
30

VisitQr Rg2istration and Lo2istics
System

This application establishes and maintains a database of all key

visitor data which is required not only to assure:

Event Access

Visitor Transportation and Lodging Logistics

Dynamic Event Programming and Operation

but also serves as the Information Support Tool/Source for:

Promoter Administration (Statistics, Reports and Inquiries)

Lead Recording and Reporting

Information Desks

Telephone Message Handling

Staff Assignment and Deployment

Totals

VRLS Work Load

MAX Operations
Per Hour

1,200

C!ll..l!eL
Operatjon

4.0

CPU Seconds
Per Hour

4,800

I/O's Per
Operatjon

32

I/O's Per
Hwu:

38,400

Notes: "CPU" units are the CPU seconds required to process
one operation on a V AX-11n80

"1/0" units are the number of 1/0 requests generated
during the processing of one operation

VIP and Facilities Schedulin2 System

This application provides scheduling of Individuals and

Facilities (Conference rooms, Guided Tours, etc.) and

maintains Master Files/Listings for each. It assures orderly and

smooth execution of key appointments and events in a

"hustle-bustle" environment. "VIPS" is linked with additional

applications (see "PADS") and provides the Customer VIP with

a "total" Office Information System while at the conference.

Totals

VIPS Work Load

MAX OperaUons
Per Hour

150

.Cfll....l!cJ:
Operatjon

1.5

CPU Seconds
Per Hour

225

I/O's Per
Operatjon

10

I/O's Per
Hwu:

1,500

Notes: "CPU" units are the CPU seconds required to process
one operation on a VAX-11n80

"1/0" units are the number of I/0 requests generated
during the processing of one operation

149

Information Desk Support System

This application provides Information Support to dedicated

accounts at fixed locations. It is a menu sub-set of several

Convention Community Services applications such as, Visitor

:r:ame-, Company name-, Hotel- look-up, Event- and Session­

schedules, Exhibit Content etc.

Totals

INFO Work Load

MAX Operations
Per Hour

600

!J!ll.hl:
Operation

2.8

CPU Seconds
Per Hour

1,680

I/O's Per
Operatjon

24

I/O's Per
Hwu:

14,400

Telephone Messa2e Services System

This application provides the means of transmitting an incoming

telephone message which arrives at a (ideally) central location

to the intended recipient (Visitor or Staff). Process logic assists

the receiving operator in message screening and diversion

according to message type (emergency, general info., etc.) and

timeliness for posting to Electronic Mail System (see PALS),

Hotel, Message Board or Security .

Totals

TELS Work Load

MAX Operations
Per Hour

600

.Cfll....l!cJ:
Operatjon

6.0

CPU Seconds
Per Hour

3,600

I/O's Per
Operation

37

I/O's Per
Hwu:

22,200

Information System for Population at
LarKe

This application is a multifunctional Information System

available to any Convention Visitor composed of:

• Electronic Mail

• Visitor Inquiry

• Convention News

A Visitor may send mail to any
other Visitor.

A Visitor may inquire on the
presence of another Visitor.

Worldwide News, Convention-,
Company-, and City- Information
with items updated continuously
during the course of the event.

•Literature Services A free-text search facility in the
content of the convention or
sponsoring organization related
literature and, when found, a
choice of ordering it on-line for
mailing to Visitor's address.

•Information Services Free-text search into convention
content as related to exhibit,
demos, vendors, etc. Alphabetic
listings of products and vendors.
Graphic display of exhibit area
("You are here, and this is where
you find your item of interest",
etc.)

PALS Work Load Breakdown

MAX Operatjops
Per Hour

~
Operation

I/O's Per
Operatjon

E-Mail 100

Visitor Inquiry 100

Lit. Services 100

Convention News 300

8.0

1.7

3.2

0.90

Info Services 800 0.90

PALS Work Load

fAli CEl! Ss:c11nd1 ll!l'1 Ei:c
l:uk Per Hour lilllu:

E-Mail 800 10,000

Visitor Inquiry 170 680

Lit. Services 320 1,500

Conv. News 270 1,260

Info Services 720 3,360

Totals 2,280 16,800

100

6.8

15.0

4.2

4.2

VRLS

VIPS

INFO

TELS

PALS

Totals

Applications Work Load Profile

CEll Ss:c11nd1 ll!l'1 Et:c
Per Hour lilllu:

4,800 38,400

225 1,500

1,680 14,400

3,600 22,200

2,280 16,800

12,585 93,300

CPU Requirements

Base Daily CPU Requirements:

• Given: Demand = 12,585 CPU (11/780) Seconds per Hour

= 3.5 * VAX-ll/780s

• Given: VAX 8550 "' 5 * V AX-11/780

• Given: A Clustered VAX 8550 "' 0.8 * VAX 8550

"' 4 * V AX-11/780

• Therefore, 1 VAX 8550 should be able to handle the peak

applications demands (not including preregistration and

staging of future shows).

Memory Regpirements

For ALL-IN-I based applications plan on the following:

• The 1st thru 4th users require 5MB of memory each

• The 5th thru Nth users require 0.5MB of memory each

• Therefore, 124 Users require:

(5MB * 4) + (120 * 0.5MB) = 80MB of Main Memory

150

Simultaneous System Users

Application .llim # <estimated\ Totals

PLAN - Content Specifiers/Planners 20

VRLS

VIPS

LITO

INFO

TELS

PALS

PADS

- Pre-registration Data Entry Operators 8
- Event Check-in Supervisors and Managers 4
- Event Check-in Operators 50 *
- Convention Process Managers 4 *

(Security,logistics,event sizing etc.)

-VIP's
- VIP Secretaries
- Facilities Coordinators and Managers

- Literature Abstract Writers

- Information Desk Supervisors and Managers
- Information Desk Operators

- Telephone Operators
- Message Center Operators

- PAL "Hostesses"
- Convention Visitors

- Key Promoter Management

Total

5*
15.
5

2

5
20*

5*
5*

20
140.

30

• - These are the 254 users involved with the current show

•• - This is the projected Worst Case condition.

Channel 1/0 Reguirements

20

66

25

2

25

10

160

30

338 ••

• The CSS applications generate 93,300 1/0 Requests per hour

or 26 1/0 Requests per second

• Each HSC5X-BA can handle roughly 70 1/0 Requests per

second

• Each HSC70 can handle roughly 600 1/0 Requests per

second

Spindle 1/0 Reguirements

• The CSS applications generate 93,300 1/0 Requests per hour

or 26 1/0 Requests per second

• One SA482 spindle can handle roughly 35 1/0 Requests per

second

151

System:

Live Show:

Show Staging:

Stora2e Reguirements

• 1 Spindle for System

plus 1 Shadow Spindle

plus 1 Spindle for Page/Swap for each CPU

• 50KB Per Visitor

• Maximum of 50,000 Visitors per show

• 50KB * 50,000 = 2.5GB = 1 SA482

plus 1 SA482 for Shadowing

• Must support 6 shows in staging

1 Spindle per staged show

plus an equal number of shadow spindles

Terminal Reguirements

Terminals will be located in the following locations:

Location

Convention Center

Preregistration

Registration

Number of Terminals

VIP Center

Infomation Stations

Message Center

Telephone Center

Promoter's Center

Convention Center Floor

Dial Up

Hotels

8 terminals at each of 12 Hotels

Total

8

50

20

20

5

5

20

100

24

96

348

Qiifill

4
12
4

24
2
6
I
2
2
I
I
8
8

12
6

26
4

51
32

3
6
4

360
348
33

3
24

6
12
24

24

Qiifill

1
3
I
3
I
3
1
3
1
3
I
3
I
3
1
3
I
3
I
3
I
3
1
3
1
3

33
6
1
3
1
3

Hardware Order

fDll !Sl!~r Description

855CB-AP 8550 CPU 32MB CI PD UP SW 208/60

MS88-CA 16MB 256K 8800/8700/8500 MEM

HSC70-AA HSC70Base
HSC5X-BA Disk Controler
HSC5X-CA Tape Controler
SA482-AA SA482 Storage Arrays
SC008-AC 8 Node Star Coupler w/CAB
TA78-BF TA 78 Tape Drive Master
TU78-AF TU78 Tape Drive Slave
LPS40-AA PrintServer 40
DJ-630C2-AA V AXcluster Console System

FOCHA-AE VCS Fiber Optic Conn Kit

BN25J-50 50 Meter Fiber Optic Cable for FOCHA

LN03-AA LN03 Laser Printer
DELNI-AA Local Network Interconnect

BC26V-25 SDI Cables - 25 Feet Long

BNClA-20 CI Cables - 20 Meters Long

BNE3H-20 IEEE802 PVC STR AUI CBL

H4000 Ethernet Transceiver
BNE2A-ME 500 Meter Cable, Ethernet Teflon

12-19816-01 Cable Terminator
DEREP-AA Local Ethernet Repeater
BC22D-50 SOFT Cable, Null Modem

VT340-AA VT340 Color Term
DSRVB-AA DECserver-200 w/Modem CTL

DFlOO-RM Multiple Modem, rack mount enc.

DF124-AM 2400/1200 bps Modem, module only

DSRZA-BA MUXserver-100 120v
DFMZA-BA DECmux II !20V
BC22F-10 1 OFT Cable, RS232

19.2 kbps Modems (from Phone Co.)

Software License Order

e~n t!l!ml:!l:r Description

Q2740-UZ V AXInfo I lic/warr
Q2740-QZ V AXInfo I vaxcl lie only
Q2741-UZ VAX Teamdata lic/warr
Q2741-QZ VAX Teamdata vaxcl lie only
Q2A86-UZ VAX Rally lie/warr
Q2A86-QZ VAX Rally vaxcl lie only
Q2965-UZ V AXSET package lic/warr
Q2965-QZ V AXSET vaxcl lie only
Q2099-UZ VAX COBOL lic/warr
Q2099-QZ VAX COBOL vaxcl lie only
Q2365-UZ VAX COBOL generator lic/warr
Q2365-QZ VAX COBOL generator vaxcl lie
Q2AB2-UZ VAX VOL SHAD lic/warr
Q2AB2-QZ VAX VOL SHAD vaxcl lie only
Q2ZCC-UZ VAX Perf Advisor lic/warr
Q2ZCC-QZ VAX Perf Advisor vaxcl lie
Q2031-UZ VAX VTX lic/warr
Q2031-QZ VAX VTX vaxcl lie only
Q2033-UZ VAX VTX TC/CON lic/warr
Q2033-QZ VAX VTX TC/CON vaxcl lie
Q2031-UZ VAX VALU lie/warr
Q203J-QZ VAX V ALU vaxcl lie only
Q2960-UZ VAXNotes lic/warr
Q2960-QZ V AXNotes vaxcl lie only
Q2AAA-UZ ALL-IN-I lic/warr
Q2AAA-QZ ALL-IN-I vaxcl lie only
Q2Z06-UZ DECSERVER-200 lic/warr
Q2ZAW-UZ MUXSERVER-100 lic/warr
Q2ZAV-UZ SSU Licence, 8700/8550
Q2ZAV-QZ SSU vaxel license, 8700/8550
Q2A82-UZ VAX SW PROJ MGR UC
Q2A82-QZ VAX SW PROJ MGR V AXCL UC

1
1
I
I
I
I
I
1
1
I
I
I
1
I
I
1
I
I
4
1
I

152

URH
8550

HSC70

Software Kits Order

Part Number

Q2740-HM
Q2741-HM
Q2A86-HM
Q2965-HM
Q2099-HM
Q2365-HM
Q2AB2-HM
Q2ZCC-HM
Q2031-HM
Q2033-HM
Q2031-HM
Q2960-HM
Q2AAA-HM
Q2Z06-HM
Q2ZAW-HM
Q2ZAV-HM
Q2A82-HM
QL797-HM
QL798-HM
Q2001-HM
Q2D05-HM

URH
8550

HSC70

Description

V AXInfo I upd
VAX Teamdata upd
VAXRallyupd
V AXSET package upd
VAX COBOL upd
VAX COBOL generator upd
VAX VOL SHAD upd
VAX Perf Advisor upd
VAXVTXupd
VAX VTX TC/CON upd
VAXVALUupd
V AXNotes upd
ALL-IN-I upd
DECSERVER-200 upd
MUXSERVER-100 upd
SSU Licence, 8700/8550 upd
VAX SW PROJ MGR upd
PRINSRVR40 CLIENT upd
PRINTSRVR40 SUPHOST upd
VAX/VMS UPD I 6MT9
DECNET-VAX F/F UPD

URH
8550

HSC70

URH
8550

HSC70

High End VAX Configuration
Putting the Pieces Together

High Performance Systems Group
Digital Equipment Corporation

Marlboro, MA

This session will cover Digital's High End VAX
Systems. VAXclusters, and VAXcluster Software
and Services. We will discuss definitions.
configuration rules and general purpose options for
high end systems. Then, an example configuration
of a high end V AXcluster will be provided.

This session will not cover (ll why to buy one CPU
over another: (21 performance characteristics of in­
dividual processors; (31 realtime or non-general
purpose options.

Proceedings of the Digital Equipment Computer Users Society 153

For the purpose of this session, a high end system
is a clusterable VAX processor that has greater
than twice the power of a VAX 8200/780.
Therefore, we will be discussing the following
systems: VAX 8530/8550; VAX 8600/8650: VAX
8700/8800; VAX 8974/8978. Also, for the
configuration exercise. we will assume that all ter­
minal communications will take place through
LAN-based servers.

Nashville, TN- 1987

Confi2uration Rules
YAX 8530/8550

All base systems include:
• 1 VAX BI Channel
• 1 Ethernet Interface
•
•

20 Megabytes of Memory
Console Terminal

•
•

Floating Point Accelorator
Room for 8530-8550 Upgrade

Site Prep Info:
B.SJll I ~

Nominal Voltage 208 208
Frequency HZ 60 60
Current AC Amps 16 16
Thermal - Watts 3500 3200

-BTU/Hour 12,000 12,000
Power Plug L21-20R L21-20R
Size 60x27x30 60x27x30
Weight 966Pounds 650Pounds

Expansion Cabinet: H9652-EC/ED

Needed for:

BSJil I ~

380/416 380/416
50 50
8 8
3500 3200
12,000 12,000
516R6W 516R6W
152x68.5x76 152x68.5x76
495kg 295kg

• 2nd VAX BI BA32-BA/BB + DB88-AD
• UNIBUS Options BAll-AW/AX + DNBUA-A
• CI Interface CIBCI

Maximum of 2 of the above allowed

Site Prep:

Nominal Voltage V
Frequency HZ
Phases
Current AC Amps
Thermal-Watts

-BTU/Hour
Power Plug
Size
Weight

120/208
50-60
3
X+2.8
X+252
X+860
L21-30R
63.3 x 26.3 x 30 inches
X+400 Pounds

X = Power/Weight of internally mounted options

154

240/416
50-60
3
X+l.4
X+252
X+907
(no NEMA Available)
153 x 66.7 x 76.2 cm
X+181.6kg

Base Cab.*

DB88-ADin
H9652-EC/ED

Option

Configuration Rules
VAX 8530/8550

VAX BI Slots
Available

4

s

VAX BI Slots

Used

Panel Units
Available

10

37

Pannel Units

Used

Ethernet Port (DEBNT) 1 2
CI Port (CIBCI) 2 0

KDBSO 1 2

TU81-Plus 1 1

DMB32 1 4

DWBUA 1 0

VAX BI Channel #2 1 0

All systems are now shipping with the

new memory backplanes which support

configurations up to 80 MB

8500 to 8530 Upgrade:

New Console distribution with new

microcode which will upgrade current

VAX 8500 systems to VAX 8530

systems.

155

Confi2uration Rules
VAX 8700/8800

All base systems include:

.8100
• 1 VAX BI Channel
• 1 Ethernet Adaptor
• 32 MB Memory
• Console Terminal
• Battery Backup
• Floating ·Point Accel.
• Space for 2nd CPU

Site Prep Info:
fililil I

Nominal Voltage 208
Frequency HZ 60
Current AC Amps 22
Thermal· Watts 3700

-BTU/Hour 12,600
Power Plug 560R9W
Size 60.Sx74x30
Weight 966Pounds

.8&lil

208
60
22
6000
26,750
560R9W

2 VAX BI Channels
1 Ethernet Adaptor
32MB Memory
Console Terminal
Battery Backup
Floating Point Accel.
UNIBUS Adaptor,
Backplane, CI Port,
& CI Cables

fililil

380/416
50
11
3700
12,600
532R6W

60.5x74x30 154x188x76.2
650 Pounds 495 kg

MemorI

.8&lil

380/416
50
11
6000
26,750
532R6W
154xl88x76.2
295kg

All current systems are shipping with

new backplane which supports

configurations up to 128MB

156

Confi2uration Rules
VAX 8700

H9652-EC/ED Expansion cabinet (up to
two per system) provides space for any
two combinations of:

• BA32-BA/BB (VAX BI exp. box)
• BAll-AW/AX (UNIBUS exp. box)

Base Cabinet*

VAX BI Slots
Available

10

2nd VAX BI** 5
Chan. + DW88-AC

3rd VAX BI 5
Chan. + DW88-AE

4th VAX BI 5
Chan. + DW88-AD

* One Ethernet controller in each available
configuration

Panel Units
Available

26

37

** DB88-AC converts first VAX BI Channel with 11
slots into 2 VAX BI Channels with 5 slots each

Base Cab.

3rd VAX BI
Chan.+ DW88-AE

4th VAX BI
Chan.+ DW88-AD

VAX 8800

VAX BI Slots
Available

7

5

5

157

Panel Units
Available

28

37

Confi2uration Rules
VAX 8600/8650

All base systems include:

• 1 DB86 SBI Adaptor

•
•
•

1 DW780 UNIBUS Adaptor

4, 16, or 32MB of Memory
1 Year Full Warranty

Nominal Voltage V
Frequency HZ
Current AC Amps
Thermal - Watts

-BTU/Hour
Power Plug
Size
Weight

120/208
60
22
6,500
22,000
DF6516FRAB
60.25x73.25x30
1,700 Pounds

240/416
50
11
6,500
22,000
DF3401FRAB
153. 7x186x76.2
875 kg

Expansion Cabinet H9652-F & H9652-C
(similar to the H9652-E)

Base cabinet contains space for:
• CI780 V AXCluster Interface
• FP86 Floating Point Accelerator
• 2nd DW780 UNIBUS Adaptor
• 2nd DB86 SBI Adaptor
• 861UP-AA 8600 > 8650 Upgrade

Front end cabinet contains:
• RL02 Front end disk
• BAll UNIBUS expansion box
• 24 Panel units

Maximum of 2 SB Is per system for a
total of 12 SBI devices:

2 (max)
4 (max)
4 (max)
4 (max)

Cl780 (1 if DR780 is configured)
DR780 (1 if CI780 is configured)
RH780
DW780

158

VAX 8600/8650
Memory

Minimum of 4MB is included in base
system, expandable up to 260MB in the
8 slot memory backplane

MS86-AA 4MB memory (up to 8)
MS86-CA 16MB memory (up to 4) *
MS86-DA 64MB memory (up to 4) *t

* Each MS86-CA/DA·takes 2 memory slots

t VMS V4.5 & ULTRIX 2.0 support only 128MB of
memory. Future versions will support a full 260MB
of memory

(4) MS86-DA 64MB memory = 256MB
(1) MS86-AA 4MB memory = 4MB

260MB

159

VAX 897 4/8978

Complete systems consisting of:

VAX8700CPU
HSC70

Disk Channels
Tape Channels

SA482 • 2.SG B
TA78
V AXcluster Console
Star Coupler
NI Tranceiver Cables
VCS Cables Kits
DELNI
DECserver-200

VMS
DECnet
VPA
Volume Shadowing

Site Prep Info:

60KVA,20KW

8974
4
2

12
2
1
1
1

8Node
6
6
1
1

Power Requirements
Heat Dissipation (per Hr.)
Foot Print
Weight

60.02 MJ (58.86 KBTU)
28.08 M2 (312 FT2)
3951 kg (8780 lb.)

160

8978
8
4

24
4
2
2
1

16Node
11
12

2
1

115 KV A, 40 KW
124.19MJ (117.72 KBTU)
54.29 M2 (603.25 FT2)
7834 kg (17410 lb)

Disk Interfaces

KIWll ~

Bus VAX BI UNIBUS

Data throughput

·Burst 3 mb/sec 3 mb/sec

·Sustained 1 mb/sec 750 kb/sec

Seek Optimization

requests up to 20 up to 20

Sector buffering up to 42 up to 52

DMA yes yes

Max. SDI Disks 4 4

Slots 1 VAX BI 2UNIBUSHex

V AXcluster Controllers

Max SDI Disks

Max Channel cards

Control Processor

Data memory

Program memory

Control memory

Instruction cache

Load device

System boot time

Aux power supply

VO Per Second

Disk Channel

Tape Channel

HSCSX-BA

HSCSX-CA

~ ~

24 32

6 8

F-11 J·ll
128kb 256kb

256kb 1024kb

128kb 256kb

0 8kb

TU58 RX33

6min 1 min

Optional Included

200 310

4 Disk drives

4 Tape masters

Aux Power Supply HSCSX-EA/EB Required for HSC50 with more than

3 channels

RA@ &All. SMBl

Type Removable Fixed Fixed

Number of Spindles 1 1 4

Size (MB) 205 456 2,560

Peak Xfer (MB/Sec) 1.98 2.2 2.4/Spindle

Avg Access (mSec) 50 36.3 24/Spindle

Avg Latency (mSec) 8.33 8.33 8.33/Spindle

Media Surfaces (data) 6 7 32

Sectors/Track 42 51 57

Single Track Seek 6.7 6 3

161

Density
Speed (IPS)
Rewind Speed (IPS)
Transports/Master
Masters/Channel
Capacity (MB/2400' tape)

Tapes

1600/6250
125
440
4
4
40/145

1600/6250
75/25
192
1
4
40/145

Cluster Confi2uration Rules

• 16 nodes per cluster

• 1 Star Coupler per cluster

• Each CPU or HSC counts as a node

• Maximum of 45 meters between Star
Coupler and any node

Preconfizured System:

• New VAX Installation
• Stand alone Applications
• Lower performance than a V AX~lu~ter
• Includes Disk, Tape & Commumcabons
• Fully runnable system

yAXcJuster SBB:

• CPU Configured for a V AXcluster
• Highest Performance

Use new/existing disk & tape

yMS System Buildinz Blocks:

• Replace existing system
Use existing disk & tape

• Use existing communications
• No V AXcluster hardware (except VAX 8800)

11111111111111
11111111111111
11111111111111
11111111111111•

11111111111111
11111111111111
11111111111111
11111111111111

µUAHI I

I :::::!

TA81
ti 1111

I :::::!

TA81

Buildin2 A V AXcluster From Scratch

The target system is a three CPU
V AXcluster including:

1
1
1
2
4
4

200
24

8
4
1

HSC70

VAX 8550 (64MB)
VAX 8700 (96MB)
VAX 8650 (96MB)
HSC70 Storage Controller
SA482 Storage Arrays
RA60Disks
Ethernet Based Local Terminal Connections
Ethernet Based Dialup Terminal Connections
1600/6250 bpi Tape Drives
40 Page/minute Ethernet Based Laser Printers
V AXcluster Console System

::::::::::::::g a
UAH UAH 11111111111111

11111111111111

8700 11111111111111 8650 11111111111111

a a
11111111111111
11111111111111

scoo8

~~~ ~~~ ~m ~m 
11111111 11111111 11111111 11111111 

TA78 TU78 1U78 TA78 
11111111 11111111 11111111 

162 

UAH 
8550 

I :::::! 

TA81 

HSC70 

11IIt1 



Step 1 - Order the Disks, Tapes, and 
HS Cs 

Order; 

4 SA482·AAI AD 2.56 GB Storage Array 

1 RA60-JA/JD (4) RA60 w/4 Hi Cab 

2 TA78-BF/JB Dual Ace Master 

2 TU78·AF·AJ 1600/6250 Slave Drive 

4 TA81-AA/AB PE/GCR 25175 ips for HSC 

2 HSC70-CA/CB Base HSC70 w/VCS interface 

What we have now is this; 

c::iii:ill 
TR81 

~ 

11111111 11111111 11111111 11111111 

TR78 TU78 TU78 TR78 

163 

C]]] 

TR81 



Step 2 - We need to order channels for 
the HSC70's 

How many? .Q.r.du.;, 

Given: 

1 SA482 per Channel 
4 T A81s per Channel 
4 TA 78s per Channel 

Therefore: 

4 SA482s = 4 Disk Channels 
4 RA60s = 1 Disk Channel 
4 T A81s = 1 Tape Channel 
2 TA78s = 1 Tape Channel 

Therefore we need 5 Disk Channels and 2 Tape Channels 

CiQ 
TRBt 

164 

5 
2 

HSCSX-BA Disk Data Channel 
HSCSX-CA Tape Data Channel 

We want to dual port the disks. Therefore we need 
additional channels. 

5 HSCSX-BA Disk Data Channel 

CiQ 
TABt 



Step 3 • Order dual porting cables 
All SA482s, RA60s, TA78s, & TA81s come with one 
BC26V-12 SDI cable 

SDI cables come in 12, 25, 50, & 80 foot lengths 

Note: The disk cabinets are 22 inches wide so there won't 
be much slack left using only 12 foot cables. 
Therefore we will order 25 foot cables for dual 
porting an have Field Service move the cables 
around so that they fit. 

Given: 

4 SA482s = 16 SDI 

4 RA60s = 4SDI 

4 TASls = 0 SDI (TASls can't be dual ported!) 

2 TA78s = 2SDI 

Therefore we need 22 SDI cables 

cu;::;IJ 
TRBI 

165 

.Qnkr..;. 

22 BC26V-25 Shielded SI Cable 25ft 



Step 4 - Order the CPUs 

Order the 8550 V AXcluster SBB: 

1 855CB-AP/AT VAX 8550 Cpu 32MB CI lyr sw Pdup 
8550 CPU 32MB 256k mem FP 
VAX BI channel (one) 
CI Port, BNCIA-20, exp cab 
Ethernet comm interface 
Console Terminal 
One year hardware warranty 
Q2001-UZ VMS Paid Up Lie. 
Q2D05-UZ DECnet F/F Paid Up 

2 MS88-CA 16MB memory exp 
1 !"OCHA-AC/AD VCS fiber conn kit 
Order the 8700 YAXcluster SBB: 

1 871CB-AP/DP 8700 CPU 32MB 256k mem FP,BBU 
VAX Bl Channel 
CI Port, BNCIA-20 
Ethernet comm interface 
Console Terminal 
One year hardware warranty 
Q2001-1P VMS Paid Up Lie. 
Q2D05-1P DECnet F/F Paid Up Lie. 

11111111111111 
11111111111111 
11111111111111 
11111111111111• 

11111111111111 
11111111111111 
11111111111111 
11111111111111 

CEiil 
TR81 

URH 
8700 

::::::::::::::g 
11111111111111 
11111111111111 
11111111111111 
11111111111111 

11111111111111 
11111111111111 

4 MS88-CA 16MB memory exp 
1 FOCHA-AC/ AD VCS fiber conn kit 

Order the 8650 V AXcluster SBB; 

1 865CD-AP 8650 QKOOl-UZ 32MB 120/60 HOST 
8650 CPU 32MB(256k) memory 
Cl780-MA 8600 SBI-CI adapter 
BAll-A UNIBUS EXP 
(2) DDll-DK, DDll-CK 
DELUA-M Ethernet interface 
CK-DELUA-KM (cab kit for DELUA) 
(1) BNCIA-20 
QKOOl-UZ VAX/VMS Lie/warranty 
QKD05-UZ DECnet license 

1 MS86-DA 64MB memory exp 
1 FOCHA-AC/AD VCS fiber conn kit 
1 FP86-AA Floating Point Accelerator 

URH 
8650 

URH 
8550 

c::::;JiJ 
TR81 

' 

166 



Step 5 - Now connect the CPUs to the 
storage subsystem 

Order a Star Coupler and CI Cables: 

1 
2 

SCOOS-AC 
BNCIA-20 

8 Node Star Coupler 
CI Cable Set - 20 meters 

Note: The VAXcluster System Building Blocks all come 
with a set of 20 meter CI Cables. While it is not 
required, it is suggested that all CI cables be the 
same length. 

Note: The HSC70's do .not come with a set of CI 
Cables. 

11111111111111 
111111111-.111 
11111111111111 
11111111111111• 

::::::::::::::a 
11111111111111 
11111111111111 
11111111111111 
11111111111111 

c:!ii:ill 
TA81 

UAH 
8700 11111111111111 

11111111111111 

11111111111111 
11111111111111 

scoo8 

167 

UAH 
8650 

UAH 
8550 



Step 6 - Now order communications 
equipment 

Given: 

200 Local lines@ 8 lines per DECServer-100 

= 25 DECServer-lOOs 

24 Dialup lines - 8 lines per DECServer-200 

~ 

25 DSRVA-AA/ABt 
3 DSRVB-AAIAB 
3 DSRVB-B* 

= 3 DECServer-200s 

8 line term server 
DS200 RS232 8 line termsrv 
Country kit 

t DSRV A-AB needs Country Kit DSRV A·A * 

Step 7 - Order the Laser Printers 

Given: 

160.pages per minute worth of Laser Printing 
equipment needed 

Printserver 40 delivers 40 pages per minute 

4 LPS40-AA/ A3 Printserver 40 

Note: ~he Printerserver 40 base price includes the 
hce~s~s for the printserver software but does 
not mclude the media or documentation 

168 

Step 8 - Order Network Equipment & 
Cables 

Now we need to order network connections and cables for 

the VAX CPUs, the DECServers, and the Printservers 

Note: For this example we will build our network 
around cascaded DELNis and will not use 
Ethernet cable and transceivers. In local mode 
five DELNis connected to a sixth give us 40 
network connections. 

Given: 

3 
25 

3 
4 
1 

VAX CPUs 
DECserver-lOOs 
DECserver-200s 
Printserver 40s 
V AXcluster Console System 

We need 36 network connections. 

6 
6 
5 

32 
4 

DELNI-AA/ AB 
DELNK-A* 
BNE3A-5 
BNE3A-10 
BNE3A-20 

Local Network interconnect 
DELNI country kit (Non US only) 
5 Meter Ethernet cable 
10 meter Ethernet cable 
20 meter Ethernet cable 

Step 9 - Order the V AXcluster Console 
System 

Order the V AXcluster Console System: 

1 DJ-630C2-A2/A3 

5 BN25J-LL 
1 QZD05-UZ 
1 QZD05-H5 
1 QZDOS-95 
1 QZD05-I5 

V AXcluster Console System 
DH-630Q3-F A/F3 MVII system 
QZ002-C5 MVMS Lic,Bin,Doc 
QZ002-H5 MVMS 1-8 User Pd 
QZVOl-UZ VCS lie 
QZVOl-HS VCS bin,doc 
H7133-A Power Supply 

Fiber Optic Cable for FOCHA t 
DECnet-Microvax F/F 
DECnet-Microvax media & Doc 
DECnet-Microvax DPMC 
DECnet-Microvax Installation 

t For non-US orders country kits are needed, two for 
DJ-630Cl-A3 and one for each FOCHA-AD 



11111111111111 
11111111111111 
11111111111111 
u111111111111• 

11111111111111 
11111111111111 
11111111111111 
tlllllllllllll 

µURHll 

URH 
8700 

::::::::::::::g .............. 
llllllUllllH 
11111111111111 
11111111111111 

169 

0 

DELNI 

URH 
8650 

URH 
8550 



Step 10 - Now Order the Software: 

We want to order the following software 

products: 

VAX/VMS VAXINFOI 

VAXset DECnet Full Function 

VAX Volume Shadowing 

VAX Performance Advisor 

VAXnotes 

Pascal 

Fortran 

Cobol 

DECserver-200 DECserver-100 

Software Options 

1 & 2 Not normally used except as subparts in BOMs 

3 Software Type· Normally "Q" 

4 Processor Type 

5-7 

8 

9 

2 = 8550/8700/8974/8978 
K = 8600/8650 

Product Identifier (100 = Fortran) 

License & Service 

Media 

J =Period Payment (Bl machines only) 
U = Single use license 
Q = Single use license for V AXcluster node 
B = Startup Package Level ill 
7 = Startup Package Level II 
5 = Startup Package Level I 
I= Installation Service 
9 = DECsupport 
8 =Basic 
3 = Self maintenance 
K = Additional Update 
H = Binaries & Documentation 
G = Documentation only 

M = 1600 BPI Tape 
5=TK50 
Z=None 

170 

Example: 

Fortran for an 8700 CPU with: 

(2) 

Installation 
DECservice 
Paid Up License 
2 Copies of Documentation 

& Doc Service 

Q2100-UZ VAX FORTRAN w/Warranty 

Q2100·IZ 
Q2100-9M 
Q2100-GZ 
Q2100·HM 
Q2100-KZ 

Installation 
DECservice 
Documentation 
Media & Documentation 
Documentation Services 

Example: 

Fortran for an 8700 CPU with: 

(2) 

Installation 
DECservice 
Periodic Payment License 
2 Copies of Documentation 

Q2100-1B 
Q2100-JP 

Q2100-IZ 
Q2100-9M 
Q2100-GZ 
Q2100-HM 
Q2100-KZ 

& Doc Service 

VAX FORTRAN Init Lie Charge 
VAX FORTRAN Pri-PPL 

Installation 
DECservice 
Documentation 
Media & Documentation 
Documentation· Services 



VMS and DECnet licenses are included in 
system building blocks 

VAX Volume Shadowin2 

Q2AB2-UZ 
Q2AB2-QZ 
QKAB2-QZ 

VAX Volume Shadowing lie w/warr 
VAX Volume Shadowing vaxc lie w/warr 
VAX Volume Shadowing vaxc lie w/warr 

VAX Performance Advisor 

Q2ZCC-UZ 
Q2ZCC-QZ 
QKZCC-QZ 

VAX Performance Advisor lie w/warr 
VAX Performance Advisor vaxc lie w/warr 
VAX Performance Advisor vaxc lie w/warr 

VAXset 

V AXset consists of the following 
products: 

• VAX Language Sensitive Editor (LSE) 

• Source Code Analyzer (SCA) 

• VAX Performance and Coverage 
Analyzer (PCA) 

• VAXDEC/CMS 

• VAX DEC/MMS 

• VAX DEC/Test Manager 

Q2965-UZ 
Q2965-QZ 
QK965-QZ 

V AXset License w/warr 
V AXset vaxc lie w/warr 
V AXset vaxc lie w/warr 

VAXinfo I 

V AXinf o I consists of the following 
products: 

• VAX Common Data Dictionary (CDD) 
• VAX TDMS 
• VAXDATATRIEVE 
• VAX Rdb/VMS 

Q2740-UZ 
Q2740-QZ 
QK740-QZ 

V AXinfo I license w/warr 
V AXinfo I vaxc lie w/warr 
V AXinfo I vaxc lie w/warr 

Now for the rest of the licenses: 

Fortran 
Q2100-UZ 
Q2100-QZ 
QKlOO-QZ 

VAX FORTRAN license w/warr 
VAX FORTRAN vaxc lie w/warr 
VAX FORTRAN vaxc lie w/warr 

171 

Cobol 
Q2099-UZ 
Q2099-QZ 
QK099-QZ 

Pascal 
Q2126-UZ 
Q2126-QZ 
QK126-QZ 

VAXnotes 
Q2960-UZ 
Q2960-QZ 
QK960-QZ 

VAX COBOL license w/warr 
VAX COBOL vaxc lie w/warr 
VAX COBOL vaxc lie w/warr 

VAX PAS CAL license w/warr 
VAX PAS CAL vaxc lie w/warr 
VAX PAS CAL vaxc lie w/warr 

V AXnotes license w/warr 
V AXnotes vaxc lie w/warr 
V AXnotes vaxc lie w/warr 

DECserver-200 
(3) Q2Z06-UZ DECserver-200 lie w/warr 

DECserver-100 
(25) Q2925-UZ DECserver-100 lie w/warr 

Step 11 - Now Order Installation 
Services 

Q2025-BM New V AXcluster SPS lvl III Base Node 
2 Q2025-5Z New V AXcluster SPS lvl III 8550/8700 

QK025-5Z New V AXcluster SPS lvl III 8650 

V AXcluster System 
DECsupport Level III Startup Packa2e 

These services cover all Digital eligible 

licensed software on all VAX nodes 

within the cluster for a fixed price. 

(there are some exceptions) The services 

consist of the following components: 

• Critical advisory and scheduled preventive support 

• Telephone Support Access to a V AXcluster support team 
for cluster specific problems 

• Access to Digital Software Information Network (DSIN) 

• A special VAXcluster System Newsletter/DISPATCH 

• One set of software media and multiple copies of 
documentation kits for all licensed product updates 

• Access to the Software Problem Reporting (SPR) system 

• V AXcluster software installation and DECstart 

• One year of V AXcluster DECsupport 

• A DECPLAN training account 



Step 12 - Now Order the Media 

Now we have purchased the needed licenses for our layered 

products. This means we have the right to run them on our 

VAXcluster system. We have ordered the rights to run the 

software. We must now order the 'H' kit which is media 

and documentation: 

Q2001-HM 
Q2D05-HM 
Q2ZCC-HM 
Q2965-HM 
Q2740-HM 
Q2100-HM 
Q2099-HM 
Q2126-HM 
Q2960-HM 
Q2Z06-HM 
Q2925-HM 
QX926-H7 
QL798-HM 

(2) QL797-HM 

VAX/VMS media and documentation 
DECnet Full Function media and doc 
VAX Performance Advisor media/doc 
V AXset media/doc 
V AXinfo I media/doc 
VAX FORTRAN media/doc 
VAX COBOL media/doc 
VAX PASCAL media/doc 
V AXnotes media/doc 
DECserver-200 media/doc 
DECserver-100 media/doc 
HSC70 media/doc 
Support Host Software 
VAX/VMS client software 

These are no cost because of the V AXcluster Level m SPS 

that was ordered but must still be ordered so that we get 

the correct media and documentation for our layered 

products. 

Now we have our system 

configured and we have all the 

media and documentation. We 

installation of products and 

properly 

licences, 

also get 

DEC start 
which will install all and customize our 

startup files for us. We need a training 

plan to spend money in the DECPLAN 

account and we are finished. 

172 



DECSYSTEM-20 TECHNICAL UPDATE 

Mark Pratt 

Tops-20 Monitor Group 

TOPS-20 AUTOPATCH STATUS 

0 

0 

0 

Tape 15 Shipped 16 Mar 87 

Tape 16 Planned 21 Aug 87 

See Buzz Hamilton in booth 

TOPS-20 DOCUMENTATION STATUS 

Notebook update # 28 being 
distributed now. Contains 

0 

0 

FORTRAN vll documentation 

Autopatch tape 16 will include 
new documentation for DDT 

MAJOR GOALS OF TOPS-20 RELEASE 7 

MAINTAINABILITY / RELIABILITY 

Dump on Bugchk 

* CFS Node Joining Message 

Auto-Answer Startup 

* Cluster GALAXY 

EXEC Cleanup 

* Increase # of Structures 

Offline Structures 

* Cluster Dump 

* project which meets multiple goals 

Proceedings of the Digital Equipment Computer Users Society 

COMPLETION OF CFS 

Cluster ENQ/DEQ 

* Cluster GALAXY 

Cluster Data Gathering 

* Increase # of Structures 

Login Structure 

* CFS Node Joining Message 

* Cluster Dump 

* project which meets multiple goals 

NEW FEATURES 

Printer Support (4 projects) 

Command Editor 

EXEC 

Recognition 

Unprivileged OPR 

* Cluster GALAXY 

PMOVE/PMOVEM use in monitor 

* project which meets multiple goals 

DUMP ON BUGCHK PROJECT 

o Continuable dump of BUGCHK/INFs 

o Multiple dump structures 

0 DOBOPR program 

o DOB% JSYS 

o Faster BOOT 

173 Nashville, TN- 1987 



CLUSTER DUMP PROJECT 

o Takes a simultaneous crash dump 
of all systems in the cluster 

o Invoked at console or can be 
invoked from within the monitor 

o Broadcasts a message to all 
systems to take a cluster dump 

o Attempts to dump entire cluster 
however some systems may not 
get the message 

o Digital use only 

o Not documented 

OFFLINE STRUCTURES PROJECT 

0 Automatically prevents new 
access to structures which 
have gone off line 

0 Helps to prevent hung jobs 
by not allowing new IORBs 
to be queued 

0 Enabling and timeout period 
is controlled by SETSPD 

0 Does not unhang already hung 
jobs 

PMOVE/PMOVEM USE IN MONITOR 

o PMOVE/PMOVEM - Physical memory 
move instructions 

o Helps CI/NI performance but 
actual monitor performance 
hasn't been measured 

o 5 to 7 times faster than 
monitor routines 

o Microcode 442 which went out on 
an update tape last year 

o Optionaly utilized by AP tape 
15 monitor 

o Required by Release 7 

174 

CLUSTER ENQ/DEQ PROJECT 

o Logically extends ENQ/DEQ to 
cluster environment 

o Must explicitly use new ENQ 
function to enable 

o Once enabled, becomes permanent 
for that process only 

o Local ENQs work as they do in 6.1 

o Available for customer applications 
and third party software, however 
there are no plans to upgrade 
Digital products 

LOGIN STRUCTURE PROJECT 

0 

0 

0 

0 

0 

0 

0 

Allows common PS: to be shared by 
systems within the cluster 

BS: structure - System specific 
swapping, startup procedures, 
files, etc 

Any CI or MASSBUS disk which is 
available to become PS: 

Based on Stanford changes but this 
is not NON-PS: login 

Some utilities will change 

Anything which writes to common 
areas may have to change 

Enabled thru SETSPD 

CLUSTER DATA GATHERING PROJECT 

o Remote access to monitor information 
of other systems within the cluster 

o Only informational JSYSes simulated 

o Cluster SYSTAT 

o New INFO% JSYS 

o General purpose monitor message 
SY SAP 

o Cluster-wide access for TTMSG 

o Enabled thru SETSPD except for 
Cluster GALAXY functions 



INCREASE # OF STRUCTURES PROJECT 

o Allows up to 64 structures 

CFS NODE JOINING MESSAGE 

o Console messages are output when 
a node cannot join the cluster 

AUTO-ANSWER STARTUP PROJECT 

o Automatic response to "Why Reload" 
and "Run CHECKD" questions if no 
operator has responded 

o Defaults to "Other" and "No" 
with a comment "Question timeout" 

EXEC 

o Fix cosmetic bugs 

o Fix known problems 

o Fix documentation conflicts 

o Some new minor features 

o New GALAXY support 

COMMAND EDITOR PROJECT 

o Command journaling in monitor 

o Editor code exists in the EXEC 

o VMS style command editing will be 
supported 

RECOGNITION PROJECT 

o Recognizes filespecs, keywords, 
and switches to the end of 
ambiguity 

o Provides better question mark help 

o Does not work in directory field 

175 

CLUSTER GALAXY PROJECT 

o Simplifies dismounting of 
structures within the cluster 

o Extensions to the SHOW commands 
to return remote information 

o Cluster SEND-all 

o Compile time option 

UNPRIVILEGED OPR PROJECT 

o Allows non-Wheel/Oper users 
to perform certain OPR commands 

o Controlled by a privileged OPR 
command and requires new priv bit 

PRINTER SUPPORT PROJECT 

o We are investigating remote 
printing services for: 

o LAT 5 .1 

o within Tops-20 cluster 

o to VAXes 

o to terminals 

FIELD TEST 

o January 88 

o Looking for FT sites, let us know 
by August 87 





TOPS-10/20 MS/MX INTERNALS 

Mark Pratt 

Tops-20 Monitor Group 

MS/MX BACKGROUND INFO 

o MS creates a .MAI file 

o MS sends IPCF packet to MX 

o MX knows local node names 
and Decnet node names 

o MX validates the addresses 

o MX creates an .ENV file and 
queues work requests 

o MX sends response back to MS 

HOW MS/MX HANDLES ARPANET 

o MS sends IPCF packet to MX 

o MX validates the addresses 
and kicks back unknown nodes 

o MX sends response back to MS 

o MS checks response and looks 
for addresses which have the 
"Don't know this node" error 

o MS passes addresses thru 
special routines to identify 
network 

o Address is found to be Arpa 
name and the message gets 
queued to MMAILR 

Proceedings of the Digital Equipment Computer Users Society 177 

MX SENDERS/LISTENERS 

o MX maintains a simple round 
robin scheduler 

o Tasks which get scheduled are: 

0 Dec net sender 

0 Dec net listeners (many, both 
SMTP and MAIL-11) 

0 Local Mail sender 

0 Local Mail listener 
( IPCF handler) 

NEW MAIL SENDERS/LISTENERS 

o Currently, all senders and 
listeners use common modules 
called NMXNET and MXLCL to do 
I/0 and scheduler interfacing 

o New Decnet mail protocols are 
no problem. Non-Decnet mail 
protocols need NMXNET/MXLCL 
equivalents 

o NETTAB contains network data 
structures. Local and Decnet 
are set up now along with some 
non-used Arpa data structures 

Nashville, TN- 1987 





VMS Internals for TOPS-10/ 
20 System Programmers 

David Wager 

Digital Equipment Corporation 

Marlboro, MA 

ABSTRACT 

VMS is a virtual system, and has, relative to 
TOPS-10/20, more modularity of code, more 
flexibility in application design (with some ex­
ceptions), more features (depending on your 
point of view), and certainly more code. These 
differences come with a price, however. VMS is 
not as internally efficient across all loads as a 
highly customized operating system like TOPS. 
Software installation and on-line O/S debugging 
are more difficult. -

INTRODUCTION 

This paper presents an overview of VMS operating 
system internals for the experienced systems pro­
grammer. It assumes that the reader has an in­
depth knowledge of the TOPS-10 or TOPS-20 op­
erating system. and focuses on the way familiar 
operating system functions such as job scheduling, 
memory management and 1/0 processing are 
handled in VMS. 

This paper is primarily figure-oriented. It is much 
easier to discuss operating system internals via 
diagrams. Each figure contains text briefly describ­
ing the particular operating system feature or com­
ponent. Specific items presented include the 
following: 

Proceedings of the D1gi1a/ Equipment Computer Users Society 179 

invoking system code 
hardware and software priority 
operating system access modes and 
components 
entry paths into the kernel 
actions taken on hardware clock interrupt 
actions taken on device timeout check 
actions taken on swapper wakeup 
system event reporting 
page fault handling 
RMS data transfer 
$QIO data transfer 
process data structures 
virtual address space 
synchronization techniques 
AST delivery 
exception and interrupt dispatching 
system service dispatching 
memory allocation 
process states and transitions 
process creation 
image formation. layout. and installation 
working sets 
XQPs and ACPs 
1/0 database 
V AXcluster components 

These figures can be thought of as supple­
mentary material to Digital's VAX/VMS Internals 
and Data Structures (Lawrence J. Kenah and 
Simon F. Bate, Digital Press, 1984). -

Nashl'ille, TN - 1987 



INVOKING SYSTEM CODE 

EVENT .... TABLE~ EXECUTED CODE 

Page 
Fau1t 

:Interrupt 

• 
• 
• 

Pointer to 
Page Fau11: 

Code 

Pointer to 
Schedu1er 

Code 

• 
• 
• 

VAX/VMS driven by interrupts and exceptions 

Page 
Fau1t 
Code 

Sched­
u1 er 
Code 

On interrupt or exception, hardware vectors to correct 
code 

Example, Page Fault 

- Page Fault occurs 
- Hardware vectors through table 
- Page Fault code executes 

180 



TWO TYPES OF PRIORITY 

:IPL 
:21 i Requested 

by 
Hardware 

16 

15 

1 

0 

Requested 
by 
So-Ftware 

HARDWARE 
MAINTAINED 

SOFTWARE 
MAINTAINED 

181 

16 

15 

0 

Rea1 Ti.Me 
Process 

NorMa1 
Process 



0 CODE 

l PC 
..... .... 

• I I I PLI 

PSL 

0 
PC 

PSL 

see 

• 
ADDR-t-,... NEW PC 

NEW 
PC ~••p~i--------~ 

• l 
REI 

• CODE 

PC__.,~ l 

182 

User program being executed. 
PC = address of next instruction 
to be executed. 
PSL = general status information . 

Interrupt occurs. Associated IPL 
must be greater than current IPL 
in PSL. else interrupt not serviced. 

Hardware saves current PC and PSL 
on Stack. 

Hardware indexes into table of 
service routine addresses to get 
new PC. and builds new PSL 

Inter·rupt service routine executes 
at new IPL. 

At end. interrupt dismissed with 
an REI instruction (making sure 
old PC and PSL are at top of the 
Stack.) 

REI 

- Pops PC. PSL from Stack 
- Checks PSL 
- Moves PC. PSL to CPU r·egisters 
- Transfer·s control to PC 

Interrupted program continues 
execution. 



ACCESS MODES AND COMPONENTS 

RuntiMe 
Library CLI 

User 
!Mages 

PrograM 
DeuelopMent 
Tools 

RMS 

1/0 
Scheduling 
meMory K 
manageMent 

Access Modes and Components 

E 

Kernel of the operating system is protected from user by 
several layers of access protection 

s 

User normally accesses protected code and data through the 
Command Language Interpreter (CU). Record Management 
Services (RMS). and system services. 

System services - routines in oper·ating system kernel that 
may be called by the user by means of a well-defined interface. 

183 

u 



External Device 
~ Hardware Interrupts 

Translation-not-valid 
Fault "-.. 
(Page Fault) ~ Device Driver 

~Fork Processing 
Memory 
Management 

1/0 Subsystem Software Int. 

> 
Rescheduling f 
Software Int. 

Hardware Clock 
Interrupt 

•Device Drivers 

•Post­
Processing 
routines 

Software Timer 
Interrupt 

1/0 Post processing 
Software Interrupt 

AST Delivery 
Software Interrupt 

Entry Paths into VMS Kernel 
Memory Management 

• Brings virtual pages into memory 

Process and Time Management 

• Saves and restores context of process 
• Updates system time 
e Checks timer queue entries (TQES) ~ quantum end 
• Causes events to be processed 

1/0 Subsystem 

• Reads/writes device 
• Finishes 1/0 processing 

184 



INTERACTION OF VMS COMPONENTS 
Hard~are Clock Interrupt 

Process A Process B Process C 
Per Process 

space. 
Process 

Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

1. Clock 

SWAPPER 

DEVICE 
DRIVER 

ERRl'MT 

CLOCK 
INTERRUPT 
SERVICE 
ROUTINE 

TIMER CODE 

© Event 
JSB 

- Updates system time and quantum field 
- Checks first timer queue entry 

Z. Timer 
- Checks for quantum end 
- Causes events to be processed 

3. Repot't System Event 
- Changes process state 
- May request scheduler interrupt 

4. Scheduler 
- Current <-- > Computable 

5. Swapper· 
- lnswaps computable process 

6. Scheduled user program runs 

185 

USER 
PROGRAM 

Context 
Switch 
REI 

REPORT 
SYSTEM 
EVENT 



PERIODIC CHECK FOR DEVICE TIMEOUT 

Process A Process B Process C 
Per Process 

space. 
Process 

Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

SWAPPER 

DEVICE 
DRIVER 

Ha.rdw.are Clocl' 
IPL 24 

ERRI'MT 

IPL 20-23 

CLOCK 
INTERRUPT 

SERVICE 
ROUTINE 

1. Hardware Clock Intern .. 1pt 

TIMER CODE 

@ 

® Event 
JSB 

USER 
PROGRAM 

Context 
Switch 
REI 

SCHEDULER 
INTERRUPT 
SERVICE 
ROUTINE 

REPORT 
SYSTEM 
EVENT 

l. Once ever·y second, a timer· queue entry becomes due that 
causes a system subroutine to execute. 

3. This system subroutine checks for device timeouts, calls 
ddvers to handle timeouts. 

186 



PERIODIC WAKE OF SWAPPER, ERROR LOGGER 

Per Process 
space. 

Process 
Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

Process A 

SWAPPER 

DEVICE 
DRIVER 

Hardware Cloe 

Process B 

ERRFMT 

device 

TIMER CODE 

CLO Ck G 
INTERRUPT 
SERVICE 
ROUTINE 

Process C 

USER 
PROGRAM 

Context 
Switch 
REI 

REPORT 
SYSTEM 
EVENT 

IPL 24 Event 
JSB 

4. The same system subroutine can wake the swapper process 
and the ert·or logger process. 

5. Scheduler interrupt is requested. 

6. 
} Swapper and error logger will eventually run. 

7. 

187 



SYSTEM EVENT REPORTING 

Per Process 
space. 

Process 
Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

Process A 
USER 

PROGRAM A 

PAGER 

Process B 
USER 

PROGRAM B 

Timer ~ 
l/O Completion 

Set Event Flag 
Wake 
Resuroe 

REPORT 
SYSTEM 
EVENT 

Process C 

SWAPPER 
CODE 

SCHEDULER 
INTERRUPT 
SERVICE 
ROUTINE 

1. Event (Timer, I/O completion, etc) happens and is noted 
by RSE. 

2. RSE sends a WAKE to the Swapper. 

3. Swapper inswaps process. 

4. RSE notes completion of inswap and requests Scheduler. 

5. Process is scheduled to run. 

188 



PAGE FAULT HANDLING 

Per Process 
space. 

Process 
Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

Process A 

PAGER 

1/0 Corripletion 

Process B 
USER 

PROGRAM B 

REPORT 
SYSTEM 
EVENT 

Process c 

SWAPPER 
CODE 

SCHEDULER 
INTERRUPT 
SERVICE 
ROUTINE 

1. User process generates a "Translation not Valid" page 
fault. 

2. Pager notes page faults and resolves. 

3. Upon I/O completion for page fault, RSE is notified. 

4. RSE requests scheduling interrupt for user process. 

5. User process is made current and resumes. 

189 



DATA TRANSFER USING RMS 

Per Process 
space. 

Process 
Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

Process A 

RMS 
ROUTINE 

DEVICE 
DRIVER 

$QIO 
SYSTEM 
SERVICE 

1. User process executes an RMS call. 

Z. RMS is invoked, in turn invokes $QIO 
system service 

FDT 
ROUTINE 

3. $QIO invokes FDT {Function Decision Table) routines 
{extensions to $010). 

4. FDT routine invokes the appropriate device driver. 

190 



DATA TRANSFER USING $010 

Per Process 
space. 

Process 
Context 

System 
Space. 

Process 
Context. 

System 
Space. 

System 
Context. 

FORK 
DISPATCH 

CODE 

USER IMAGE 

$010 
SYSTEM 
SERVICE 

IPL 8, 11 

Set Event Flag 
AST 

FDT 
ROUTINE 

AST delivery 
@IPL 2 

1/0 
POST 

PROCESS IN 
ROUTINE 

INTERRUPT 
DISPATCH 

CODE 
IPL 20-23 Device 

Interrupt 
IPL 20-23 

191 



PROCESS DATA STRUCTURES OVERVIEW 

J:N 

so SPACE ~ 
···-········· 

·············:- -.. --.. ,.._ ____ __. 

...... 
........ 

I-' 

.:JOB SOFTi'IARE 
FORMATJ:ON PROCESS 

BLOCK CONTROL 
(.:JJ:B> BLOCK 

<PCB> 

PO PAGE 
TABLE 

• t 
P1 PAGE 

TABLE 

PROCESS 
HEADER <PHD> 

HARDi'IARE 
PROCESS 
CONTROL 
BLOCK 

(From Non-paged pool) (from dynamic pool at boot) 

• Software Process Control Block (PCB) 

- Holds process-specific data that must always be available 
(for example, process state, priority). 

- Contains pointers to other process data structures. 
- Not paged, Not swapped 

• Process Header CPHD) 

- Contains process memory management information. 
- Contains hardware process control block. 
- May be outswapped 

• Hardware Process Control Block 

- Contains saved hardware context 

• Job Information Block 

- Keeps track of resources for a detached process and all 
subprocesses. 

192 



SOFTWARE PROCESS CONTROL BLOCK (PCB) 

STATE QUEUE FORWARD LINK 

.... ~STATE QUEUE BACKWARD LINK 
~ 

I TYPE J SIZE 

SCHEDULING 
INFORMATION 

RESOURCES 

POINTERS TO OTHER 
DATA STRUCTURES 

LISTHEADS 

NAMES AND PRIVILEGES 

193 

....Ill.. ,...-
VMS Standard queue 
headers 

Size of nonpaged 
pool allocation 

Priority 
Status 
In/outswap ped 
State 

1/0 limits 
Subprocess count 

Process Header .. PCB .. 
JIB .. Event Flag 
Clusters 

AST Queue 
Lock Queue 

PIO 
Login UIC 
Privilege Mask 



PROCESS HEADER (PHD) 
JOB INFORMATION BLOCK 

AND 
(JIB) 

PHD FIXED AREA 

WORKING SET PAGE CATALOG 

IMAGE FILE IMAGE SECTION 
LOCATION TABLE 

VIRTUAL TO PHYSICAL 
ADDRESS MAPPING 

JIB 
STACK POINTERS 

GENERAL PURPOSE REGISTERS 

OTHER REGISTERS 
STATUS INFORMATION 

MEMORY MANAGEMENT 
REGISTERS 

194 

Privilege Mask 
Hardware Process Control 
Block 

Working Set list (WSL) 

Process Section Table {PST) 

PO page table 

Pl page table 

Kernel stack pointer 
Executive stack pointer 
Supervisor stack pointer 
User stack pointer 

RO. RI. ...• RU 

Argument Pointer (AP) 
Frame Pointer (FP) 
Program Counter (PC) 
Processor Status Longword (PSL) 

PO. Pl Base Registers 
PO. Pl Length Registers 



VIRTUAL ADDRESS SPACE OVERVIEW 

PO 

P.1 

so 

Sepe rate 
/ Mapping for 

Each Process 

_( 
One Mapping 
for a .]_ .]_ 
Processes 

PROCESS VIRTUAL ADDRESS SPACE 

PO Image, Run-time Library 
Debugger 

P.1 ConuT1and Language Interpreter, 
stacks, file system XQP, I/O 
data. areas 

SO System ser~ices, RMS, other 
e~ecuti~e code and data 

195 



SO VIRTUAL ADDRESS SPACE CONTENTS 

SYSTEM SERVICE VECTORS 

EXECUTIVE CODE AND DATA 

FILE HANDLING ROUTINES 
ERROR MESSAGE TEXT 
DESCRIPTION OF PAGES IN 
PHYSICAL MEMORY 
SHARED DYNAMIC DATA 
STRUCTURES 

SHARED DYNAMIC DATA 
STRUCTURES, DRIVERS 

STACI< USED lllHEN 
INTERRUPTS OCCUR 

TABLE FOR VECTORING BY 
HARDWARE TO SERVICE 
ROUTINES 
PROCESS HEADER STORAGE 

VALID SYSTEM VIRTUAL 
ADDRESS LOCATIONS 

PAGE LOCATION IN UA SPACE 
GLOBAL PAGE LOCATIONS 

196 

System Service code, 
Scheduler, 
Report System Event (RSE) 

RMS.EXE, $GET, $PUT, etc. 

SYSMSG.EXE (pageable) 

PFH Database (used to map tht·u) 

Paged Pool 
Global Section descriptors 

Hon-paged Pool 
Software process contt·ol blocks 
Unit control blocks 
Lookaside lists 
1/0 request packets 
Timer queue elements 

Interrupt stack 

System Control Block (SCB) 

Balance Slots (balance set 
implementation) 

System Headet· 
- System working set list 
- Global section table 

System Page Table 

Global Page Table 



PO VIRTUAL ADDRESS SPACE LAYOUT 

Native Mode IMage 
------------------. 0 

COMpatibility Mode IMage 
0 

No Access page 
llT Compatibility 

Mode Image 

Native Mode Image 

Not mapped 

Run Time Libraries RSX-11M AME 

Debugger Native Mode Image 

not mapped 

Traceback 

POLR pages 

---------------- 3FFFFFFF 

197 

End of Comp. 
Mode image 

177777 = FFFF 

POLR pages 

3HEHH 



Pl VIRTUAL ADDRESS SPACE LAYOUT 
XMag e 
Speci­
-Fic 

Process 

s 
p 
e 
c 
i 
-F 
i 
c 

Static 

USER STACK 
per Process Message Section(s) 

CLI Symbol Table 

CLI Image 

Files - 11 XQP 

Image I/O Segment 

Process I/O Segment 

Process Allocation Region 

Channel Control Block Table 

Pl Window to Process Header 

Process 1/0 Segment 

Per Process Common Area 
Compatibility Mode Data page 

Security Auditing Impure Data 

Image Activator Context 

Generic CLI Data Pages 

Image Activator Scratch Pages 

Debugger Context 

User System service/Msg vector! 
Image Header Buffer 

Kernel Stack 
Executive Stack 
Supervisor Stack 
~ystem ~ervice Uectors 

Pl Pointer Page 

Debugger Symbol Table 

198 

40000000 

CTL$GL_CTLBASVA 

CTL$AG_CLIMAGE 

CTL$GL_F11BXQP 

PIO$GW_PIOIMPA+ 
IMP$L_IOSEGADDR 

CTL$GL_ALLOCREG 

CTL$GL_CCBBASE 

CTL$GL_FMLH 

CTL$GL_CMCNTX 

NSA$T_IDT 

CTL$GL_IAFLINK 
CTL$AL_CLICALBK 

CTL$A_DISPVEC 
MMG$GL_IMGHDRBUF 
CTL$AL_STACKLIM 

PlSYSVECTORS 
CTL$GL_VECTORS 

7FFFFFFF 



HARDWARE CONTEXT 

-------------------- ,, 
HARDWARE PCB '',, 

-------------------- '~ 
WORKING SET LIST 

PROCESS SECTION 
TABLE 

ACCOUNTING INFO. 

PO PAGE TABLE 

(VIRTUAL 
ADDRESS SPACE 

DESCRIPTION) 

Pl PAGE TABLE 

199 

,, 

PR$_PCBB 

'..,__~~~~~~~~~~~..., 

GENERAL REGISTERS 

PC, PSL 

PER PROCESS STACK 
POINTERS 

MEMORY MANAGEMENT 
REGISTERS 

ASTLVL 



SYNCHRONIZING SYSTEM EVENTS 
Hard~are Interrupts and the SCB 

EXCEPTIONS 

PROCESSOR FAULTS 

SOFTWARE INTERRUPTS 

CLOCK AND CONSOLE 

DEVICE INTERRUPTS 

SYSTEM 
CONRTOL 
BLOCK 

PR$_SCBB 

...... ...... 
~ ....... 

EXE$GL_SCB 

System Control Block (SCB) - physically contiguous area 
of system space 

Hardware register PR$_SCBB contains physical address of 
the SCB 

Hardware gets service routine address from longword in 
the SCB 

Size of the SCB is CPU specific 

200 



AST DELIVERY 

SPECIAL 
K AST 

KERNEL 
AST 

~KERNEL 

EXEC 
AST 

Delivery of an AST depends on: 

SUPER 
AST 

- The current access mode of the process 

USER 
AST 

- Whether the access mode of the AST is enabled 
- Whether an AST is already active in the same 

access mode 

Certain system ASTs have special precedence (special 
kernel ASTs) 

- 1/0 completion 
- $GETJPI on another process 

REI checks for deliverability of pending ASTs 

Deliverability of ASTs is recorded in ASTLVL 

ASTLVL contains 
- Access mode of first deliverable AST in queue 

(for example, ASTLVL = 1 for executive mode AST) 

- Or, the value 4 if: 

1. There are no ASTs in the queue 
2. AST delivery is disabled 
3. An AST is active in the same access mode 

201 



HARDWARE INTERRUPTS 

FUNCTION VALUE NAME 

POWER FAIL INTERRUPT 30 (None) 

CLOCK INTERRUPTS 24 IPL$HWCLK 

* DEVICE INTERRUPTS 20 - 23 UCB$B_DIPL 

* Offset into Device's Unit Control Block (UCB) 

* 

• Interrupt Priority Levels CIPLs) above 15 reserved 
for Hardware Interrupts 

• Peripheral devices interrupt at IPL 20 to 23 
• IPL$_xxxx - IPL level (see $IPLDEF) 

RAISE 
TO BLOCK IPL TO NAME 

ALL INTERRUPTS 31 IPL$_POWER 

CLOCK INTERRUPTS 24 IPL$_HWCLK 

DEVICE INTERRUPTS 20 - 23 UCB$B_DIP{ 

ACCESS TO SCHEDULER'S 8 IPL$SYNCH 
DATA STRUCTURES 

DELIVERY OF ASTs 2 IPL$ASTDEL 
(prevent process 
deletion) 

Offset into Device's Unit Control Block (UCB) 

•Can use IPL to block interrupt servicing 
• For example, to block AST delivery, raise to IPL$_ASTDEL 
• IPL$_SYNCH used to coordinate access to the scheduler's 

database 

202 



SOFTWARE INTERRUPTS AND IPL 

FUNCTION VALUE NAME 

(unused) 15 - 12 
FORK DISPATCHING 11 IPL$_MAILBOX 
FORK DISPATCHING 10 
FORK DISPATCHING 9 
FORK DISPATCHING 8 IPL$_TIMER 

SOFTWARE TIMER 7 IPL$_SYNCH 
INTERRUPT 
FORK DISPATCHING 6 IPL$_TIMERFORK 

USED TO ENTER XDELTA 5 
1/0 POST-PROCESSING 4 IPL$_IOPOST 

..................•....• .....•..... ·······-············ 
RESCHEDULING INTERRUPT 3 IPL$.SCHED 
AST DELIVERY INTERRUPT 2 IPL$.ASTDEL 

{unused) 1 • 0 

Interrupt Priority Levels (IPLs) 1 through 15 are 
reserved for software interrupts. 

Driver fork level stored at offset UCB$B_FIPL in 
UCB (see $UCBDEF) 

203 



23 

IPL 

a 

7 

USING IPL to 
SYNCHRONIZE SYSTEM ROUTINES 

• DRIVER 

• • • 0 lsw Timer! lsw Timer I • I DRIVER I 

lsw Timerl lsw Timerl 

T :i n1 e 

1. So~tware tiMer invoked at XPL$_TXMERFORK 
CXPL 7) 

2. So~tware tiMer raises to XPL$_SYMCH 
CXPL B> to synchronize 

3. Device interrupt - driver code at IPL 23 
Driver requests interrupt at IPL B and 
issues an REX 

4. So~tware tiMer reSUMeS at XPL$_SYNCH 

5. So~tware tiMer 1owers IPL back to 
XPL$_TXMERFORK 

6. Driver code executes at IPL B 

204 



CLOCKS AND TIMER SERVICES 

Ti~er Queue (~rdered by e~pir~ti~n) 

EXE$GL_TQFL 

I PRxxx$_ TODR 
.._______ (xxx=number associated with processor type) 

_l ____ l PRXXX$_HICR <Next Interval Count) 

I PRXXX$_ ICR <Interval Count) 

205 



AST DELIVERY SEQUENCE 
Exception/Interrupt 
Service Routine 
(i. e. Scheduler) 
• • • 
REI 

a c d No AST 
~~~~~~~~ Delivered 

IPL Z INT
Generated

SCH$ASTDEL:

(Recompute ASTLVL)
REI

Rule

a) ASTLVL > new access mode

b) ASTLVL < new access mode

c) Interrupt stact active

d) Final IPL > 2

Special K
AST
IPL=2

User
AST
IPL=O

E::x: a.mp .1 e

User AST (3) > kernel access
mode (3)

206

Super AST (2) < super access
mode (2)

(IS) bit set in PSL

Process code a elevated IPLC>Z)

N
0
-.J

EXCEPTION AND INTERRUPT DISPATCHING

(Soft..,,.,,.,a.:re)
detected

G)

(Hard~are~
detected Exception

Modules

0 0 s ·I 01
c

• I B • •

_..
Exception
Dispatcher

LIB$SIGNAL

., Ill-I 0 G)

.. ...
Search Routine

..
Condition
Handlers

4

_..
....-1 A. PSL, PC and 0 to 2 longwords pushed onto stack

8. Exceptions and interrupts always handled by VMS
(for example a page fault)

C. Exceptions that user may handle (access violation)
D. These exception routines complete the signal array by

pushing "SS$exception_name" and "H" (total of
longwords in signal array) onto the stack

~
•I E. Detected and signaled by executive ·--------.... " . . F. The exception dispatcher:

- builds mechanism array and argument
- invokes the search routine, searching:

- Primary exception
- Secondary exception 0 • . ~
- Call frames
- Last Chance

G. Alternate Condition handling mechanism
- Signalled by RTL or user calling LIB$LIBRARY
- Search routine in same or·der as F above.

CHMx:

REI:

ACCESS MODE TRANSITIONS

KERNEL

USER
Only vay to move from less privileged to more privileged
access modes

Only vay to move from more privileged to less privileged
access modes

Checks for illegal or unauthorized transitions

208

N
0

'°

PATH TO SYSTEM SERVICES
PO SPACE

User Program
•
•
• CALLx -
•
•
•

P1. SPACE

System
Service Vector

SYS$service::
entry mask

CHMx •code
RET

System services that execute in kernel or
executive access modes are invoked by:

1. A call to a system service vector

2. A change mode instruction

3. Dispatching through a CASE instruction in
the CMODSSDSP module

Change
Mode Dispatcher

EXE$CMODxxxx::
I.Build Call Frame
Z. Check Argument
list

CA SEW
•
•
•

offsets
• •

prltcess illegal
change mode
codes

Common Exit
Path

SYSTEM

SPACE

Service Speci fie
Procedure

EXE$service::

entry mask

•

•

•
RET

N

0

RETURN FROM SYSTEM SERVICE
PO SPACE

User Program

•
•
• CALLx
•

P.1 SPACE

System
Service Vector

SYS$service::
entry mask

IQ; I tHMx •code I
• • . : L: ...:.R;:.::E:...::T:....~ ... ------'-. -

4. Return through a common code sequence
(SRVEXIT)

- Checks return status code
- Causes system service failure

exception if service failed and that
feature was enabled

5. REI from CHMx exception service routine

6. RET for the original CALL

Change
Mode Dispatcher

EXE$CMODxxxx::
I.Build tall Frame
Z.theck Argument
list

CA SEW
•
•
•

offsets
• •

prl.cess illegal
change mode
codes

Common Exit Path
SRVEXIT::
• • • REI

SYSTEM

SPACE

Service Sped fie
Procedure

EXE$service::

entry mask

•

•

•
RET

NONPRIVILEGED SYSTEM SERVICE

PO SPACE P1 SPACE SYSTEM SPACE

User Program System System
Service Vector Specific

Procedure

Q
SYS$service::

CALLx .;- entry mask @ EXE$service::

""'11///L 1

"'Ill JMP ,.. entry mask

0 .
I - RET
I

1. Invoked with a CALL statement.

z. System services that do not require a change of access
mode have a simpler control passing sequence.

$FAO

Timer Conversion Services

3. These services are not checked by SRVEXIT for error
status codes.

211

DYNAMIC MEMORY

USED l l J L

Size of this Block

Beginning of Pool Area
(filled in when system
is initialized)

First unused Block

USED

-----------------·---

Size of this Block
-----------------·
Next unused Block - -

USED

0 +1-
·-----------------

Size of this Block

~----------------~
Last unused Block

-....

~I

0

Address of First Free
Block
(modified by Allocation

(Zero pointer and Deallocation Routines)
signifies end
of list)

Used for the management of data structures that must be
allocated and deallocated after the system or process is
initialized.

Free blocks are stored in order of ascending addresses.

Number of bytes allocated for paged pool determined by
SYSGEN parameter PAGEDYN.

212

ALLOCATING NONPAGED POOL

Rest of
Non-paged
Pool

::MMG$GL_NPAGEDYN

::EXE$GL_NONPAGED +4

::IOC$GL_LRPSPLIT

::IOC$GL_LRPFL

::EXE$GL_SPLITADR

::IOC$GL_IRPFL

::IOC$GL_SRPSPLIT

::IOC$GL_SRPFL

The above are examples of several preallocated nonpaged pool
data structures and their associated listheads.

213

THE PROCESS STATES

2 4

(SCHEDULER) (SWAPPER) CREATE

1. CURRENT - executing

2. WAIT - removed from execution to wait
for event completion

3. COMPUTABLE - ready to execute

4. WAIT OUTSWAPPED

5. COMPUTABLE OUTSWAPPED

214

v
0
L
u
N
T
A
R
y

I
N
v
0
L
u
N
T
A
R
y

PROCESS WAIT STATES

Resident Non-Resident

CEF - Wait for Common Event Flag(s) set
LEF - Wait for Local Event Flag(s) set
HIB - Hibernate until wake-up
SUSP - Suspended until resumed

Create

>COM - Removed from execution at quantum end or preempted
PFW - Page read in progress
FPG - Wait for free page availability
COLPG Wait for shared page to be read in by another process
MWAIT - Wait for miscellaneous resources or mutex
Delete- Process has been logged out or deleted

215

HOW PROCESS STATES ARE IMPLEMENTED

'State Listhead'
S_Q_FL ~- """'~ .. ~ SQFL SQFL ____ .,..

.......---~---... SQBL SQBL SQBL

.,... __

PCB PCB PCB

SCH$GQ_COMH::

The state of a process is defined by:

- The value in the PCB$W_STATE field
- The PCB being in the corresponding state queue

State queues are circular

The current state is not implemented as a queue

- Just a longvord pointer (SCH$GL_CURPCB)
- Queue structure not necessary because only one

process in the current state

VAX instructions for manipulating queues:

- INSQUE new_entry, predecessor
- REMQUE out_entry, return_address

216

IMPLEMENTATION OF COM AND COMO STATES
BI1MAP (1 EACH FOR COM, COMO)

FOR STATE COM

BITS
31 LONGWORD QUEUE BIT MAP {SCH$GL_COMQS: :) 00

!1111111111111111I111111111111111
00 31

PRIORITIES

Queue
Priority

LISTHERDS (32 each ~or cam, COMO)

COM state implemented as a collection of queues

Designed to speed scheduler's search for highest­
priority computable process

- A queue for each software priority
- Summary longword records nonempty COM queues

: :SCH$AQ_COMH
: :SCH$AQ_COMT

- Internally, software priority stored as inverted
value (ie as 31 minus priority)

COMO state is implemented like COM state

- 3Z more queues
- Another Summary longword

217

CREATION of PCB ...

CREATOR

PCB

$CREPRC
arguments

CONTROL
REGION

PROCESS
HEADER

JIB ... and PQB

JIB ~

~

(Pooled
Quotas)

New Process

PCB

~
PROCESS

QUOTA

BLOCK

(PQB)

1. $CREPRC allocates new data structures

- PCB
JIB (if new process is detached)

- PQB (temporary)

2. These new data structures are filled from:

- $CREPRC arguments
- Creator's PCB

Creator's control region
- Creator's process header
- System defaults

218

NULL
SWAPPER

ERRFMT

OP COM

JOB CONTROL
NULL

SYMBIONT_0001

FOO

NULL

BATCH_195

NULL

BAR

BAZ

MUMBLE

PCB

...

VECTOR
: : SCH$GL_PCBVEC

PCB
of

SWAPPER

PCB
of

MUMBLE

PCB
of
NULL
PROCESS

PCB
of
BAR

On process creation, search for an unused vector

Unused vectors point to Hull's PCB

Table of pointers to ALL PCBs

Index into table is contained in PID

SCH$GL_PCBVEC to start of table

'219

NULL

SWAPPER

ERRFMT

OPCOM

JOB_CONTROL

SYMBIONT_n

NETACP

EVL

REMACP

NOTE:

VMS SYSTEM PROCESSES

Base X~age Ma~e
Priority

0 part of SYS.EXE

16 part of SYS.EXE

7 ERRFMT. EXE

6 OPCOM.EXE

8 JOBCTL. EXE

4 PRTSYMB.EXE

8 NETACP.EXE

4 EVL.EXE

8 REMACP.EXE

Co~~ents

System wide
memory manager

Cleans up error
log buff er

Operator Comm.
Manager

Queue and Actng.
mgr. (Quasar)

Output symbionts

DECnet ACP

Network Event
logger

Remote ACP

OPCOM coupled with JOB_CONTROL mimic certain functions of QUASAR
and BATCON on TOPS-10/20 systems.

ACPs are roughly analogous with ACJ (Access Control Jobs on TOPS-20).

SYMBIONTS are roughly analogous with spoolers (LPTSPL, CDRIVE,
SPRINT, etc and handle high speed to slow speed device
interfacing.

220

FORMING AN IMAGE

PrograM Sections

Object Code is organized into program sections (PSECTs)

- By VAX-11 MACRO assembler

- By high-level language compilers

- Depending on properties of the code, or explicit PSECT
directives

PSECT attributes are assigned by

- MACRO programmers

- Some defaults applied by the MACRO assembler

- High-level language compilers

Mnemonic Attribute Mnemonic Attribute

WRT Writable NOWRT Not Writable
RD Readable NORD Not Readable
EXE Executable NO EXE Not Executable
PIC Position lndependant NOP IC Not Position Ind.
LCL Local GBL Global
CON Concatenated OVR Overlaid
SHR Potentially shareable NOS HR Not shareable
VEC Protected (vector) NOV EC Not protected

221

FORMAT OF AN IMAGE FILE

I

II

.PSECT A CON, EXE.HOWRY

I Al I
.PSECT B CON, NOEXE,NOWRT

I Bl I III

.PSECT C CON. NO EXE. WRT IV

Cl v
.PSECT D OVR, NO EXE. WRY

I DI I VI

• PSECT E CON, EXE • NOWRT VII

El

LINKER ~

.PSECT A CON, EXE, HOWRY

I AZ I
.PSECT B CON, NOEXE. NOWR

I BZ I
• PSECT D OVR. NO EXE • WRY

DZ I

Image sections stored in the image file

I. Read-only data
II. Read/Write data (copy-on-reference)
III. Executable code
IV. Fixup vectors
V. User stack is stored in demand zero

R/O NO EXE

R/W C/R NO EXE

R/O EXE

R/W C/R EXE

R/W DZRO NO EXE

R/O GBL EXE

RO. CR,GBL NO EXE

Bl, BZ

Cl.DI.DZ

Al.AZ.El

:FIXUP
VECTORS

VI. Additional image sections for global shareable RTL's
as well as transfer vectors and code

VII. Private impure data (copy-on-reference)

Image

Section

Descrip­
tors

(Image
Header)

Image

Sections

NOTE: All image headers live in the INDEXF.SYS in MFD [000000)
for any given disk, and al images have image headers.

222

N
N

""

EXE$GL_KNOWN_FILES INSTALLING FILES
1 J L

KNOWN FILE
.._POINTER BLOCK

KFE
_.. HASH TABLE --

KFE KFE
__...
Ill"'" ,.... ...

KFELINK KFELINK

.....;;::
KFD

r--

One Knovn File Entry CKFE) for each file installed.

KFD

I ~FELIST I .. I KFELIST I
Can INSTALL a file vith various attributes

One KFD for each unique device, directory, and file-type combination

FILE.OBJ

$LINK

FILE.EXE

VIRTUAL
ADDRESS SPACE

·- ---------:
I

PO
I • • I
'• • • • • • • • I
I I

._H_EA_o_ER_ •L1 P1 l
MAP : ____ ;

IMAGE
SECTIONS

224

··-----

PROCESS
HEADER

PST
POPT
P1PT

PHYSICAL
MEMORY

VIRTUAL ADDRESS SPACE

00
00
00

000
001
002

3F FFF AOO 1FF FFD
3F FFF COO •--- 1FF FFE
3F FFF EOO 1FF FFF
40 000 000 000 000
40 000 200 000 001
40 000 400 000 002

7F FFF AOO 1FF FFD
7F FFF COO 1-------1 1FF FFE
7F FFF EOO 1FF FFF
80 000 000 000 000
80 000 200 000 001
80 000 400 000 002

8F FFF AOO 1FF FFD
8F FFF COO t------1 1FF FFE
8F FFF EOO 1FF FFF
co 000 000 000 000
co 000 200 000 001
co 000 400 000 002

FF FFF AOO 1FF FFD
FF FFF COO •-----1 1FF FFE
FF FFF EOO 1FF FFF

225

40 000 400

40 000 401

3 2 1 0
7 6 5 4

8
BYTE WITHIN PAGE
CBWP)

503
507 505 504
511 509 508

40 000 5FE

40 000 5FF

32 BIT VIRTUAL ADDRESS

31 30 29 9 8

I I I VPN I BWP

0 0 - PO
0 1 - Pl PAGE TABLE
1 0 - SO SELECTORS
1 1 - Sl

00

SO VIRTUAL ADDRESS TRANSLATION

SO VIRTUAL ADDRESS
31 30 29 9 8 0

I ii ol virtual page nol byte I

PAGE TABLE

NOTE:

PTE

V P M
R
0
T

V - "Virtual" bit
M - "Modified" bit
PROT - Protection field

29 9 8 0

I page fr-e no. I byte I
PHVSJ:CAL ADDRESS

226

OVERVIEW OF PAGE FAULT HANDLING

PER PROCESS
SPACE
PROCESS
CONTEXT

Page Fault:

SYSTEM
SPACE
PROCESS
CONTEXT

PROCESS

USER
CODE

PAGER

VIRTUAL ADDRESS SPACE

J:Mag e
File<s>

Paging
File

PHYSICAL
MEMORY

STORAGE DEVICES

Pager is an exception service routine executing within the
context of the process that incurred the page fault

Page not in memory - read I/O issued to image file or page
file

Page in memory - taken from free or modified page list, or
valid global page

227

WORKING SET LIST

PHD
PCB$L_PHD --.

CPHD)

WSLIST -.
WSLOCK -. LOCKED

PAGES

WSDYN -.
CURRENT

WSNEXT --. WORKING SET
LIST

WSLAST -.
ROOM FOR WSQUOTA _. EXPANSION

WSEXTENT _.

WSLAST can move to

- WSQUOTA if few free pages (free page count < BORROWLIM)

- WSEXTENT if many free pages (free page count > BORROWLIM)

WSNEXT - latest entry put in working set list

Page replacement is first-in/first-out (VAX/VMS does not
have page-aging capabilities in it's microcode like TOPS

228

N
N
IO

BAK
WSLXI BLINK

SHRCNT,FLINK
PTE
REFCNT
STATE
SWPVBN
TYPE
PFN

PFN DATABASE

Where page should go if it must leave memory (original PTE)
index into working set listl or link if in Free/Modified
page lists
number of processes sharing pagel or link if in FPL or MPL
virtual address of PTE that maps this page CSVAPTE)
number of reasons not to put page on FPL or MPL
specifies list of activity and saved Modify Bit
virtual block number in swap file or page file
type of page - for example1 processl system globall etc.
Physical page numberl index into arrays

Page in Process
Working Set

Free or modified
page list

GLOBAL PAGING DATA STRUCTURES

IVllVIG$GL_GPTBASE: -:--------11~•

PROCESS PAGE
TABLE

0 GPT index

0 GPT index

0 GPT index

0 GPT index

0 GPT index

0 GPT index

0 GPT index
0 GPT index

0 GPT index

GLOBAL PAGE TABLE

GLOBAL PAGE TABLE

t
N Er~:t::ries • GLOBAL PT ENTRY

GPTE

GPTE.

GPTE
GPTE

GPTE

GPTE
GPTE
GPTE

Central location for global page information

Mapped into SO space

230

GLOBAL SECTION DATA STRUCTURE
RELATIONSHIPS

GLOBAL SECTION
TABLE ENTRY

I I
.,._
~

SECTION
NAME

-
-

' ' '

I
I

I

~

~ GLOBAL -
', SECTION TABLE

I
I

~---------------·
GSTE

~

GLOBAL
PAGE TABLE

•••••••••••••••• 1

----------------~

I
I

I

..

I

..

I
I

I

..

GLOBAL PT ENTRY

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

GPTE

Three data structures contain global section information:

1. Global Page Table

Z. Global Section Table (similar to process section table)

3. Global Section Descriptors (allow the location of global
section information by name)

GSDs are placed in either a system queue or a group queue

231

SWAPPER - MAIN LOOP

NO

MAINTAIN FREE
PAGE COUNT

WRITE MODIFIED
PAGES

OUTSWAP/
INSWAP

GIVE REQUESTED
POWER FAIL ASTs

YES

HIBERNATE

232

EXPANSION AND CONTRACTION OF
WORKING SETS

@f
BORROiii•

LIM

FREELIM I
0+

FREE GOAL

NUMBER OF PAGES
ON FREE PAGE LIST

lllSEXTENT

lllSQUOTA

0
SlllPOUTPGCNT

MINlllSCNT

NUMBER OF PAGES
IN lllORKING SET

1. If free page count > BORROWLIM, working set may grow past
WSQUOTA to WSEXTENT. (at end of current run Quantum)

2. If free page count < FREELIM, swapper will attempt to:

- Shrink working sets from WSEXTENT to WSQUOTA

- Shrink working sets from WSQUOTA to SWPOUTPGCNT

233

Per Process
space.

Process
Context

System
Space.

Process
Context.

INPUT I OUTPUT (FULL)
USER IMAGE

$0IO
SYSTEM
SERVICE

Set Event Flag
AST
IOSB

FDT
ROUTINE

I/O
COMPLETION

SPECIAL
AST RTN.

System
Space.

AST delivery
@IPL 2

System
Context.

FORK
DISPATCH

CODE

IPL 8, 11 DEVICE
DRIVER

I/O
POST

PROCESSIN
ROUTINE

INTERRUPT
DISPATCH

CODE
IPL 20-23

Preprocessing done by RMS, $0IO and FDT routines

Device control and data manipulation done by driver

Device
Interrupt
IPL 20-23

Final clean up done by I/O post and I/O completion routines

FDT (Function Decision Table) Routines are device specific
extensions to $QIO (like RPxKON on TOPS-10

Fork Dispatch Code allows device drivers to continue processing
at lower IPL level without destroying synchronization. NOT PROCESSES

234

XQPs
Pl SPACE

~---+-CTL$GL_F11BXQP
XQP QUEUE

DISPATCH AST Address

SO SPACE

EXE$QIO:: DRIVER FDT ROUTINES

I
EXE$QXQPPKT

Queue
Kernel
Mode
AST

XQPs: (extended queue packets) IRP UCB

NOTE:

Reside in Pl space

Are used in process context

FDT routines JSB to EXE$QXQPPKT Cat IPL$_ASTDEL

EXE$QXQPACP invokes the XQP by means of an AST

When finished, XQP queues IRP to the driver's Unit Control
block (UCB)

IRP - Individual Request Packet (an IORB on TOPS-ZO)
UCB - analogous with TOPS 10/ZO UDB
FDT - analogous with TOPS ZO routines like PHYP4.MAC, etc, or

TOPS-10s RPxKON.

235

ACPs

PO SPACE

USER PROGRAM ACP CODE

Pl SPACE

SO SPACE

EXE$QIO:: DRIVER FDT ROUTINES EXE$QIOACPPKT

I Queue IRP

Wake ACP

AQB IRP IRP IRP
UCB

ACPS CAST Control Blocks) (not to be confused with ACPs - ancillary
control process (analogous with ACJs or DAEMONs) confused yet?)

Are seperate processes

FDT routines JSB to EXE$QIOACPPKT C=< IPL$SYNCH)

EXE$QIOACPPKT queues IRPs to ACP Queue Block CAQB) and wakes ACP

When finished, ACP queues IRP to proper UCB

236

THE 1/0 DATABASE
NAME

IRP

CCB

DDB

UCB

DDT

FDT

CRB

IDB

FUNCTION

Carries information for
a specific 1/0 request

Links a 'channel' to a
specific device unit

Contains information common
to all devices on a controller

Contains information for a
device unit. Used as a listhead
for storage by the driver

Contains entry point addresses
for driver routines

Contains list of valid functions
and their FDT routine addresses

Contains information and list­
heads for a particular
controller

Contains information including a
table of UCB addresses for units
under a controller

ADP Contains information including
mapping registers and data paths

Name Definition

IRP - Individual Request Packet
CCB - Channel Control Block
DDB - Device Data Block
UCB - Unit Control Block
DDT - Driver Dispatch Table
FDT - Function Descriptor Table
CRB - Controller/Channel Request Block
IDB - Interrupt Dispatch Table
ADP - Adaptor Control Block

237

COMMENTS

Created by $QIO in
nonpaged pool

Created by $ASSIGN in
Pl space

One per device type
(one for DBA, etc.)

One per device unt
(one for DBA1:, etc.)

Used by VMS to select
the correct routine

Used by $QIO to select
routines for the proper

Used expecially by
devices that share a
controller (for example,
DBA1: and DBAZ: share
controller OBA)

Used by drivers and VMS

Used by drivers and VMS

TOPS 10/ZO Definition

Like an IORB
Like a KDB
Like a KDB and UDB mixed
Like a UDB
Like Channel Logout Areas
Like RPxKON or PHYPx.MAC
Like Channel Command List
Like old style RH vectoring

l0C$GL_DEVLIST

I I

CCB

CCB

SUMMARY LAYOUT OF 1/0 DATABASE
IN DRIVER

__., DEVICE
~l DRIVER

t ,,
D--+FDT _...

~NEXT DOB ROUTINES ...
DOB

1/0 PACKETS

] ~ t ~ ...
r...... ... ::.ii

.J""'f"" --.. ~ --. __y UCB

~o CURRENT
IDB CRB --.,..

1/0 PACKET
1~ l ~ __.,,,

I- r-- ..
..... UCB

__.. CURRENT --,..D 1/0 PACKET
,, r

t-tEX1 ADB
ADS

00

"" N

VAXcluster SOFTWARE COMPONENTS

~
I

FILE
SYSTEM

u;J Q B I DECnet I
··~ ,

SY SAPS

CONNECTION
MANAGER

TAPE
CLASS
DRIVER

DISTRIBUTED LOC~
MANAGER

DISK
CLASS
DRIVER

DECnet
CLASS
DRIVER

MSCP
SERVER
DRIVER

: I (CLUSTERLOAJ (TU) (DU) CCN) CM SCP)

~---J r--------------------------------------,
- ,

Scs LAYER : SYSTEM COMMUNICATION SERVICES :
: (SCSLOA) :
- , _______________________________________ J

~······································-, ,
PPD LAYER : ~~:T p~!T :

(Port-Port Driver) : DRIVER DRIVER : , ,
: CPU) CPA) :
·--------------------------------------4 to port drivers CPD LAYER)

MASSBUS
OR

UNIBUS

COMM
DRIVER~

CDMC, DMf
ETH ERNE.,
ETC,)

°' ...,
N

1. USER to ENQ/DEQ services VAXcluster SOFTWARE COMPONENTS
2. RMS to ENQ/DEQ services
3. RMS to file system access •usER ~

(an XQP in Pl space)
4. File system to ENQ/DEQ ..
5. File System to $QIO RMS
6. RMS to $QIO
7. USER to $QIO 1 3
8. RMS to DECnet CNETDRIVER,NETACP) 12
9. USER to DECnet via $QIO
10.$QIO to Drivers
11.DECnet to Comm

Drivers

l
DISTRIBUTED LOCK --

y

CONNECTION
MANAGER

(CLUSTERLOA

MANAGER

TAPE
CLASS
DRIVER

(TU)

FILE
SYSTEM

•d--J4
$ENQ
$DEQ

DISK
CLASS
DRIVER

(DU)

DECnet
CLASS
DRIVER

(CN)

I ~I SYSTEM COMMUNICATION SERVICES

UDA
PORT

DRIVE~
(PU)

(SCSLOA)

Cl
PORT
DRIVERI

CPA)

\:;

6 17

stt Y

I $0111_1 __,

~ MSCP
SERVER
DRIVER

(MSCP)

MA
R

UNIBUS

I

8 19

• j
DECnet

11

COMM
DRIVER5

I
CDMC,DMJ
ETH ERNE

ETC,)

0

"" N

SYSTEM PROCESSES in a VAXcluster

PROCESS NAME PRIORITY IMAGE NAME COMMENTS

CACHE_SERVER 16 FILESERV.EXE Flushes the system-
wide caches

CLUSTER_SERVER 8 CSP. EXE Envelop for cluster
jobs (cluster OPCOM)

CONFIGURE 8 CONFIGURE.EXE Dynamic device
configuration manager

PROCESS NAME ERROR LOG FILE PRIVILEGES UIC

CACHE_ SERVER cache_server_error.log all [1, 4)

CLUSTER_SERVER cluster_server_error.log all [1, 41

CONFIGURE configure_error.log CMKRNL, PRMMBX [1, 4)
BYPASS, SHARE

CACHE_SERVER and CLUSTER_SERVER are only created if system is a
member of a VAXcluster.

CONFIGURE is only created if device PAAO: exists.

All images reside in SYS$SYSTEM

All error log files reside in SYS$MANAGER

241

DEVELOPING LSE SOURCE CODE TEMPLATES

James M. Briggs
Raymond J. Bentz

RCA Aerospace and Defense
Electronic Systems Department

Moorestown, NJ 08057

ABSTRACT

The VAX Language Sensitive Editor (LSE) helps a user construct syntactically
correct programs in languages for which LSE templates have been developed.
DEC provides templates for the programming languages which it supports, such
as FORTRAN and Pascal.

This paper discusses the steps necessary for a user to create LSE templates for
other programming languages. They include how to get started; how much of
the syntax to support using LSE; the adding of help messages; the process of
creating the template file including translating from the BNF description of the
computer language; and adding features which support nonsyntactic local pro­
gramming standards. These steps are illustrated by examples from creating an
LSE editing environment for the Navy CMS-2 programming language.

INTRODUCTION

Syntex-directed editing tools (see pp. 387-389 of[!]) can make
entering computer programs simpler, but they have drawbacks.
Because of the requirement of program syntactical correctness,
input of the program is too structured. Consequently, much of the
convenience usually associated with editors like VAX EDT is lost.
Secondly, no easy way seems to exist to create a syntax-directed
editor for a new language.

With introduction of the VAX Language Sensitive Editor (LSE),
an opportunity arose to simplify the entry of computer programs
using its template-driven language editing features, and still keep
all of the desirable features in EDT.

We succeeded in building a language editing environment for the
Navy CMS-2 language using LSE. In doing that, we made certain
decisions about how much syntax to automate, how to use lan­
guage help features, and how to translate from the formal defini­
tion of the language into the LSE template language. This paper
discusses these aspects of building a language-sensitive editing
environment and provides insight into what we did in creating a
CMS-2 language editor.

VAX LSE

The VAX Language-Sensitive Editor (LSE) is an advanced text
editor which aids in the creation of syntactically correct programs.
Its normal text editing features provide a screen-oriented text edi­
tor similar to EDT. The text editing features include split-screen
editing and the ability for users to redefine the key definitions to
tailor the editing environment.

Language Sensitive Editing

LSE's language editing features simplify the entry of computer
programs. LSE language editing is based on the use of predefined
language templates for the computer language being used, for
instance, FORTRAN or Pascal. While editing a program in a
language for which the templates exist, the LSE user constructs a
program by successive expansions of either placeholders or to-

Proceedings of the Digital Equipment Computer Users Society 245

kens. Placeholders indicate where in the code a user must supply
additional (possibly optional) text information. Tokens are key­
words which the user may enter in order to cause an associated
template to appear. LSE keyboard commands allow a user to
EXPAND a placeholder or token, to GOTO the next or previous
placeholder, or to ERASE an optional placeholder.

When one presses the expand key over either a placeholder or a
token, a template is copied into the text buffer. This template
consists of formatted text which will become part of the program
and possibly more placeholders requiring additional expansion.
The user fills out the required text information as desired.

Using templates for language editing enables the user to:

• Enter programs more quickly,

• Minimize syntax errors,

• Achieve a uniform coding style.

Note that the language specific features of LSE do not force the
entry of a syntactically correct program, although the use of the
templates makes it a lot easier. In addition, at any time, the user
still has access to all of the jormahtext editing commands; thus, the
user has the choice of using language specific editing features or
standard text editing commands, whichever is more convenient.

Uses of Language Sensitive Editing

Although LSE's language editing features are directed to simpli­
fied entry of computer program source, it is possible to use it for
structuring other text entry wherever one can create acceptable
input templates. Such possibilities exist in a wide range of data
entry applications, for instance, in simplifying RUNOFF docu­
ment input.

LSE can satisfy a wide range of user needs for program editing.
The templates and help information make it ideal for teaching the
programming language; an experienced user will appreciate the
ability to quickly expand tokens while using the EDT-like fea­
tures.

Nashville, TN - 1987

CMS-2 Programming Language

The CMS-2 language was developed by the U.S. Navy in the late
1960s. It is a high-order language extensively used in developing
weapons systems for the Navy. This large language contains a rich
set of data structures for both global and local data, supporting
system procedures, procedures and functions, and a full set of
control structures supporting structured programming. Compilers
and cross-compilers are available to support development of CMS-
2 programs for the standard Navy computers[2].

GETIING STARTED

Before developing templates for a new programming language, a
few things need to be done.

Get Some Experience

Before thinking seriously about implementing the templates for a
new language, one should use LSE with a familiar DEC-supported
language such as FORTRAN or Pascal. Check out the style of
DEC's templates, DEC's use of menus for placeholders, optional
items versus required items, indentation style, and help support.

Get Some Documentation

One should acquire the LSE User's Guide [3], the language's
user's manual, in our case [2], and obtain a syntax description for
the language. We were able to obtain the syntax definition in a
Backus-Naur Form (BNF) from the user's manual. The user's
manual will become the source of help information, examples,
and, sometimes, even the style. The syntax description is neces­
sary for creating the language templates.

Make Some Decisions

After becoming experienced with LSE, one needs to make some
basic decisions which will affect the production of the templates.
Not only can very complete templates and help information be
created, but also a minimal language editor by adding templates
for only a few tokens of the language. So, a decision must be made
concerning how much of the language syntax needs to be imple­
mented. This will determine the number and depth of expansion of
placeholders and the tokens which are supported. Although our
CMS-2 language editor is fairly complete, we decided not to
implement the templates for expressions. Consequently, expres­
sions become terminal placeholders and the user is responsible for
their correct entry.

Templates can also support the entry of nonsyntactic source infor­
mation. In the CMS-2 language editor, templates were used to add
comments including module purpose, revision history informa­
tion, and programmer identification.

File organization decisions have to be made. In implementing the
CMS-2 editor, we chose to support two separate file types (.CTS
and .CS2). The CTS (compile-time system file) contains the major
header information needed to compile the source and includes
separate CS2 files. The CS2 files contain either complete SYS­
PROCs (system procedures) or SYS-DDs (system data designs).
Thus there are two DEFINE LANGUAGE statements in our defi­
nition (see Figure 1) each of which has distinct language editing
capabilities. The correct templates are used by the editor automati­
cally when the user chooses to edit a file of type .CTS or .CS2.

246

DEFINE LANGUAGE CTS -
/CAPABILITIES = NODIAGNOSTICS -
/COMPILE_CDMMAND ="@CMS2" -
/FILE_TYPES = <.CTS> -
/IDENTIFIER_CHARACTERS = -

"ABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890" -
/INITIAL_STRING = -

{cms2_system_declaration}" -
/OPT = (" [", "l" > -
/OPTL = (" [" , "'J ••• " > -
/REQ = ("{",">"> -
/REQL = ("{","} ••• ">

DEFINE LANGUAGE CMS2 -
/FILE_TYPES = <.CS2> -
/IDENTIFIER_CHARACTERS
"ABCDEFGHIJKLMNOPQRSTUVWXVZ01234567890" -

/INITIAL_STRING = -
Csystem_element}" -

/OPT= ("[","]") -
/OPTL = ("[","] ••• "> -
/REQ = ("{","}") -
/REQL = ("{","} ••• ")

Figure 1. DEFINE LANGUAGE Extracts from CMS2.LSE

Finally, decisions need to be made concerning the style of the
source. This includes indentation style and the layout of the con­
trol structures. The editing templates will automatically enforce
these decisions.

Try to Automate LSE Template Building

One notices very quickly that much repetition is involved in enter­
ing the LSE template definitions. For instance, in our CMS-2
DEFINE PLACEHOLDER definitions, there are always the same
eight statements with, at most, minimal changes. We decided
early that a good idea would be to implement an LSE language
editor using LSE. We actually implemented three LSE editors: one
for the CMS-2 programming language, one for the LSE defini­
tions, and one for simplifying the entry of HELP library informa­
tion.

The editor for the LSE definitions was designed to make template
entry as effortless as possible. Menus were used for almost all
commands, qualifiers and qualifier values. Optional qualifiers
with a fixed set of values were implemented as menus of tokens
representing the values. When one of these menu items is selected,
the token expands into both the qualifier and its value. The most
commonly used menu choices were placed toward_ the top of their
menu to minimize user keystrokes when choosing them. With the
use of this editor, template entry is almost automatic and requires
minimal knowledge of the format of the LSE template language.
This allows the user to concentrate on the problem of defining the
target language.

BUILDING LANGUAGE TEMPLATES

In building the LSE language templates, the best guide to have is a
structured description of the language such as provided by Backus­
Naur Form (BNF) production rules. The BNF notation translates
easily into the LSE template language. See Figures 2 and 3 for
equivalent BNF and LSE descriptions of the same example.

Before we started creating the templates for our CMS-2 language
editor, we first collected all of the BNF rules for the CMS-2
language into a data file, CMS2.BNF. This was constantly re­
ferred to in writing our CMS-2 editing templates.

<program block> ::= <procedure block>
<function block>
<e~ec-proc block>

<procedure block> ::= E<EXTDEF>J PROCEDURE <name>
<formal i-o params>
[EXIT <name list>J $

<progr 2rn body>
END-PROC <name> $

Figure 2. Extracts from CMS2.BNF

DEFINE PLACEHOLDER program_block -
/LANGUAGE = CMS2 -
/NOAUTO_SUBSTJTUTE -
/DESCRIPTION = "PROCEDURE, FUNCTION, or EXEC-PROC" -
/TOPIC_STRING = "PROGRAM_BLOCK" -
/TYPE = MENU

"procedure" /PLACEHOLDER /NOLIST
"function" /PLACEHOLDER /NOLIST
"e•ec_proc" /PLACEHOLDER /NOLIST

END DEFINE

DEFINE PLACEHOl_DER procedure -
/LANGUAGE = CMS2 -
/NOAUTO_SUBST!TUTE -
/DES CR I PT JON = "CMS-2 PROCEDURE" -
/TOPIC STRING = "PROCEDURE BLOCK" -
/TYPE = NONTERMINAL
" [ex tdef J PROCEDURE (name}"

[formal_input_parametersJ"
[formal_output_parameterl"
[exit_phrasel $"

(program_body)"
"END-PROC (name}"
"$"

END DEFINE

DEFINE TOKEN PROCEDURE -
/LANGUAGE = CMS2 -
/PLACEHOLDER = procedure

Figure 3. Extract from CMS2.LSE

Top-down or Bottom-up Approach

Two basic approaches to building the LSE template file from the
BNF description of the language are top-down and bottom-up.

The top-down approach is begun by expanding a high-level non­
terminal and working down to lower levels. This is a results­
oriented approach. Small parts of the editor become quickly avail­
able for debugging and use. This approach unfolds easily from the
BNF. Defining productions that have multiple right-hand sides
(see Figure 2) is simple this way: define each production as a
"menu" and worry about each menu item later on. However, this
approach can seem to get out of hand because it appears to be
expanding in many directions at one time.

The bottom-up approach is begun by expanding the low-level
nonterminals and working up to the higher level ones by using the
low-level ones as building blocks. This approach seems to lead to
a better structured template file because each placeholder is de­
fined in terms of already existing placeholders/tokens. However, it
does not flow smoothly from the BNF; one has to look at the BNF
"backwards" to understand how each placeholder needs to be
defined. Furthermore when using this approach, one really has
nothing to show for the effort until it is almost finished.

247

Because the CMS-2 language editor was our first experience with
defining the templates, and because of the large size of the target
language, we used a top-down approach to the task. This was a
direct method for attacking the problem. It allowed us to define
templates for small parts of the language which could be tested
early on in the development effort.

Defining the Templates

Once the approach is decided on, the steps necessary to define the
templates are quite simple. Choose a production to expand. Create
a placeholder which has the left hand side of the production as its
name. For each keyword in the production, include it in the body
of the placeholder as a terminal. For each nonterminal in the
production, include a placeholder for it in the body of the place­
holder being defined. Productions that can expand into different
right hand sides should have bodies defined as being of "menu"
type. Continue doing this until all productions have been expanded
to the level of detail desired.

Example

As an example, consider the (program block) production in Figure
2. Since (program block) can expand into one of (procedure
block), (function block) or (exec-proc block), the logical way to
expand (program block) is using a menu (See Figure 3). We did
not use the /DUPLICATION or /SEPARATOR qualifiers since the
{program_ block} placeholder is not a "list" type placeholder. We
used the /NOAUTO_SUBSTITUTE qualifier because we do not
want the next occurrence of the placeholder {program_block},
which could occur anywhere in the file, to be replaced in this
expansion. On the individual menu items, we used the /PLACE­
HOLDER and /NOLIST qualifiers to specify that the items are
placeholders that are not to be expanded as "list" placeholders.
Since {program_block} is a required placeholder, as indicated by
the { } , the menu item placeholder selected will take on this ''re­
quired" attribute. See page 5-30 of [3].

Now that the {prograrn_block} has been defined, we move on to one of
the menu items. The definition of {procedure} is an example of a
nonterminal placeholder. See Figure 3. The body of the placeholder
came almost directly from the BNF production of (procedure_block).
The keywords PROCEDURE and END-PROC were taken literally
from the BNF. The [extdef] placeholder expands into (EXTDEF). The
nonterminal (formal i-o params) expands into the two placeholders
[formal_ input_parameters] and [formal_ output_ parameters]. When
expanded, each of these will contain the necessary keywords and addi­
tional placeholders. Since the EXIT (name list) phrase is optional, it has
been defined as the optional placeholder [exit_phrase]. If [exit_phrase]
is expanded, the required format will be inserted into the editing buffer.
The body of the procedure will come from the required placeholder
{prograrn_body}. In contrast with the "menu" type body of {pro­
grarn_block}, upon pressing the expand key, the body of the {procedu­
re} placeholder is copied directly into the current edit buffer. This place­
holder is made up of terminal (END-PROC), optional ([exit_phrase])
and required ({prograrn_body}) placeholders. Even though much of the
placeholder body is optional, enough of the syntax of the CMS-2 lan­
guage is presented to aid the programmer in the coding of a procedure
body. White space should be added liberally to increase the readability
of the resultant code according to one's standard programming style.

In developing the CMS-2 editing templates, we had to make a hard
decision as to what level of the syntax we should provide support.
At some point in the expansion, the implementor will want to stop
providing templates and just have a placeholder expand into a

textual description of what is expected. In most cases, having
IDENTIFIER as a terminal placeholder that expands to "A string
of letters and digits beginning with a letter" was detailed enough.
In cases where EXPRESSION was used in the BNF, as in the
CONDITION of an IF statement or in the right hand side of an
ASSIGNMENT statement, it was not clear as to what level to take
the expression placeholder. What we decided to do was to change
the BNF slightly; the EXPRESSION in the IF-condition was re­
placed by a nonterminal {if_condition}, which in tum expands to
{expression} which expands to "A valid CMS-2 expression". The
assumption here is that the programmer will know what is and is
not a valid expression. The {if_ condition} nonterminal was added
to show the programmer what was expected but to allow him to
enter whatever he thought was the proper thing. In some cases one
can provide supplementary HELP information.

Tokens vs. Placeholders

LSE tokens provide a convenient method of placeholder expan­
sion. Instead of descending through several layers of menus, the
user can just type in a language keyword or a simple token (such as
ASSIGNMENT), press the expand key; the user is placed at the
same language editing level as if he had used all of the "normal"
placeholder expansions.

Deciding whether to use a placeholder or a token to define lan­
guage constructs is sometimes difficult. Since all language ele­
ments can be defined as placeholder, and placeholders provide a
bit more flexibility than do tokens, we used the approach of first
defining everything as placeholders. Tokens were added later for
the convenience of the user of the editor. These tokens can be
defined to "point" to the desired placeholder. See Figure 3 for
how this was done with PROCEDURE.

The typical tokens are keywords of the language. For example, the
token IF is defined to expand into the {if_ statement} placeholder.
Typing IF followed by the expand key inserts the same template
into the editing buffer as does working down to {if _statement}
placeholder and expanding it.

This leads to a little more structure in the template definition. One
can have many different tokens defined as the same placeholder;
both language keywords and other "special" tokens can make
using the editor easier. Tokens that are not language keywords
(such as, ASSIGNMENT or STATEMENTS) can be defined to
insert a certain type of clause into the buffer or to bring up a menu.
If one wants an assignment statement, instead of descending
through the parse tree of {statement} ... = > {simple_ statement} = >
(set_phrase), one could just descend as far as {statement} ... ,
enter ASSIGNMENT followed by the expand key, and be looking
at the expansion of the SET phrase. Figure 4 illustrates the case
where the user could enter ST A TEMENTS, press the expand key,
and get a menu of all possible simple statements. The user can then
use the menu to choose the desired statement.

A token defined as a placeholder can also be used in a placeholder
definition to provide default information. If the user does not want
to use the default, he can expand the token and a placeholder or
menu can show up in its place.

Size of the Template File

Much work can go into the generation of the language template
file. This is, of course, dependent on the complexity of the lan­
guage and on choices of how much syntax to support.

248

DEFINE PLACEHOLDER simple_statement -
/LANGUAGE = CMS2
/NOAUTO_SUBSTITUTE -
/DESCRIPTION = "CMS-2 Simple Statement" -
/TOPJC_STRING = "S!MPLE_STATEMENT" -
/TYPE = MENU

"begin_block"
"debug_phrase"
"direct_code_block"
"exec_phrase"
"for _b.lock"
"goto_phrase"
"input_output_phrase"
"pack_phrase"
"procedure_call_phrase"
"proc_switch_call_phrase"
"resume_phrase'1

11 return_phrase 11

"set_phrase"
"shift_phrase"
"stop_phrase"
"swap_phrase 0

"vary_block"
END DEFINE

DEFINE TOKEN STATEMENTS -
/LANGUAGE = CMS2 -
/PLACEHOLDER = simple_statement

/PLACEHOLDER/NOL I ST
/PLACFHOLDER/NOLIST
/PLACEHOLDER/NOL I ST
/PLACEHOLDER/NOLI ST
/PLACEHOLDER/NOLIST
/PLACEHOLDER/NOL I ST
/PLACEHOLDER/NOL I ST
/PLACEHOLDER/NOLIST
/PLACEHOLDER/NDLIST
/PLACEHOLDER/NOLI ST
/PLACEHOLDER/NOLIST
/PLACEHOLDER/NOL I ST
/PLACEHOLDER/NOLI ST
/PLACEHOLDER/NOLI ST
/PLACEHOLDER/NOLI ST
/PLACEHOLDER/NOLIST
/PLACEHDLDER/NOLIST

Figure 4. Extracts from CMS2.LSE

We implemented three LSE editors for editing HELP files (. HLP),
LSE template files (.LSE) and CMS-2 source programs (.CTS and
.CS2).

The HELP editor is quite simple. It contains five placeholders and
one token, and consists of approximately 80 source lines.

The LSE template editor contains 49 placeholder and 18 tokens,
and consists of approximately 600 source lines.

The CMS-2 language editor contains 233 placeholders and 32
tokens, and consists of approximately 2700 lines. The BNF pro­
duction rules consist of 381 left hand sides and 829 right hand
sides. As noted earlier, we did not fully implement all of the CMS-
2 syntax.

As seen from the CMS-2 example, a great deal of work is required
to implement the LSE templates, both in the planning stages and in
the template input.

PROVIDING LANGUAGE HELP

In addition to structuring the user input through series of expanda­
ble templates, LSE provides at least three ways to give the user
help:

• Help with use of the keyboard,

• Help with terminal placeholders,

• Help with the language.

Help with the keyboard is provided automatically by LSE (see
Chapter 3 of [3]; it requires no programming, and it is available by
pressing the HELP (PF2) key. It gives information on the func­
tional assignment of the keys in the keypad and the other defined
keys.

Help with the meaning of terminal placeholders is given to the user
when expanding a terminal placeholder (see pages 1-16 and 5-29
of [3]; it takes the text which has been put into the body of the
placeholder and, instead of copying it into the buffer, it presents it
as a tutorial message. A standard example of this is the message
"A string of letters and digits starting with a letter" given upon
expanding the IDENTIFIER terminal placeholder.

Language help can be viewed as a way of keeping a language user
manual on line so that the user can easily request it during expan­
sion of a placeholder or a token. If the help information has been
previously placed into a help library with the keys specified as
topic strings in the placeholder and token definitions, then it is
simple for the user to get the help information by pressing the
sequence GOLD, HELP (PF!, PF2) when the cursor is located on
the placeholder or token of interest. Full screen help is provided
using the VAX HELP facility. The user is given help initially for
the token or placeholder at the cursor location, but can continue
within the help library, and finally return to editing.

To create the language help information, one must:

• Create a HELP library,

• Specify the HELP library name in the DEFINE LIBRARY
statement,

• Specify the library keys as the topic strings in the DEFINE
TOKEN and DEFINE PLACEHOLDER statements.

In deciding how to create the language help information, one
should decide on which tokens and placeholders require help and
consider combining help for more than one placeholder or token
into the same help item. The source for the help information can be
the programming language users manual. Remember that the user
probably has access to the user's manual. So, select ejouch infor­
mation to remind the user of the purpose of the item; give parame­
ters and calling sequences, if appropriate, and include examples.

An example of programming the language help for the CMS-2
programming language is indicated in Figures 3 and 5. Figure 3
shows LSE templates for the CMS-2 language program_block
and procedure. The /TOPIC_STRING indicates the HELP key
names. These key names are part of the HELP file shown in Figure
5. Because of the way the help file is created, if the user requests
help for the program_ block template, then additional help infor­
mation will be indicated also for procedure_block and function_
block.

For more information on HELP libraries, see pages LIB-6 to LIB-
11 of [4]; for how to use the VAX Librarian to create them, see
pages LIB-I to LIB-3 of [4]; for associating the help information
with the language, see the information on pages 5-24 through 5-32
of [3] for /HELP _LIBRARY and /TOPIC_STRING.

COMPILING THE PROGRAM

The user can compile the program without leaving the LSE editor.
For the DEC-supported programming languages, this is as simple
as typing COMPILE at the LSE> prompt. Furthermore, one can use
the results of the compilation to locate compiler-found errors in the
source program. Typing REVIEW after the compilation is finished
(or COMPILE/REVIEW as one step) brings up a split screen in
which the compiler diagnostics are at the top of the screen, and the
source program at the bottom. LSE commands can then be used to
locate the program errors and to correct them. (See pages 5-12 to
5-14 for the COMPILE command and page 5-71 for the NEXT
ERROR command in [3].

249

I PROGRAM_BLOCK

Program blocks contain the procedural statements of the
source program. Procedures, functions, and e>eec-procs
contain the statemel"lts that define the processing operations
to be performed by the object program.

2 PROCEDURE_BLOCK

The PROCEDURE and END-PROC statements de! imi t a procedure
within a system procedure. A procedure may be called using
a procedure cal 1 phrase or a procedure switch cal 1 phrase.

2 FUNCTION_BLOCK

The FUNCTION and END-FUNCTION statements delimit a function
within a system procedure element. A function must have at
least one input parameter and results in a single output value.
A function is called by coding the function name followed by
the actual input parameters enclosed in parentheses within
an expression.

Figure 5. Extract from CMS2.HLP

For the DEC-supplied languages, being able to review compiler
diagnostics and easily make changes to the program source is
based on the compiler writing a diagnostics file (of file type . DIA).
The format of this file appears not to be documented.

For the CMS-2 compiler, error messages are written to a message
file (of file type .MSG). Using the split screen editing features of
LSE, we can put the message file into a buffer displayed in the
upper half of the screen and view it while editing the program
source in the lower half of the screen. What we Jose is automatic
location of next errors and the possibility of automatic correction.
If we could have found documentation for the format of the diag­
nostics file, it would have been a simple matter to write a filter
which would process the message file produced by the CMS-2
compiler and generate the appropriate diagnostics file.

To use the COMPILE command, one defines it in the DEFINE
LANGUAGE statement when creating the language templates. In
the case of the CMS-2 compiler, we only want to be able to
compile sources of type .CTS (compile time system). So we de­
fined the /COMPILE_ COMMAND for the CTS language but not
for the CS2 language. Further, we defined the compile command
to execute a command file. The command file contains two DCL
commands: the first is a SET COMMAND which defines the
CMS2 verb; the second is the actual CMS2 command with the
required compiler options. When the user types the COMPILE
command, LSE spawns a subprocess to perform the compilation.
The subprocess executes the command which is formed by ap­
pending the name of the file being edited to the indicated /COMPI­
LE_ COMMAND. In our command file, 'pl' receives the name of
the edit file. Our users define the CMS2 verb in their login com­
mand files in the same way as the first line of the command file;
but when LSE starts the subprocess to perform the CMS-2 compi­
lation, that command definition is lost. See Figures 1 and 6 for
examples of how we set up the COMPILE command for the CMS-
2 compiler.

SET COMMAND DISK$PG11:[MTASSEXE.REVOOOJCMS2.CLD
CMS2 /OPT=X/COM=(CMP,*.CMP>!INC=<CS2,*.CS2> 'pl'

Figure 6. COMPILE_COMMAND file CMS2.COM

CONCLUSION

Implementing a language sensitive editor using LSE is a straight­
forward task. LSE provides for a full program creation environ­
ment by its convenient support of language help and compilation.
One should prepare for its implementation as in any other pro­
gramming. Having a set of production rules in a BNF form makes
the template production simpler.

250

REFERENCES

[I] Meyrowitz, N., and van Dam, A., "Interactive Editing Sys­
tems: Part II," Computing Surveys, Vol. 14, No. 3, September
1982, pp. 353-415.

[2] User Handbook for CMS-2 Compiler, NA VSEA 0967-LP-
598-8020, 30 May 1986.

[3] VAX Language-Sensitive Editor User's Guide, Order No. AA­
FY24A-TE, Digital Equipment Corporation, Maynard, Massachu­
setts, July 1985.

[4] VAX/VMS Librarian Reference Manual, Order No. AA­
Z419A-TE, Digital Equipment Corporation, Maynard, Massachu­
setts, September 1984.

VAX/VMS Application Performance

Louise Wholey
Measurex Corporation
Cupertino, CA 95070

Abstract

This paper reviews some performance tools available from DEC and third party
vendors that were used to do application performance studies on the Measurex
VAX/VMS VISION real-time process control application. DEC's SPM tool, espe­
cially the PC (program counter) sampler, was found to be most useful. The paper
presents a useful technique for analyzing SPM PC sampler data for the entire pro­
gram address space, including modules within Measurex's own shareable images.
The shareable images include a set of user-written system services, which must be
executed as a protected shareable image.

Introduction

This is a tutorial on how to do application performance. Both
DEC and third party products will be examined for their util­
ity in tuning the Measurex VISION real-time process control
application. Special consideration is given to handling appli­
cations with shareable images. Useful tools, commands to use
them and the results of those commands will be presented. 1

Measurex Application

The Measurex VISION application, which is the basis for un­
dertaking a performance study, is a process control system
consisting of about forty processes running as a process tree,
most of which run at real-time priorities. Real time under
VAX/VMS is defined as running at priority greater than or
equal to sixteen. The main effect of real-time is that there is
no working set adjustment. Thus the working set quotas de­
termine the maximum number of physical pages in a process.
In the VISION application, there are also three time-sharing
processes, the block chain, video and button builders. These
builders are CPU and 1/0 hogs.

One of the constraints is that each process is mapped
to two Measurex sharable images. The performance of the
individual modules within these shareable images is of inter­
est. Since the application is written in C, each process is also
mapped to several DEC run-time library shareable images.
The internal behavior of DEC's run-time libraries cannot be
changed to suit the application. What is significant for tuning
is how much time is spent in them and which routines call the
run-time library excessively.

1 Each section of the paper can be read separately. Figures are included at
the end of the paper.

Proceedings of the Digital Equipment Computer Users Society 251

Objectives

The first step in such a study is to select a few specific objec­
tives. For the Measurex VISION application, the first objec­
tive is that the entire system, including the operating system
and all of its pool space, must fit in 5 1/2 MB of memory.
Next, the CPU usage and execution speed of the builders are
of interest. When the builders run, a control engineer sits at a
video screen configuring a system to meet customer require­
ments. This may be a long time for a complex system. Each
execution nonnally leaves behind audit trail files, which may
be reused to configure the same or similar systems. The reruns
from audit trail files often take hours to complete. Thus, a sec­
ond and very important objective is to speed up the builders.

Finally, the throughput of the application is very depen­
dent upon the speed of the interprocess communication ser­
vices. Early in the performance studies, message services us­
ing interprocess ASTs were written to replace the slow mailbox
services of VMS. Improvement in these services will speed up
all phases of the application.

Strategy

Tuning requires a systematic approach. First, one must know
what gains are desired. Then, one measures the performance
of the current system, which might be the time to do a stan­
dard operation. While doing that measurement, one may look
for "hot spots", that is the high resource usage, such as high
CPU time, 1/0 or page faults and note unexpected behaviors.
After improvements are made, the same operation needs to be
remeasured to show that improvements have been made. For
example, on VISION, the time to run a particular audit trail
file might be ten hours. After changing the system the same
audit trail run might take 8 hours, showing a twenty percent
improvement.

Nashl'ille, TN - 1987

Tools

The following sections describe some of the tools available.
Included is a discussion of the merits of each tool and some of
their idiosyncrasies. Sample commands are given to provide
a starting point for performance studies. Details on the use of
each tool should be obtained from the documentation. 2 The
results of using the tools to study the VISION application are
presented.

VAX/VMS Utilities

Some tools are shipped with the VAX/VMS operating system.
They are available on every system and are generally quite
useful.

Image Accounting

The VAX/VMS accounting utility may be used to look at gross
measures in a large time-sharing system context. In image ac­
counting mode, it produces start/stop times, image activation
counts, working set values, page faults, execution times and
I/O counts. This tool has not been useful for tuning the VI­
SION application.

Show

Show is a very helpful VAX/VMS utility. Show Memory
and Show System can be used to obtain a system overview
in order to see if the system is adequately configured for the
application. The command

$ SHOW MEMORY

generates a summary summary of how memory is being uti­
lized. Figure l shows an example. Problems in the memory
configuration, such as no free memory, swapped processes,
few free blocks of pool, or shortage of swap or page file space
should be fixed before application performance studies are be­
gun.

$ SHOW SYSTEM

Show System's display contains a great deal of useful in­
formation. Figure 2 shows an example taken on the VAX/VMS
environment running the video builder, VDB. High page fault
activity stands out clearly; the page fault column can be read
as a histogram. Processes with high page faults should be
investigated If the processes are part of the application to
be tuned, that becomes part of the tuning effort. If they are
competing processes, then some corrective action needs to be
taken first, if possible.

1/0 counts can be read the same way. In the example in
Figure 2, one of the VISION builders, VDB, has a very high
1/0 count and rate. 3 While one may wish to question how
high is appropriate, a high rate is expected for this process

2 All the manuals arc listed in the references section.

3Relative rates can be obtained by dividing by CPU time, though I/O rate
is normally given in units of I/O counts per elapsed time.

252

since its job is to build video frames on the disk. One other
process shows a high I/0 count. BDM, the bulk data manager,
performs 1/0 to configure the application data region on the
disk.

The physical memory column shows actual pages in use
by every process. The value may be less than or equal to the
corresponding process working set.4 If the number of physical
pages is significantly less than the working set, then it may
be possible to remove pages from the working set without
causing many faults. The physical memory numbers include
both process private and global pages.

CPU time should be referenced to see the relative signif­
icance of the numbers in the other columns. The process with
the most CPU time could easily have the most page faults
but may not be a problem. If a process does not have much
CPU time and has a high number of page faults, it should be
investigated further.

Monitor

Monitor is the tool distributed with the VAX/VMS system for
use in system and application performance studies. Several
monitor commands are particularly useful.

$ MONITOR PROCESS/TOPCPU

This command tells what processes are taking the most
CPU time. If a process is not taking CPU time, then it is not
normally a problem. Study of the top CPU users for VISION
during the initial stages of testing on VAX/VMS showed the
TIMER job to be the top CPU user. TIMER job consists of an
AST routine that answers real-time clock interupts and sends
a message to the job's main code, which wakes up to see what
work needs to be done. It was initially taking about 6 to 8
percent of CPU. After replacing VMS mailbox services with
Measurex's message services, the TIMER process CPU usage
dropped to about 2 or 3 percent of the CPU.

While mailbox message services may not be the most
ideal means of communicating between and within processes
on VAX/VMS, the control software was originally written
for another system where such communication was based
on message services. Writing efficient message services for
VAX/VMS means the application design does not have to
change. Moreover, the new message services are 95% coded
in C and are, therefore, portable.

$ MONITOR PROCESS/TOPFAULT

The Top Fault display is an excellent tool to use to select
the working set quota for each process. Processes that fault
heavily need to be given larger working sets. If memory is
short, some memory can be reclaimed from processes never
seen among the top faulters, or that accrue physical memory
slowly.5 When every process has an adequate working set,
few page faults are seen.

4Working set is not shown in the Show System display.

5 Show System may be an adequate tool to see this. Show Pro-
cess/id=n/continuous run at image initialization is another choice.

$ MONITOR MODES

Monitor Modes tells how much CPU time is going into
useful work, which is normally user mode activity. The time
on the interrupt stack and in kernel and exec mode is over­
head. Interrupt stack time is hardware and software interrupt
processing. Kernel mode is scheduling, page faulting and sys­
tem services. Exec mode is RMS processing. The VISION
application builder programs require a significant proportion of
system activity since they do considerable file 1/0 and invoke
many special system services.

SPM

SPM is a VAX/VMS layered product that includes a large
number of reports and displays designed mainly for VAX/VMS
system tuning. All of its capabilities are very useful, however,
for application tuning. The two parts of the product used for
this study are the system tuner and the PC sampler.

SPM is a complex and comprehensive product. It takes
practice to learn how to use it effectively and to gain insights
into interpreting the results.

SPM System Tuning

Valuable information on application behavior can be found in
the extensive tabular, display and graphical reports of the SPM
System Tuner. It provides a detailed overview of the impact
of the application on the system. Process data is also available
for working set and page fault analysis.

SPM System Tuning - Collection

Collection of data is done by starting a detached process.

$ SPM COLLECT = TUNE-
/CLASS= (ALL, PROCESS) -
/DISK=DUAO-
/DEV= (GP, CX, SC) -

/OUT=spm_tun.dat

The class modifier is required in order to get process data.
The disk and device data collection should be altered to suit
the environment being observed. A file naming convention
turned out to be very useful for retrieving old files from nightly
backup save sets. The fact that the tuner runs as a detached
process means that it can be run easily on a single terminal
system.

The tuner will run until requested to stop.

$ SPM COLL=TUN /STOP

Control y does not stop a detached process. The command

$ SPM COLL=TUN /NEW_FILE

is an alternate way to close the data file for analysis without
stopping SPM

253

SPM System Tuning - Analysis

Analysis of data can be done many ways. The following com­
mand will produce the four graphs indicated and a tabular out­
put including data from all collection classes. Specific output
and data file names may be used as shown.

$ SPM REP=LOG-
/ GRAPH= (SUM, CPU, MEM, PAGE) -
/CLASS=ALL-
/OUT=spm _tun. rpt-

spm_tun.dat

Version 3 of SPM collects and can display a huge amount
of data, but many graphs have no data in them. For example,
idle devices and all VMS mailboxes are plotted even though
they may have not done any I/0. The extra plots can be elim­
inated by the use of proper qualfiers and parameters on the
command line. Finding out which graphs have the interesting
information may require at least one run taking all graphs.

SPM System Tuning - Tabular Report

The tabular form in Figure 19 contains a wealth of information
about CPU usage, page faulting, swapping, 1/0, file system,
and other system usage. For the VISION application the report
shows 94% of memory is in use (highlighted at the top middle
of Figure 19. Since the system has 6 megabytes total, then
5.6 MB is used by the application. That meets the original
requirement.

A surprise lies under the CPU+IO Idle item in the CPU
and I/0 Overlap box of the Final Statistics output (right side,
highlighted). The system shows about 24% of the elapsed
time is totally unused. The CPU is idle and no I/0 is taking
place. The block builder is running to configure customer
block chains (control sequences) from an audit trail file. The
expectation is that system should be very busy, pausing from
CPU busy to do disk 1/0 and update the video screen, which
displays the current audit trail command line. The display is an
operator graphics console with no hardware scrolling function.
The pauses in CPU and I/0 usage are the result of the time
taken by the graphics chip to refresh the screen several times
as it emulates scrolling. The refresh consists of sequentially
moving the old lines up on the screen and then inserting the
new one at the bottom. No one had thought about the effect
of this behavior on throughput. Saving twenty percent of the
wall clock time means a five hour run would take only four
hours. Since all of the commands are also written into a log
file, the display only needs to indicate that the builder is still
running.

SPM System Tuning - Graphical Reports

A variety of graphs are available from SPM. A few of them
are included in this paper to illustrate specific findings, but the
SPM manual set should be referred to for a complete coverage.

The first example, Figure 3, is the CPU utilization graph.
The plot shows a sudden cut-off when the application and
everything running on the system stopped. A look at the disk

allocation graph in Figure 4 shows why - the disk became
l 00% allocated. Figure 5 shows the high cost of running out
of disk space in terms of the I/0 rate as the disk approaches
full. Also, the tabular report shown in Figure 19 shows a very
low file cache hit rate for the bitmap cache. Considerable extra
1/0 was required to allocate space.

The page fault graph in Figure 6 shows the page fault
behavior plotted by time. Image activation causes many page
faults in a short time in order to fault into memory the image
and data. The graph shows that the working sets are com­
pletely adequate since there are almost no faults after image
activation.

SPM PC sampling

The SPM PC sampler is the best tool for a finely detailed anal­
ysis of where a program is spending its time. It is currently the
only tool for analysis of exec mode and kernel mode activity.
The technique described here enables looking at the CPU time
used by all the modules within the program. For VISION that
includes the main program, the Measurex shareable images,
and the system.

SPM PC Sampling - Collection

Unlike the tuner, the PC sampler does not detach from the
terminal. Thus, either an extra terminal must be dedicated
to collection, or a spawn/nowait command may be issued If
using spawn/nowait, a control y to stop the main process will
also stop the collector. The sample command

$ SPM COLL=SYS /END="+5" sprn_pc.dat

causes SPM to collect for 5 hours using the output data file
spm_pc.dat. One advantage the PC collector has over the tuner
is that the data file may contain a node name. Running VI­
SION for 5 hours produces about 50,000 disk blocks of data.
Since the microvax is usually short of disk space, the data is
normally sent over ethemet to a VAXcluster disk. NETACP
is set to priority 18 to keep the net up.6 Another way to solve
the file size problem is to pre-select the process on which to
take samples. The collector filters the samples, collecting only
for the requested process.

$ SPM COLL=SYS /END="+S" /ID=pid
sprn_pc.dat

The selected process' pid is first obtained from Show System.

SPM PC Sampling - Analysis

There are two primary forms that the analysis output from the
SPM PC sampler can take, a system-wide view and a detailed
analysis for a given process. Both analyses start the same way.

$ SPM REP=SYS /OUT=sprn_pc.rpt
sprn_pc.dat

6SWAPPER and REMACP are also run at priority 18.

254

This command produces a typically voluminous report.
Parts of such a report are shown in Figure 14. The summary
block at the top of the first page tells the start/stop times for
the run. Below it on the left is a list of processes with their
PID's and, on the right, a list of drivers and other loadable
system code. The load addresses for RMS and the emulation
code for the microvax can be used to define address buckets
(discussed later) for these modules.

The next page of output, entitled Processor Usage by
Process, shows, on the left, what percent of all the s:unples
were for a particular process. The big users in Figure 14
are the block data manager, bdmmainO 19, that writes system
configuration data into a disk file, and the block builder, BLK·
BLD019. Another surprise is that the block builder takes only
half as much CPU time as the data manager program. Thus,
the focus for tuning the block builder has to include the BDM
program. The last sample page is part of the System Module
Usage report, which lists the percent of time spent in the var­
ious system modules. This part of the report includes the null
process, drivers, RMS as a whole, and the microvax emulation
modules, though not all of them are shown in the sample.

Process Address Space Layout

For the detailed analysis of SPM PC samples, one needs to de­
fine address space layout of each process. The address space
of VISION processes is drawn in Figure 7. A shared applica­
tion data area is located at the lowest addresses, followed by
program code, then shareable images, Pl space, and SO space.
The data is located below the code because the application
software uses absolute addresses to reference the data. 7 The
data addresses in the application region are the same for all
processes. Since code is position independent, the shareable
image code will start at a unique address for each process
depending on the size of the program code.

The Measurex shareable images, identified as VOS and
USS, are always loaded first by the image activator. The ad­
dress space analysis technique presented in this paper depends
on this. The DEC run-time libraries (RTL's) are grouped as
an undifferentiated unit covering the remainder of PO space.
Pl space has very little code; the transfer vectors to VMS sys­
tem services and RMS are there, as well as is the XQP file
processing code.8 Finally, SO space is the VMS code. The
SPM distribution kit provides the definition of the layout of
the VMS address space in a command procedure named SPM­
SYSTEM.COM, which generates the file SPMSYSTEM.DEF.

The VISION application includes a set of user-written
system services, the USS shareable image, which can only be
executed as an installed protected shareable image. Special
link arrangements that change shareable image code to non­
shared code cannot be done for the privilaged code in user­
written system services. Thus the special technique presented
here for handling shareable image address space evolved due
to this constraint.

7VISION was originally coded for an unmapped system.

8File processing includes directory lookups, enters, removes, file creates,
opens, closes, changes, and volume space allocation.

Conversion to Image PC Samples

Generating a histogram of CPU time spent in these various
address areas of the program, requires a total of five analysis
steps. Two steps have already been covered, collecting PC
samples and system wide analysis. The thin:l step is to con­
vert system wide PC sample data to image PC samples. The
command

$ SPM CONVERT=SYS -
/ID=pid -
/OUT=xxx.pcs -

spm_pc.dat

causes the conversion to image PC samples for a process
named xxx whose PID is "pid". The output is xxx.pcs, the
image PC sample file.

Program Address Space Definition for SPM

The fourth step is the definition of address space buckets
(named address ranges) for each VISION process to be an­
alyzed. SPM can read the link map for the address ranges
of all the modules located in the psect $CODE. An excerpt
from a map showing the $CODE psects is in Figure 8. For
the analysis of each VISION process, SPM has to read the
main program link map, the VOS and USS shareable image
maps, and the system definition file supplied with spm, spm­
system.def (renamed sys.def for easy typing).

The sequence of operations to acquire and manipulate all
of the data is complex. A command procedure, INQUIREBK­
TDEF.COM, was written to make it easier to do repetitively.
A copy of the procedure is included in Figure 15. It is invoked
to carry out the fourth step.

$ @INQUIREBKTDEF

The procedure reads the process map xxx.map, the VOS
and USS shareable image maps, and the spm-supplied file
sys.def (a copy of spmsystem.det). It requests the user to
enter some data displayed from the maps, from which it cal­
culates offsets to the VOS and USS. The procedure builds an
image definition file according to the SPM address space def­
inition language. The procedure includes the final SPM step
of translating the image definition data into an image bucket
file:

$ SPM DEFINE=IMAGE image.def
/buck=xxx.bkt

The output file, xxx.bkt, contains the process module ad­
dress buckets for the final step in the analysis.

$ SPM REP=IMAGE-
/BUCK=IN=xxx. bkt-
/OUT=xxx.rpt-

xxx.pcs

The result is a video display of the PC histograms, for process
xxx, which can be stepped through by entering carriage return
or "killed" by typing K. The file xxx.rpt can be printed for
detailed study.

255

In principle, any nwnber of shareable images can be con­
figured this way. The problem with a general implementation
of this technique is knowing where in the process the image
activator will place each shareable image. This information is
unavailable at link time. One technique to solve this problem
is to write a program to read and report the image activator
scratch area in P 1 space to get the starting and ending address
of each shareable image for the process. Iac$gLimageJist
points to each shareable image descriptor; offset 72 is the
starting and 76 is the ending address of the shareable image.9

Another technique is to code the shareable images to report
their addresse ranges after activation, by including data defi­
nitions and code to do the reporting. 10

BLKBLD Program Histogram

The PC histogram for the block builder program is shown
in Figure 16. The SPM output has been edited for display
purposes, leaving " ... " where text was removed. There were
twelve pages of modules in the BLKBLD main program, each
showing PC samples accounting for less than 1 % of the total
CPU time. The scale makes one asterisk equal to 645. 7 counts.

The transfer vectors for each of the shareable images
are shown separately, just before the histogram for the share­
able image with the same name. First the VOSXFR and the
VOS, the non-privileged shareable image are shown, then the
USSXFR and the USS, the user-written system services. Af­
ter the USS is the remainder of PO space identified as Pro­
gram RTL. This includes the VAXCRTL, FORRTL, LIBRTL,
MTHRTL, and SMGSHR.

The last part of the histogram shows Pl space, the loca­
tion of the file primitives and the transfer vectors for system
and RMS services. After Pl space is an edited view of system
space, identified as PROGRAM SYS. This is SO space.

BLKBW Program Results

This PC histogram shows two spikes of high PC counts. One
is for the module SYSENQDEQ and the other is for mod­
ule 'ZZZ. Two modules are labeled SYSENQDEQ; together
they add up to 22.6% of the CPU time. These are lock ser­
vices. The other high CPU use is in module 'ZZZ. The address
definition for 'ZZZ covers the remainder of SO space beyond
the parts defined by SPMSYSTEM.DEF. If this address range
is compared to the addresses shown in the SPM PC sampler
overview report in Figure 14, the range is seen to correspond
to loadable parts of the system: RMS code, device drivers,
and microvax emulation code.The high time in this module is
likely to be RMS execution.

BLKBW program improvements - Record locking

Clearly the block builder can run faster if the locks are re­
moved. The reason for the locks is that a file of common

9Sce the fiche on Debug. Remember, though, it may change, since it is
undocumented information.

IOThe data pscct attributes must be manipulated to cause proper sorint by
the linker.

symbol tabel data is shared among several programs. The pro­
grams are actually doing block I/O, randomly accessing fixed
length 512 byte records, but to have locking done, they were
coded as record I/O. A quick check with the system architect
revealed that the need for VMS to do the locking has vanished.
Other computer systems running the VISION software do not
have built-in record locks; thus, the programs have do their
own locking.

By setting the user-provided interlock bit (UPI) in the
FAB shared access request field, 11 the record locking is re­
moved. The result is shown in figure 9. The counts in the
SYSENQDEQ modules have dropped to l.5%, a saving of
20% of the machine by not having these locks.

The SPM System Tuner shows the effects of the lock
removal in Figure 18. The System Summary graph was the
result of running for a few hours with the original VOS share­
able image that included record locking, then stopping the
application, changing the VOS to eliminate locks, and restart­
ing the application. Less CPU time is used after the change
and more I/0 is done for the same elapsed time.

BLKBW program changes - Block 110

Baited by such success, attention turned to the spike for ZZZ
in program SYS. If ZZZ is mostly RMS record J/O activity,
and the only reason to use record I/O is to have locks, then the
record 1/0 can be replaced by block I/O. The result is shown
in Figure 10. The most obvious result if the focus remains on
ZZZ is that the CPU usage in that code dropped from 23 to
15%. That sounds like an 8% saving for block J/0.

The machine, however, is not being used in the same
way as it was earlier. Program Pl now shows 20% of the
CPU time, up from 6% before locking was removed and 10%
~ the study .with record locks removed.12 The throughput
is probably higher with block I/0, but an elapsed time study
needs to be done to verify that. It is also possible that some of
the internal buffering by RMS for record J/O was lowering the
number of I/0 requests. Only a throughput study will produce
the answer as to which uses the machine more efficiently.

MUDM Results

Other processes in the VISION application were observed with
the SPM PC Sampler histogram technique. The results for
MUDM, the memory update manager, are shown in Figure 17.
Th.is program receives requests from other processes to peri­
odicall! update memory locations in the shared data region.
It receives clock tokens (a special type of message) from the
TIMER job indicating a certain time period has expired. For
MU?~ the histogram shows that most of the time is spent
rece1V10g messages.

11 FAB$M.UPI in FAB$B.SHR

12The increase from 6 to 10% was not noticed earlier by the author and
docs not appear on the Figure 10 histogram.

256

Message service modules

The MUDM data shows a surprisingly large amount of time
spent in the message service modules. Earlier studies had
shown the services to be faster than these graphs indicate. A
The USS link map for this run reveals that MUDM is run­
ning message service modules coded in C instead of Macro.
Some of the modules were recoded for optimal performance
on the VAX. After changing the object module library to in­
clude the macro routines, and relinking and reinstalling the
USS, the application showed a 2 to 3% CPU saving for every
process. This oversight may have gone unnoticed for a long
time without the help of SPM.

Module names vs. entry point names

The key to making sense from the CPU spikes in system space
is to know the names of modules in the system. System pro­
grammers are more likely to recognize entry point names than
module names. A conversion between the two is helpful. Sort­
ing the system map file, SYS$SYSTEM:SYS.MAP, by mod­
ule name produces a listing of all the entry points in a given
module.

This technique was quite helpful for the MUDM study,
where a spike (14% of the CPU) appeared for the module
EXSUBROUT. Figure 11 shows an excerpt from the system
map showing all the entry points in EXSUBROUT. The timer
queue insertion and deletion modules, INSTIMQ and RMV­
TIMQ, are probably where the CPU time is being spent. The
receive message services include an option to time out a re­
ceive message request after a selectable time period.

The other peak in the MUDM Program SYS histogram
is in CMODSSDSP which has 12.8% of the PC hits. This is
the change mode dispatcher, the routine that transfers control
to kernel or exec mode for both built-in system services and
user-written system services. The inprovement indicated by
these results is to code the the message services to stay in
kernel mode and call the timer routines directly, rather than
separately call the Measurex message services and the VMS
timer services.

BDM Results

The results for the process BDM, the bulk data manager,
shown in Figure 12, present quite a different picture of where
CPU time is being spent. BDM spends 77% of the time in the
run-time library (Program RTL) area. Tuning this process can
be done by finding out what statements in the program cause
the calls to the run-time libraries. Measurex has acquired two
tools, PCA and I-MON, that can determine what is calling the
run-time libraries by looking at stack frames.

Stack Traceback Tools

Both PCA and I-MON have the capability of doing stack trace­
back for PC samples which lie outside the main program ad­
dress space. Using this type of facility, PC samples in share­
able images and system space are reported as if they had oc-

curred in the main porogram code. This is done by scanning
stack frames until an acceptable address is found.

PCA

PCA is a VAX/VMS layered product designed for application
performance and coverage analysis. It can do a variety of
sampling operations on a process:

• PC sampling

• PC addresses of page faults

• System service calls

• File I/0

• Coverage and execution counts

• Chargeback of VMS and RTI.. calls

PCA works as a debugger. It requires special linking
of the program with a debugger in order to have the debug
symbol table available.

PCA - Preparation

To prepare for the use of PCA, the following compile and link
commands are used:

$ compile /DEBUG program

$ LINK /DEBUG=SYS$LIBRARY:PCA$0BJ.OBJ
program

The preparation phase is awkward for VISION. Most of the
images are too big to be compiled and linked with the de­
bugger. The block builder image, for example is, nearly 1600
blocks. With the debugger used for the link step only, it grows
to 5500 blocks. Microvax disk space is a problem. There are
some variations on preparation that help.

First, if the program has been previously linked with the
any debugger, the logical name LIB$DEBUG can be defined
to be SYS$LIBRARY:PCA$COLLECTOR.EXE. This causes
PCA to be selected as the debug module at image activation
time. In addition, if the source has not been compiled with
debug, PCA can still be used. Rather than have source line
information, the data is charged by module, which is adequate
for the VISION study.

Module data if link /debug
Source code line if compile /debug

PCA - Collection

The program being observed is run by the PCA collector in the
same way DEBUG runs a program. The following example
starts collecting PC samples with the stack traceback facility
enabled. The program for which collection is being done can
also be a subprocess, as is the case in VISION.

257

$ RUN program
PCAC> SET PC SAMPLING
PCAC> SET STACK PCS
PCAC> SET DATAFILE file
PCAC> GO

The collection stops on program completion or termina­
tion by any means, including control y.

PCA - Analysis

The PCA analyzer needs to be told what to do. The following
command tells it to report pc sampling, to trace samples back
to the main module, to display only address buckets containing
some data (/nozero), and to view the data by module.

$ PCA file
PCAA> PLOT /PC SAMPLING -

/MAIN -
/NOZERO -

PROGRAM ADDRESS BY MODULE

This command was used on the BDM process after re­
linking the image with the debugger and collecting samples as
indicated.

BDM Results

The results of using PCA on BDM are shown in Figure 13.
The author of BDM had speculated that the activity causing
77% of the PC samples to fall in the RTL area would be
disk read and write requests. Disk writes account for half the
activity, while reading and deleting file space are another 33%.
The remaining 18% is associated with receiving messages.
There are no surprises here. The obvious way to improve this
program is to decrease the amount of 1/0 it does. That is being
done.

PCA - Pagefault analysis

If page faults had been a problem, PCA could have been used
to do a detailed analysis of what part of the code causes page
faults. The request

PCAC> SET PAGE FAULT

would collect page fault data.

PCA and DEC's Software Productivity Tools

PCA is part of Digital's VAXset collection of integrated soft­
ware productivity tools, which includes LSE, SCA, CMS,
MMS, DTM and PCA. PCA is expected to assist in finding
execution "hot spots", such as excessive activation counts 01

inefficient modules, and to determine whether all parts of an
application have been executed during testing.

I-MON

I-MON is a product of Bear Computer Systems. It is designed
to be very easy to use. I-MON allows the user to avoid the
problems associated with other tools that require a special pro­
gram link; it uses the trace tables in the executable image to
define sampling buckets. This is completely transparent to the
user. In addition, dynamic features of the display allow the
user to zoom in on program detail when a problem is seen.

The following command will start I-MON collecting data
on the process identified by pid.

$!MON /ID=pid /SELECT=com

I-MON begins by doing PC sampling with data displayed
by module. When a problem is seen on the terminal display,
the user can dynamically expand the view of the module to see
the instructions displayed by line number or hex address. Al­
ternatively, the tool can show the caller a heavily used module.
I-MON will log all terminal activity to a file for convenient
playback or hard-copy of any session. It can also gather data
directly into a file, bypassing the terminal, by using /OUT=file
/SAMP=2000 qualifiers on the command.

Summary

The results that have been presented in this paper indicate
that progress has been made toward the original performance
objectives. The VISION processes fit in 5.6 MB of memory
with essentially no page faults except during initialization. The
block builder runs faster by 20-40%. The macro message
services were restored, saving 2-3% for every process. There
is also a possibility for further improvements by changing the
timeout code in the receive message services. The work is
not yet complete; other builders require further study and the
system needs to be studied during process control activity.

Block Builder Results

The screen refresh on the graphics terminal will be altered to
save about 20% elapsed time. Record locking is eliminated
saving another 22% of the cpu. Block 1/0 vs. record 1/0
elapsed times still need to be measured. If record 1/0 happens
to be faster, then RMS buffering can be examined for further
tuning of the file 1/0.

BDM Results

BDM, the bulk data manager, is the highest user of both CPU
time and 1/0 resources during block builder tests. Lowering
the number of I/O's appears to be the only way to improve
its throughput. There are plans to have the block builder do
some internal buffering so that it does not request as many 1/0
operations from BDM. Additionally, a future hashing scheme
may cut down drastically on BDM's 1/0 rate.

Tools Evaluation

SPM has proven to be a valuable tool for finding unexpected
behaviors in programs. The SPM PC sampler is extremely

258

valuable, though parts of the output may require assistance
from a system programmer for a complete analysis of the ap­
plication. The SPM System Tuner's results are of use to both
programmers and system managers. PCA or I-MON should
be regularly used by the developers of each program during
the integration stage of development to be sure the program
behaves as the author intends. The problems uncovered by
using these tools enable programmers to put their efforts into
the right places.

Acknowlegements

I would like to thank Mary Tremaine for preforming the mir­
acle of transcribing the tape of my talk at DECUS. 13 Without
that effort this paper would not have been published. In ad­
dition, I would like to express my gratitude to my boss, Ron
Lau, for making it possible for me to do the performance stud­
ies and for allowing me some company time to complete the
final editing of the paper. Finally, I want to thank my won­
derful family, my husband Jim and daughter Mary Wholey,
for being tolerant of my absences during preparation of this
material.

131 said everything included in this paper three times!

References

VAX/VMS DCL Dictionary, VAX/VM.S Version 4.4, AA­
Z200C-TE, Digital Equipment Corporation, April 1986, Show
Memory, p. DCL-567, Show System, p. DCL-598.

VAX/VMS Monitor Utility Reference Manual, VAX/VMS
Version 4.4, AA-Z423B-TE, Digital Equipment Corporation,
April 1986, Monitor Modes, p. MON-62, Monitor Processes,
p. MON-69

Guide to VAX SPM, VAX SPM Version 3.0, Septem­
ber 1986, AA-Gl39A-TE, Digital Equipment Corporation,
September 1986.

VAX SPM Reference Manual, VAX SPM Version 3.0, AA­
R580C-TE, Digital Equipment Corporation, September 1986.

VAX PCA User's Reference Manual, VAX Perfonnance
and Coverage Analyrer Version l.l, VAX/VMS Version 4.4,
AA-EB54A-TE, Digital Equipment Corporation, August 1986.

I-MON, VMS Image Monitor, Version 4.0, Bear Computer
Systems, North Hollywood, CA, 1985.

VAX/VMS Guide to VAX/VMS Performance Management,
VAX/VMS Version 4.0, AA-Y515A-TE, Digital Equipment
Corporation, September 1984.

VAX/VMS Internals and Data Structures, Lawrence J. Ke­
nah and Simon F. Bate, Digital Press, Burlington, MA, 1984.
For VAX/VMS Version 3.

VAX/VMS Internals and Data Structures, Version 4.4,
Lawrence J. Kenah, Ruth Goldberg and Simon F. Bate, Digital
Press, Burlington, MA, Preliminary and Partial Edition, 1987.

259

System Memory Re•ource• on 16-APR-1987 07 1 02157. 07

Physical Meraory Usage (paqe•) 1

Main Memory (9. OOMb)

Slot U8aqe (slot•) 1

Proc•c11i1 Entry Slot•
Salance Set Slot•

Fixed•Siz• Pool A.rea• (pack•t•) 1

Small Pack•t (SRP) Liat
I/O Reque•t Packet (I:P.P) Li•t
Larq9 Packet (LP.P) Li.st

Dynamic Memory Usa·~• (byte.s) 1
Nonpaged Dynamic Memo.ry
Paged Dynamic Memory

Paqinq File U!lla.qe (pa-19•) 1

Tel:'. al
18432

Total
60
58

Total
1000
1000

25

T-:i-t:".al
349696
276992

DISK$UO'i4'l 1 (SYSO. SYSEXEJ SNAPFILE. SYS
DISK$UDWl1 (SYSO. SYSEXE) PAGEFILE. SYS

Free
4192

Free
21
ll

Free
627
790

14

Free
111520

790.24

Free
11304

9929

In U•e
14213

Resident ..
37

In Use
373
210
ll

In Use
238176
197968

In U••
21696

8071

Modified
27

Swapped
0
0

Size
96

208
1584

La..r;•st
104272

78064

Total
33000
18000

Of the physical paqe• in use, 3069 page• a.re permanently allocat.ed to VMS.

Figure 1: Show Memory

260

VAX/VMS V4, 5 on n·::ide SCSI 16-APR-1987 07: 02: 48. 45 Uptime 1 13141:25
Pid Proceae Na.me State Pri I/O CPU Pa.,. :flts Ph.Mera

00000040 NULL COM 0 0 1 01150118.46 0 0
00000041 SWAPPER RIB 18 0 0 00100113.89 0 0
00000102 OPIV04019 LEF 19 26 0 00100103.10 603 397
00000103 OPIVD5019 LEF 19 26 0 00100:03.04 602 397
00000044 JOB CONTROL RIB 9 870 0 00100104.66 145 .i69
0000004 5 ERP.i'MT KIB e 1207 0 00100111.43 70 93
0000004 6 OPCOH LEF • 204 0 00100102.69 1972 61
00000047 NETACP KIB 18 HS 0 00100126.25 289 209
00000049 EVL RIB 6 5S 0 00100113.42 298.27 47 N
0000004 9 P.EMACP RIB 18 1S1 00100:00.69 eo SS
OOOOOOCA OPILP 019 LEF 19 28 00101:29.01 1642 47S
OOOOOOCC VDBJOB019 COM 4 670583 01:06:47.70 1236 1100
OOOOOlOE SPM TUNE LEF 24 3389 00100145.50 178 300
00000004 BATCH 70 LEF 4 5540 0 0010013.Z.96 .2434 946 B
00000005 milma.Tnl 71 LEF e 67 0 00100104.39 6SS 491
00000006 b·Jmmainl 71 LEF 5 .2:98519 0 01119141.43 10.ZS 893
00000097 Ol.9VOS RIB 19 1674 0 001001.22.70 3072 94S
00000008 BLKBLD171 LEF s 79175 0 00106154.15 1511 2268
OOOOOOAS milma.in019 LEF 17 66 0 00:00104.22 6Sl 495
000000A6 mi2ma.in019 LEF 17 n 0 00100103. 74 608 450
000000A7 mi3main019 LEF 17 J4 0 00100103.78 611 453
OOOOOOA9 timmain019 RIB 20 70058 0 00:16:01.60 761 375
ooooo~)A9 bdmmain019 LEF 16 .2.4646 0 00106113 • .29 1.236 1000 s
000000.AA datma.in019 LEF 20 43 0 001011.26.58 3035 6.25 s
OOOOOOEB mudmain01~ LEF 19 69 0 00102149.87 849 649
01)0000EC PIOTSK019 LEF 18 34 0 1)0100117.33 654 51S s
OOOOOOEO kbdmain019 LEF 18 33 0 1)0100103.15 953 425 s
00000068 LTAl1 ClJR 4 165.Zl 0 00108111.38 22890 389
OOOOOOEF Qpr 019 LEF 19 32 0 00100103.21 629 441
OOOOOOFO vct019 LEF 19 30 0 00:00:03.03 676 501
OOOOOOFl vqout019 LEF 19 36440 0 00100154.62 627 397
OOOOOOF2 ala.rnwainOl 9 LEF 19 26 0 00t00:03.85 582 414
OOOOOOF3 VIDEO 4019 LEF 19 269 0 00101120 .83 965 475
OOOOOOF6 eymma.Tn019 LEF 18 40 00100104 .06 662 496
OOOOOOF7 VIDEO 5019 LEF 19 27 00100103.15 676 475
OOOOOOFB aplmaTn019 LEF 17 71 00100104.74 740 580
00000079 003VOS RIB 7 1474 00100115.75 .:.;:333 350
OOOOOOFA OPIV02019 LEF 19 27 00:00:03.09 604 398
OOOOOOFB OPIV03019 LEF 19 26 00100103.09 604 399

Figure 2: Show System

261

E&c.h column • 300 aecond• I 5, 00 minute•
-+- ---+--- -+- - --+----+----+----+----+----+----+----+----+

70t: + +
I
I
I
!
+
I
I
I
I
+
I
I
I
I

!
I
IU
JU •o• +u
IU
IU u
IU u u
IUU U U U U U

sot: +Eu uuu u u u u u u u
l EU UUUU U UU U UUUUUUU U UU
!EU UUOUUUUUUUUUUUUUUUUUUUUUUUUUUU
!EU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
I KU UUUUUUUUUUUUUUUUUUUUUUU,UUUUUUU

40t: +KUU UUUUUUUUUUUUUtJUUUUUUUUUUUUUUUU
! KUO IJUUUUUtJUUUUUUUUUUUUUUUUUUUUUUUU
!ICUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
llCUUUUUUUUUUUUUUUUUUUutlUUUUUUUUUUUUU
IKUUUUUUUUUUUUUUUUUUUUUUUUUEUUUUUUEU

+
I

30t: +KUUUUUUUUUUUUUUUUUUEUUUUUUEUUEEUUES +
IKEEUUUUUUUl:UEEUUEEUEZEUEETJEEUESEUEJC I
!KEEUUtJUUEEEEEE.EEEEEEEEEEEEKEEEEEUJ<K I
I KKEEEE.ZEEEl<EKKEE.K!CEKJaCEJCKEl<KUKKEJCK t
! Kl<KZEEEEJl'.KKl<KJCKKJ<!(J(J(KJ(JCJ(JCKJ<Kl<KKJ<EKK I

20• +KKKKKKKKKKKJ<ICKKKKKXKJQ(KKKJC](J(J(l(J(J(](KIC +
I KICKKKKKKKJIJ(KKKJCJQCKKKJQ(KKKlQCJCKKIClOC1<K 1
1 KXKJ<KJ('KICKJQ(J<KJ(KJQCXKKJQQ(J(.IQQCKKKl<lQCJCJC l
! KKKKIO(J(KKlQCKKKKJ(J(KKICIQ(J<KKKKJO<KJ(JQCKK I
I Klt.:XKKJ<.KKKIQCKKKKlQCKJ<KJQ<.KJC:KlQCKlCKKKKKK

10, +KKJ<KJQ(KKKl<lCKJ<J<KIQ(KKKJQCKKKKKKXKKIQCKJ< +
I KJ(J<KKXKKKKJ(J(Kl<lCKlaCKKKKKKJ(IQ(J(J(J<KJQCl(J(I
!KXKKlQCKKIII IIII IIIIIIIIIIIII IKl<JCJO(I l
IKil(J(III:U:IIII.IIII IIIIIIIIIIIII:IIIII I
I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.I. , , •••.. , , , . , , • , , , , . I
-+-... --+----+----+----+----+----+----+----+----+-... --+-----

18102 18:52 19142 20t33
18127 19117 20108

"I" = Interrupt.
"S" = Super

"X" = K•rnel "£" "' Exec
"U" • Uai•r

"C" = Cora.p&t • Dat& Un&v&ilable

Figure 3: CPU Utilization (Percent) vs. Time of Day

262

DUAO Diak Volume All.:-cation (Pereent) va. Time .:-f Day
Each c.:-lurnn = 300 ~econd• I 5 .oo minute•
-+----+----+----+----+----+----+----+----+----+----+----+-----

100• + ••••••••••••• +
! ••• * ** * •• "'*** "* ""'t1t** **** • *• **** "*** I
I*"'**•***************'******'**'**'***** J
! * * • *** "*****'********** ** • ** * ••***** I
! *******tit* •• "

90• +** ••••••••••••••• **
1 • •••••••••• ""*
I*********"'*******•************* •t1t••
t * * * * •• ** * •• *. *. * •••••• ** *. * * * •••
! " *****"

ao• +• ••***"'"'"' "'*** •• •• • ***** •• "'"'"'**
1 • ••••••• ***** •111 •• "'**"'* "*"'*
I* Jll *Ill****"'*"'**'*"'****••***"'••*"'**"'"'"'*
! ... "" "'*"'* ••••• ** ••••
! - •• ··- - ** ••••••••••••••••••

70-t +* •• * * * ** * •• * ••• * *. * * *. *. ** *.
I***"" ,.
! •••• **********'**** •••••• **"'*
! ** **** * ••••••••••••••••• ***.
I*""*"'**""**•••"'"'""*"'*'*""'*"'**"'"''******'*

60t +••································· J •• **** "'"''****"' **"**. *. """"'"'
1 •• *"*****"' ***" •••••• *"'"***
1 • ••••••• * ** ••••••••• *
! ** "'"'"'"'*"' ••••

50t +•••••*····························· I******""•*"'*"'****************** ***Ill*
I****************•••********** it•****
t ••• •••••• *** •••••••• ***. ***. *** ••••
! ****** * ** ** * ""***************** •••••

40• +**•**************"**************"'**
! •• * •••••• **** •••••••••• ***** •••••••
I******"*****"'***-"•****-"******•***•*
! * * **"'*"'***** "'"'***** **** ***** •••••••
I***••*******"'***********'******"'****

30t +•••••• *****. * **** **. *"'******-**** *.
! "'. * * *** * * •• *. * •••• * ••• * * *** ••• * *"'. *
! ****** *** ****** ****** "'"'"'*
! ••••••• ••••••••••••••• * ••••••
I ""* * * *'* * • * * * *"" * • ** * * * *"' * *"' ** * * * * ** * *

20• +•••···················•·*·········· I*"'***********"****"'*'*******"'"'"'*****
I**""******············-·**** ••••••••
I******"**"***•********************* 1 ** •• ** **"'*** *****

10• +***•*•·····························
I •••111•••• **-" ** ••••111••••• *****"'** *** *
! * ** * •• * * * ** * .. * •••• * * •• * ••••• Ill•****.
I*******•* ***•******Ill****-***•••****

+
I
I

+
I
I
I
I
+
I
I
I
I
+
I
I
I
I
+
I
I

+
I
I
I
I

+
I
I
I

+
I

!***"'*"'***********•*•*"'*************· • •• •. •• • • • • • • .. • ••.•••.,I -+----+----+----+----+----+----+----+----+----+----+----+-·---
18102 18152 19142 20133

18127 19117 20108
"*" = Allocat-4 = Data Un.available

Figure 4: Disk Volume Allocation Report

263

DUAO Disk I/O (Ra.te/Sec.ond) vs. Time ,;;of Day
Each .;:olumn = 300 second.s I 5.00 minutes

-+- - - -+- - - -+- - - -+- -- -+- - - - +- - - -+----+----+-- - -+- -- - +----+ - -- - -
40. 0 +

l
l
l

35. 0

30. 0

25 .o +

20. 0

l
!
!

15. 0 +
l
l
l

10 .o

.
I*"'"'

• ** *** **"' *""" ."' "' •• "'"' *
"**"'**"'••••••••••<r••**""'"'
••••• Irr •• ***"'*"'*****
................... *****"'*"'**"'"'*
................. ******"'***********
"'"'*"'**"'***"'"'*"'"'•*•••••***"'*****

I***"'"'"'*•••****"'*"•*"'"'"'"'*****"'"'**"'**
I"'*********"'****"'*"*"'******"'***•••••

5.0 +***"**"'**'"'"'"'***"*"'*"'*""•············
!***""*******"'**"'"'***"'*"'"'•"'"'****"'*"'**
I"'***"'*****"'*********"'"'***"'"'*•***"'""*

+
l

l "'*"'*********"'********"'"'***"'""'"'**"'"'"' !
I**"'""***•**"',.."'********"'***••••••*"'*"',., ... ,, , , .. ,!
-+- - - -+-- - -+- - - -+----+- -- - +- - - - +----+-- - -+----+--- -+- -- -+-----

l 610 Z l8152 19142 .20133
16127 19117 20108

"*" = Diak I/O = Data Unavailable

Figure 5: Disk 1/0 Rates Report

264

Paqe Faul ta (Rate/Second) va. Time ,:of Day VAX SPM V3.0-0l

67. 5

60. 0

5:2. 5

45. 0

37. 5

30. 0

22. 5

15. 0

7. 5

Frc·rat 16-MAR-1967 18:02130.16
-+- - - -+- - - -+- - - -+- - - - +- - - -+- - - - +-- - - +-- - - +-- - -+- - -

+F
!F
!F
!M
!M
+M
!M
!G
!G
!G
+G
!G
!G
!G
!G
+G
!G
!G
!G
!G
+G
!G
!G "R" Read I/Oa
IG "D" Demand Zero
!G "G" Gl.;;-bal Valid
+G "M" Modi fled
!G "F" = Free
!G "O" Other
!G " " = Data Unavailable
!D
+D
!D
ID
!D
!D
+DF
!OM
JOG
!DG
IDG
+DG
IDG
!DD
!DO

!RD M • • • • • • • • • • • • • •
-+- - - -+- - - -+- - - -+- - - -+-- - - +- - - -+-- - -+-- - - +--- -+- --

l 6102 16152 19142 20133

Figure 6: Page Fault Rate Report

265

BFFFn'FF 1------------------------------------~

80000000

SO SPACE I
(ayateni) J

I
-- ----------- ----------- ---- ------- - I

I
I

Pl SPACE I
(Data. and .stack) I

40000000 ~ ------------------------------------1

y + USS.size

y = x + VOS~ize

x :: .:!EE.ZOO + Paize

.ZEE200

200
0

I I
{dynami:: addreaa 5~·acel

I I
I RTL' a I
I I 1------------------------------------1
l USS I 1------------------------------------1
I VOS I 1------------------------------------1
I I
I PROGRAM CODE I
I I 1------------------------------------ I
I I
I I
I APPLICATION DATA I
I I
I I

: :::::::::::::::::::::::::::::::::::::

US Seize

VOS.a i:e

Paize

Figure 7: Program Address Space

266

Psect Name Mo-.:iule Name Base End Lenqth Align ---------- -----------
$CODE 00241000 002427F5 00001 '7F6 6134.) BYTE 0

TIMMA:IN 00241000 0024136A 00000368 875.) BYTE 0
TIMGLOBAL 00241368 002413bB 00000000 0. > BYTE 0
CLOCK 00241368 00241368 00000000 0. > BYTE 0
SETCLOCJ(S 00241368 00241593 0000022g 553.) BYTE 0
REAOVMSCK 002415g4 00241718 00000188 39.2.) BYTE 0
AOOSIGNAL 0024171C 0024190F 000002C4 708.) BYTE 0
SUBSIGNAL 002419EO 00241ABE OOOOOODF 223.) BYTE 0
AOOOELTIM 00241ABF 00241BF3 00000135 309.) BYTE 0
SUBOELTIH 00241BF4 00241CBE OOOOOOCB 203.) BYTE 0
SNOTOK 00241CBF •)0.241838 000001 '7A 37a. > BYTE 0
SNOMSG 00241839 00.HlECS 00000090 144.) BYTE 0
CLKUPD 00241EC9 0024lFBE OOOOOOF6 246.) BYTE 0
FILEUPD 0024 lFBF 0024.2090 OOOOOODF .2 .. B.) BYTE 0
CHECKTIME 002420'.}E 002421FE 00000161 353.) BYTE 0
MISCFCNS 00.24.ZlFF 00242204 00000006 6. > B'!'!'E 0
SET GMT 00242205 00.242278 00000074 116. I BYTE 0
SETLOCCFF 00.242279 00242284 0000003C 60.) BYTE 0
CVTCCX 00242285 002422FO OOOOOOJC 60.) BYTE 0
S:NDCLKTOlC 0024.22F1 00242310 00000020 45. > BYTE 0
NUHSEC 00242318 00242428 00000108 .i:67.) BYTE 0
LOADCLOCK 002424.Z9 002427F5 000003CD 973.) BYTE 0

Figure 8: $CODE Psect part of map

267

Removed P.ecord L'°'ck.inq

PROGRAM BLKBLD BY MODULE

PROGRAM SYS BY MODULE

+----+----+----+----+--... -+----..-----+----+--":'-+----+

SY SWAIT
8000B60A 1800086£5

SYSENQOEQ
8000BC1C 18000C97C

IOSUBNPAG
8000CD71 :80000966

IOSUBRAMS
80000967 180000803

LOADMREG
80000804 180000CBE

CMOOSSDSP
8000FCOO 18000FDOC *
8000F078 1 BOOOFTDF

SYSENQDEQ I
800143A61B00146SC I""

zzz I
8002904F 1BFFFFFFF I**""******""""******""****'*"'""***""**"" "'"'""*""""""***"'**•**

I
+--- -+ --+----+--- -+- ---+ ... ---+----+- ---+-- --+- - --+

sca.linq1 418.32 counte/a.•teri•k

Figure 9: Image PC Histogram

268

l .13•

0. 78•

o. 38•

Z3. 81':

PROGRAM BLKBLD BY MODULE

BLOC
00268400 10026844C

GNXR.EF
0030C07E I 0030C194

GSYMO
0030C68B 10030C801

BF ILES
0031.EAOO 1 0031F347

PROGRAM Pl

+----+----+----+----+----+----+----+----+----+----+

+----+----+----+----+----+----+----+----+----+----+
Pl I

40000000 :7FFFFFFF I**
I
+----+----+----+----+----+----+----+----+----+----+

Scaling-1 671. 84 counta/aateriak

PP.OGPAM SYS BY MODULE

IOLOCK
d0006AFF:80006D8C

SYSACl?FDT
80008821: 80009258

SYSQIOREQ
800098AA: B0009CDB

ASTOEL
80009090: 8000A040

SYSENQD:EQ
8000BC1C 18000C97C

IOSUBRAMS
BOOOD96718000DB03

CMODSSDSP
BOOOFCOO rBOOOFDOC
8000FD78 1 SOOOFFOF

zzz
8002904F 1BFFFFFFF

+----+-- --+--- -+- -- - +- -- - +- -- - +- - --+----+- - --+- - - -+
I
I******
I ,
I

1 •••••••• I

1 ••••••••••• I
t••••
I
I•••••••
I
1 •

1 ·····-··· I
t •••••••••• ***. * •••••••• * "'.
+----+----+-- - -+--- -+- ---+--- -+- ---+----+----+----+

Sc.alinq1 671.84 counta/aateri.&k

0. 02•

2. 3;111

1.20•

l. 05111

20. 4 9•

1. 8841:

3. 451l

1.56'

2.71':

o. 56•
3. 64•

l.!LOB!l

Figure 10: Image PC Histogram of BLKBLD

269

+- - - - ---- - --- - - - -- - - - --- -+
I Symbol Cross P.eference I
+- - - ... - -- - - - ------- - - - ... ---+

symtool Value Defined By Referenced By ---------- __________ ,.. ____
EXE$ CLEA?luP ORB 800l04B4-R EXStJBROUT LNMSUB
EXS$CHICDELAC°CES 800104 53-R EXStJBROUT
EXE$i'ROBER 8000A1BA-R EXSUBROUT SYSCHJ(pRO SYSGETMSG SYSSNDJBC
EXE$CHKWRTACCES 80010461-R EXSUBROUT MBDRIVER MTFOT SY.SACPFDT
EX£$CHKPHYACCES 80010458-R EXSUBROUT SYSQIOREQ
EXE.$PROBEW BOOOA703-R EXSUBROUT EXCEPTION IOCIOPOST SYSACPFOT
EXE$PROBEW DSC 80010500-R EXSUBROUT SYSSIMGACT SYSGETDVI SY.SLNM
EXE$ INSTIMQ' BOOOBA18-R EXSUBROUT .SYSSCHEVT SYSSET!ME TIMESCHDL
EXE.$CHKCP£ACCES 80010458-R EXSUBROUT
1!'.XE$PROBEP. DSC 800104FC-R EXSUBROUT SYS$IMC..A.CT SYSACPFDT SYSBRKTHR
EXE$CHKROAC°CES 80010450-R EXSUBROUT IOSUBNPAG MBDRIVER SYSACPFDT
EXE$BUFQUOPRC 8000A13D-R EXSUBROUT
EXE$CHRLOGACCES 800104 53-R EXSUBROUT .SYSQIOP.EQ
EXE$P-MVTIHQ 8000'3A9F-R EXSUBROUT SYSCANEVT
EXE$HAXACMODE 800104ED-R EXSUBROUT COMOP.VSUB SYS$IMGA.CT SYSASSIGN
EXE$CHKEXEACCES 800104 62-R EXSUBROUT
EXE$MULTIQUOTA. 8000A756-R EXSUBROUT
EXE$BUFFRQUOTA BOOOA.131-R EXSUBROUT SYSAC"PFDT SYSGETJPI
EXE$:.>NGLEQOOTA. SOOOA.753-R EXSUBP.OUT SYSQIOP.EQ SYSUPO.sEC
EXE$VA.L_ IDNAME 80010545-R EX.SOBROUT SYSRDBRES

Figure 11: System Map Excerpt

270

PROGJ\AM BCMMAIN BY HODULB

+----+----+----+----+ ... ---+----+-- ... -+-- ... -+----+----...
BOHMA.IN I

00.2S36001002S378D I

Ima~ PC Hiatoqrana VAX SPM V3.0-01 Pa99

PROGRAM RTL

+----+----+----+----+----+----+----+----+----+----+
RTL I

0026A200 13FFFWFF I*•• 1111• •••1111 ••• * • •••••• ••••• •••• ••• *••••••* •• ••• ***•*
I
I
I
I
I
I
I
+----+----+----+----+----+----+----+----+----+----+

Scalingt 2640. 00 count•/a•terl11k

77 .11\:

Figure 12: Image PC Sampling for BDM

271

Pr-:>qra.m C·::iunter Samplinq Data ("790491 data p<jint5 total)

Bucket Name
PP.OGRAM ADDRESS\

BDMMAIN
ALLOCATE •
ALSTRET
BDMCLNUP •
BDM:P..QINDX
BDMSETUP
BLDSTRET
CALCAOR
CHKDATA
CHKIDEV
CH!< INDEX
CHKREQST
CHKSTOP.E
CLOSEIMAG
COPYKEY
OASTRET
DATAREQST
DATASTORE
DATAFSP
DEALLOISC
OEALLOC
DFKEYINS •
DFKEYSRCH
DINDXINS •
DINOXSRCH
EXTFILE
EXITREQST
EXIT STORE
INDEXRTN •
INITDATA •
INITREQST
INITSTORE
KEYDELETE
L!NKREQ
MAILMSG
NMADRCHl(
Oi'ENFILE
OPSTPET
PTRI::E •
READ AT A
REPFILE
RISTRET
SISTRET
SRCHSTORE
STOREINDX
UPDATINDX
WRITDATA •
CHRNCPY
BFILL
RCVMSGHDR
SNOMSGHDR

+- - - -+- - - - +- - - -+- - - - +-- - -+-- - - +- -- - +- -- - +- -- - +- - --+

·' .1
.1
.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1
·I
• I***"'*"""'**"'"'"'***"'"'"'"'
.1
.1
.1
.1
.1
.1
• ! "' .. "'* "'"'"'* "'"'"'"'"' "'* "'** * * **** * *""** * * ** * •• *"' * * * """'"'* * ****
.1
.1
. I*************"'*****
.1
+- - - - +--- -+- - --+-- - - +-- - -+-- - -+- -- -+- -- - +- -- -+- - - - +

0. 0\:
0. Olli
0. 0\:
0. 0\:
0. Olfl
0, I)\:
0, 1)%

0. Ofis
0. i)'
0. 0,
0. 0\:
0. 0\:
0. 0\:
0. Ofis
0. 0\:
0. O'-i
0. O'-i
0. 0\:
0. 0\:

14. 5'-i
0. 0\:
0. O'-i
0. 0\:
0. Ofis
0. 0\:
0. llfl
0. 05!1
0. Olli
0. Orti
0. Olli
0. 0\:
0. 0\:
0. OllJ
0. 0%
0. 0\:
0. 0\:
0. 0,
o .orti
0. Olfl

18. 71tJ
0. 0,
0. 0,
0 .0\:
0. 0\:
0 .0\:
0. 0\:

48. 5\:
0. 0\:
0. 0'

18 .0\:
0 .1\:

Figure 13: PCA Analysis of BDM

272

+- - -- - - - -- - - - - - - - - - --- - - -- - - - - -- - - - - - - - - -- - - - - -- - - - -- - +
I I

VAX SPM V3 .0-0l
PC SAMPLER

Data C·::>llection Start Tlme1 8-APR-1987 18t34:34.02

Data Collection Stop Time1 8-APR-1987 23134131.55

T.::.tal Elap9ed Timet 04159157.53

! Sampling Interval 1
!

+- - - - - - - -- - - - - - - - - - -- - - - - - - - - - -- - - - -- - - - -- - - - - -- - - - -- -+

Prv·::ea.,e9 at Start Time1 Drivera at Start Time1

Pro•:'&99 N~e PIO Drivdr N.;i.me St.art End ------------ -----------
NULL 00000080 SPMTIMER 80l 7FA50 80180380
SWAPPER 00000061 DDDRIVER 80181FDO 8018.<:9EO
bdrnrna.in019 0000040.Z SC DP-IVER 801 "7D3EO 80l 7El50
dat:-:na.in019 00000503 t.~DRIVER 80l 7D:.;:10 801 7D3EO
ERRFMT 00000084 CXDRIVER 80l 7CFOO 801702.10
OP COM 00000085 PIPEDRIVR 801 7C5AO 801 7CFOO
JOB CONTROL 00000086 LTDRIVER 80179320 8017C3.20
mudffi.5.!n019 00000507 CTDRIVER 801770CO 80178590
PIOTSK019 ooooo5oa RTTDRIVER 80176510 80176F30
NETACP 00000089 NDt'IRIVER 80l 723EO 80172040
EVL 0000008A NET DRIVER BQ1bE7FO 801 722FO
REMACP 0000008B LCDP.IVER B0200AOO 80200F86
KBINITOl 9 0000•)50C YCDP,IVER d016CEBO B016D7CO
SYMBIONT 000 00000080 XGDRIVER 80169310 80l6CCEO
OPI 019 0000050E D~DRIVER B0166F60 80167A10
vctOl 9 0000050F XEDRIVER 80163160 80166A90
ala:rmma inOl 9 00000510 TS DRIVER 8016.2240 80163000
vg,::>ut.019 00000511 DU DRIVER 801A7410 801AACB9
VIDEO 4019 00000512 PU DRIVER 801A5C60 801A740S
FEXEXE"co19 00000513 'ITDP.IVEP. 801A0940 801A5C56
FEXSCHED019 00000514 OPERATOR 800018CE 8000196E
"ymmain019 00000515 NLDRIVER 80001895 80001ED2
OPIVD.2019 00000516 MBDRIVER 8000185C 80001E5E
"plma.inOl 9 00000517 RMS CODE 8002E600 60048200
OPI\-'03019 00000418 UBAO ADAPTER 80155COO 80165£60
OPIVD4019 00000519
019VOS 000004 9A
OPI\.'05019 0000051B
OP I LP 019 0000039C
BLKBLD019 00000510
BB CCTASKOl 9 0000051E
SPM TUNE 000003BE

TxA41 000004BF
;;aate.rl019 000004EA
ma9ter2019 000004EB
ma9ter3019 000004EC
t imrnainOl 9 000003ED

+- - -- - - - -- - - - - -- - ---- - - - - - - - -+
I I
I Proces8or U9ag• by Process I
! I
+- - -- - - - -- - - - - - - - - - -- - - - -- - - -+

Proce9e N~e Sample• Total Time Sy9tem Time Sy9t.ero. Proce9s by Acce9s Mode
(Second9) (Seconda) Time • KRNL EXEC SUPR USER CMPT IPL>O IPL>2 --------------- ---------- -----------

NULL 1048096 SB• 10480.86 10480.86 100\: 100• o• o• o• o• o• o•
SWAPPER Sl6 o• 5 .16 5. 08 98• 100\: o• o• o• o• 99• 99•
bdrnmain019 287878 15' 2878. 78 504. 35 17' 13' 5' O• so• O• lO• 6•
datmain019 5996 o• 59. 96 25. 31 12' 61' o• o• 38• O• 21' 15•
ERRFMT 327 O• 3. 2.7 1.14 S30 BO• lB• o• o• o• 43' 26•
OP COM 36 o• 0. 36 0. 34 94' BB• o• o• 11' o• BO• ao•
JOB CONTROL 68 O• 0. 61:1 o. 47 69• 79• 5' o• 14' o• SH 33•
mudlna.in019 l 7886 o• 178.66 93 .19 S2' 66• o• o• 33' o• 31' 26•
PIOTSK019 1358 o• 13. 58 4. 4 9 33' 4B• o• o• S1' O• 19' 14'
NETACP 2438 o• 24. 38 2. 88 11' lOOt o• O• o• o• 7' 6•
EVL 3Z4 o• 3 • .24 3. 01 92-\: 91' H H 5' o• B5' B3'
REMACP 14 o• 0.14 0 .13 •2• too• o• o• O• o• 92\" so•
KBINITOl 9 29138 1' 291. 98 76. 06 .26'll SB• o• o• 41' o• 20• 11'
SYMBIONT 000 0 o• 0. 00 0. 00 o• o• o• o• o• o• O• o•
OP! 010 0 o• 0. 00 0. 00 O• O• o• o• o• o• o• o•
vctOl 9 7006 O• 70 .06 22. 36 31' S6' o• o• 43' o• 1 .. 15'
alarmmainOl 9 0 o• o.oo 0. 00 O• 0\ o• o• O• O• o• o•
vqcutOl 9 18029 1' 180. 29 75. 67 41' SB• o• o• 41' O• 28\: 19•
VIDEO 4019 28977 H 289. 77 83. 48 , .. 49• o• o• so• O• 15' io•
FEXE.XE"co 19 0 o• 0. 00 o. oo o• o• o• o• o• O• o• o•
FEXSCHEDOl 9 9498 o• 94. 98 40. 65 42• 61' o• o• 3B• o• 23• 17•
9yrnrnain019 0 O• 0. 00 o. 00 o• o• o• O• o• o• o• o•
OPIVD2019 0 O• 0. 00 0. 00 0\ o• o• o• o• o• o• o•
9plmain019 4 o• 0 .04 0. 04 100-\: 100• o• o• O• o• 25• 25'
OPIVD3019 0 o• 0. 00 0. 00 o• o• o• o• o• o• o• o•
OPIVD4019 0 o• 0. 00 0.00 o• o• o• o• o• o• o• o•
01 l}VQS 4743 o• 47. 43 35. 53 74' 75' 14' O• 10• o• 4B• 20•
OPIVD5019 0 o• 0. 00 o. 00 O• O• o• o• o• o• o• o•
OP I LP 019 7014 o• 70 .14 23. 35 330 so• o• o• ... o• 17• 12'
BLXBLDOl 9 163960 9• 1639.60 774.89 47• SO• 11' o• 2•• o• 31' 20•
BB CCTASK019 0 o• 0. 00 0 .oo o• o• o• O• 0\ o• o• o•
sl?M TUNE 3302 o• 33 .02 6. 71 20• 73\ 7' o• 18• O• 34' 30•
Til41 0 O• 0. 00 0. 00 o• o• o• o• o• o• o• o•

ii"a9te.r:L019 0 o• o.oo 0. 00 o• o• o• O• o• o• o• o•
ma9ter2019 0 o• 0. 00 0. 00 o• o• o• o• O• o• O• o•
ma.9ter3019 0 o• 0. 00 0. 00 o• O• o• o• O• o• o• o•
timrnain019 66688 ,. 6 66. as 228. 14 34' SH o• o• 4B• o• 26• 21'
PIO 0000051F 1713 o• 17 .13 10. 67 62' S3' 13' 29' ,. 0\ 45' 2B•
PIO 000004AO 1597 o• 15. 97 9. 4 9 S9' SH 14' 29• .. O• 42, zs•
PIO . 00000521 B2 o• 0. 82 0. 74 90• B6• B• o• .. O• 74• 35'
PIO 00000522 7420 o• 74. 20 61. 79 B3' 47' 40• H .. o• 40• 22'
PIO 00000523 723 O• 7. 23 5. 64 7B• 75t 13' o• 11' o• 70• 32•
PIO 000005.2;4 til3 O• 6 .13 '5 .24 B5' BO• 16• o• ,. o• 76' 34•
PIO 00000525 614 o• 6 .14 5. 30 B6' B3' 14' o• ,. o• 7B• 31'
PIO . 00000526 .2840 o• 28. 40 .21.20 74" 73' 5' o• 20• o• ... 49•
PIO 000003A7 2446 o• 24. 46 l!il.18 7B• 76• .. o• lB• O• 74' SB•
PIO 00000528 719 o• 7 .19 6 .12 B5' BH 13• o• 5' o• 770 37'
INTERRUPT STACK 77640 .. 776.40 776. 40 100-re 100, o• o• o• o• 100• lOOt

273

+---------------------+
! !
! System Module Usaqe 1
1 1
+---------------------+

1--- Filter 1 INTEM.UPT STACR --- !

• Total • ~£ • T.:>tal
Module Module Filter Ho•iul• E"ilte.r:

systll!ft Module Samples Sample• Samples Sample!! Samples

IOC$PURGOATAR 220 o. oz• 220 100. OO• o. za•
EXE$LOAO NOP 3066 0 .23' 0 o. oo• o. oo•
EXESLOAD-KCJF 1023 o. oa• 0 o. oo• 0. 00,
EXESLOAD-KRUF s.zo 0 .04, 0 0. OO't o. oo•
EXE$LOAD-KSPR1 645 o. os• 0 0 .OO't o. oo•
EXE$LOAO-KSPR2 1100 o .oat 0 0. OOlll o. oo•
SCS$ALLOC RSP!D 2115 0 .OZt 0 0. Q(t• 0. 00'
SCS$ DEALL-RSP ID 137 O.OH1 137 100. OOt o .10•
SCSSLKP R5TWAIT 1 o. oo• 0 0. 00, 0. 00'
PAT$A N'ONPGO _DAT 366 0 .03, 366 100, OU% o. 4""'
PMS$EN'O IO 410 0 .03• 410 100. OO't 0. 53'
PMS$ENO-RQ 387 0 .03, 385 99. 4Bt o. so•
PMS$STAii:T <O 366 0 .03• 1 0. 27t 0. 01),

PMS$STAP.T-RQ 16 0. ()0, 0 o. oo• o. oo•
EXE$SSE"AIL l o. oo• 0 0. OO't o. oo•
IOC$IOPOST 5697 0. 42• 5697 100. OOt 7. 34•
IOC$BUFPOST 2277 0 .17' 2Z62 99. 34' 2. 91•
IOCSQNXTSEG 2 o .oot 2 100. OOt o .oo•
IOC$QNXTSEG1 30 o. oat 2 6. 61't o. oo•
IOC$WAKACP 3125 0 . .Z3• 0 0, OO't 0. 00111

IOC$DIRPOST1 1691 0 .14• o. oo• o. oot
EXE$POWERFAIL 46 o .oo• 0. OOlfl o. oo•
MMG$PAGEFAULT 427 0 .03• 0. OO't o .oo•
MMG$:;v'PCTX 7 o .oo• 100.001: O. Olt
MMG$PGFLTWAIT 552 0 .04• 0. 001: o. oo•
MMGSWSLEPFN 65 o. oo• o. oo• 0. 00'1
MMG$FP.EWSLE 342 0 .03• 0 .00, o. oo•
MMG$FREWSLX 61 0 .00, o. oo• o. oo•
MPH$ INVALIDH!C 35 o .oat o. oo• o. oo•
MMG$FRE TRYS!CIP 366 0. 03• O. OOt o. oo•
MHG$ DELW'SLEX 62 o .oo• o .oo• o. oo•
MMG$DELWSLEPPG 143 0 .01• O. OO• o. oo•
MHG$:tNINEWPFN 149 0 .01• 0 0. OO• o. oo•
MMG$MAXEWSLS 334 0 .02111 0 0. OOt o. oo•
MMG$LOC!CPGTB 162 0 .01• 0 0. 00111 o. oo•
MMG$ rNCPTREF 1001 0. 01• 0 o. oot o. oo•
MMG$ DECi'TREF 1350 0.10• 1199 88. Bl t 1. 54•
MMG$DECPHDREF l o.oo• 0 0 .OO• o. oo•
MMG$DltCPHDP..EFl 5 o .oo• 1 .zo. oo• 0. 00111
MMG$ INIBLOPKT 23 0.00\' 0 o .oo• o. oo•
MMG$ALLOCPFN 62 o. oo• 0 o. oo• o. oo•
MHG$DELCONE'FN 314 0.02• 0 O .OO• o. oo•
MMG$REMPFNH 24 o.oo• 0 o. oo• 0. OO'
MMG$P.EMPFN 264 o.o:.a o. oo• o. oot
MHG$PELPFN 199 0 .01• o. oo• o. oo•
MMG$DALCBAKSTOn 51 o .oo• a. oo• o. oo•
MHG$INSPFNH 19 o. oo• o. oo• o. oo•
MMG$INSPFNT 256 0 .02' o. oo• o. oo•
MMG$IOLOCK 5531 0. 41t 0, OOt o. oo•

Figure 14: SPM PC Sampling Report

274

$I INQUIREBKTDEF. COM Procedure to define lma~ buckets fc·r SPM
$Type ays.$ lnput

Thia procedure requires p.r-:-gram map to be in thi• directory.
Procedure will aeareh voe and Yoaus• maps for size data.

Uaer ls prompted for the location of voa and vosus• maps,
User will be pr•:-mpted for info.rm.a.tion for the analysi•.

Note1 Procedure work.a C'nly for the microvax VOS (not uvo•).

$aet noon
$prog:='Pl'
$if ""Pl'".eqe.'"' then -
$inquire prcg -
"Please enter program name to exa..mine (muat match map nam•)"
$writ"e ays$output ""
$write sya$out.put -
"Need location voa and vc-suea ma.pa (directory dev1·::lir) ."
$write sya$output -
"Logical name like mxv aha.re la ok. No answer ia current directory."
$inquire loc "Vos, u:iia-location"
$xxx: =£$environment ("DEFAULT")
$if loc .eqa. "" then aaai-;p'.l; [] mxv loc
$if l·:-C .nee, "" t.hen a.aai·pl 1 loc' mxv l•:-C
$write aya$output "Searching- pr<>~ra.m mA'p for addreaa data
$SEARCH 'PROG' .MA.P/WIN=(3,35)/0UT=SEA.TXT DEFAULT
$write sys$out.put -
"Th-e following- lin• from tha map ahowa ai:z:e of proq.ram."
$write aya$output -
"Add base of fixup vector• plua fpaqea time• 200"
$write aya$.:iutput "(number juat to left of baae is t pages).'"
$SEARCH SEA. TXT FIXUP
$delete ae•. txt 10
$vosbaae1"''P2'
$if "''P2'".eqs."" then -
$inquire voabaae "How biq ia m.ain program including -:iata re.1ion7"
$1 Here the -:tel procedure conatructa 'prog' .def
$·.::lefa-:id.r 1: DEFINE ADDRESSES1 MAP """' 'proq' .map"""
$
$open/write progdef 'proq'. -:ief
$write progdef "DEFINE UNITS1 PROGRAM, MODULE."
$write proqdef " program ''proq'"
$write pr·:iqde:f def&ddr
$write proqdef "END"
$cloae proqdef
$
$1 Here the dcl procedure con•truct• voa.def, uaa.def, and rtl.»f
$vosba.aeN=•x' vo•baae'
$ SEARCH n:ixv LOCI mxv VOS. MAP "VOSXFR ..
$inquire voai"fraize - "How biq ia voaxfr?"
$vo•xfra izeN=•x' voaxfra 1 ze'
$ lvoaxfralz:eN=•x400
$endvoaxt:rN=vosbaaeN+voaxfraizeN-l
$endvoaxfr=f$fao ("IXL", endvoaxfrN)
$ SEARCH mxv LOC1mxv VOS.HAP "$CODE
$inquire vosCodoff - "Nha.t i• off••t to vo• $.::ode?"
$voacod·:iffN=tx' voacodoff'
$1 voacodoffN=•xeOO
$mxv codeN=voabaseN+voacodoffN
$mxv:code=f$fao(" IXL" ,mxv_codeN)

$
$voslinel 1 =" program voaxfr, '' voab•••' -• 'endvoaxfr'
$vosline21""" proqra.m vo•, , , ''ruxv code'"
$defaddrvoaline1=DEFINE ADDRESSES! MAP-"""mxv loo1mxv VOS.MAP"""
$ - -

$open/write voadef Yoa.-::lef
$write voadef "DEFINE UNITS1 PROGRAM, MODULE"
$write voadef voalinel
$wr 1 te voadef voa 1 ine2
$write voadef defaddrV<'alin•
$write voadef "END"
$clo•• vcadef
$
$ SEARCH mxv LOCunxv VOS .HAP/WIN* (0, 8) "VOSXFR
$inquire voa;ize - "How biq la voa?"
$voaaizeN=•x' voasiz:e'
$ lvoaaizeN=•x9600
$uaaba•eN=voaba•eN+voaaizeN lend of v-:-a = start of u••
$uasba••""f$fao (.. IXL", uasbaaeN)
$ SEARCH nlXV LOCuo.xv vos:uss.MA.P "VOSUSSXFR
$inquire uaeX£.rai:z:e - "How bl9 i• uaaxf.r?"
$ua•xfra i:z:eN=tx' uaaxfre i:z:e'
$ Iua.sxfrsi:z:eN=•x200
$enduaa x f rN=ua aba.aeN+ue s x fr a i zeN-1
$endusaxfr=f$fao ("IXL", enduaaxfrN)
$ $'.EARCH mxv LOC1mxv VOSUSS.MAP "$COOE "
$inquir• ua#Codoff - "WMt i• offaet to ua• $code?"
$uaecodoffN=tx' uaac.odoff'
$!ues•:::.odoffN=.\xcOO
Sua a$ codeN=ua abaaeN+uaa codof fN
uaacode=f$fao ("!XL", uaa$.:::.odeN)
$u.ss linel 1 =r program usaxfr, 'uaabaae' -' enduasxfr'
$ Iuaa baaed at 'uaabaae'
$uaaline21= program uaa, , , 'uaa$cod•'
$def.addrusaline1=DEFINE A.DDRESSES1 MAP .,,.,,ruxv lvoimxv voauaa.MAP"""
$ - -
$open/w:rite us a def uaa .-:ief
$write uaadef "DEFINE UNITS1 PROGRAM, MODULE"
$write uaadef uaslinel
$write uaadef uaaline2
$writ• uaadef defaddruasline
$write uaadef "END"
$close ueadef

• $ SEARCH mxv LOC1nucv VOSUSS.MA.P/WIN=(O, 9> "VOSUSSXFP. "
$inquire uaa"i"iz:e - "H·:.W bi9 ia ua.s?"
$uaaa i:z:eN=llix' uasai:z:e'
$I ua•ai:z:eN=%x2aOO
$rtlbaaeN::::uaaba.seN+uassiz:eN lend of uaa :::: start of rtl
$rtlbaae::::f$£ao ("!XL", rtlbaseN)
$
$apm define=imaqe 'prog' .def /addreasa'prog' .adr /bu,::ket=nl1
$ap!ll define=im.age voe. def I addre11a=vo•. 4dr /bu·:::.ket:znl 1
$spnii define,..lrn.aqe use.def /add.reas=ua•.adr /bucket=nl1
$
$create irnaqe. def
I image.def file to :iefine buckets for pi:og a..naly•i• with apm
DEFINE OPTIONS 1 LIST, PRINT, ABSAOOR
DEFINE UNITS 1 PROGRAM, PHASE, MODULE
$append 'prcq' . adr imaqe. def

275

$api;:·end vo• . ad.r ima.;e. def
$append usa. 5d.r image. def
$ 0::pen/append imaqedef imaqe.def
$write imaqedef "PROGRAM RTL, '' rtlbaae' -3fffffff"
$write imagedef "PROGRAM Pl, 40000000-?fffffff"
$close imagedef
$append 9ys. def image .def
$!like spmeystem.def, but added lal!lt addrel!lit doeofinition
$
$open/append imagedef imaqe. def
$write imagedef "DEFINE SAMPLING"
$write image.def" PP.OGRAM ''prog' BY MODULE"
$write imaqedief prc:-;rram voaxfr"
$write imagedef PROGRAM VOS BY MODULE"
$write imagedef program us.:1xfr"
$write image".ief PP.OGRAM USS BY MODULE"
$write i.magedef PROGRAM RTL"
$write imagedef PP.OGRAM Pl"
$writ.e imagedef PROGRAM SYS BY MODULE"
$write lmagedef "END"
$cloae image.def
$
$delete 'proq' .adr,O,voa.adr,O,uss.adr;O
$ jelete 'prog' . def' c), voe .. jef 1 0, uaa, def; 0
$write ays$output "Now create bucket a ..• "
$
$ l pr.:cedure to define ima<;f'9 buckets fr.-:>m addresa data
$.9.l!ll!lign 'prog' bkt. l il!I sye$oeorror
$.9.ssi·;in 'prc.g' t.kt. li:!I i11ys.$output
$spru define=image image. def /bucket-=' proq' . bkt
$deaa•ign sys$output
$deaasi·;in sys$error
$SEARCH 'PROG'BKT.LI:3 "t:" !VIEW EFROR MESSAGES
$write ey.s$wutput -
"3houlj have buckets defined and ready t•:> uae in '' prog'. ~T,"
$writ:e sys$output -
"Print ''prog'BKT.LIS For a liet of buckets and error messages."
$delete im.age.def;O
$exit

Figure 15: INQUIREBKTDEF.COM

276

Ima...;e PC Hist . .:-..;ram VAX SPM V3.0-01 Pa·;ie

PROGRAM BLKBLD BY MODULE

+--- -+--- -+-- - -+--- -+- - - - +- -- - +- - --+----+----+- - - -+
BLOC I

00266400 :002:6844C I o.ou

+-- - -+----+-- - -+----+----+- -- - +- - --+- ---+----+--... -+

Image PC Hl11t :>gram VAX SPM V3.0-01 Page 13

PP.C•GRAM VOSXFR

+-- - -+----+-- - -+--- -+--- -+- - - - +- - --+- - - - +- - --+- - - -+
VOSXFR I

0031DC00:0031DFFF I*
I
+--- -+----+--- -+- -- - +- -- -+--- -+----+-- --+-- --+ -- - -+

Scaling: 645. 70 cour.ta/asterisk

Ima,;e PC Hlato·;;rram VAX :.~PM V3.0-0l Paqe 14

PROGRAM VOS BY MODULE

LKPCLONE
00320005 I 0032:00F3

LKPCONN
003200F4: 003.2023A

ALLOCBUFF
003.,W.O:E4 :0032:0442

BF ILES
003206C5100321006

MXCLOSE
003213DF :0032142:9

COPYBUF
0032142A1 003.Zl4FD

CREPROC
00321616 I 00321AE2

MXDELETE
003226C3 I 0032273E

GET9UFPTR
0032.ZCCA: 0032.ZDAF

GETBUFSIZ
00322080 100322£4 g

+- - - -+-- - -+--- -+--- -+--- -+--- -+-- --+-- --+- - --+-- --+

+--- - +-- - - +-- - -+- -- -+- -- - +--- -+----+- - --+----+-- --+

Scaling: 645. 70 counta/aaterisk

0. 03%

0 .19t

0.14,

0. 77t

0.00'

0. 04,

0 .00,

O.OOt

0 .16t

0. 06,

Image PC Hiatoq:ram VAX ~>PM V'3.0-0l Page 15

PROGP..AM USSXFR

+-- +----+-- +- -+- -+--- -+- ... --+- + --T----+
USSXFR I

00328400: 003.285FF I*
I
+----+----+----+----+----+----+----+-----+-----+----+

Scalingi 645. 70 counts/aateriak

PROGRAM USS BY MODULE

+----+----+----+-----+-----+----+----+----+----+----+
SENDUTIL

003291DE 1003292BA
ADDTOK

00329364 I 00329537

I
I
I
I

PROBEW I
00329F8Ft00329FC0 I*

READ TOK I
0032A.Z32t0032A28F t"

FP.EETOKR l
0032A290;0032A2AA I

REMQUE I
0032A2AB I 0032.AZBF I

SCHDAST I
0032A.ZC010032A307 l

SET IPL t
0032A308 I 0032A30E I

VMALLOC I
0032A36C10032A4E6 l *

VAP.FP.EE I
003ZA4E71 0032Ali4A 1 *

CHRNCPY I
0032A77310032A782 I*

I +----+----+----+-----+-----+----+----+----+----+----+
Scalinq1 645. 70 counta/aaterisk

PROGRAM RTL

+--- -+--- -+--- -+--- -+--- -+----+----+----+----+-- --+
RTL I

0032AEOO I 3FFFFFFF I**,,*
I
+----+----+----+----+----+----+----+----+----+----+

Scalinq1 645. 70 counta/aeteriak

277

0.18-t

0.20,

0.20•

a.so•

0 .03t

0. l 7t

0. 03'

0 .11'

0. 59,

0. 30t

0. 36'

2.17,

Image PC H.i•togram VAX SPH V3, 0-01 Pa._e 18

PROGRAM Pl

+----+----+-... --+----+----+----+ ... ---+--... -+ -+----+
Pl I

4000000017FFFFFFF I************
I +----+----+----+----+--... -+ ... ---+----+----+----+----+

So::alin91 645. 70 count.1!1/aeteri•k

s. 98,

Image PC Hletogram VAX SPH V3.0-0l Page 20

PROGRAM SYS BY MODULE

SYSACPFDT
80008821: 80009258

SYSQIOFDT
800094AO 180009'41

SYSQIOP.EQ
80009BAA1 80009CDB

AST DEL
80009090 18000A040

:;YsENQDEQ
6000BC1C 18000C97C

IOSUBNPAG
8000CD71180000966

:IOSUBP.AMS
800009071 80000803

LOAOMR.EG
80000804 18000DC8S

CMODSSOSP
8000FC00 1 8000FDOC
8000F0781 BOOOFFDF

SYSENQDEQ
800143A618001465C

zzz
8002904F1BFFFFFFF

+--- ... +--.. -+----+----+----+----+----+--.. -+----+----+

I
I***"'* ,.,"' * ... ***• .. ****,,."' .. ** .. ,., .. ,.**
I
1•
I
I"
I
1 •
I
1 •
1 ***********

I
I***** .. *"'

I
I "'* *"' * *"'* * * ** *"' ** "'* ** * ** * ** *"'"'"' * * *"' ** * """'"' *"' *"" * *"' * "'*
I
+----+----+----+----+----+----+----+----+----+----+

Sca.llnq1 645. 70 c:ount•/••t•riek

Figure 16: PC Histograms

278

2. 37,

18. 39\:

0. 50\:

0. 41,
5. 64t;

4 .17,

PROGRAM MUDMAIN BY MODULE

+----+----+-· ... -+----+----+----+----+----+----+----+
MUDMAIN I

00244400:00244730 I**""***

RCVMSGHDR I
00252E82100252FA3 I**"'"'"'*******

I
+--- -+--- -+-- --+--- -+--- -+--- -+-- --+- - --+- ---+----+

40.50 counta/aateri.sk

PROGP.AM VOSXFR

+--- -+-- - -+--- -+--- -+ - -- -+- -- - +-- --+-- --+ - - --+- -- -+
VOSXFR I

OOZS36001002539FF I****
I
+----+----+-- - -+- -- - +- -- -+- - - - +- - --+----+- - --+- - --+

Scalin'.Jl 40.50 counts/asterisk

PROGRAM VOS BY MODULE

ERRFNSVMS
0025508.2 :00255518

IPCDISC
00.25593A: 00255AD4

GETBUF:PTR
00.Z586CA: 002587AF

GETTYPE
00.25BA9B I 00.25BAD9

RECEIVE
002593 9C 10025 956F

VOS TO VMS TIME
002°5AE'4 5 :0025AF5.2

INSTAIL
0025B81E :0025B82B

CHRNCPY
00258864 :00258873

BF ILL
00.25BB74 :00258886

Image PC Hi•toqrara

PROGRAM USSXFR

+-- - -+-- - - +-- - - +- -- - + - -- - +- -- -+- - --+----+- - --+- - - -+
I
1 ••
I
I
I
I
I
I"'***
I
I"'"'*****"'"'"'*"'***•"'***•••••"'••"'*•*
I
I
I
I*"'******
I
l *****"'*
I
I
I
I
,.. __ --+-- - - +-- - -+----+--- -+- -- - +----+- - -- +- - --+- ---+

scalinq1 40.50 counts/aateri111k

VAX SPM V3. 0-01 Paqe

+ -- - ... +-- - -+--- -+- ---+----+----+- - --+- - --+ - - --+- - - -+
USSXFR I

0025DE0010025DFFF ! "****"*"
I
+-- - -+-- - -+----+--- -+- -- - +- ---+- - --+----+----+--- -+

Scalinq1 40.50 countsi/a.sterisk

Image PC Hi atoqrara VAX SPM V3. 0-01 Paqe

PROGRAM USS BY MODULE

RECUTIL
00.25F2DO I 0025F3A1

INS QUE
0025FB66 z0025FB6F

MEM LOCIC
oo2sF905 :0025F935

PROSEW
0025F98F t0025F9CO

P.EADTOX
0025FC32 1 0025FC8F

RF.MOUE
0025FCA.B 10025FCBF

SETIPL
0025FD08 I 0025FDOE

VARALLOC
0025F06C I 0025FEE6

CHRNCPY
002 60173 I 002 60182

Ini.aqe PC Hiatogr&tn

PROGRAM RTL

+----+----+----+----+----+----+----+----+----+----+
I
I*****'**************"'*
I
I
I
I
I
I•••
I
l

I
I*****************
I
I******"'
I
I
I
I""**
I
+-- - -+-- - -+-- - -+- ---+----+- -- -+----+----+----+-- --+

Scalin91 40. 50 counts/a.ateri111k

VAX SPH V3. 0-01 Pa.g•

+----+----+----+----+----+----+----+----+----+----+
RTL I

00.Z60400:3FFFFFFF ! "'***'*"***
I +----+----+----+----+----+----+----+----+----+----+

Scalin91 40. 50 ·::.ounta/aateri111k

279

l. 73•

3. 32t

1. 03•

0. 43t

o.ou

a.au

l .2St

9 .1st

0. 04•

2. 34•

1. 92•

o.ou

O. Olt

0. Olt

0. 9"7t

2. l 7t

4. 79t

1. 94t

0. Olt

0. 82t

2. 47t

Image PC Hi.9togram VAX SPM V3.0-01 Page

PROGRAM Pl

+-- - -+- - - - +-- - - +- -- -+- - --+--- -+- - --+- ---+-- --+-- - -+
Pl I

40000000 17FFFFFFF I**.* ••••• * •• ***
I
+-- - -+----+-- - - +- - - - +- - - -+- -- - +- - --+----+- - --+----+

Sca..llng1 40.50 countslaaterl"k
Image PC Histo9ram VAX SPM V3. 0-01 Pa9e

PROGP.AM SYS BY MODULE

SYSLOAVEC
800034 DO 1 80003 61'.F

SYSLKWSET
80007E3C 1800081.25

EXSUBROUT

+-- - -+-- --+-- - - +- -- - +- - - - +- -- -+- - --+- - --+- - --+- - - -+

80008A78:80008Bl0 ****•*••
SYSCANEVT

00009386: aooo 93EE
SYSSCHEVT

130009742: 8000~8A9
A STOEL

80009D90:BOOOA040 ••••••••••••••••••••••••••
RSE

8000A37D: 8000A675
SCHED

8000A6A4: 8000A72C
MEMORYALC

8000A814: BOOOADD4
POSTEF

8000AEFF: 8000B06B
SYSEVTSRV

BOOOB205: 8000B2A3

SY SWAIT
8000B60A: 8QOOB6E5

CMOD3SOSP
BOOOFD78: BOOOFFDF

EXSUBP.OUT
80010353: 80010577

zzz
800.2904F :BFFFFFFF

I
t
I
I**""**••··········*···························
I
!
I
I*
I
+- - - -+-- - -+-- - -+--- -+- -- - +- -- -+- - --+- - --+----+ -- - -+

Scaling1 40. 50 counta/aaterisk

1. 9.2111:

1.13111

14. 12t

1.S~Hc

l. 69t

l. 05111:

2 • .::o.

3. 07111:

0. 6841

l. 8541

12. 80t

0. 88\!

0. 2Bt

Figure 17: Image PC Histogram for MUDM

280

Ea.::.h column :z 300 aeconda I 5. 00 minutes
+----+---
! III f

9041+ III
! III

! I
! I
! I *

60lfl:+I
! I
! ... •

1• c
!* c

50%:+C C
!C C
!C C
!C IC
!C IC

4041+C IC
!C *C
IC CC

III
III

I I III
I I II I I I I :IIII +
I II I I I II II II ::t I III I III I I IIII t
I II I I II:II tIII II IIIIIIIIIJ:II !III II I IIII I!
!III I IIIIII IIIIIIIIIIIIIIIIIIIIIIIII II I I*""I I I I I I
IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II :I I II IIUI I I I III I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II II I III It*-·t III III! I II III+
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II II II II IIIIII*""*I IIIIIIII I III IIIIIIIII!

II III II It II III II I IIIIIIIIIIIIIIIIIIIIII II: II II II II I III I III I III I*** IIIIIII IIIIIIII I IIIIIIIIII I
*I •II II I III I III! II IIII I II II III II IIIIIII II I I II III I IIIIIIII II II I III**• IIII III IIIIII I II IIIII II III!
I I II III I III I III II III I"" II:IIIIIII III II *II I *I II III II II II III II III III*** II III II IIIIIII I I IIIIIII!I I I
II ,,,.II I IIII,,,. II II• I III** II" I "I* I" II I II" I II *I I IIIIII IIII III II I IIII I"*,,,. II III II I II II III I III IIIIII I+
*II"*** I II *I* I* •I* I* *I** I** I*** I*** I* I*"** "'I IIIII I I I III III III II III*** IIIIIII III IIIIII II II IIII I I!
*II**** I *I *I***•••*•*******"** 111 ****•*I**** *I IIIII IIIIIIIII IIIIIIII ***III IIII III III II III IIIIIII I!
*II****** I***•*****"**"'*"'"*"'"' 11 * "'*"' "'"' • "'"'C"' * • CI IIIIII I IIIIII I II III II I*** IIIIIII II I III IIIIIIII IIII I I
1111 •re•1111 "'*."' *"' *C* •c•. *C"'* •c•... c• I II I II IIIIIII II III II III IIIIIII III IIIIII II II I III II!
C" •c•• •• * *. •c• •••c•. ••cc•cc•ccc *CCC*C"CCCC c .. I III II IIIIII IIIIIIII*II* **III I III III II III III II III II I+
C* •cccc• * •c•c•cc•ccccccc•cccccccccccc1111cccc c• I *I I •r IIIII. III III II •1 I*.* III II II I:IIIII II I IIIII III. I!
c• •cccccc•cccccccccccccccccccccccccccccccc CCI • II. I IIIII* I I* IIIII*II ****I. IIII IIIIIIXX I II I II III *I l
cc CCII. I I •I IIIII* II* III ... ICII ••• *I. II II II* II III I II III* I •c .. l
cc I CCIICI •er II II IC I I* tIX .. *CI I*.* *I. I III I ... III! I !XIII! *I •c• I
cc1I cctrc• •cI I• II ICI •c •1 •••ct*••• *ICIII* t •CIII Ir II* III CI •cc+
cc1I ccirc•ccI • • • I•c• •c•r•c•cr• • • • • ICI • r• •ccx• r •III*• r •crccc !
ccrr tccIIcccc• • • • • •c• •c •• •ccc• •c• • •Icr • •c •cc•*• *I• re•• •c•ccc 1

! c <.:c cc• • ICCIIcccc• •cc "CC*ccc•cccc•cccc••c• • •cccc•c•c• ••cc• •c•ccc 1
! c CCI ICCcc *. ICCIICCCCCCCCCCCCCCCCCCCCCCCCC * *C *C*CCCCCCCC *C *CCCCCCCCC l

JOlfl:+C CC* •ccICC*ICCC+
! C CCC CCC ICC*" CCC I
! c Iccc ccc rccc 1
! ccccc ccc Iccc 1
r cccr ccc 1

2011J+ccciccc+
I cccrccc t
l CCCI CCC I
! ccc •ccc I
! ccc !

lOllJ+ccc+
1 ccct...-ccc 1
I ccc l
I ccc t
I ccc l
-+----+-

17118 18108 18:58 19149 20139 .21129 22t19 23109 00100 00:50 Olr40
17143 18133 19123 20114 21104 21154 22144 23135 00:25 01115 02105

"C" :::z CE'U Only "*" = CPU/IO "I" = I/O Only = Oat& Unavailable

Figure 18: System Summary (Percent) vs. Time of Day

281

*•*********** l'INAL St.atiati.:•
Data Ar!.alyzed1 from 16 ... ~-1987 181021'30.16 to 16-MA.R-1987 20:58131.65

a•=-=--•=•-==•

.....................
• * * * * ** * * * •• * •••• * * *

+-- AVE Pro.c.e••-Mernocy Count• -+----- Memory Utilizatl~n -----+ AVE Mem/CPU + swappe.i: count• +
I 1 I Queue• ! I
I Proa Bal••t Free Modify I Total Paqed Ua•r Modify I I Header Header Swaper I
I Count Count Paqe• Pa99etMEMutl HEMl.Jtl HEMUtl MEMltl! Hem CPU ! InSWP OUtSWP InSWP OutSWP CPU • I ,.................. 1------ ------ ------1----- -----1------ ------ 1
1 31 34 724 2611 94.l• 92.4• 91.8• 3.ltl 0 11 o o.o• .. +----------------------------------.. -----+
+ CPU
I

Idle + CPU Buay + ... -- + - - ..
I I I

CPU and IiO Overlap - ... ----+
I

!Total Pa99
! Idle lfa.it

Swap Pq+Svp t Int.-r 1 I CPU+ IO CPU I/O Multi CPU+IOl
Walt Wait ! Stack Kernel Exec. Super Uaer Compat I Sy•tem Ta•k I Idle Only Only I/O Buey !

1----- 1 ... I I -----... 1
152. a• o .2.- o.o.- o.2'1 5.U 18.4' 4.4, 0,0, 20.l• 0.0.-1 27,g' 20.1'! 23.6'1 40.6' 24.5' 33.9' 11.3.i +-------.. ------------------+----.. _________ ... _____ .. _+
+ .. Paqlnq Rat•• (per aecond) ... ++---·---...... -- +
I l!
l Paqe Sy•t- PA'iJ•• R•ad P&g•• Writ• Fe•• Modify Ba.d Dzero Gvalid Tran• W.i:itINl t Hard Soft !
IF•ult• Fault• Re•d I/O• 1frit.-n t/O• Li•t Liet Li•t Fault• Fault• F•ult• Proq I lFAulta Faul ta! 1------ ------ ------ ------ ------1 1------ ------1
I 2.7 0.0 0.4 0.1 0.5 0.0 0,2: 0.3 0.0 0.8 1..2 O.O 0.0! I 2,7, 97.3,! ... --.... ---.. --- ... --------------------·--++--------------+
+-------- I/O Rat•• (per •econd) + +------ File I/O Rate• (per aecond) -----+ +---------+
I I I I I AVE I
I Direc:t Buff.rd Lognam Mailbx Hailbx I I Window Window Split Era•e File I 1 opera I
I l/O• I/O• Tran• P.•ad• 1fritea I ! Hit• Tucn• I/Os I/09 Opens ! I Files !
I ------ I l I !
I 19.1 1.6 0.3 0.1 0.1 I I 14.9 0.3 0.1 0.0 O.O t 171 ! --_ .. ---------------- ... ---- ------+ +- - -- .. -- -- - -- - ----- ----- -+ +-- - ---- --+
+ File C&.::he Att•rapt RAt• (p•r •ec.ond) ----------++ ... File cache B£fectivn••• .. +
I II 1
I Dir Dir l"ile File Bit 11 Dir Dir File File Bit l
I FCB Data Quota Id Hd.r Extent Map 11 FCB Data Quota Id Hdr Extent Hap t
1 11 l
1 a.a 0.1 o.o o.o a.s 0.1 1.6 11 99.2'1 99.2" a.a• ioo.o• 91.4'1 87.5" o.9'1 1 ..
+ _ .. Di•k Stat.iatic• .. +
t Work Ser:v Reap !
I Avail Paqinq Svpln9 Contlr Rate Tin'• Time Queue Space I
t ' ' • '1 (/a) (nt•) (ms) Lenqth Oaed ' I
I I
IDUAO 35.8 0.9 0.3 100.0 16.6 22 24 a.4 98.6 J +------------... .
+ ... S•cv•r Stati•tic• ... +
I I
I Work I
I Avail Paqinq Swapin9 Queue I

I '° ' ' Len~h. I
I I
I PUA 33.9 0.9 a,3 0.4 I +----------------------.. .

Figure 19: SPM Tabular Report

282

TRANSfERRt.c; DATA BETWEEN HETEROOENEOUS COMPUTERS·
A TOOL TO MAINTAIN THE INTEGRITY Of FOREIGN DATA .

Steven J. Kempler
NASA/Goddard Spece flight Center

Laboratory of Extraterrestrial Physics
Greenbelt, Maryland

ABSTRACT

TM- lnteonotin Format Connrsion ~·stf'M (res) · --L dt_.... . . "'II "" 1S a p-ageo
s ~ to fac1htate the transfer of data between heterogen.ous

comput~s. fCS has expandf'd to include the implementation of data
convers1on between four unrelated computers, in one Sl,lstem. The
Sl,IStem has the generalized capability of: 1) acceptin9 ilput data
from a number of devices (disk, tape, data line); 2) performing
useful ~ata conveorsions, and; 3) producing output on a variety
o! df'v10es. The structure of the data conversion subsystem
svnulate_s . a .subset of the presentation layer in a network
~un~tlOl'IS link by connrting 'input data into an inttrnal
maotnne vidependf'nt format and theon connrtin9 the inteorna 1 data to
the output format. This conversion subS1,1stem is dtrivtd by the q,uu
that speooify the r~qui~tof'nf'nts of the rwtioular application. TM
Tran~portable ~pttcattons Executive (T AE) is used to provide a
~stStent useor tnterface and tie the various subse,istems t ther.
ThlS talk describes the capabilities, operating procedures benefus and
future considerations of JCS. '

1 .0 f'TROOUCT ~ 1 .2 Cyrrmt Effort

1.1 ~gr~

The transfer of space-derived data between computers, both
hf'ter~ous and homoge-MOUs, have- bf'oorM more- oornmon
and ilcreasingly desirable. The International Organization of
Standardization (ISO) has established a seveon laver model for
networldno. (Tanenbaum describes this in dttail in his book
~ter Nf't'W'orks.) Seoeo Figure 1. The five lo'W'tor lalJeors of
the networking model are being addressed by various
or~izations, including the- National Bure-au of Standards
(NBS), International Standards Organization (ISO), and the
EEE. CurrMtly, the sixth layw, the Pnsentation laye-r, is
being developed on a case-bt.1-case basis mant,1 times over for
a variet1J of space-related data. This la1Jer specifically
~rforms transformations on data, such :as text compression,
format oonversions, eonoryption, eotc.

Problem: Currently, Presentation ~er, specifically format
oonvwsion software, is being <Mveloped on a cue-bt.1-cut
basis manv timtS over for a variet~ of space-related science
data, leadin9 to much duplication of effort and code.

Proceedings of the Digital Equipment Computer Users Society 285

Solution: The Interactive Format Conversion System (f'CS) is
a subset of Presentation La1:Jer Soft'W'are. It 9fntralizes
format convertin9 b\I interactively generatin9 software that
transforms data from and to the desired machine formats.
The 9t'nerated oodt is transportable and can be generated for
a parttcU1ar appncat10n and used on a number ot dttterent
oomput.rs. Such a SIJSttm solvH the problem for the users
of space-derived data that Ms not been attacked in an\!
gerwral PM• up to no"W.

Nash1•11/e, JN - 1987

FCS prHtnt)J ruidn on tht Llbontorv of Exir1ttrrtstrial
~sics (LEP) (Codt 690) Y~ 11 ~. fn Bui1dfn9 2 at
Goddard ~· Flight Ctnttr. This computtr supports a widt
r1n91 of scitntific sptce-rebttd data and tht -.lvsis of tMs
dlta. lncludtd rt data from Marintr, Yov.,-, ISEE and If
ut•11ites. In addition, tht LEP Y~ supports mq dltt
••\Isis packqs and numerical 1ibr arits. Thtrtfort, the
nttd has CJ'"O'W'n to tr tnsftr data on tht LEP Y ~ to othtr
oomput..-s as wen IS v;H vtrH, to support tht nMCls of
scitnt1f1c data analysis in fam1Har environments. This need 1s
not Hmittd by ~ me~.

2.0 CAP"8LITIES

2 .1 G!oc•l Ctptbitjtiu

Gtnerall!J, FCS is captblt of creating a transportable data
convtrsion routine to txact ustr specificltion, compilin9 and
11nk1ng tht routine to a user developed program or tht General
Format Conversion Utilitv (GFCU, dtscribtd be low) and
txtcu11ng tht Gf'CU to convert data.

2 .2 f unctiona 1 C!P.abitt1'its

Tht first step of JCS is the conversion generator program.
Rtquirtd inputs inc Jude input and output record definition and
optional namtlist filt namts, m~w format assooiattd with
the data and tht name of the output conversion routine. Tht
conversion genentor analyZts the input and output record
def'lntt1ons and builds a ftlt (a subrouttnt) that contains an the
act~l field conversm routines in ex.act order as defiwd by
the rto0rd definition. Tht librrt,1 containing thtst lower
ltvtl conversion routws is the heart of fCS. Each routw
performs a dif'fertnt f\mtion. (i.t. convert DEC R*4, convert
to 11M R*8 , ttc. S.. PERFORMANCE CAPABLITES for a
ftrther discussion on convtr~.) Tht conversion gtntrator
crt1tts the routine wMoh fn turn IOCHHS thtst prt-txisting
routines whtn run. Tht s.cond step in FCS 1s to compllt and
1fnk the conversion routine. It mav bt linked to a user
developed program or it may utilize the Gtntral Format
Conversion Utilitv (GFCU). This utilitv will perform an
general i'lput of' data, convert tht data using tht conversion
routine, and output tht results. Finally, GFCU or the user
1pp11catton program ts executed to perform the format
conversion.

In addition, FCS includes a Machine Definition progr1m for
'When rt becomes desr ab1t to add new machmts to the sv stem
(FCS presently supports DEC YAX, BM and SIGMA 9
computers). Nt'N' conversion libr.-y routines will also netd
to M implemented.

FCS utllizts Tr.nsportablt Applications Exeout;ve (T AE) to
t1Nnct its functional caplbilities as wtn as fulfiTI desi9n

286

f
IFCS
+

f
NBS .. ISO

l

j,
NBS

f

T
SCOPE OF
IEEE-802

J_

HOST A

LAYER 7 AYR 7
APPLICATION PROTOCAL

LAYER 4
PROTOCAL

LAYER 3 LAYER 3
NETWORK PROTOCAL

LAYER 2 LAYER 2

DATA LINK PROTOCAL

LAYER I LAYER I

PHYSICAL PROTOCAL

HOST I

LAYtR 7
APPLICATION

LAYER 3

NETWORK

LAYER 2

DATA LINK

LAYER I

PHYSICAL

FIGURE I - SEVEN LAYER NETWORKING "ODEL

objectives. Inputs we entered using T AE standards. This
provides ease for tht experienced user and support for tht
ltss txperitnced user. Menus and help fHes provide
inf'ormation for the first time user. In addition, fCS can be
tasily transported to 11'111' installation that maintains T AE.

2 .3 Performance C@ilitits

FCS has several inportant performance capabilities. A
primanJ capability is its use of' name lists. This provides the
user Yith the abt11ty to convert onl\I certain fields of data
from the input record. GFCU is capable of inputting data from
up to three input sources, converting the data and outputting
to a single sink. Also, GFCU can mput and output to tape or
disk. Most important 1s that IFCS uses an intermed;ate data
format when converting data. That is, ever1a1 field
transformed is actually converted twice (i.e. IBM ->
intermediate form -> Y~). This design Yas implemented so
that "W'hen additional machines art added, source code Yill
incrHse at a much smaller rate (Figure 2). (All new routmes
Yill convert to or from intermediate format.) Finally, JCS is
capable of checking for precision loss and ovtrf'lo'W 'When it is
desirable to convert values to utt11ze less spact (1.e. R*4 to

MlllER Of CONVERSION ROUTINES REQUIRED AS A

FUNCTION OF TtiE NUMBER Of t1ACHINES IN /FC$

CONVERTIN& ONE DATA TYPE TO THE SAl'tE DATA TYPE:

IUl![ROf Off: l!OlJT!rt: !!OES W!TH IFCS INTEIKQ!AU

MADfltl:i Cl:!! CONm!:ilC!i {Hll(M- J l! FORMAI Cl:l!!2l
2 2 (1 IN £AOI DIAECIKIN) 4 (2 IN £AOI DIREClllll)
3 • 6
.. 12 • s 20 10

CONVERTIN& ONE DATA TYPE TO ANY Of 4 DATA TYPES:

t1 16*M*Cl:l-ll .c..t1..!!...2
2 32 (16 IN £AOI DIREClllll) 16 (8 IN £AOI DIAECllON)

3 96 24

4 192 32

5 320 40

ORDINARILLY, IT TAKES 32 ROUTINES TO BE ABLE TO CONVERT ANY

6 DATA TYPES (R*4. R•e. R*16, 1*2, 1•4, c•e) FAOft ONE ttACHINE

TO ANY OF THOSE DAT A TYPES ON ONE OTHER ttACHUIE.

USIN& IFCS INTEAttEDIATE FORtlAT IT TAICES ONLY 16.

FlllJRE 2

1*2). A nlut, of the users choice, rtprestnting BAD data is
inserted. Also, the user may choost a to ltr ance ltvt 1 in
which IFCS wm stop if BAD must be instrttd too M¥llil timts.

F'i9ur• 3 lists tht biMry data types that FCS is prtstntly
eipablt of converting from and to.

3.0 OPERATING PROCEDURES

User inputs to the system include global variables wh'ich art
dtfintd and ustd throughout the FCS session. After FCS 1s
~d (F'i9ur• 4), tht CYTGEN txtcutts by rtotiving
communications (inputs) from the user: data dtfinition f'ilts,
file and maoMnt namts. CYTGEN gen.ratts a stand alone
conversion routine, that may bt linked to a user supp 1itd
pr09l"am or link to tht Gtntral Format Conversion Utility
(CVTLINI<). To execute the General Format Conversion Utility
(GFCUT IL), the data input devices (containing tht data to bt
converted) and data output device, and device attrl>utes must
bt oommunicattd (input) to the utility, u well .as the ~
of records to convert. Tht result is converted data.

rc:s ts able to perform s1x bas1c oper .at10ns through tht use
of the TM.. mtnus (Figurt 5). f'CSGBL is .a glob.al procedure

287

llNARY DAT A TYPES llREIENTL Y 1UPPOR TED

FOR DCC VAX FOR IBl'I 30811360

REAL •4 - R4 REAL•4 - R4
REAL•& - RS R~L•e - RS
REAL•l6 - RI _REAL•l6 - RI
INTEGER•2 - 12 INTEGER•2 - Ii

INTEGER•4 - 14 INTEGER•4 - 14

COMPLEX•& - ce cot1ux•e - ce

FOR XEROX SIGMA 9. FOR CDC CYBER 750

REAL*4 - R4 REAL*IO - RO

REAL•e - Re

INTEGER•4 - 14

COMPL£X•& - ce

F!GIJ!E 3

that allows tht user to defile certain variables. CVTGEN,
CYTLN< ~ GFCUTl are the three sttps for developing and
executir19 a data conversion program (Figure 6). Thf
procedure, fCS, oombints the previous thrtt PDF's in one
procedure. Finally, MACft:)Ef allows the programmer to
impltmtnt additional machines.

USER INPUTS FOR IFCS

DAT A DEFINITION ff,
FILES; ~
FILE AND

ACHINE NAMES

IFCSGBL

flliUR[..

-

" \

/
/

I

tr
)

- "ROOT", lillrtrv "OlstUIGQ:IYSSY.fU.1111.ol"

llfrEMCTIUE FOlnlT COIURSIQl1 SYSTEM

I> TO ILTEfl IFCS GLc:al. UAlllMLES
<IFCSIB.>

2> TO OE1£1'1ATE Ill I FCS COlfJERS I Ql1 l'IOUT I tE
<CUTGEIO

3 > TO L I It< THE COIURS I Ql1 ROOT 11£ TO THE
GEIEM.. FOllllT COltUEllSIOl1 UTILITY
<CVTLlllO

4> TO EXECUTE THE GEIEM. FOlnlT COIURSIOH
UTILITY <GFCUTIL>

S > TO EXECUTE PRX:S CVTGE11, CVTL 1111< fKl GFM IL
<IFCS>

6> TO 111Pl.El'El1l A ltEll MACIUltE 'S ATTRIBUTES
<MACIUF)

lntr: HI ect ion,. , HEl', lllCK, TOI', IEIJ, COltWI), • LOGOFF.
?

3.1 fCSGBL

Tvo nr1ables set in this 91obal are used thr0U9h<>ut f"CS.
- tht name of tht IFCS gerttr ated conversion routine to be

linked and executed.
- the number of input sources (up to three).

!2 CVTGEN

CVTGEN represents the first step 1f fCS (Figure 7). Using
W.formation nowved from us.,. orHted internal files w.d
user tnput, CYTGEN ore1tes a FORTRAN routine that, when
execut.cl, wm receive data 1ecording to tht specified format,
convert the data to tht desired rMChine and output on'!V tht
dati1 fields within tht record that ..-e of W.tenst. Tht
conversion routine ts made up of a series of ~lls to

INTERACTIVE FORMAT CONVtRSION SYSTEl'I llFCSI

USll
1....-r

-ClllYllSIOll
llOU1"111(

IEllHATOR

DATA
HflllTHlll ... , .. ,.
STEP I

COllYHSIOll
l'tlll6RAft
SOURCE

COllVEISlllll
llllAllT

C-IU
AllD Llllll:
TO IFCU

llD
llllAllY

STEP2

FllUc£ 6

ElltCVTAli.£
CDllYERSIOll

l'ROIRAll

GATA
lllf'UT

11111

IFCU

DATA

COllYHHD
DA A

IKSCRll'TIDll
llll'llT

STEP J

288

CONVERSION ROUTINE GENERATOR

- 1---....

INTERACTIVE
SPECIFICATION

CONVERSION

ROUTINE

GENERATOR

~
OlSCllPTIHS

l•TllMl
lll'llSHl

FIOlll[7

,f.SP0.2.ll
rORNT I

OllYlRSIO•

~

pre-existing lower ltvel routiMs. For each data field, a
lower lewl routine is ~sed to perform tht correct bit
Mil'tipulations to move that field into and out of the
1ntermedtate format (as descr1bed tar11tr).

The CVTGEN ouput is tht reusable conversion routine created
to user specifmtion.

3.3 CVTLINK

At thts p0fnt the conversion routine may be utilized with a
user application or it may be linked to the General Format
Conversion ut111t11 (GFCU). This procedure compiles and links
a conversion routine to the GFCU. The name of the object and
load modules Yill be the same as the source file, 'Which are
defined in FCSGBL. No interactive inputs are requir.cl for
this step.

3.4GFCUTL

Tt1• thrd step, GFCUTR., ~t1Uilly oonverts the specified data
(Figure 8). This procedure, using the tape 1/0 libr ar\I,
pro,,.s a mtans for reoading tapes creoated on and 'A'Titing
tapes tor other maclnnes 11'1 any tormat, as wett as read11'19
and -writing to disk. GtneralltJ, GFCU acquires tht input data,
performs the specified COrtversions, and outputs the results.

The output 91nerat.cl is a file containing tht desir.cl convert.cl
data.

GENERAL FORMAT CONVERSION UTILITY (GFCU)

3.sm

COll\llltSIOll llOUT M
Sl'lC&.-i. Ol'IUTIOll lllllillll\'

COll\llltSIOll L 911 All\'

. USER

FDJRf: 8

The purpose of this: operation is: to combine the three steps of
FCS into one procedure. This provides: much convenience
when it is desired to create, link and execute fCS all at once.

3.6 MACHDEF

This oper .ttion is primM"ily used by the FCS manager. 'w'hen a
new machine is implemented into fCS, the manager must:
create lo"Wer level conversion algorithms that convert data to
and from the intermediate format; provide for any tape
formattin<j dissimilarities that the new machine has to the
exis:tin9 machines (in the tape 1/0 librar\j) and; execute
MACHDEF. MAOfDEF is a software maintainanoe program
that implements the characteristics of any ne.,,,..1\j added
machine to JCS. As mentioned, onl\j the IBM, VAX and SIGMA
9 we presently supported. This software receives the
machine characteristics and places them in a machine
definition file.

The output of this process fs the addition of the nt\!f machine
specifications in the machine definition table.

4.0 DESIGN CONSIDERATIONS

The primar\j objective in designing and implementing IFCS was
to develop a ~stem that allows characteristics of the source
and target data stre.tms, a long with identifier information, to
be t.tsi'llJ specified inter active 1'i! . JCS utilizes tMs input to
produce transportable computer code that maintains the
semantics of the ~ta H ~ art transformed from one
computer to another. In addition, FCS was developed to be
friendly and flexible. The user nffd not supp1',I mon

289

tnformltion tNn ts ibso1utt)V ntot1s.-11 for ho f\Ntton to
bt ptrlormtd. Also, inttnctivt q,ut rtqUirtmtnts must bt
un.wnbiguous Ind check for invalid inputs. FCS is ~
flexible tnoUgh to handle .t Yidt 1p9ctrum of possible dlt.t
~ts. Final'llJ, the system was dtsi9necJ to isolate host
specific code so that it may be transported with minimal
Change.

5.0 DESIGN DEPENDENT ENHANCEMENTS

Several enhancements were implemented easily into FCS 00.
to careful planning in the design phase of JCS developmtnt .
An impotdant one involved adding the capability to convert
dlta to and from SIGMA 9 format and CDC format. Because of
the use of an intermediate format, the number of routines
required for this implementation was minimized. That is,
creating one routine that converts a particular data type to
the intermediate format, open! the door for that data to be
reconverted to .tnlJ data type in an\j of the available machine
formats. Converting CDC data is particularly interestir19
because of its 60 bit "Words. FCS allows you to convert these
words to R*4 or R*S variables on the desired output
machine, acoording to the precision requirements of the
.tpp lfcat1on.

Another enhancement provided the cap.tbf11t\I to check for
onrflow conditions after conversion 'Was performed. Befort
executing GFCUT l to commence data conversion, the user
mlf:I alter the default values to be inserted for REAL or
tlTEGER values that overflow when converted. Also the user
ma\j enter a to lar ance number. This is the number of
overflows that will be tolerated before terminatin<J the
program.

The third Yriportant enhancement is the implementation of
code to convert YAX and IBM RE Al* 16 and COMPLEX *8. If
\IOU n.ed it, it's there! Again, by adding a 'oonnrt from' and
a 'convert to' routine for each data ti,1pe on each machine,
allo'WS conversion to any anilable dlta t\lpe.

6.0 ADY MIT AGES OF UStfG res

Several advantages are realized b\I JCS users. First off, ft
is an easy to ~ FORTRAN pr09!' am. There are no hard'W' art
to hookup or software protocols to learn. FCS has an easy to
use front-end prciwam interface, that provides on-lint help,
prompts, defautt input values, 1npUt value checks. FCS also
has the capability to convert any type of data between any of
four htttrogeMOUS computers in one system. This is a very
unique feature. Furthermore, FCS is not specific to any
particular data record definition. In fact, the user defines the
record definition by simple FCS rules. This is to SatJ, FCS
capabilities we not limited by rteord definition. The use of
namelists so that only part of an input record need be

oonvtrttel has pronn ldv•t19fOUS. Othtr ldv•tiCJH ll"t
~t tht GFCUTl can rtad ~ writt a v.-•tv of YAX tlpt
form.tts Ind rtad and 'Writt stlnd.-d llbtltd tlpes for YAX,
B1 and SIGMA 9. Finally, once tht convtrsion routint 1s
crtattcl, 1t m.tV bt wnpttmtnttd 1r1to a user suppf1tcl
.application or t/O pr09f"am. In othtr words, fCS need not be
ustd as • tntirt ll"lit, but its indiv~l proctduns mav
utiliztd as nquirtd.

7 .0 Fun.RE CONS DER AT IONS

Plans txist for FCS on all fronts. Enhanetmtnts to the
svsttm include adding a provision for spec~l data tvpes (for
txamplt, spacteraft ttltmttr'al). Enhancements for 1/0
W.Clude implementing electronic communication into GfCU.
Adding othtr machines to tht si.isttm, such as UNIVAC, is
W>thtr i'nmtdiate consideration, as we 11 as inp ltmenting
fCS on other machines. Tht latttr would require that: 1.)
T AE be present; 2 .) JCS codt be tr ansftrrtd to the new
installation, and; 3.) Tht lowest ltvtl conversion routines be
altertd for tht ntw machine. (As mtntiorttd, tlw gentrattd
conversion routine stands alone and can be transferred to
another machine without MlCJ adjustments.) From 1n

operational point of view, optinizing tht speed of FCS is
bting addrtSStd.

290

ACK!J!YlEOOEtlfCTS

I wish to ~knowltdgt 'w'illiam Mish, Thurston Carleton, Ltn
Morwty, Frtnk Otttns and Allan Silvtr for tlwir
rtc0mi11tndations conctrning fCS.

R£FERENCES

Carlson, Patric~ A., tt al, Primer for tht Transport@lt
,Mplications Executive, NASAIGSFC,

January I 1984 •
Ctntur'al Computing, Inc., bRf;!ljcation Pr29(tromtr's
Rtftrtnot Manual for tht TranlP.2(ttblt

,Mp1ications Extcutivt, March, 1984.
Century Computing, Inc., User's Rtftrtnct Manual for th!
IrBP.21:ttblt t!P.Plications Executive,

March, 1984.
~tj[!g Survtv!, Yol. 13, No. 4, Dtc~, 1981.
Tanenbaum, Andrt'W' S., ~ttr Networks, Prentice-Hall,
1981.

Gaining_ Control: Information Distribution
in a Millti-vendor Corporate Environment

Tom Cheatham

Linkware Corporation
128 Technology Drive
Waltham, MA-02154

ABSTRACT

OSI is a revolutionarY. information distribution standard. However\
since most currently installed network hardware (terminal emulation
boards for PCs, for example) does not support this standard,
preparing- vour network for OSI can be very costly. A new information
distribution technology is described that provides the benifits of OSI
on your current network hardware.

PROBLEM

As many of you are aware1 the International Standards
nrganization has developea a set of communications
standards known as the Open S_ystems Interconnect model,
or OSI. The primary purpose or this OSI model is to
standardize lhe semantics and formats of protocol data units
so~hatinformation may be effectively transmitted between
unlike computers.

It is not enough, however, to get bits safely and accurately
between macfiines. Application connectivity must exist to
put information to gooa use. The OSI standard addresses
this problem by providing standardized "all purpose"
application specifications so that vendors can develop
useful applications.

Because of these information transmission and application
standards, many data communications exoerts consider OSI
to be a revolutionary information distribution' standard.
But before two computers can talk using OSI. all connecting
network eguipment must conform to OSI. Since mo~t
currently installed network hardware (such as terminal
emulation boards for PCs) does not support this standard,
preparirrgyour-network for OSI can be very costly.

An obvious question to any software vendor addressing the
mixed vendor market is how to take advantage of the
semantic communications so elegantlY. specified in the OSI
standards, yet do so over the user's exisfing hardware.

SOLUTION

Manv existing commercial networks SUP.port.full-duplex
virtual circuit capabilities. These offerings include DECnet,
SNA, TCP/!P, MSN]j:T, NFS, HyperChannel, FastPath, X •. 25,
etc ••. Existing user investment in these networking solutions
is tremendous. An OSI-based application design_ tliat views
each of these tested technolo_g1es as subnet options would
enable cross-vendor communications over any of them.

This paper presents an application desim that demonstra_tes
how the OSI "all-purpose application" protocol known as'­
FTAM (File Transfer and Acc.ess Management) can be made
+o work effectively over any installed subnet. The key tq
this concept is the subnet support layer whose function 1t
is to select the t~chnology supporting tht;l reque~ted. target
machine (or node), make the necessary virtual c1rc;mt
connection to the node, and t.hen prqces~ the sending and
receiving of data over that virtual circuit.
The FTAM protocol, as specified in the OSI standard, pro­
vides for the semantic transfer of data, and its structure,
between unlike systems. This m.akes it possibl~l: for ex;ample,
for 60 bit machines to commu111cate _with 16 b1 machine~
(transmitting p. 16 bit PC floating- ooint number to a 60 bit
CDC machine); something thatheretoforewas not standard­
ized and was very_diffucu!t to implement. The OSI reft;lr~nce
model (including-PTAM) does not, however, support existing
proprietary network technologies.

The three primary components of the proposed design, which
work together to support existing networks, are the virtual
filestore, the subnet switching mechanism, and pr:ocess
responders. Before describing these components, 1t is
important to define two terms. These are "initiator FTAM"
and "responc;Ier FTAM". Initiator f'I.'.l\M is the FTAM
application in the computer that.1mtiates a request for
information; responder FTAM is in the computer that
receives the request for information.

Proceedings of the Digital Equipment Computer Users Society 291

The Virtual Filestore

A key conce(>t in the FTAM model is the virtual filestore
which is an abstract collection of files and manipulation
machine which accepts _primitives from the FTAM
responder service interlace. The virtual filestore in turn
front-ends a mapping scheme into the operating system's
native file services. 'I'he service interface provided bv the
initiatof FTAJ\f service layer and the interface into the
Virtual ilestore are identical. Hence it makes perfect sense
to allow the user interface region rn alternatively access
the virtual filestore directly. 'This allows the user interface
region the option or manipulating the local filestore as
we!l as remote filestores.

The Subnet Switching Mechanism

The FTAM protocol machine interfaces with the 1>resent~
ation layer which in turn interfaces with the OSI Session
Services Interface (SSI). The OSI Presentation Layer Passes
a_Qrimitive, and its accompanying parameters! to the OSI
SSI. In a true OSI network, that primitive wou d be used by
the Session Layer to perform the·reguested service. The
session primitive and its accom_1>anying parameters can
instead be bundled into a non-OSI profocol data unit and
transmitted across ANY available network to a remote
machine. There the primitive and Parameters can be
unbundled and presented, in OSI Session interface format,
to the Presentation Layer on the remote site. In this way,
the proposed design application "fools" the OSI Application
?nd Presentation .Layers into ~hinking they are operat.ing
in a pure OSI environment. This enables the use of ex1stmg
network capabilities while reaping the benefits of the
vendor independence inherent in the OSI protocols.

The only real requirement of the existing network
technology is that it be possible to create full-duplex .
virtual circuits between processes. The bundled OSI Session
Services primitives are the "new" protocol exchanged over
that connection. The subnet switching layer uses configur­
ation tables to determine which network technology to use
to make the initial connection and which parameters should
be applied. ·

Process Responders

Process responders are required in this model to accept the
subnet connection and receive the bundled OSI Session
Services primitives.

There are two common methods for establishing commun­
ications with a ~emote process. }he first ard often the
simplest model 1s the spawn option. Spawning process­
responders in response lo remote requests is often a service
12rovided by the existing network capability (DECNE'.f,
TCP/IP, etc ..). If the network does not supply spawning
services they can often be added as part of the software
package which must then support some protocol elements
to effect that service.

The second model is to create permanently resident multi­
user responders which multiplex connections at the
application layer. This method is supported by such network
technologies as SNA, Network Systems HyperChannel, and
Ungermann-Bass Net/One.

Roth models can be supported by the FTAM application
model. In either case, once the res1>ondiJ'lg process has
accepted the connection, the "bundled" OSI session primitive
protocol completes the picture.

Nashville, TN· 1987

PC

Terminal
User
Interface

Initiator

FTAM
Service
Interface

Network
Protocols

--~

Network
Protocols

Responder
FTAM
Service
Interface

Virtual
File
jstore

Real
File
Store

292

I Virtual
File
Store

!Real
File
store

CONCLUSION

The FTAM protocol defined in the OSI standards provides
for the semantic transfer of data, and its structure,
between unlike systems. Although this protocol does not
support existing network technologiest}t is possible to
bmid an application based on the FTA1v1 protocol which
enables cross-vender communications over existing
commercial networks.

The keys to the success of such an application are:
1) a virtual filestore on each node tliat is accessible to
local and remote users, 2) a subnet switching mechanism
that determines which technology to use to connect nodes,
and that fools the OSI Application and Presentation
Layers into thinking they are operating in a pure OSI
environment, and 3J process responders to complete the
connect request from the initiating process.

Thisapplicationmodel can be extended to other OSI 11Rll­
purpose.,' application protocols (CCITT X41Jll MHS, VTP,
TOPP, Ml\fFS Network Directory Services) in the same
manner with the same basic result- OSI functionality
over your current network investment.

293

VMS, Xenix, Unix, and MS-DOS

Transparent Resource Sharing

E. Berelian, L. Farmer, H. Kilman

F. Schoen, P. Wang, J. Vij

ITT ADV AN CED TECHNOLOGY CENTER
SHELTON, CONNECTICUT

ABSTRACT

This paper documents the results of an R&D case at the ITT Advanced

Technology Center on Distributed Business Communications. The

objective was to define and prototype a substrate that would add a layer

of distribution and resource transparency at the user level over a network

of heterogeneous machine environments. That is, it presents a Single

System Image to end-users. This single system image provides

networking transparency of resources. Resources were defined as being

files, programs, and devices. All applications can be ported unmodified

to this environment and can transparently access network resources. The

system was called Business Communication Subsystem (BOS) and

included the following environments: VAX/VMS, Xenix, MS-DOS, and

BSD UNIX.

BCS DEFINITION

INTRODUCTION

Business Communication System (BOS) is a

substrate for business communication services with

This paper defines BOS and discusses its

rationale and generic architecture. The paper then

details a test bed implementation of a subset of the

concepts defined. Finally, a comparison of BOS

with other competitive approaches is discussed.

Proceedings of the Digital Equipment Computer Users Society 295

an open communications architecture to provide a

transparent distributed environment for off-the­

shelf applications. These applications access

network resources as if they were local. This

substrate is portable to voice/data PABX's and

LAN's with appropriate data communication

Nashville, TN - 1987

services.

The major BCS issues of providing a substrate

for business communication services, transparency,

and open architecture are discussed further below.

Substrate for Business Communications Services

The problem of heterogeneous networking is a

complex one. Any reasonable implementation must

by necessity be limited to a set of "core" services

and depend on off-the-shelf packages for

application-specific functions. If BCS were to

define a new Network Operating System it would

then be limited to a restricted set of application

packages. We designed BCS to capitalize on the

existing set of software applications on each target

environment and we extended the underlying

network substrate to facilitate transparent network

resource sharing. That is, BOS provides run-time

extensions to environments such as MS-DOS and

XENIX so programs written for them can run

without modification and be able to access local

and remote resources.

Transparent Distributed Environment

In a distributed environment, if access to remote

resources can be accomplished as if these resources

were local, then to the end-users and the using

applications, distribution will be truly transparent.

To solve the accessibility and integration problems

described previously BCS should provide a Single

System Image {SSI} which will make resources

available in a transparent manner. The SSI

environment is the system software that resides on

all cooperating processors and provides users and

applications with the illusion of operating on a

single centralized computer. Hence, the Single

System Image lS presented from the

user/applications' viewpoint and not the networks'.

SSI should provide for a global name space which

is used to identify objects in the system such that:

• Names do not have to carry location
information,

• It is at the same time possible to
specify location,

• Objects cover files, programs, and
devices.

A primary goal of BCS is to provide a ubiquitous

interface which provides transparency of the details

or existence of the "glue" between dissimilar

system components. For a system to provide

complete transparency, it must address the

following:

• application transparency,

• location transparency,

• control transparency, and

• performance transparency.

The first three items form a hierarchy where

application transparency is the foundation of the

ubiquitous interface. Performance transparency

spans across all levels of this hierarchy.

Performance transparency implies that a

networked environment should perform within the

performance bounds of a true single system.

Application

applications

transparency assures that

operate correctly without

modification. This implies no source changes, re-

compiling, re-linking, or re-loading. This will

allow the full use of off-the-shelf applications.

296

Location transparency is the capability to access

resources {files, devices, and programs) without

reference to their network locations. This

capability may be provided by the implementation

of a global name space for all resources across a

network.

Control transparency ensures consistency of the

control of network processes. Processes can be

transparently created, executed, and controlled

from multiple points in the network and can

communicate with cooperating processes.

Open Communications Architecture

The complexity of the problem also requires that

a framework be first developed to allow open

communications: the framework provides a

layered organization according to ISO-OSI

recommendations [Ref. 14]. It also provides ISO

OSI recommended services at layer 4 which can be

easily ported onto a variety of networks providing

layers 1 to 3. Services at layers 5 to 7 are defined

as either accepted standards or defacto standards.

This facilitates the acceptance of BCS within other

vendors' product lines.

BCS ARCHITECTURE

1. Conceptual Model

Figures 1 and 2 show a conceptual model for a

typical business communications system. The basic

concept is that users utilize services via some

communication network. The users are hosted on

what is labeled as the end-user systems {PC's, data

terminals, telephones, etc.). The providers of

multi-user services are hosted on the servers {VM,

297

MVS, VMS, XENIX, etc.), supporting off-the-shelf

packages such as: PROFS and ALL-IN-1. The

communication network can be realized as either a

virtual wire (i.e. ISO Layer 3 functions), or as a

partner with the end-user systems and servers m

providing integrated business services (i.e. ISO

Layer 4 to 7 functions).

In this model {Figure 2), BCS is a system that

tightly glues together different machines over a

communication network. The Intel 286/310 and

MicroVAX servers (11 internal servers 11) share an

object name space and transparently share

resources. They use standard operating systems

that have been augmented to cooperate over a

network. On these internal servers reside off-the­

shelf, unmodified, applications. Users on either

PCs running MS-DOS or terminals connect via the

communications transport layer into these internal

servers. MS-DOS machines can also reside inside

the BCS umbrella as transparent servers. The

native operating systems interfaces and shared

object name space allow users to visualize these

internal servers as a single system with the access

and power of the union of all the resources. For

example, a Xenix user would visualize the common

pool of BCS resources in a Xenix context (syntax

and semantics), while an MS-DOS user would view

these same resources within a MS-DOS context.

BCS also provides access to external servers, i.e.

VMS, XENIX, MS-DOS, VM and MVS. These

servers provide the end-user with loosely coupled

services including: file transfer, electronic mail,

and remote execution. These external machines do

not share the BCS name space and cannot

cooperate with internal servers in the highly

integrated fashion previously described.

Thus, the BOS architecture can be positioned as

shown in Figure 3 in the OSI model. The lower

three layers are provided by the communication

network (e.g. voice/data PABX or LAN). Layer 4

is the interface between BOS and the

communication network. BOS protocols necessary

to provide the BOS services are at Layers 5

through 7. Finally, at the top of this figure are

the off-the-shelf applications that access network

resources via BOS. The communication backbone

layers (i.e., 1 to 3) can be any network that

provides basic Layer 3 services. This functional

organization of BOS functions has the advantage

that it can be ported to any communication

network, only the translation of BOS services to

the particular data communication network

services has to be accomplished inside of Layer 4.

The separation of functions within the ISO-OSI

framework gives BOS a high level of network and

hardware independence.

Software Structure

Using the analysis technique sketched above,

detailed studies of end-user's resource-sharing

requirements were performed. The result is the

functional hierarchy shown in Figure 4.

The lowest rectangle is the Data Communication

Network. As mentioned in the previous section

this can be any network that provides basic OSI

Layer 3 services. The BOS software structure

above the Data Communication Network is

independent of the network.

BOS provides:

298

• A Data Communication Services
functional area augments the
particular data communication
network chosen for a given
implementation. This delta is
necessary to provide the required data
communication services for the other
BOS functional areas.

• A host Operating System interface
area, so modifications can be done to
access the network and cooperate with
the other BOS pieces. These
modifications are done without
affecting the external operating system
interfaces.

• A Name Server to
common name space
objects.

provide the
for network

• An Inter-Process Communication
facility for use by various BOS
components (i.e. remote execution,
loosely coupled services, network
management) to communicate between
cooperating processes on two or more
servers.

• File Management is the facility that
provides a common set of file
functions across heterogeneous sets of
machines.

• Remote Execution allows the
execution of batch and interactive
programs independent of user or
program location.

• Loosely Coupled Services are those
basic services to external servers (i.e.
file transfer, electronic mail, and
application access).

• Shared Devices is the ability of a
cooperating machine to offer a device
it hosts to the BOS network. This
allows applications and users to access
a remote device as if it were local.

•Data Management is the area that
addresses the sharing of data between

diverse applications and environments.

• Network Management, Maintenance,
Administration, and Security provide
BCS with the necessary control of the
network and its objects.

Hardware Configuration

The BCS hardware configuration is dependent on

the data communication subnet on which it is

built. As mentioned previously BCS can exist on

any network that provides basic ISO level 3

services. The BCS software interface is defined at

the transport level (layer 4) and all upper layers

communicate via this defined interface. In its

initial implementation phase, BCS is implemented

on a popular Local Area Network (Ethernet).

Subsequent phases will concentrate on the porting

of BCS to a voice/data PABX. The major goal of

these future implementations would be to bridge

the voice and data within BCS's transparent

environment.

TEST-BED IMPLEMENTATION

Figure 5 shows the organization of the test-bed

from a physical view-point. This figure illustrates

BCS hardware configuration as applied to a Local

Area Network. The protocol structure in this case

is Ethernet for the first two layers, a null Layer 3

(we did not address inter-networking in the Test­

bed), ISO transport class 4 (utilizing Intel's ina960

product) as Layer 4, and OpenNET (using the

standard file sharing protocols specified by Intel,

Microsoft, and IBM [Ref. 8]) as Layers 5 through 7.

Some upper layer protocols must be added to

implement the BCS functional areas listed above.

299

The Test-Bed demonstrates XENIX, and VMS

Servers and MS-DOS engines connected via a LAN

as part of a transparent distributed environment.

They share the same object name space and can

access network data, programs, and devices

transparently. In this example we show sets of

homogeneous servers (ITT 993X and iAPX

286/310s running XENIX, MicroVAX II running

MicroVMS and VAX-11/750 running VMS),

cooperating as heterogeneous servers in the same

Single System Image network. Services in this

network can be accessed from any MS-DOS or

XENIX machine.

Details of hardware and software components

that are purchased and/or developed are given

below.

Hardware Implementation

In Figure 5, the servers (ITT 993X, iAPX

286/310, VAX-11/750, and MicroVAX) and the

MS-DOS machines share an Ethernet backbone.

The end-user terminals are connected to a terminal

server (MicroVAX) on the Ethernet. This terminal

server provides the virtual link from the terminal

to any target host and also performs data

compression and multiplexing. The ITT 993X,

VAX-11/750, and iAPXes provide file and print

services with the 993X also serving as the

communication gateway to IBM hosts. These links

to external servers are noted in the general BCS

model (Figure 2). They are shown here connected

to an ITT 94XX, but they might as well be directly

connected to the Ethernet as a gateway interface.

The test-bed was implemented by integrating the

following hardware systems, LAN,

communications interfaces:

• Server 1: consisting of an iAPX
286/310 with 1 MB RAM, a 40 MB
hard disk, an Intel 311 expansion box
for an additional 40 MB hard disk and
tape unit, and an iSXM 552 Ethernet
communication board.

• Server 2: consisting of an iAPX
286/310 with 1 MB RAM, a 40 MB
hard disk, an Intel iSXM 552 Ethernet
communication board and an Okidata
2350 dot matrix printer.

• Server 3: consisting of an ITT Courier
993X Application Processor with 5
MB RAM, a 40 MB hard disk, an
APDA device adapter board (for
attachment to the Courier 994X
cluster controller), and an iSXM 552
Ethernet communication board.

• Server 4: consisting of a DEC
MicroVAX II with 3 MB RAM, a 71
MB hard disk, and an Excelan EXOS
203 Ethernet communication board.

• Server 5: consisting of a DEC
VAX-11/750 with 8 MB RAM, lGB
hard disk, and an Excelan EXOS 204
Ethernet communication board.

• Network Monitor: consisting of an
ITT XTRA XP with 0.5 MB RAM, a
20 MB hard disk, an Ungermann-Bass
NIU Ethernet communication board,
color-graphics adapter card and a
color-graphics monitor.

• Workstation: consisting of an ITT
XTRA XP with 0.5 MB RAM, a 20
MB hard disk, an Ungermann-Bass
NIU Ethernet communication board
and a SmarTEAM 103/202 modem.

Software Implementation

and

Software modules were implemented for

300

application support (inter-processor mail), file

access, terminal access and network management in

the test-bed environment. The majority of the

code is in the C language with the exceptions being

the VMS and Micro VMS device drivers that

required the use of the }.1ACR0-32 assembler.

There was 12 thousand lines of code (KLOC)

written which represents lOOKbytes of object

spread over four different systems (VMS,

MicroVMS, XENIX and MS-DOS).

The software modules are summarized below.

The relationship of protocol layers· used for the file

and terminal access in the test-bed implementation

are given in Figures 6 and 7, respectively.

The software modules implemented are:

• Micro VMS Software: consisting of a
master virtual terminal interface and
an EXOS 203 driver with supporting
utilities.

The virtual terminal interface is
implemented to allow users to setup
single or multiple sessions to any BCS
servers. The EXOS driver is a
MicroVAX II VMS device driver that
handles low level interface functions to
and from the EXOS 203 controller
board. The EXOS board hosts the
ISO transport class 4 software which
functions as ISO layers 1 through 4.
The EXOS support utilities include
iNA960 software downloading, status
monitoring and reporting, and
network statistics collection and
transmittal.

• XENIX Software: consisting of slave
virtual terminal support, network
management support, and inter­
processor mail support modules.

Virtual terminal support is needed
because the XENIX machines also act

as virtual terminal servers or slaves,
which interact with the MicroVAX
virtual terminal consumer or master.
Functionally, these modules interface
to the session layer and iSXM 552
interface driver.

Network management and inter­
process mail support modules are used
to generate responses to the
configuration and statistics requests
from the Network Monitor (ITT
XTRA XP), and to enhance the mail
services to/from Workstation users.

• VMS Software: consisting of a MS­
DOS and Xenix file and print services.
In addition, the same set of Micro VMS
EXOS drivers and utilities ported to
EXOS 204/UNIBUS and VMS.

•MS-DOS Software: consisting of inter­
processor mail support and network
monitor modules.

The inter-processor mail support
module performs identical functions as
its XENIX counterpart, i.e., enhancing
the send and receive mail functions
to/from XENIX users.

The network monitor software
extracts information from the various
protocol layers of the network,
performs analysis and finally presents
the data graphically on the XTRA
color-graphics monitor.

Additionally, a number of off-the-shelf software

packages were integrated for a demonstration of

the Test-bed implementation. These are: IBM PC­

DOS 3.1, MS-NET, DEC VAX VMS 4.1, Microsoft

XENIX 3.0, XENIX mail, kermit, and Intel

OpenNET.

COMPETITIVE APPROACHES

The document "A Study of Single System Image

301

Environments for the Business Services Subsystem

(BSS)" [Ref. 2] details an analysis of products that

operate over heterogeneous hosts and provide some

level of resource transparency. The products are

either commercially available or subjects of

university research. The paper defines a base

architecture and services, and details the selection

criteria. This analysis resulted in the selection of a

system to be used in the Test-Bed implementation.

The system chosen for the Test-Bed was the

combination of XENIX-NET and MS-NET. Its

functionality, adherence to networking standards,

cost of implementation/porting, and performance

were noted. XENIX-NET and MS-NET, however,

do not provide many of the features that LOCUS

and other "distributed operating systems" [Ref. 12]

provide such as:

• a single file with data distributed
and/or replicated over many sites,

• distributed processes to support the
creation and communication with
remote processes,

• application-locator services to find
out, e.g., whether there is a PASCAL
compiler on the system, and forward
user request to the appropriate server,

• other utilities including time services,
boot services, etc ..

These features were not part of the selection

criteria of the study.

Since the technical memorandum was released

two major products have come into prominence.

The Network File System [Ref. 5] from Sun

Microsystems Inc. and Remote File System [Ref. 4]

from AT&T. RFS is targeted at UNIX networking

while NFS has a heterogeneous goal.

RFS from AT&T is the choice for UNIX

networking. RFS adheres strictly to UNIX

semantics and standards, supports a transparent

application interface, and provides a uniform

methodology for implementing varying network

protocols. However, RFS is a new technology and

currently does not support heterogeneous hosts

(e.g. XENIX, MS-DOS, VMS). RFS does, however,

provide a defined software architecture in which

these heterogeneous ports can be implemented.

The NFS system as specified by SUN

Microsystems is a heterogeneous implementation.

It has been ported to MS-DOS and VMS systems as

well as a wide spectrum of UNIX systems (BSD

4.2/3, UNIX System V Release 2, Xenix System III

and V, and Microport UNIX). It supports common

file operations (UNIX like) over this set of

machines, but does not address the issue of location

or object transparency.

DECnet-DOS from Digital Equipment

Corporation ties together the MS/PC-DOS world

and the VMS/MicroVMS worlds utilizing the

DECnet protocol suite. DECnet-DOS provides:

virtual terminal emulation (CTERM or LAT),

bidirectional file transfer (using a DOS based

utility and VMS using F AL), a unidirectional VMS

mail utility for DOS, transparent file access

library, transparent task-to-task communication

library, and a network disk driver for DOS which

provides virtual network disks (similar to PC­

NET /MS-NET functionality). All of these services

run over an existing Ethernet or Asynchronous

DECnet phase N network. DECnet-DOS in

conjunction with its sister DECnet-UL TRIX ties

together VMS, ULTRIX, and MS-DOS. Each

302

environment maintains its name space and

administrative automony.

VAX/VMS Services for MS-DOS from Digital

Equipment Corporation is the new entry in the

heterogeneous distributed computing marketplace.

It is the NETBIOS implementation of DECnet­

DOS designed specifically for the V AXmate

processor. It provides: virtual terminal (VT220

emulation) support, virtual MS-DOS disk on VMS

with full file sharing, and a standard IBM

NETBIOS interface for MS-DOS network

applications. This product does not support

XENIX or UNIX (non-ULTRIX) connectivity, a

global name space, or VMS client services to MS-

DOS.

There are other connectivity products from

SYNTAX and Datability that address the MS-DOS

and VMS connectivity using industry standard

protocols.

CONCLUSIONS

Overall, we believe that the BCS Test-bed

succeeded in demonstrating the feasibility of a

Single System Image for distributed business

communications: it is indeed possible to integrate

existing heterogeneous machines (MicroVAX, ITT

Courier AP, Intel 286/310 and ITT XTRA) into a

networked system and preserve distribution and

resource transparency over the diverse machine

environments.

In summary, BCS is similar to NFS in its

heterogeneous nature, and to RFS and LOCUS in

its full support of UNIX file operations. However,

NFS, LOCUS, and RFS use a remote mounting

technique which masks the network entry point of

a file system tree. BCS uses a network layer above

each machine's file system root. In addition, a BCS

logical name or symbolic link mechanism is used to

syntactically hide the existence of the network to

users and applications.

To conclude, we emphasize that although the

current BCS test-bed only supports a limited set of

capabilities, it shows that the Single System Image

concept is indeed feasible, and that the BCS

architecture is a sound approach towards its

implementation.

ACKNOWLEDGMENTS

There are many individuals who contributed to

the ideas, analysis, specification, and Test-Bed

implementation of BCS. We would like to thank

Santanu Das, Director of the Applied Technology

Division, for his support of the project. We are

especially grateful to Shastri Divakaruni, and

Walter Guilarte for their management support and

guidance. The initial conceptual view of BCS was

assisted by John Thalhamer, Doreen Lawson, and

Baldev Singh. A final thank you to Hsiaosu

Hsiung for his contributions in the specification

and Test-Bed implementation of BCS.

REFERENCES

1. H. Kilman and F. Schoen, "A
VAX/VMS Implementation of
XENIX-NET and MSNET 11 ,

Proceedings from 1987 Spring DECUS

2. E. Berelian, W. Guilarte, H. Kilman,
"A Study of Single System Image
Environments for the Business
Services Subsystem (BSS)", Doc. No.

303

MF851127, ITT Advanced Technology
Center, February 8, 1985.

3. R.S. Divakaruni and H. Kilman,
"Futuristic Trends in an Integrated
Office Environment", May 11, 1985
proceedings from VENCOM '85

4. AT&T, "UNIX Version V Release 3.0
Overview", AT&T Information
Systems, 1986.

5. Sun Microsystems, Inc., "Networking
on the Sun Workstation", Part No.
800-1324-03, Rev. B., dated February
17, 1986.

6. M. J. Weinstein, T. W. Page,
B. K. Livesey and G. J. Popek,
"Transactions and synchronization in
a distributed operating system", ACM
Proc. 10-th Symposium on Operating
System Principles, December 1985.

7. For a recent review, see
A. S. Tanenbaum and Robbert Van
Renesse, "Distributed Operating
Systems", Computing Surveys, vol.
17, no. 4, December 1985.

8. Microsoft Corp., Intel Corp., "Core
File Sharing Protocol", PN
136329-001 Rev.A, Version 1.6, June
20, 1985, and "Extended File Sharing
Protocol", PN 136330-001 Rev .A,
Version 1.6, June 12, 1985.

9. Intel Corp., "XENIX
Software User's Guide",
135147-001, 1985.

Networking
Order No.

10. Intel Corp., "Intel OpenNET
Architecture Xenix Network File
Services User's Guide", 1985

11. Locus Computing Corporation, "The
LOCUS Distributed System
Architecture", Edition 3.1, June 1984.

12. Popek, G., Walker, B., Chow, J.,
Edwards, D., Kline, C., Rudisin, G.,
and Thiel, G., "LOCUS A Network

Transparent, High Reliability
Distributed System 11 , UCLA.

13. Hae, A., "Distributed File Systems - A
Survey", SIGOPS February 1985

14. CCITT VIIIth Plenary Assembly,
"Data Communications Networks.
Open Systems Interconnection (OSI)
System Description Techniques
Recommendation X.200", Red Book
Volume VIII Fascicle VIIl.5, October
1984.

15. Intel Corp., "ina960 Programmer's
Reference Guide", 1985

16. International Standards Organization,
11 Information Processing Systems -
Open Systems Interconnection
Transport Protocol Specification 11 ,

ISO/TC 97 /SC 16/WG 6, DIS 8073
Rev., June 29, 1984.

17. M. J. Hatch, M. Katz and J. Rees,
11 AT&T's RFS and Sun's NFS: A
Comparison of Heterogeneous
Distributed File Systems",
Unix/World, December 1985.

304

End User Systems
- PC's
- Data Terminals
- Telephones
- Teletext Terminals
- etc.

Communications·
Network

Figure 1: Conceptual Model for Business Systems

PC's
MS-DOS

Figure 2: Practical Model for Business Systems

305

-
Servers
(VM, MVS, VMS, XENIX)

- PROFS
- All-in-One
- SPF
- etc.

Data
Network

External
Servers -

-VMS. XENIX,
MS-DOS,
VM, MVS

Services -
-File
Transfer

-Mail
-Application
Access

1

Off-the-Shelf
Applications

Application Layer 7

BCS Presentation Layer 6

BCS l/F ISO-OSI
Transport

Session Layer 5

Transport Layer 4

Network Layer 3

LAN or Voice/ data P ABX Link Layer 2

I Physical Layer 1

Figure 3: BCS Architecture (OSI-ISO)

Shared
Loosely Data

Devices
Coupled Management Services

Remote Execution

File Manegement

Inter-Process Communication

Name
Data Server

Security Communications
Services Operating

System
Interface

Data Communications Network
LAN or Voice/Data PABX

Figure 4: BCS Software Structure

306

Network
Management,
Maintenance,
Administration

External
Interface

Network
Monitor

fTTXTRAXP
MS NET

Server

'-1:-...... -

UB-NIU

EXOS203

Micro Vax II
Micro VMS

iii
~ -OumeOVT103

Modem

Work
Station

fTTXTRAXP
MSNET

Server

fTT993X A
p

ITT94XX
Controller

Server

ITT XTRAXP
IMSNETI

Unaarmann­
BasS
NIU Board

UB-NIU ISXM5S2
D
A

Courier 92XX

Ethernet

iSXMSS2 311 ISXMSS2 EXOS204

IAPX 286/310
XENIX.NET

Server
IAPX 286/310
XENIX.NET

Printer

Figure 5: BOS Hardware Configuration on a LAN

I ----~~~~::~---SMB Protocol
-----N"eriim ___ _
- - - - - - ·;;;;961-- - --- --

Pre~entauon

ina961 Tran~pon

Null N~twork

82586 JMAq lna961 (LlCJ Datal.Jnk

Intel 82586 Chip

I

•

XENIX3.0

SMB Protocol

----ei-;;i-;,;----
--- -- - - ina961 ______ _

ina961

Null

82586 (MAC~ lna961 (LlCJ

Intel 82586 Chip

/
/

TollM /

/

/
/

/

/
/

Figure 6: File Access Protocol Architecture

307

ATD 750
VMS

)

1AJ'X 286'c
fXENIX.ne:

Intel
iSBX552
Board

To /Bf\

! Virt~=~~~.:: Micro Vax II .,. __ _ Virtual Terminal ______ ..
Excelan
Exos 203
Boud

-------~~~-------1nate1
...... ------~~------~

1naM1

null

82S&e(MAC). 1naM 1 (LLC)

\
\
\
\
\
\

825H

--· --

\
\

.,,. ~. I -,,
I

I

- _,.

Application

Presentation

S.u1on

Tran1port

Network

Phyaical

I

-
I ·-

I , .. ~
s-..r 191.>•0

,
XENIX 3.0 uNr

~-- --·
Virtual Terminal

Oevt 1----------- -----inaM1

inste1

null

S251&lMAC). inate1 (LLC)

!2518

.T'T

:-

/

,
/

/
/

/
/

~ ,,

I)

. /
I

EJ

Figure 7: Virtual Terminal Protocol Architecture

308

~

1APX 2161310
(XENIX.n9t)

Intel
1SBX 552
Board

Documenting Single-Package Systems

Customer Benefits and Documentation Challenges·

Michael J. Doyle

Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT

What are single-package systems? Why do
customers like them? What are the challenges
in documenting them? This paper discusses
the benefits (to customers) and the challenges
(to creators) of single-package systems and
the documentation that accompanies them.

Office Systems Documentation (OSD) is a group
of writers, editors, and publications personnel re­
sponsible for providing documentation for several of
DIGrTAL's office automation (QA) products. We re­
cently documented PC ALL-IN-1, which presented a
new documentation challenge for us: how to docu­
ment a single-package system.

What Are Single-Package Systems, Anyway?

Single-package systems are "ready-to-run" systems
that contain the components necessary to solve one
or more computing problems. This does not mean
that all of the components come in a single physical
package. Instead, single-package is an ordering con­
cept that refers to one order number for a complete
solution-with the focus on solution.

A single-package system consists of:

• Hardware

• Software

• Services

• Documentation

Single-package systems are not meant to be cus­
tomized to any great extent, and they require no
system generation. They very much represent a "so­
lution in a box."

Proceedings of the Digital Equipment Computer Users Society 311

Let's take a look at PC ALL-IN-1 as a single-package
system. PC ALL-IN-1 consists of a MicroVAX II
Server that allows PCs to network together and, op­
tionally, connect into a larger corporate network.
Some of the main components of this system are:

• MicroVAX II Server (preconfigured)

• VT220 console terminal package

• LN03 laser printer package

• ThinWire Ethernet hardware for ThinWire con­
nections

• Cable concentrator for asynchronous connections

• Software for the Server

• Software for the PCs

• Services and onsite Server Administrator training

• Documentation

Except for the PCs and the cabling from the PCs
to the Server, everything needed to create a PC net­
work is included in the package.

What are the Benefits to Customers?

The biggest benefit to the customer of single­
package systems is that the systems are easy to order.
The customer doesn't have to figure out what parts
are needed to solve a problem. In fact, the customer
doesn't even have to figure out a solution.

The customer need only recognize the problem and
find the order number that provides the solution to
that problem. This solution includes the necessary
hardware, software, services, and documentation.
Since the system has been tested and used as a sys­
tem, not as a bunch of parts which may or may not
solve the problem, the customer is assured that all
the pieces work together as a unit.

In addition, because the pieces are packaged as a
system, installation and maintenance is simplified.
The installation and maintenance processes are per­
formed for the system, not for each individual piece
of the system.

Nashville, TN - 1987

All the benefits to the customer are easy to recog­
nize: single-package systems are the simplest solu­
tion to a computing problem. However, there seems
to be an inverse relationship between simplicity on
the customer's part and complexity on the creator's
part. This relationship holds true for both the cre­
ators of the product and the creators of the docu­
mentation.

What are the Challenges to Documentation?

Writers in OSD have historically provided user
communications (hardcopy and online documenta­
tion) for OA software. We have also provided help
with software interface issues, and help with the
quality assurance of our software products.

Because PC ALL-IN-1 was, in the true sense of the
phrase, and "all in one" package, we needed to mod­
ify our product responsibilities, what we write, who
we write for, and how we work.

Product Responsibilities

Each component of PC ALL-IN-1 represents an im­
portant part of the system; each component also
represents a dependency. The MicroVAX II is de­
veloped by one group; the VT220 console terminal
is developed by another group; and the LN03 laser
printer package is developed by yet another group.
The PC ALL-IN-1 documentation team faced com­
munication and organizational challenges because of
the number of groups involved in the product.

To what extent did the number of groups involved
affect our product responsibilities? Figure 1 shows
the major groups involved in bringing a traditional
software product to market. Notice that historically
the development of OA products rests with one soft­
ware development group.

312

Figure 1

Groups Working On Traditional OA Product

Product
Development

Software
Distribution

Customer
Services

OSD

Figure 2, however, shows how the major groups
that make a single-package system are dependent on
many development groups - both software and hard­
ware. The number of dependencies increases dra­
matically, and the importance of organization and
communication becomes clear.

Figure 2

Groups Working On PC ALL-IN-1

Product
Development

Quality
Assurance

Customer
Services

OSD

Because of the number of development groups con­
tributing to the product, a good portion of the re­
sponsibility of keeping a system focus fell on the
shoulders of documentation. To a great extent, it be­
came our responsibility to make the product look and
work like a single system, through well-integrated
documentation.

What We Write

As a group, our experience in the past has focused
on layered products, which generally require user,
system manager, and installation documentation.
With PC ALL-IN-1, we needed to provide documen­
tation for an entire system. We had to provide doc­
umentation for:

• Planning for the system. We documented the
work that needs to be done at the customer site in
preparation for the installation of a PC ALL-IN-1
system.

• Ordering the system. We documented the compo­
nents of the basic system package. We also docu­
mented the additional packages that are available
for the system, including the additional printer,
modem, PC, and cabling packages.

313

• Installing the hardware. We documented the
steps for hardware installation, tying all of the
hardware pieces together as a system.

• Installing the software. We documented the steps
for installing the software on both the MicroVAX
II Server and the PCs.

• Using the system. We documented the various
components of the user software, including the
WPS-PLUS editor, electronic mail, and the docu­
ment File Cabinet.

• Maintaining the system. We documented the
steps for maintaining the Server, including infor­
mation on how to maintain user accounts and
backup data.

With PC ALL-IN-1 we were no longer responsible
for documenting a component of a system; instead,
we were responsible for documenting the system it­
self - all of the components working as a unit.

Who We Write For

The different components of the system required
documentation that was targeted to the user of that
component. There is no single audience for an entire
system.

PC ALL-IN-1 challenged us to write to these differ­
ent audiences. Instead of writing solely for the OA
user sitting at a terminal, we wrote for the:

• Customer planning and ordering the system

• Hardware specialist installing the system

• Users using the system

• Server Administrator maintaining the system

How We Work

Challenges in how we work were the most difficult
to meet because they required changes in our basic
work habits. We had to move from informal work
habits that resulted from working with small project
groups, to more formal habits that were needed to
work with the many development groups contribut­
ing to the project. As you can probably guess, it is a
very difficult process to move from informal to for­
mal work habits. Certainly it is more difficult than
the reverse (formal to informal).

Our main job as technical writers is to make sure
that the information we provide is technically accu­
rate. Because of the variety of groups involved in
developing the system, our major challenges seemed
to focus on:

• Getting accurate information

• Getting thorough technical reviews

• Resolving conflicting technical comments

Conclusions

Are single-package systems worth the effort? Be­
cause they are the simplest solution for some com­
puting problems (not all - some), the answer has to
be a resounding YES.

The success of single-package systems dearly de­
pends more heavily on documentation than the suc­
cess of traditional layered products. With single­
package systems, documentation is responsible for:

• Documenting all parts of the system, including
hardware, software, and services.

• Documenting all tasks associated with the sys­
tem, including planning, ordering, installing, us­
ing, and maintaining.

314

• Keeping a system focus.

To meet the challenges that such responsibilities
present, writers must follow the same two-step cycle
that all people involved in new areas must follow:
we must learn by trial and error, then learn from
experience.

We must pay attention to both our successes and
failures, and in the future emphasize our successes
and weed out the failures. We must listen to and
seek out comments from all users, listen to their
feedback, and respond. Our documentation goal is
to make the information users need as accessible as
possible.

Future work on the documentation for single­
package systems must also strive for fully integrated
documentation. For a single-package system to be
completely successful, it must look and feel like it
was developed by one small development group.

Fully integrating the documentation for a single­
package system requires writers to further develop
communication, organization, and negotiation skills
as we work with larger numbers of development
groups for a single product. Because of the diversity
in the developmental background of the components
in a single-package system, documentation must pro­
vide the communication thread that ties everything
together.

Introduction to the RSX, P/OS, and RT
Indirect Command File Processor

Thomas R. Wyant, ill
E. I. DuPont de Nemours

Richmond, Virginia

Abstract

This paper presents a survey of the basic capabilities of the indirect command proces­
sor (ICP) that is common to RSX, P/OS, and RT. A useful and efficient subset of the
ICP directives is presented, some common misconceptions are addressed, and known
bugs in the various implementations of the ICP are highlighted.

Introduction

Goal

The goal of this paper is to help the reader or listener to make
efficient use of the Indirect Command File Processor (ICP)
under RSX, P/OS, and RT.

Caveats

The current releases of all the operating systems are assumed.
However, this paper should be useful as far back as:

• RSX-llM V3.2

• RSX-llM+ Vl.O

• VAX-11 RSX Vl.0

• P/OS Vl.O

• RT-ll V5.0 (FB and XM)

Where there are differences between the Indirect Com­
mand File Processors of these systems (and I am aware of
these differences) they are indicated. Command lines in ex­
amples are all for RSX MCR.

I am not the final authority on the ICP in all its multifar­
ious versions. Errors in research and transcription do occur. I
apologize in advance for these, but assume no responsibility
for their consequences.

Acknowledgement

Allen A. Watson's paper, "Indirect Command Files for New
RSX Users", presented at the Spring, 1983 DECUS US Sym­
posium, was both an inspiration and a reference for this paper.

Proceedings of the Digital Equipment Compuler Users Society 317

Background

Historical Perspective

The RSX Indirect Command Processor (hereinafter known as
the ICP) is the RSX system component that allows you to
group MCR or DCL commands in a file and have them exe­
cuted as a group. The same basic processor was put in P/OS
when it was spun off from the RSX mainstream, and the same
logic has within the last couple years been exported to RT-11.

Invoking the ICP

To feed a command file to the ICP:

RSX

>@filename

(Default filetype is . CMD)

P/OS

$ @filename

(Default filetype is .CMD)

RT

SET KMON IND

@filename

or

IND @filename

(Default filetype is .COM)

In all cases the input is to a CLI prompt. @filename
in response to some other prompt has nothing to do with the
ICP. For example,

PIP>@filename

feeds the file to PIP's own command processor.

Nashville, TN - 1987

Contents of an ICP file

Each line of an ICP file is composed of one of the following:

• An "external" comment:

o Begins with ; .

o Is displayed when encountered (unless .ENABLE
QUIET is in effect).

o Has no other effect.

• An "internal" comment:

o Begins with . ; .

o Is not displayed when encountered

o Has no other effect.

• An ICP directive:

o Begins with ..

o Is interpreted and executed by the ICP.

o Most of this paper deals with these.

• A CU command:

o Is any line that doesn't meet the above criteria.

o Is issued as a command to the current CU, as though
you typed it. If the current CU can't handle it, that's
your problem, not ICP's.

Normally, only one of the above may appear on a line of
an ICP file. The exceptions to this rule are:

• Most ICP directives may be followed by an internal com­
ment. The output directives are the major exception to
this.

• The ICP conditional directives may be followed by a
comment, a CU command, or another ICP directive (in­
cluding another conditional).

Processing a line of an ICP file

A record (line) in an ICP file is processed in the following
steps:

1. Read it.

2. Perform symbol substitution (if enabled).

3. Decide what category it falls in. If it's an ICP directive:

(a) Parse the first ''word".

(b) Load the overlay that processes it (overlaid ver­
sions).

(c) Complete parsing.

(d) Execute.

Why is this important? Because:

318

• Symbol substitution occurs very early in the processing of
a line. Many "USP"-ish behaviors of the ICP are based
on this.

• Many versions of the ICP are overlaid, so grouping like
operations together can improve performance.

• Running an overlaid ICP off a floppy disk can require a
good deal of patience.

Symbols

What are Symbols?

• They are named data stores used by the ICP.

• They are not accessible outside the ICP (though the ICP
can make their VALUES available).

• Their names are 1-6 RAD50 characters (excluding .),
and MUST contain at least one non-numeric character.
Note that:

o Certain releases of the ICP have had trouble with
embedded dollar signs, or with symbol names that
begin with a numeric character.

o There are certain predefined Special Symbols, which
are named according to the same convention, but
have their names enclosed in <>. These do not
conflict with ordinary names.

• They come in three flavors:

a Logical (True of False).

o Numeric (16-bit integer values).

o String (0 to 132 bytes).

• They can be assigned values:

o By computation within the ICP.

o By querying the user.

o In special cases, by reference or on entry to the ICP.

• Their values can be tested

• They are normally local to the command file in which
they were created. However, if you .ENABLE GLOBAL,
symbols whose name begins with a $ are available for
the life of the ICP run.

Logical Symbols

• Take on the values TRUE or FALSE.

• Can be assigned values by:

.SETT symbol ! sets it TRUE.

.SETF symbol ! sets it FALSE .

. SETL symbol expression

&

t

• Logical expressions consist of logical symbols (includ­
ing the Special Logical Symbols jTRUEl, or jFALSEj,),
connected by the following operators:

(logical OR) .
(logical AND) .
(logical NOT) (RSX, P/OS).
(logical NOT) (RT) .

Expressions are evaluated left to right, without regard
for usual precedence of operators. Operations may be
grouped with parentheses.

• Values can be tested by .!Ff, .IFF, or .IF directives. These
directives are discussed under "Control".

• Can take on values entered from your terminal, using
the .ASK directive. This directive is discussed under
"Terminal 1/0".

• Substitution yields "T" for TRUE, or "F' for FALSE.
Substitution is discussed later in this section.

Numeric Symbols

• Take on 16-bit integer values. These are unsigned. Under
RSX and P/OS, you can treat them as signed values if you

.ENABLE OVERFLOW

• Can be assigned values by:

.SETN symbol expression

.INC symbol ! Adds 1.

. DEC symbol Subtracts 1 .
RT-11 only
RT-11 only

.SETT [mask] symbol

.SETF [mask] symbol

+

*
I

&

t

The . SETx [mask] symbol operations set or clear
the masked bits in the given numeric symbols.

• Numeric expressions consist of numeric symbols or con­
stants, connected by the following operators:

(addition) ;
(subtraction);
(multiplication);
(integer division);
(bitwise OR);
(bitwise AND);
(bitwise NOT) (RSX, P/OS);
(bitwise NOT) (RT) .

319

Expressions are evaluated left to right, without regard
for usual precedence of operators. Operations may be
grouped with parentheses.

• Numeric constants are octal by default unless you append
a decimal point, or unless you:

.ENABLE DECIMAL

.DISABLE OCTAL
(RSX,P/OS)
(RT)

• Values can be tested by the .IF directive. This directive
is discussed under "Control".

• Can take on values entered from your terminal, using
the .ASKN directive. This directive is discussed under
"Terminal 1/0".

• The default radix of a symbol is decimal, unless the ex­
pression that computed its value consisted only of octal
symbols and constants. This default radix can be changed
by:

.SETO symbol

.SETD symbol
(set to octal) ;
(set to decimal) .

• Substitution yields the value of the symbol, in the current
default radix of the symbol. Substitution is discussed later
in this section.

String Symbols

• Take on the value of a 0-132 byte string.

• Can be assigned values by:

.SETS symbol expression

+

If you .DISABLE LOWERCASE, the string is upper­
cased before being assigned to the symbol.

• String expressions consist of string symbols, substrings,
or constants, connected by the following operator:

(concatenation) .

Expressions are evaluated left to right. Operations may
NOT be grouped with parentheses, but then with only
one operator, why would you need to?

• A string constant is constructed as follows:

"this is a string constant"
tso is this, for RSX and P/OS onlyt

The quoting character may not appear in the string con­
stant.

• Substrings can be extracted by the construction:

symbol[start:end)

which represents the bytes between the start and end po­
sitions, inclusive. Any valid numeric expression can be
used for "start" and "end''. Also, * can be used, repre­
senting the last character in the string.

• Values can be tested by the .IF directive. This directive
is discussed under "Control".

• Can take on values entered from your terminal, using
the .ASKS directive. This directive is discussed under
"Terminal 1/0".

• Substitution yields the bytes in the string. Substitution is
discussed later in this section.

Symbol Substitution

• Occurs only when enabled by .ENABLE SUBSTITU­
TION. Under P/OS and RT, substitution is enabled by
default. Under RSX, it is disabled by default.

• Is called for by enclosing a symbol name in apostrophes.

• If you attempt substitution on an undefined symbol, an
error occurs.

• Substitution in a line of an ICP file occurs BEFORE the
line is parsed. Therefore it can occur anywhere in a line,
and in any kind of line.

• Under RSX and P/OS, you can get format control by fol­
lowing the symbol name (within apostrophes) by a per­
cent sign (%) and one or more of the following:

D

0
Rn

(substitute decimal value);
(substitute octal value);
(right justify in "n" byte

Ln

z
s
c
x

v

field);
(left justify in "n" byte
field) ;

(fill with leading zeros);
(signed value);
(do blank compression);
(substitute RADSO string
for number);

(substitute value for first
byte, or a byte for value) .

Examples (all of which assume .ENABLE SUBSTITU­
TION):

• Assembling and task building an arbitrary module:

320

.ASKS MODULE What module
MAC 'MODULE'='MODULE'
TKB @'MODULE'BLD

Effects:

o You are prompted for the name of a module;

o That module is assembled and taskbuilt.

• Inserting control characters:

.SETN NJUNK 33

.SETS ESCAPE "'NJUNK%V'"

Effect:

o String Symbol ESCAPE now contains an escape
character.

• Using format control to set the size of a field:

.SETN NJUNK l
PIP FILE.'NJUNK%R3Z'/LI

Effect:

o A directory listing of file FILE.001 is produced.

Determining the Characteristics of Symbols

• Finding out whether a symbol exists:

.IFDF symbol

. IFNDF symbol

Note that the line

If it's defined
If it's not .

.IFDF symbol ;'symbol'

will result in an error if the symbol is undefined. The
substitution is attempted BEFORE the line is parsed.

• Characteristics of a symbol:

.TEST symbol

causes the following Special Symbol values to be set:

<SYMTYP>
0 if the symbol is a Logical Symbol,
2 if the symbol is a Numeric Symbol,
4 if the symbol is a String Symbol;

<OCTAL>
= <TRUE> if octal (numeric and

string only) ;

<STRLEN>
=Length of string (string symbols only);

<ALP HAN>
= <TRUE> if (uppercase) alphanumeric

(string symbols only);

<NUMBER>
= <TRUE> if a number (string symbols

only) ;

<RAD50>
= <TRUE> if a RAD50 string (string only).

Manipulating Substrings

o Finding substrings of a string:

. TEST stringl string2

returns the following Special Symbol value:

<STRLEN>
the position of first occurrence of
string2 in stringl, or 0 if it
doesn't occur.

Note that:

• The strings may be either string constants or
string symbols.

• Extracting substrings based on character posi­
tion was discussed under String Symbols.

o Substrings based on character locations:

.PARSE stringl string2 symboll symbol2 ...

Takes string2 as a list of separators, and picks
stringl apart. symboll gets everything up to the
first separator, and so on.

• If there are more symbols than separator char­
acters in string2, the last separator character
gets reused.

• If all separators do not occur IN ORDER in
stringl, symbols corresponding to the missing
separators come back with the null string.

321

• Special Numeric Symbol jSTRLEN{. contains
the actual number of substrings processed by
.PARSE. This includes explicitly null sub­
strings, but not symbols set null because
.PARSE could not find any more separators.

For example:

.PARSE <UIC> "[,]" JUNKl GROUP MEMBER
JUNK2

sets String Symbols JUNKl and JUNK2 null, GROUP to
your current VIC group, and MEMBER to your current
VIC member.

Control

Conditional Directives

o The general syntax of the Conditional Directive is

.IFx condition statement

The "statement" (directive, CLI command, or what­
ever) is executed ONLY if the condition is satisfied .

o There are a number of cases of the conditional di­
rective:

Syntax

.IFT symbol

.IFF symbol

.IFDF symbol

.IFNDF symbol

.IFLOA driver

.IFNLOA driver

.IF symbol rel expr

.IFINS task

.IFNINS task

.IFACT task

.IFNACT task

.IFT [mask] symbol

.IFF [mask] symbol

Note that:

Satisfied if:

symbol is true
symbol is false
symbol defined
symbol not defined
driver loaded
driver not loaded
relation satisfied
task installed
task not installed
task active
task not active
numeric symbol has
any masked bits set
numeric symbol has
any masked bits clr

• The "task"-oriented conditionals are available
only in RSX and P/OS.

• The "[mask]"-ed forms of the conditionals are
available only under RT.

o The following relations are valid in a .IF directive:

Satisfied if value of
Syntax symbol is
-------- ------------------------

or
<> or
> or
< or
>= or

<= or

EQ equal to expression
NE not equal to expression
GT greater than expression
LT less than expression
GE greater than or equal to

expression
LE less than or equal to

expression

The expression must be of the same type as the
symbol.

o Tests can be connected using:

• .OR - satisfied if either condition is met.
.IFx condition .OR .IFx condition

• .AND - satisfied if both conditions are met.
.IFx condition .AND .IFx condition

• Parentheses after the first .IFx group tests .
. IFx .AND (.IFx .OR .IFx)

Labels

o Are used to identify locations as targets of .GOTO
or .GOSUB directives.

o Are formed in the same way as symbol names but
do not conflict with them.

o Must occur (at least) once in the same command file
as all .GOTOs or .GOSUBs that refer to them, or
you get an error.

o Need not be unique - but you can get "strange"
results if they're not.

o Come in two flavors:

• Standard labels:

* Defined by the syntax:
.label: (more stuff on same line)

.label:

* Are found by scanning the command file
forward from the .GOTO or .GOSUB to
the end of the file and then (if the file is
on disk) rewinding and scanning forward
to the .GOTO or .GOSUB directive;

* Substitution does not occur when scanning
for labels.

• Direct-access labels:

* Defined by the syntax

with nothing else on the same line;
* Location is cached, and loaded directly

when referenced by a .GOTO or .GOSUB
directive;

322

* If cache fills, earliest defined label is
dropped (ie: it reverts to being a standard
label);

* Obviously, there are no direct-access labels
if the command file is not on disk.

Transfer of Control

o "Standard" GO TO:

• Syntax:
.GOTO label

• Unconditionally transfers control to the given
label.

• The given label must occur in the same com­
mand procedure as the .GOTO that refers to
it.

o "Computed" GO TO:

• No explicit support for this.

• Can be implemented using symbol substitution
and smart choice of labels, as in:

.ENABLE SUBSTITUTION

.SETN OPTION 0
.QUERY: .ASKS FILE Which file

.ASKN (0:2] OPTION Which option

.GOTO OPT'OPTION'
.OPTO: .EXIT
.OPTl: PIP 'FILE'/LI

.GOTO QUERY
.OPT2: PIP 'FILE'/SP

.GOTO QUERY

o "Assigned" GO TO:

.LABELl:

• No explicit support for this.

• Can be implemented using symbol substitution
and smart choice of labels, as in:

.ENABLE SUBSTITUTION

.SETS ASSIGN "LABELl"

.GOTO 'ASSIGN'

File 1/0

Basic File Operations

o Input directives:

• To open an existing sequential file for input:

.OPENR filename

• To read the next sequential record into a String
Symbol:

. READ symbol

If the end of the file is encountered, Special
Symbol iEOF(. is set iTRUE(., and the symbol's
value is untouched.

o Output directives:

• To open a new sequential file for output:

.OPEN filename

• To open an existing sequential file to append
records to it:

. OPENA filename

If the specified file does not exist, the effect is
the same as .OPEN.

• To write a line of text to a sequential file:

.DATA text

• To copy lines from the command procedure to
a sequential file:

.ENABLE DATA

causes all lines in the command procedure to
be written to the output file, until a

.DISABLE DATA

is encountered. Substitution is performed (if
enabled) before the output lines are written.
Note that:

* Labels in a .ENABLE DATA block are rec­
ognized during a label search. This is a
restriction.

* Some versions of the ICP don't recognize
. DISABLE DATA unless it is left justified
in the record.

o Miscellaneous file JJO directives:

• To close a file:

.CLOSE

• To close and delete a file (under RT only):

.PURGE

323

o Restrictions:

• There are no 1/0 directives for relative, in­
dexed. or stream files. You can use RMSDES,
RMSCNV, and RMSIFL to convert between
these file organizations and sequential, if it it
appropriate to your application .

• There is no way to read more than 132 bytes
of any file record

Miscellaneous Capabilities

o To operate on multiple files:

All file JJO directives will take an optional File
Number after the directive, but before any argu­
ments. For example:

.OPEN #1 KANGA.ROO

.DATA #2 This data goes to File 2 .

.DATA

.DATA

.DATA

.DATA

.DATA

The File Number is a hash marlc (t) and a number
from 0-3. #0 is the same as omitting the file number.
You can, of course, generate the number by symbol
substitution:

#'FILENO' This data is written
#'FILENO' to some file, but
:fl:' FILENO' which one is not
:fl:' FILENO' determined until the
:fl:' FILENO' ICP is run.

o To determine file attributes (RSX only):

Special Symbol iFILATRi. is loaded with the first
7 words of the FCS file descriptor block for the
most recently .OPENed file (as a string of decimal
numbers, separated by commas). This includes such
useful information as how big the file is, what its
largest record is, and more.

Terminal 1/0

.ASKx Operation

o The .ASKx directives are used to prompt for and
validate symbol values .

o The .ASKx directives always return either a valid
value or some specific exception condition.

o Validation failure causes reprompting automatically.

o By default, entry of Z causes the ICP to exit.

o Syntax:

.ASK [df:tm] Logical_symbol pmp

.ASKN [lo:hi:df:tm] Numeric_symbol pmp

.ASKS [lo:hi:df:tm] String symbol prnp

Where:

• lo = lowest valid value (.ASKN) or lowest ac­
ceptable length (.ASKS).

• hi = highest valid value (.ASKN) or highest
acceptable length (.ASKS).

• df = default value.
• tm = timeout on question.

* Under RSX and P/OS, this can be disabled
with the . DISABLE TIMEOUT directive.

* Under RT, this will not work unless
you have a system clock, and issue the
. ENABLE TIMEOUT directive.

• pmp = prompt string.

o All .ASKx parameters are optional - except that "lo"
and "hi" must be either both specified or both omit­
ted.

o Trailing colons in parameter block can be omitted.
If all parameters are omitted, the square brackets
can be, too.

o If the default answer is taken, jDEFAULl comes
back TRUE.

o If the timeout expires, jTIMOUT l comes back
TRUE.

o You can get uppercase conversion on a .ASKS by
issuing the . DISABLE LOWERCASE directive.

.ASKx Exception Handling

You don't get exceptions returned unless you .ENABLE
them. Exception conditions which can be trapped in this
way are:

o .ENABLE ESCAPE

• Causes the escape character to be a valid re­
sponse for any .ASKx directive.

• Special Symbol jESCAPEl (and its synonym
jALTMODi,) come back TRUE if an escape
character is entered.

• This is generally used to break out of the nor­
mal logic sequence (eg - to print help text).

o .DISABLE CONTROL-Z (RSX, P/OS only)

• Allows Z to be trapped by your command pro­
cedure.

• Special Symbol jEOFl comes back TRUE
when a Control/Z has been entered.

• This is generally used to break out of normal
logic sequence (eg - SYSGEN), or with SET
/SLAVE=TI: to create captive command proce­
dures.

The manual specifies that the default answer is returned
for exceptions. Not all versions of ICP support this.

324

Miscellaneous Input

You can also .OPENR a terminal. This is the only way to
do 1/0 to a terminal other than TI: (RSX, P/OS) or TT:
(RT).

Output

o By default:

• Each .ASKx displays:
>* prompt [parameters]: (under RSX)
$ * prompt [parameters]: (under P/OS)
* prompt [parameters]: (under RT)

• "External" comments display:
>; comment text (under RSX)
$; comment text (under P/OS)
; comment text (under RT)

• CLI commands are displayed as:

>Command
$ Command

Command

(under RSX)
(under P/OS)
(under RT)

o You can disable the extra stuff by issuing

.DISABLE DISPLAY (Under RSX and P/OS)

.DISABLE PREFIX,SUFFIX (Under RT)

If you do this:

• Each .ASKx displays:
prompt

• "External" comments display:
comment text

• CLI commands are displayed as:
Command

o You can get rid of "External" comments and CLI
commands completely by:

.ENABLE QUIET

o You can also (of course) .OPEN a terminal for out­
put.

Modules

Internal

o Modules internal to the current command file can
be created by using the .GOSUB - .RETURN con­
struction.

o Module entry syntax:

.GOSUB label arguments

o Argument passing:

• The arguments are available in the reserved
String Symbol COMMAN.

• This contains a literal copy of anything on the
.GOSUB command line after the label.

o Module exit syntax:

.RETURN

returns to the first line after the .GOSUB directive.

For example:

.ENABLE SUBSTITUTION

.GOSUB STORE Arthur Dent
.GOSUB STORE 6*9=42
.EXIT

.STORE:
; The argument is "'COMMAN'" .
. RETURN

This displays (under RSX):

>; The argument is "Arthur Dent".
>; The argument is "6*9=42".
>@ <EOF>

External

o Other command files can be called just as though
from the CLI prompt.

• The module entry syntax is

@file arguments

• The arguments are loaded into reserved String
Symbols as follows:

* COMMAN - Contains the entire invoking
command line, uppercased and with blank
compression.

* PO-P9 - Are loaded as though by:
.PARSE CO.MM.AN" "PO Pl P2 P3

• You can exit the module in two ways:

* Return to the calling module. The syntax
is

.EXIT status

.STOP

Where "status" is a number to be returned
to the caller in Special Symbol jEXSTAT(.
(the default being 1). If executed from
the top level, the ICP is terminated and
the status is returned to the parent task (if
any). The end of the command procedure
is equivalent to . EXIT

* Terminate the ICP. The syntax is

325

• You can pass results back to the caller in
global symbols, or in Special String Symbol
jEXSTRh by:

.SETS <EXSTRI> results

o You can also chain between command files:

.CHAIN file

The only parameter passing is by global symbols,
or (under RSX and P/OS only) by using

.CHAIN file/LO

0
1
2
3
4
5
6
7

10
11

which causes all local symbols to be preserved in
the new command file.

External Environment

What Kind of System Are You On?

o Your operating system type is encoded in Special
Numeric Symbol jSYSTEMl (in octal), as follows:

for RSX-11D.
for RSX-llM.
for RSX-11S (nice trick!).
for IAS.
for RSTS (for expansion?).
for AME, or VAX-11 RSX.
for RSX-11M+.
for RT-11 SJ.
for RT-11 FB (or RTEM-11) .
for P/OS.

o Under RSX, a string describing your operating sys­
tem type is available in Special String Symbol
jSYTYPi,. This is a new feature, and may or may
not be in P/OS and RT.

o Under RSX, a string describing your operating sys­
tem version is available in Special String Symbol
jVERSNl . This is a new feature, and may or may
not be in P/OS and RT.

o Your system name is available in Special String
Symbol

<NETNOD>
<MONNAM>

(for RSX and P/OS)
(for RT)

By default, this is the name given at SYSGEN.
However (at least under RSX) if you are running
DECnet, it will contain your DECnet Node Name.

The Device Configuration

o Determining the status of a driver:

• . IFLOA driver is satisfied if the driver is
loaded.

• . IFNLOA driver is satisfied if the driver is
not loaded.

o Determining the status of a device:

.TESTDEVICE name

(where "name" is a physical or logical device name)
returns, in Special String Symbol jEXSTRI(,, the
string

"phys,nl,n2,n3,n4,flags"

where:

• Phys is the physical name of the device.

• n 1 through n4 represent:

* Under RSX and P/OS, the contents in octal
of the words U.CWl through U.CW4. This
is the same information that is returned by
GETLUN in the third through sixth words
of the buffer.

* Under RT, nl is the device size as a deci­
mal number, with trailing dot. n2 through
n4 are always zero.

• Flags are three letter device status indications,
separated by commas. One from each group
will be returned:

* Driver status:
LOD, driver is loaded.
UNL, driver is not loaded.

* Device status:
ONL, device is online.
OFL, device is offline.
UNK, status is unknown (only by RT) .

* Mount status:
MTD, device is mounted.
NMT, device is not mounted.

* Mount type (RSX and P/OS only):
FOR, device is mounted foreign.
NFO, device is not mounted foreign.

* "Publicity" (RSX and P/OS only):
PUB, device is set public.
NPU, device is not set public.

* Allocation (RSX and P/OS only):
NAL, not allocated.
ALU, allocated to this terminal.
ALO, allocated to another terminal.

Be warned that some versions of the ICP
get confused whether to return ALO or
ALU.

* Attachment (RSX and P/OS only):

326

NAT, not attached.
ATU, attached by this copy of the ICP.
ATT, attached by another task.

If the device is not in the system, jEXSTRI(, returns
"NSD,".

Other Things About the System

o Under RT only, you can find out what volume is on
a given device by issuing

.VOL symbol device

which loads the volume label into the string symbol.

o The current date and time are returned in the Special
String Symbols

• jDATE(, (blank under RT if there is none);

• jTIME(,.

o You can check for the existence of a file using

.TESTFILE file

• The status of the search is returned in Special
Numeric Symbol jFILERRi, (l =success).

• The file name is returned in Special String Sym­
bol jFILSPC(,. Some versions of the ICP have
trouble, due to a bug in RSX SYSLIB module
EXPFN. This bug is fixed under the current re­
lease.

o Under RSX and P/OS, the state of a task can be
checked:

• . IFINS task is satisfied if the task is in­
stalled.

• . IFNINS task is satisfied if the task is not
installed.

• . IF ACT task is satisfied ifthe task is active.

• . IFNACT task is satisfied if the task is not
active.

o Under RSX and P/OS, you can check on a partition
or common block using

.TESTPARTITION partition name

this loads Special String Symbol jEXSTRI(, with

"name,base,size,type,"

where:

• name = The name of the partition;

• base = The partition base address in 64-byte
blocks (octal);

• size = The partition size in 64-byte blocks (oc­
tal);

• type = one of the following:
* SYS (system controlled);
* USR (user-controlled);

* NSP (no such partition).

The Context of the ICP File

o The device type of your tenninal is returned in Spe­
cial Numeric Symbol jTITYPEl, under RSX and
P/OS. Prior to the current release, this was initial­
ized when the ICP was invoked, and not affected
thereafter by SET /DEV.

o The physical device name of your tenninal can be
obtained under RSX and P/OS by using

.TESTDEVICE TI:

o Your current default device can be obtained by is­
suing

.TESTDEVICE SY: ! RSX and P/OS

.TESTDEVICE DK: ! RT

o Your current default directory is returned in Special
String Symbol jDIRECTl under RSX with named
directory support and P/OS. If you are in NON­
AMED mode, jDIRECTl = "[]".

o Your protection UIC is returned in Special String
Symbol jUICl under RSX and P/OS. If you don't
have named directory support, i UICl contains the
default UIC instead.

o Your current CLI is returned in Special String Sym­
bol jCLll under RSX. Be warned that if the CLI
override bit is set (which nonnally occurs only in
SYSLOGIN.C:MD), this CLI is not necessarily the
one your CLI commands are passed to.

o You can translate logical names under RSX with
logical name support and P/OS, using

. TRANSLATE logical

The translation is returned in Special String Symbol
jEXSTRll. jEXSTRll will be empty if translation
failed

o The name of the command file which is currently
executing is loaded into Special String Symbol jFIL­
SPCl on entry to the command file. If you want it,
you must preserve it in another string symbol of
your choosing.

Executing under Multiple CLls

RSX users may be faced with the task of writing a com­
mand file that will execute under more than one Com­
mand Line Interpreter (CLI). There are at least the fol­
lowing ways to approach this:

.MCR:

o Group CLI commands together in blocks, and exe­
cute the appropriate block. Example:

.ENABLE SUBSTITUTION

.GOTO '<CLI>'
PIP *.SAV;*/DE/NM
PIP *.SAV;*/RE=*.DAT;*

327

.EXIT
.DCL: DELETE *.SAV;*

RENAME *.DAT;* *.SAV;*
.EXIT

o Force the CLI as desired on entry to the procedure.
Example:

.IF <CLI> <> "MCR" MCR SET /MCR=TI:

It would probably be polite to set it back on exit.

o Force individual commands to the desired CLI. Ex­
ample:

.ENABLE SUBSTITUTION

.SETS MCR ""

.IF <CLI> <> "MCR" .SETS MCR "MCR II

'MCR'PIP *.SAV;*/DE/NM
'MCR'PIP *.SAV;*/RE=*.DAT;*
.EXIT

o Modify the ICP to set the CLI override bit on entry,
and clear it on exit.

Synchronizing With Tasks

o Under RSX:

• The ICP will wait for the following types of
tasks to complete before proceeding:

* Tasks run with the install/run/remove ver­
sion of the "RUN" command.

* Tasks run as CLI commands .

• The ICP will not wait for the following types
of tasks to complete before proceeding:

* RUN or CLI commands with the .XQT di­
rective prefixed.

* RUN of an installed task

• You can resynchronize with a task by issuing:

.WAIT task

o Under P/OS

• The ICP will wait for the following types of
tasks to complete before proceeding:

* Tasks run with the "RUN" command.

* Tasks run as CLI commands.

• The ICP will not wait for the following types
of tasks to complete before proceeding:

* RUN or CLI commands with the SPAWN
command prefixed,

• The ICP has no way to resynchronize with a
SPAWNed task, but it would be possible for
a user-written task run as a CLI command to
provide this functionality.

o Under RT

• The ICP will wait for the following types of
tasks to complete before proceeding:

* Tasks run with the "RUN" command.

• Tasks run as CLI commands.

• The ICP will not wait for the following types
of tasks to complete before proceeding:

' Tasks run using the FRUN or SRUN com­
mand.

• The ICP has no way to resynchronize with
a task initiated with FRUN or SRUN, but it
would be possible to write a task to provide
this functionality.

Interfacing with your own code

Passing a command line to your own code

o Under all systems covered, you must run your task
as a CLI command for this to work.

o Under RSX and P/OS:

• You can run your code using

>INS task/NAME= ... nam
>NAM command

or using

>RUN task/CMD="NAM command"

• Your code will look like this:

LOGICAL*l CMDBUF(80)
INTEGER*2 CMDLEN
CALL GETMCR(CMDBUF,CMDLEN)

Note that:

* If CMDLEN comes back negative, no CLI
command is available.

* The command name is also passed. You
must remove it yourself. This may leave
you with no command.

* You should not process the command
buffer beyond character CMDLEN. Loca­
tion CMDLEN+l contains the terminating
character (if any), and the rest of it is un­
defined.

* Under RSX-1 lM+, if the command ends
in "-", it means that it was longer than
80 characters. You must CALL GETMCR
again to get more.

o Under RT:

328

• You must run your task using the so-called
"CCL" facility:

. task command

• Your code will look like this:

LOGICAL*l CMDBUF(80)
LOGICAL*l CMDPMP(5)
DATA CMDPMP /'C' ,'m' ,'d' ,'>' ,"200/
CALL GTLIN(CMDBUF,CMDPMP)

Note that:

' The command line is terminated with an
ASCII null character.

" I know of no way to prevent DCL from
munging around with the command line.

Passing Status Back to the ICP

You can pass a limited amount of data from your task
directly back to the ICP. This information is returned to
the ICP in Special Numeric Symbol jEXSTATl.

o Under RSX and P/OS, you can pass back a word.
Your code looks like:

INTEGER*2 EXSTAT
EXSTAT = 1
CALL EXIT(EXSTAT)

1

0
2

Note that:

• You can (if you like) CALL EXST instead of
EXIT.

• Some values of exit status have (by convention)
a special meaning to the system:

Success;
Warning;
Error;

4 Fatal.

o Under RT, you can pass back a byte. Your code
looks like:

INTEGER*2 EXSTAT
EXSTAT = 1 .OR. IPEEKB("53)
CALL IPOKEB("53,EXSTAT)
CALL EXIT

The above code seems to be what the manuals call
for under RT-11. However, under the only system
available to me for testing (RTEM-11 V2.0, run­
ning RT-11 V5.1), the only thing that works right is
that the ICP is aborted if EXSTAT is 20 (octal). I
am informed that this works correctly under RT-11
V5.4.

Other Ways to Communicate

o You can use Extended Logical Names to exchange
moderate amounts of information under RSX-1 lM+
and P/OS. The ICP will:

• Create logicals using the MCR DLG command

• Read logicals created by the program using the
. TRANSLATE directive.

Your code will:

• Create logicals using CALL CLON or CALL
CLOG.

• Read logicals created by the ICP using CALL
TLON or CALL TLOG.

Under RSX-11M+, See the release notes on these
calls. There are bugs in the documentation.

o You can use disk files to exchange large volumes of
information.

Debugging

o You can trace the ICP directives as they are executed
by using

.ENABLE TRACE

The directive trace is turned on by default if you
invoked the ICP using:

@file/TR
@file/T

RSX and P/OS
RT

This is the only way to do a trace in earlier versions
of the ICP.

o You can suppress the execution of CU commands
by using

.DISABLE MCR

.DISABLE DCL
All systems
RT

CU commands are displayed anyway, with a com­
ment marker (!) in front. If you invoke the com­
mand procedure by:

@file/-MCR
@file/-CLI
@file/N

RSX and P/OS
RSX and P/OS
RT

CU commands are suppressed by default. This is
the only way to suppress CLI commands in earlier
versions of the ICP.

329

References

[l] Watson, Allen A., Indirect Command Files for
New RSX Users, in RSX/IAS SIG Symposium
Handout, Spring 1983 DECUS US Symposium.

[2) Pro(fool Kit Command Language and Utilities
Manual (The primary reference for the ICP under
P/OS) .

[3] P/OS System Reference Manual (Documents
calls to EXST and GETMCR).

[4] RSX LB: [1, 2 J ICP. HLP (On-line help file for
ICP. Contains some information that is not in the
manual).

[5] RSX-1 l Executive Reference Manual (Docu­
ments calls to EXST, GETMCR, CLON, TLON,
AND GETLUN).

[6] RSX-11 1/0 Operations Guide (Documentation
for the contents of jFlLATR(.).

[7] RSX-1 lM/M-PLUS Indirect Command Proces­
sor Manual (The primary reference for the ICP
under RSX).

[8] RSX-llM/M-PLUS RMS-11 Utilities (The ref­
erence for RMSDES, RMSCNV, and RMSIFL).

[9] RT-11 Programmer's Reference Manual (Docu­
ments calls to GTLIN, IPEEKB, and IPOKEB).

[10] RT-11 Software Support Manual (Documents
layout of System Communication Area, which
contains the error byte).

[11] RT-11 System Users Guide (The primary refer­
ence for the ICP under RT).

Programming in the RSX Indirect Command Language

Thomas R. Wyant, ill
E. I. DuPont de Nemours

Richmond, Virginia

Arnold S. De Larisch
Florida Atlantic University

Boca Raton, Florida

Abstract

This paper presents a compendium of advanced techniques for using the RSX Indirect
Command Processor (ICP). These include the use of command procedure libraries,
arrays and other structured data types, binary file I/0, screen handling both with
and without FMS, error control, command line processing, and multiple precision
arithmetic. This paper is aimed at an audience that is familiar with the RSX ICP,
though "Introduction to the RSX, P/OS, and RT Indirect Command File Processor"
(RXOOl) should give sufficient background

Caveats

The current releases of RSX are assumed. The techniques
presented here may or may not work under previous version~
of RSX, or under IAS, P/OS, or RT.

Since the things covered in this paper are "off the beaten
track", they are more likely than usual to be affected by bugs
or other differences between releases of the ICP. The examples
cited all work under RSX-llM+ V3.0 C. I will mention bugs
where I am aware of their existence.

I am not the final authority on the ICP in all its multifar­
ious versions. Errors in research and transcription do occur. I
apologize in advance for these, but assume no responsibility
for their consequences.

The examples are all from working command procedures,
which will be submitted to the Spring, 1987 RSX SIG tape.
Some reformatting has been necessary to make the ICP code fit
on the page properly. I have tried to preserve the functionality,
but I have no way to test the example code out of context.

Acknowlegement

Allen A. Watson's paper, "Nifty Things to Do with RSX Indi­
rect Command Files", presented at the Spring, 1983 DECUS
US Symposium, was both an inspiration and a reference for
this paper.

Command Procedure Libraries

It can be desirable to break a very large command procedure
into separate modules. These will be easier to keep track of
if they are kept in a Command Procedure Library. Examples
include:

Proceedings of the Digital Equipment Computer Users Society 331

LB: [l,2]INDSYS.CLB
LB: [200,200]SYSGEN.CLB
LB: [137,lO]NETGEN.CLB

A Command Procedure Library is just a Universal Li­
brary (as documented in the LBR manual), created with the
command >LBR library.CLB/CR::: :UNI:CMD

Once the command procedure library is created, modules
can be inserted and removed just as they are for a macro or
object library.

Modules in a Command Procedure Library can be exe­
cuted without extracting them from the library with the com­
mand >@library/LB:module

Where:

library is the name of your command file library, with default
file type • CLB. If you omit this, the current library is
assumed if the command is issued from inside a library,
otherwise module. CMD is used. The latter functionality
is useful when debugging.

module is the name of the module in the library to be exe­
cuted. If you omit this, the module . MAIN. is executed.

If you do not specify the /LB switch when invoking a
Command Procedure, the ICP checks the attributes of the
file to determine whether it is a Command Procedure Li­
brary. So, you can call your Command Procedure Library
library.CMD, and execute module .MAIN. with the com­
mand >@library.

You can store things other than Command Procedures
in a Command Procedure Library. For instance, you could

Nashville, TN - 1987

store the sources for a software package there, and have the
. MAIN. module extract the sources and build the package.

Under all releases of the ICP that support command pro­
cedure libraries, you can (officially) use the . TESTF ILE di­
rective to test for the presence of a module in a Command
Procedure Library or other universal library with the command
.TESTFILE library/LB:module.

This returns the value of 1 in Special Numeric Symbol
<FILERR> if the library file exists and the module is in it.
However, some of the ICP releases involved (including at least
M+ V2.1C) have a bug: <FILERR> will be 1 if the library
file exists, regardless of whether the desired module is in it.

Structured Data Types

Although the ICP has explicit support only for simple vari­
ables, there are a number of ways in which arrays and other
structured data types may be built. All of these are based on
building symbol names at execution time, using substitution
on other symbols. An assortment of techniques is presented
here.

Using a String Symbol as an Array

Small arrays can be stored in a String Symbol and extracted
by forming a substring. In order to do this,

• All elements in the array must be the same size.

• The total size of all elements in the array must not exceed
the maximum size of a String Symbol (132 bytes).

• The location of each element in the string must be man­
ually calculated from the INDEX of the desired element
and the SIZE of the elements, as follows:

. SETN START (INDEX-l)*SIZE+l

.SETN END START+SIZE-1

This works best with arrays where the element is one byte
long, as the index can be used directly as both the start and
the end of the substring.

Example

PRN. CMD is a utility designed to print a file on an LA-series
printer connected to the printer port of a VT 100- or VT200-
series terminal.

The horizontal pitch on an LASO is set by an escape
sequence of the form "jesc1,[jnumber1,w". The array . SETS
S$PCHR 11 5555568800224444 11 translates any desired in­
teger pitch from 1 through 16 to the nearest equivalent escape
sequence argument.

When the desired
horizontal pitch is determined (and stored in Numeric Sym­
bol N$HPIT), the escape sequence required to set the printer
to that horizontal pitch is built using the String Expression
ESCAPE+ 11 [11 +S$PCHR[N$HPIT:N$HPIT]+ 11 w11

332

Using a String Symbol as an Attribute List

As a variant on arrays, a String Symbol can be used to store
a list of attributes to be associated with the name of the string
symbol, or a portion thereof. These attributes can be tested
for in place using the . TEST directive, or extracted using the
. PARSE directive. In order to set up an attribute list:

• The attributes are listed in the String Symbol's value,
punctuated by a unique character.

• Attributes may be subdivided by using another unique
character, to any level desired.

If the primary use of the attribute list is to search using
. TEST, it may be helpful to start the list off with a punctuating
character. However, there is a special case if the attributes are
all one byte long, and the only purpose of the list is to use it
with the . TEST directive: the punctuation may be omitted.

Example

PRN. CMD is a utility designed to print a file on an LA-series
printer connected to the printer port of a VTlOO- or VT200-
series terminal.

The command interface to PRN is screen driven. The ar­
row keys and (on the LK201 keyboard) the "Previous Screen"
and "Next Screen" keys have different functions, but are im­
plemented in basically the same way: a counter is incremented
(or decremented) and clamped to a desired range. The jPFli,
key can also be used to amplify the action of an arrow key;
this is done by adding (or subtracting) a number greater than
one, which is dependent on what arrow key was used.

All of this is accomplished by setting up String Symbols
named after the six keys of interest. The escape sequence
parser delivers control for all six keys to the same piece of
code, which . PARS Es the aforementioned String Symbols
and plugs the derived attributes into its subsequent operations .

The following attributes turn out to be needed:

• The name of the Numeric Symbol updated by the key;

• The amplification factor to apply if jPFlj, is in effect:

• The sign of the operation on the Numeric Symbol modi­
fied by this key (+ or -);

• The limit beyond which the Numeric Symbol may not
go;

• The type of test to make against this limit (eg: <, >.
...).
The String Symbols defining the keys are assembled from

the concatenation of the appropriate attribute values, separated
by commas:

.SETS ARROWA 11 N$FLD,8,-,0.,< 11

.SETS ARROWB 11 N$FLD,8,+,N$FMAX,>"

.SETS ARROWC "N$CVAL,10,+,N$CMAX,>"

.SETS ARROWD "N$CVAL,10,-,N$CMIN,<"

.SETS ARROWS 11 N$SCR,8,-,0.,<"

.SETS ARROW6 11 N$SCR,8,+,N$SMAX,> 11

These define (in order) the up, down, right, and left ar­
rows, and the Previous and Next Screen keys.

The following code is then used to execute all six keys
(recognition of the keys is discussed later under "Screen Han­
dling Without FMS"):

.SETS KEY ARROW'CHAR'

.PARSE KEY"," AXS FAC SGN LIM TST

. IFT GOLD .SETN ESCAO ESCAO*'FAC' .

. SETN 'AXS' 'AXS''SGN'ESCAO

.IF 'AXS' 'TST' 'LIM' .SETN 'AXS'
'LIM'

This code is entered with:

• CHAR containing the last character of the escape se­
quence that defines the key struck; this is forced to "5"
or "6" for the Previous and Next Screen keys, which are
named by a different convention than the arrow keys;

• ESCAO containing the numeric value of the first argument
in the escape sequence; this is forced to 1 for the Previous
and Next Screen keys;

• GOLD set to jTRUEl if the jPFll key was the last key
struck; otherwise it is false.

If (for example) the down arrow key is struck, the code
is entered with CHAR = "B", ESCAO = 1, and GOLD =
<FALSE>. After substitution, this gives:

. SETS KEY ARROWB

. PARSE KEY"," AXS FAC SGN LIM TST

. IFT GOLD .SETN ESCAO ESCA0*8.

.SETN N$FLD N$FLD+ESCA0

.IF N$FLD > N$FMAX .SETN N$FLD N$FMAX

This has the effect of moving the cursor forward 1 field
on the screen (or eight fields if the jPFll key is in effect).

Using Groups of Symbols as an Array

An array of arbitrary size can be constructed by using a group
of symbols with similar names. The names of symbols in this
group consist of a constant part (which can be thought of as
the array name) and a variable part (which can be thought of
as the array subscript). The symbols in the array need not
be the san1e type, and only those elements that are actually
used need to be defined. An array can have more than one
dimension, provided the naming convention for the elements
is chosen appropriately.

Array elements are referred to by using symbol substitu­
tion to construct the name of the element's symbol out of the
array name and the symbol(s) used to index the array. Arrays
can be indexed by symbols of any type.

The formation of arrays in this manner is subject to the
following restrictions:

• The naming convention used to map array elements onto
symbol names must never result in a symbol name more
than six characters long.

333

• The naming convention must give rise to a unique symbol
name for each element in an array. This is usually a
problem only for multi-dimensional arrays, where the use
of "%Rn" format control can be helpful.

• Symbol substitution can not be done on an arbitrary ar­
ray element. The value of that array element must be
assigned to another, "constant-named" symbol, which is
used instead in the desired substitution .

Example

UP s . CMD is a command procedure to send a number of files
(up to 15) to another person or persons over DECmail-11.
A screen is displayed, with spaces for the user to enter the
addressees, the subject matter, and the names of the files to
send. All the files desired are built into a single temporary
file, which is sent in batch mode.

The file names are stored in an array of symbols, named
S$FNnn, where "nn" is a two digit number from 00 through
14. All the file name fields on the screen are processed by the
same code, which subtracts two from the field number to get
the "nn" used to construct the name of the array element (sub­
routine ASKE is discussed under "Screen Handling Without
FMS"). The file processing code follows:

., Prompt for the name of the next

. , file .

.SETN N$ROW N$FLD+6 .

.SETN N$FILE N$FLD-2 .

.SETS S$FILE S$FL'N$FILE%DR2Z'

.GOSUB ASKE 40;'N$ROW%D' ;10\'S$FILE'

.IFT <EOF> .GOTO EXIT

., Convert the file name to

., uppercase.

.DISABLE LOWERCASE

.SETS TEXT "'TEXT%C'"

.ENABLE LOWERCASE

., If the file name is null, go

., process the associated escape

., sequence, if any.

.IF TEXT= "" .GOTO ESCPSI

., Check for existence of the file,

., and get the full file name.

.SETS S$ERR "File 'TEXT' not found."

.TESTFILE 'TEXT'

.IF <FILERR> <> 1 .GOTO INPERR

., Store the file name in its slot in

. , the array.

.SETS S$FL'N$FILE%DR2Z' <FILSPC>

. , Redisplay the fully qualified file

. , name.

.SETS TEXT 11 40;'N$ROW%D' ;10 11

.GOSUB PLOTF 'TEXT'\'<FILSPC>'

., Go handle the associated escape

., sequence, if any.

.SETS S$ERR ""

.GOTO ESCPSI

Content-addressable Memory

This is really just an extension of the concept of using a group
of symbol names as an array. There is no logical reason why
you can't use a String Symbol as an array subscript, provided
the contents of the symbol give rise to a valid symbol name.
The same consideration applies to allowing the array name to
shrink to zero bytes. What you have left is a system where
the entire symbol table is an array, and the symbol names are
chosen to describe the information stored in the symbol. You
should be aware that:

• The String Symbol that contains the information to be
looked up had better be validated first to be sure its con­
tents represent a legal symbol name.

• You must check for existence of the symbol before you
use it, as a random symbol name is probably not defined
in the symbol table.

• Since it is probably not desirable to literally use the whole
symbol table, a subset can be selected (eg: all symbols
with alphanumeric names), and symbols used otherwise
in the command procedure can be selected to fall outside
this subset (eg: names with embedded dollar signs).

Example

CRASHDUMP . CMD is a crash dump analyzer suitable for sites
where the procedure for generating the crash dump analysis
varies from system to system. This procedure accepts the
name of the crashed system as input, and runs the appropriate
analysis.

This command file contains a table that lists, for each
system, some help text, the name of the crash dump analyzer
to use, the memory size, the crash device, the starting block
on the crash device, and the name of the executive symbol
table. This information is stored in a symbol named after the
system, thus:

.SETS FENNY "PDP-ll/84;;256;DU;;"

.SETS MARVIN "PDP-11/03;CDA42;28;DY;;"

.SETS ZAPHOD "PDP-ll/74;;1024;DR;;"

All other symbols used in this command procedure con­
tain embedded dollar signs, so any alphanumeric symbol name

334

is likely to be of interest. The reserved symbols COMMAN
and PO through P9 can be excluded by explicitly testing for
them .

When this command file is executed, it can simply prompt
for the system name, insure that the entry is a valid symbol
name (and is in fact the name of an existing symbol), and
extract the information needed from symbol:

.DISABLE LOWERCASE

.ASKS [0:6] S$SYS What system name

.ENABLE LOWERCASE

.IFF <ALPHAN> .GOTO SYSERR

.IFNDF 'S$SYS' .GOTO SYSERR

.PARSE 'S$SYS' ";"

Searching a (Very) Sparse Array

One of the disadvantages of using sparsely populated arrays
is the inefficiency of weeding out nonexistent elements when
iterating over the entire array. A better alternative may be to
iterate over the entire symbol table, searching for elements of
the array.

DEC has provided Special String Symbol <NXTSYM>,
which can be used to search the symbol table. Each time
this symbol is referred to, it returns the name of the next
symbol in the Symbol Table. The search is initialized with
the command . SETS <NXTSYM> 11 11 • The end if the symbol
table is indicated when <NXTSYM> returns a null string.

If you intend to use this technique, you should make note
of the following points:

• You must refer to <NXTSYM> only once in each iteration,
or you will skip symbols. A useful way to do this is using
the command . SETS SYMNAM <NXTSYM>

• The documentation of jNXTSYMl contains warnings
about its availability for general use. My experience is
that you might have to fiddle a bit to get it to work.
See LB: [1, 2] INDSYS/LB:INDDMP for an example.
I recommend against defining any new symbols inside
the iteration loop.

Example

CRASHDUMP . CMD is a crash dump analyzer suitable for sites
where the procedure for generating the crash dump analysis
varies from system to system. This procedure accepts the
name of the crashed system as input, and runs the appropriate
analysis.

If the user input (obtained in the previous example) does
not represent a valid system name, the symbol table is scanned,
and a list of all valid system names is produced. This is
accomplished by the following code:

. SYSERR:.;

; System 11 'S$SYS'" is invalid .
. SYSHLP:.;

; Valid system names are:
.SETS <NXTSYM> ""

., loop through Symbol Table:

.SYSHLL:

., Get next Symbol name.

.SETS S$SYS <NXTSYM>

. , If there is none, done.

.IF S$SYS = "" .GOTO SYSASK

., If not alphanumeric, skip.

.TEST S$SYS

.IFF <ALPHAN> .GOTO SYSHLL

., If not a String Symbol, skip

. TEST 'S$SYS'

.IF <SYMTYP> <> 4 .GOTO SYSHLL

., If it is COMMAN or P0-P9, skip

.TEST S$NOGO ",'S$SYS' ,"

.IF <STRLEN> > 0 .GOTO SYSHLL

., If it is a legal system name,

., pick it apart and display

., the identifying text;

.PARSE 'S$SYS' ";" S$HELP S$JUNK
'S$SYS%L6' - 'S$HELP'

., Go get the next Symbol:

.GOTO SYSHLL

Binary File 110

1/0 on files containing binary data can be done with the ICP,
by converting the bytes in the file record to numeric values,
and then assembling the byte values in ways appropriate to the
field in which they occur. The ICP can not process records
more than 132 bytes long, but otherwise any sequential file
can be read. Files opened for output will have variable length
records with "list" carriage control RMSDES can be used to
create sequential files with other attributes, which can then be
opened by the ICP for appending data.

The binary data is interpreted by using symbol substitu­
tion with numeric values. These bytes are then assembled in
an appropriate manner to yield the data in the record.

335

Example

SYMDMP . CMD is a command file that reads a . OBJ or . STB
file, and displays the types and values of the symbols it finds
there.

The decoding of a binary byte is relatively straightfor­
ward:

.SETS S$BO S$REC[5:5]

.SETN 0$FLG 'S$B0%V'&377

This extracts byte 5 of the record and stores its value in
the Numeric Symbol O$FLG .

Binary words are processed by extracting two consecutive
binary bytes, and combining them in the correct order:

.SETS S$BO S$REC[l:l]

.SETS S$Bl S$REC[2:2]

.SETN 0$80 'S$B0%V'&377

.SETN 0$81 'S$B1%V'&377

.SETN 0$W 0$Bl*400+0$BO

This extracts the binary word starting at byte l of the
record, and stores it in Numeric Symbol 0$W .

RAD-50 words are processed in the same manner as bi­
nary words, and then converted to ASCII using %X fonnat
control:

.SETS S$BO S$REC[l:l]

.SETS S$Bl S$REC[2:2]

.SETN 0$BO 'S$B0%V'&377

.SETN 0$Bl 'S$B1%V'&377

.SETN 0$W 0$Bl*400+0$BO

.SETS S$SYM "'0$W%X'"

.SETS S$BO S$REC[3:3]

.SETS S$Bl S$REC[4:4]

.SETN 0$BO 'S$B0%V'&377

.SETN 0$81 'S$B1%V'&377

.SETN 0$W 0$Bl*400+0$BO

.SETS S$SYM "'S$SYM''O$W%X'"

This extracts the six RAD-50 characters stored in bytes
one through four of the record, and converts them to ASCII
in String Symbol S$SYM.

Screen Handling

Screen Handling With FMS

The RSX-llM+ ICP comes with an interface to FMS-11.
You can use this interface to generate a fonn-dri.ven applica­
tion. Demonstration of the FMS capability of the ICP is pro­
vided by: @LB: [1, 2] INDSYS. CLB/LB: FMSDEM. In order
to create your own FMS-11 driven command procedure:

• Fonns must be designed and inserted in a fonn library,
just as for any FMS application. This implies the need
for an FMS license.

• The . FORM directive is used to display fonns and gather
input.

• You can use . IFENABLED FMS to determine if FMS
support is available.

• Special Numeric Symbol <FILER2> will contain the sta­
tus code for the previous FMS operation. You can also (if
necessary) use . IFDF <FILER2> to determine whether
. IFENABLED FMS will produce a syntax error.

Screen Handling Without FMS

If you don't own RSX-llM+ and FMS-11, you can write
your own screen handler for the ICP. This is not a trivial
undertaking, and several points must be observed to get your
screen handler to work:

• The ICP will have to do all input through the . ASKS
directive. The prompt sequence of the . ASKS directive
is used to position the cursor for input.

• The ICP must be conditioned to accept escape sequences
by issuing the . ENABLE ESCAPE-SEQUENCE direc­
tive.

• The terminal driver must be conditioned to recognize es­
cape sequences and pass them to the ICP by issuing the
MCR command SET /ESCSEQ=TI: or its DCL equiv­
alent.

• You must issue the .DISABLE DISPLAYICPdirective
to prevent unwanted characters from being displayed on
the screen by the .ASKS directive.

• The ICP must parse the escape sequence off the end of
the . ASKS input string, and interpret it.

In addition to the above, there are several points which are
not absolutely essential, but which are highly recommended to
improve the performance and maintainability of your screen
handler:

• You should issue the . DI SABLE DETACH ICP directive,
so that input from additional keystrokes will not be lost
if you type faster than the ICP can process your input.
Note that if you do this, programs run by the ICP may
not have access to your terminal.

• Constant escape sequences (eg: home cursor, clear
screen, setup sequences) should be assigned to appro­
priately named String Symbols on initialization. This en­
hances portability, and makes it easier to handle multiple
terminal types.

• Variable escape sequences (eg: cursor postioning) should
be generated in . GOSUB modules, for the same reasons.

• Literal escape sequences should not be embedded in the
command file. If you violate this rule, you may not be
able to TYPE the procedure on your terminal.

• Input should also be done in a . GOSUB module, so that
the escape sequence can be easily parsed off the rest of
the input.

336

• Avoid leaving the cursor on the last line of the screen .
If you cannot avoid this, repaint the screen after the in­
evitable scroll-up.

If you want to get really sophisticated, you can SET
/NOECHO=TI: and have the ICP take care of displaying the
characters on the screen.

Example

PRN. CMD is a utility designed to print a file on an LA-series
printer connected to the printer port of a VTlOO- or VT200-
series terminal.

Both the ICP and the terminal driver must be initialized
to handle the escape sequences involved with screen input:

.ENABLE SUBSTITUTION

.DISABLE DISPLAY

.DISABLE DETACH

.ENABLE ESCAPE-SEQUENCE

'MCR'SET /LOWER=TI:
'MCR'SET /ESCSEQ=TI:
'MCR'SET /BUF=TI:l32.

Next, a selection of control characters suitable for ASCII
terminals is defined:

.SETN NJUNK 16 ! Shift out

.SETS so "'NJUNK%V'"

.SETN NJUNK 17 ! Shift in.

.SETS SI "'NJUNK%V'"

.SETN NJUNK 33 ! Escape

.SETS ESCAPE "I NJUNK%V'"

.SETN NJUNK 217 ! Single shift 3

.SETS SS3 "I NJUNK%V'"

.SETN NJUNK 233 ! Ctrl Seq I nit

.SETS CSI "I NJUNK%V'"

After symbols have been defined for the individual con­
trol characters, control sequences to perform specific functions
can be built. The following are suitable for ANSI terminals:

.SETS HOME ESCAPE+"[H" !Home cursr

.SETS CLEAR ESCAPE+"[J" !Clr screen

.SETS CLRLIN ESCAPE+"[K"!Clear line

.SETS BOLD ESCAPE+"[lm" !Bold video

.SETS REV ESCAPE+"[7m" !Revers vid

. SETS NML ESCAPE+" [m" ! Normal vid

.SETS BOTTOM ESCAPE+"[24;1H"

Last, a control sequence is defined to initialize the ter­
minal to the desired state. The following initializes a DEC
VT 100 or VT200 series terminal by homing the cursor and
clearing the screen, loading the normal ASCII character set
into GO and the graphics character set into G l, and selecting
GO:

.SETS INIT HOME+CLEAR+ESCAPE+"(B"

.SETS INIT INIT+ESCAPE+")O"+SI

Now that the constant control sequences are taken care
of, we need a subroutine to prompt for the current field. The
example given below is entered by the command . GOSUB
ASKE size;line;column/text.

This positions the cursor at the given line and column,
and displays the given text in a reverse video field of width
'size'. The .ASKS directive is used to get the response. The
text part of the response is returned in String Symbol TEXT,
and the escape sequence in String Symbol ESCSEQ. If TEXT
is null, it is loaded with the input text string. Finally, the
user's input is redisplayed (in upper case) in the field. The
code to do all this is:

.ASKE:

., Separate the command into its

. , components .

.PARSE COMMAN

.PARSE COMMAN
".If
'

"\"
FLDSIZ COMMAN
COMMAN FLDTXT

., Call on POSITN to build the escape

. , sequence that positions the

., cursor.

.GOSUB POSITN 'COMMAN%C'

., Build the prompt string for the

. , field.

.TEST FLDTXT

.SETN PAD 'FLDSIZ' .-<STRLEN>

.SETS FLDTMP BLANKS[l:PAD]

.SETS FLDTMP REV+FLDTXT+FLDTMP

.SETS FLDTMP COMMAN+FLDTMP+COMMAN

.; Get the input from the field.

.SETS ESCSEQ 1111

.DISABLE LOWERCASE

.ASKS [::FLDTXT] TEXT 'FLDTMP'

.ENABLE LOWERCASE

., Select the processor for the next

. , field.

.SETS S$ERR 11 "

. INC N$FLD

.SETS S$GOTO "DISPAT"

.IFT <EOF> .RETURN

., Strip the terminating escape

., sequence from the field.

.TEST TEXT ESCAPE

.IF <STRLEN> 0

.IF <STRLEN> 0

.IF <STRLEN> 0

.TEST TEXT CSI

. TEST TEXT SS3

.GOTO ASKX

337

.SETS ESCSEQ TEXT[<STRLEN>:*]

.SETS TEXT TEXT[l:<STRLEN>-1]

.ASKX:.;

., If there was no text entered,

., supply the default.

.IF TEXT = "" .SETS TEXT FLDTXT

.; Redisplay the field.

.TEST TEXT

.SETN PAD 'FLDSIZ' .-<STRLEN>

.SETS FLDTMP BLANKS[l:PAD]

.SETS FLDTMP REV+TEXT+FLDTMP

.SETS FLDTMP COMMAN+FLDTMP+BOTTOM

.SETS FLDTMP FLDTMP+NML+CLRLIN+HOME
; 'FLDTMP'
.RETURN

The above subroutine relies on subroutine POSITN
to generate the escape sequence to position the cursor .
The calling sequence for POSITN is . GOSUB POS ITN
line; column and the escape sequence is returned in String
Symbol COMMAN. The following is suitable for an ANSI com­
patible terminal:

.POSITN:
.SETS COMMAN "'COMMAN%C'"
.SETS COMMAN ESCAPE+"["+COMMAN+"H"
.RETURN

Once the text part of each field has been processed, the
escape sequence that terminated it (if any) must be handled
This is done by a finite state machine, where each character
of the escape sequence is dispatched for processing based on
what it is and the current state of the system. In the exam­
ple, the name of the current state is stored in String Symbol
ESCTYP, and each character is handled by executing a . GOTO
to a label composed of the state name and the ASCII code for
the character (in octal). The example parses ANSI escape se­
quences, composed of an introductory sequence (<ESC> or
<CSI> or <SS3>), some arguments (decimal nwnbers sep­
arated by semicolons), and a terminating character. The se­
quences <ESC> [and <ESC>O are recognized as alternates
for <CSI> and <SS3>, respectively:

., Initialize the escape sequence

., parser:

.ESCPSI:
.SETS ESCTYP "INI 11

"state"
.SETN ESCAMX 0.
.SETN ESCAO 0 .

argument

Parser

Arguments
First

., Main parser loop:

., Strip off the next character (if

., any), convert it to a number, and

., do a "computed" GO TO based on

. , current parser state and
character

.; code:

.ESCPSR:
.IF ESCSEQ = "" .GOTO 'S$GOTO'
.SETS CHAR ESCSEQ[l:l]
.SETS ESCSEQ ESCSEQ[2:*]
.SETN CVALUE 'CHAR%V'
.ONERR ESCPSE
.GOTO 'ESCTYP''CVALUE'

., Any unrecognized characters end

. , up here.

. ESCPSE:.;
.SETN N$FLD N$0FLD
.SETF GOLD
.GOTO 'S$GOTO'

., First character

., state:

.INI33:.;
.SETS ESCTYP "ESC"
. GOTO ESCPSR

<ESC>; set

.; First character is <SS3>, or

.INI217:.;

., First was <ESC> and second is

., "O"; set state:

. ESCll 7:.;
.SETS ESCTYP "SS3"
.GOTO ESCPSR

., Got <CSI>nnn- =one of the "F"

., keys. Dispatch appropriately.

.CSI176:.;
.GOTO FKY'ESCA0%D'

., Got <SS3>P = PFl - use it as

., shift key:

.SS3120:.;
.SETN N$FLD N$0FLD
.SETT GOLD
.GOTO ESCPSI

338

Error Control

It can be useful to attempt an operation even though it may
produce an error in the ICP. Although the ICP can not be set
to ignore such errors, it can be set to dispatch them to the label
of your choice for handling .

To cause errors to be trapped to your error handler, issue
the ICP directive .ONERR label. The next error encoun­
tered will cause control to be transferred to the given label.

Errors are divided into numbered classes, as described in
the ICP documentation. You can set bits in Special Numeric
Symbol <ERRCTL> to determine which classes are trapped
to your error handler. Untrapped errors will cause the ICP to
abort. By default, only Class 1 errors are trapped. On entry to
the error handler, Special Numeric Symbol <ERRNUM> con­
tains the Error Class Number of the error encountered. The
. ONE RR directive must be reasserted after each error trapped.

The Error Classes are pretty broad (there are only two),
and don't tell you very much about what actually caused the
fault. If you are expecting more than one source of error, you
will need to build your own logic to distinguish between them .

The manual says you should not resume processing after
trapping a Class 2 Error, as the state of the ICP is indetermi­
nate. I have found that it works in some cases, but recommend
trying each case out before you build an application around it.

Example

PRN. CMD is a utility designed to print a file on an LA-series
printer connected to the printer port of a VTlOO- or VT200-
series terminal .

This example follows on from the one in the previous
topic. The escape sequence parser may receive an escape
sequence that it is not equipped to handle. It would be nice
to recover from the ICP error that results. A trap for this
is set in the . ONERR directive just before the main parser
loop dispatches the character. If the character turns out to be
unrecognized, the escape sequence processing is aborted and
reinitiated from that point. This will probably result in more
aborts until the buffer is empty, or until an <ESC>, <CSI>,
or <SS3> is encountered. The code here also appeared in the
previous example:

., Initialize the escape sequence

. , parser:

.ESCPSI:
.SETS ESCTYP "INI"

"state"
.SETN ESCAMX 0.
.SETN ESCAO 0.

argument

., Main parser loop:

Parser

Arguments
First

., Strip off the next character (if

., any), convert it to a number, and

., do a "computed" GO TO based on

.; current parser state and
character

.; code:

.ESCPSR:
. IF ESCSEQ = II II • GOTO , S$GOTO'
.SETS CHAR ESCSEQ[l:l]
.SETS ESCSEQ ESCSEQ[2:*]
.SETN CVALUE 'CHAR%V'
. ONERR ESCPSE
.GOTO 'ESCTYP''CVALUE'

., Any unrecognized characters end

. , up here.

.ESCPSE:.;
.SETN N$FLD N$0FLD
.SETF GOLD
.GOTO 'S$GOTO'

Parsing an MCR- or DCL-like Syntax

Command Files can be invoked in much the same way as
a CLI command, and the parameters passed are available to
the Command File in String Symbols PO-P9. Parsing these
parameters nonnally takes place in two phases:

• Parsing the file specification(s);

• Parsing the switches and options.

You need to design a command syntax that is both clear
and easily parsed Either MCR or DCL can serve as a model.

You get a "nicer" parser if you can process all the file
specifications in one loop, with an inner loop for the switches.
This way, all the work can be done in one place.

You may wish to check for a null command line, and get
the infonnation you need through . ASKx directives.

If the syntax for switches is properly defined, your switch
parser code will be completely generic - that is, you can add
switches without modifying the parser. This is done by:

• Defining a consistent symbol name convention for storing
switch settings. In the example, V$xx is used, where
xx represents the switch name, and the Symbol Type of
V$xx determines how the switch is processed

• Defining a consistent and restricted switch syntax. In the
example, no switch may have more than one argument.

Example

SYMDMP . CMD is a command file that reads a .OBJ or .STB
file, and displays the types and values of the symbols it finds
there.

The command syntax for SYMDMP (which also has an
interactive mode) is

339

>@SYMDMP outfile=infile/switches in MCR syn­
tax, or >@SYMDMP infile/ switches out file in DCL
syntax. The legal switches are:

/BR insert page breaks in the output file

/SP submit the output file to the print spooler

Switches may appear on either the input or the output
file .

The first part of the parsing process is to define all
switches and their defaults, and separate the actual switch
specifications from the rest of the command:

., Define and initialize the

., command switches:

.SETF V$SP

.SETT V$BR
/SP (spool)
/BR (page break)

., Determine processing mode
(interactive or conunand line) : . ,

.IF Pl= 1111 .GOTO PROMPT

., Get the file specs, from either

., MCR or DCL syntax:

. IF P2 <> II II • GOTO SWIEXT

.PARSE Pl 11 =" S$0UT S$FIL

.IF S$FIL <> 1111 .GOTO SWIEXT

.SETS S$FIL S$0UT

.SETS S$0UT " 11

., Peel the switches off the file

., specifications:

.SWIEXT:.;
.PARSE S$FIL 11 / 11 S$FIL S$SWIT
.PARSE S$0UT "/ 11 S$0UT S$JUNK
.SETS S$SWIT 11 / 11 +S$SWIT+ 11 /"+S$JUNK

Once the actual switches have been isolated, it is sim­
ple to loop through the list of them, checking existence and
validating:

.SWITLP:
.IF S$SWIT = "" .GOTO PROCES

., Peel the next switch off, and

., get its arguments:

.PARSE S$SWIT 11 / 11 S$SWX S$SWIT

.PARSE S$SWX 11 : 11 S$SWX S$SWP

., Figure out whether it is asserted

. , or negated:

.SETT L$ASRT

.IF S$SWX "" .GOTO SWITLP

.IF S$DSH = S$SWX[l:l] .GOTO
SWITNM

.IF S$NO <> S$SWX[l:2] .GOTO
SWITAS

.SETS S$SWX S$SWX[2:*]
. SWITNM:.;

.SETS S$SWX S$SWX[2:*]

. SETF L$ASRT
.SWITAS:.;

. SETS S$SWX S$SWX[l:2]

., See if this switch has a

., corresponding V$sw symbol:

.TEST S$SWX

.IFF <ALPHAN> .GOTO SWIBAD

.IFNDF V$'S$SWX' .GOTO SWIBAD

. , Dispatch the rest based on the

. , symbol type:

.TEST V$'S$SWX'

.GOTO SWIT'<SYMTYP>'

., Logical symbol. Set its value to

. , the switch polarity:

. SWITO:.;
. IF S$SWP <> "" . GOTO SWINPR
.SETL V$'S$SWX' L$ASRT
.GOTO SWITLP

. , Numeric symbol. Set its value to

., the switch parameter:

.SWIT2:.;
.IFF L$ASRT
.TEST S$SWP

.GOTO SWINNG

. IFF <NUMBER> .GOTO SWIIVP

.SETN V$'S$SWX' 'S$SWP'

.GOTO SWITLP

., String symbol. Set its value to

., the switch parameter:

. SWIT4:.;
.IFF L$ASRT .GOTO SWINNG
.SETS V$'S$SWX' S$SWP
.GOTO SWITLP

Multiple Precision Arithmetic

The ICP is capable of doing arittunetic on 16-bit signed or
unsigned integer values. Occasionally, this is not sufficient.

340

Normally, access to the carry bit is necessary for extended
precision, and this is not available in the ICP. However, if
the operations are performed eight bits at a time, the ninth
bit can be used as the carry bit in addition and subtraction.
Since the product of two eight bit numbers is never more than
sixteen bits, multiplication can also be done eight bits at a
time, summing the cross products at the end. Division has to
be done by the shift and subtract method, and is the slowest
of the four conventional operations .

Obviously, a 32 bit result can not be stored in a 16-bit
Numeric Symbol. However, a pair of symbols will do nicely .
I recommend the use of a two-element array, created as de­
scribed earlier under "Using Groups of Symbols as an Array" .
Alternatively (or in addition), the values can be converted to
decimal and stored in a String Symbol.

To isolate the low-order byte of one of the operand5, it
suffices to perform a bitwise logical AND with the value 3 77
(octal). The high byte is obtained by dividing by 400 (octal).
Assembling the resultant bytes into a word is the reverse of
these steps .

Example

BRU. CMD is a preprocessor for BRU, the Backup and Restore
Utility. It prompts the user for how the operation is to be done,
and constructs a BRU command (along with the necessary
device allocations, mounts, dismounts, CON commands, and
so on) based on the user's input and the current state of the
system .

One of the options available to the user is to initialize
the output disk in a manner different than the input disk. For
this option, it was desired to use the same algorithm to cal­
culate initial and maximum index file size as is used by the
INITIALIZE command. The maximum index file size de­
pends on the volume size, and the calculation must be done
in double precision .

The following subroutine will add two 32 bit numbers,
each stored in a pair of Numeric Symbols named by the
convention "xxxxxn" where "xxxxx" is the double preci­
sion "variable" name passed to the subroutine, and "n" is 0
or 1. The calling sequence is . GOSUB VADD variable
variable. The sum is returned in the left-hand variable .
The code to do this is:

.VADD:

., Extract the variable names from

., the argument list .

.SETS COMMAN "'COMMAN%C'"

.PARSE COMMAN " " ST$A ST$B

.SETN OT$B0 'ST$B'0

.SETN OT$Bl 'ST$B'l

., Separate the first addend into its

., constituent bytes.

.SETN OT$AO 'ST$A'0&377

.SETN OT$Al 'ST$A'0/400&377

.SETN OT$A2 'ST$A'1&377

.SETN OT$A3 'ST$A'l/400&377

. ' Separate the second addend into

. ' its constituent bytes .

.SETN OT$B3 OT$Bl/400&377

.SETN OT$B2 OT$B1&377

.SETN OT$Bl OT$B0/400&377

.SETN OT$BO OT$B0&377

. ' Add the corresponding bytes of the

. ' two addends, with carry.

.SETN OT$CO OT$AO+OT$BO

.SETN OT$Cl OT$Al+OT$Bl

.SETN OT$Cl OT$Cl+(OT$C0/400&377)

.SETN OT$C2 OT$A2+0T$B2

.SETN OT$C2 OT$C2+(0T$Cl/400&377)

.SETN OT$C3 OT$A3+0T$B3

.SETN OT$C3 OT$C3+(0T$C2/400&377)

. ' Strip out the carry bits .

.SETN OT$CO OT$C0&377

.SETN OT$Cl OT$C1&377

.SETN OT$C2 OT$C2&377

.SETN OT$C3 OT$C3&377

. ' Reconstitute the sum .

.SETN 'ST$A'0 OT$C1*400+0T$CO

.SETN 'ST$A'l OT$C3*400+0T$C2

.RETURN

Slaved "Captive" Accounts with Indirect

Since the privilege structure under RSX is an all or nothing
proposition, often accounts are required which have limited
access to certain privileged instructions. These accounts are
usually referred to as captive accounts. Some special tech­
niques are required in order to produce a truly "Captive" ac­
count. First, the command procedure must be "bomb proof',
that is, it can not unexpectedly exit. This is a necessity since
the account must be slaved to prevent unsolicited access to
the command line interpreter (CLI). If the command proce­
dure bombs, the terminal is locked up and can only be fixed
by a privileged user's intervention (from another terminal).

There are only a few general extra steps that need to
be taken when creating a command file of this type. First,
Control-Z recognition must be enabled. Doing this enables
the the command file to trap Control-Z's typed in response
to an . ASKx directive. Next, you must provide for general
error recovery using an . ONERR directive. I discovered this

341

when a user accidently hit the BREAK key. Evidently an error
signal is passed back to indirect by the terminal driver. An
example of these techniques will be shown under the Menu
Driven Command Files.

Menu Driven Command Files

The best way to limit access to the system is using a menu
type command file. This file will put up a list of options from
which to choose. The user may not do anything which is
not available as an option. Below is a typical Menu Driven
Captive Account for an operator. Notice that the only access
is to the pre-defined choices.

.DISABLE DISPLAY

.ENABLE CONTROL-Z

.ENABLE DECIMAL

.ENABLE QUIET

.ENABLE SUBSTITUTION

.OPEN TI:

. OPTION: . DATA

.DATA

.DATA OPERATOR COMMAND

.DATA 0 EXIT

.DATA 1 SHOW USERS
.DATA 2 SET TIME

.DATA 3 SHUTDOWN

.DATA

.START: .ONERR OPTION

FILE

.ASKS CMD ENTER NUMBER >

.IFT <EOF> .GOTO OPTION

.TEST CMD

.IF <STRLEN> = 0 .GOTO OPTION

.IFF <NUMBER> .GOTO OPTION

.GOSUB 'CMD'

.ONERR

.GOTO OPTION

.0: BYE

.EXIT

.1: DEV /LOG

.RETURN

.2: .ASKS HR ENTER TIME HH:MM:SS >
TIM 'HR'
.IF <EXSTAT> <> <SUCCES> .GOTO 2
.RETURN
.3: RUN [1,54]SHUTUP/TASK=BYEBYE
.WAIT BYEBYE
.RETURN

This file should be placed into the appropriate privileged
directory. Further, the account should marlced as slaved in
the system accouning file. If additional security is needed, an
audit trail of each command that is entered could be easily
added An audit trail can help to ensure accountability for the
actions of an individual.

Menu driven command files could also be used in cases
where security is not really an issue. If, for example, the syn­
tax for a particular command or set of commands is rather

awkward, a menu could be very beneficial. Further, if you
have an occational user who only needs access to a few com­
mands, this could provide a simple mechanism to accomidate
them.

The • TESTDEVICE directive

One of the more complex and less understood directives in
INDIRECT is the . TESTDEVICE directive. This directive
allows a command file to acquire infonnation about any de­
vice in the system. The information about the device is stored
in a string symbol <EXSTRI>. As the discription in the IN­
DIRECT manual indicates, the information passed back in the
variable is the full physical name of the device, four device­
characteristics words, and device attribute infonnation. This
infonnation is seperated by commas and can be easily seper­
ated by the . PARSE command.

Of the infonnation given, the most interesting and ob­
scure information is held in the four device-characteristics
words. The definitions of the bit fields in these words can
be found in the appendix of the RSX-llM/llM-PLUS Guide
to Writing an 110 Driver. Yes, that dreaded manual of the
RSX manual set. If you tum to Appendix A, you will see the
System Data Structures and Symbolic Definitions. If you scan
this appendix, you will come to the UCBDF $ definitions. This
is the section defines what U.CWl thru U.CW4 mean.

I discovered the usefulness of this directive when trying
to write a command file which would logout all non-privileged
users when backup's began. This seems like a rather simple
task until you try to detennine who is logged in and non­
privileged. It just so happens that the information sought hap­
pened to be in the second device characteristic word of the TI
driver. By masking all but the bits which were needed, the
information could be easily detennined.

The necessary information to accomplish this task was
taken from Appendix A of the Device Driver Writer's Manual
in the UCBDF $ section. The Terminal Dependent Character­
istics Word 2 (U.CW2) Bit Definitions permits the following
information to be found.

U2.LOG=400 User Logged on Tenninal ((>=Yes)

U2.PRV=10 Unit is A Privileged Turminal (l=YES)

The following example will display for each TI: type
device whether or not it is logged in and whether or not it is
privileged.

.ENABLE SUBSTITUTION

.DISABLE QUIET

.ENABLE DISPLAY

.DISABLE DECIMAL

.SETS TYPE "TT"

.SETN NN 0
.10:

.SETS DEV TYPE+"'NN%ZL2'"+":"

.TESTDEVICE 'DEV'

.SETS ABC <EXSTRI>

.IF ABC= "NSD," .EXIT

342

.PARSE ABC "," PHYDEV CWl CW2 CW3 CW4
cws

.SETN UCW2 'CW2'

.SETN U2PRV 10

.SETN U2LOG 400

.SETF LOGOUT

.SETF PRIV

.SETS xxx ""

.SETN PV UCW2&U2PRV

.SETN LO UCW2&U2LOG

.IF PV > 0 .SETT PRIV

.IF LO> 0 .SETT LOGOUT

.IFT LOGOUT .SETS XXX XXX+"NOT LOGGED
IN II

.IFF LOGOUT .SETS XXX XXX+"LOGGED IN

"
.IFT PRIV .SETS XXX XXX+"AND

PRIVILEGED II

.IFF PRIV .SETS XXX XXX+"AND NOT
PRIVED II

.; !Display the results
; TERMINAL 'PHYD-EV' is 'XXX'
.INC NN !Increment Unit Number
.GOTO 10

Another interesting application of the . TESTDEVICE
directive is to provide a limited ability to communicate on
a system-wide basis. For example, at our site we wish to
disable logins to non-privileged useis during backups. The
mechanism which RSX provides disables logins for all users.
Clearly, we needed a different mechanism than was available.
Instead of hacking up DEC's code, we choose to control lo­
gins in LB: [1, 2] SYSLOGIN. CMD. The problem was how
to inform SYSLOGIN. CMD that backups were in progress.
The answer was rather simple but not obvious. A global as­
signment of logical name BK: to the system disk was made
when we wished to disable non-privileged logins. Thus, in
our SYS LOGIN. CMD we performed a . TESTDEVICE BK:
and if it wasn't assigned it would return NSD in <EXSTRI>.
When logins could be enabled again, the assignment to symbol
BK: would be cleared.

An excerpt from LB: [1, 2] SYSLOGIN. CMD file deal­
ing with the device assignment technique.

.NMOD:
.IF PS <> "P" .GOSUB CKTERM
.IF PS = 11 P 11 .GOTO SLAV
SET /NOPRIV=TI:

.SLAV:
.IF P6
.IF P7

.OVER:

"S" .GOTO OVER
"T 11 SET /NOSLAVE=TI:

CLI /UNOVR
.SETS FILE Pl+P2+"LOGIN.CMD"
.TESTFILE 'FILE'
.IF <FILERR> = <SUCCES> .CHAIN

'FILE'/LO

.; WOOPS SLAVED ACCOUNT WITH

.; NO LOGIN.CMD FILE

.IF P6 = "S" .XQT BYE

.EXIT
.CKTERM:

.; THIS PORTION OF THE ROUTINE

.; DETERMINES IF BACKUPS ARE IN
PROGRESS
.; AND INFORMS THE USER OF SUCH.

. TESTDEVICE BK:

.SETS TEST <EXSTRI>

.IF TEST= "NSD," .RETURN

.IFINS ... CA. CLR

.DISABLE QUIET

•*********************** ,
;* LOGINS DISABLED *
;* BACKUPS IN PROGRESS *
;* TRY AGAIN LATER *
•*********************** ,

.ENABLE QUIET

.DELAY 3S
BYE
.EXIT

Here is an excerpt from our BACKUP . CMD file which pro­
vides the necessary code to enable and disable non-privilege
logins.

ASN LB:=BK:/GBL !DISABLE NON-PRIV
LOGINS
BRU etc ...
ASN =BK:/GBL !ENABLE NON-PRIV LOGINS

Since device assignments can be made for a specific
group, this could be used as a mechanism to restrict access
to a system according to group number designation. For
example, if we wish to restrict access to group 377 dur­
ing backups the following assignment could be made: ASN
LB :=BK: /GRP=377.

Read With No Echo

From time to time, it becomes necessary for a command file
to be able to read in some information from the keyboard
with out echoing the data back to the screen. This is usually
associated with passwords and other private data. Indirect
does not directly support read with no echo, however the full­
duplex terminal driver does support noecho mode. Hence a
simple example is in order.

.ENABLE SUBSTITUTION

.DISABLE DISPLAY

. ENABLE QUIET
SET /NOECHO=TI:
.ASKS PASWRD Enter password >

343

.ASKS PASWD2 Reenter password >
SET /ECHO=TI:
.OPEN TI:
.IF PASWRD = PASWD2 .DATA Match!
.IF PASWRD <> PASWD2 .DATA No Match!
.CLOSE
.EXIT

The above example simply reads in two strings with out
echo and compares them for equality and inequality. The
command procedure prints a statement as to the equality or
inequality of the input data .

System Wide Indirect Command Files

If you are in a development environment, you have probably
created many useful command files. There is an easy way to
have a system-wide indirect command directory which would
be searched whenever a command file was not found in a
user's local directory. It also reduces unnecessary duplica­
tion of command files, eliminates typing device and directory
specifications, and allows easy updating of command files.

By default, a command file search begins in the users's
own directory and concludes in LB : [1, 5 4] for l lM or
LB: [3, 5 4 J for llM+. To change this default behavior to
search another directory, one needs to simply decide which
UFD (User File Directory) to use on the LB: device (usually
the system boot disk). Calculate the octal representation of the
chosen directory. Then rebuild Indirect with a modified global
symbol. Finally, run VMR to remove the old INDIRECT and
re-install the new one into the system image.

The Indirect build file, which is created by the
Sysgen procedure, needs to be modified slightly. The
file name is dependent upon the flavor of RSX being
used If you are using RSX-llM [1, 24] ICPBLD. CMD
needs modification or if the RSX-llM-PLUS is being uti­
lized then [1, 2 4] ICMBLD. CMD, ICMRESBLD. CMD or
ICMFSLBLD. CMD needs to be changed. The name of the file
is dependent upon the resident library which is used in build­
ing it. You must also answer YES to the question in Sysgen
"Do you wish to modify any files before building?". Sysgen
will pause after creating the build file, to permit modifications.
The modifications necessary are outlined below.

The group and the member number can each be repre­
sented in an 8-bit binary pattern as indicated below for [l ,3].

0 000 000 100 000 011 Binary
G GGG GGG GMM MMM MMM Group/Member
number
0 0 0 4 0 3 Octal

Assuming that we wish to rebuild Indirect so that the de­
fault system command file directory is LB: [1, 3] on an RSX-
1 lM-PLUS with Supervi<>ory Mode Library support. The fol­
lowing procedure would accomplish this .

1. Invoke Sysgen to rebuild INDIRECT

2. Find the line GBLDEF=D$CUIC: 1 in the Build File

3. Change the line to GBLDEF=D$CUIC:000403

4. Finish re-building INDIRECT

5. Run VMR to do (1) REM •.. AT (2) INS

LB: [3,54]ICMFSL/TASK= ••• AT./INC=10000

References

[1] Watson, Allan A, Nifty Things to Do with RSX Indi­
rect Command Files, RSXllAS SIG Symposium Handout,
Spring 1983 DECUS US Symposium

[2] Watson, Allen A, Nifty Things to Do with RSX Indirect
Command Files, The DEC Professional, March, 1984.

[3] DeLarisch, Arnold S, RSX 11 System Management, A Be­
ginner's Perspective.

[4] IA50 Printer Programmer Reference Manual (Documents
printer escape sequences).

[5] RSX LB: [1, 2] ICP . HLP' (On-line help file for ICP.
Contains some information that is not in the manual.)

[6] RSX LB: [1, 2] IND SYS. CLB, (Sample command rou­
tines.)

[7] RSX-1 JM/M-PLUS RMS-I I Utilities. (The reference for
RMSDES.)

[8] RSX-1 JM/M-Plus Task Builder Manual. (Documents ob­
ject file layout.)

[9] RSX-1 JM/M-PLUS Indirect Command Processor Manual.
(The primary reference for the ICP under RSX.)

[10] RSX-11 Utilities Manual. (Reference for the librarian
task (LBR).)

[11] RSX-JJM-PLUS Guide to Writing an 110 Driver. (Refer­
ence for the UCB data structures.)

[12] VT220 Programmer Pocket Guide. (Documents escape
sequences for VT2xx terminals.)

344

Moving Decision Points Outward
From Applications and Utilities

Into Command Level

Maarten van Swaay
Department of Computer Science

Kansas State University
Manhattan, Kansas 66506

Abstract

The user command interface of an operating system has come to be regarded as the
outermost level in a layered hierarchy. In keeping with this view one should attempt
to move decision points outward from the lower operating layers, so that all required
actions can be defined at command level. That will allow the description of those
actions in a form that matches the form of other commands normally entered from
the keyboard, so that only a minimal amount of programming skill will be required
The strategy is illustrated with a utility that handles modem initialization, dialup and
login dialog in preparation for a session handled by a terminal emulator.

Introduction

Commands entered by the user of a system can be seen as
the executed path of a program that resides in the mind of
the user (Figure 1). Messages displayed by various utilities
invoked by user commands serve as performance reports that
must be intetpreted by the user for the selection of subsequent
commands. If the command sequence for a given session is
long and elaborate it will become attractive to collect the se­
quence into a command file. The command file then becomes
a program that can call various system utilities and user ap­
plications as procedures.

APPLICATION

The program represented by the command file replaces
the program that was previously held in the mind of the user.
Thus the command program must have authority to make de­
cisions based on performance reports returned to it (Figure 2).
Conversely, performance messages produced by various utili­
ties must no longer be directed at the user, but must serve as
performance reports returned to the command progrrun.

The user who wants to remain unaware of the inner work­
ings of the system may feel uncomfortable with the idea of
having to write a command program, but that same user should
not find it difficult to write a simple list of the commands
he/she would otherwise have entered directly at the keyboard.
The IND utility provides extensive support for the capture
of performance reports, for text substitution, and for program
flow control. That flexibility comes at a price, however: a
typical IND program bears little resemblance to the familiar
string of keyboard commands.

The older and simpler * . COM file is considerably more
flexible than many users recognize, and it has the virtue of
close similarity to conventional keyboard commands. In com-

Proceedings of the Digital Equipment Computer Users Society 347

LOCAL X HANDLING

APPLICATION

LOCAL X HANDLING

INTERPRET!
IN CONTEXT!

I
-USER-!--SYSTEM---

1

X = exception

Figure 1: Manual invocation of applications

Nashville, TN - 1987

SHELL

IN CONTEXT

SCRIPT

SHELL

I
-U SER-

1
--SYSTEM--

I

X = exception

APPLICATION

REPORT X

APPLICATION

SCRIPTED SETUP

INTERACTIVE

SESSION

APPLICATION

REPORT X

Figure 2: Invocation from a shell script

348

bination with the RTl 1 facility by which programs can re­
turn command strings on exit, the * . COM file can handle
branches and aborts at command level. Iteration loops can
be implemented by repeated invocation of command files, but
the approach is clumsy at best. In practice many command
sequences are found to be loop-free, however.

A package that controls a modem and establishes a con­
nection to a remote host may serve to illustrate the strategy
outlined above. In the absence of standards for the behavior
of remote terminals one will normally find several terminal
emulators on any given system, each of which is designed to
handle sessions with a corresponding remote host. It is obvi­
ously possible to build facilities into each emulator to handle
the modem control and login dialog. A cleaner approach is
based on a separate DIAL utility that initializes a session with
a remote host and then hands over control to the appropriate
emulator. The initialization proceeds via several stages:

• acquisition and setup of serial port

• setup of modem behavior

• connection to remote site by dialup

• penetration of data switches at remote site

• login dialog with remote host

• transfer of control to appropriate emulator

At each stage allowance must be made for the possibility
of failure. For this illustration we may decide that local fail­
ures (unaccessible serial port, unresponsive modem) should
result in termination of the attempt. On failure to extablish
a connection we may wish to try another phone number, or
we may wish to revert to a manual attempt. DIAL supports
these choices by discarding the current command file after lo­
cal failure. On failure of the dialup stage DIAL returns a
command string @SY: DIAL. ABT; thereby replacing the cur­
rent command file with the command file DIAL. ABT, which
can contain the desired alternate command sequence. With
only minor enhancements DIAL could be made to accept the
specification of a replacement command file at each stage of
its progress. In the absence of any exceptions DIAL will exit
on completion of its assigned task, and the next statement in
the command file will start the appropriate emulator.

For some remote hosts the penetration and login dialog
cannot be entirely defined in a script. An example of such a
situation would be a smart remote modem that must make a
selection between several protocols. Such modems may re­
quire a variable number of <CR> characters to achieve proper
setup. In addition some remote sites may respond only after
unpredictable delays. It would be possible, but not practical,
to build facilities into DIAL to handle such situations. Instead,
DIAL is designed to switch between user input and command
file input where necessary. DIAL recognizes a command file
statement beginning with <. M> as a command to switch to
keyboard control; a keystroke of <LF> serves to switch con­
trol back to the command file. ..

Because DIAL must handle a variety of remote sites,
DIAL expects a minimum of cooperation from the remote
site. DIAL expects at least one return character after each
transmitted string, and it allows up to 30 seconds for that re­
turn. The long patience serves primarily to allow for delays
introduced by the local and remote modems and by the phone
system. Beyond the first returned character DIAL will treat
two seconds of silence as indication of the end of response.
Finally DIAL has the capability to test the first returned char­
acter against an expected return supplied to it from a command
file. Even with these limited capabilities DIAL has reliably
established connections to four very dissimilar remote hosts
for more than 1000 sessions.

The source code of DIAL (MACR0-11) and a description
of its structure and use will be included on the Nashville RTll
tape. Figures 3 and 4 show an example consisting of a pair of
* . COM files used to initiate a session with the departmental
VAX-11/780 (UNIX BSD 4.3) at Kansas State University.

349

DK:VAX.COM DATE: 5-APR-87 TIME: 17: 41
modem control commands according to HAYES protocol

R DIAL
.C Resetting modem ! .C allows display of comments by DIAL
.R ! recognized by DIAL as modem reset command
! switch to manual mode and enable modem speaker, to test for phone-in-use
.M ... listen for line in use ... ATMl if busy ...
ATM2D

proceed if line is available by striking <LF> on keyboard
! null line below aborts modem dial sequence used to enable speaker

ATMlVOTD 987-6543 <l ! primary phone number, expected return "l"
the remote modem requires one null line for synchronization

the data switch requires one null line to wake it up

nnnnnnn ! user name (UNIX BSD4.3
ppppppp ! password
! null line below approves default terminal type built into user account

"C
R FOX

SY:DIAL.ABT DATE: 5-APR-87

R DIAL
ATMlVOTD 987-6541 <l

nnnnnnn
ppppppp

"C
R FOX

dismiss DIAL
start emulator

Figure 3: An Example Command File

TIME: 17: 45

alternate phone number

Figure 4: An Example Command File

350

Analysis of VMS Accounting Data for Determination
of Computing Resource Consumption

Nancy J. Martin
USA LABCOM, Harry Diamond Laboratories

Adelphi, Maryland

Abstract

The CAD/CAM Systems Group at the U.S. Army's Harry Diamond Laboratories
provides the staff with a general-purpose scientific computing environment. Using a
VAX 11(780 1computer, the Group supports approximately 250 users both on and off
site. The tracking of specific computing resource usage is essential for billing and
budget-planning considerations by the Group as well as by the users. Group members
have developed software, using VMS accounting data, to analyze information about
resources consumed on a user-by-user basis. Reports are generated detailing this
information in an easily understood manner. The presentation will describe the data
analysis process, with emphasis on the techniques used to convert the VMS accounting
data to a more useable form.

Background

Whenever a computer system expands its user base beyond
the bounds of the group which originally owns it, some basic
operational questions arise, such as who pays for the system
operation. In a laboratory environment such as exists at Harry
Diamond Laboratories (HDL), the money funding Group A is
probably different from that funding Group B, and both are
different from that funding Group C. If Group A operates the
computer, it probably does not want to fund the computing
activities of these other groups. Therefore, a need arises for
determining the resources consumed by each group.

The CAD/CAM Systems Group at HDL has developed
a software package for doing this. The Group operates the
computer in a time-sharing system with cost recovery.2 Users
provide a project number to charge against, and the Group
collects consumption data and calculates the charges. This
charging information is then sent to the HDL's Cost Account­
ing Section, which performs the actual billing. The collected
data allow the Group to predict future performance bottlenecks
and set appropriate rates for cost recovery. In addition, users
can estimate their own computing requirements from past con­
sumption data.

VMS logs every user action in the form of binary data
records and provides a utility which collects the binary con­
sumption data and translates them into ASCII format. These
data can be used as input into programs that will perform
the actual charge-back operation, i.e., collect the resource data
and compute the charges incurred. At the time this package

1VAX and VMS are trademarks of the Digital E.quipment Corporation

2Cost recovery is a scheme in which user funding exactly offsets opera­
tional costs.

Proceedings of the Digital Equipment Computer Users Society 353

was done, commercially available charge-back programs did
not always collect the desired data for every possible situa­
tion. Therefore, the decision was made by the Group to write
its own software. Furthermore, the Group decided to use the
binary accounting data directly and bypass the VMS utility.

As is, the VMS utility collects no overall usage statistics,
the format is incorrect for the existing charge programs, no
count is given for the number of print jobs, and, because of
a special output device - a laser printer/plotter-the print page
count is incorrect. A plot with large numbers of vectors is seen
by the printer driver as having many pages, when in reality
there is only one page printed. Furthermore, there is also a
bug in the current version of the accounting logger. 3 When
a privileged user submits a batch job or prints a job with the
/USER switch, the accounting logger should create a record
as if the named user had done the print or submit. However,
the generated record does not contain the account number of
the selected user.

Because of the funding situation at HDL, a user may
have many account numbers, each corresponding to a different
project number, associated with that usemame. Only one of
these accounts is active at any given time, but it is possible
for a user to have more than one associated account number
over the accounting period. Since user data are collected by
user and account number, the VMS utility will not connect the
user data with the proper account when the account number is
missing.

It would be possible to run the utility numerous times
with different switch options and then feed the results into
a program that would format the output, fix the job count,
etc., but the overhead involved in repeated runs of the utility

3VMS Version 4.4

Nashi•il/e, TN~ 1987

is prohibitive, especially if the data file is large. The Group
decided that writing its own program would be more cost and
time effective; in addition, the code could be modified to fit
changing conditions within HDL.

VMS Accounting Data Format4

SYS$MANAGER:ACCOUNTNG.DAT is the VMS account­
ing log file. The file consists of a series of variable length
records, each with the same general format (Fig. 1). The
records consist of a record header and a number of informa­
tion packets, the exact number of packets depending on the
record type. There are presently eight types of accounting
records generated by system events:

• Process termination

• Image termination

• Login failure

• System initialization

• Print job

• Forward accounting file link

• Backward accounting file link

• User supplied data

However, for this paper, only the first five record types listed
above are of interest.

The record header consists of a length field, which con­
tains the length of the entire record; a type field; and a system
time field. The system time is the time the record was logged,
and is in 64-bit format. The type field contains the record type
and, in the case of a process termination record, the type of
process in the subtype field There are six process types:

• Interactive

• Subprocess

• Detached

• Batch

• Network

The type of process affects the statistics to be collected. For
example, since the Group does not charge for connect time on
batch jobs, there is no need to collect that information for a
batch process record.

Each record consists of one or more of the following data
packets:

• Identification

• Resource

4The source for the following information is Appendix A, Supplemental
ACCOUNTING Information, of the accounting utility documentation, volume
SA of the VAX/VMS documentation set.

354

LENGTH

I
1

r-TYPE

Customer
Version

SYSTEM TIME
(8 bytes)

Packet I

Packet n

l mffi™nON

rJ=
Figure 1: General Record Format.

• Print resource

• Image name

• File name

• User data

These packets have the same general format as shown in Fig­
ure 2. For HDL charge-back software, only the first three
packet types are of interest. These packets contain the follow­
ing information:

• Identification

o Username

o Account number

o Queue

o Jobname

• Resource

o System start time

o CPU time

o Page and 1/0 faults

o Volume mounts

• Print Resource

o Pages printed

Like the accounting records, the packets start with a
header field which contains packet length and type. The rest of
the packet is made up of fixed-length data fields and, option­
ally, a variable-length data area. For example, the identifica­
tion packet consists of a series of fixed-length fields containing
process information and offsets into a variable-length data area
(Fig. 3). The resource packet, on the other hand, contains only

Figure 2: General Packet Fonnat.

fixed-length data. The offsets are counted from the beginning
of the packet, and all variable data are counted; i.e. the first
byte contains the length of the data.

The records contain the following packets of interest:

• Process tennination

o Identification Packet

o Resource Packet

• Image tennination

o Identification Packet

o Resource Packet

• Login Failure

o Identification Packet

• System Initialization

o Identification Packet

o Resource Packet

• Print

o Identification Packet

o Print Resource Packet

Data Extraction

There are two types of data extraction to be perfonned The
first is a direct extraction perfonned on the fixed-length data
and the offset fields. For variable-length data, a double ex­
traction is needed, once to get the offset value, and the second
time to get the data itself.

The data extraction can be perfonned with a system run­
time library function, LIB$EXTZV. The function returns an
integer value and expects three arguments, the position relative
to a base address, the size of the field to be extracted, and
the address of the base. The base address can refer to either

355

Length l Type

Process ID

Owner

Process UIC

Privilege

(8 bytes)

Offset to Offset to Priority
·A,..,,.unt u~mame

Offset to Offset to Offset to
IT-~;nol Nodename I Account

Job ID Offset to Offset to
Jobname Terminal

Offset to Job ID
Queue

Offset to Offset to
Remote ID Node Address Queue

Offset to
Remote _ID

.___ Variable-LengthJ

T Data J
'---

-PACKEf
HEADER

DATA
FIELDS

Figure 3: Identification Packet Fonnat.

the start of the record or to the start of the packet, if it is
known. Since the largest field which can be extracted using
this function is a longword, or 32-bits, this function can be
used directly on any of the data fields except the 64-bit time
fields. To read the 64-bit data, an INTEGER*4 array of size
two should be declared and consecutive calls to the function
perfonned.5

The FORTRAN EQUIVALENCE statement is used in the
reading of the variable-length data The record is stored in a
variable that is declared BYTE. This variable is equated to
a CHARACTER variable, and the desired data are extracted
using straightforward string manipulation.

A set of symbolic definitions is available that contains
the location of the fixed-length data fields within the records
or packets, thus easing the process of extracting data The
definitions are contained in the symbolic definition macro
$ACRDEF. Other symbols representing record and packet
types are also contained there.

Data Manipulation

All integer data, except for the 64-bit time manipulation, in­
volve standard addition and subtraction. Thus the process of
totaling the user collection data is straightforward. The ad­
dition or subtraction of the 64-bit data requires the system
library routines LIB$ADDX and LIB$SUBX. Both routines
require three arguments - operand (or minuend), operand (or
subtrahend), and the result - all of which are INTEGER*4
arrays of two elements.

S All the programs arc written in FORTRAN-77, so any programming ref­
erences arc FORTRAN specific.

jobname is extracted. Since all plot jobs have the same unique
name, if the jobname matches that unique name, a page count
of one is used; otherwise, the true print count is extracted and
used.

The solution to the /USER problem was to get the current6

account number from the SYSUAF.LIS file and charge to that
number.

In addition, with only minor modifications to the code
(something which is impossible with most commercial soft­
ware as the source code is unavailable), the Group is able to
monitor resource usage on specific devices or classes of pro­
cesses. If a system is heavily saturated, the system manager
will be able to pinpoint those users who run excessive num­
bers of subprocesses. The manager will also be able to track
the usage of terminals or tape drives.

Conclusion

Once the decision was made to bypass the accounting utility,
the job of writing the software was straightforward since VMS
provides all the tools for analyzing the binary accounting data.
In addition, by writing its own software, the Group is able
to control which data are collected and make any changes
necessary to reflect a changing computing environment.

References

[l] Programming in VAX Fortran, Digital Equipment Corpo­
ration, 1984

[2] VAX/VMS Volume 5A System Management, Digital Equip­
ment Corporation, 1986

[3] VAXNMS Volume BB System Routines, Digital Equipment
Corporation, 1986

6 At the time the accounting program was being run

356

TOTALS FOR FILE: sample.dat ACCOUNTING PERIOD: JAN 1987

USER LOGINS CONN-TIME CPU-SECS BUF I/O DIR I/0 PAGE FLTS VOL-MOUNTS PRINT-JOBS PAGES ACCNT

USERl
USER2
USER3
USER4
USERS
USER6
USER7

1
1
1
0
5
3
4

USERS 1
USER9 1
USERlO l
USERll 5
USER12 6
USER13 1
USER14 11
USER15 8
USER16 3
USER17 2
USER18 1
USER19 4
USER20 5
USER21 3
USER22 1
USER23 1
USER24 5
USER25 7
USER26 7
USER27 4
USER28 1
USER29 2
USER30 6
USER31 4
USER32 1
USER33 5
USER34 1
USER35 2
USER36 0
USER37 5
USER38 1
USER39 1
USER40 2

0:44:24
0:16:18
1:47:45

00:00:00
1:51:42
0:54:03
3:12:37
0:10:35
0:23:27
0:22:43
0:56:17
3:37:13
0:20:44
3:38:53
1:24:58
2:31:58
2:05:44
0:01:18
2:30:03
2:15:17
0:43:38
0:20:14
0:30:19
1:15:41
6:41:43
3:09:30
1:23:52
1:03:21
0:49:10
0:01:59
1:03:26
0:01:10
1:04:24
0:22:44
0:01:29

00:00:00
3:11:21
0:01:06
0:16:58
2:30:50

TOTAL RECORDS READ:
TOTAL LOG FAILURES:

TOTAL LOGINS:
TOTAL CONNECT TIME:
TOTAL CPU:
TOTAL PRINT JOBS:
TOTAL PAGES PRINTED:

164.
88.
79.
18.
214.

57.
402.
16.

119.
115.
121.
432.
32.

1702.
3853.

363.
204.

7.
310.
578.
144.

27.
248.

72.
724.
256.

70.
103.

90.
17.

190.
7.

105.
106.

11.
1216.
1085.

9.
32.

299.

672
30

123
53:39:13

13684
210
728

3127
536

32460
1859
36541

6556
144107

349
125
549

32
2937

699
5138

5058 188
1482 1693
1567 526
7050 1191

106151 5540
1165 459

22951 8212
250706 144550

26996 4040
16284 1361

154 82
19288 5500
10094 16658

1353 816
7331 268
1150 614
8893 767

71208 4906
69315 2589

1142 695
5207 349
9693 951

334 167
23136 3262

127 87
24506 1191
14104 910

275 115
478 2095

9826 1739
198 165
958 1341

14124 2846

3996
2820
3038
4190

18290
5959

19233
1354
9087
5982

17141
33504

4663
73642

308478
35440
16653

1264
33265
21103

5689
2271

15444
10111
48578
20713

7332
16747
10678

3400
12946

1176
7815
7334
2156

78066
34081

1406
2315

22237

0
0
0
0
0
0
0
0
0
0
0
0
0
9
1
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
0
0

13
4

15
3
0
0
5
5
1
0

85
4
0

10
0
3
2
5
1
9
1
5
9
8
0
0
0
0
0
7
0
0
6
2
0
1
6

Figure 4: Sample Output from Data Collection Program.

357

0
0
0

13
24
35

3
0
0
5

12
6
0

151
11

0
130

0
35
11
52

1
9
1

13
43
14

0
0
0
0
0

16
0
0
6
2
0
4

131

ACC047
ACC051
ACC178
ACC226
ACC069
ACC054
ACC120
ACC045
ACC239
ACC214
ACC208
ACC195
ACC019
ACC194
ACC002
ACC075
ACC247
ACC238
ACC176
ACC142
ACC137
ACC145
ACC219
ACC227
ACC007
ACC046
ACC056
ACC224
ACC248
ACCOOO
ACC143
ACC003
ACC249
ACC234
ACC014
ACC131
ACC221
ACCO OS
ACC213
ACC059

COMPUTER ROOM DESIGN AND CONSTRUCTION: A CASE HISTORY

Brent Teeter, P. E.
Naval Weapons Center
China Lake, CA. 93555

ABSTRACT

Once a computer system has been purchased, the
anxious optimism of waiting for it to arrive will
fade into the realization of where to put it when it
arrives. By considering the computer system site
early in the procurement process, headaches can be
reduced for system startup, system operation,
maintenance, and expansion.

INTRODUCTION

Good computer room design practice
entails addressing six concerns: setting up
the design team, physical requirements,
electrical requirements, cooling require­
ments, security, and contractor interac­
tions. With proper attention to these
needs, a well designed computer room will
provide a reliable environment for the
computer and will improve work performance
of the people that use it.

GETTING STARTED

There are a number of concerns that
should be addressed before the design gets
underway. The first concern is setting up
the design team. People who have a vested
interest in the results should be used to
assist in the design and review. An example
of such a person is the system manager. He
will have to live with the computer room
that results from the design. Other good
sources of people are those who have shown
an interest in the project, who have good
memories, and who have the time to pay
attention to the construction. A third
source of help is DEC Field Service. Field
Service can provide specifications and
requirements for much of the computer room.

Once the design team is established, team
members should keep a historical record of
all interactions with contractors and
consultants. This record may be useful in
the future if performance problems occur.

When the computer room design is finish­
ed, it should be reviewed by at least two
knowledgeable people outside of the design
team. This review is necessary because
people who are intimately involved in
construction designs sometimes miss
details. Finally, due to the high time
demands placed on design team members, it
may be advantageous to hire a consultant.
However, consultants do not have the vested
interest that employees have.

Proceedings of the Digital Equipment Computer Users Society 359

PHYSICAL REQUIREMENTS

The first task in designing a computer
room is to determine the size and weight of
each cabinet and peripheral that will be
placed in the room. Adequate room for
growth should be allowed as well as clear­
ance to allow rear doors of cabinets to be
opened.

The easiest method of determining
equipment placement is to make a floor plan
using a convenient scale (ie. 1/4 inch
equals 1 foot), cut out each peripheral and
cabinet floor footprint to the same scale,
and place them in the floor plan until all
specifications have been met. While laying
out equipment locations, it is important to
consider workflow. Workflow considerations
make users of the computer room more
efficient. An example of workflow is to
group console terminals of multiple machines
together so that the system manager can use
them with a minimum of movement and effort.

An important benefit of using a floor
plan is that when the computer room con­
struct ion is completed, the plan can be used
to accurately locate equipment in the room.
Each cabinet can be located by taping out
the location of it.

If the amount of
computer room justifies
should be considered.
several benefits, among

equipment in the
it, a raised floor
Raised floors have
them being:

* The floor acts as an air conditioning
plenum.

* The floor aids in the natural flow of
convective cooling air.

* It protects data and power cables from
damage.

* Raised floors are cleaner than non­
raised floors.

Nashville, TN- 1987

However, raised floors have concerns that
must be addressed:

* How do heavy cabinets/peripherals enter
and exit the room?

* Air distribution can be
having too many pipes and cables
floor

blocked by
under the

* The locations of cables that exit and
enter the floor in relation to other
equipment must be determined so that they
will not be blocked.

* All concrete and drywall must be sealed
with concrete sealer to prevent blistering.

Another physical computer room require­
ment is that the room be treated as an
environmental entity. The walls of the
computer room should go from the floor to
the roof of the building, effectively
separating the computer room from the
building.

Since computer room noise control is an
important consideration, effective steps to
reduce noise are necessary. These include
using static free carpets, sound absorbing
materials on the walls and separating the
computer room into noise zones. Equipment
that is noisy is grouped in one zone and
quiet equipment is grouped in another zone.

ELECTRICAL REQUIREMENTS

In order to determine the electrical
requirements for the computer room, these
specifications for each cabinet and peri­
pheral are needed as well as their toler-
ances:

* Volts

* Current

* Phase

* Plug type

* Peak Power (Peak Current)

The final specifications should also
allow for growth since once the wiring is in
place it can be expensive to increase
capacity.

All power receptacles for computer
equipment should be isolated ground type
sockets with grounding occurring at a
central point. This central point grounding
minimizes ground loops which can induce
noise into the system. The local electrical
code should however be examined about
regulations concerning isolated ground
sockets - some municipalities will not allow
them.

All power lines feeding the computer
should be dedicated to the computer. There
should be no other electrical equipment on
the line. The main feed line for the
computer room should be checked completely

360

from the distribution transformer of the
building to the computer room for other
noise producing equipment that might affect
computer operations. If there is any doubt
about the quality of the power, a power line
monitor can be used (rented or purchased) to
check for disturbances. This monitor should
be allowed to run for as long as possible
since some power line disturbances are
season dependant. A good example is the
summer thunderstorms that occur in some
areas of the country.

If a power line monitor reveals noise and
power problems on the electrical system, the
following solutions can be tried in order of
increasing severity:

* Filters - low cost and easy

* Constant Voltage transformers

* Motor - Generator Sets

* Uninterruptable Power Supplies - High
cost and difficult

In any computer room electrical system, it
is very helpful to use a Power Distribution
System (PDS). These systems provide some
filtering but mostly provide isolation.
Newer PDS systems, called Power Conditioning
Systems (PCS), provide substantial filter­
ing. PDS/PCS systems are useful because
they modularize the electrical distribution
and installation process. There is only one
connection that a licensed electrician must
make, thus speeding up the installation.
When purchasing a PDS it is best to pick the
one with the highest input voltage avail­
able. This provides greater noise reduction
than using lower input voltage PDS units.

In addition to receptacles for computer
cabinets and peripherals, convenience
outlets should be included in the design.
These are the electrical outlets that will
be used for vacuum cleaners and other noise
(electrical) producing equipment. Because
of this noise, these receptacles should be
placed on a different feeder line than the
PDS.

Closely related to electrical require­
ments are lighting requirements. Generally,
it is very desirable to use light dimmers in
the computer room. These can decrease the
heat load placed on the air conditioners.
However, some dimmers are Radio Frequency
Interference (RFI) sources. For this
reason, the particular brand of dimmer
should be carefully examined for RFI before
it is installed.

ENVIRONMENTAL REQUIREMENTS

In order to determine the environmental
requirements for the room, the BTUs of heat
for each peripheral must be determined. The
total heat load produced by all electrical
equipment including lights must be capable
of being cooled by the air conditioning
equipment. As always, the environmental
specifications should allow for growth.

The temperature limits for each peri­
pheral must also be known. All peripherals
have two types of limits: static and
dynamic. Static limits establish the
overall range in which the equipment can
operate. Dynamic limits specify how fast
the temperature can change per unit time
(usually in degrees per hour). Generally
disk drives have the most critical dynamic
limits because read/write head alignment
depends upon uniform temperature throughout
the drive.

The air flow direction for each peri­
pheral and cabinet should also be known.
This information will determine where to
place raised floor vents (if used) and
determine whether certain peripherals and
cabinets are compatible. The usual flow
direction is front to back and bottom to
top. The raised floor vents can then be
located in order to assist this natural flow
of air.

When specifying the air conditioning
units, it is usually better to specify two
small units rather than one large unit.
Thus, if one unit fails, the computer
facility can still operate in a degraded
mode. Likewise, the larger the computer
room is in volume, the more time there is to
shut down the system when the air condi­
tioners fail.

In order to minimize contamination, there
should be a source of air that will maintain
a positive pressure in the computer room.
This positive pressure will tend to push
dirt and dust out of the room. If a raised
floor is used, the concrete slab and drywall
underneath it should be sealed with concrete
sealer to reduce the number of particles
that are produced as the concrete ages.

SECURITY REQUIREMENTS

In choosing the location of the computer
room, careful attention must be paid to
physical security. Security involves room
location, fire suppression, electrical
noise, and protection instrumentation. If
possible, pick an interior room. Interior
rooms are more temperature stable than
exterior rooms. They are also less suscep­
tible to external electromagnetic interfer­
ence (EMI). However, if self contained air
conditioners are planned for the room, a
room with an external wall(s) becomes
necessary.

Due to the high value equipment in
computer rooms, all computer rooms should be
protected from a potential fire. Smoke
detectors should be installed in the room­
generally under the raised floor. However
if a raised floor is not used then they can
be installed on the wall.

Handheld fire extinguishers should be
placed near the computer room exits. Thus,
if a fire occurs, people looking for fire
extinguishers will already be near an exit
should they change their mind about fighting
a fire. These extinguishers should be

361

filled with Halon 1211 or 1301. Halon 1301
is less toxic to humans than 1211 but both
halons are excellent fire suppression
agents. For large computer rooms, under
floor self contained halon systems are
available.

Ceiling sprinklers are another method of
fire suppression. However, since most
damage in a fire occurs from water damage
and since there is a high electrical shock
hazard in a computer room, ceiling sprink­
lers should be used as a backup to Halon
systems. Also, sprinklers should be used
that can turn themselves off when the
computer room temperature decreases to a set
value so that flooding does not occur.
Except for ceiling sprinkler pipes, water
lines in the ceiling should be avoided. At
minimum, they should be kept away from
equipment.

Another security concern is electromag­
netic interference (EMI). EMI can occur
from many sources including welders, motors,
heavy industrial equipment and even other
computers. The solution to EMI is usually
to tie all equipment to a common ground,
move equipment away from the source (since
EMI strength is proportional to the square
of the distance), and surround the computer
with copper screen.

Once the security issues have been
addressed, different types of detectors can
then be interfaced to the computer room
Power Distribution System (PDS). These
sensors connect to the PDS through the
Building Interface Alarm box (BIA). Some of
the detectors that can be used are: smoke,
fire, water, over/under temperature sensors
and over/under voltage sensors. If any of
these sensors detects an out of bounds
condition, it will trigger a power shutdown
of the PDS.

A last concern for computer room security
is environmental data gathering. Instru­
ments such as temperature and humidity
recorders provide a record of the stability
of the environment. Other instruments can
provide data on other desired data such as
voltage levels.

CONTRACTOR INTERACTIONS

In order to protect the company and the
computer room design team, all interactions
with the contractor should be conducted
through one specific contact. There should
also be an alternate contact to serve as a
backup should the primary contact be
unavailable. Both contacts should be aware
of what they legally can and cannot do
regarding the construction contract. Other
people in the company, while not designated
as contacts, can serve very usefully as eyes
and ears during the construction process.
In this manner, they can keep the construc­
tion contacts appraised of information they
might not normally know.

In the
should be

construction
penalties for

contract, there
late completion of

the work. If there are not penalties,
construction may drag on for an excessive
time.

Finally, during construction of the
computer room, disruptions to normal
business can be minimized by scheduling the
contractor to work at times convenient to
the company.

SUMMARY

Computer room construction requires
attention to a very large number of details.
If motivated people are used on the design
team, and these people have access to the
proper information, then a successful
computer room design will result.

REFERENCES

1. Digital Equipment Corporation, Power
Distribution System Technical Guide, 1982.

2. Digital Equipment Corporation, The Power
Distribution System Configuration and
Ordering Guide, 1981.

362

Wading through Net.News
There's Gold in Them Thar Hills!!

Kurt L. Reisler
Hadron, Inc

9990 Lee Highway
Fairfax, VA 22030

... !seismo!hadron!klr

Abstract

One of the greatest resources available to the members of the UNIX1community is
an accumulation of special interest "groups" that circulate through net.news. Using
the facilities of uucp and USENET, net.news acts as a roughly-structured "gazette",
containing vast amounts of technical information (and misinformation), news (and
rumors), sources, and bug fixes.

This article will address the methods of accessing net.news, how to make use of
it effectively, and examples of the good, the bad, and the really ugly things that can
be gathered through net.news.

What is Net.News?

What is generally referred to as "net.news2" is actually a col­
lection of standard Unix utilities and special pwpose software,
used by a very large3 number of Unix systems for the exchange
of

• technical information

• public domain source code

• public domain executables

• bug reports

• "recreational" information

• rumors

• reviews of all sorts

• anything else

Each of these "areas of interest" is usually circulated
though the use of designated "news groups". These groups
can be either moderated or unmoderated. Distribution of
news groups can be local, city-wide, national, or interna­
tional in scope. Distribution of the "news" is accomplished
via "usenet", a loosely coupled network of Unix systems that
extends around the world.

In this paper I hope to be able to provide you with an
overview of "net.news", why you should get involved with it,
and what you need to get started.

1UNIX is a registered trademark of AT&T Bell Labs

2pronounccd as net dot news

3exact numbers change daily

Proceedings of the Digital Equipment Computer Users Society 365

A Brief Historical Perspective

The following is liberally excised from "USENET Software:
History and Sources (Last changed: 15 March 1987)" by Gene
Spafford. The concept of usenet was started by two graduate
students at Duke University of North Carolina in late 1979.
Tom Truscott and Jim Ellis thought that hooking up Unix sys­
tems with available software would be an excellent way of
exchanging information within the Unix community. With the
help of Steve Bellovin, a graduate student at the University
of North Carolina, they were able to establish the first two
usenet sites in early 1980. The software used to drive this
initial setup was made up of existing Unix utilities and shell
scripts. Eventually this was rewritten in C and was distributed
as the "A" release of the news software.

In 1981, the news software was rewritten by Mark Horton
(a U.C. Berkeley graduate student) and Matt Glickman (then
a high school student). The rewrite was needed to increase
the functionality of the software, and to better handle the in­
creasing flow of news across the net. The initial public release
of the "B" news software was version 2.1 in 1982. The last
release of the "B" software was version 2.10.2, released in
1984.

With the release of the 2.10.2 version of the news soft­
ware, responsibility for the coordination, maintenance and en­
hancement of the news software became the responsibility of
Rick Adams, at the Center for Seismic Studies. What followed
was a restructuring of the news groups, and a new release of
the news software as version 2.11. There have been several
bug-fix patches for the current version.

The growth of "net.news" has been phenomenal. What

Nashl'ille, TN - 1987

started in 1980 as 2 sites, has grown to an estimated 6,5004

sites with an estimated 176,000 active readers. There are cur­
rently over 246 news groups.

The Software-Side of Net.News

The current release of the news software makes use of a collec­
tion of special programs for reading, distributing and managing
the news. A large portion of it is standard Unix uucp5 and
mail software. In addition to the programs which are written
in C, there are a large number of shell scripts.

Standard UNIX components

The news software is based on two standard6 components of
the Unix operating system, uucp and mail. The uucp compo­
nents that the news makes use of include uucp, uux, uucico,
and uupoll. These programs allow cooperating Unix systems
to move mail packets between systems and to remotely exe­
cute the appropriate news and mail software. In addition, the
news software relies heavily on the Unix file system struc­
ture. For further details about the standard Unix components,
consult your Unix documentation set.

Special "News" Software

As is traditional with "contributed" software within the Unix
community, the news software is distributed in source form. It
can usually be obtained from the news site that will be provid­
ing you with a news feed, or from the DECUS UNISIG Tape,
available through the DECUS Tape Library or LUG distribu­
tion tree. When the distribution has been properly customized
and compiled, you have a large collection of executables and
shell command files. These are the programs that are used to
receive, distribute, manage and read the news messages. In
addition to the sources, there is considerable documentation
(some of it in the source code). The documentation should be
thoroughly read, as starting up a new news system is not an
adventure for the uninformed.

How Does it all work?

The mechanics of net.news are relatively straightforward. All
news "articles" are, in reality, mail messages that are moved
from site to site over the usenet. These messages can contain
only ASCII characters, but other than that restriction, they can
contain almost any sort of information. There are utilities 7 that
allow a user to send non-ASCII messages, such as executables,
archives, etc.

When a user posts a news item, it is sent to the user's
news host as a mail message. From there it is sent along
usenet to each news host that it connects to. In this manner,
an article can move around the world, from host to host in a

4March 1987

sunix-to-unix copy

6in as much as anything is standard under Unix

7such as compress, uuencode, uudecode

366

/Host---(etc)
+-Host<
I \Reader

Poster----Host+
\Host+--Host--(etc)

I
+-Reader

Figure 1: Simplified News Flow

Article 2239 of net.sources:
Path: hadron!sundc!seismo!lll-crg!hoptoad!rdm
From: rdm@hoptoad.uucp (Rich Morin)
Newsgroups: net.sources
Subject: sharks - SHell ARchive checKing Script
Message-ID: <1163@hoptoad.uucp>
Date: 30 Sep 86 04:04:07 GMT
Date-Received: 1 Oct 86 09:00:32 GMT
Organization: Canta Forda Computer Laboratory
Lines: 118
Keywords: paranoia shar security trojan horse

Figure 2: Sample message header

relatively short period of time. An over simplified version of
this can be seen in Figure 1.

The exact path that a news item follows may not always
be the most efficient path. In fact, the path that a news item
follows is very seldom the same path that a normal mail mes­
sage to a uucp address follows. The path that a message trav­
eled through can be seen in the message header (see Figure
2). The message header obviously carries a lot of additional
information. It indicates which of the news groups the article
was included in, the subject of the message, the message ID,
the article number in your news directory structure, the date
the message was posted. the date the message was received,
the organization of the poster of the message, the length of the
message in lines, and any keywords that the poster may have
assigned to the news item. This information may or may not
be of interest to the reader and the news reader software can
be tailored to show the reader only that portion of the header
that is of interest to them.

A map of the usenet "backbone" can been seen in Figure
3. The dashed lines in Figure 3 are normal connections, while
the dotted lines are restricted connections. It is along this
backbone that news flows to the various distribution "trees".
A node that is part of the backbone distribution is referred to
as the "root" of that particular distribution "tree". A node that
is at the end of the distribution "tree" is referred to as a "leaf'
node, while a node that passes the news on to a number of
other nodes, is referred to as a "branch" node. As complex
as it seems, it all does work-in defiance of the laws of nature
and Mutphy8 •

As news packages are received, they are "unpacked"

8 we II, most of the time

watmath utzoo

ihnp4 cbatt clyde------------faline
I I I \
I I I \

alberta---ubc-vision ... uw-beaver (to rutgers) I ulysses

tektronix-----------------------decvax---linus

cae780

I
I

I
I

I

I I
I I
I I
I
I
I
I
I

kddlab hplabs-----------------decwrl I
I I
I I

hao sdcsvax------ucbvax I

(see
I

I
:/

below)

nbires
akgua

I
I

I
I
I
I
I

mcvax gatech-----------mcnc---philabs
\ I I
\

\
!----------------------!

I I I
lll-lcc-----------------seismo--------------------------------cmcl2

I \
ames I \

I \
rutgers-------- ------/ \ mnetor

I
(to clyde) munnari

Figure 3: Usenet backbone as of 1 April

and distributed to the appropriate news directories. The
news group name defines how the messages are lo­
cated within the news directory hierarchy. For exam­
ple, a message in comp.org.decus would be stored in
$NEWSDIR/comp/org/decus/NNN where "$NEWSDIR" is
the appropriate news root directory for the receiving system,
and "NNN" is the article number that has been assigned to the
message by the news software.

In summary, a user enters a message, the news software
bundles it up and sends it on its way across usenet. As news
message are received, they are stored in the appropriate news
directories on the receiving systems. The messages are read
by a large number of individuals using a variety of news
"readers9". Individuals can respond to the news messages
either via direct electronic mail or by a response in the ap­
propriate news group. In this manner, message "chains" are
formed and discussions are started.

The Impact of Net.News on Your System

Like so many other things, the addition of net.news to a system
can have both good and bad aspects. Personally, I feel that

9m. vn, readnews, etc.

367

the advantages of being "connected" far out-weigh the disad­
vantages. I have heard other managers with opinions that are
exactly opposite of mine. In an effort to be fair, I will present
some information for both sides of the issue and allow you to
form your own opinion.

What can Net.News do for you?

One of the primary advantages of being "connected" to
net.news is the plain and simple fact that it makes you a mem­
ber of the news "community". Your horizons are expanded in a
way that is difficult to understand without having experienced
it. With the addition of a connection to "the net" you have
essentially connected your system to over 6,000 other Unix
systems which can serve as sources of software and technical
information.

Technical News groups

One of the major sources of information within the Unix com­
munity are the technical news groups that circulate through
net.news. The technical news groups are usually prefixed as
shown below:

comp. Topics of interest to both computer professionals and
hobbyists, including topics in computer science, software

comp.ai
comp.binaries.mac
comp.bugs.2bsd
comp.bugs.4bsd
comp.bugs.sys5
comp.databases
comp.emacs

Artificial intelligence discussions.
Encoded Macintosh programs in binary. (Moderated)
Reports of UNIX version 2BSD related bugs.
Reports of UNIX version 4BSD related bugs.
Reports of USG (System III, V, etc.) bugs.
Database and data management issues and theory.
EMACS editors of different flavors.

comp.graphics Computer graphics, art, animation, image processing.
comp.laser-printers Laser printers, hardware &. software. (Moderated)
comp.mail.uucp Mail in the uucp network environment.
comp.org.decus DEC Users' Society newsgroup.
comp.os.research Operating systems and related areas. (Moderated)
comp.os.vms DEC's VAX line of computers & VMS.
comp.sources.d For any discussion of source postings.
comp.sources.unix Postings of public-domain sources. (Moderated)
comp.std.unix Discussion for the Pl003 committee on UNIX.
comp.sys.dee Discussions about DEC computer systems.
comp.sys.sun Sun workstation computers. (Moderated)
comp.sys.workstations Various workstation-type computers. (Moderated)
comp.text Text processing issues and methods.
comp.unix Discussion of UNIX features and bugs. (Moderated)
comp.unix.wizards Discussions, bug reports, and fixes on and for UNIX.
sci.astro Astronomy discussions and information.
sci.bio Biology and related sciences.
sci.crypt Different methods of data en/decryption.
sci.space.shuttle The space shuttle and the STS program.

Figure 4: Ex.tract of Technical News Groups

source, and information on hardware and software sys­
tems.

sci. Discussions intended as technical in nature and relating
to the established sciences.

A listing of some of the names and descriptions of the
technical groups is shown in Figure 4. A full listing of the
news groups and their descriptions will be published in a future
issue of the DECUS SIGs Newsletters.

The technical news groups are the most heavily read
of all the groups on the net. Of primary interest are the
news groups that circulate public domain sources, such as
net.sources. In addition, the discussions that take place in
groups like comp.bugs.4bsd and comp.os.unix can always be
informative. In short, the technical news groups are where you
and your programming staff can learn about problems and so­
lutions, as well as obtain actual sources which can be compiled
on your own system. Access to the technical news groups can
be the biggest positive gain from access to net.news.

Administrative News groups

Since the net.news software is an evolving beast, the mainte­
nance and enhancement of the software and the administration
of the network are coordinated through special administrative,
or "admin-dot" news groups. The administrative news groups
contain discussions of news software problems and solutions,
as well as announcements of new news groups. It is a wealth
of information for both the neophyte and experienced news
administrator.

368

misc.consumers
misc .handicap
misc.jobs
misc.kids
misc.legal
misc.taxes
rec.arts.books
rec.arts.drwho

Consumer interests, product reviews, etc.
Items of interest for/about the handicapped.
Job announcements, requests, etc.
Children, their behavior and activities.
Legalities and the ethics of law.
Tax laws and advice.
Books of all genres, shapes, and si7.Cs.
Discussion about Dr. Who.

rec.arts.movies Discussions of movies and movie making.
rec.art~.poems For the posting of poems.
rec.arts.sf-lovers Science fiction lovers' newsgroup.
rec.arts.startrek Star Trek, the TV show and the movies.
rec.arts.IV The boob tube, its history, and past and current shows.
rec.arts.wobegon "A Prairie Home Companion" radio show discussion.
rec.food.cooking Food, cooking, cookbooks, and recipes.
rec.photo Hobbyists interested in photography.
rec.skiing Hobbyists interested in skiing.
rec.sport.football Discussion about football.
rec.video Video and video components.
talk.politics.theory Theory of politics and political systems.
talk.religion.misc Religious, ethical, & moral implications.
talk.religion.newage Esoteric and minority religions & philosophies.
talk.rumors For the posting of rumors.

Figure 5: Extract of Non-technical News Groups

Non-Technical News groups

In addition to the technical news groups, there are a a large
number of non-technical news groups circulating on the usenet.
Such groups are now being designated with a variety of news
prefixes:

misc. Groups addressing themes not easily classified under
any of the other headings or which incorporate themes
from multiple categories.

soc. Groups primarily addressing social issues and socializing.

talk. Groups largely debate-oriented and tending to feature
long discussions without resolution and without appre­
ciable amounts of generally useful information.

news. Groups concerned with the news network and software
themselves.

rec. Groups oriented towards hobbies and recreational activi­
ties.

A sampling of the "non-technical" news groups can be
seen in Figure 5. These groups are home to discussions about
movies, TV, cooking, cars, photography, video gear, politics,
etc. It is the non-technical groups that cause some heartburn
to a few system managers, who feel that they have "no place"
in a "technical" network. In reality, most programmers spend
a relatively small amount of their "news time" with a large
number of the non-technical news groups. They usually settle
down with one or two of these as an alternative to the technical
discussions of the technical and administrative news groups.

Effects on Productivity

Access to net.news can have a very beneficial effect on overall
programmer productivity. It give the programmer access to a
huge number of technical resources outside of their immediate
office. A majority of the sources that are circulated via usenet
can be used to enhance the programmer's job. In addition, a
lot of the bug fixes and system enhancements can be used to
correct problems and generally make the use of a local system
more pleasant. Net.news is also an avenue for getting "how
do I" questions answered.

What can Net.News do to you?

There are a number of drawbacks to receiving net.news. In my
opinion, the advantages far outweigh the disadvantages, but in
attempt to stay even-handed, I will present some of them.

Effects on Productivity

Yes, reading of net.news also has a negative side on productiv­
ity. Reading the news takes time. Depending on the volume
of news groups being read, it can take a lot of time. I would
guess that most programmers spend 1 to 2 hours a day read­
ing the news. This may be from home or during lunch, or
on company time. The time may be higher on a Monday or
after returning from a holiday or business trip10• There is also
the time spent reviewing, compiling and testing programs that
are distributed via the source news groups. But, there is a
trade-off here in terms of clock time lost, versus productivity
gains 11 • In many cases, techniques that are learned through
the review or use of source code distributed through the net
can enhance the knowledge, technical skills and productivity
of programmers.

Questionable Software

The problem of the "Trojan Horse" program is an on-going
one in the net.news world. The problem is multipied by the
circulation of executable binaries rather than sources in some
of the news groups. A Trojan Horse program is one that claims
to do one thing, usually useful, but in reality does something
quite different. In many cases, the these programs will either
damage files on your system, make attempts to compromise
system security, or just be annoying12 • There are many ways
of dealing with a potential Trojan Horse program. If it was
obtained in source, than these should be reviewed before the
program is compiled and run. If it is a binary, you should
wait a few days before you try to run it. Usually such pranks
are found and widely broadcast on the net. As with all public­
domain software, caution is the best protection.

It should be noted that the number of Trojan Horse pro­
grams that are distributed across the net is actually very small.
The number of prank programs seems to peak around April
Fool's Day for obvious reasons. However, it should also be

10this is know as "catching up" with the news

ll"What? Me Biased?"

12Anything received around I April is ALWAYS suspect.

369

pointed out that for each of the "good" programs that are re­
ceived, there are a number that just plain don't work, and are
usually not worth the effort to make work.

Religious Wars

Getting connected to net.news, opens up the possibility of
getting involved in a number of technical and non-technical
discussion groups. Occasionally, these degenerate into "Re­
ligious Wars" which can be time consuming. Religious wars
usually revolve around such major topics as:

• editors

• versions of Unix

• spelling and grammer

• programming techniques

• network policy

• news groups naming conventions

Not much good ever comes of the religious wars on the net­
work. They are seldom if ever resolved, and on occasion have
resulted in personal attacks (non-physical) that have resulted
in individuals unsubscribing from certain news groups.

System effects

Getting involved with net.news can have a very definite effect
on your system itself. You can expect a dramatic increase in
disk usage. This is due to the news software itself, the news
articles as they come in, the archived news articles as they are
"aged", and the copies of news articles and software that are
being stored by the readers of the news on your system. In
addition, you can expect an increase in modem usage on your
system as your news host provides you with the days articles,
and as your users post responses and new articles. Finally, if
you are receiving a "full news distribution 13", you can expect
to be receiving approximately 1.5 megabytes of news a day.

Conclusions

Net.news is a user maintained network that helps to keep the
users of Unix systems in touch with each other. News "arti­
cles" are actually messages that are sent between cooperating
Unix systems, using standard uucp software and additional
"news" software. These messages can contain a variety of
information, including bug reports, bug fixes, source code,
executables, movie reviews, rumors, jokes and just about any­
thing else that can be entered into a computer. Although there
is some cost to participating in net.news, in terms of phone
bills, system performance and programmer productivity, it is
felt 14 that the gains far outweigh the costs.

One thing has become evident in making presentations
about net.news at DECUS sessions. There is great interest in

13 i.e. all of the available news groups

14 at least by this author

getting access to net.news on the part of the attendees. They
know where to get the news software, and they are able to get it
installed The information that is lacking is "who to contact to
obtain a news feed" To attempt to correct this situation, I have
posted a message in the "news.admin" news group, requesting
that news site administrators who can provide "feeds" for new
news sites contact me. I am in the process of compiling this
information into a list that will be published on a regular basis
in the DECUS S/Gs Newsletter, as well as a few of the DEC­
oriented commercial publications.

370

INTEGRATION OF INPUT/OUTPUT DEVICES USING SILICON COMPILATION

Dr. Robert Couranz, Edwin Rogers, Laurence Specter
Raytheon Company

Sudbury, Massachusetts

ABSTRACT

The current trend in military electronics, especially
computers, is to exploit to the maximum extent possible
existing commercial designs. Although the commercial

computer architectures and associated implementation
technologies have significantly improved performance

and reduced the size of the core of the computer, the
I/O functions must now be addressed. In many cases,
the I/O requirements of the militarized computer are

quite different than those of the commercial
counterpart. Thus, it is necessary to develop highly

integrated I/O designs to compliment the level of
integration of the remainder of the computer. This

paper addresses that problem and provides a case study
where a silicon compiler was used to rapidly design

an ASIC for a specialized military interface.

1 THE NEED OF THE MILITARY
MARKETPLACE

1.1 Time to Meet Customer Requirement

The military market is not unlike the
commercial market, in that itme is a
key issue. In the commercial environ­
ment, time-to-market is tied to when a
manufacturer needs to release a product
to meet market and company needs or in
response to competitive pressures.
Normally, the product will be sold to
users having a range of applications
that the product was designed to
address.

The military time-to-market is first
driven by the interval between contract
award and the delivery of the first
form, fit, and function unit. Then a
second interval, that between acceptance
of qualification units and production
comes into play. Prior to contract

Proceedings r~lthc lhj{ital h'quipment Compwer Users Society 373

award there has been extensive proposal
effort expended and design at the system
and subsystem level has been completed.
Also, critical areas of hardware have
been proven and a high confidence in
the ability to produce the more basic
elements of the system or subsystem has
been developed. Still, the detailed
design of the complete deliverable unit
is held until contract award because
the cost of design is part of contract.

1.2 Limited Production Run is Standard

When a commercial vendor such as a
computer manufacturer introduces a new
product to the market, the anticipation
is that large quantities will eventually
be produced. With the exception of some
selected items such as munitions, the
production run for any given military
product is usually limited. A radar sys­
tem might number less than 100 units.
Aircraft of a given type might reach

Nas/11'1"/lc, lN - 1987

several thousand but over many years of
production and various system revisions.
Thus the electronics complement across
the production run may change consider­
ably. Computer subsystems associated
with these larger systems must be con­
figurable to support many production
buys in quantities of 10 to 100. Thus,
the ability to configure the processor
through the development of standard and
custom I/O interfaces becomes critical.

1.3 Environmental Limits Range From
Commercialized Military to Space
Qualified

Based on initiatives of the Defense
Science Board, the armed services are
trying to develop specifications that
reflect the true operating environment
that will be seen by the equipment being
procured. Studies have shown that equip­
ment in the field will see varying envi­
ronmental requirements as a function of
how close to the atual battlefront the
equipment is to be employed.

One approach to the low severity environ­
ment problem is to take commercial hard­
ware and repackage the boards in a more
rugged, air cooled chassis. This ap­
proach suffers from the lack of a solid
configuration management strategy. The
organization repackaging the commercial
components can only supply a ruggedized
version of the commercial module. In
addition, the air cooled chassis exposes
the boards, components, and connectors
to the contaminants in the cooling air
such as high humidity and salt air.
Finally, there is no upgrade path in
the same form, fit, and function if the
system environmental requirements are
increased.

Alternately, a commercialized military
unit provides a full military conduction
cooled package designed to meet the
rigors of the full environmental range
and all applicable military equipment
specifications such as MIL-E-5400 and

374

MIL-E-16400. Because the chassis is
conduction cooled, the contaminants of
the atmosphere never reach the compo­
nents, connectors, or circuit boards.
Configuration management is under
control of the manufacturer since the
basic module is built, not procured.
Finally, the cost of the mechanical
package is a minor part of the overall
unit cost. Thus, the unit cost can be
made consistent with the environmental
specifications by the selection of the
real cost driver, the semiconductor com­
ponent quality. Should the environmen­
tal requirements be increased, the units
can be upgraded by exchanging modules.

1.4 Technology Transfer

Traditionally there has been a signifi­
cant lag between the development of a
product for a commercial user and the
availability of the same product capa­
bility in the military market. This is
especially true in the area of computer
electronics where the commercial vendors
are pressing the state-of-the-art for
every bit of performance and functional­
ity available to capture market share.
The first step in translating the best
technology to the military user is to
be able to capture commercial technology
and make it available in commercialized
military to full military quality.
Just capturing the basic commercial pro­
cessor does not allow the application
of the technology to the military prob­
lem. Military I/O and peripherals must
be provided to make the hardware useful.

2 MILITARY VAX(R) COMPUTER FAMILY

®

The Military VAX Computer Family consist
of a range of processors of graduated
size and capability providing the right
level of computing power for any speci­
fied application. After meeting strin­
gent Raytheon military specification re­
quirements, the computer's performance
will be validated by DEC(R) before
they wear the VAX label (Figure 1).

Figure 1. ®
Military Computer Family VAX Compatibility

The smallest member of the family is
the Model 810 Single Board Computer
which is intended for deeply embedded,
specific appication intensive environ­
ments. It consists of a CPU with
floating point, a limited amount of on­
board static RAM and EPROM, and two
serial channels. Both the I/O and mem­
ory bus are available for incorporating
additional I/O or memory (Figure 2).

SINGLE BOARD

COMPUTER

6.8" x 8.5''

SUPER MINICOMPUTER/

MINICOMPUTER

mlllll ,..
SUPERMINI: 7.6"X10.1"X19.5"
MINI: 7.6"X10.1"X12.5"

Figure 2. Physical Characteristics
Of The MVCF

The Model 830 Minicomputer contains a
CPU with floating point and 256 Kbytes
of cache memory. It supports up to 16
Megabytes of DRAM, two bus adapters,
and three internal I/O slots. The
Model 830 is packaged as a full ATR
Short and is well suited to large real­
t ime applications or small data manage­
ment requirements.

375

The Model 860 Supermini computer is a
full ATR Long and supports one or two
of the Model 830 CPUs. It also supports
up to 32 Megabytes of DRAM, two I/O
busses, and six I/O slots with provi­
sions for I/O expansion. It is intended
to support large data management appli­
cations or smaller applications which
anticipate significant growth.

All Militarized Vax®computer Family
products are built in two versions; a
reduced cost mil-spec implementation
using high quality commercial grade
components and an extreme performance
version using Mil-Std 883B or better
components. All models of the MVCF
will support the DEC VAXBI @) • Thus,
I/O modules are being designed for
application across the complete product
line.

3 IMPLEMENTING THE MIL-STD-1553B
INTERFACE MODULE

The MIL-STD-1553 interface is a serial
bus employed by all branches of the
armed forces. As a result, it is a
natural interface to be selected as one
to be offered as part of the MVCF 1/0
group. Since the basic processors
employ high levels of integration,
specifically 1.25 micron CMOS devices
from Raytheon's Microelectronics Center,
it becomes mandatory to produce I/O
elements that are configured to the

same level of integration. In order to
reach the level of integration required
and to minimize time-to-market, the
development of application specific
integrated circuits appeared necessary.

3.1 Requirements Placed On The MIL-STD-
1553B Module

The functional requirements for a 1553
bus are set forth in Military-Standard
1553, Revision B, Notice 2. An example

EJEJ
SENSOR

PROCESSOR

MVCF
860

MIL-STD-15530 DATA BUS

MVCF
860

of the application of the 1553 bus
structure as applied to a hypothetical
signal intelligence gathering applica­
tion is shown in Figure 3. This archi­
tecture uses a rugged two wire data
transmission path for high reliability
and low weight, and dual data buses
(or channels) for redundancy. The pri­
mary requirements for Raytheon's 1553B
(Rl553B) are for a 1 Million bit per
second serial data stream with start-of
and end-of message indicators, a device

ANALYST
WORKSTATIONS

CRYPTO

HF/UHF
RADIOS

CRYPTO

VHF
RADIOS

Figure 3. Example of MIL-STD-1553B In A Signal Intelligence System

address mechanism, and device control
and status mechanisms. Other require­
ments include error detection of single
bit message errors, a message broadcast
capability, and a token passing mech­
anism for rotating bus control.

3.2 Design Of The Module

The Rl553B provides an intelligent in­
terface (Figure 4) between the 1553
data bus and Raytheon's militarized VAX

® Backplane Interconnect (VAXBI). The
Rl553B is configured as dual redundant
data buses (1 active and 1 standby),
and can, under program control, act as
a bus controller (BC) or a remote
terminal (RT). A BC sends and receives
commands, status, or data while an RT
accepts commands from a BC and also
sends and receives status and data.

376

3.3 Functions To Be Performed

The Rl553B performs at the full 1
Megabit per second serial data rate of
the 1553 which translates to approxi­
mately 93,500 bytes per second data
rate on the VAXBI~ The Rl553B further
off-loads the CPU by providing a 128K
byte message buffer for storing multiple
messages (up to 128) and also schedules
host programmable functions such as
auto-retry. The Rl553B also handles
interrupt latencies by making use of an
interrupt history list by sequentially
storing interrupts.

The Rl553B implements a programmable
interrupt feature for handling condi­
tions such as message errors, end of
message list, remote terminal busy,
auto-retry failure, and self-test
failure. On-board built-in-test

circuitry supplemented by CPU diagnos­
tics allow detection of greater than
90% of all failures. The Rl553B is
implemented on a single multilayer
printed-circuit card assembly employing
low-power surface mounted components.

3.4 Selection of Elements/Functions To
Be Integrated Into The ASIC

The design shown in Figure 4 can be
implemented with three classes of
integrated circuits, LSI, memory, and
small scale and medium scale "glue"

06C/
a.oa<

VAXBI
INTERFACE

CONTROLLER

VAX•llUS

BIT CONTROU..Efl

logic. The 1553 and VAXBI®interface
circuits are available as off the shelf
Military LSI and do not offer advantages
for further integration. The same can
be said for the memory devices used in
the design. This leaves the Data Path
Logic, DMA Controller and VAXBI®Inter­
face Controller which are comprised of
SSI and MSI functional elements and
offer advantages in size, weight, and
power when integrated as a higher level
funGtion. The data path and DMA (DPDMA)
function has been selected here for
further description. The DPDMA

BITllUS

BIT

EPAOM

Figure 4. Rl553B VAXBI®Interf ace Adapter

generates and checks the message RAM
parity logic for the message RAM,
multiplexes and demultiplexes the
16-bit 1553 bus controller data path

®
with the 32-bit message RAM and VAXBI
dats paths, and provides address regis­
ters, word count registers, and se­
quencing logic for the DMA function.
In addition, the DPDMA circuit resolves
memory access conflicts between the
1553 and VAXBI®with arbitration logic.
It also has BIT for self-test of the
chip.

377

3.5 Sizing Of Module In Terms Of
Surface Area Required

A discrete (non-LSI) version of the
DPDMA function can be implemented with
approximately 70 SSI and MSI circuits
and occupy an area of 81 square inches.
With an available board area of approx­
imately 70 square inches, the discrete
implementation would not fit on a single
module. The options to the designers
are to develop an interface that re­
quires two modules, reduce the

functionality of the design, or to
introduce an Application Specific
Integrated Circuit (ASIC). The CPU has
been reduced to two modules through the
extensive use of VHSIC level technology.
It would be unrealistic to produce I/O
modules of much lower complexity on the
same or greater form factor as the CPU.
Thus, the judicious choice of functions
to be integrated into an ASIC is the
only viable option.

3.6 Compiler Design Procedure

The VLSI compiler implementation of the
1553 interface device originated from a
requirements specification consisting
of an architectural block diagram and
system timing requirements. A prelim­
inary feasability study was first per­
formed to determine the approximate sil­
icon die size and I/O count required.
This was accomplished through an explor­
atory design cycle using the Silicon
Compilers Inc GENESIL ® compiler func­
tion set. By trying different circuit
configurations, an optimum architecture
was achieved. The selected logic blocks
plus and estimated routing area resulted
in a projected die size of 324 x 324
mils using a VHSIC 1.25 micron CMOS
technology.

Having shown design feasability, the
actual silicon compiler implementation
began by first selecting a design
hierarchy that would allow for layout
optimization of critical blocks. The
design entry was accomplished using a
high level specification format that is
unique to the silicon compiler environ­
ment. As each block specification is
completed, a layout is performed and
then optimized to meet system require­
ments. When all lower level blocks are
routed, the chip level floorplan is per­
formed. This step determines the I/O
pad placement and global chip routing
strategy.

378

3.7 The Resultant Design Concept

The first pass of the 1553 chip produced
a device with a die size of 320 x 350
mils. (Figure 5) The device contains
28672 CMOS transistors implemented in a
VHSIC 1.25 micron technology. The
estimated power dissapation is 250 mw.
The device will still have further lay­
out optimization, timing analysis, and
functional simulation before the final
product is released for silicon fabri­
cation. Of note is the fact that the
time interval from the definition of
the functions to be integrated into the
ASIC to the point where device simula­
tion could be started was approximately
two man weeks.

4 IMPACT OF VLSI ON THE OVERALL
INTERFACE DESIGN

The advantages of using a VLSI replace­
ment for the DPDMA function is shown in
Table 1. The comparison shown is for
the entire circuit card assembly.

DISCRETE VLSI CHANGE

Total Number
of ICs 119 49 -59%

Power (Watts) 16 8.7 -46%

Area Used
(Sq. In.) 81 47 -42%

Reliability
(MTBF) 34,000 50,000 +32%

Table 1. Comparison of VLSI and
Discrete Implementations

As can be seen from Table 1, the use of
the compiled ASIC would make major pos­
itive contributions to the module de­
sign. The primary issue is the reduc­
tion of the surface area required to

Figure 5. ASIC for MIL-STD-1553B Interface

379

implement the specified functionality
to the size that will fit on a single
module. Two other major benefits were
fallouts from the ASIC application were
the decreases in power and increase in
computed MrBF. These both were the
result of the reduced number of inte­
grated circuits required for the
function.

The integration of computer electronics
has been largely directed toward the
central processing unit and memory. As

380

the level of integration of these units
increase, it becomes a necessity to in­
increase the integration of I/O devices.
The benefits reported in this paper are
believed to be indicative of those that
can be achieved in both commercial and
military systems.

DEC, VAX, and VAXBI are trademarks of
the Digital Equipment Corporation.
GENESIL is a trademark of Silicon
Compilers, Inc.

Defending against Trojan Horses, Viruses and Worms

Robert A. Clyde
Clyde Digital Systems

Orem, Utah

ABSTRACT

Trojan horses, viruses and worms are a potential threat to any
system. Mandatory access controls under VMS would provide a
partial defense against them. This defense could be strengthened
by increased security awareness, integrity checking, surveillance,
and analysis of the surveillance data.

The Enemy

This paper focuses on attacks on a computer system by trojan horses, viruses and worms.
Viruses and worms are extensions of the trojan horse theme. These attacks center around
a seemingly innocent program that contains covert logic. When this program is invoked by
an unsuspecting user it tampers with objects that the user can access so that the intruder
can acheive some ultimate goal. A good way to understand the relationship between trojan
horses, viruses and worms is to view them in the context of a concerted attack using all
three.

A prospective intruder creates a trojan horse--a program containing covert logic--and
entices other people to use it. The trojan horse's covert logic also contains a virus.
When an unsuspecting user executes the trojan horse, the virus,spreads itself to other
programs to which the user has write access. Furthermore, each time one of the infected
programs runs it also spreads the virus. Each virus also looks for an opportunity to
insert a worm into a particular system program. This worm contains the necessary logic to
allow the intruder to penetrate the system at will. For example, the worm might be placed
in the LOGINOUT program so that whenever the intruder types a certain sequence for the
password he is logged in with all privileges.

So in summary we have the following relationships:

Trojan Horse - Contains covert logic and can introduce a virus via
unsuspecting users.

Virus - Spreads the virus to other hosts (e.g., programs), thereby
breaking down the defenses of the system so that eventually
a worm will be inserted. The worm will be inserted when
someone with write access to the targeted system program
runs an infected program.

Worm - Penetrates the security of the operating system.

Note the insidious nature of such an attack on your system. Removing the worm that
allows penetration will not provide a complete remedy since the virus will be active and
will eventually insert another worm. Complete recovery from such an attack will require

Procccdi'1g'I of1he lJi/,:ita/ Fquipment Computer Usen Society 381 Nashri//e, TN - 198 7

neutralizing the virus. The purpose of this paper is to discuss measures that could be
taken in order to prevent and detect such attacks.

It is possible to have a trojan horse without a virus and a virus without a worm. For
example, if the goal of the intruder is simply access to certain files rather than
penetration of the operating system, then a virus or trojan horse alone will suffice.
Also, note that an initial trojan horse is the key to the attack. Methods that will
combat trojan horses will be effective in combat ting viruses and worms as well.

Security Awareness

Increased security awareness on the part of system managers and users must be
the initial focus for controlling this and most security problems. In particular,
users and system managers should be properly suspicious when presented with a
gift horse program. If there are any questions at all, the source code should be
reviewed by a reliable expert.

Users should periodically check the protection codes and access control lists set on
their files to see if there have been any changes. Generally, executable programs should
be set so that there is no write access. This will help limit the spread of a virus.

Terminals must be locked up or logged out when not in use. If this is not done, an
intruder can avoid the use of a trojan horse and directly insert a virus or a worm via a
terminal left logged into someone else's account. For example, if a user with SYSPRV
leaves his terminal logged in, an intruder could insert a worm directly into the LOGINOUT
program from that terminal. In reality unattended logged in terminals probably account
for more security breaches than trojan horses. A terminal should be locked in cases where
logging out would be difficult or very inconvenient. Although Digital's terminal server
has a locking mechanism, VMS does not. Nevertheless, it is possible to write a program to
perform terminal locking at the operating system level.

Discretionary Access Controls

The standard VMS operating system comes equipped with discretionary access controls
in the form of access control lists and protection codes that can be set on most objects.
These access controls are known as discretionary since the owner of the object is
able, at his discretion, to modify the access control lists and protection codes.

Because of this, discretionary access controls are not an effective defense against trojan
horses, viruses and worms. Consider the following trojan horse scenario:

1. A user named JOHN writes a game called XTREK and sets its protection so that
anyone can execute it.

2. JOHN places covert logic in XTREK so that it sets any files to which the user
has access to world read and write.

3. JOHN then sends a mail message to everyone on the system proclaiming the wonders
of his XTREK program and inviting all to try it.

382

4. SAM reads the message and decides to run XTREK. The game runs fine, but
also changes SAM's files so that anyone can read or write to them. XTREK is able
to do this since VMS allows the owner of the files to modify the access controls.

5. Now JOHN is able to read and write SAM's files.

Mandatory Access Controls

Historically, mandatory access controls have been touted as the primary defense against
trojan horses, viruses and worms[l]. In practice mandatory access controls are set in place
by the system security officer--they cannot be modified by normal users. If SAM owns
files which have had mandatory access controls placed on them so that only TOP SECRET
users can read or write to them, then SAM cannot Lower the files' classification to allow
users at the SECRET Level to access them. So if SAM runs the XTREK program it will
be unable to Lower the classification on TOP SECRET files. Thus, the mandatory access
controls have defeated the trojan horse in this example.

VMS does have a latent capability for providing mandatory access controls[2]. Digital
has recently announced a security product which activates those controls[3]. Nevertheless,
mandatory access controls are not a cure-all.

VMS with mandatory access controls contains numerous covert channels[l]. Covert
channels are communication channels inherent in the system which were not originally
designed as such. Covert channels are only significant on systems which have mandatory
access controls and which are running multiple security Levels. Therefore, a trojan
horse in a program run by a TOP SECRET user could use a covert channel to transmit
TOP SECRET information to an intruder at the SECRET Level. So for example, if
VMS allowed the SHOW USER command to be issued by users at any Level, the process
name field could be used as a communication channel. Thus the trojan horse in the
XTREK program could change its process name to contain TOP SECRET data. JOHN at
the SECRET level could then read this data by issuing a SHOW USER command.

The method for handling the covert channel threat is to

1. Identify as many of the covert channels as possible.
2. Remove as many covert channels as possible.
3. Monitor the remaining covert channels.

Also, how mandatory are the mandatory access controls on VMS? If on a VMS system
there are privileges (e.g., BYPASS, DOWNGRADE, and UPGRADE) which are able to
bypass the mandatory access controls, then when a program with a trojan horse is executed
by a user with those privileges it could access protected information and make it
available to an intruder. Therefore, a complete penetration scenario involving viruses and
worms, like the one described earlier involving LOGINOUT, would give the intruder
all privileges--including the BYPASS and SECURITY privileges.

Controlled Program Creation

Another method for reducing a system's exposure to trojan horses, viruses, and worms is to
restrict the insertion and creation of programs on the system. This may involve only

383

acquiring software from known, reliable sources. On particularly sensitive systems it may
be necessary to perform a source code review and certification before placing an outside
program on the system.

In conjunction with this it may also be necessary to restrict the creation of executable
programs. This can be partially accomplished by controlling access to the various
compilers, assemblers and linkers on the system. However, executable code could still be
downloaded from a PC or some other system. By monitoring terminal input it would be
possible to detect downloading of executable code and flag this as a potentially
suspicious event.

Integrity Checking

Trojan horses, viruses and worms function by compromising the integrity of programs and
files on the system. Consequently, their presence may often be detected by checking to
see if any programs have been changed or if any file protections have been modified.
Such an integrity check could consist of the following:

1. Compare the protection codes and AC Ls of system files to a previously
determined standard.

2. Check for viruses and worms by comparing system programs and files to
a previously determined standard (i.e., perform a CRC).

3. Compare the protection codes and ACLs of all files to a previously
determined standard (i.e. a system backup from an earlier time period).

While these procedures will detect that system integrity has been compromised, they
do not provide sufficient information for identifying the source and method of the initial
intrusion. Collecting such information requires surveillance.

Surveillance of System Use

As indicated by the earlier sections, it may be difficult to totally prevent the insertion
of a trojan horse onto a system. Nevertheless, a vigilant system security officer can
employ surveillance in an effort to discover one of the following conditions:

1. Original insertion of a trojan horse, virus or worm.
2. Abnormal use or access as a result of a trojan horse, virus or worm

making certain files or services available.

The following are potential sources of surveillance data:

1. VMS security alarms.
2. VMS accounting log.
3. Monitoring terminal 110.
4. Monitoring system service use.

Only the first two sources are inherently available with VMS[4]. The other two
would require additional system-level programming.

384

Once surveillance data has been collected, it must be analyzed. This can either be done
manually or automatically. If it is done manually, the volume of data would most likely
preclude any type of review other than spot checking. A computerized analysis, on the
other hand, could greatly reduce the burden to the system security officer.

Analysis of Surveillance Data

The purpose of collecting and analyzing surveillance data is to detect any type of
suspicious activity--not just trojan horses, viruses, and worms. Nevertheless, this method
should also be effective against these particular intrusions into the system. (Of course,
the surveillance system must have tamper resistant mechanisms of its own.)

For example, the VMS alarms could flag any use of the AUTHORIZE program. A security
officer knowing who is supposed to be able to run AUTHORIZE would then be able to
recognize that AUTHORIZE had been run by an intruder. (Note, however, that if the
intruder acquired the SECURITY privilege, he could disable the alarms before running
AUTHORIZE.)

Monitoring system service requests would make it possible to detect such things as:

- Increases in privilege level
- Use of executive and kernel mode

The analysis program could search through the monitored terminal 110 and perform pattern
matching in order to detect such things as follows:

- Browsing through directories
- Execution of AUTHORIZE, SYSGEN, INSTALL, etc.
- Displaying of sensitive information
- Downloading of executable code

Perhaps the most important benefit of monitoring terminal 110 is that it provides the
system security officer with a complete record of what a particular user did at a
terminal. Thus if a user entered a trojan horse via the terminal, this action would be
recorded. If a trojan horse has made certain sensitive data available, the terminal
surveillance would contain a record of what the intruder did with that data. Thus, the
terminal surveillance data may constitute valuable evidence if disciplinary action or
prosecution becomes necessary.

Conclusion

Trojan horses, viruses and worms function by compromising the integrity of programs and
files on the system. A concerted attack consisting of a all three can be particularly
troublesome. Although mandatory access controls provide some defense against trojan
horses, viruses and worms, they may not provide a sufficient defense. Surveillance and
integrity checking may be implemented on a VMS system with or without mandatory access
controls. The use of surveillance coupled with integrity checking can provide a potent
defense against trojan horses, viruses and worms.

385

References

[1) U.S. Department of Defense. DoD Computer Security Center. Department of Defense
Trusted Computer System Evaluation Criteria, CSC-STD-001-83 (Aug. 15, 1983).

[2] Blotcky, S., Lynch, K. and Lipner, S. "SE/VMS: Implementing Mandatory Security i
VAX/VMS." Proceedings of the 9th National Computer Security Conference.
Gaithersburg, MD: September 1986, pp. 4 7-54.

[3] Shannon, Terry C. "DEC Tries to Make VMS Even More Secure." Digital Review.
November 10, 1985, pp. 60-61.

[41 Digital Equipment Corporation. Guide to VAX/VMS System Security. Maynard,
Massachusetts: July 1985.

Created March 12, 1987

386

VAX Systems Coexisting in a Multivendor Environment

Robert C. Groman
Woods Hole Oceanographic Institution

Woods Hole, Massachusetts 02543

Abstract

VAX systems are very popular; however, there are many other computing options
available including scientific workstations, super minicomputers and parallel process­
ing systems. Networked personal computers are also available to the computer center
and department level projects. This paper reviews the issues in designing, implement­
ing and supporting a multivendor, networked environment.

Introduction

This paper reviews the issues facing the system manager and
systems support group responsible for designing, implement­
ing and supporting a multivendor environment. Computer net­
works, tying together both large and small computers from
different companies, offer the computer user a rich diveristy
of computing options. The integration and smooth operation
of these networks pose a number of problems that must be re­
solved if the interconnected systems are to work well together.

Background

The Woods Hole Oceanographic Institution, a private, non­
profit coiporation doing basic research and education in
oceanography and related fields, offers a good opportunity to
study the impact of a multi.vendor computing environment.
The Institution consists of 300 researchers and technical staff
who acquire their own funding through competitively sought
grants and contracts. They work within one of the five depart­
ments: Biology, Chemistry, Geology and Geophysics, Ocean
Engineering and Physical Oceanography. An Administration
group is responsible for keeping things together, but since it
is the researchers that provide the funding, these researchers
are ultimately in charge. (The Institution has been described
as a controlled anarchy, a fitting phrase.) As an example of
researchers independence, there are over 400 personal com­
puters at the Institution representing 38 different models and
vendors. The Administration's rationale for this is that in a
research and development environment, too many standards
can do more harm than good. This view has merit, although
not without some negative consequences.

The Information Processing and Communications Lab­
oratory within the Department of Ocean Engineering is re­
sponsible for providing computer and data communication ex­
pertise and for operating the general and some project specific
VAX computer systems at the Institution. The facility consists
of a VAXcluster (8800, 785, 780, 750), a separate VAX 8250,
several micro VAX II based systems, and hundreds of personal

Proceedings of the Digital Equipment Computer Users Society 387

computers. The VAX systems, running VMS, offer a range of
compilers and software packages including Fortran, C, Pascal,
SPSS, SAS, UNIRAS, DISSPLA/fELLAGRAF, IMSL, ILS
and SMP. Researchers use the clustered VAXes for computer
modeling, data processing and graphics displays. A broad­
band coaxial cable (SYTEK Localnet 20) runs throughout the
Institution (the two campuses are located about a mile apart)
and provides 9600 baud terminal access to the computers.

Distributed Computing

At first, Institution members wondered whether the central
computer model, i.e. a central computer group providing com­
puting resources, would survive the arrival of personal com­
puters (PC) and project specific machines such as the UNIX
based Ridge, Sun systems and micro VAXes. However, their
arrival increased the demand on the central computer! One
reason for this is that the PC's provide an opportunity for peo­
ple to learn what computers can do for them. As applications
outgrow PC's, they migrate to the larger central machines. Of
course, the central site computers also must change with the
times. They must be replaced by faster, more cost effective
components if they are to continue to be competitive with the
powerful, new personal computers and workstations.

Some scientists also need access to the higher end systems
like the Cray X/MP and Cyber 205 class machines. These
machines were accessed via dial-up leased lines either directly
or via a local machine acting as a remote batch terminal using
the 3780 protocol. The researchers usually have compute and
memory intensive applications that take weeks to run on a
machine the speed of a VAX-11n80. Routinely running week
long jobs becomes impractical due to the long run time and
the absence of an uninterruptable power supply.

Another motivation for using a supercomputer can be
cost. Recently, the National Science Foundation established
the supercomputing centers which offer free computer time to
qualified NSF funded projects. Cost is also a strong motivat­
ing factor for acquisition of personal computers, workstations
and project specific machines [2]. Funding agencies appear to

Nashville, TN - 1987

be less willing to provide money for computer time [l]. This
puts pressure on researchers to look for the least expensive
compute cycles available, including supercomputers and the
newer minisupercomputers such as from Alliant, Convex and
others.

Computer System Evaluation

The computer marlc:et is constantly changing and that makes it
difficult to follow and understand. The lifetime for computer
hardware technology is said to be less than three years. It is no
wonder that computers become outdated almost immediately
after their introduction. This allows computer vendors to leap
frog one another with better, faster machines. The more agile
a company is, the better able it is to bring to marlc:et the newest
hardware. Since it is usually the smaller companies that are the
more agile, it is no surprise that larger companies (including
IBM and DEC) are often late to marlc:et with their products.

The UNIX operating system has been proposed as a stan­
dard in order to insulate computer users from this fast changing
technology. The theory is that you can buy the newest, fastest
computer today (in your price range) and upgrade to another
vendor's UNIX based system whenever you want, without
worrying about migrating your applications or investing in
education time to learn another operating system. This ar­
gument has merit, but is somewhat premature. UNIX is not
standardized yet, and until it is, conversions between UNIX
based systems still involves some effort. There is also the is­
sue of whether UNIX is a better operating system than VMS
(or any other vendor's proprietary operating system). This de­
bate appears to be a holy war - each group believing it has
found the one true operating system. UNIX and VMS are both
good, while each also has its weaknesses.

The pressure for faster cpu cycles leads potential buyers
to review vendor benchmarlc: results. Is an Intel based 80386
or Motorolla 68020 based cpu faster than a VAX 785? The
answer is yes if you look at the correct benchmarks. Com­
puter users are becoming more knowledgeable about the fac­
tors affecting a computer's power in order to better evaluate
a product's claims. These factors include cpu speed, memory
capacity and input/output bandwidth or throughput.

Central processing unit (cpu) speed is the most often
quoted yardstick for measuring the power of a computer sys­
tem. A MIPS (million instructions per second) rating of 1
for the VAX-11/780 is routinely quoted although some Digi­
tal equipment owners use the VAX-11/780 itself as the basic
unit, (using the tenn VUP - VAX unit of performance) - a
particularly self satisfying term for DEC's marketing group.
However, quoting cpu speed using MIPS is often misleading
if not inaccurate. The uncertainty comes from the imprecise
definition of the term instruction. On a Reduced Instruction
Set Computer (RISC) architecture, instructions are simple, by
design. One instruction may load a register while another in­
struction adds two registers together. On a complex instruction
set computer (CISC), like the VAX, instructions can accom­
plish many things such as the single instruction that imple­
ments the Fortran DO loop construct. The RISC machine
may have a higher MIPS rating but not necessarily run your

388

application faster than a CISC machine.
For this reason, running specific benchmarks are a bet­

ter way to compare machines. The choice of benchmarks,
however, is critical. The best approach is to duplicate your
applications mix on the machine you want to test. This is usu­
ally too difficult and time consuming. A useful compromise
is to run some of your applications separately or stand alone
assuming that there will be a linear relationship when the ap­
plications are run together. (This assumption is reasonable
but not always true. For example, if there are real-time ap­
plications that are run along with other jobs, the actual job
mix should be tried.) Standalone tests comprise the bulk of
the benchmark tests and are often relied upon to determine
the relative speed of two systems. The problem comes from
extrapolating these results. For example, if a standalone pro­
gram works twice as fast on a new machine, it is too easy to
assume that all applications will run twice as fast. The real­
ity can be much different. Factors that can effect how other
applications may fare include l) hardware speed assist forcer­
tain arithmetic operations but not for others; 2) compile time
optimizations; 3) excess memory paging due to nonlocality of
references; 4) speed of input/output operations; and 5) spe­
cial coding to take advantage of multiprocessing or parallel
processing.

Memory capacity effects the power of a computer system
in two ways. For an operating system that does not support
virtual addressing, the memory capacity puts an upper limit on
the size of a computer program, and therefore its complexity.
(Techniques such as overlaying allow a partial work around
to this limit but at the expense of longer development and ex­
ecution time.) For operating systems that do support virtual
addressing, the virtual address space is usually large enough to
accommodate almost all applications. However, the computer
typically cannot support as much physical memory as virtual
memory. When an application exceeds the physcal memory
limit, paging and/or swapping will occur, causing serious per­
formance problems in the worst case. Memory capacity then
can limit how useful a particular system configuration is to
your needs, even if its cpu speed is superior. Another fac­
tor is memory cost. An entry level computer system may be
agressively priced to compete favorably with its competition.
However, memory upgrades (perhaps essential to your appli­
cation) may be very expensive due to lack of competition. The
final system cost will be much higher than expected.

The input/output (I/0) bandwidth of a machine must also
be considered when evaluating the power of a computer sys­
tem. Most vendors know how to design a balanced system so
that the 1/0 subsystems match the speed of the cpu. It does
no good to have a very fast cpu wait for information from
memory or secondary storage devices like disks and tapes.
Many factors can effect the 1/0 bandwidth. These include
I) the speed and width of the data path between memory and
cpu; 2) the speed and number of channels between external
devices and the internal data path; 3) individual subsystem
components such as disk drive access time and disk controller
transfer rate capacity; and 4) design of the internal data paths­
e.g. do memory transfers wait for slower disk transfers on the
same path or is there a separate data path for cpu to memory

transfers.
There are many other factors that can effect the overall

performance of a computer system. It is important to recognize
that they do exist and to carefully use vendors' claims about
performance in your evaluation.

Tying Computers Together

By 1985, it became clear that Institution scientists needed easy
access to a full range of computing resources and that a net­
work would be the mechanism to provide that easy access. The
Institution expanded the role of the computer center to include
data communications and provided funding. The network de­
sign is based on the network in use at the Massachusetts Insti­
tute of Technology. 1 The l\1IT network uses the TCP/IP proto­
col and the concept of a backbone facility providing high speed
connections among local, building based networks. We will
eventually use fiber optic cable as our backbone although until
its installation, we are using the broadband cable to provide
our interbuilding connections. Ethernet, baseband cable, is
used within buildings to provide local area networking among
PC's, workstations and the VAX systems. Gateways are used
to provide access to other buildings and other networks. The
TCP/IP protocol is supported on the VAXes via Wollongong's
WIN software and DECnet-TCP/IP connections are possible
via gateways. Novell's Netware software provides a local area
network environment for department's PC's used mainly for
word processing applications.

A microwave link to l\1IT provides video, voice and data
channels to l\1IT and, through l\1IT's network, to other sites
including NSF's supercomputing centers (NSFnet). We are
also installing a high speed satellite link to the Cray system
at NCAR and will be part of the University Satellite Network
(USAN). We will continue our connection to the Space Physics
Analysis Network (SPAN) Decnet network as well. Due to
the interconnection of many of these networks, there can be
more than one way to communicate between nodes, providing
redundant communications paths.

Flexibility is Costly

The efforts to provide users with a full range of computing
resources accessed via a local area network take their toll in
complexity and personnel support costs. It was essential that
a separate Data Communications Group be formed to handle
the network implementation, to provide ongoing hardware and
software advice to people wanting to connect to the network,
and to handle problem calls in a timely manner. It does not
take long for users to become dependant on their network
connections and any break in service is considered a serious
problem.

Similarly, the network has made it easier for people to
connect up computers with dissimilar operating systems. With
this flexibility comes additional demands for systems help.

1 It is often counter productive and costly to always develop ones own,
separate problem solutions. The not invented here syndrone must be overcome
in order to build on other peoples' successes.

389

In addition to VMS support, we must provide problem res­
olutions for the MS/PC-DOS and the various flavors of the
UNIX operating system. A separate PC support group within
the central computer facility is available to handle the PC and
more recently UNIX questions. As the use of UNIX increases,
however, more (possibly separate) support will be required
for UNIX systems. In order to keep the support task man­
ageable, only a limited number of PC software products are
fully supported (e.g. Wordmarc/Composer, 1EX/IJ1}:;X, Super­
calc, Symphony). Users can purchase whatever software they
choose, but their expectations for how much help they can
expect to get must be set correctly.

Conclusions

Due to its need for a diversity of computing resources, the In­
stitution routinely used machines ranging from personal com­
puters to supercomputers. The next step was to connect these
machines together to maximize their use. The result is the cre­
ation of three types of networks: 1) a very local area network
(VLAN) consisting of personal computers for departmental
word processing and micro VAX based V Ax.clusters for scien­
tific use within a lab; 2) local area network (LAN) within one
or more buildings that connect the researcher's PC's and work­
stations to other scientists and to the secretarial word process­
ing PC's; and 3) wide area network(s) (WAN) that connect the
Institution's networks to national and international networks.

The future probably will be more of the same - more
personal computers, workstations, project specific supermini­
computers, central mid-range computers and access to remote
supercomputers. The new minisupercomputers may also play
a role if use demands. It is necessary to balance the require­
ments for diversity and flexibility against the limitations im­
posed by available funds. Support costs (including people and
equipment) for the network, computer operating systems and
application programs will become unacceptably high unless
the balance is maintained.

Acknowledgment

I thank Debbie Marenna for the care and speed with which
she prepared this manuscript.

The Woods Hole Oceanographic Institution, Information
Processing and Communications Laboratory (project number
5602) provided support for this work. Woods Hole Oceano­
graphic Institution contribution number 6501.

References

[l] Gordon Bell, NSF, Personal Communication, 26 May
1987.

[2] Groman, Robert C., The VAX Generation: Management
Decisions, in Proceedings of the Digital Equipment Com­
puter Users Society, Anaheim, CA, December 1984.

[3] Notkin, David; Hutchinson, Norman; Sanislo, Jan; and
Schwartz, Michael. Heterogeneous Computing Envi-

ronments: Report on the ACM SIGOPS Workshop on
Accommodating Heterogeneity CACM Vol 30, No. 2,
February 1987.

390

The Allocation and Mounting of Magnetic Tapes Under VMS

Clyde T. Poole
The University of Texas at Austin
Department of Computer Sciences

Austin, Texas

Abstract

The allocating of tape drives and the mounting of magnetic tapes under VMS is
handled by a set of immature commands that are not necessarily suited for use by
large VAX sites. This paper attempts to point out the weaknesses in the system and
suggests possible changes that would make the system more usable.

Introduction

Most VAX/VMS1 sites fall into one of two categories regard­
ing the way magnetic tapes are handled.

The first is the traditional VAX site: one or more VAX's
with a relatively small number of users in a "friendly" envi­
ronment. The users handle the allocation of tape drives and
the mounting of magnetic tapes for themselves. If all the tape
drives are allocated, a user needing to mount a tape, asks
around and persuades someone to relinquish a drive.

The second type of site has only recently begun to use
VAX's extensively. They are usually larger sites than the
first type, with large numbers of users spread across a large
physical area. Magnetic tapes are mounted for the user by a
trained operator. Physical access to the machine room is usu­
ally restricted. These sites either have or have had other large
computers manufactured by DEC (DECsystem-lO's and/or
DECSYSTEM-20's2) or other vendors.

This paper is concerned with the problems of sites of
the second type. The current tape allocation and mounting
system in VMS seems sufficient for sites of the first type. In
this paper I will present a list of problems along with some
possible solutions to these problems. I will also present and
examine some other possibilities and considerations.

Problems and Solutions

The following is a list of problems that have been identified.
Following each problem is one or more solution. The solution
numbers are prefixed with the letter S. Where more than one
solution has been presented, the capital letters (A-Z) have been
used to separate the solutions from each other. These problems
and their associated solutions are in no particular order and
therefore their order should not imply any sense of preference
or seriousness.

1VAX and VMS are trademarks of Digital Equipment Corp.

2DECsystem-10 and DECSYSTEM-20 are trademarks of Digital Equip­
ment Corp.

Proceedings of the Digital Equipment Computer Users Socie1_1· 391

1. The ALLOCATE command can be used to allocate any
unallocated tape drive to a process. The operator cannot
prevent this allocation except by allocating the drive to an
operator process. This, in tum, prevents the MOUNT com­
mand from ever succeeding because all the tape drives are
allocated. This also allows a malicious or ignorant user
to stop all access to tape drives by simply allocatmg them
all.

SIA. The ALLOCATE command is really not necessary (or de­
sirable) at most sites. Simply making it a privileged com­
mand would solve the problem.

SIB. In TOPS-103 there was a command called RESTRICT

which limited direct allocation (ASSIGNment in TOPS-
10) of a restricted device to the operator and privileged
system utilities. The operator also had a command,
REASSIGN, that allowed him to pass an allocated de­
vice to another process (job in TOPS- IO). Implement­
ing a similar pair of commands in VMS and allowing
the MOUNT command to allocate a restricted tape drive
to a user would work fine. When a user deallocated
(DEASSIGNed in TOPS-10) the restricted device, its re­
stricted nature returned automatically. This would not re­
quire any changes visible to the users of the ALLOCATE

command. Note that simply using the device protection
scheme and/or ACL's on a device does not produce the
san1e behavior.

2. The REQUEST command is not a clean interface for re­
questing that the operator mount a particular tape. This
command requires the user to perform a multi-step pro­
cess to get a tape properly mounted. First the user allo­
cates a drive. Then he uses the REQUEST command to
ask the operator to load a particular tape on a particular
drive. The user finally issues a MOUNT command that
may now fail because the operator forgot to put the write
ring in the tape reel. Many sites have implemented . COM

3TOPS-10 is a trademark of Digital Equipment Corp.

Nasln·ille, JN - 1987

files to make this operation a single step for the user. The
fact that so many have done so suggests the need for a
single-step mount process.

S2. The MOUNT command alone should pass enough informa­
tion to the operator and VMS to allow the completion of
a mount request. If a tape is labeled, VMS should check
a data base of tape protections and ensure that the user is
allowed access to the tape being requested If he is not
allowed access, he should be notified and the operator
should not get any mount request indication. It might be
appropriate for this to be a security alarm condition. If he
is allowed access, the operator should be asked to mount
the tape. If the user has asked that a foreign tape (one
that is not in the protection data base, see S5 below) be
mounted, then a visual identification string should be re­
quired by the MOUNT command and the operator request
should clearly indicate that the operator is responsible for
ensuring that the user should have access to the tape. If it
is an unlabeled tape, the operator should tell VMS which
drive he mounted the tape on. If it is a labeled tape, VMS
should detect the mount, read the label and complete the
request with no further operator intervention.

3. The mount system allocates the tape drives in a manner
that causes higher usage of the low numbered drives than
of the high numbered drives.

S3A. The solution S2 above solves this problem also.

S3B. If VMS must tell the operator which tape drive to use, it
should at least rotate through all available drives of the
appropriate density.

4. The MOUNT command does not have a visual identifier
switch. Many sites allow foreign, unlabeled tapes to be
mounted. The user needs a clean method of indicating
that such a visual identifier should be checked before
mounting a tape.

S4. The solution S2 above solves most of this problem. The
support for a visual identifier should be extended to the er­
ror logging process to facilitate detection of failing tapes.

5. There is no tape protection system. A user can ask the
operator to mount any tape. The current system relies on
the visual identification of the tape and its allowed users.

S5. Implement a known-tape protection and ownership data
base. As a very minimum this data base should contain:

(a) the UIC (or rights identifier) of the owner of the
tape

(b) the allowed access types for each allowed user (in­
cluding the owner); read-only, read-write, write­
only for interactive processes and the same set for
batch processes

(c) an indication of whether the tape is magnetically la­
beled or not and the type of label (ASCII, EBCDIC,
etc.)

(d) the tape magnetic and visual label (they could be
the same but should not have to be)

(e) the date of the last successful mount

(f) a count of the number of times it has been mounted

(g) an expiration date

(h) the date it was added to the data base

(i) a location field (which cabinet, room, building, etc.)

(j) volume set name and relative position in volume set

(k) user defined, reserved fields

The allowed user list should be by UIC (with wild cards
allowed) or rights identifier. The utility for building and
maintaining this data base should allow the owner of a
tape to change the protection of the tape without the inter­
vention of anyone else. In addition, the /OVERRIDE= ID

switch to the MOUNT command must be made a privileged
operation when the tape is a protected tape, i.e., one in
the ownership data base.

6. There is no mount queuing system. If all tape drives
are currently allocated, all succeeding MOUNT commands
fail.

S6A. Implement a mount queuing system using a first come
first served scheme with consideration given to different
tape densities (see Sl3 below).

392

S6B. Implement a mount queuing system as S6A above with
the added feature that the operator have the ability to
override the system and select which request he will ser­
vice next.

S6C. Implement an absolute priority mount queuing system
with operator override of request priority possible.

7. The MOUNT command blocks DCL. If a user wants to
mount more than one tape at the same time he must mount
each in a sequential fashion.

S7. The MOUNT command should make a mount request and
then return to DCL command level by default. Succeed­
ing MOUNT commands would be processed in the same
way. Interactive users would get a message as each re­
quest they had pending was satisfied. A MOUNT/WAIT

command could be used in batch to insure that a batch
command file waited for all necessary mount requests to
be completed before continuing. A MOUNT I CHECK or a
SHOW QUEUE /TAPE command would allow a user to
examine the status of any mount requests he has pending.

8. There is no way for the batch queuing mechanism to tell
if all the tape resources necessary for a particular batch
job are available before the job is started. Tape deadlock
situations are easily produced and difficult to remedy.

S8. Implement a switch to the SUBMIT command where a
list of required resources could be provided such as:
/RESOURCES=(TAPES: (DENSITY:1600,COUNT:2))

9. Any automated tape protection system will probably re­
quire that the protections revolve around the magnetic
tape label. Users can currently change the label written
on a tape to anything they want using the INITIALIZE

or MOUNT utilities.

S9A. Make the INITIALIZE command an operator privileged
command and take the /INITIALIZE switch out of the
MOUNT command.

S9B. Add a new privilege called "May Initialize Tapes" and
only give it to the operator by default.

IO. The BACKUP utility reinitializes tapes as it uses them
(especially system backups). This will cause problems
with any tape protection and/or allocation system that
might be implemented.

SlO. Make BACKUP respect existing labels. It should be em­
phasized that when BACKUP is supplied with a list of
tape labels, the intention is that BACKUP use those tapes.
BACKUP should verify the tape mounted has the appro­
priate label before it writes on it and leave the same label
when it is finished writing on it.

IL The DISMOUNT /NOUNLOAD command allows the user
to leave a tape loaded but unallocated. This is a security
problem. If the user has not allocated the drive, another
user can now allocate the drive and get access to the first
user's tape.

SI IA. Remove the /NOUNLOAD switch from the DISMOUNT

command. This assumes that an appropriate REWIND

command will be implemented.

Sl lB. Make /NOUNLOAD a privileged command. This assumes
that an appropriate REWIND command will be imple­
mented.

SllC. Allow the /NOUNLOAD switch only if the tape was allo­
cated with the ALLOCATE command. (see solution SIA)

I2. The
DISMOUNT command does not force a DEALLOCATE

of the drive. This causes two problems. The first is a
continuation of problem 1 I above. The second is related
to problem I above. Users tend to forget that they al­
located a drive. If they do not enter a DEALLOCATE

command, the drive will remain unusable to the rest of
the user community until the offending user logs out.

SI2. Solutions SIA and SIB above solve this problem.

13. Users must know the device names of the tape drives
available to them. This includes knowing that some
drives are 800-1600 bpi drives, some are I600 bpi only,
some are 1600-6250 bpi, some are streaming and some
are start/stop. On systems with many tape drives, this
can be confusing.

393

Sl3. Implement a /DRIVE=density switch to the MOUNT

command that will pick a tape drive of the appropriate
density. If =density is left off, assume some default,
probably 6250. If this switch is present, don't require a
device specification.

14. Sites that do not have 24 hour per day, 7 day a week
operator coverage have a problem. There is currently no
way for a user to determine that an operator is or is not
on duty. A user should probably not be able to make
a mount request and batch jobs that need tapes should
not start if there is no operator on duty. The REPLY

/DISABLE=TAPE option is not sufficient.

S 14. Implement a "no operator on duty" flag that can be
queried in some simple manner and make the MOUNT

command check to make sure there is an operator be­
fore making a request. Solution S8 above should also be
extended to check this flag.

15. If a user requests that a tape be mounted "write-enabled",
the mount system does not check to make sure that the
drive is hardware write-enabled; that is, the write ring is
in place in the mounted tape. The reverse is also true. A
tape can be mounted with the write ring in place when
the user requested read-only access.

S 15. Have the operator portion of the mount system check the
status of the write ring and require that the operator re­
mount the tape with the ring in or out as requested by the
user. The user should never know that this happens.

16. The operator has no clean method of making a tape drive
completely inaccessible. This is especially needed when
a tape drive is broken. Allocating the drive to an operator
process is not a good solution.

SI6A. Implement a command similar to the DETACH device

command in TOPS-10. This command completely re­
moves the device specified from visibility to any device
dependent commands. This also implies that the ATTACH

device command is needed to restore the visibility of
the device.

SI6B. Make the command SET DEVICE /NOAVAILABLE

work for magnetic tape drives.

I 7. There is no method of removing an allocated tape drive
from another process. This is especially painful when
a user allocates a drive, uses the drive and then starts
a long running program without deallocating the drive.
The user would normally gladly give up the drive if he
did not have to lose all the run time he may have already
accumulated.

SI7. Implement some privileged command that will allow the
operator to remove an allocated device from another pro­
cess without interfering with the running image.

18. VMS does not support standard IBM4 EBCDIC labels
and tapes.

4 IBM is a registered trademark of International Business Machines Corp.

Sl8. The tape mounting system should recognize and process
standard IBM labels. The EBCDIC translation would
only be applied to the tape label portions of the volume
set; no translation need be applied to the date file sections
of the volume set.

19. There is no method of redirecting a request for a device.
It sometimes occurs that only a particular drive will read
a particular tape. This shouldn't happen but it does.

Sl9. Allow the operator to redirect a mount request from a
specific drive xxY .. x: to another specific drive yyyy: .
This eliminates the need for a MOUNT followed by a
DISMOUNT followed by another MOUNT.

20. The MOUNT and DISMOUNT command pair do not pro­
duce sufficient accounting information. Specifically, the
total elapsed time that a drive is under the control of a
user is not collected.

S20. Improve the accounting entries provided by the mount
system so that the total elapsed time that a drive is al­
located by a user is collected in some way. A possible
method is to provide both a "mount" and a "dismount"
entry such that the elapsed time between the entries could
be calculated.

Other Considerations and Possibilities

I realize that systems like the tape protection data base may be
very site dependent. Digital would also probably like to make
any system it implemented into a separately licensed (and paid
for) product. It therefore might be more appropriate to make
the mount utility into a user modifiable system, somewhat like
the user modifiable print symbionts. "Exits" might be provided
for attaching tape security subroutines for example. I would
be happy to work with Digital on the design of such a system.

Many of the problems I have presented are related to
security. These need attention as soon as possible. Most have
very simple and straight-forward solutions.

At least one of the problems presented concerns BACKUP.

BACKUP should have no regard for the labels on a tape, except
for the requirement that one be present. The labeling of tapes
is an administrative nicety for tracking and protecting tapes.
Most sites need to have consistent labeling for tracking tape
failures and usage. Letting BACKUP change the tape label
defeats this property of labeling.

A general observation about mounting tapes is that the
user has too much control over the system and the operator has
none. In large computer installations, the orderly use of non­
shared resources requires that the operator have some level of
control over those resources. The MDA (mountable device
allocater) and GALAXY systems under TOPS-10 could be
used as examples of an implementation that works.

Acknowledgments

The problems and solutions presented in this paper are the re­
sults of the efforts of many people. Most of the information

394

presented in this paper comes from the investigation and im­
plementation of the University of New Orleans, MOUNT and
Magtape Inventory System. Because of this, I owe special
thanks to Charles Boyd, Robert Adam II and I. Joseph Autin;
all of the UNO, Computer Research Center staff.

Mysteries of VAX/VMS system parameters revealed

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, NY 10081

Abstract

This paper will present VMS system parameters from an "Internals" perspective. In
the first part, we relate the various components of VAXNMS to particular subsets
of the compl~te parameter set. In the second part, we take the same appproach with
respect to a smgle process.

The System

System initialization

Before a VAX/VMS 4.x system can operate, some initializa­
tion (or, "bootstrap") program must execute to configure the
system and read the Exec into memory. Parts of this operation
are specific to the type of VAX processor; others are common
across all VAX computer systems.

Sysboot itself occurs in two phases:

• Init, which loads the code which is part of the Exec;

• Sysinit, which loads the code which sets up some process
context.

Basically, Init turns on memory management and sets up
those data structures whose size or content depend on system
parameters. Sysinit, however, opens the system files, creates
system processes, maps RMS and the system message file, and
creates the process which invokes the system startup command
procedure (SYSTARTUP).

Once Init has succeeded in turning on memory manage­
ment, it is free to make references to system addresses - par­
ticularly, in order to initialize those dynamic data structures
whose listheads are stored in static global locations in sys­
tem (SO) space. This involves the allocation of memory from
nonpaged pool.

The size of the packets for the three lookaside lists are
calculated; the lists are then formatted and linked together.

The system header is treated by the VMS memory - man­
agement sub-system as the occupant of a balance slot whose
index is equal to the system parameter BALSETCNT.

Sysinit, like Init, consumes large amounts of nonpaged
pool and some paged pool. However, the sizes of various
control blocks are not directly related to system parameters.

The swap file is divided into swap spaces. Each space is
a multiple of the system parameter MPW_WRTCLUSTER. The
maximum number of processes the system can support is taken
as the minimum of the swap file space count and the system
paraemter MAXPROCESSCNT.

Proceedings of the Digital Equipment Computer Users Society 395

System virtual address space

The Exec image SYS$SYSTEM:SYS.EXE contains the code
for VMS, but very little data. Since many of its data structures
are not created until the system is booted, their sizes can be
determined from the appropriate system parameters.

The number of bytes in a page is 512. If 511 is added to
an expression for a number of bytes before an integer division
takes place, this represents a rounding up to the next - highest
page boundary.

Since a page table entry is 4 bytes long, a page of page
table entries maps 128 pages. (Here the rounding up factor is
127.)

System virtual address space (SVA) is "configured" as
follows. The area which will contain the linked Executive
the RMS image, and the system message file has its size de~
termined by the system parameter SPTREQ. There must also
be enough pages here to map the I/0 adapters and to reserve a
system virtual page for each device unit whose driver requests
one.

The space reserved for the paged dynamic memory area
depend on the system parameter PAGEDYN.

The space reserved for nonpaged pool is the sum of the
size of the nonpaged memory and the size of the lookaside
lists - that is, small request packets (SRPs), 1/0 request pack­
ets (IRPs), and large request packets (LRPs). The system
parameter NP AGEDYN determines the size of this space. The
size of each lookaside list is determined by the size of the
request packets and the number of packets in the list.

The system parameter INTSTKPAGES states the size of
the Interrupt Stack.

The size of the area devoted to balance slots depends
on BALSETCNT, times the size of a process header. Thus,
we can see that we reduce BALSETCNT in order to support
a large process virtual address space. Likewise, we reduce
VIRTUALPAGECNT in order to support a large number of
concurrently - resident processes.

The size of the system page table depends on two system
parameters, SYSMWCNT and GBLSECTIONS. The size of the

Nashville, TN - 1987

global page table depends on one - namely, GBLPAGE~.
For calculations depending on the amount of available

physical memory, VMS uses the minimum of the size of phys­
ical memory and the sysgen parameter PHYSICALPAGES.

The system parameters FREELIM and MPW_LOLIM set
the lower-limit thresholds for the number of pages on the Free
Page and Modified Page Lists, respectively.

Dynamic memory allocation

VMS maintains three separate areas for the dynamic allocation
of storage:

process allocation region data structures required only by a
single process;

paged dynamic memory data structures used by several pro­
cesses, but not required to be permanently non-resident
(for example, group and system logical names, global
sections, known file entries, resident image headers);

nonpaged pool data structures and code used by the portions
of VMS which are not procedure - based; data structures
and code shared by processes, but not paged (for example,
PCB and sequence vector, the Swapper's 1/0 page table,
page-file bitmap, modified page - writer's arrays, adapter
control blocks - for all external adapters located at boot­
time, device driver code and associated data structures
- for devices either located through the autoconfigura­
tion phase of Sysgen or explicitly loaded via the Sysgen
commands LOAD or CONNECT).

Nonpaged pool contains four regions: the three lookaside
lists (for SRPs, IRPs, and LRPs) and the remainder of variable
length. Nonpaged pool differs from paged pool (and the pro­
cess allocation region) in that it can possibly be extended as
part of the normal system's operations. For each region, there
are two relevant system parameters: one specifies its initial
size; the other, its maximum size.

The size of the variable - length region of nonpaged pool
is controlled by NPAGEDYN and NPAGEVIR. Although both
are expressed as a number of bytes, both are rounded down to
an integral number of pages. During initialization, sufficient
contiguous system page table entries (SPTEs) are allocated
for the maximum size of the region, equal to whichever of
the sysgen parameters NPAGEDYN and NPAGEVIR is greater.
Physical memory pages are mapped using a portion of these
allocated SPTEs.

During system operation, a failure to allocate from this
region results in an attempt to expand the region. The phys­
ical pages are allocated to fill in the next portion of avail­
able SPTEs. VMS's deallocation strategy requires that this
extended dynamic area be virtually contiguous with the previ­
ously existing one. The four regions must also be adjacent.

This strategy is the reason that the maximum number of
SPTEs must be allocated at once for each region - even though
some of them are initially unused.

The lookaside lists for SRPs, IRPs, and LRPs are allo­
cated in the same manner - using the following system pa­
rameters:

396

Type

SRP

IRP

LRP

Size

SRPSIZE

160
LRPSIZE

Initial and maximum counts are maximized. SRPSIZE

is rounded up to a 16 - byte boundary; the maximum size of
the SRP list is rounded up to a page boundary. LRPSIZE is
also rounded up to a 16 - byte boundary, and the maximum
size of the list is rounded up to a page boundary. 1

Dynamic nonpaged pool expansion enables automatic
"system tuning". However, an inadequate initial allocation
size will result in increased overhead due to the expansion
carried out during allocation requests. Also, unnecessary PFN
database is built for physical pages added to ~onpaged pool
during expansion: the penalty here is 18 bytes (4%) per page.

For a too - large maximum allocation, the penalty is 1
SPTE for each unused page, which is 4 bytes (I%). If the
maximum size of a lookaside list is too small, performance
is adversely affected - because VMS is prevented from using
the lookaside mechanism for pool requests.

If the maximum size of the variable - length region is too
small, processes must wait for nonpaged pool to be allocated
and may be placed in MWAIT.

Note: The three lookaside lists are structured into a se­
ries of elements, of size = xRPSIZE. In each of the lists, the
elements are entered into a doubly - linked list. The system
parameters SRPMIN and LRPMIN indicate the smallest sizes
for packets in the SRP and LRP lists, respectively.

Process creation

The $CREPRC system seivice allocates a process control block
(PCB), a job information block (JIB) for detached processes
only, and a process quota block (PQB). This routine fills
these three structures with the implicit and explicit parameters
passed to it. The control blocks are allocated from nonpaged
pool.

Two tables in the Exec are used by the $CREPRC system
service when quotas are set for the new process: a minimum
quota table and a default table. Each quota or limit in the
system has an entry in both tables. The contents of the mini­
mum table are determined by the system parameters prefixed
by PQL...M, while those of the default table by PQL_I),

The default values for each quota are placed inside the
PQB. Any quota included in the argument list to $CREPRC
replaces the corresponding default value. Each quota is then
forced to its minimum value. Checks are made to insure that
the creator process possesses sufficient quota to cover those
given to the new process. Finally, the required quotas and
working values are moved into the PCB.

1 The output of the DCL command $ SHOW MEMORY displays the quantity
LRPSIZE+64 .

The Shell process

A process comes into existence in state COMO. Its swap
image exists in the paged portion of the Exec image
SYS$SYSTEM:SYS.EXE . This image contains a minimal
process header and control region (Pl) space.

The selection of a newly - created process for inswap
and the actual inswap operation are both performed by the
Swapper.

When the Exec image was linked, the Shell process was
constructed to look like an outswapped process. However, a
process header must be configured via several system parame­
ters. To perform this task, the Swapper determines whether the
·new process was created from the Shell. If so, it calls a routine
to complete the process header before inswap is completed.

The system parameters PAGTBLPFC and PFCDEFAULT

are stored in the process header.
The

WSQUOTA, WSAUTH, WSEXTENT, and WSAUTHEXTENT

pointers are initialized to the system parameter WSMAX. The
WSFLUID counter is initialized to MINWSCNT. The end of the
working set list (WSLAST) and the default count (DFWSCNT)

will initially reflect the value of PQL....DWSDEFAULT.

New processes

The first code which executes in the context of a newly -
created process is the same for every process in the system.

The quotas stored in the process header - CPU time limit
and AST limit - are moved from the PQB to the process
header.

The working set list pointers are initialized to reflect the
quotas passed from the creator process. (Of course, this takes
place after minimization with the system - wide value for
WSMAX.)

The I/0 channel table will be created in Pl space. The
number of channels permitted is determined by the system
parameter CHANNELCNT.

Process headers

The size of the process header is related to sev­
eral system parameters: PHD$K_LENGTH, PROCSECTCNT,

PQL....DWSDEFAULT, and VIRTUALPAGECNT.

Most of the process header is taken up by the PO and
Pl page tables. The total number of pages allocated for these
tables is

The process header pages which do not contain page ta­
bles are locked into the process's working set: they always
require physical pages. Thus, many processes will have work­
ing sets less than WSMAX. The initial working set list size is
calculated for this very reason.2

2The assumption made here is that most processes will have working sets
approximately equal to l?QL..DWSDEFAULT.

397

Process spaces

Most of the pieces of Pl space have pre-determined sizes.
These sizes are based on the contents of the module called
"Shell" in the Exec.

The image 1/0 segment is created by the Image Activator.
It is the RMS impure area for files opened during the execution
of a specific image.

Images

Before an image can execute, VMS must take steps to prepare
it for execution. Process page tables and other data structures
must be set up to locate the correct image file on disk. Address
references between shareable images must also be resolved.

In addition, if the debugger or the traceback handler is
expected to run when the image executes, the correct hooks
must be present to allow them to be invoked.

After the Image Activator has processed all the image de­
scriptors, it calls the $CRETVA (Create Virtual Address Space)
system service to create the image I/0 segment. Its size is de­
termined by the system parameter IMGIOCNT, which may be
overridden by the "IOSEGMENT" Linker option.

System parameter tables

A common module, Parameter, is linked into both the Sys­
boot and Sysgen images. It contains information about each
adjustable system parameter. This data never changes.

Each parameter occupies a cell in a table of working val­
ues. This table can be manipulated via the Sysgen commands
SHOW, SET, and USE.

There is also a copy, Sysparam, of this working table
linked into the Exec image SYS$SYSTEM:SYS.EXE.

Miscellaneous remarks on system data structures

System page table entries (SPTEs) are reserved for, and
physical memory pre-allocated for, NPAGEDYN, LRPCOUNT,

IRPCOUNT, and SRPCOUNT.

SPTEs are reserved for NPAGEVIR, LRPCOUNTV'

IRPCOUNTV, and SRPCOUNTV. Physical memory is not pre­
allocated for NPAGEVIR, LRPCOUNTV, IRPCOUNTV,

and SRPCOUNTV: it is allocated on demand from the Free
List if there is enough "excess" memory.

Changing system parameters

1. Save existing parameter values before making any
changes.

2. Change only a few parameters at one time; make the
changes small ones.

3. Observe system behavior relevant to the changes.

4. Monitor system to discover new problems.

5. Evaluate your success.

6. Return to the original values, if necessary.

7. Start all over again?

Autogen

Autogen recalculates some 60 parameters; there are 241 in
VMS 4.5.

Do not be concerned about that big number .. .If you use
Autogen, your system will probably re-boot.

The process

Overview

A process is the environment within which programs execute
under VAXNM.S. This entity consists of a hardware context,
a software context, and some virtual address space.

A number of processes can run in the available physical
memory. To VMS, a process is a schedulable entity. Each
process manipulates data, some of which it may share with
other processes.

As we shall soon see, the whole memory management
strategy of VMS depends on the process's initial working set
quota, its worldng set extent, and its base priority.

VMS consists of the Executive, which is always resident
in memory, and several other components. VMS attempts to
ensure that each process can complete its work by allocating
sufficient system resources to each one.

Image activation lays the groundwork by which the pro­
cess can bring into memory its first set of pages from the
image file.

Physical memory on a VAX system has three major uses:
process space, resident Exec, and page caches.

VMS and each process have their own individual working
spaces. Actually, each worldng set contains process-specific
lists. At any given time, the pages in a working set include all
valid pages in memory for the process, and they may represent
only a subset of those in the process's page tables.

There are enough balance slots reserved in physical mem­
ory for the maximum number of processes expected to be run­
ning concurrently, including VMS itself.

Under VMS, it is important to balance the use of memory
and the number of processes running at once. Each process
has a QUANTUM of time available to it for doing work. VMS
schedules both when and for how long a process executes.

The Swapper schedules the actual usage of physical mem­
ory. It keeps track of the pages which are in physical memory,
as well as in the paging and swapping files on disk. Each pro­
cess should have a steady supply of pages for each task.

When a process demands more pages than are available
in its worldng set, some of this process's pages must be moved
out to the page cache. Those pages which have been modified
are kept on the Modified Page List; the unmodified ones are
kept on the Free Page List. If the page cache is full, the
Swapper transfers a cluster of pages from the modified cache
out to the disk paging file. This action constitutes a page fault.

A page fault also occurs whenever the process needs the
pages that are stored in either the image file or the paging file.

398

Under VAX/VMS, a bottleneck occurs if many processes
begin page faulting at the same time. It costs memory to
minimize the effects of this phenomenon.

Process creation

$CREPRC allocates new data structures: process control block
(PCB), a job information block (JIB) if the new process is de­
tached, and a temporary process quota block (PQB). These
structures are filled in from the $CREPRC arguments, the cre­
ator's PCB, the creator's control region, the creator's process
header (PHD), VMS defaults (PQL..Dxxx), and VMS mini­
mums (PQL..Mxxx). The process ID (PID) is actually formed
at this time.

Note: The VMS parameters MAXPROCESSCNT and
BALSETCNT play an important role.

The Swapper's task is to store VMS parameters in the
new PHD, to initialize pointers and counters in the new PHD,
amd to initialize SPTEs.

The PROCSTRT component of SYS.EXE performs the
following tasks: move PQB information to the PHD and Pl
space; create logical name tables; map in the XQP; and, fi­
nally, call the image activator.

Scheduling

To help other processes compete with compute-bound pro­
cesses, priority boosts are applied at the time of certain events
- for example, 1/0 completion or resource available. There are
different boosts for different events, but boosts cannot exceed
priority 15.

At QUANTUM end, one of several actions might occur:

• an outswapped process may be made computable;

• the Swapper may be invoked;

• the process has run out its CPU limit and can now be
deleted;

• AWSA is calculated.

Automatic working set adjustment (AWSA)

The goal of AWSA is to attain the optimal working set size
for each process. The balance is between

• the maximum which allows good program performance;

• the minimum which optimizes overall memory usage.

A high page-faulter needs an increased worldng set size.
A low-faulter may find its working set decreased if physical
memory is required elsewhere. 3

The basic scheme is as follows. The maximum size to
which the working set can grow is WSQUOTA. If there are
more than BORROWLIM pages on the Free List, however, then
the Working Set List can be extended up to WSEXTENT, at
QUANTUM end. If there are more than GROWLIM pages on

3 The list size is modified, not the number of entries in use.

the Free List, pages can be added above WSQUOTA, upon the
resolution of a page fault.

Image activation

The Image Activator opens the image file, reads the image
header, maps the image into virtual address space, and returns
to the caller-typically, DCL.

The actual pages of this image are brought into physical
memory as needed.

The process section table, or "PST", locates the image
sections on disk. The PST entries are actually built by the Im­
age Activator. Most PST entry information is copied from the
image section descriptors, or "ISDs", in the {filename }.EXE.

A most negelected VMS parameter which applies here is
PROCSECTCNT.

Process deletion

After the image runs and finally exits, the process will be
deleted

All traces of the process are removed from the system,
and all system resources are returned. Accounting information
is passed to the Job Controller.

If the process was a subprocess, all quotas and limits are
returned to its creator.

Finally, the creator is notified of the deletion.

Notes on PTOOLS

SPM2.COM fires up SPM experiments. It first checks
to see which drives are mounted and which de­
vices are online. This program collects both
tuning (SPM$COLLECT_TUNE.DAT) and capacity
(SPM$COLLECT _CAPACITY.DAT) statistics.

PC..START.COM fires up SPM to collect system-wide PC
(PC.DAT) statistics.

PC.LOG.COM reports on system-wide PC statistics.

pc_By JD.COM provides this report for a specific process.

PROC..START.COM fires up SPM to collect process met-
rics.

PROC_LOG.COM reports on process metrics.

PROC_BY JD.COM provides this report for a specific pro­
cess.

CAP _LOG.COM is a sample program for reporting capacity
statistics.

TUNEX_GRP.COM is a sample program for graphing tuning
statistics.

TUNEX_TAB.COM is a sample program for tabulating tun­
ing statistics.

CAP _.INQ.COM is a command procedure to check capacity
run.

399

TUNEJNQ.COM is a command procedure to check tuning
run.

$ name: spm2.com
$
$ purpose: to run SPM experiments on production machines
$
$ author: s. szep
$
$ date: 12/20/85
$!
$! revised: 05/07/86
$!
$!
$! create a local symbol
$!
$ wso = "write sys$output"
$!
$! purpose: find out what drives have packs mounted
$!
$ wso "Working ... "
$ wso " "
$!
$ drive = ""
$ assign mou.tmp sys$output
$ sh dev /mou d
$ deas sys$output
$ open/read/error=no_way -
disks mou.tmp
$!
$! skip first 3 records
$!
$ read/end of file=no more disks -
disks line
$ read/end_of _file=no_more disks -
disks line
$ read/end of file=no more disks -
disks line
$!
$! loop to get drive names
$!
$ again:
$ read/end_of file=no more disks -
disks line
$ pos = f$locate(":",line)
$! ignore report labels
$ if pos .eqs. f$length(line) -
then goto again
$ pos = pos + 1
$ moudev = f$extract(O,pos,line)
$ one= f$extract(0,1,moudev)
$!
$! ignore RT's

$!

400

$ if one .eqs. "R" -
then goto again
$!
$! valid disk drives
$!
$ okay:
$ drive = drive + moudev +
$ goto again
$!
$! error path
$!
$ noway:
$ wso " "

" " ,

$ wso "*** Error in MOUDEV ***"
$ wso " "
$ goto end_it all
$!
$! cleanup fl
$!
$ no_more_disks:
$ mou_len = f$length(drive) - 1
$ drive= f$extract(O,mou_len,drive)
$ sh sym drive
$ close disks
$ purge/nocon/keep=2 mou.tmp
$!
$! from: othdev.com
$!
$! purpose: find out other devices on the system
$!
$! table for permissible devices
$!
$ DEV_table = "2XM2XQ2XE2DV2MF2MU"
$!
$!
$ other ""
$
$
$
$

assign oth.tmp sys$output
sh dev
deas sys$output
open/read/error=nogo -

dvcs oth.tmp
$!
$! skip first 3 lines
$!
$ read/end_of _file=no more devs -
dvcs line
$ read/end_of_file=no_more~devs -
dvcs line
$ read/end_of_file=no_more_devs -
dvcs line
$!
$! main read-loop
$!
$! forget about drives
$!
$ more devs:
$ read/end_of _file=no more devs -
dvcs line

401

$ pos = f$locate(":",line)
$!
$! ignore report labels
$!
$ if pos .eq. f$length(line) -
then goto more_devs
$ abbrev= f$extract(0,2,line)
$!
$! Main parsing routine.

get device "prefix"

$! This routine compares the current device
$! against the options in the device table.
$! When it finds a match, it branches to the
$! appropriate label.
$!
$ dev_siz
$ index = 0
$!

2 ! device "prefix" length
init. table index

$! table search
$!
$ check next:
$ dev_len = f$extract(index,1,dev_table) table-element length
$ if dev_len .eq. 0 - if a disk or tube,
then goto more_devs ! skip it
$ index = index + 1
$ next_dev = f$extract(index,dev_len,dev table)
$ if abbrev .eqs. next_dev - ! if in table,
then goto found it ! a valid device
$ index = index + dev len
$ goto check_next
$!
$! valid devices
$!
$ found it:
$ pos = pos + 1
$ othdev = f$extract(0,pos,line)
$ other = other + othdev + ", "
$ goto more_devs
$!
$! error path
$!
$ nogo:
$ wso " "
$ wso "*** Error in OTHDEV ***"
$ wso " "
$ goto end_it all
$!
$! cleanup t2
$!
$ no more devs: - -
$ oth_len = f$length(other) - 1
$ other= f$extract(O,oth_len,other)
$ sh sym other
$ close dvcs
$ purge/nocon/keep=2 oth.tmp
$!
$!**
$! *
$! 2) Fire up SPM for tuning session... *

402

$ *
$ **
$
$ from: tunex.com
$
$ purpose: SPM tuning expt.
$!
$! setup parameters
$!
$ xdrive ="("+drive+")"
$ xdev = "(" +other+"," +drive+ ")"
$!
$! start SPM's timer
$!
$ @sys$system:spmtimer
$!
$! start up tuning
$!
$ perf col=tune/int=300/class•all
/DISK='xdrive' -
/DEVICE='xdev' -
/ending="+23:59:00"
$!
$ wso "TUN2 starting .•. "
$
$ ***
$
$
$

*
3) Fire up SPM for capacity-planning session

*
*

$ ***

$
$ from: capex.com
$
$ purpose: SPM capacity expt.
$
$ start up capacity session
$
$ perf collect=capac/int=300
$. /class=all -
$! /DEVICE='xdrive' -
$! /DISK='xdrive' -
$! /ending="+23:59:00"
$!
$! wso "CAP2 starting ... "
$!
$
$
$
$
$
$

wso " "

common exit point

end it all:
sss := logout/full
SSS

403

$! name: pc_start.com
$!
$! purpose: to start SPM to collect PC data.
$!
$! date: 09111186
$!
$! by: s. szep
$!
$!
$ write sys$output -
"*** Running SPM for PC statistics ***"
$!
$ @sys$system:spmtimer
$!
$ spawnlnowait perf collect=system_pc -
lending="23:59" pc.dat
$!
$ exit

II

$ name: pc_log.com
$
$ purpose: to use SPM to analyze PC data.
$
$ date: 09111186
$
$ by: s. szep
$.
$!
$ write sys$output -
"*** Running SPM to analyze PC statistics ***"
$!
$ perf rep=system_pclout=pc.log pc.dat
$!
$ exit

II

$! name: pc_by_id.com
$!
$! purpose: to use SPM to analyze PC data for 1 process.
$!
$! date: 09115186
$!
$! by: s. szep
$!
$!
$ write sys$output -
"*** Running SPM to analyze PC statistics for 1 process ***"
$!
$ if pl . nes. "" -

then goto do_it
$!
$ inquire pl "Which pid? "
$!
$ do it:
$ perf rep=system_pclout=pc.loglid='pl' pc.dat

404

$!
$ exit

$! name: proc_start.com
$!
$! purpose: to start SPM to collect process metrics.
$!
$! date: 12116186
$!
$! by: s . s zep
$!
$!
$ write sys$output -
"*** Running SPM for process metrics ***"
$!
$ @sys$system:spmtimer
$!
$ spawnlnowait perf collect=tune -
lint=60lclass=process -
lnodisklnodevice -
lending="23:59"
$!
$ exit

II

$! name: proc_log.com
$!
$! purpose: to use SPM to analyze process metrics.
$!
$! date: 12116186
$!
$! by: s. s zep
$!
$!
$ write sys$output -
"*** Running SPM to analyze process metrics ***"
$!
$ perf rep=loglout=tune_proc.rpt -
ltab=(interval,final) -
lnographlclass=process -
tune_proc.log
$!
$ exit

II

$! name: proc_by_id.com
$!
$! purpose: to use SPM to analyze process metrics data for 1 process.
$!
$! date: 12116186

405

$!
$! by: s. szep
$!
$!
$ write sys$output -
"*** Running SPM to analyze process metrics for 1 process ***"
$!
$ if pl .nes. "" -

then goto do_it
$!
$ inquire pl "Which pid? "
$!
$ do_it:
$ perf rep=loglout=tune_proc.rpt -
ltab=(interval,final) -
lnographlclass=process -
lid='pl' -
out=tune_proc.log
$!
$ exit

$ name: cap_log.com
$
$ purpose: to report on SPM cap. log
$
$ date: 818185
$
$ by: s. szep
$
$ revised:
$
$!
$ perf report=log_filelgraph=alllout='p2' 'pl'
$!
$ exit

II

$! file: tunex_grp.com
$!
$! purpose: tuning example graphs
$!
$! note: report for "tunex"
$!
$! by: s. szep
$!
$! date: 8122185
$!
$! revised:
$!
$!
$ perf rep=loglout=glogl.datlnotablgraph=(all) -

406

lclass=(all,nohardware,noinstalled, -
noglobal,nosysgen) -
lint=300 logl.dat
$!
$ exit

II

$! file: tunex tab.com
$!
$! purpose: tuning example tabular report
$!
$! note: report for "tunex"
$!
$! by: s. szep
$!
$! date: 8121185
$!
$! revised:
$!
$!
$ perf rep=loglout=tlogl.datltab=(interval,final) -
lnographlclass=all -
logl.dat

$!
$ exit

$! name: cap_inq.com
$!
$! purpose: to query SPM during cap. run
$!
$! date: 818185
$!
$! by: s. szep
$!
$! revised:
$!
$!
$ perf collect=capaclinquire
$!
$ exit

II

$! name: tune_inq.com
$!
$! purpose: to query SPM during tuning run
$!
$! date: 7118/85
$!
$! by: s. szep
$!

407

$! revised:
$!
$!
$ perf collect=tune/inquire
$!
$ exit

408

An Introduction to VAX/VMS System Tuning

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, NY 10081

Abstract

Bottleneck detection is the primary goal of performance analysis. Resource manage­
ment is the fundamental problem faced by the technical staff. This paper addresses
these issues from the perspective of the mechanisms within VMS which deal with
resource allocation of system resources to user processes.

Background on the tuning process

Introduction

To plan a measurement session, the workload and its evolu­
tion in time must be known. Measurements must be made in
a "controlled" environment: the workload should remain con­
stant, no hardware modifications should be carried out during
the session, and no changes should be made to standard oper­
ational procedures.

CPU overhead is a problem when the performance tool
is active. The number of statistics and the duration of the
sampling interval must be chosen wisely, so as to perturb the
system as little as possible.

Bottlenecks

A bottleneck is a limitation of system performance due to the
inadequacy of a hardware or software component or of the
system's organization.

Assumptions made at the time of setting up the system
may be proven false as the workload evolves with time.

When the service requests for a given component exceed,
in frequency and intensity, the service capacity of that compo­
nent, the conditions for the appearance of a bottleneck arise.
Because of the nature of the requests each process makes se­
quentially and not simultaneously for most resources, the other
parts become more lightly loaded: many active processes end
up in the wait queue of the overloaded resources and cannot
contribute to other queues.

In a system in which all or most components are over­
loaded, specific sources of bottlenecks may not be found: the
system may be saturated To improve performance, a more
powerful system must replace it or the workload must be re­
duced.

Bottleneck detection is vitally important: only be acting
on the component(s) causing bottlenecks can advantages be
obtained which justify the costs of system improvement.

Proceedings of the Digital Equipment Computer Users Society 409

Methodology

The use of Digital 's SPM software product requires an iter­
ative method for bottleneck detection based on the off-line
interpretation of measurement results obtained from data col­
lection by a standard set of tools. For these experiments to be
considered valid, a representative workload is required.

Inefficiency in system performance leads one to ponder
possible bottlenecks, their locations, and the availability of
methods for their elimination.

Based on preliminary performance data, a hypothesis on
what causes the bottleneck is formulated. Its validity is ver­
ified by analyzing data collected by further experimentation.
When a hypothesis is confirmed, one must take steps either to
eliminate the bottleneck or at least reduce its effects.

The removal of one bottleneck sometimes causes another
to appear. This bottleneck can, in turn, be studied with the
same scheme-which is repeated until the system is balanced
(or, free of bottlenecks).

On-line bottleneck detection

The interactive component of SPM allows one to display cer­
tain system metrics in real time.

Also, the Monitor utility can provide information useful
for hypothesis formulation.

The main advantages of on-line methods are:

• The speed with which important symptoms are detected;

• The ease with which their causes are often found.

System modifications to remove bottlenecks

The choices are few:

• Addition, replacement, or removal of one or more hard­
ware components;

• Modification of Sysgen parameters, after reading
AUTOGEN.COM;

Nashl'l"/le, TN~ 1987

• Tuning of the file system (RMS);

• Selecting one or more application programs for tuning;

• Optimizing the program mix.

Whatever is done, one must of course verify the effects
on the entire system: the whole tuning process commences
again.

Review of resource management

Before you begin a tuning session, you should be knowledge­
able in the concepts of VAX/VMS resource management.

Without this understanding, you will encounter unneces­
sary problems in your attempts at system tuning!

Introduction

A process is a schedulable entity in the system. Under
VAX/VMS, a number of processes can run in the available
physical memory.

VAX/VMS consists of the Executive, which is always
resident in memory, and several other components. It supports
main (physical) memory, as well as secondary storage devices
(disks and tapes).

Each process does ''work."-that is, it manipulates data.
The operating system tries to ensure that each process can
complete its work as quickly as possible.

Memory management

Physical memory is divided into three main parts. One por­
tion is available for processes; one is reserved for the resident
Executive; and, one is for the page cache, where data is stored
for movement from and to the disks.

Each disk has only one access path available to transfer
data from and to physical memory-that is, to perform disk
1/0.

There are enough balance slots reserved in physical mem­
ory for the maximum number of processes expected to run
concurrently-including the operating system. The operating
system and each process have their individual work.spaces in
physical memory, called ''working sets", which are actually
process-specific lists.

A working set includes all of the valid pages in memory
for any particular process. Pages in the working set typically
represent a subset of the total number of pages in the process's
page tables.

Pages

In VAX/VMS, the basic addressable unit is the "byte". Bytes
are stored in groups of 512, called "pages". Pages are kept in
the working sets or in the section of physical memory called
the "page cache", as well as on disks.

The page is a convenient vehicle for moving a uniform
number of bytes into and out of memory.

Note: When a page is written to disk, it is called a
"block".

410

Quantum

It is important to maintain an even balance in the use of mem­
ory and the number of processes running at once. Each pro­
cess has an available amount of time to perform its work: the
"quantum", itself a system parameter.

The VAX/VMS quantum is a fixed time-slice. If no other
process is waiting to exercise its quantum, the current process
can retain control of the CPU.

Scheduling and paging

During image activation, the groundwork. is laid so that the
process can bring in its first set of pages from the image file
and use them in its own working set.

The scheduling of physical memory is the task of the
Swapper. It keeps track of pages in both physical memory
and on disk: the paging and swapping files. It ensures that
each process has a steady supply of pages for each task.

When a process's demand for more pages exceeds those
avaialable in the working set, some must be moved to the page
cache in order to make room.

In VAX/VMS, there are two sections to the page cache
in physical memory:

• Pages whose contents have been modified, which are on
the modified page list;

• Pages which have not been modified, which make up the
free page list.

When the page cache begins to fill up, the Swapper trans­
fers a cluster of pages from the modified-page cache out to
disk, into the paging file. A "page fault" also occurs when a
process needs additional pages, which are stored in either an
image file or in the paging file. If there is insufficient space
in the working set, the process must begin moving pages to
the page cache. The process brings in groups of pages from
the image file (on disk). The assumption is that the process is
likely to reference pages other than the ones just referenced.

Under VAX/VMS, a bottleneck occurs when many pro­
cesses begin page- faulting at the same time-particularly if
there is only one paging file for all processes, and the if the
speed of retrieval is that of loading between and disk-which
is slower than memory accesses required to update the memory
management database.

To alleviate this problem, you can install additional pag­
ing files on separate disks or create a larger page cache.

Automatic working set adjustment (AWSA)

Via AWSA, processes can acquire additional working set size
(physical memory) under the control of VAX/VMS. The oper­
ating system recognizes the amount of page-faulting occurring
for each process and factors this into the operation.

All processes have an initial default limit of pages of
physical memory, WSDEFAULT. Any process which requires
more space in memory is permitted to expand to the amount
of the larger limit WSQUOTA. This is true only if WSQUOTA is
less than WSMAX, a Sysgen parameter.

To avoid most page faulting (a potentially costly oper­
ation), VAX/VMS can extend working set space to "needy"
processes-provided that free memory is available. The pro­
cess can borrow worlcing set space up to the final limit
WSEXTENT.

The system manager must also consider the actual number
of pages the working set requires. The actual working set
count equals the process's pages, plus any global pages used

When a process's working set increases, this growth oc­
curs in increments of the system parameter ws INC. VMS re­
views the needs for adding or subtracting pages only at the
end of the next-occurring quantum and after the minimum in­
terval established by the system parameter AWSTIME. Thus,
VMS samples the page-faulting rate of each process over the
adjustment period defined by AWSTIME and QUANTUM.

Example. If QUANTUM= 200 and AWSTIME = 700, then
VMS reviews page requirements for a process every time the
process consumes 800 milliseconds of CPU time, or every
fourth quantum.

The goal of AWSA is to reduce the amount of page­
faulting in the system as a whole. VMS compares the current
rate of page-faulting each process is undergoing, against the
norm established for all processes on the system via PFRATH

and PFRATL, which are system parameters defining the upper
and lower limits of acceptable page-faulting.

At the end of a process's adjustment period, if the page­
fault rate for the process is high-compared to PFRATH, VMS
approves an increase in its working set size in the amount of
WSINC, up to the value of its WSQUOTA, for the next adjust­
ment period

If this increase would place the process above its
WSQUOTA, thereby requiring a loan, then VMS checks the
availability of free memory against an established system
norm, BORROWLIM. Thus, AWSA only permits a process to
grow above its WSQUOTA value if there are at least as many
pages of free memory as specified by BORROWLIM.

If too many processes attempt to add pages at once, VMS
is forced to withdraw its intention of granting additional pages
to processes which have already had the benefit of growing
beyond their quotas.

When a process page-faults after its working set count
exceeds its quota, VMS examines the value of the system
parameter GROWL IM before permitting the process to use more
of its WSINC loan. This aspect of AWSA is event-driven and
is not tied into any adjustment period.

If there are as many pages on the free list as required
by GROWLIM, VMS continues to permit the process to add
pages to its working set. If the number of free pages does not
equal or exceed GROWLIM, VMS will not permit the process
to grow; in fact, the process will be forced to give up some
of its pages before it reads in new ones.

Processes which are not heavily page-faulting can give up
some of their working set limit through voluntary decrement­
ing. Processes with a page-fault rate below PFRATL (when
PFRATL does not equal 0) are subject to a loss of pages.
This reduction occurs at the next quantum end after AWSTIME
has elapsed The amount of reduction is defined by the sys­
tem parameter WSDEC. No process can be reduced below the

411

minimum size defined by the Sysgen parameter AWSMIN.

At the time an image exits, the process's working set
limit drops automatically back to WSDEFAULT.

The sizing of working sets

The VMS memory management strategy initially depends on
WSQUOTA and WSEXTENT. These values are derived from
the SYSUAF. When establishing a user's account, we must
make a conscious decision about the appropriate values for
each user. The DCL command $ SET WORKING-SET and
the system service $ADJWSL can raise or lower these limits
for an interactive process.

Sub-processes and detached processes receive their work­
ing set characteristics upon creation by the system service
$CREPRC or the DCL command $ RUN. If specific val­
ues are not provided, then a process will receive the de­
fault working set characteristics from the appropriate sys­
tem parameters: PQL...DWSDEFAULT, PQL...DWSQUOTA, and
PQL...DWSEXTENT.

When a batch queue is created, the DCL command $
INITIALIZE/QUEUE establishes the default values for its
jobs. These values may even be set to defer the user's
UAP limits. When a batch job runs, these values may
be altered via the DCL commands $ SUBMIT and $ SET

QUEUE/ENTRY.

WSQUOTA should be large enough so that the process can
perform reasonably well without a loan, yet small enough so
that any single process is not guaranteed an inequitable share
of memory when memory is scarce.

The general scheme is to set the initial working set limits
on a rule-of-thumb basis, and then to adjust them based on
observed behavior. Experience counts!

Working set limits for user programs depend on the code­
to-data ratio of the program and on the amount of data in
the program. Programs which are mostly code-those which
have a limited amount of data or use RMS to perfonn record
processing-require only small working sets. Programs which
manipulate large amounts of data internally-such as sort pro­
cedures or librarians--reuqire larger working sets.

Via Autogen, set WSMAX to the highest number of pages
required by any one process on your system.

In Authorize, for each user set WSQUOTA at the largest
number of pages required by a program the user will run in­
teractively. Set his WSDEFAULT to the median number of
pages required by a program he will run. Set WSEXTENT to
the largest number of pages you anticipate this user will ever
need.

Also, for each user set a diskquota via the Diskquota
utility. Spread default directories across all available drives
(except the system disk). Use ACI..s judiciously.

In Systartup, for each batch queue, set WSEXTENT to
the largest number of pages required Set its WSQUOTA to
the number of pages which will permit every job to complete
within a reasonable amount of time. Set WSDEFAULT at the
median number of pages required by all jobs.

This scheme forces users to submit large jobs for batch
processing, because the jobs will not run efficiently interac-

tively. (You can force this via ACLs which disallow their
interactive usage.) To further restrict interactive users, you
can impose CPU time limits in the UAP.

Adjusting AWSA parameters

AWSA depends heavily on the following system parameters:

PFRATH WSINC

PFRATL WSDEC

QUANTUM GROWLIM

AWSTIME BORROWLIM

AWSMIN FREELIM

PFRATL and WSDEC, which control voluntary decre­
menting, are particularly sensitive to the application workload.

For certain values of PFRATH and PFRATL, poor system
performance may result because of the VMS page-replacement
algorithm and because of the time spent maintaining these
page-faulting limits.

You can turn off borrowing for a process by
setting its WSEXTENT equal to its WSQUOTA. You
can circumvent AWSA entirely by using the $ SET

WORKING_SET /NOADJUST command. This command may
sometimes cause processes to fault badly. And, you can turn
completely turn off AWSA for your system by setting ws INC

= 0.
DEC recommends that the AWSA parameters, as set by

Autogen, correctly match your operational needs and should
be left alone. Before you start changing them, read Autogen
carefully and document why you want to do so, as well as
what system behavior you predict will occur. (You might be
pleasantly surprised at the results, as well as mildly amused!)
Always track your changes via a set of interlinked DCL com­
mand procedures and archive your system parameter files for
historical pmposes.

Tuning strategies

If you would like to provide a rapid response by VMS when­
e~er the load on your system demands greater working set
sizes-for example, in time-sharing and development envi­
ronments ...

• Set PFRATH low or= 0

• Set AWSTIME low

• Start processes with small WSDEFAULTs

• Provide for either large WSQUOTAs or generous
loans, by setting BORROWLIM low and defining large
WSEXTENTs.

To tune for a less dynamic response which will stabilize
and track moderate needs for working set growth-particularly
for production environments ...

• Establish moderate values for AWSTIME, WSINC, and
PFRATH

• Provide generous WSDEFAULT' s.

412

Swapper trimming

Swapping consists of writing a process from memory to a
reserved disk file, the swap file.

If process requirements dictate, VMS will "swap out"
processes to a swapping file on disk so that the remaining
processes have the benefit of its available memory without
excessive page-faulting. The operating system can also re­
claim memory via "swapper trimming", which is performed
by the Swapper.

Swapper trimming is initiated when VMS detects too few
pages on the free-page list-that is, whenever the number of
free pages falls below the system parameter FREELIM. VMS
takes action to obtain at least as many pages as specified by
FREE GOAL.

First, it checks to see whether the minimum number of
pages exists in the modified-page list which make it worth­
while to write them out. (VMS does the comparison to
MPW_THRESH.) If the minimum exists, VMS invokes the
Swapper to reduce the modified-page list-thereby freeing its
pages for the free-page list. If the minimum does not exist,
VMS decides to "trim" some processes-that is, it forces them
to give back some pages or to be swapped out.

On the process level, the Swapper checks for processes
which have borrowed on their WSEXTENT. These may be
trimmed back to their WSQUOTA. If this initial trimming fails
to produce a sufficient number of pages, because no or only
a few loans were outstanding, then the Swapper trims on the
second level.

The Swapper now refers to its system-wide trimming
value, the system parameter SWPOUTPGCNT, which defines
the minimum number of pages any process is permitted to re­
tain in memory before it must be swapped out. The Swapper
selects processes as candidates for trimming based on their
state. When all the needed pages have been acquired, the
Swapper stops its trimming.

Swapping

If trimming on the second level fails to produce enough pages,
the Swapper starts to swap out processes from its list oflikely
candidates. Memory is first reclaimed from suspended pro­
cesses, and then from dormant processes. The next likeliest
candidates are processes in the LEF and HIB states.

Two criteria define a dormant process:

• The non-real time process has current priority less than
system parameter DEFPRI (default= 4);

• The computable process without a significant event (page
fault, direct or buffered 1/0, CPU time allocation) within
an elapsed time period, defined by the system parameter
DORMANTWAIT (default = 10 seconds).

The Swapper also compares the length of real time a
process has been waiting since entering HIB or LEF state
to the system parameter LONGWAIT. VMS will hopefully be
able to differentiate between those processes which have been
idle for some time and are likely to remain idle, from those

which have not been idle very long and might be likely to
soon become computable.

VMS selects for outswapping those processes which have
been idle for the longest time. By freeing up their pages, the
operating system permits other processes to satisfy their CPU
requirements, so that they can resume execution sooner.

Swapper trimming can be costly if the Swapper trims
pages which processes truly need: such processes are forced
to fault heavily. To prevent this, you should determine a min­
imum working set size which permits some work to be per­
formed reasonably efficiently, but below the peak efficiency
value. Set SWPOUTPGCNT to this value.

You can tum off second-level swapper trimming by in­
creasing SWPOUTPGCNT so that it is never permitted. If you
notice excessive paging, you can eliminate it, but you force
swapping to begin sooner.

For a process with PSWAPM privilege, you can turn off
swapping and second-level trimming with the DCL command
$ SET PROCESS/NOSWAPPING.

Note, though, that Swapper trimming is supposed to be
more beneficial than voluntary decrementing. Autogen pro­
vides default values which provide for swapper trimming and
disable voluntary decrementing.

Memory sharing

Memory sharing permits multiple processes to map to, and
thereby gain access to, the same pages of physical memory.
This is accomplished under VAX/VMS through the system­
wide global page table.

The memory which is saved by sharing is calculated as
follows:

(# pages of shared read-only code)
* (\# of sharing processes - 1)

A small amount of overhead is required: space for global
page table entries and global section table entries.

The system parameter GBLPAGES defines the size of the
global page table; GBLSECTIONS, the size of the global sec­
tion table. The system working set size, SYSMWCNT, must
be increased whenever GBLPAGES is: Autogen increments
SYSMWCNT by 1 for every 128 pages you add to GBLP AGES.

Once a shareable image has been created, it can be in­
stalled as a permanently-shared image. Memory is only saved
if more than one process is actually mapped to the image
at one time. Of course, you must increase your users' work­
ing set characteristics-namely, WSDEFAULT, WSQUOTA, and
WSEXTENT-to correspond to the anticipated use of shared
code.

To determine if there is active sharing on your shareable
images, use Install. TYPe LIST/FULL and observe the val­
ues shown for "Current" (the number of current concurrent
accesses) I "Maximum" (the highest number of concurrent ac­
cesses since installation) shared access counts. If the maxi­
mum is less than 3, the overhead for sharing is excessive.

Note that the overhead required to share memory is
counted in bytes, while the savings are counted in pages!

413

Scheduling

The VAX/VMS scheduler controls both when and how long
a process executes: it dramatically affects CPU demand. It is
important to maintain an even balance in the use of memory
and the number of concurrent processes. Each process has an
available amount of time to perform its task, its quantum.

Utilizing a modified round-robin scenario, the scheduler
rotates control of the CPU among computable processes, so
that all computing processes receive frequent and equitable
chances to complete their processing requirements. For opti­
mization, it permits operations to overlap; for example, if a
process must wait for 1/0 to complete, another process will
run.

Processes receive a chance to execute on a rotating ba­
sis, according to process priority and state. Each computable
process receives a time-slice for execution equal to the system
parameter QUANTUM. Once its quantum begins, each process
executes until one of the following occurs:

• A process of higher priority becomes computable;

• The process is no longer computable because of a re­
source wait;

• The process itself voluntarily enters a wait state;

• Its quantum ends.

If no other process (at the same priority) is waiting to
exercise its quantum, the current can renew its quantum and
retain control of the CPU.

A change in process state causes the Scheduler to re­
examine which process should be permitted to run. The Sched­
uler selects the computable process with the highest priority.
Priorities are numbered 0 - 31, while real-time processes run
above 15. (The Swapper runs at 16.)

For processes below priority 16, the Scheduler can in­
crease and decrease process priorities. A "priority boost" is
used as follows:

• The Scheduler recognizes events such as I/0 completion
or a duration of time.

• When such an event occurs and the associated process
becomes computable, the Scheduler increases its priority:
the amount is related to the event.

A large increase will be given in order to permit a process
to run again sooner.

When a process is scheduled, its priority is reduced by
1-in order to permit processes which have received a priority
boost to begin to return to their "base priority". (The priority is
never decreased below this base or increased into the real-time
range.)

VMS permits real-time processes to run until either it
voluntarily enters a wait state or a higher-priority process be­
comes computable.

Base priorities

You can modify the base priorities of processes and the value
of QUANTUM. All other aspects of process scheduling are fixed
by the behavior of the Scheduler and the characteristics of your
workload.

A process receives a default base priority from the
"PRIO" field in the user's UAP record A process can change
its priority with the system service $SETPRI. With the DCL
command $ SET PROCESS/PRIORITY, a user can reduce
the priority of his own processes. (A user needs ALTPRI
privilege to increase these priorities.)

Note: A user needs GROUP or WORLD privilege to
change the priority of other users' processes.

A detached process or sub-process receives its base pri­
ority when created by the system service $CREPRC or the
DCL command $ RUN. If none is specified, the priority of
the creator is used.

When a batch queue is created, the DCL command $
INIT/QUEUE/PRIORITY establishes the default "job" pri­
ority. When a user submits a job with the DCL command
$ SUBMIT or changes his job's characteristics with the DCL
command $ SET QUEUE/ENTRY, he can adjust the prior­
ity downward (If he has OPER privilege, he can also make
increases.)

Diagnosis

Introduction

VAX/VMS performance suffers when there is a limiting re­
source. Which resour~emory, 1/0, or CPU-becomes a
bottleneck depends on the characteristics of the workload your
system is supporting.

There are several simple tests we can use to rule out
certain classes of typical problems. If the undesirable behavior
is observable, you will be able to make headway fairly rapidly.

It is possible to have overlapping limitations. An itera­
tive approach to diagnosing your VAX system's problems will
detect all major limitations.

Note that if there is a significant amount of opreating
system ovetbead, the technical staff has probably mis-tuned
your VAX system.

Technical assistance

Our software tool LINDA permits the technical user to pin­
point the causes of undesirable behavior on your VAX system.
It does this by helping him to isolate particular kinds of perfor­
mance problems, and by outlining what corrective procedures
he can undertake, if any.

Of course, this same user must later monitor the effec­
tiveness of any remedial action taken: if there is no sufficient
improvement, he must again employ LINDA to analyze the
situation all over again. Perhaps the changes made were too
radical and should be scaled back to a more conservative level.
Or, perhaps some siginificant problem had been masked by one

414

which has been solved, and now there is the need to correct
this one.

We quickly come to realize that tuning is primarily an it­
erative process, and that multiple causes of performance prob­
lems can only be uncovered by repeated use of LINDA-until
we achieve a satisfactory level of performance.

Unnatural Resources: Working sets, quotas, and limits

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, NY 10081

Abstract

In a multi-user environment, the competition for limited system resources must be
monitored and controlled. This paper presents a practical approach to workload man­
agement on VAX/VMS systems.

Essential Resources

The CPU Resource

The CPU is the central resource in the system: it allocates
and initiates demand for all other resources, and it provides
instruction service to user processes.

The system manager should observe the following:

• The average size of the compute queue.

• Idle time and process-scheduling wait states.

The memory resource

This resource can be separated into pieces of varying size.
These can be allocated to processes simultaneously.

The system manager should observe the following:

• Working sets of resident processes, for appropriate sizes.

• Locality of reference, for an examination of application
design.

The Disk 1/0 resource

The key performance issue is the time it takes to complete an
operation. The measure to keep in mind is the average time
to execute an 1/0 request on a particular disk. Keeping this
average time low will minimize CPU blockage.

Tuning

Tuning can be defined as the alteration of various system
parameters in order to improve overall system performance.
Your goal should be to obtain the optimum overall perfor­
mance possible for your configuration in your particular work
environment. Before you start, you need a specific plan for
how you will analyze and use the data you will capture.

Tuning cannot cure:

• Improper operation

Proceedings of the Digital Equipment Computer Users Society 415

• Unreasonable expectations

• Inadequate hardware configuration

• Improper device choices

• Hardware malfunctions

• Poor application design

• Inequitable distribution of resources

• Misuse of available resources

• Poor workload distribution.

Why does DEC believe that tuning is rarely required?
Autogen establishes initial values for all configuration­
dependent system parameters so that they match your partic­
ular hardware configuration. VMS includes several features
which permit it to dynamically tune itself during operation.
A common cause for poor system performance is insufficient
hardware capacity.

When you acquire new capacity, you should re-tune
your VAX. The same holds true if your workload drastically
changes.

Tuning is complex, time-consuming, and prone to error.
Fortunately, mis-tuned systems will exhibit symptoms with
fairly obvious solutions.

System response time

Overall responsiveness depends on the responsiveness of our
three essential resources: CPU, memory, and 1/0. In other
words, if each resource has adequate capacity, then the entire
system will perform satisfactorily.

Our major concerns are:

• How well is each resource responding to service requests?

• How well is the capacity of each resource meeting de­
mand?

Nashville, TN - 1987

• Does any resource have excess capacity? If so, can it
be attributed to blockage by another, over-committed re­
source?

Our investigations will look measure the size of the queue
of service requests - for examples, the compute queue or disk
1/0 queue, and the time it takes VMS to service one such
request, which equals the re&ponse time for that particular re­
source.

Analysis

Is each resource shared equitably among processes?
Can the system's consumption of a resource be reduced?

(This will make available more of this resource to users.)
How well distributed is the demand for each resource?
Can some of the activity on one resource be off-loaded

to less heavily used types of resources?

MONITOR

The VMS Monitor utility permits us to track several classes of
system-wide performance data at specified intervals. Output
can be sent directly onto a display terminal for an interactive
session, or into a disk file for later playback. It is best to
record data via a detached process running at a high priority.

Resource control via Authorize

Each VMS user is limited in the consumption of reusable sys­
tem resources. We establish these limits when we set up our
users' accounts on the VAX. These limits control how a pro­
cess shares its resource allocations with any sub-processes it
may create. We know that these fall into four distinct cate­
gories: deductible, non-deductible, pooled, and system-wide.
Setting these limits takes a bit of experience. Use Digital's
suggestions as a starting point. You will probably find reason
to adjust them in the context of your system's evolution later
on.

The relevant SYSUAF record fields are:

ASTLM FILLM SHRFILLM
BIOLM JTQUOTA TQELM
BYTLM MAXACCTJOBS WSDEFAULT
CPU MAXDETACH WSEXTENT
DIOLM PGFLQUO WSQUOTA
ENQLM PRCLM

Workload management

Know thy workload! System performance is directly propor­
tional to the efficiency of workload management. The major
issues facing the system manager are:

• What is the typical number of users at each time of day?

• What is the typical response time for various tasks for
this number of users, at each hour of operation?

416

• What are the peak hours of operation?

• Which jobs typically run at which time of day?

• Which commonly run jobs are intensive consumers of the
CPU? Of memory? Of disk?

• Which applications involve the most image activations?

• Which parts of the system software have been modified
or are user-written?

• Are there any known bottlenecks?

Record retention

It is important to summarize your system's behavior under
typical workload conditions. Traclc the following information:

• Page fault rate

• Terminal response time

• CPU usage

• Memory usage

• Operational (KESU) modes

• Number of jobs versus overall performance

• Number of users

• Performance versus time of day

Only with such a historical record will you be able to
monitor trends and plan for necessary capacity.

The possible scenarios include:

• Is there a time of day when the workload peaks?

• Is there any way to balance the workload better?

• Could any jobs be better run as batch jobs?

• Could system performance benefit by adopting primary
and secondary hours of operation?

• Can applications be designed to work around any known
I expected bottlenecks?

• Is code-sharing being utilized, in order to conserve mem­
ory?

A common sense approach to workload distribution de­
mands that we run large jobs as batch jobs, restrict system
usage to maintain an adequate response time, and design ap­
plications to reduce demand on bottlenecks.

Memory management

Technical staff should investigate the use of VMS memory­
management mechanisms which can help balance your work­
load and automatically adjust the system for better resource
utilization.

Under VAX/VMS, each process has an independent ad­
dress space. At any given moment in time, some of its pages
are actually resident in physical memory, while the remainder
are located in disk files.

VMS manages all processes in several ways:

• Which ones are running in memory;

• How much memory each process can use;

• Which are not in physical memory.

The following concepts are relevant when we discuss
VMS memory management:

Balance set Process currently resident in physical memory

Working set The pages of a process currently in physical
memory

Working set size The number of pages a process is permitted
in physical memory

Working set count The number of pages a process currently
has in physical memory

Paging The action required to move a page into or out of a
process's working set

Swapping The action required to move a process into or out
of the balance set

Page cache The free-page list and modified-page list

A little research will show you that a specific page can
be in one of several places:

• In the process's working set

• In an image file (not yet paged in, read-only, discarded
after use)

• In the free-page list and available for re-use

• In the modified-page list

• In a system page file (modified, paged out)

• In a system swap file (swapped out).

A page table entry (PTE) contains the location for one
page belonging to the process. A given page can:

• Be read in from the paging file

• Undergo a change of state (free or modified), if in cache

• Be initialized, if demand-zero.

Alternatively, a page-fault may:

417

• Remove a page from a process's working set

• Read additional pages into physical memory

• Wait for more physical memory to become free

• Wait for a write to the modified-page list.

Note that global pages are treated differently.
Modified-page writing is itself triggered when:

• The modified-page list is too large

• The free-page list is too small

• Forcing specific pages from physical memory.

The requisite pages may be written to a system page file,
a writeable section file, or a system swap file. After the write,
the relevant pages are moved onto the free-page list.

The Swapper actually controls these operations. The se­
quence of actions taken is as follows:

I. Check if free pages are needed

2. Write modified pages, if sufficient

3. Swap, if not enough modified pages

4. Check for in-swap candidate(s)

5. Swap, if not enough free pages.

When an out-swap is required, the Swapper performs
these operations:

1. Clean up process headers

2. Check if enough free pages

3. Write modified pages, if sufficient

4. Swap or shrink processes.

Resources for file applications

To use RMS effectively, an application program requires var­
ious process and system resources. The appropriate time to
configure these resources is during the system design phase:
your site might need additional physical memory and/or disk
storage to support the new software.

Improving program performance may simply be a matter
of allocating larger or more buffers to the applications. The
number of buffers and the sizes of buckets and blocking factors
can be fine-tuned according to access method.

When a file is created or opened, RMS maintains the
specified buffers and data (control) structures, which are
charged against the process - via the XQP mechanism. Nat­
urally, the greater the number of files being processed at the
same time, the greater amount of memory is required for a spe­
cific application. In fact, although the memory requirements
for the control structures is fairly constant, buffer memory
varies, once again, according to access method.

The process working set is governed by the three process
parameters WSDEFAULT, WSQUOTA, and WSEXTENT. It is
important to set these correctly in older to ensure a process
has sufficient memory to perfonn the required tasks with a
minimum amount of paging.

Shared files should employ global buffers to avoid un­
necessary
1/0. The relevant system parameters are: RMS_GBLBUFQUO,
GBLSECTIONS, GBLPAGES, and GBLPAGFIL.

In the case of asynchronous record 1/0, the following
SYSUAF limits are also important: ASTLM, BIOLM, and
DIOLM. Additionally, check ENQLM when you have shared
files which will be modified at the recold level. Finally, note
that FILLM governs the number of files which a process can
have open simultaneously.

File extensions

If a file is extended repeatedly, the extensions may be scattered
on the disk. Each extension is called an "extent"; a pointer to
each extent resides in the file header. For retrieval purposes.the
pointers are gathered together in a structure called a "window".

When you access an extent whose pointer is not in the
current window, the system must read the file header and fetch
a new window. This is called a "window tum". It requires an
1/0 operation.

Access control lists

ACLs are stored in the file header. The more ACLs you place
on a file, the greater becomes the possibility that the file header
will have to be extended to accommodate them.

Obviously, applying multiple ACLs on a particular file
will impact system perfonnance.

Therefore, place ACLs on all objects with discretion. Use
general identifiers to create practical groupings in order to
avoid this potential problem.

Application-level performance

The hardest part of tuning is convincing a group of developers
that they have to re-think an application's design in older for
you to effectively correct perfonnance problems.

Helping your developers to adopt sound programming
practices will result in a perfonnance win for everyone.

418

Utilizing VAX Uptime

Steven Szep
Chase Manhattan Bank

l New York Plaza
New York, NY 10081

Abstract

This paper presents a DCL approach to V AXNMS system tuning. The use of the
system utilities MONITOR, SHOW, and SET for performance analysis is illustrated

Why performance is a critical issue

Hardware is getting cheaper all the time. Software is becoming
ever more expensive. People are more expensive yet.

If you can figure out what actually is causing a perfor­
mance problem, you can find a remedy for it. It is simply a
matter of separating the real problem from all the noise.

Some notes on resource limitations

Memory

A large Free List means less paging 1/0, but less space for the
balance set.

You should control system faulting via the system param­
eter SYSMWCNT. A HIGH value removes memory from that
available for the user working sets; a LOW value may im­
pair VMS performance. In other words, a little faulting never
hurts.

The number of outswapped processes is NOT relevant if
they are not trying to get inswapped.

Image activations

Image activation under VAXNMS involves considerable over­
head: frequent image activations in a process cause excessive
page faulting. The number of demand- zero faults gives a
measure of image activations.

Paging induced by image activations cannot be "tuned
away". More memory will not help: application re-design is
the only alternative.

Page caches

If your overall fault rate is high--once again, this is relative
to your own experience-and these are mostly "soft" faults,
the page caches may be too large. The page cache (Free List
+ Modified List) swallows up memory which should be made
available to the user working sets. Swapping may also appear.

However, if your overall fault rate is low and these are
mostly "hard" faults, the caching is ineffective. Either one

Proceedings of the Digital Equipment Computer Users Sociecy 419

or both are too small. The user working sets, however, have
sufficient memory.

Sizing working sets

If your VAX is short on memory, you must re-distribute the
working set sizes so that active processes get more memory
relative to those which are more inactive.

The working sets of processes which are faulting heavily
and are relatively small require more memory for the tasks
they are trying to perform. The working sets of processes
which have a low fault rate are probably too large for their
needs.

If you install more memory, increase the working set
parameter values for your heavy faulters.

Automatic working set adjustment (AWSA)

System default values for these parameters should not be mod­
ified by novice tuners. If they are out of adjustment, excessive
paging and/or rapidly fluctuating working set sizes will occur.

If there is either a large amount of free memory which is
not available to the user wodcing sets or many processes are in
their WSEXTENT regions while others have been outswapped,
then you have inappropriate memory loan parameters.

Swapper trimming is more beneficial on most VAX com­
puter systems than is voluntary decrementing because swapper
trimming occurs as needed, while voluntary decrementing oc­
curs continuously.

The balance set

If the balance set count is too low, you will see some processes
swapped out even if there is free memory available.

Big consumers

Processes with extremely large working sets--either with a
WSQUOTA which is too large or within their WSEXTENT

region-may cause other (smaller) processes to swap.
Low-priority compute-bound processes seem to get pref­

erential treatment over ones which handle terminal 1/0.

Nashville, TN - 1987

Also, inactive processes-that is, those with no faulting­
having large working sets may have swapping disabled. They
retain memory at the expense of all other processes.

Introduction to MONITOR

The VMS Monitor utility permits us to track several classes of
system-wide perfonnance data at specified intervals. Output
can be directly onto a display tenninal for an interactive ses­
sion, or into a disk file for later playback. It is best to record
data via a detached process.

MONITOR SYSTEM

The module collects quite a few perfonnance statistics from
several of the other components of the VAX/VMS Monitor
utility, into a single display.

At a glance, the system manager can see an overview of
the activity on the system. This display is similar, in fact, to
the DISPLAY component of Digital's SPM product.

Alternatively, one might select MONITOR

ALL/ INTERVAL=2.

The SYSTEM display provides information on:

• Process states

• Page fault rate, including the top faulter. Page faults are
indicative of process consumption of physical memory

• Direct and buffered I/0 rates, including the top con­
sumers. Direct 1/0 primarily involves disks and magnetic
tapes; buffered 1/0 involves terminals and like devices.

• Free List and Modified List sizes. These are the VMS
page caches.

• CPU busy rate, including the top user process

Note that the NULL process is never displayed here, even
if it is a top consumer of a system resource.

A word of caution is appropriate at this juncture. To
be eligible for consideration as the "top" consumer, a process
must be present and swapped in at both the beginning and
end of the display interval.

The so-called "Top User" statistic is always the current
one, while the corresponding overall statistic may be current,
average, minimum, or maximum-depending upon the option
typed as part of the command line.

The rates for "top" consumers are calculated based on
the user-selectable interval between two successive screen dis­
plays. The "overall" rates are based upon the fixed collection
interval of the Monitor utility. Therefore, these two values
may be different.

The calculations for the page caches-that is, the Free and
Modified Lists -are derived from the VAX system's physical
memory configuration and the VMS system parameters.

In effect, the SYSTEM display gives you a general "feel"
for what's going on ''under the hood".

If the Free List drops to the value of the system parameter
FREEL IM, then you are essentially out of memory-perhaps

420

because of working set sizing or even because of a lack of
actual physical memory.

Check processes which are top consumers of 1/0.
It is important to keep in mind that Monitor can only give

you an "eyeball" measure of system activity. You will have to
resort to SPM or PCA for a more intimate look at a specific
image running in a specific process.

MONITOR STATES

This module will display the number of processes in each of
the 14 scheduler states:

• Collided Page Wait (COLPG) - Waiting for a faulted
page in transition.

• Mutex or Miscellaneous Resource Wait (MWAIT) - Wait­
ing for the availability of a mutex semaphore or a dy­
namic resource.

• Common Event Flag Wait (CEF) - Waiting for some com­
bination of event flags to be set in a common event block.

• Page Fault Wait (PFW) - Waiting for a page to be read
because of a page-fault: resident processes.

• Local Event Flag Wait (LEF) - Waiting for some event
flag(s) to be posted: resident processes.

• Local Event Flag Outswapped (LEFO) - Waiting for
some event flag(s) to be posted: outswapped processes.

• Hibernate (HIB) - Hibernating: resident processes.

• Hibernate Outswapped (HIBO)
outswapped processes.

Hibernating:

• Suspended (SUSP) - Process has executed a suspend re­
quest: resident processes.

• Suspended Outswapped (SUSPO) - Process has executed
a suspend request: outswapped processes.

• Free Page Wait (FPW) - Waiting for a free page of mem­
ory.

• Compute (COM) - Ready to use the processor: resident
processes.

• Compute Outswapped (COMO) - Ready to use the pro­
cessor: outswapped processes.

• Current Process (CUR) - Using the processor.

The following is a list of the possible MWAIT states:
RWAST Wait for system/kernel AST
RWMBX Mailbox full
RWNPG Nonpaged dynamic memory
RWPGF Page file full
RWPAG Paged dynamic memory
RWBRK Breakthrough (wait broadcast)
RWIMG Image activation lock
RWQUO Job quota
RWLCK Lock database
RWSWP Swap file space
RWMPE Modified page-list empty
RWMPB Modified page-writer busy
RWSCS System Communications Services wait
RWCLU Cluster state transition wait

Keep in mind that the CURrent process is always the pro­
cess running Monitor.

LEFO processes normally belong to interactive users
who have been prompted but who have not responded; how­
ever, they might also be processes waiting for disk 1/0 on a
busy system.

The COMO state indicates a very crowded system.

Wait states

Voluntary wait states

Most processes in LEF are waitmg for terminal command
input- that is, they are at the DCL $ prompt.

A process may enter LEF while awaiting 1/0 completion
on a disk or other peripheral. If the 1/0 resource is approach­
ing capacity, this type of waiting can cause the CPU to be
underutilized.

A process in LEF may be waiting for a lock to
be granted- especially where extensive file sharing exists.
Check "ENQs Forced to Wait Rate" in the MONITOR LOCK
display, which gives the rate of lock requests forced to wait
before the lock was granted.

A process may enter LEF, CEF, HID, or SUSP when
system services are used to synchronize applications. This is
a temporary abdication of CPU usage.

Involuntary wait states

These wait states are invoked by VMS to achieve process
synchronization in special circumstances.

FPW, PFW, and COLPG are associated with memory
management.

MWAIT indicates a shortage of a system-wide
resource- usually page or swap file. This shortage blocks
the process from the CPU.

RWSWP relates to the swap file. RWMBP, RWMPE, and
RWPGF relate to the page file.

RWAST indicates a process waiting for a resource, the
availability of which will be signaled by delivery of an AST.
Usually, an 1/0 is outstanding or a process quota has been
exhausted.

Note that MUTEX is a temporary state.

421

MONITOR POOL

This display reveals the consumption of the VMS lookaside
lists-that is, Small Request Packets (SRPs), Intermediate­
sized Request Packets (IRPs), and Large Request Packets
(LRPs).

MONITOR DISK

The goal is to balance 1/0 across all drives-based upon their
relative 1/0 operation rates. (Keep in mind that you must
check the individual drive specifications.)

MONITOR FCP

You want to see high hit rates here. If you are using the
RMS file system extensively in your applications, this will be
important to you.

MONITOR PAGE

We want to see a low page fault rate and a very low system
fault rate. Keep in mind, however, that some paging is better
in most cases than almost any level of swapping activity.

MONITOR PROCESS

If the general response time on your VAX/VMS system is low,
investigate the top five processes listed for /TOPCPU.

If your general throughput is low, investigate further the
top five processes listed for /TOPFAULT.

SHOW

The Show utility gives system managers a "one-shot" display
of specific system information.

SHOW SYSTEM

This display will present general information about all pro­
cesses running on your VAX system.

SHOW MEMORY

This display provides us with the availability and usage of
memory resources on the VAX system. It is useful in "eye­
balling" conditions related to potential or actual memory lim­
itations.

SHOW ERROR

This display provides error counts for all hardware devices
with error counts greater than zero. It is especially useful
when a process utilizing a specific device begins to display
erratic behavior.

SHOW NETWORK

This display gives us the DECnet addresses and node names
currently accessible to your local DECnet node. It provides
quick verification of the active link relationships in your net­
work.

SHOW USERS

This option will display identifying infonnation about interac­
tive users.

Please note that you can use PHONE (PHONE: DIR) for
remote nodes.

SHOW WORKING_SET

This option will display working set infonnation about your
current process.

SET

The SET utility allows you to change characteristics of objects
within the VMS operating environment.

SET PROCESS

This VMS utility pennits us to change the execution char­
acteristics of a specified process. As system manager, you
will often find yourself in predicaments from which this SET
command is your only escape.

We may use SET PROCESS as the result of a session
with the Linda perfonnance tool.

The available options are:

/RESOURCE_ WAIT Enables or disables resource wait
mode.

/PRIORITY Changes the process's priority.

/SUSPEND Places the process in a suspended state.

/RESUME Resumes a previously suspended process.

/SWAPPING Enables or disables process swap mode.

SET WORKING_SET/LOG

This VMS utility permits us to re-define working set charac­
teristics of a process. This SET command becomes handy in
emergency situations, which is the system manager's "SOP"
all the time.

We may use SET WORKING_SET as the result of a ses­
sion with the Linda performance tool.

/ADJUST Enables or disables modification of the process's
working set by VMS. Note: The default is /ADJUST.

/EXTENT=n Specifies the maximum number of pages which
can be resident in the process's working set during image
execution, where l'vflNWSCNT (in VMS) is less than n
and n is less than WSEXTENT (in SYSUAF). Note: If n
is greater than WSEXTENT, then VMS sets n = WSEX­
TENT.

422

/LIMIT=n Specifies the size to which the process's working
set is to be reduced at image-exit time. Note: If n is
greater than QUOTA then VMS sets QUOTA = n .

/QUOTA=n Specifies the maximum number of pages which
any image executing in the context of this process can
request (via the $ADJWSL system service). Note: If n is
greater than WSQUOTA (in SYSUAF), then VMS sets n
=WSQUOTA.

Notes on MTOOLS

MONV4.COM

MONV 4 uses the System Monitor program to record system­
wide perfonnance data. Uses MONVMS4.COM .

SHWS.COM

SHWS displays current working set infonnation.

WHAT.COM

WHAT displays information about interactive processes.

$! name: monv4.com
$!
$! author: s. szep
$!
$! date: 06/24/86
$!
$! purpose: Submit MONVMS4.COM as a detached process
$! to initiate continuous recording for
$! the current boot.
$!
$! Submit detached MONITOR process to do continuous
$! recording.
$!
$ run sys$system:loginout.exe -
/uic=[l,4] -
/input=monvms4.com -
/output=tmon.log -
/error=trnon.log -
/process_name="Monitor" -
/working_set=lOO -
/rnaxirnurn_working_set=lOO -
/extent=512 -
/noswapping
$!
$! End of MONV4.COM
$!

$! name: rnonvrns4.corn
$!
$! author: s. szep
$!
$! date: 06/24/86
$!
$ set default sys$update
$ set noon
$!
$! Begin recording for this boot. The specified
$! /INTERVAL value is adequate for long-term summaries.

$!
$ set process/priority=lS
$!
$ rnonitor/int=S/nodisp/rec=trnon.dat -
/ending="+23:59:00" all
$!
$! End of MONVMS4.COM
$!

423

$! name: shws.com
$!
$! purpose: display working set info
$!
$! note: requires WORLD privilege to display other processes
$!
$ set nover
$ set terrn/wid=l32
$!
$ a = """

$ pid = ""
$ context = ""
$!
$ if pl .NES. 11 " then pid
$!
$ write sys$output -

"
$ write sys$output " "
$ write sys$output -

"
$ write sys$output -

pl

Working Set Information"

ws ws ws ws Pages Page"

"Usernarne Processnarne Stat Extnt Quota Deflt Size in WS faults Image"
$ write sys$output 11 "

$ start:
$ if pl .EQS. " 11 then pid f$pid(context)
$ if pid .EQS. 1111 then goto done
$ pid = a + pid + a
$ usernarne = f$get jpi ('pid, "usernarne")
$ if usernarne .EQS. "" then goto start
$!
$ process name = f$get jpi (' pid, "prcnarn")
$ imagenarne = f$getjpi('pid, "imagnarne")
$state= f$getjpi('pid, 11 state")
$ wsdefault = f$get jpi (' pid, "dfwscnt")
$ wsquota = f$getjpi('pid,"wsquota")
$ wsextent = f$get jpi (' pid, "wsextent")
$ wssize = f$getjpi ('.pid, 11 wssize")
$ global pages = f$get jpi ('pid, "gpgcnt")
$ processpages = f$getjpi('pid,"ppgcnt")
$ pagefaults = f$getjpi('pid,"pageflts 11)

$ pages = globalpages + processpages
$text= f$fao("!AS!l5AS!5AS!5(6SL) !7SL!AS", -
usernarne,processnarne,state,wsextent,wsquota,wsdefault, -
wssize,pages,pagefaults," 11 + imagenarne)
$ write sys$output text
$ if pl .NES. " 11 then goto done
$ goto start
$!
$ done:
$ write sys$output " "
$ inquire askl "Hit any key to continue"
$ set terrn/wid=80
$ exit

424

$! name: what.com
$!
$! define a local symbol
$!
$ wso == "write sys$output"
$!
$ context = 1111

$ privs = £$privileges (11 group,world 11)

$ if .not. privs then goto noprivs
$ time = £$time()
$ syi f$getsyi(11 version")
$ syi = f$extract(0,4,syi)
$ WSO II II

$ wso "VAX/VMS ''SYI' users on ''TIME'"
$ WSO II II

$ wso " Username Process Id Terminal Image"

$ wso "--- 11

$ if syi .ge. 11 4.0 11 -

then goto vfour ! V4.x has different end sequence
$ more_processes:
$ ipid = f$pid(context)
$ proc = f$getjpi(ipid,"prcnam11)

$ if proc .eqs. "ERRFMT 11 -

then goto normal_exit ! V3.x has ERRFMT at end
$ term = £$get jpi (ipid, "terminal 11)

$ if term .eqs. 1111 -

then goto more_processes
$user= f$getjpi(ipid, 11 username")
$ imag = f$getjpi(ipid, 11 imagname 11)

$ pid = f$extract(0,8,ipid)
$ if imag .eqs. 1111 -

then imag = 11 Using OCL or idle"
$ wso 1111 ''USER' ''PIO'
$ goto more_processes
$!
$! VMS 4.x
$!
$ vfour:
$ start:
$ pid = f$pid(context)
$ if pid .eqs. "" -
then goto normal_exit

''TERM'

$ proc = f$getjpi (pid, "prcnam")
$term= f$getjpi(pid, 11 terminal")
$ if term . eqs. "" -
then goto start
$user= f$getjpi(pid,"username")
$ imag = f$getjpi(pid,"imagname")
$ pid = f$extract(0,8,pid)
$ if imag .eqs. "" -
then imag = " Using OCL or idle"
$ wso II , 'USER' , 'PIO'
$ goto start
$!
$ noprivs:
$ normal exit:
$ WSO II II

$ exit

''TERM'

'' IMAG'"

'' IMAG'"

425

Risk assessment in system security:
A software implementation

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, NY 10081

Abstract

This paper will describe ideas and techniques which have been found to be useful in
designing a software-based risk assessment module, code-named "Morisot", for en­
hanced system security on VAX/VMS systems. It should be noted that these methods
are also applicable to other fields, such as customer credit evaluation and market trend
analysis.

Introduction

Your VAX system is vulnerable to potential abuse for exactly
the same reasons that DEC equipment was probably selected
by your organization in the first place: an easy-to-integrate
open architecture, compatibility across an entire range of user­
tolerant processors, and an abundance of clustering and net­
working hardware and software options.

Once upon a time, security was a simple matter of con­
trolling physical access to a secluded computer room. It is
now a matter of coiporate significance.

Imagine the possibilities ... A dishonest employee can
copy and remove proprietary programs and confidential data.
A hostile employee can delete important files or even reformat
(erase) entire volumes. A malicious intruder can wreak havoc
in many ways.

Employees are more professional when provided with a
professional environment. Management control is better es­
tablished through motivation, than through regulation. People
first, yes; but tempered by a dose of healthy paranoia.

VMS already provides us with utilities which can moni­
tor system usage, audit users' actions, and issue alarms. Risk
management requires that special care be applied in the fol­
lowing situations:

• whenever a potential user attempts to login;

• whenever a user attempts to run a program;

• whenever a program attempts to access a file or device.

Intelligent oversight requires making sense out of the
available information and then making decisions based upon
this information.

This paper will focus on the latter two situations.

Proceedings of the Digital Equipment Computer Users Society 427

Risk indexing

We begin by indexing the impact of the several possible types
of risk/exposure and then proportionately weight our security
measures against them.

One, admittedly simple-minded, approach is explained as
follows.

If what we lost is not primary to our business, the impact
becomes merely an annoyance.

If what we lose is necessary to maintain day-to-day busi­
ness activities, then the impact will be a major annoyance or
a minor loss.

If the damage does not make it possible to obey statutory
regulations, then the impact expands into a major disruption.

If our loss threatens the very survival of our company,
then we will surely suffer a severe disruption of business-that
is, a disaster.

Actual risk analysis can be broken down into four com­
ponents:

1. Identification of risks. For example, the interruption of
services or the loss of information.

2. Identification of threats. We will consider this matter
when we define our "enemies".

3. Recognition of vulnerabilities. These are flaws in security
which can be exploited by the threats of unauthorized
entry and access.

4. Documentation of controls Not for cotporate-wide expo­
sure: "need to know" only.

The intruder who impersonates a valid user must be pre­
vented from altering data items or data flows within the pen­
etrated system.

An insider who attempts abuse or sabotage must be
rapidly exposed.

Nashville, TN - 1987

Trojan horses-or, "code bombs"-must be detected and
crushed while the damage they cause is still slight.

In all three cases, rapid containment of the criminal is the
primary concern.

We must specially protect those parts of our system which
are of major importance. Our risk/exposure-versus-potential
impact scenarios apply here.

As a matter of course, we must maintain useful, and com­
plete, audit trails.

To be successful, we must balance user-friendliness and
productivity against strict security.

We should prefer to mis-identify a valid user as a possi­
ble intruder, rather than to permit a real terrorist free-ranging
access to our VAX computer systems.

Methods of user authentication

Effective user authentication seems to be an elusive goal. Any
access management program has a four - fold purpose:

1. Keep out unathorized persons.

2. Log who was where, when, and for how long inside the
system.

3. Keep in the right people, so that they can get their woik
accomplished.

4. Deter theft and destruction.

We here list some user authentication methods. (Note
that each has its own limitations and problems.)

• Prearranged information in the user's possession. Exam­
ples: passwords, PIN's, or the magnetized strip

• Piece of hardware in the user's possession. Examples: a
metal key or a computer chip

• Personal feature of the user. Examples: fingerprint, reti­
nal pattern, speech pattern

• Real-time capabilities of the user. Examples: signature
dynamics, typing style, facility in using a mouse

• Customary ways of doing things. Example: computer
usage pattern

• Skills and information the user possesses. Examples: per­
sonal biography, some project history

Morisot combines the last two of these methods to form
the foundation of her intrusion - detection model.

Vermin

Who are our enemies? Well, there is the Trojan Horse, a
seemingly harmless program which sometimes takes the name
of a familiar program. It woiks in a gentle way until some
modified code fragment is activated and files are destroyed.

428

Next, we have the Virus. This is a small program which
evolves, sets out to weaken the effectiveness of the system for
doing productive woik. It can potentially take control of all
system resources.

Also, there is the Worm. This is a sophisticated probe
which will wander through a netwoik and enter any nodes
with weak defenses.

Less destructive, but no less criminal, is the Browser.
This kind of program gathers information by searching­
randomly or intelligently-through your file system until it
finds something it considers worth stealing.

Next on our roster is the Impostor. This is someone who
discovers the username and password of a duly-authorized user
and then logs onto the system as that user. It is sad to note
that, in many cases, this critical information is revealed to the
future impostor by the user himself.

Finally, we have the Snooper. This is a program which
resides rather quietly in memory-taking snapshots of user
activity for surveillance purposes. This villain typically takes
the form of an unauthorized monitor or "spy" program.

Normally, the (discretionary) VAX/VMS security mech­
anisms are adequate in keeping unauthorized users out. How­
ever, code bombs can lead to real headaches. As a result,
code reviews and code management are painful but absolutely
necessary.

We are talking about billions of dollars, the privacy of
clients, and the lost competitive advantage when a strategic
plan becomes public. A supposedly "harmless" prank by a
hacker or a premeditated attack by a vengeful person can make
life miserable for your data center personnel.

Frame technology

A structure gathers together several pieces of information into
a fixed pattern. If we think of a structure as a box with
many pigeon-holes, then each hole, or "slot", may contain
such pieces of information.

Each slot is labelled according to the type of information
it contains. These labels are the "attributes" of this structure.
The pieces of information plcaed inside these slots are their
"values". When values are placed into these slots, an actual
database object comes into existence.

Thus, we see that a "structure" defines attributes impor­
tant in establishing the description of something, while an "ob­
ject" is a specific instance of that structure. We can think of
a structure as a "plan" for the construction of an object. To
borrow a bit from Marvin Minsky, we will call our structures
"frames".

Before we proceed, it is time to present some necessary
definitions.

Action Performance of a particular task.

Attribute Property of an object, stored in slots in structures.

Frame Knowledge representation of object's structure.

History Chronological record of significant events.

Inheritance Characteristics of object become those of an­
other.

Instantiation Specification of particular values.

Knowledge base Rules, facts, strategies pertinent to one do­
main.

Location Source of the trigger.

Log Record of all actions since last system boot.

Monitor Software which oversees risk management.

Object Conceptual entity with multiple attributes.

Script Strategy based upon pre - defined situations.

Slot Storage area associated with object's attributes.

Structure Knowledge representation of an object.

Summary Historical abstract of a user's activity.

Time Occurrence of a trigger.

Trigger Activity which invokes security monitor.

Value Information placed within slots in frames.

Automated reasoning

Morisot is a specific example of "memory-based reasoning"
(MBR). MBR requires the recall of stored episodes from the
past: there are no "rules" because Morisot works directly from
the database. Simply put, MBR makes its decisions by looking
for patterns in this data.

Why have we selected MBR as the foundation for our
risk manager? (1) When we conceive of ''thought" or "ex­
perience", we relate it to "memory". (2) Justifications ar­
rived at via so-called "common sense" or from the "obvious"
are probably based upon undigested memories of past expe­
rience. (3) There is no dependence upon a (restrictive) "do­
main" model. (This open-endedness will lead to rapid database
growth.) (4) There is no requirement for going through a de­
laying "knowledge-acquisition" phase. (5) The system should
degrade gracefully when it cannot arrive at a definitive an­
swer to a problem. (6) Its simple architecture has the happy
side-effect of a rapid software development cycle.

The disadvantages of MBR are perhaps too obvious: (1)
The database can be arbitrarily large, and searching it can be­
come quite time-consuming. (2) There is no general approach
known for searching memory for the "best match" without ex­
amining every element of memory. However, we plan to take
a relational approach and employ "summarization" strategies.
(3) The fundamental "process" is only a collection of weak
methods which apply to an extensive memory.

For Morisot, automated risk assessment is accomplished
by searching her (relational) database of previous authoriza­
tion and authentication "problems" for the best match to the
current user's situation-that is, she must judge how closely
any two of these situations or "patterns" match. Note that the

429

time to make one decision may become unacceptably large
for a sizable database-unless we "tune" our algorithm by
restricting our use of the database to a clearly-defined-and,
theoretically, dynamically created-subset.

Complexity seems to be inhernet in MBR. However, we
think we have a solution. We must first separate important
"features"-or, attribute/value pairs-in a situation from the
unimportant ones. We then come to realize that what becomes
important is usually context-sensitive. This fact itself makes it
impossible to assign a single "weight" to each feature which
will remain constant for the life of the system: these must
be re-calculated dynamically with respect to the actual task at
hand.

Algorithms

Morisot possesses a large relational database of user history
objects, or UHO's. This database has been established by
permitting all users "reasonably free" access to the system­
in order to "build up" Morisot's memory. We have identified
the following data elements:

User process which requests access

Resource the system component being requested

Date calendar time

Event time system time

Action the desired method of access

Response the result of Morisot's risk assessment

Reason why the risk assessment took this form

Note that the first five "slots" represent "predictor" at­
tributes, while the last two have become the "goal" attributes.

Our risk assessment routines will attempt to fill in the
"Response" slot for this "User" as follows:

1. Extract from the database the values for each of this user's
predictors;

2. Compute a numerical "distance" and a numerical
"weight" for each possible 'predictor, from the current
user's (frame) value for each predictor;

3. Use these derived weights and distances to compute a
"total distance" measure; and,

4. Finally, select the "n" database records whose total dis­
tances from the current user (frame) are the smallest.

Naturally, there are several possible outcomes:

1. No database record is sufficiently similar to the current
situation to make the authorization decision.

2. A small number of database records, but hopefully more
than one, are retrieved.

3. A significant number of database records for whom au­
thorizations occurred in a similar way in the past are
retrieved.

4. There are several authorization patterns among the "n"
nearest database records.

In case 1, Mori.sot realizes that she has never seen this
set of events before: she does not know how to handle this
user's request for access to a resource. If this is a reasonable
request, we shall grant access, and add this situation to her
database; otherwise, we will respond as in case #4.

In case 2, the program may be able to make a tentative
decision-even if this is only the second occurrence of this
specific situation.

In case 3, our program will very likely make the same
decision again-that is, either grant or deny this user's request.

In case 4, Morisot knows that she cannot come up with
a definitive decision: she requires more info, so she invokes
the biography prober (during interactive requests) or halts the
system (for suspected Trojan horses and worm programs). In
either case, an alarm will be automatically transmitted and
Morisot's memory will receive a record of this response.

In summary, Morisot will attempt to make her decisions
by "remembering" similar circumstances from the system's
past. She perfonns this sorcery by counting combinations of
features, using these sums to produce a "metric", using this
metric to find any dissimilarity between the current "problem"
and every item in the "memory" database, and finally retriev­
ing the "best matches".

Extreme care must be taken to avoid the following situ­
ations:

• No decision is made;

• Data is stored erroneously;

• All the relevant data is not considered.

Disciplined programming and rigorous testing will make
sure these problems are resolved in the early stages of imple­
mentation.

We must try to complete the risk evaluation rapidly-in
order to terminate the activities of a Trojan horse or virus with
due speed; without failure.

Data architecture

The contents ofMorisot's database can be classified according
to whether they are symptoms of situations, or outcomes of
situations, or of a miscellaneous variety (for example, any of
the proposed summary and daily objects). In our frame repre­
sentation for Morisot's information structures, any empty slots
are our "goals", while the non-empty slots are our "predictors".

We can restrict the database to a subset in two ways. In
the case of predictor restriction, we find the most important
attribute, as judged by its weight, and then restrict the database
to those frames having the same value in that slot as the cur­
rent user's frame. For example, select only frames containing

430

a specific usemame/response pair. Note that the combined ef­
fect of two predictors is often quite different than their effect
separately. This is the main reason why we must calculate
weights dynamically.

For the case of goal restriction, we discover plausible
values for the goal slot under consideration and then restrict
the database to those frames containing one of these values
in their goal slots. Note that in this case, weights must be
assigned depending on how often they have occurred in the
past.

The possible values for the action ("Response") attribute
are:

Probe (an evasion strategy which) attempts to verify the user;

Authorization leads to the granting of access;

Violation leads to an alarm.

The currently defined objects are described below.

I Resource History Object: RHO J
Resource 0
Action 0
Date 0
Reason mask 0
User 0
Event time s

Note: See RRO for implementation strategy.

I Resource Daily History Object: RDHO 1
Resource 0
Action 0
Date 0
Mode reason mask 0
User count M
Usage count M
Event mask s

1 User Daily History Object: UDHO j
Resource 0
Action 0
Date 0
Mode reason mask M
User 0
Usage count M
Earliest event M
Last time M

I Resource Request Object: RRO I
Resource s
Action s
Date s
Reason mask s
User s
Event time s
Violation mask M
Response mask M

Note: RRO becomes RHO if user authorized to proceed;
RRO becomes AO if user blocked.

I Alarm Object: AO l
Resource s
Action s
Date s
Reason mask s
User s
Event time s
Violation mask M
Response mask M

Notes: See RRO for implementation strategy.
"User" attribute can have USERNAME's for which there is
no entry in SYSUAF.

l User Profile Object: UPO I
User s
Reason mask s
attributes M
Batch mask s
Detached mask s
hnage mask s
Interactive mask s
Login fail mask s
Network mask s
Job mask s
Print mask s
Process mask s
Subprocess mask s
Others??? -

431

l Resource Summary Object: RSO 1
Resource s
Action s
Earliest event M
Last event M
Avg. day usage M
Min. day usage M
Max. day usage M
Mode day usage M
Avg. day # users M
Min. day# users M
Max. day # users M
Mode day # users M
Mode reason mask M

Conclusion

Considering the available value of the predictors, Mori.sot will
consult the subset of her memory "base" pertaining to one
particular user's specific resource request and attempt to fill in
the remaining ("goal") slots of the current (active) frame.

As this program moves off the drawing board and into
the prototype phase, it is our hope that the quality of Mori.sot's
decisions will improve as the (data)base of her memory of past
experiences grows.

References

Stanfill, C and Waltz, D, Toward Memory-based Rea­
soning, Communications of the ACM (December, 1986), pp.
1213-1228.

Lobel, J, Foiling the System Breakers, (McGraw-Hill,
1986).

Bequai, A, Technocrimes, (Lexington, 1987).

Williamson, G. B., How Secure is Your Ethernet LAN?,
Pageswapper, Vol. 8 No. 1, (August, 1986).

Szep, S, Desparately Seeking Access, Proceedings of the
Digital Equipment Computer Users Society, (Fall, 1985).

Szep, S, Security Considerations for Network Access,
VAX SIG Session Notes (Spring, 1986).

Linda: A Tuner's Home Companion

Steven Szep
Chase Manhattan Bank

1 New York Plaza
New York, NY 10081

Abstract

Linda is a homemade program which provides aid or the analysis of performance
statistics and offers suggestions for enhancing VAX/VMS system performance. This
paper offers insights into the design and use of this software tool.

Designing Linda

Tuning

The basic principles of tuning are easy to learn. As with
any unfamiliar methodology, people tend to overestimate the
difficulties involved in mastering the tools and the techniques.
We hope to make the unfamiliar more familiar to you, and to
dispell any anxiety you may have.

Tuning is not exactly fun. A great deal of "disciplined
thinking" is involved. Jumping at hasty conclusions is always
tempting - especially with management bearing down on you.
And ignoring latent problems is potentially catastrophic.

A little technical insight is needed For instance, we now
all understand

• How a VAX works

• What the different components of VMS do

• How users are able to interact with VAX/VMS.

Once we come to understand the basic principles involved
in resource allocation - because THAT's the name of the game
in tuning, we will be able to use more effectively the tools
DEC has provided us to monitor and analyze VAX/VMS per­
formance.

A conceptual model will help us to learn quickly, to solve
problems, to reduce uncertainty, and to predict behavior. And,
learning some jargon is one antidote for a lack of specialized
training.

There is no "generic" system against which to compare
yours in order to save time during and speed up your tuning
sessions. There is NO way to predict system behavior in the
face of changes in your hardware configuration or the program
mix.

System tuning methodology

1. Problem definition

2. Diagnosis

Proceedings of the Digital Equipment Computer Users Societr 433

(a) Collection of data

(b) Determination of the limiting resource(s) (Memory,
1/0, CPU)

(c) Isolation of the cause(s) (Memory, I/0, CPU)

(d) Compensation for the limitation(s)

(e) Verification of results

A general approach to SPM

l. System summary

• "CPU only" gives % time busy and no drive busy.

• "CPU I 1/0" gives % time for overlaps.

• "I/0 only" gives % time for CPU idle and >= 1

drive busy.

2. Note periods of intense activity.

3. Reduce data to window in on these "hot spots".

• INTERVAL reports give 1 page for each sample
interval.

• FINAL report gives final statistics, averaged over
the entire (reduction) period.

Introducing LINDA

LINDA is a program which provides aid for the analysis of
historical system statistics and offers suggestions for enhanc­
ing system performance.

LINDA is written in Pascal. Basically, it is a soft­
ware version of the decision tree found in Digital's "Guide to
VAX/VMS Performance Management". It consists of an in­
teractive question-and-answer program and an extensive Help
facility.

LINDA will leverage scarce expertise and resources in
the areas of VAX/VMS performance and capacity planning.
It will provide rapid, accurate, and enhanced communications
within Chase.

Nashville, TN~ 1987

The program LINDA pennits the TECHNICAL staff to
pinpoint the causes of undesirable behavior on your VAX sys­
tem. It does this by helping him to isolate particular kinds
of perfonnance problems, and by outlining what corrective
procedures he can undertake, if any.

Of course, this same user must later monitor the effec­
tiveness of any remedial action taken: if there is no sufficient
improvement, he must again employ LINDA to analyze the
situation all over again. Perhaps the changes made were too
radical and should be scaled back to a more conservative level.
Or, perhaps some siginificant problem had been masked by one
which has been solved, and now there is the need to correct
this one.

We quickly come to realize that tuning is primarily an it­
erative process, and that multiple causes of perfonnance prob­
lems can only be uncovered by repeated use of LINDA -
until we achieve a satisfactory level of perfonnance.

The motivational force behind my decision to create the
LINDA program was two-fold:

• Increasing dependence on staff to tune systems;

• Increasing frustration from our dependence on DEC's
published "Guide to VAX/VMS Perfonnance Manage­
ment."

Tuning involves executing the following procedures in an
orderly manner:

• Collecting behaviorial statistics;

• Evaluating the data against some norm;

• Adjusting system parameters, user values, and application
design decisions.

Effecting beneficial changes in system perfonnance im­
plies a great amount of detailed effort and disciplined decision­
making. Why not use software to automate as much of this
process as possible?

We had schedules to meet: more tuning sessions were
being planned than we could possibly hope to complete on
time. We also had systems ready to go into production without
proper attention having been paid to their actual performance:
our developers' credibility was on the line.

We needed a new tool to assist us in detection, diagno­
sis, and correction of VAX/VMS perfonnance problems. My
interest in building tools to assist ourselves in building better
sy:>tems led me to write this program.

Linda1 looks at memory issues first. Why we do this is
because:

• They are the most frequent

• They cause paging and swapping

• They can lead to 1/0 and CPU problems.

Figures 1 and 2 are a sample session from our archives.
It will give you a flavor for what assistance Linda can provide
to the technical staff.

1The Appendix gives the Pascal code for the "core" routines.

434

Facts known by Linda

1. Causes of a CPU limitation

• Some process(es) may be blocking others

• Lost CPU time

• High system overhead

• Excessive Interrupt Stack activity

2. Symptoms of a CPU limitation

• Processes waiting in CPU queue

• No idle time

• High system CPU time

3. Where SPM reveals a CPU limitation

• AVE Mem/CPU Queues The CPU queue value must
be three or greater, because the NULL process is
counted, as well as the process displaced by SPM
to capture data.

• Scheduler States and COM queue

4. SPM reporting for no idle time (CPU Idle and Total Idle)

5. SPM reporting for system CPU time high. This CPU
Busy statistic can fall into the Interrupt Stack, Kernel
Mode, and Executive Mode.

6. Compensating for a CPU limitation. This can be done by
specifying explicit priorities for processes or jobs, mod­
ifying the SYSGEN parameter QUANTUM or upgrading
the CPU.

7. Causes of memory limitations. This includes too little
physical memory in the system, inappropriate memory
management strategy, and improper memory assignments
to users.

Limited memory leads to paging or swapping - that is,
system 1/0. Page faulting means that the CPU waits.

8. Symptoms of memory limitations include no free mem­
ory, high page fault rate, and high swapping rate

9. Where SPM reveals memory limitations

• AVE Process-Memory Counts (including free pages)

• Memory utilization (total and user utilization)

10. SPM reporting for high fault rate (page faults and system
faults)

11. SPM reporting for high swap rate

• AVE Mem/CPU Queues (especially Memory
queues)

• Swapper Counts (especially InSwap and Swapper
CPU percentages)

12. Compensating for memory limitations

• Reduce the number of image activations

• Adjust page cache sizes

• Adjust working set sizes

• Adjust AWSA parameters

• Adjust memory loan parameters

• Adjust swapper trimming I swapping

• Modify balance set count

• Prevent active processes from devouring memory

• Enable swapping for processes

• Acquire more memory.

13. Causes of I/0 limitations

• Number of device(s) is insufficient

• Speed of device(s) is inadequate

• Excessive demand on particular device(s)

• Insufficient blocking factors

• Inadequate number of buffers

14. Symptoms of I/0 limitations

• High direct I/0 rate

• High buffered I/O rate

15. SPM reveals 1/0 limitations in I/Orates (especially Direct
and Buffered I/Os)

16. What to search for in SPM reports

• Determining which I/0 device

• Paging or swapping (system) I/0

• Poor file system caching

• Fragmented disk

• Explicit direct QIO's

• Explicit buffered QIO's

17. Determining which device: Check all statistics under
"Device 1/0 Rates" and the Busy, Paging, Swapping, and
Controller rates under "Disk Statistics."

18. Checking system I/0: Check "Paging Rates" (especially
Read and Write I/Os) and "Disk Statistics" (especially
Paging and Swapping Rates)

19. Check RMS caching under "File Cache Attempt Rate,"
and "File Cache Effectiveness ."

20. Detect a fragmented disk by examining "File I/O Rates"
(especially Wmdow Tums and Split I/Os).

We use $ PERFORM REPORT=DISK_SPACE to ana­
lyze online disk space.

21. Detect direct 1/0 by examining "Process Metrics."

435

22. Detect buffered 1/0 by examining "Device 1/0 Rates" and
"Process Metrics."

23. Compensate for 1/0 limitations by Re-distributing pag­
ing and swapping 1/0, improving file system cacheing,
reducing disk fragmentation, and handling explicit QIOs.

Source code

This appendix contains the Pascal source code for the "core"
routines used in the LINDA program.

Note: Explanations, advice, and recommendations given
by Linda are contained in the Help library.

CONST
lbr$c read= %X'01';

{* External RTL routines *}

FUNCTION LBR$INI CONTROL
(var library_index: integer;
func: integer;
libe_type: integer := %immed 0)
: integer; extern;

FUNCTION LBR$0PEN
(library_index: integer;
fns: [class_s] packed array[i .. u:integer]

of char := %immed O;
create_options: int_array := %irnmed O;
dns: [class_s] packed array[i2 .. u2: integer]

of char := %immed O;
rlfna: array[i3 .. u3: integer] of integer

:= %irnmed 0;
rns: [class_s] packed array[i4 .. u4: integer]

of char := %immed O;
var rnslen: integer .- %immed 0)
: integer; extern;

FUNCTION LBR$GET HELP
(library_index: integer;
line_width: integer := %immed O;
%irnmed [unbound] procedure routine

:= %irnmed O;
data: integer := %immed O;
key_l: [class_s] packed array[i .. u: integer]

of char)
: integer; extern;

FUNCTION LBR$CLOSE
(library_index: integer)
: integer; extern;

(***** MAIN PROCESSING LOOP *****)

Start_up;

(* Start the questions now. *)

path := 0; { Set indicator for stream identifier.
blocked := O; { Set indicator for program termination.
response_index := O; { Set index into response array. }

REPEAT

Dec_tree;

UNTIL blocked <> O;

436

help_stat := LBR$CLOSE(lib_index);
IF NOT ODD(help_stat)

THEN
LIB$STOP(help_stat);

{* Save session responses in a text file for future reference *}

{* Initialize the librarian. *}

help_stat := LBR$INI_CONTROL(lib_index,lbr$c read);
IF NOT ODD(help_stat)

THEN
LIB$STOP(help_stat);

{* Open the correct library. *}

help_stat := LBR$0PEN(library_index := lib_index,
fns := 'SYS$HELP:TUNE.HLB');

IF NOT ODD(help_stat)
THEN

LIB$STOP(help_stat);

Ill

PROCEDURE Dec_tree;

BEGIN

path := O; Set indicator for stream identifier. }

CASE segment OF

END;

1 Evaluate_complaint;
2 Start_investigation;
3 Investigate_memory;
5 Analyze_swapping_data;
6 Examine_voluntary_decrementing;
7 Investigate_swapper_trimming;
8 Investigate_swapping_behavior;
9 Large_waiting_processes;
10 Computable_processes;
11 Investigate_scarce_free_memory;
12 Investigate_io;
13 Investigate_file_activity;
14 Investigate_terminal_io;
15 Too_many_characters;
16 Investigate_cpu;
17 Investigate_idle_time;

OTHERWISE Report_problem;

END; { End of procedure Dec tree

437

REPEAT
Question(reply,string);
CASE reply OF

I Y' : BEGIN
path := l;

END;
IN' BEGIN

path := 2;
END;

I H' BEGIN
path := O;
key:= 'TUNEl';
Display_help(key);

END;

END;
OTHERWISE Bad_response;

path := O;

UNTIL path <> 0;
IF path = 1

THEN
BEGIN

path := 0;
segment : = 2;
WRITELN('Initiate preliminary investigation.');

END;
IF segment = 1

THEN
BEGIN

reply:=' ';
path := O;

438

An Evaluation of
Record 1/0 Versus Block 1/0

From a Programmer's Viewpoint

Darylene Colbert
SAS Institute Inc.

Cary, North Carolina

Abstract

This paper describes experiences the author had writing an I/0 subsystem for a major
software project under VAX/VMS. The use of Block and Record 1/0 is compared.

Introduction

As a member of the VMS Host Development Group at SAS
Institute, I have been involved in the redesign of the Version
5.16 1/0 subsystem for the SAS System. I have also worked
on the design of the future Version 6 1/0 subsystem. Within
the SAS System, a large portion of the code is written to
be portable across many operating systems. To support this
portable code, there is a layer of code at the bottom of the
hierarchy which is machine-dependent. It is at this layer that
each host development group develops an I/0 subsystem to
take advantage of individual operating system features. We
were concerned about the type of 1/0 which should be per­
formed and its efficiency and functionality. We specifically
needed to know whether to perform block 1/0 or record 1/0 at
the host level. Therefore, research and testing was undertaken
to help us make our decision.

Within the SAS System, the SAS 1/0 subsystem is re­
sponsible for all 1/0 to SAS data sets. We started with this
list of characteristics of SAS data sets on disk:

• They have a sequential file organization, allowing both
sequential and random access.

• Most 1/0 performed is sequential.

• SAS data sets tend to be rather large data files.

• SAS data sets have a fixed record length of 512 bytes.

Before we began, we theorized that block I/0 would be
more efficient for our type of processing due to sequential
access and relatively large fixed record length. However, we
also knew that record 1/0 provided many more parameters that
could be used to tune 1/0 performance.

After the research and analysis was done, we chose to im­
plement our design using block 1/0 to optimize performance.
Many of the features available through RMS were not needed
in our application. During the process, we learned of several
methods to tune block and record 1/0. In addition to presenting
the results of our testing, I will go over some of those tuning
methods.

Proceedings of the Digital Equipment Computer Users Society 439

This paper presents a comparison of performance between
block 1/0 and record 1/0. The first section explains the basic
differences between them and the research from which our
conclusions were derived The discussion describes the as­
sumptions of the test programs, the results of the tests, and an
analysis of the results. The third section defines and describes
a few of the parameters available to optimize performance of
both block 1/0 and record 1/0. The fourth section summarizes
the results and conclusions of the tests that were performed
The intended audience for this discussion is the programmer
who is experienced in general but is not familiar with writing
1/0-intensive applications on the VAX.

Comparison of Block JJO and Record JJO

Definition of Terms

What is the difference between block 1/0 and record 1/0? What
happens when you make an 1/0 request? Most programmers
are familiar with record 1/0. Under VMS, record 1/0 opera­
tions are provided by the record management services, RMS.
Record processing under RMS appears to your program as the
movement of records directly between a file on disk and your
program. This is, in fact, not the case. RMS uses internal
memory areas called 1/0 buffers to read or write blocks of
data. Transparently to your program, RMS transfers blocks of
a file into or from an 1/0 buffer. Records within the 1/0 buffer
are then made available to your program when RMS transfeIS
the records between the 1/0 buffer and it.

Block 1/0 bypasses the RMS record-processing capabil­
ities entirely. Your program assumes complete responsibility
for dividing blocks into records and moving the records to
program storage and vice versa. Rather than perform record
operations by means of one of the supported record access
modes, you process the file as a logical structure consisting
of some number of blocks. In block 1/0, a program reads or
writes one or more blocks by specifying a starting virtual block
number in the file and the length of the transfer. Block 1/0
operations provide you with an intermediate choice between

Nashville, TN - 1987

RMS operations and direct use of the Queue I/0 Request sys­
tem service.

Test Environment

In the test jobs used to compare the two types of 1/0, the
only variables changed were the type of I/O used and the
size of the internal buffers. All other parameters remained
constant. The test images are written in C and are equivalent
in functionality. The images read and write a data file of fixed
length 512 byte records, 25000 blocks long. For medium and
large buffer sizes, the results for reading the file were almost
identical to those for writing a file. Therefore, this paper refers
to the statistics obtained from each interchangably. The jobs
were run on a VAX 8600 with a moderate system load. The
test images use a default extension quantity of 160 blocks and
a retrieval window size of 255. These two parameters are
discussed in more detail in section 4. The only optimization
made in the record I/O image was to allow RMS to use the
read-ahead (RAH) and write-behind (WBH) options. To allow
this, the RAH and WBH flags were specified and the number
of buffers used was set to 2.

Each method was tested using various buffer sizes. For
block 1/0, this corresponds to the program's internal buffer.
For record I/O, it corresponds to the buffers used by RMS.
The buffer sizes used, in bytes, were 512, 1024, 2048, 4096,
8192, and 16384. A buffer size greater than 16K is atypical
for our application. Each image wasrun multiple times for
each buffer size. The resource usage statistics for each buffer
size were then averaged to draw our conclusions and produce
graphs of each usage statistic by buffer size for block 1/0 and
record 1/0.

Test Results

For our research, we chose to look at five statistics for com­
parison; CPU time, elapsed time, page faults, direct I/O count,
and buffered 1/0 count. These statistics were gathered only
for the actual read/write operations and do not include image
activation or the open/close operations.

The CPU time used is the total amount of time charged
to your process for the CPU. As you can see from Figure l,
the CPU time used is consistently less for block 1/0. The CPU
time decreases as the buffer sizes get larger.

Elapsed time in these test jobs is the length of time that
passes from the beginning of the 1/0 operations until com­
pletion. It includes both CPU time and I/O completion time.
Although elapsed time is a more subjective statistic because
it varies greatly with system load, it is the one that is most
visible to a user. It is the elapsed time that determines how
long the user waits while data is being read or written. In
Figure 2, you see the elapsed time for block 1/0 is less than
that for record 1/0. As the buffer size is increased and fewer
disk accesses are required, the elapsed time for both methods
decreases.

Page faulting is a function of your working set size; the
smaller your working set size, the more paging VMS must do
to perform the same amount of worlc. Figure 3 shows a graph

440

of the number of page faults incurred during the I/O opera­
tions. These jobs were run with a working set quota of 1000
pages, which was not a limiting factor. With that working set
size, you see very little paging occuring during the I/0 opera­
tions. However, if the working set size had been smaller than
the physical memory needed for program execution, faulting
would have increased. This is true for both block 1/0 and
record I/0.

The direct 1/0 count reflects the number of times an 1/0
operation is performed to or from a physical device, in this
case, the disk. Notice from Figure 4 that, as the size of the
internal buffer increases in both block and record 1/0, the
direct I/0 buffer count decreases. This is because the buffer is
filled completely before an access must be made to the disk.
So the larger the buffer, the fewer accesses required to write
the same amount of data. The interesting aspect of this graph
is that the direct 1/0 count is the same for both block and
record 1/0 for each buffer size. This is expected since the
number of accesses required for a specific amount of data is a
function of the buffer size, not of the I/0 method used.

The last statistic compared is the buffered 1/0 count. The
buffered 1/0 count reflects buffering done for you automati­
cally by VMS when some form of intermediate buffering is
required. For example, requesting 1/0 on a slow device such
as a terminal requires buffered 1/0. VMS performs this inter­
mediate buffering in system space and the buffered 1/0 count
is incurred only for this buffering in system space. The pro­
gram's internal buffer for block 1/0, and the RMS internal
buffer for record 1/0, both reside in program space. There­
fore, nothing in our comparisons affects the buffered 1/0 count.
This is seen by the constant line for both record and block 1/0
in Figure 5.

Analysis of Data

After gathering the data and evaluating each usage statistic,
we analyzed the data to see how each result pertained to our
application. There are primarily four areas to consider - ex­
ecution speed, memory usage, file sharing, and development
time.

Execution Speed

The two statistics which most directly reflect execution speed
are CPU time and direct 1/0 count. For CPU time, block
I/O is more efficient. For direct 1/0 count, there is no differ­
ence between block and record 1/0. Since increasing execution
speed was a primary goal for the I/0 subsystem, we chose to
implement the system using block 1/0.

Memory Usage

The data shows that the larger the buffers, the faster the task
processes data. Memory being a limited resource, you must
determine a satisfactory balance between execution speed and
memory usage. Not only must you have the memory required
for the internal buffer, but you must also consider the amount
of memory necessary for a reasonable working set size - one

CPU Time (in seconds)
Block l/O and Record l/O

CPU Time
l'.'.J: l'.'.Jl'.'.J: 41'.'.J. EJ0

El .: El l'.'.J : 3 El . 0 0

l'.'.J: l'.'.JEJ: 2El. EJEJ

l'.'.J: EJEJ: 1 El. BB

EJ:EJEJ:l'.'.JB.BB

512 11'.'.)24 2848 4B96 8192 16384

Buffer Size

IO_ TYPE a a a Block l/O A A A Record l/O

Graph Produced Using SAS/GRAPH

Figure 1: CPU Time

441

Elapsed Time
LJ:08:2LJ.EJ[:)

EJ:EJ5:4EJ.Ell.'.J

EJ:EJ5:EJEJ.EJ[J

EJ:EJ3:2EJ.tlfl

EJ:EJ1 :40.EJEJ

El: OEJ: 88. Elfl

\

512

Elapsed Time
Block I/O and Record I/O

1024 2848 4895

Buffer Size

IO_ TYPE ti o o Block I/O

Graph Produced Using SAS/GRAPH

Figure 2: Elapsed Time

442

8192 1538'1

Page =-oults
4LJ

3LJ

2LJ

10

512

IO_ TYPE

Page Faults
Block I/O and Record I/O

1 (:)2 4 2EM8 4LJ96

Buffer Size

o o o Block I/O

Graph Produced Using SAS/GRAPH

Figure 3: Page Faults

443

8192 16334

Direct I/O
30880

512

IO_ TYPE

Direct I/O Count
Blo=k l/O and Record I/O

1024 2048 4096

Buffer Size

a a a Block I/O

Graph Produced Using SAS/GRAPH

Figure 4: Direct 1/0 Cowit

444

8192 16384

Buffered I/O Count
Block l/O and Record I/O

Buffered l/i]

156

512 '1 B24 2B48 4B96 8192 16384

Buffer Size

IO_ TYPE a a s Block I/O

Graph Produced Using SAS/GRAPH

Figure 5: Buffered 1/0 Count

445

that won't create an excessive amount of paging, given the
chosen buffer size. From the CPU time graph, we find that
execution speed doesn't increase much once your buffer is
larger than 4096 bytes. With that buffer size:

• you stay within a reasonable page faulting range,

• the direct 1/0 count decreases, and

• elapsed time decreases.

For these reasons, we chose an internal buffer size of
4096 bytes to use with our block 1/0 design.

File Sharing

Typically, many users may want to access a file at the same
time. This is called shared access. For our application, this
is not relevant since the SAS System does not currently allow
shared access to a data file under VMS. However, if you are
considering shared access of records within a file, you must
use record I/0 to take advantage of the record level locking
and unlocking features of RMS.

Development Time

For the simple sequential file structure that we must imple­
ment, the difference in development time using record or block
I/0 is not substantial. Therfore, development time was not an
important factor in our decision to use block 1/0. However, if
your application requires the use of indexed files or variable
length records, record 1/0 is the more practical choice. By
using record I/0, RMS provides all the logic necessary to use
complex record access modes, for example, indexed mode and
relative mode. RMS with record 1/0 also provides complex
record formats, like variable length records.

One must also consider future development plans. Once
you commit to a method, whether block or record I/0, you can­
not easily access and modify the file using the other method.
RMS files contain internal information meaningful to RMS it­
self, so that if you modify an existing file using block 1/0,
none of the RMS internal structures will be updated Like­
wise, if the file is created using block 1/0, none of the RMS
internal structures will be created and attempting record access
through RMS will fail.

Summary of Analysis

To summarize, after consideration of each aspect described
above, we chose to implement the next major release of the
SAS 1/0 subsystem using block 1/0. The RMS features and
tuning parameters provided when you use record 1/0 are not
necessary for our particular application. Therefore, optimizing
performance became the deciding factor and block 1/0 was
chosen.

Along with the block 1/0 format, an internal buffer size
of 4096 bytes was chosen as the buffer size to use. This
buffer size provides the best tradeoff between memory used
for buffering and performance.

446

Improving Performance

During the testing that was done between block 1/0 and record
I/0, we found that the default values for parameters used by
RMS did not always reflect the 1/0 that our application per­
forms. For this reason, you should look into adjusting the
parameters that can be set in your program to tune the perfor­
mance of the I/0 operations. For applications that use record
1/0, there are many such parameters. However, for block I/0
applications like ours, there are only a few parameters that
significantly affect performance. This section discusses some
of the parameters that can be tuned to improve performance.
I will describe the parameters that work for both block and
record I/0 first, then the paramters that are specific to record
I/0.

Specifying Tuning Parameters

Tuning parameters can be adjusted by changing fields in the
File Access Block, or FAB, and the Record Access Block,
or RAB. These are predefined structures which RMS uses to
give or receive information about the structure of a file and the
structure of the records within the file. Alternatively, many pa­
rameters can be set with the DCL SET RMS...DEFAULT com­
mand.

The FAB allows you to communicate file-related infor­
mation to file service calls, such as file characteristics, file
specifications, and run-time options. Each of the fields within
the FAB is assigned a predefined symbolic offset name. Each
field name is prefixed with FAB$, followed by a character
that specifies the length of the field, followed by an under­
score. For example, to refer to the allocation quantity for a
file, the symbol FAB$L-ALQ is used. This indicates that we
are referring to the ALQ field within the FAB and that it is a
longword-length field.

The RAB allows you to communicate record-related in­
formation to RMS record services, such as the location, type,
and size of the input and output buffers, the record access
mode, and tuning options. Just like the FAB, the RAB uses
predefined symbolic offset names along with a standard pre­
fix. For example, to specify the multibuffer count field within
the RAB, you use RAB$B...MBF. In this example, the name
indicates that the MBF field is a field in the RAB and it is a
byte-length field.

Parameters Common to Block and Record 110

Internal Buffer Size

The parameter that makes the single biggest difference in per­
formance is the buffer size. As the buffer size increases, per­
formance improves. For block 1/0, the buffer size is specified
in the programmer's code, often as an array of the desired size
and type. For record 1/0, the buffer size is specified in units of
blocks in the RAB$B....MBC field of the RAB or with the DCL
command $ SET RMS...DEFAULT/BLOCK_SIZE=n. The
optimum size to use depends on the intended use of the file;
the only way to determine the best size is to experiment. The
default is determined by the SYSGEN parameter, RMS_DMBC.

Remember that the cost of a larger buffer size is a larger mem­
ory usage. As stated previously, we found that an internal
buffer size of 8 blocks was optimum for our application.

Default Extension Quantity

There are two parameters that affect performance when adding
records to a file and therefore increasing the file size. The first
is default extension quantity, which specifies how many blocks
to allocate on disk for adding records to a file when the file gets
larger than the space initially allocated to it. If you know you
will be adding records to a file, you should specify a reasonable
default extension quantity to reduce the number of times that
the file will be extended. If you use an extension quantity that
is too small, you will incur many extensions, causing your file
to be fragmented over the disk and resulting in slower access
time. However, if your extension quantity is too large, you
will be reserving large areas of disk space that may not be used
and therefore, wasted. If you do not specify a default extension
quantity, RMS will compute a size to use; however, this size
may not be optimum. You can approximate a reasonable quan­
tity if you can estimate the average number of records that will
be added to the file. The default extension quantity is speci­
fied using the FAB$W_DEQ field in the FAB or with the DCL
command $ SET RMS_DEFAULT /EXTEND_QUANTITY=n,

where n is the number of blocks per extension.

Retrieval Window Size

The second parameter that is related to extending a file is
the retrieval window size. Each extension to a file is called
an extent. If a file is extended repeatedly, the extensions will
likely be scattered on the disk. A pointer to each extent, called
a retrieval pointer, resides in the file header. For improved
performance when reading records from the file, some number
of these retrieval pointers are kept in memory in a structure
called a window. The more retrieval pointers you keep in
memory in the window, the faster your record access will be.
The cost of the retrieval pointers is charged to your buffered
I/O byte count quota. Since the number of retrieval pointers
needed is directly related to the number of existing extents,
the default extension quantity and the retrieval window size
should be considered together.

The default window size is 7 pointers. Valid values are
in the range of 0 through 127, or 255, which specifies that all
retrieval pointers be kept in memory, thus mapping the entire
file, if possible. In our test jobs, a retrieval window size of
255 was used. By specifying a value of 255, the number of
retrieval pointers kept in the window will increase dynamically
as the number of extents increases. The performance gain is
not seen when writing the file, but rather when the file is read
back in. The retrieval window size is specified in the FAB in
the FAB$B-RTV field.

Contiguous Best Try

One way to decrease the number of extents, and therefore
retrieval pointers required, is to request the contiguous best try

447

option. Using this option causes RMS to attempt to allocate
the file using a minimum number of extents. It will make
the entire file contiguous, if possible. However, if the file
cannot be allocated contiguously, it does its best to allocate
the largest contiguous areas possible. The only disadvantage
~f using this option is a slight performance cost at file open
tune. But the record access improvement definitely outweighs
the cost. The contiguous best try option is set in the FAB
in the FAB$LJ'OP field by using the symbol FAB$V_CBT to
tum the option on.

Parameters Specific to Record 1/0

Number of Buffers Used

Not only can you specify the size of the internal buffer that
RMS is to use when using record 1/0, but you can also
specify how many buffers of that size you want RMS to
use. The RMS buffers are allocated from the process work­
ing set. For sequential files, you must specify at least 2
buffers if you use the read-ahead and write-behind options.
If you do not intend to use read-ahead and write-behind, one
buffer is normally sufficient for sequential files. Increasing
the number of buffers takes space in the process working
set and can actually degrade performance by causing exces­
sive page faulting if the number is too large. The default
number of buffers is one. To specify more than one buffer,
use the RAB$B....MBF field or the DCL command $ SET

RMS....DEFAULT/BUFFER_CQUNT=n, where n is the number
of buffers.

Read-ahead and Write-behind Options

With the read-ahead and write-behind options in effect, RMS
alternates buffer use between two buffers. With this type of
processing, one buffer contains the next records to be read
or written to the disk while the second buffer completes 1/0.
With read-ahead, records are read into a buffer before they
are actually needed, so you do not have to wait for 1/0 to
complete when you are ready to process another record. With
write-behind, when the first buffer is filled, the next record
processed goes to the second buffer. The 1/0 operation for
the first buffer then takes place. The system does not have
to wait while the 1/0 operation completes. Instead, program
processing continues.

These options are available only with sequential files and
as stated above, you must specify two buffers to use them. The
only cost of turning these options on is the cost associated with
using two buffers instead of one. With most languages, read­
ahead and write-behind are the default operations; with others,
you must specify these options explicitly by using a clause in
the language. To specify them in the RAB, use the values
RAB$V_RAH and RAB$V_WBH in the RAB$L-ROP field.

Summary

In conclusion, our decision to use block 1/0 over record 1/0
was based on two major considerations:

• the overall performance of block 1/0 is better than that
of record 1/0, and

• at this time, we do not need to take advantage of features
provided by RMS record 1/0.

As our 1/0 requirements and features change in the future,
we may look to RMS to provide the advanced capabilities that
we will need.

448

ODS-2 DISK OPTIMIZATION
Wef Fleischman

Software Techniques, Inc.
DECUS Nashville, Spring 1987

ABSTRACT

Disk structure optimi:t.ation is a proper concern for all system managers and, if treated systematically, is also
one of the most interesting and rewarding pursuits. This article addresses how to approach disk performance
optimization for VMS systems. In the process, a cost analysis of a hypothetical 8650 system that is
overloaded notes the hidden costs associated with a sub-optimal system. A brief review of basic disk
operation, including its mechanical nature and VMS usage, shows the bottlenecks that rob your system of
performance. A survey of VMS commands reveals the source of problems and the utilities to fix them, and
case histories demonstrate how optimization methods yield beneficial results.

INTRODUCTION

It seems that no matter how many advances are made in computer
technology one thing always surfaces as a top wish-list item: make
the system run faster.

It is human nature to become accustomed to the processing
capacity available at our keyboards. We are initially impressed when
our new VAX is installed, but powerful resources draw a workload
like an electromagnet in a scrap metal yard. Later, when the machine
is periodically overloaded it disappoints us and we nostalgically yearn
for the better performance that we knew was possible (at least at one
time).

Improving the situation is, in many cases, a financial question.
Adding hardware is relatively expensive but can improve your
system's capacity and, therefore, its performance. However, a better
question to ask is, "Are you getting the most from the hardware you
already have?"

The remainder of this article focuses on how to get the most from
your V AXNMS system by making sure that your disk resources
are performing at peak efficiency. By comparing the cost of
buying new hardware with the cost of tuning you can make an
appropriate choice for your own installation.

THE COST OF DISK STORAGE

All computers are information processors. We pay a precious
premium for having the information nearby: the accessibility of the
information is what costs dollars. If the data doesn't reach us as fast
as it could, we have been short-changed. And when we store data that
we don't really use on the disk, it costs "hidden dollars" by depriving
us of quick access of the data that we really do use. Figure 1 contrasts
the relative price we pay for information stored on various media
(notice that magnetic tape is very economical per megabyte, but
suffers from relatively slow access time as shown by the dotted line).

$3000 Main
7,200,000

memory

IP>~'ii'& e'ii'Olla&~I!!
I

•
C@IHllF>~11&0•@00

•
Cost vs. Access Time • • COST ":' SPEED

($/MB) (msec) . .
Disk . . -$30

----~J
30

Tape
c::::::i

$0 -
Figurel

Software Techniques, Inc.

Proceedings of the Digital Equipment Computer Users Society

Almost all information on our systems is stored on disk media that
offers an optimum trade of access performance to cost. All systems,
from MicroVaxes to 8800s, depend on disk performance to give users
access to their information.

Disk performance is especially crucial in a V AXcluster or DECnet
environment. You don't want to hold up hundreds of users who must
all access a cluttered or sloppily organized disk. Dependencies on
bottlenecked data can cascade so that a single system can slow down a
multi-million dollar cluster or network.

PERFORMANCE TUNING
AN OBJECTIVE APPROACH

Performance tuning is best undertaken systematically and
generally involves the following steps as listed below and summarized
in Figure2:

449

1. Identify a single problem objectively: i.e., "response
time is too great in the inventory program".

2. Hypothesize its cause: "disk activity is bottlenecked at
:ollA2:".

3. Identify measurement tools and define a benchmark:
"supetVisor will measure elapsed time sfuring lookup of
five standard inventory items" and "~: direct 1/0
rate be measured with the MONITOR utility recording
lQ...llJi.k".

4. Perform the baseline benchmark from which
comparisons can be made.

5. Experiment with system software modifications: i.e.,
"DUA2: will be shadowed with DUA3:".

6. Perform the post-benchmark and compare results.
7. Repeat until you're satisfied.

OBJECTIVE
PERFORMANCE TUNING

1. lndentify problem

2 . Hypothesize cause

3. Design benchmark

4 . Collect baseline data

[
5 . Experiment

6. Collect results

7. Evaluate

8. Repeat, as necessary

Figure2

DECUS I Nashville Spring 1987

Nashville, TN - 1987

ODS-2 Disk Optimization
It is important to undergo the baseline benchmark. It lends

credence and authority to your conclusions by yielding concrete
numbers for comparison. The benchmark also quantifies benefits so
you can estimate the payback achieved through tuning, and allows
you to choose among several different experimental changes. (When
making changes, you will almost always elect to try several options
because it is as easy to make several changes as it is to make one.)

Key to the process of tuning is the ability to spot problems and
know what to do about them. To accomplish this, you should have:

1. At least a cursory understanding of the "mechanical"
nature of disk hardware.

2. An understanding of disk usage under VMS (i.e., how
ODS-2 works).

3. Practice in "investigative monitoring", and ...
4. Knowledge of the tools that let you to tweak the system.

Later, we11 talk about how to recognize the bottlenecks and how
to deal with them, but let's review some details of disk operation
under VMS first.

THE LIMITING FACTORS

It is important to understand that the mechanical motion which is
intrinsically part of all disk drivesl also limits their speed. Moving the
head armature to the correct cylinder is the largest component of time
required, while waiting for the disk to rotate is the second (and lesser)
component of latency. In Figure 3, the black portion of each bar
represents the average time to position the disk armature to the
appropriate cylinder. The white portion details the time taken for the
desired disk sector to rotate around and become accessible by the
read/write heads.

AVERAGE ACCESS TIME
0

10

RAGO RA81 RMOS RP07 XMD
1gure

Disks such as the CDC 9772 XMD, shown at the far right,
exhibit fast seek times but do relatively little to improve rotational
latency. This is because most disk drives rotate at about 3600 r.p.m.
(You can expect to see a marked improvement in this statistic over the
next five years, however, until improvements are made you must still
live with the current limitations.)

Figure 3 clearly illustrates why we need to do everything in our
power to minimize the seek distance required by disks. It is the seek
distance that is the largest component of access time: if the average
seek distance is halved, a busy drive can handle roughly twice the
number of user requests.

The disk heads can only be used by one user at a time. On a
heavily accessed disk, the heads immediately depart for another area
of the disk when finished with the current user's request. If we want
to read two sectors, it is optimal to do so in one operation, rather than
reading one sector now and coming back later for another sector Such

Solid state "memory disks", which are constructed of bulk
semiconductor memory, are an exception. These "pseudo" disks
have access performance similar to main memory.

Software Techniques, Inc.

superfluous seeks consume disk throughput and make them seem
slow.

ERROR CORRECTING DISKS

Most disks perform some type of automatic error correction these
days, including ECC correction, automatic bad block replacement,
and other such "transparent" features. Automatic error correction
means that the disk, its controller, and/or VMS go out of their way to
try to recover from disk failures without the user's (or system
manager's) immediate knowledge. This is a great feature, but it has
its costs. Error correction takes time and can, in some instances,
cause a mysterious loss of performance. For example, have you ever
had the experience of not noticing that a disk was having extensive
errors until the ERRLOG.SYS file became suspiciously huge? Or not
noticed disk errors until a user pointed out a five digit number in the
"errors" column of a$ SHOW DEVICE display? Any marginal disk
requiring constant error recovery can exhibit hidden yet noticeable
throughput degradation.

Disk error recovery also takes at least twice as long (typically ten
times as long) as an error-free data transfer. This is illustrated in
Figure 4. Always check the error log of disks that do not achieve
what you expect as normal throughput.

450

ERROR RECOVERY TIME

~------rotation delay
,_.j<;j.... ______ seek delay

lf.14----- CPU delay

Figure4

FILE FRAGMENTATION

Two performance problems occur when VMS is dealing with
fragmented files. First, the disk heads have to seek all over the disk to
retrieve each of the file's fragments, which can number in the
hundreds for large files. Second, VMS must step in to assist in
locating all those fragments causing a type of overhead called
window turning. These problems can be eliminated by making
fragmented files contiguous as shown in Figure 5.

A Fragmented File Made Contiguous

Figure5

DECUS I Nashville Spring 1987

ODS-2 Disk Optimization
The layout of interrelated files is also important Two files widely

separated on the disk and used simultaneously cause the disk to seek
alternatively from one end of the disk to the other, a mechanical
m_otion that requires time. Placing these files together, as shown in
Figure 6, allows better access performance.

~
0

Two Concurrently Accessed Files
Placed Together

Figure6

ODS-2 FILE STRUCTURE

How does the disk know where to find the contents of file "A" or
file "B"? In reality the disk does not. The disk has no knowledge of
what the "SYSO" directory means, nor that the pagefile is used for
memory management-- the disk is simply a random access block
store. Instead, VMS adds the interpretation to particular disk blocks
and calls them "boot blocks," "directories" and "files," etc.

VMS is responsible for organizing the system and user files on a
disk volume and remembering the location of each. To understand
this better, compare VMS file organization to that of books in a
library, as illustrated in Figure 7.

Figure7

Books in a library are like files on a disk volume. Books are
composed of a series of equal-sized pages, and files consist of a
number of disk sectors. The librarian {which is Fl 1BXQP2 for
VMS) dictates the rules for library organization, and is responsible for
locating the stored information when it is requested. If a book is too
big to fit on a shelf, it can be split to fit on multiple shelves. When a
new volume or book arrives, the librarian rearranges the other books
to accommodate it.

VMS does not shuffle files around, however, the way a librarian
rearranges books. When a file needs to expand or when a new file
must be stored, unless given better direction, VMS finds any available
space big enough for the file (or its extension). Large files must
sometimes be broken into multiple fragments to fit into available
contiguous space. It's similar to what might happen if a set of
volumes of an encyclopedia had to spread out all over a big library in
different rooms.

2 This name is derived from "Files-11 (Fl 1) ODS-2 (B) Extended
QIO Processor (XQP).

Software Techniques, Inc.

451

Just as a library has a card catalog that shows the correct
bookcase and shelf, VMS keeps its own catalog called the index file
as shown in Figure 8.

~~~~ 
EIEIEIB 
EJEJEJ~ 
6~6~ 
EIEIEI~ 

Sequential 
Index File 
Headers 

UIN2Glll,GCllllll•IO 
..._.,ORS:RW',O:R 
AC.. • ACCE .... READ 
Catt Mad~i.t ilt.e7 

Figure8 

THE FILE HEADER DEFINED 

The cards in the card catalog describe where books are located in 
the library. For VMS, file headers stored in the index file do the same 
thing. 

When you initialize a disk, the "card catalog" is created with a 
certain number of blank cards. The number of allocated but unused 
headei:s _is controlled ~y t~e /HEADERS qualifier to $INITIALIZE.' 
In addition, as shown m Figure 9, the index file can expand later and 
hold_ even more headers (as controlled by the /MAXIMUM_FILES 
qualifier to $ INITIALIZE). When this happens, the index file may 
become fragmented. This is undesirable. It is similar to a library's 
~ catalog becoming 5? large that another card file has to be placed 
m another room of the library to hold the overflow. This is as much 
trouble for VMS as it is for library users, although VMS has been 
progranmied to silently cope with this inconvenience. 

INDEX FILE EXTENSION 

• 

.___ fragmented Index 
file extension 

expansion blocked 
by a user file 

/HEADERS:lnitial size 

Figure9 

DIRECTORY FILES DEFINED 

In V_MS, we are accustomed to files being displayed in 
alphabetical order, and can hierarchically organize files in 
subdirectories. However, the VMS "catalog card" system stores each 
new file sequentially on the first available "card". To take all the 
unorganized "cards" and display them in alphabetical order and in 
subdirectories, VMS keeps intermediate directory files that direct the 
file name stored to the correct card number in the card catalog. This 
directory file name is also known as the file ID or FID. 

DECUS I Nashville Spring 1987 



ODS-2 Disk Optimization 

THINGS THAT YOU CAN DO 

Now let's center in on the real problem. We want to use all this 
knowledge about how disks work under VMS to improve 
pelformance. Where do you start when you suspect a pelformance 
problem and want to do something about it'? 

One solution, which will be well-received by your DEC 
salesman, is to add more hardware to enlarge your system's total 
available capacity-- add more memory. Another option is to off-load 
some of your current workload to another system, if another system is 
available and is not over-loaded. Probably, however, the least costly 
solution to you is to fine tune the workload and the hardware you 
already have to work in better harmony. 

A COST ANALYSIS 

It is difficult to justify expenditures for additional hardware. It 
can also be difficult to justify time to tune a system if you're already 
busy and don't know what effort or special training is required. 
Knowing what you can gain from tuning your system-- and some 
familiarity with the tuning process-- is what justifies the investment of 
your time. However, it is the cost gains in particular that convince 
upper management of the value of time spent on system tuning. To 
illustrate this, let's look at a hypothetical company. 

As at many typical sites, the hypothetical shop shows dramatic 
rises in computer usage at eight or nine o'clock in the morning. 
Usage falls briefly around coffee breaks and lunchtime, then falls to a 
low level after 5:00 P.M. This demand is also moderated by the 
processing capacity of the computer: as the machine approaches its 
physical limits people adjust their work. To a large degree, these 
adjustments are painless and make a great deal of sense to smooth out 
peak workload. People do such rational things as: 

1. Put non-interactive jobs in the batch queue. 
2. Change schedules by arriving early and leaving late. 
3. Reduce the number of compiles and LINKs during 

debugging. 

What if the system's capacity is just adequate for the peak demand 
level'? Further, what happens ifthe processing load increases to 10% 
beyond the peak capacity, or what if the machine's pelformance is 
reduced 10% due to disk inefficiency? People react. They 
compensate by making uncomfortable adjustments to their working 
styles. They may use reports rather than on-line inquiry, 
communicate with colleagues in person rather than using electronic 
mail3, etc. 

At this point, there is increasing pressure on the system manager 
to restore a "comfortable" computing environment for the users. 

To quantify the costs of such an overly busy system, let's assume 
that our hypothetical company has a VAX 8650, an HSC50 and four 
RA81 disk drives. This company employs a total of 50 persons who 
use the computer as shown in Figure 10. 

3 

A HYPOTHETICAL COMPANY 

HARDWARE 

VAX 8650 
HSC50 
DUAO: 
DUA1: 
DUA2: 
DUA3: 

PERSONNEL 

10 managers 
15 data entry persons 
15 secretaries 
5 stocking clerks 
5 programmer/analysts 

Figure JO 

And they are most likely to call you first to complain about the 
system's slowness. 

Software Techniques, Inc. 

This computer system is currently over-utilized and as the 
computer load surpasses its capacity, employees begin to react as 
follows: 

The Systems Manager reduces daily processing load by running 
backup and other maintenance functions at night. A half-time 
computer operator is hired at $15,000/year. The DEC maintenance 
contract increases 8% ($2600/year) as it goes from an 8-hour 
Monday-Friday contract at $2770/month to 16-hour coverage at 
$2992/month. 

Because of frustratingly slow response time managers discontinue 
using on-line access to sales and inventory data They request printed 
reports that cost $570/year (for one third of an LGOl 600 l.p.m. 
printer at $11,950 and depreciated over 7 years). Additionally, 
$500/year is spent to store and dispose of reports. 

Because of the out-of-date, off-line information each manager 
makes at least one erroneous inventory decision per month. This 
costs an average of $15 per decision, or $1800/year. 

Some managers decide to off-load their spreadsheet applications 
from the VAX to personal computers and five managers buy $3000 
personal computers. With a seven year depreciation schedule this 
costs $2143/year. 

Managers who previously used the MAIL utility to keep in touch 
with their employees now use written memos and visit employees. 
This requires an additional half-hour per day for each manager. 
Assuming the average salary is $40,000/year, the two thousand hours 
spent on communication costs $2500/year. 

The forty supervised employees spend an additional five minutes 
each day for communication with managers. Salaries are: five 
programmers/analysts at $36,000 (180,000); five stocking clerks at 
$22,000 (110,000); fifteen data entry operators at $19,000 
(285,000); fifteen secretaries at $20,000 (300,000). The total salary 
of non-management is therefore $875,000, and the extra 
communication costs an average of $438/hour or $22/5-minutes. 
Over two hundred and fifty working days a total cost of $5500 is 
incurred. 

To distribute system load more efficiently data entry operators are 
scheduled in two shifts. To manage the second shift, the lead data 
entry operators is promoted at a cost of $3000/year. Two operators 
cannot accommodate the schedule change and quit. The cost of 
recruiting replacements is $1000 per replacement. Therefore, the total 
costs for splitting the shifts is $5000. 

As shown in Figure 11, the total cost of working a system that is 
being used at 10% beyond its "comfort" capacity is $35,670/year. 

2nd Shift Operator $15,000 

DEC Maintenance 2,600 

1/3 of LG01 printer 570 

Reports, misc. costs 500 

Stale Information errors 1,800 

Personal Computers 2,200 

Loss of MAIL utility 2,500 

Extra employee time 5,500 

2nd shift promotion 3,000 

Recruiting 2,000 

$35,670 

Figurell 

DECUS I Nashville Spring 1987 

452 



ODS-2 Disk Optimization 
This expenses is in-line with that which could occur in any 

company (if anything, it is most likely to be accused of being too 
conservative). You'll want to perform similar computations specific 
to your own site and then talk with upper management about saving 
the company significant costs. When you compare the costs for not 
acting to improve system performance with the expense of new 
hardware and the cost of setting aside tuning time, it's obvious which 
choice offers the least investment of money for the results possible 
(see Figure 12). Even if the system manger spends just two hours 
every other week to analyze and tune the system to stay in the 
"comfort" zone, gains can be made. (At a well-deserved system 
manager salary of $60,000/yr, this costs only $1500 per year, which 
is far preferable to spending 8 hours a day, 5 days a week listening to 
complaints that the system is too slow.) 

COST COMPARISON 

Annual coat of~ acting 

New RA81 

Tuning effort (2 hours per week) 

$35,670 

$13,000 

$1500 

Figurel2 

Now that we've worked out the economics, we can appreciate the 
payback that results if "lost" performance is recouped from hardware 
through tuning. The areas to look at for tuning improvement include: 

1. Adjusting your applications' RMS buffering. 
2. Reducing volume fragmentation. 
3. Placing files for best access performance. 
4. Adjusting memory for XQP caches. 

RMS BUFFERS 

RMS file processing offers several options that are useful in 
getting better response time from application programs. 

The easiest of these is to increase the size and/or number or type 
of buffers. This applies to sequential and indexed files. The 
$SET RMS/BLOCK_COUNT/BUFFER_COUNT command can 
decrease disk accesses by instructing the system to read more data per 
request. This is more efficient, but requires additional memory in the 
process' working set. An advantage to using the $ SET RMS 
command is that it does not require any changes to your application 
programs. To use this command, place $ SET RMS in the login 
command file for the group of users that use a particular application of 
interest. (However, be sure that you measure the effect the change 
makes to objectively determine if any improvement is produced.) 
Figure 13 shows the output from the $SHOW RMS command 
which reviews one process' settings for RMS buffering. 

APPLICATION BUFFER CONTROL 

S SHOW RMS 

Prooe•• 
Syst•m 

Pror:.•• 
System 

MULTI· 
BLOCK 
COUNT 

0 ,. 
Prolog • • 

$ SET RMS/BUFFER_COUNT 

$ SET RMS/BLOCK_COUNT 

$ SET FILE/GLOBAL 

Indexed Ael~~~IBUFFER COUNJ":qu•ntlel J 

Eatend OU•ntlty 

• • 

DID ll•gt•p• Unit Record I 
o o o I 
o o o I 

Figurel3 

Software Techniques, Inc. 

NETWORK 
BLOCK 
COUNT 

• • 

453 

Figure 14 shows the schematic relationship between the "private" 
1/0 buffers and RMS buffers of two processes that are managed in Pl 
space by RMS to implement multi-buffering, read-ahead and deferred 
write-behind. The system global buffer in Figure 14 allows the two 
processes to share buffers to a heavily used, shared file. 

BUFFER TUNING 

PROCESS "A" 

:::::{{{:~:}===========-=·=····. r: 
:fF>rogram:: 
· code ., 

·>> .......... ;.· ......... ·.·.·.·:=::: ........... ;.:-:·:·:·:-:···:·:·:·::::::::::::·:· 
.;.;.·.;.-.;.·.;.;.:-:·:-:·:·:·:·:::::::.:-:-:.:-:-:-

Buffer 

PROCESS "B" 

RMS buffer 1 

RMS buffer 2 

System global 
buffer 

•4--• I RMS buffer j 

Figurel4 

An application can be coded for read-ahead and write-behind 
processing to smooth the application's apparent interactive 
performance. This is accomplished automatically by RMS. It pre­
fetches input and delays output operations "behind the scenes" to 
lessen the number of l/O operations physically requested of the disk. 
Many DEC languages process sequential files by this method by 
default. You must check the documentation for each particular 
language to determine if they do this. 

As shown above, $SET FILE/GLOBAL BUFFER=N is 
useful to reduce the aggregate amount of system l/0-and main memory 
required by an application. If multiple processes are using the same 
file, DEC recommends that you combine the use of global buffers 
with local RMS multi-buffering. 

FILE FRAGMENTATION 

As files are created and deleted, every system acquires a certain 
amount of file fragmentation. But how do you know if this 
fragmentation is actually slowing system performance? There are 
four basic tools available to monitor fragmentation and its effect on 
performance. 

$MONITOR FCP allows you to observe the "Window Turn 
Rate" & "Open Rate". The window turn rate is an indication of 
overhead imposed on VMS for having to contend with fragmented 
files. When you examine this display, look at the "CPU Tick Rate". 
This indicates how much CPU time is being used by VMS to handle 
file requests. Obviously, excessive CPU time indicates that the 
system is being forced into handling badly fragmented files. 

$ MONITOR FILE SYSTEM CACHE allows you to 
observe the "File Hdr (Hit l>ercentage)'~ If your HDRCACHE is 
already large, you have either a high window turn rate or a very high 
file open rate. If the HDRCACHE is small, you might consider 
increasing its size. 

$ DUMP/HEADER allows you to list the number of retrieval 
pointers used to map a file in the "Map Area:" portion of its display. It 
is equipped to give a detailed list of each file fragment, including the 
disk location and the size of each fragment. 

DECUS I Nashville Spring 1987 



ODS-2 Disk Optimization 
$ FRAG allows you to see free space location and file 

fragmented. The FRAG utility, a program included in our disk 
structuring utility kit, scans an entire disk and reports back the worst 
fragmented files found. This display is shown in Figure 15. 

FRAG Displays the 

Worst Fragmented Files 

Fragment 
count (ext) 

252(2) 
101(1) 
27 
22 
22 
21 
18 

Worst 100 Fragmented Flies: 

[00,001]BCKMGR.LOG;348 
[SYSTEM]SWAPFILE.SYS;1 
[001,001]BCKMGR.LOG;347 
[001,001]BCKDUB1 .LOG;3 
[SYSTEM]ERRLOG.SYS;1 
[WEF]DISKIT _DSU.EXE;10 
[DMP[TESTO.PHYS;2 

Figure JS 

The FR.AG utility also surveys the fragmentation of the disk's 
free space and reports it graphically as shown in Figure 16. The 
distribution of volume free space is important for several reasons. 
First and foremost, free space is used to create new files and extend 
old files. Because free space distribution controls the location and 
fragmentation of new allocations, if free space is fragmented then all 
new files created from it are fragmented. 

SOFTWARE TECHNIQUES, INC. 
DISK DUAO: FREE BLOCK MAP 

i g i1 
34688 69336 104004 

Loqical Block Number 

Figure16 

J 
138672 

DEFRAGMENTING FILES AND FREE SPACE 

The BACKUP utility is the traditional method of defragmenting 
files, but this is a by-product of the process and not what it was 
designed to do. BACKUP/RESTORE is a three step security 
process. First, you perform a full BACKUP, then reinitialize the 
disk, and finally restore all the files. 

$ BACKUP is not the perfect solution, but is about the best that 
vanilla VMS offers.4 BACKUP/RESTORE usually requires an 
operator to conduct the procedure, which is time-consuming, 
especially with tape. You also run the risk of data loss ifthe save-set 
is destroyed or mis-sequenced by the operator. Assuming all goes 
well, the files on restore are defragmented, but your directory files are 

4 At DECUS/Nashville, DIGITAL announced plans to provide a 
utility for defragmenting files. However, this utility will not be 
finished until after the next major version of VMS is released, 
sometime in mid-to-late 1988. 

Software Techniques, Inc. 

still dispersed across the disk. 
$ COPY allows you to defragment files individually. The 

/CONTIGUOUS qualifier attempts to find contiguous free space, but 
uses separate spaces if extra space is needed. Unfortunately, the 
COPY command does not report the fact that the latter has occuned. 
The /EXTENSION qualifier can also be used to specify an explicit 
extend factor for the new file to lessen the fragmentation of future 
additions to the file when the file grows. 

There are many controls at the QIO, RMS or FDL level that 
qualify what free space is returned by VMS. Volume location can be 
specified by cylinder number, logical block number, or relative to an 
existing file. In addition, an approximate location or an exact location 
can be specified to return an error if the location is not available. If 
"contiguous only" is specified, VMS returns a single span of 
sequential disk logical block numbers. "Contiguous best try" asks 
VMS to do its best, but VMS uses separate spaces on the disk if that 
is all that's available (in this case no error is returned). 

454 

Unfortunately, both QIO and RMS are awkward to use. 
$ CREATE/FDL can be a real aid to exercise explicit control over 
file contiguity and offers a much more friendly user interface. 

KEEP A HEALTHY FREE SPACE RESERVE 

Disks should be reorganized regularly, and at least 10% of the 
volume's storage should be kept free. This reduces the rate al which 
free space is recycled for new file allocations. Disk fragmentation 
levels escalate rapidly when the free space is recycled frequently. 
Fragmentation can be moderated by having an adequate free level al all 
times. If you have a lot of files that are not frequently used, archive 
them to tape or removable disks. Failing that, move those files to the 
periphery of the disk so that the disk heads do not have to skip over 
them while actively accessed disk data. 

IMPROVING FILE ACCESSIBILITY 

Earlier we spoke of the importance of minimizing the mechanical 
motion of the disk drive, especially disk head seeks. Defragmenting 
files can reduce the need for many seeks, but once you've 
accomplished this, the next goal is to reduce the distance of the seeks 
that must occur in any case. 1bis is accomplished by identifying your 
most actively utili:red files and moving them close together. 

$SHOW DEVICE/WINDOWS displays all files open on a 
given disk and can therefore be used to identify the most active files 
on heavily used disks. (In a V AXcluster, $ SHOW DEVICE does 
not list all file activity if the disk is mounted /CLUSTER. Files open 
on such disks are not reflected in the display on other V AXcluster 
nodes and you must perform the $ SHOW DEVICE command on 
each node.) 

$ PROCESS is a utility that we have written which identifies 
open files by a selected process. This can be useful if you suspect that 
a particular application program is generating an overload of disk 
requests. The PROCESS utility helps you identify the files being 
used and the l/O counts to each file, which is particularly useful for 
applications whose internal operation is not well documented. 

$ MONITOR PAGE shows you the demand level for disk l/O 
to the pagefiles. S SHOW MEMORY lists the active pagefiles and 
their actual usage. To make changes in pagefiles or swapfiles, the 
$ SYSGEN utility is used. Remember, when SYSGEN extends an 
existing pagefile or swapfile, that file becomes fragmented if 
contiguous space is not available. 

Installed images are made known to the system because they are 
often used by the image activator. Even though "installed" these files 
are repetitively paged into the worldng sets of each user who runs 
them. Therefore, these files, along with the pageftle5, are good 
candidates for placing in an optimum disk location. 

Often, the middle of the disk is the optimum location for quick file 
access. This location is shown in Figure 17. However, the ideal 
definition· for the optimum location is that location which allows 
fastest access to the file. This location can therefore be at the 
beginning of the disk for a disk with few files. 

s Specifically, SYS$SYSTEM: *SHR.EXE files are ideally suited 
for optimum positioning. 

DECUS I Nashville Spring 1987 



ODS-2 Disk Optimization 

WHERE IS THE "MIDDLE" 

OF THE DISK? 

A. ' ' ' 'sdu ' ' ' '1 doo 

Cylinder # 

Figure17 

PLACING FILES DELIBERATELY 

With QIO and RMS you can request specific allocation areas for 
new files. The QIO and the associated File Information Block (the 
FIB) are not easy to use, however. The easiest commands to learn are 
CREATE and EDIT/FDL as shown in Figure 18. These commands 
also allow you to specify all of the file options for creating files. (An 
even easier option is to use a restructuring utility that automatically 
performs file placement as requested by the system manager.) 

CREATING A "PLACED" FILE 

WITH "$CREATE/FOL" 

FILE 
NAME 

AREAO 
[]FILE.EXT 

2000 ALLOCATION 
EXACT_POSITIONING 
POSITION logical 

Figure18 

yes 
35000 

BALANCING LOAD ACROSS SPINDLES 

If you know where your I/O is taking place you can balance disk 
load across multiple spindles for better performance. $ MONITOR 
DISKS gives you an I/0 breakdown by disk. To distribute load, 
however, think about the following possibilities: 

1. Distribute user default directories to idle disks. 
2. Use volume sets to distribute indexed files by areas. 
3. Use shadow sets to reduce disk head read contention. 

The IDL editor lets you distribute the key structure of an indexed 
file to one physical disk and the data buckets to another. One set of 
heads can then be kept available at the index buckets while the other 
disk scavenges for data. Shadow sets can also be used to distribute 
I/0 traffic to multiple spindles. Aside from their value as fail-safe 
storage, shadow sets provide better read performance by sharing the 
read load between disks. 

SYSTEM CACHE EFFECTIVENESS 

The cache areas can be tuned by adjusting the following 
SYSGEN parameters: 

ACP MAPCACHE controls how many blocks of the allocation 
BITMAP-are loaded. 

Software Techniques, Inc. 

455 

ACP _HDRCACHE controls how many file headers from the 
index file are loaded 

ACP DIRCACHE controls how much memory is used to store 
blocks ordirectory files. 

ACP WINDOW controls the default number of window 
pointers allocated in a window. (This parameter can be overridden 
when specific volumes are Mounted or specific files opened.) 

The file system caches reside in system paged and non-paged 
pool Caches in non-paged pool are not "caches" in the strictest sense 
in that they do not contain actual blocks of disk data. Rather, they 
contain small shorthand data structures that summarize active areas of 
the disk. It is important that these caches be adequate in size, but the 
system defaults and those that AUTOGEN computes are almost 
always correct for every system. The ANALYZE/SYSTEM utility 
displays the amount of non-paged pool used via the 
SHOW POOL/NONPAGED/SUMMARY command. In Figure 19, 
the "VCA" line represents the "volume cache" and contains the quota 
block entries, file ID numbers and the list of recently freed extents. 

SDA> SHOW POOL/NONPAGED/SUMMARY 

Non-poged dynamic 1toroge pool 

Summary of no,..poged pool oontante 

50 UNKNOWN • 71808 (25%) 
1 ADP • 1184 (0%) 
1 LOG 32 (0%) 

10 PCB • 2880 (1%) 
35 UCB • 17280 (6%) 

4 VCB HD (0%) 
1 WCB 224 (0%) 
4 TYPAHD • 1472 (0%) 
I DPT • 12576 (32%) 

:i:m ~10~ 1 

10 scs • 19104 (6%) 
1 LOADCODE • 2752 (0%) 
3 INIT • 31344 (14%) 
1 UIS 352 (0%) 

Disk Quota Blocks 
Free file-ID numbers 
Recently freed extents 

I 

Figurel9 

SHOW POOL/SUMMARY/PAGED displays the amount of 
paged pool being used for the caching areas set up by the SYSGEN 
parameters. Paged pool is loaded with cached blocks of the 
BITMAP.SYS file, blocks of directory files, the directory index table 
and file headers. These caches are considerably larger than those that 
reside in non-paged pool. The SYSGEN parameters controlling the 
HDRCACHE, MAPCACHE and DINDXCACHE can be increased 
rather liberally without penalty because the paged pool does not 
physically reside in memory unless being used. 6 As shown in Figure 
20, the paged pool caches appear in the $ANAL Y'ZE/SYSTEM 
display as "UNKNOWN". 

SDA> SHOW POOL/PAGED/SUMMARY 

Paged dynamic etorage pool 

Summary of PIQ•d pool content• 

i 8 UNKNOWN 
1 PQB 

55 GSD 
73 KFE 

3 MTL 
19 KFRH 

1 TWP 
1 RSHT 

88 LNM 
I KFD 
1 KFPB 
1 PMB 
2 ORB 
2 QVAST 

• 57824 !51 %) 
2256 (1 %) 
3296 (2%) 
4704 (4%) 

128 (0%l 
5360 (4% 

• 12336 (10%) 
528 (0%) 

7440 (6%) 
320 (0%) 
16 (0%) 

1 792 (1 %) 
5472 (4$) 

• 11904 (10%) 

File h!aders 
BITMAP.SYS blocks 
Diretory blocks 
Directory indexes 

Figure20 

6 Remember, however, that an increase in these caches' sizes 
should be accompanied by an increase in NPAGEDYN to 
accommodate them. 

DECUS I Nashville Spring 1987 



ODS-2 Disk Optimization 

RESULTS 

From experience, we know that disk tuning really does improve 
the performance of any system. Here's some example results of what 
you might expect to see from tuning efforts: 

DIRECTORY SEARCHES OPTIMIZED 

In an evaluation of our disk structuring methods published by the 
DEC Professional Magazine, a full volume-wide directory search took 
37% less time after restructuring the disk. This is shown in Figure 
21. The improvement was primarily due to the specific placement of 
directory files next to the index file. 

File cache (XQP) effectiveness 

BITMAP l 
hit rate(%) 

before after 

Time required for full directory search Figure 22 

UETP 20-USER LOAD BENCHMARK 

50% 

36% 

Elapsed t 
time I 

The UETP 20 user load was compared before and after 
restructuring to measure the improvement in disk response time. This 
is shown in Figure 23. The improvement resulted in a 35% 
improvement in user response time. 

before after 

OPTIMIZATION 

Figure21 

FILE CACHES MORE EFFECTIVELY UTILIZED 

In another test, the bitmap cache hit rate measured 14% more hits 
after restructuring the disk (as measured by V AX/SPM). This is 
shown in Figure 22. The hit rate improvement was due mostly to the 
fact that free space was contiguous after restructuring and could 
therefore be assigned more efficiently. 

Average 

Time to 

Service 1/0 

SUMMARY 

DISK RESPONSE TIME 
(UETP 20 user load) 

before after 

Figure23 

We began by talking about how a systematic approach to disk tuning gives you the most benefit. The 
basic operational constraints of disk drives was then explained, so you can understand if you have a 
performance problem and hypothesize what can be done to eliminate it. 

It was mentioned that it is just as important to understand the way VMS organizes the disk, according to 
ODS-2 structure, as it is to understand where the system might be experiencing bottlenecks in servicing disk 
requests. We also tried to understand some of the internal mechanisms VMS uses to eliminate the need for 
some disk accesses through caching and buffering. 

Various utilities were then listed for improving system performance, and some tips for locating the 
source of problems were provided. We also spent some time describing the methods for changing 
parameters that might help your system. 

From this point, it is your own initiative that determine show much system improvement is gained on 
your system. Disk performance management is one of the most challenging and exciting aspects to site 
management, and is an outright necessity at any large installation. Practicing these techniques will give you a 
better understanding of your own system. When you find the bottlenecks that limit your system, you can put 
these ideas to good use. 

To contact the author, please write to: 

WefAeischman 
Software Techniques, Inc. 

6600 Katella A venue, Cypress, CA 90630 
714/895-1633 

85ms 

55 ms 

Software Techniques, Inc. DECUS I Nashville Spring 1987 

456 



On-Line Security Monitoring System 

Dr. Marino J. Niccolai 
University of South Alabama 

Mobile, Alabama 

Linda B. Lankewicz 
Spring Hill College 
Mobile, Alabama 

Abstract 

The feasibility of constructing a model of user performance based upon monitored 
activities is discussed. The premise that users' activities can be determined by their 
utilization of system resources is supported by statistical analysis. A real-time analysis 
of activities is developed to allow system managers to detect classes of users. In 
particular, browsing, the act of searching for hole in the access control system, can 
be detected. The research shows a high correlation between browsing and the size of 
the working set, the number of images generated, and page faults. Data was collected 
using VAX VMS MONITOR and ACCOUNTING utilities and the $GETJPI System 
Service. 

This paper is the result of a research effort to develop 
an algorithm for identifying security violations. While VMS 
provides a means of auditing, the research is concerned with 
developing an on-line security monitoring system. 

A system manager's responsibilities include a number of 
areas which require knowledge of parameters of resource uti­
lization. These include creating access control lists for di­
rectories, setting working set limits when authorizing users, 
evaluating the users' use of cpu time in ACCOUNTING, and 
tuning the system. Security is one aspect of the responsibil­
ities. A system manager might establish procedures for the 
physical security of the system and rely on the mechanisms of 
the operating system for the internal security. 

A system manager develops a certain sense of how activ­
ities utilize a particular system. If you spend time monitoring 
users, you begin to recognize some activities based upon how 
they are using resources. For the specific system with its 
parameter settings, an experienced manager develops an intu­
ition about what activity is taldng place based upon resource 
utilization. It would appear that a process' use of system re­
sources could be used to identify the activity of the user. The 
parameters for the use of system resources are listed below. 
Disk utilization parameters are faults, reads, and direct 1/0 re­
quests. Buffered 1/0 is an indication of terminal usage. The 
working set size and the number of images generated reflect 
the memory usage, and the processor time indicates how the 
cpu is utilized 

Parameters 
page faults 

page fault reads 

Proceedings of the Digital Equipment Computer Users Society 457 

amount of buffered 1/0 
working set size 

number of images generated 
processor time used 

In addition, other resource parameters might be calcu­
lated. For example, it would be misleading to look solely at 
page faults. The number of faults per image would be more 
indicative of the behavior of the user. Other ratios which were 
investigated include the processor time per image, the buffered 
1/0 per image, and the ratio of faults to direct 1/0. 

Calculated Parameters 
page faults per image 

processor time per image 
amount of buffered 1/0 per image 

ratio of faults to direct 1/0 

Two questions were asked at the outset of the research. 
Can a process' use of system resources be used to identify the 
activity of the user? Can a process' use of system resources 
be used to determine whether the process is a security threat? 
In some instances monitoring users, a system manager is able 
to detect unusual activity based upon abnormal patterns of 
resource utilization. If the research determined that some of 
these parameters could be used to identify user activities, they 
could also be used to identify a security threat. 

The research was an effort to quantify this process. It 
consisted of two phases. First a statistical analysis was per­
formed to show that a combination of these parameters could 
be used to identify user activities. Then a model for a security-

Nashville, TN - 1987 



threatening behavior was developed along with an on-line se­
curity monitoring system. 

The Departtnent of Defense in the "Orange Book," 
Trusted Computer Systems Evaluation Criteria, states: 

The TCB shall contain a mechanism that is able to 
monitor the occurrence or accumulation of security 
auditable events that may indicate an imminent vi­
olation of security policy. This mechanism shall be 
able to immediately notify the security administrator 
when thresholds are exceeded. 

It is not sufficient to audit past activities of users. The 
trusted computing base should contain a mechanism for on-line 
monitoring of events which might possibly pose a threat to se­
curity. If specific activities are identifiable, unusual activities 
should also be recognizable. One unusual activity, browsing, 
was selected and a model developed that could be used on 
other systems. 

Browsing consists of attempts by knowledgeable users to 
compromise the security of the system. No operating system 
has been able to withstand penetration attempts by knowledge­
able users. Such a person might have a legitimate account on 
the system. The browser's efforts may include probing the 
operating system for weaknesses, searching for unprotected 
files, and attempting to change addresses at the channel level. 
Rather than depending solely on the ability of the operating 
system to protect its objects, some attempt should be made to 
dissuade users from activities which match this profile. 

To develop an on-line detection of possible security 
threats, the activities of users on the VAX 11/750 at Spring 
Hill College were analyzed by examining data collected in 
ACCOUNTING. The ACCOUNTING Utility provides infor­
mation about page faults, reads, peak working set, peak page 
file, direct 1/0, buffered 1/0, images executed, elapsed time, 
and processor time. 

An ACCOUNTING record is written for each process 
termination. The system manager is not able to look at AC­
COUNTING to see the variations in the parameters over the 
life of the process. The values recorded are the peak values or 
the total value when the process terminated. The peak work­
ing set size attained is recorded rather than the final working 
set size. 

The values recorded in ACCOUNTING were analyzed 
to determine whether the parameters could be used to identify 
the activities of users. A discriminant analysis was performed 
on three groups of Spring Hill College users whose activities 
were known. Data was analyzed for 11,0006 user processes 
during one semester of use. 

Group 1 consisted of a senior English class word pro­
cessing a collection of poetry and prose. Group 2 consisted of 
a beginning programming class involved in editing and using 
the Pascal compiler. An interactive statistical software pack­
age was used by Group 3, a business statistics class unfamiliar 
with the VAX. 

None of the classes received instruction in the use of other 
VMS features or software. 

The group means for some of the parameters appeared 
to be different, as shown below. A discriminant analysis of 

458 

the data showed that a combination of these parameters could 
be used to identify the activity of the user. This research is 
contained in the thesis "Resource Utilization and Security," by 
Linda B. Lankewicz. The combination of parameters exam­
ined could be used to identify a word processing activity 90% 
of the time and the other two groups 70-75% of the time. 

Once it was established that resource utilization param­
eters could be used to identify user activities, the research 
effort was directed towards determining how an activity such 
as browsing would use system resources. 

The MONITOR utility gives the current status of a pro­
cess. It can be used to derive a profile of the activity of a 
user in terms of shared pages, working set size, direct 1/0, 
page faults, and processor time. MONITOR is used by a sys­
tem manager to observe the activity on the system in terms of 
these parameters. It would be helpful if Monitor provided the 
number of images being generated and the buffered 1/0, but 
these items are not available. 

The information provided by MONITOR is hard to digest 
whether viewing the output interactively or reading it from a 
file. Its most effective use is in following the activity of one or 
two processes. The on-line detection system developed during 
this research would alert the system manager when a process' 
activity warranted close monitoring. 

MONITOR data was captured in a text file at one-minute 
intervals. An editor was used to delete the system processes 
and place the time on each row of information as shown be­
low. This data was then imported into LOTUS123. Each 
line of text file data enters LOTUS 123 as one cell so the data 
must be parsed into separate columns. Then the data can be 
sorted by process name so that information for each process 
is grouped together. This allows the system manager to see 
all of a process' activity. LOTUS123 graphs can be employed 
to view the changes in working set size, direct 1/0, or faults 
over the life of the process. 

For the system in this research, the WSDEFAULT was 
200, the WSQUOTA was 500, and the WSEXTENT was 1000. 
The working set of processes involved in word processing im­
mediately faulted in a working set size over WSQUOTA even 
if the document was only one word in length. This working 
set size was maintained as long as the process continued to use 
the word processor. When a process left the word processor, 
it was trimmed to WSDEFAULT. 

Processes using the editor maintained a working set size 
in the range 350-550. These processes maintained a steady 
working set profile although the size was much smaller than 
that of a process word processing the same size document. 

A process involved in browsing had a working set which 
stayed near or below WSDEFAULT. This was the result of the 
trimming that occurs with each image exit. Browsing activ­
ity is characterized by the generation of many images as the 
user attempts to examine files or move through the directory 
hierarchy. 

In addition to the working set, other parameters were ex­
amined in terms of dynamic behavior for the groups of users. 
For the particular system used in this study in an academic 
environment, the values listed below were significant in de­
termining whether a process might be browsing. For another 



GROUP MEANS FOR ONE SEMESTER 

PEAK BUFFERED PROCESS DIRECT 
NO. OF WORKING I/O PER TIME PER I/O PER 

GROUP IMAGES SET IMAGE IMAGE IMAGE 

1 6 895 498 7.7 71 
2 14 516 133 2.1 15 
3 11 378 61 1.3 14 

MONITOR Output 

Process Count: 11 VAX/VMS Monitor Utility Uptime: 0 20:52:31 
PROCESSES 

10-JUN-1986 13:38:00 

PIO STATE PR! NAME PAGES DIOCNT FAULTS CPU TIME 

00000080 COM 0 NULL 0/0 0 0 20:08:30.0 
00000081 HIB 16 SWAPPER 0/0 0 0 00:00:29.3 
00000084 HIB 8 ERRFMT 0/85 411 67 00:00:11.5 
00000085 LEF 8 OP COM 0/59 79 1094 00:00:02.1 
00000086 HIB 8 JOB CONTROL 0/287 428 174 00:00:24.4 
00000087 HIB 6 SYMBIONT 0001 0/46 20 915 00:00:10.6 
OOOOOB08 LEF 5 JONES 15/1000 1844 1610 00:01:46.5 
00000B97 LEF 9 TTBl: 22/805 83 1087 00:00:07.4 
OOOOOD9A LEF 9 MANAGER 25/775 75 854 00:00:06.0 
00000090 LEF 4 TTA6: 25/136 1 126 00:00:00.4 
00000024 CUR 6 LANKEWICZ 47/434 67 871 00:00:05.9 

12:46:00 00000603 LEF 6 STUDENT3824 49/200 207 1699 00:00:59.7 
12:46:00 00000608 LEF 9 STUDENT1487 32/823 229 1149 00:00:27.0 
12:46:00 0000060A LEF 9 STUDENT1820 28/934 452 2098 00:00:38.7 
12:46:00 0000060C HIB 4 LANKEWICZ 59/200 407 5550 00:00:49.1 
12:46:00 00000600 CUR 5 BATCH 555 28/405 53 621 00:00:04.0 
12:46:00 0000060E LEF 5 STUDENT3209 60/182 274 1499 00:00:11.7 
12:46:00 000005AO LEF 7 STUDENT3394 29/1000 2632 2146 00:01:51.6 
12:46:00 00000529 LEF 9 STUDENT1836 27/1000 831 1781 00:01:53.8 
12:46:00 000005B4 LEF 9 STUDENT0390 27/1000 1472 2348 00:01:40.9 
12:47:01 00000608 LEF 7 STUDENT1487 28/858 265 1315 00:00:28.6 
12:47:01 0000060C HIB 4 LANKEWICZ 59/200 407 5550 00:00:49.1 
12:47:01 00000600 CUR 5 BATCH 555 28/405 57 621 00:00:04.0 

Figure 1: Edited MONITOR Output 

459 



MONITOR Output in LOTUS123 

time pid username shared w. set dirio 
0806 OElD STUDENT8000 84 204 55 
0807 OElD STUDENT8000 69 203 59 
0808 OElD STUDENT8000 98 216 77 
0809 OElD STUDENT8000 40 150 159 
0810 OElD STUDENT8000 60 175 166 
0811 OElD STUDENT8000 41 145 170 
0812 OElD STUDENT8000 60 166 170 
0813 OElD STUDENT8000 45 200 202 
0814 OElD STUDENT8000 48 161 203 
0815 OElD STUDENT8000 60 212 219 
0816 OElD STUDENT8000 62 184 219 
0817 OElD STUDENT8000 56 157 251 
0818 OElD STUDENT8000 58 168 261 
0819 OElD STUDENT8000 59 171 263 

Browsing Model 

Pages in the Working Set 
Number of Images 
Page Faults per Image 

<= 300 
>= 30 
<= 150 

Page Faults per Working Set Page >= 15 

environment with different parameters limits in place, other 
values could be determined 

Once it was determined that user activities could be dif­
ferentiated and the parameters for browsing were identified, 
the implementation goals were determined to be low over­
head, simplicity, and consistency. Any added security on a 
system has a cost since it will also be competing for system 
resources. An effort should be made to minimize that cost so 
that the reduction in perfonnance is minimized. The goal of 
simplicity is related to efficiency and maintainability. Con­
sistency is a goal because any real security feature must be 
applied to all users of the system. 

Two approaches were considered for the implementation. 
One was the creation of a shadow process for each login pro­
cess which would monitor the activities of the user's process. 
The other implementation would be a single process taking 
snapshots of all the system's processes. 

The creation of shadowing processes at login would offer 
the advantage of individualized treatment. Yet this inconsistent 
treatment of processes could be a disadvantage as a shadowing 
process might be lulled into monitoring its twin process less 
often. The single process implementation would not bypass 
any process but take snapshots of all processes at set intervals. 
This would satisfy the consistency goal of the implementation. 
It would mean that even the system manager's activities would 
be monitored If a system manager forgot to log off at one 
terminal and someone was using the account to browse, that 
activity would be detected and an alert signaled. 

The shadowing processes approach also was rejected be-

460 

faults cputime 
576 00:00:03.8 
908 00:00:07.7 

1179 00:00:09.9 
1402 00:00:14.8 
1696 00:00:16.2 
1768 00:00:17.2 
1840 00:00:17.5 
2332 00:00:20.4 
2466 00:00:21.0 
2510 00:00:21.6 
2578 00:00:22.1 
3370 00:00:26.9 
3703 00:00:29.4 
3891 00:00:30.5 

cause of the additional overhead which would be generated 
by the creation of the shadowing processes. In addition to 
the overhead of process creation, the number of processes on 
the system would double. This might be acceptable in a dedi­
cated system, but not in an academic environment nor on most 
multiprogramming systems. 

The snapshots of process behavior involve calls to 
$GETJPI to access the parameter values identified as impor­
tant for detection of browsing. The snapshots are taken by 
a single process which hibernates, wakes up at the scheduled 
time, samples the activities of all processes on the system, 
and decides whether the parameters fit the browsing model. If 
browsing is detected, a bit is set in a bitmap associated with 
the port which the process is using. 

The bitmaps are rotated with each snapshot so that they 
provide moving windows reflecting the behavior of the users 
at each port. Some criteria is used to determine when to notify 
the system manager that the user might be browsing. All users 
display browsing-type behavior at times when conducting le­
gitimate activities in their accounts. It is sustained browsing 
behavior that should be noted so that the system manager can 
investigate further. For the implementation in this research, 
snapshots were taken at one-minute intervals and the system 
manager was notified when four consecutive bits were set in­
dicating four minutes of browsing activity. 

The research provided a methodology for modeling char­
acteristic user types and showed a statistical differentiation 
among user profiles. Then an on-line monitoring system was 
developed to detect a security-threatening behavior. 

Further research is needed to refine and extend the ana­
lytic model of browsing and to characterize and validate mod­
els for a full range of user groups. The work should be ex­
tended to other operating systems and the implications for 
networks should be investigated. 







ESTIMATING DEVELOPMENT AND RUN TIME RESOURCES: 
A PRACTICAL EXAMPLE 

Anthony C. P1card1, Sc.D. 
Cortex Corporation 

Waltham, Massachusetts 

ABSTRACT 

An empirically based method of estimating development and run 
tlme resources ts presented. The study is based on a survey of 
Application Factory users m the DEC VAX/VMS environment. A 
brief overview of the App 11cat ion Factory is given. Results of a 
survey of fifty-two applications developed with the Factory are 
presented. App I 1catlon size and comp Jex ity 1s expressed rn terms 
of function po1nts and this measure is then used to estimate 
development resources based on the statistical relation found in 
the survey. A worksheet 1s included so the reader may calculate 
function points and development effort for both the App l!cat1on 
Factory and COBOL. A comparison with another stat1st1cally 
-derived equation relating function points to COBOL effort 
1nd1cates that Factory development productiv1ty relative to COBOL 
increases as the size and complexity of the application increases. 
Survey data show that number of terminals and transaction 
volume, are the best indicators of hardware resources anel that 
amount of CPU memory is more sensitive to number of users than 
CPU type. A table is presented which qualltatively relates the 
surveyed applications to their hardware and run t1me 
environments. This survey results indicate the practical limits of 
what can be quantitatively learned about machine resource 
requirements via telephone surveys of application developers. 

1. APPLICATION FACTORY OVERVIEW 

The Application Factory is used to convert an 
information management application data model and 
operational specification into an implementation on the 
full range of DEC VAX computers (and Clusters) 
running the VMS operating system. An application as 
it is used here is an integrated set of source modules 
and data definitions, not just a heap of screen and 
report programs. The Factory is best used by small 
groups of developers working in a "prototyping 
environment n in which entire applications or modules 
of large integrated applications are developed in one­
to three-month time frames. The Factory is most 

appropriate for applications where the acceptance 
criteria emphasize operational functionality, screen 
and report content, onllne multiuser flexibility and 
speed of Implementation rather than cosmetic issues 
of appearance or specific navigational keystrokes. 

Proceedings of1he Digilal Equipment Compuler Users Sociely 463 

The core of the Factory is the generator, which is 
capable of reading specifications about an application 
and generating a compiled and linked executable image. 
The process of collecting the specifications has been 
automated via a menu- and form-oriented user 
interface with a built-in smart guidance system. 
Since specifications are viewed as ·meta-data· about 
generic parts of an application, this user interface 1s 
in fact a generated Factory application. The input to 

Nashville, TN - 1987 



the generator is a set of RMS data files while the 
output is a set of interacting modularized object 
modules. Data for Factory applications is stored in 
either RMS files or an Rdb database or a combination 
of the two. 

The Factory development environment also 
includes a procedural language called Builder which is 
used via an action diagrammer to flowchart and then 
generate code for screen and report customizations or 
for standalone procedures such as purging or 
1mportmg data. Maintenance lo Factory applications 
is done by changing the specifications, after which the 
factory automatically regenerates the affected 
program object modules. 

2. SURVEY RESULTS 

The survev frame consisted of Factorv 
applications which had been completed over a period 
of time from June. 1985 lo December. 1986. 
Fifty-two questionnaires were completed either via 
mail or telephone interviews. fable 1 summarizes the 
results which describe the applications and their run 
time character1st1cs. The average application can be 

characterized as having 38 screens, 18 reports. 31 
datasets and 9 non-screen procedures. This amounts 
to 81 o function points, as defined below. and is the 
equivalent of approximately eightv-five thousand 
lines of COBOL code. Non-screen procedures typically 

TABLE~ Summary Stallsllcs for Survey or 52 Factory Applicallons. 

ll!m ...................................................... . 
Average number of: 

screens 
reports 
non-screen procedures called from menus 
key screens 
datasets (files) 
interfaces lo WW/SW systems 
size of largest file 
person-weeks for development 
development team size 
function points 
lines of COBOL -equivalent code 
months prior Factory use 

Number of applications using/having; 
VAXMAIL, DECNET or VMS Broadcast 
interacting CPUs or clusters 
FOL data file tuning 
performance-related data design 
response time < 1 second 
response time 1 lo 3 seconds 
response time > 3 seconds 
process state monitor 
audit trail 
appends from tape/disk 
data purge/archive 
procedures automatically startup/shutdown 
special navigation 
security 
Installed at more than one site 
designed for significant later modifications 
used by or sold to third parties 

464 

Response 

38 
18 
9 

29 
31 

1.6 
138,953 

36 
2 

810 
85,100 

10 

15 
12 
15 
19 
14 
16 
2 
9 

11 
12 
20 
15 
9 

28 
8 

43 
11 



Include data purges or appends of data from tapes. A 
process state monitor was specified in 9 of the 
applications to control the work flow based on past 
activities. For example, the company consolidation 
report could not be run until the divisions run their 
monthly accounts. Note that most applications, 43, 
were designed as modules of larger applications or as 
first cuts to be significantly changed during 
maintenance. Prior Factory experience Is most 
probably biased upward, since it is a simple average 
for the team, not taking Into account the percent of 
time an Individual worked on the project. It is biased 
upwards by a few consultants who appeared on many 
projects for short periods of time with over 120 
months of Factory and Builder experience. 

3. ESTlnATIN6 DEVELOPnENT AND RUN 
TlnE RESOURCES 

The object of this study Is to develop a method of 
estimating the development resources needed to 
produce business applications with the Application 
Factory. The procedure is to first describe the 
application in terms of function points and then derive 
the required development resources by means of a 
statistical model relating function points to 
person-weeks for Factory applications. The rationale 
for using an implementation independent metric such 
as function points to measure and compare 

applications is well developed in the literature ( 1, 2, 
3, 5) and has been used to compare COBOL and 
Factory productivity on a sample of 26 applications 
(4). The worksheet used to calculate function points 
is shown In Appendix A and involves the weighted 
addition of the application's extensive parameters, 
such as the number of screens, reports and datasets. 
This sum Is then modified by a set of difficulty 
factors such as the importance of telecommunications 
or performance, for example. 

The relationship between function points and 
development resources is shown by the scatter plot In 
Figure 1 for 48 applications. The best fit to these data 
is the linear model: 

Person-weeks = -1.57 + .064 * function points. 

This model had a correlation coefficient of 0.74 
and an F-stalistic, F( 1,46), of 55.6 indicating 
significance for the relation above 991'. Although it 
would seem that an exponential model would better 
explain the data by allowing for the "decreasing 
returns to scale" effect as the project size (function 
points) increased, such an exponential model resulted 
in both a lower correlation coefficient and a less 
s19nif1cant fit to these data. Attempts to explain 
more of the sample variance by the addition of 
development team experience as an independent 
variable did not result in a significant coefficient for 

Application Development Resources Related to Function 
Point Size and Complexity Measure 

250 

• 200 • 
.. 

J 

I 
150 

100 

50 

• 

• • • • • • • • • . .... • • • • 0 
0 500 1000 1500 2000 2500 

Application Function Points 

465 



experience, although the sign was correct - more 
experience reduced required person-weeks. The 
failure of experience to contribute to the relation may 
be explained by the fact that it was the average 
months of Factory and Builder experience for the 
entire Development team unwieghted by the fraction 
of time each developer spent on the project. Thus 
teams which had a highly experienced consultant for a 
short period of time probably ended up with a higher 
experience score than warranted. An earlier study of 
a smaller sample found that if the magnitude of 
participation of the consultant was taken into account, 
the result was a highly significant difference in 
efficiency between "novice· and "experienced" 
developer teams (4). 

4. USIN6 FUNCTION POINTS TO ESTIMATE 
PRODUCTIVITY DIFFERENCES 

One benefit of using function points to measure 
application size and complexity is that the same 
application can be estimated for Implementation in a 
variety of languages, and from this the relative 
productivities of using those languages can be 
compared. The only other statistical model for 
business applications in the DEC environment the 
author had access to was that used at Dupont and 
supported by a database of over 200 applications, 

most of them in COBOL. This model is presented In 
appendix A Citem 5.2). A productivity metric was 
defined as the ratio of the estimated person-weeks to 
develop the application in COOOL (using the model in 
5.2) to the actual person-weeks using the Factory 
(from the survey). A plot of the productivity ratios, 
in Figure 2, shows a strong and significant increasing 
trend as the application size increases. Based on 48 
cases, the following linear model had a correlation 
coefficient of 0 .60 and an F-statistic, F( 1,46), of 26 
indicating significance for the relation at greater than 
99~; 

Productivity = 7 .43 + 0.013 11 function points. 

The average productivity increase over COBOL 
was a factor of 15 with a standard deviation of 12. It 
is obvious from the statistical models that the 
Factory will show Increasing advantage over COBOL 
as the project size increases since the exponential 
COBOL model will necessarily diverge from the linear 
Factory model as function points increase. The 
difference in the two models is supported, however, 
by the fact that the Factory Is an application designed 
specifically to aid in the configuration management of 
the many interacting modules that make up a large 
application, a task that becomes Increasingly difficult 
as the application size and complexity increases. 

Application Development Productivity Related to Function 
Point Size and Complexity Measure 

70 

60 

• 
50 

40 • 
• • • • • • 30 • • • • • 

20 • -• • ,,, 
•• 

10 .. - • • , ,... •• • 
0 

0 500 1000 1500 2000 2500 

Application Function Points 

466 



Specifically the Factory Incorporates a developer 
guidance system, automatically generated 
documentation, online data field cross referencing and 
the automatic selective regeneration and 
recompilation of modules affected by changes In 
specifications, for example. 

The survey sample was analyzed to discover how 
differences in efficiency across applications can be 
explained. Efficiency defined In terms of function 
points per hour was regressed against project size 
and experience. Only project size showed a 
statistically significant but small correlation, with a 
coefficient of 0.43 and an F-statlstlc, f( 1,46), of 
10. This relation, indicated by the scatter plot in 
Figure 3, Included 48 cases and was significant at 
greater than 99~. In spite of the fact the linear 
resource model above Indicated no significant 
decrease in efficiency with project size when overall 
resources were regressed with function points, 
Figure 3 shows the expected decrease in efficiency to 
be small but significant when project size is measured 
in person-weeks: 

Function points/hour= 0.82 - 0.0043 11 

Person-weeks. 

The fact that experience was once again not 
found to be significantly correlated with development 

efficiency suggests that a better measure of 
experience is needed, possibly not limited to Factory 
and Builder experience alone, but including facility 
with programming, data modeling and VMS. Finally, no 
survey data measured the effect of methodology on 
efficiency and In particular whether development 
teams that followed a rapid prototyping methodology 
were more efficient than teams using the Factory in a 
more traditional manner. Although there was a 
negative eff eel of team size on efficiency. this 
correlation was small and not significant. 

5. ESTlnATIN6 RUN TlnE RESOURCES 

What are the attributes of the run lime 
environment that result in acceptable run time 
performance? The first step was to Investigate the 
relation between response time and four independent 
variables: application burden, cpu size, performance 
related development activity and function points. 
Respondent were asked to characterize average 
response time on a typical day, putting the estimate 
into one of three qualitative categories. Application 
burden was measured in terms of other 
simultaneously running applications and the 
respondent's qualitative estimate of the degree of 
utilization of the CPU. CPUs, from microVAXs to 
8650s, were grouped in six categories roughly 

~~ 

Relationship Between Development Efficiency and 
Project Size 

2.5 

... 
j 2.0 ...... 

"' ... 
i 1.5 

! • 
I 

1.0 I.I. 
.... 

r ",. 
•• t· • • 0 0.5 e • • w •••• • •• ...... •• 

0.0 
0 50 100 150 200 250 

Development Resources, Person-Weeks 

467 



according to their processing speed. Performance 
related development activity was taken as a 
surrogate for performance related concerns at the 
site generally and thus the assumed ability to obtain 
optimal performance from the machine resource. The 
four independent parameters together resulted in a 
multiple correlation coefficient of O .47 which, with 
29 cases, yielded an F-statisllc, F(4,24), of 1.7 
which was not slgntncant. Although each of the 
independent variables had the expected sign, their 
Individual correlations ranged from 0 .07 to O .24 and 
only one was significant - application function points 
at the 95" level. The fact that survey respondent did 
not have access to quantitative operating system 
performance measures that could be compared 
consistently across the sample rendered this approach 
of little use. 

But respondent did know about their machine CPU 
model and Its memory size so these were investigated 
to see if a predictor of CPU model or memory size 
could be developed from a knowledge of a single 
application's run lime environment. This environment 
was expressed in terms of simultaneous users 
("terminals"), transaction volume, and application 
burden (explained above). Multiple stepwise 
regressions were performed on the survey data to 
determine the best statistical model. 

The only significant predictor of CPU type is 

number of terminals, with a correlation coefficient of 
0.31 and an F-stalistic, FCl ,34), of 3.5 which is 
signtncant at the 931' level. This relation, indicated 
by the scatter plot in Figure 4, is dominated by the 
single application with 180 users on a large machine 
and was rejected for this reason. Although a favorite 
question asked by DEC sales persons of the Application 
Factory Product Manager is "what size of CPU will be 
needed to run an application developed with the 
Factory", no significant relationship between 
application function points and CPU size was found In 
the survey sample. Indeed the sample includes all 
sizes of applications running on all types of CPUs. 
Knowledge of a single application alone is not 
sufficient to size CPU resources. 

In contrast ot CPU type, the relation between CPU 
memory ("megabytes") and terminals was found to be 
strong and highly significant with a correlation 
coefnclent of 0.79 and an F-statlstlc, FC2,37), of 60, 
making it significant at greater than 99~. The best 
fit linear model Is: 

Megabytes .. 8.73 + 0.60 * number of terminals. 

This relation ls Indicated by the scatter plot in 
Figure 5. 

Although the statistics relating megabytes and 
terminals are impressive, they still appear to be 
dominated by a single application. The fact that 

Relation Between Number of Application Users 
and CPU Type 

7 

6 • • 
8600,8650, 8700 

5 •• 

8500 
4 

3 • • 
2 

• 
MicroVAX, 730, 750 

• 

0 20 40 60 80 100 120 140 160 160 

Maximum Simultaneous Users 

468 



Bmu~ 

Relation Between CPU Megabytes and Maximum 
Simultaneous Application Users 

140 

• 
120 

~ 

I 100 

i 80 
(.) 

= 
• ., 60 

J 40 

• 
20 • • 
0----------------~~~~~~~-------. 

0 20 40 60 80 100 120 140 160 180 

Maximum Simultaneous Users 

Factory applications are very rarely the only 
applications running on a machine means that the data 
relating any single Factory application run time 
parameters and machine resources will be obscured 
by the background noise of all the other applications. 
Also, the knowledge of all but a few of the survey 
respondent about system-wide operational 
parameters was too limited to collect the kind of 
detailed quantitative information needed lo build a 
reliable model. Given that the original purpose of the 
study was to give Factory users a picture of some 
"typical" environments. It seems sufficient to present 
the individual survey applications and their run time 
features. Users of the study can then find the 
combination of application and run time environment 
that seems closest to what they expect. This 
qualitative feeling of whether "its been done before· 
is typically what users of a relatively new technology 
need lo know. Table 2 shows the application features 
and run time environments for the surveyed 
applications with the most complete data. It is 
assumed that the environments listed In Table 2 are 
·acceptable" in terms of performance of the Factory 
applications. Although there were cases where 
response time was greater than three seconds this 
always occurred in situations of high machine use 
intensity and was perceived as a resource constraint 
rather than a Factory limitation, since all machine 
operations were slow .. 

469 

6. SUHHARY AND CONCLUSIONS 

The results of a survey of Application Factory 
users were presented. Applications ranged in size 
from 2 screens, 0 reports and 7 datasets to 204 
screens, 90 reports and 108 datasets with the 
average being 38 screens, 18 reports and 31 
datasets. The reduction of application attributes to a 
function point metric was found to be useful for 
estimating development resources. A linear model 
relating function points and effort was found to be the 
best flt with a highly significant correlation 
coefficient of 0.74. The included worksheet can be 
used to estimate projects with the Application 
Factory. For the purpose of demonstrating how 
function points can be used to compare relative 
productivities of different methodologies, the survey 
applications were also estimated for COBOL using a 
model adapted from Dupont. Development with the 
Factory showed Increasing productivity as application 
size and complexity increased as expected due to 
features in the Factory specifically aimed at dealing 
the configuration management of large applications. 

Although qualitative information was collected on 
the run lime environment, the required system-wide 
performance data needed to make reliable predictors 
of performance was not known by the survey 
respondents. Information about a single application's 
size is not sufficient to recommend machine 



TABLE~ Appllc•llon FHlures •nd Run Tllfte Envlron•ents 

Application Megabytes Number Transaction Largest 
Function CPU CPU Simultaneous Volume File Size, 

Aoollcatlon HJmt ....... fi!nti .. ~ .. tl~mm:~ ....... Uua ...... S'2c:~*,. B~'gc:d~ 
Apparel Sales Marketing 810 750 6 5 45,000 
Inventory-Finished Goods 1125 750 10 14 12,000 
Std Cost of ProdUcts Estimator 120 785 24 1 1 2.000 
Inventory Management and Processing 931 780 8 3 1 10,000 
Accounting and Qiotation System 1221 8200 1 1 3,000 
PIO Tracking System 101 750 2 1 1,400 
Bank of ( __ ) Bankline* 140 780 10 8 I 200,000 
Tracking Telex & Telefax 55 750 10 4 1 6,000 
( __ )Revenue System* 1107 750 5 2 1 
Demand Billing 105 760 6 2 1 250 
Stores Inventory System 63 760 8 5 1 
Deposit System 43 780 8 6 1 400 
Maintenance Tracking 527 780 10 14 I 6,000 
Wholesale Importer, 4 Applications 560 750 4 1 40,000 
Crude Oil ContracVShippinglRecelving 341 750 4 8 1 12,000 
Supply Control 246 750 6 2 1 2.000 
Administration System 325 780 16 7 1 15,000 
Cortex Corporate Inf ormatlon System 976 750 6 5 1 4,000 
Hotline & Bug Reporting 425 750 8 6 1 10,000 
Appllcatlon Factory User lnterf ace 1296 750 8 12 1 2,000 
Medical Office Mgl- BC/BS 480 MVAX 4 3 1 5,000 
Kevlar Management Information System 2419 8600 30 50 4 
Data Structure Modeler 204 8600 16 4 1 1.000 
Finished Product Spectncatlon System 203 8650 64 12 1 20,400 
Spinning Area Management System 215 MVAX 4 5 1 
Bulk Continuous Fiber Inspect & Pack 1090 785 16 24 4 3,000,000 
Bulk Continuous Fiber Scales 243 750' 8 14 4 540,000 
Estate Donation Probate 602 8500 20 10 1 1,500 
Maintenance Work Order Control 269 765 10 1 
Raw Materials Inventory 369 765 16 5 1 900 
Sales Order Processing System 1504 750 8 34 
Sales Tracking 751 765 16 6 1 1,000 
Product History 393 6600 64 12 1 90,000 
Training Registration 196 6600 4 1 300 
Project Forecasting 236 785 10 2 I 1.000 
Installment Loan Tracking 96 750 8 2 1 2.000 
Costing System 344 765 16 65 4 6,500 
Beverage Lab Analysts and Reporting 1511 MVAX 9 6 2 1,000,000 
Formula Tracking System 249 8600 10 10 1 500 
Customer Information System 689 8500 10 15 2 8,000 
Inventory-Raw Stock 292 8650 32 2 1 1,000 
Telephone Communication Control 576 8600 16 3 1 7,000 
Customer Service Database 1910 8600 130 180 4 300,000 
Petroleum Products Wholesale Pricing 1595 765 8 12 4 
Oil Market Analysis & Research 367 785 8 10 2 10,000 
Animal MIS 1056 MVAX 9 7 1 50,000 

* Customer names omitted for proprietary reasons 
,.,. 1• 0 to 5,000; 2 = 5,000 to 10,000; 4. 10,000 to 100,000 

470 



resources. Much more must be known about the 
number of users and the use intensities of other 
processes. Although the qualitative data exhibited the 
correct trends, correlations were often too weak and 
Insignificant to form predictive models. CPU memory 
was found to be highly correlated with number of 
application users, but this appeared to be dominated 
by the largest application with 180 users and 128 
megabytes of memory. A table describing the 
application characteristics and their run time 
environmental parameters is offered so users can 
derive a qualitative impression of whether they are 
within the workable range of other users. 

1. REFERENCES 

1 . Albrecht, Allan J., "Measuring Development 
Productivity", Proceedings 2f. ~ ~ 
SHARE/GUIDE/IBM Apo!icat!on Deyeloomeot 
Symoosjum. October, 1979, Pages 83-92. 

2. Baslli, Victor R .. ed. ~mllt.Metrics for 
Software Management aru1 Engjneerjog. IEEE lostit.ute, 
New York, 1980. 

3. Drummond, Steve, "Measuring Applications 
Development Performance· .. Datamation. February, 
1984. 

4. Picardi, Anthony C., "Productivity Increases With 
The Cortex Application Factory: Empirical Survey 
Results", Proceedings Qf.~™Northeast 
Regjooal Conference. Boston, Mass, June 5-6, 1986. 

5. Zwanzig, Keo, ed. "Handbook for Estimating Using 
Function Points", GUIDE Project DP-1234, November, 
1984. 

8. Appendix A: Function Point Estimating Worksheet 

Application Name: -------

1. Application Size Estimates Center number and multiply by given weights) 
l .1 Number of Screens = __ X 4 = __ 
1 .2 Number of Reports = __ X 4 = __ 

l .3 Procedures called from menus = --X 4 = __ 
1 .4 Number of Key Screens = __ X 4 = __ 

1 .5 Number of Datasets = -- X 7 .. --
1.6 Interfaces to ~/SW systems = __ X 5 = __ 
1.7 Sum of l .1 to 1.6 = Unadjusted Function Points 

2. Application Difficulty Factors 
2. 1 Telecommunications Center indicated score if used) 

VAXMAIL (2) 

DECNET (2) 
VMS Broadcast (2) 

Sumof2.l =--
2.2 Two or more Interacting CPUs (enter Indicated score if used) 

Ves, synchronous, well defined (2) 
Ves, asynchronous, Interrupts (2) 
Used on a VAX Cluster (2) 

Sum of 2.2 = __ 

2.3 Performance-related changes (Enter indicated score if done) 
FOL tuning ( l ) 
Performance data/dataview design (2) 
Custom procedures &/or Jobstreams (2) 
Response-time Requirements? ( l ) 

Sum of2.3 = __ 

471 



2.4 Other simultaneous applications (Enter indicated score if applicable) 
Word processing (2) 
DBMS queries (2) 
Few other applications (< 1 /2 CPU)(O) 
Many other applications ( > 112 CPU) (2) = 

Sum of2.4= __ 
2.5 Transaction volume, records/day (Choose one, enter indicated score) 

0 to 5,000 ( 1) 
5,001 to 10,000 (2) • 
10,001 to 100,000 (4) • 
100,001 and over (6) • 

Score for 2 .5 • __ 
2.6 Degree of Customization 

Percent of screens customized (Choose and enter indicated score) 
o" to 10" CO) • 
1 rn to 50" < o • 
s rn to 1 oo" (2) 
Percent of reports customized (Choose and enter Indicated score) 
o" to 1 o" CO) 
11" to 507C ( 1) 
5 rn lo 100" (2) 
Percent of total exe code customized (Choose and enter indicated score) o" to 1 % (0) 
rn to s" co 
Greater than 57' (2) 

Sum of 2.6 = __ 
2.7 Process stale monitor coded (Choose and enter indicated score) 

<20" of processes, <6 states (3) 
Most processes, >6 states (6) 

Score for 2.7 = __ 

2.8 Specification/Program Re-use (Choose and enter indicated score) 
Automatic documentation only (3) 
Auto doc plus shared data specifications (4) 
Auto doc plus shared process specifications (4) = __ 
Auto doc and all specifications shared (6) 

Score for 2 .8 = __ 
2.9 Used by/sold to third parties? (If yes enter 5) 

Score for 2.9 = __ 
2 .10 Application Custom Features (Enter 1 for each that applies) 

Audit trail ( 1) 
Append form tape/disk ( 1) 
Purge/archive ( 1) 
Automatic startup/ shutdown ( 1 ) 
Special navigation ( 1) 
Security ( 1) 

Sum for 2.10 = __ 
2.11 Installed at multiple sites (Choose and enter indicated score) 

Two or three sites (3) = 
>3 sites (5) 

Score for 2.11 = __ 
2.12 Designed for later modifications (Choose and enter indicated score) 

Yes, < 30~ functionality change (4) 
Yes, >30" functionality change (5) 

Score for 2.12= __ 

472 



3. Calculate adjustment multiplier. 
3.1 Add sums and scores for Items 2.1 to 2.12 • __ 
3.2 Adjustment Multiplier= .65 + C.01 * (6+Sum from 3.1)) • __ 

4. Calculation of Function Points. 
4.1 Function points• Unadjusted Function Points* Adjustment Multiplier 

•Sum from 1.7 above • Multiplier from 3.2 above 

4.3 Lines of COBOL-equivalent code .. Function points from 4. t • l 05 
• 

5. Calculation of Development Resources 
5.1 Application Factory Person -weeks"" -1.58 + 0.064 * Function Points 

5.2 COBOL Person -weeks • (expClnCFunction Points)-ln(34))/0.59)* 130/40 

473 





hnproving Technical Manuals 
Through Reader Analysis 

Thomas L. W .wren 
Department of English 

Oklahoma State University 
Stillwater. OK 74078-0135 

ABSTRACT 

Cornmunication transfers inforrnation f"rorn 
one -vvho has it to one "vho needs it and can 
understand it. \v'hether reader involvement is 
casual or interactive. -vvriters must prepare 
docurnents based on three points: (1) \v'hat 
does nn· reader need to knovv'? (2) Ho-vv can I 

'i 

help my reader understand'? (J) \-,'hat is rny 
reader going to do -vvith the material? Far too 
often. docurnentation "\vriters overlook the 
second and third. \vhile occasionally 
overlooking lor misjudging) the first. In 
addition to kno-..ving the reader's needs and 
abilities. the \\Titer must knovv -vv·hether the 
reader v-vill access the information 
sequentially or randomly. This paper. then. 
focuses on these three points and presents a 
system-a tic approach -vvriters can use to 
prepare rnore effective. reader-based 
documentation. 

\4 endell .Johnson, in a 1953 article {1). uses 
an interestinE term to describe 

mouth (or pen) charged \;Vith the fateful task 
of conveying information. v-.rhether they 
actually do that or not, is another matter. 

._, 

communication: The fateful process of ~fr. A 
talking to ~fr. B. Certainly communication is 
process, but fateful'? Can there be any hope 
that information can flo\;V frorn one vvho has 
it to one vvho needs it if that process is 
fateful'? Consider the average conversation. 
Mr. A chats v-vith Mr. B. Both have other 
things on their minds: \vha t to say next. 
-..vhat did he just say, \Vhat's the solution to 
this nagging problem, have I paid the gas bill, 
and so on. A torrent of vvords issue from the 

Proceedings of the Digital Equipment Computer Users Society 

That manuals are the last thing used to 
solve problenu-; C:Off1es as no surprise to any 
one ·who reads them. Cert.a.inly. \Ve all have 
had "fateful" encounters vvith manuals. 
Recently, for example. I got a data 
management prograrn for my office 
computer. I follo-\ved the install routine and 
turned to the tutorial. There, in line 18 of 
page 1. I was told to put a specific disk in 
drive A. This I did. I -..v as then to type a start 

475 Nashville, TN - 1987 



command, ·which I did. Instead of the opening 
screen, I got an error rnessage. Because I "\-Vas 
using the backup copy of the program (as per 
instructions), I got the original and tried 
again. The same error message appeared. I 
then tried another of the original disks and it 
-vvorked. There "\Vas a major error on that 
first page. Had I not inferred that the real 
error \.Vas in the manual, I "\-vould still be 
trying to run the program. 

READERS AND WRITERS 

~1y topic. ho"'\vever. is not debugging 
manuals or running through a catalog of -vvar 
stories on errors in manuals. Rather. my topic 
is a much m.ore irnportant part of 
cornmunic<ttion. focusing instead on the 
problern of \Vriters failing to kno"'\v their 
readers. 

Every def ini ti on of cornmunica ti on I kno-vv 
includes at least four elements: a sender. a 
rnessage. a medium for sending the rnessage. 
and a receiver. If \.Ve kept all our 
comrnunica tions locked in our heads or could 
demand that our readers be as kno"\-vledgeable 
as \Ve are about the subject, \.Ve "vould never 
have fateful breakdo"vns in comrnunication. 
But "\-Ye shouldn't communicate to ourselves 
or our clones or even pretend to because 
comrnunication involves the fio"\v of' 
information from one "\Vho has it to one "\-Vho 
needs it. so manuals could become superfluous 
f'or those "\vho knovv the subject. Because 
most people aren't kno,,vledgeable, manuals 
exist. And because the people 'vho "\-\Tite 
thern kno\.v more than those vvho read them, 
those ''-Titers must understand their readers 
so they can transfer the inforrnation. I 
seriously doubt that any "\-\.Titers totally 
ignore their readers. In selecting one "vord 
over another because it more accuratelv 

":.,! 

conveys a meaning, \\1Titers sho"\-v concern 
for readers. Actually, reader analysis is more 
complex than deciding if the reader kn<nvs 
the tenn. '"rriters may approach that analysis 
from several angles. Three are 

1. A psychological profile 
2. A systems analysis profile 
3. An inf'ormational need profile 

Psychological 
The psychological prof'ile (best discussed 

by Pearsall [2]) relies on the '\vriter 
understanding some demographics about the 
reader (assumed education, f'or example) and 
then constructing a profile based on that 
information. This analysis actually centers on 
ho"\-v \.Vell the individual could process text. 
To look at one example, Pearsall shovvs that 
the \.Vriting style one adopts for the lay 
readers C\vho are outside their field of 
specialization) has a very high percentage of 
non-complex sentences (i.e., a high percentage 
of' subject-verb-object constructions). 
Average lengths are about 15 "\-Vords per 
sentence and 50 vvords per paragraph. The 
vvriter assumes that because the reader is not 
sophisticated in the subject, he or she \.Vill 

have to focus most of the information 
processing activity on understanding 
vocabulary and grasping relationships among 
the ·vvords. On the other hand, the expert (one 
\.Vith advanced degrees or many years of 
experience) requires no such considerations. 
Sentences are longer as are paragraphs, 
because the processing time is much reduced. 
The \.Vriter develops a total profile by using 
the other eleven categories of analysis for the 
assumed reader. The psychological profile, 
ho"\-vever. presents the assumed reader 
outside a context. 
Systems 

A systems analysis profile i~equires that 
the "\vriter be aware of ho"\-v the individual 
relates to the rest of the organization. 
Perhaps more useful "\-Vhen "\-Vriting reports 
rather than \Vhen vvriting training manuals, 
the approach nonetheless has some value for 
such docurn.ents. Kno"\ving the positioning of 
the individual ·within the organization 
suggests a reason for reading. Is the person 
an executive in upper management? Then the 
reason for reading the document can be 
greatly different than if the person is a clerk 

476 



needing to learn an application. Such 
differences certainly call for not only 
different styles of '\Vriting and content, but 
also organization of the material-including 
page layout and design"'. 
Informational 

The third method, based (1n information 
need. combines elements frorn both. It begins 
with the '"Titer asking hcn.v much 
information the reader needs. Ce1·tainly. the 
histor}- of the cornputer is not ne,:::essar;y if 
the reader ·wants to !Barn a \.vord-processing 
program. The '\\Titer then decides ho'\v to 
''Tite the text to best help that reader 
understand. Th•:! readET rnust be able to 
understand the lnf'orrnation for it to be 
useful. Finally. J.mo'\ving '\vhat the reader is 
to do ·with the material influences the 
writing. the organizing. and the layout and 
design. Materials ~uch a:J DEC's Personal 

Computer: Docurnentor'.s Gui.de(3) ernphasize 
reader analysis. They tell us to kno'v the 
reader (DEC's Guide names three: novice. 
someone familiar vdth another operating 
system [but not yours;. and sorneone familiar 
\vith a preYious version of your product 
~emphasis ci.dd•:.d:). lvhd.t this advi<::;e suggests. 
in effect. is kno">v '\Vhat your reader already 
kno·ws and build on that (see Appendix A for 
a table summarizing the Guide's advice on 
reader analysis). Such advice certainl;v is 
valuable because it forces the "Titer to 
control the number of inf'erences the reader 
must rnake. But the ad,-ice doesn't go far 
enough. And that's the purpose of this paper: 
To provide '\\Titers ·with a 3-step process to 
help them analyze their readers: 

1. w·hat does mv reader need to know? ,, 
2. Ho'\V can I helo mv reader understand'? • '.! 

3. What will my reader do with the 
information'? 
1-. What Does my Reader Need to Know? 

w·riters '\Vho follow DEC's Guide have a 
fairly good idea of what the reader already 
kno'\vs. The Guide's classification system 

j(See also my papers in DECUS Fall. 1985 
and Spring. 1986 Proceedin_gs. 

makes the writer think about the technical 
sophistication of the reader relative to the 
topic. It suggests indirectly that the writer 
may make other assumption (such as 
vocabulary level, sentence length, etc.) about 
ho'\'v well the reader can process information. 
Notice that these assumptions as well evolve 
from the reader's familiarity with the 
program. If the writer is "\-Vorking on a 
reference section of a word processing 
manual and wants to explain how to merge a 
mailin& list with a document. that writer v . 

analyzes the reader by deciding what level of 
knovvledge the reader already has about the 
command and '\<Vhat he or she needs to know. 

If. however, the \.'\Titer omits a step that is 
to him or her obvious (as I have found in a 
merge explanation in a \.vord-processing 
manual), the reader/operator can become 
extrernely frustrated. The crucial step may 
have been omitted because the writer forgot, 
or because the '\Vriter assumed that the 
reader would kno\.V \.Vhat to do. In either 
case. the reader faces the same situation I 
faced '-Vi th the data management tutorial. 

A rn.a.jor problem in communicating is for 
the person "\-Vho has the information to clearly 
perceive '\-\~hat the reader needs to kno'\v. 
Just as the writer causes the communication 
breakdo'\-vn '\vhen assuming too much 
kno'\-vledge, so too could there be problems if 
the '\-\'Titer assumed too little kno'\vledge. 
Take an extreme case: The mail merge 
program assumes that the reader has the 
computer on and running the program. The 
'\Vriter also assumes that the reader kno'\'vs 
·where certain keys are and how to use them 
("Select.'' f'or example). To include 
information on either of these would 
frustrate the reader's attempt to find 
reler..:ant information. Erroneous assumptions 
about the reader's level of' computer 
kno'Vvledge could result in too much or too 
little information. A fateful communication 
'\vould then occur, although the results of 
assuming too little kno'\vledge are not as 
f'ateful as assuming too much. Guideline one, 
then, is What does the reader need to know? 

477 



The second guideline relates to helping the 
reader understand what the writer has 
written. 

2. How can I Help my Reader 
Understand? 

DEC's Personal Computer: Documentor's 
Guide instructs writers to be concerned 
about the language they use (see Appendix A 
below). That language ·will range from 
concrete, with short sentences and 
monosyllabic words, to abstractions, long 
sentences, and, presumably, polysyllabic 
words. Good advice in so far as it goes and in 
so far as we assume that length of sentence 
and word directly relates to reader 
understanding. But that is a poor assumption 
to make. Not many people kno""· what quark 
means in quantum physics, yet it is a 
relatively short word. Television, a long 
""·ord by comparison, is very well-known. 
Word length is really no measure of 
difficulty. 

Sentence length is likewise identified as 
bein11 related to the reader's sophistication. t> 
Joseph Williams, in his book Style: Ten 
Lessons in Clarity and Grace, presents two 
samples of long sentences: 

1. We have to distinguish two kinds of long 
sentences; the one you're reading right now, 
for example, is rather long, sixty-four words 
to be exact, but it's long simply because I 
have chosen to punctuate what might be a 
series of shorter sentences as one long 
sentence; those semicolons could have been 
periods-and that dash could have been one 
too. 

2. I can write a different kind of sentence 
just as long as that but one that doesn't let me 
trade a comma. semicolon. or dash for a 
period. because it is composed of several 
subordinate parts. all depending on a .single 
main clause-a sentence such as the one you 
are no"\-v reading "\-Vhich is al.so exactly 
sixty-four '\vords long. (4) 

Both are the same length, but the one (#1) is 
much harder to read than the other because 
of the way Williams wrote it. Certainly, in a 
series of instructions on merging a mailing 
list, the writer is not going to use 64 ·word 
sentences. Even in the "Getting Started" 
section, writers are going to be more aware 
of length. But my point is that length is really 
a poor measure of the reader's ability to 
understand a word or sentence. 

I have discussed these t""·o points at length 
because they are central to the numerous 
readability formulas that are available for 
analyzing" text. I h.ave .already questioned 
their assumptions about length as a factor in 
difficultv. and I think that '\-Yriters need to 
use othe; matters in analyzing their readers 
and helping them understand the information. 
(5) Advice to '\·Vriters that focuses on '\-Yord 
and sentence length suggests that one need 
change ~ength to improve readability. \vhile 
of some value. these measures must be only 
one of rnany tools '\--VTiters use in analyzing 
text to produce inf orr.-1.ation the reader can 
easil",'.\' process. 

Underst<J.nding information is a complex 
process. The mind processes the information 
using memory to develop inferences: 

1. Information that is in the passage (such 
as supplying antecedents for pronouns. or 
remembering previous steps), and 

2. Information outside the context of the 
passage (information the reader brings to the 
reading). 

When the mind must make numerous 
inferences or seek information outside (i.e., 
turning backwards and forwards in a manual 
looking words up in a dictionary, etc.), the 
processing slo"\vs down and the reader 
quickly tires of the effort. Consider the 
following sentence: 

No command will be sent by the 
computer until it has been checked. 



The question is who or "vhat needs checking? 
The command? The computer? The reader 
must drnv an inference. '\i"hile context and 
common sense might help. the reader still 
must work. So, "vhat the "vriter assumes 
about the level of sophistication of the reader 
does make a difference, not only in technical 
sophistication, but also sophistication in 
dra"ving inferences. 

These sophistications, ho"\-vever, are not as 
interrelated as the Guide assumes. A reader 
may be familiar with an older version of the 
program, yet have problems processing 
complex concepts, sentences, or paragraphs. 
By the same token. a novice may be insulted 
if forced to read "See Dick Run. See Jane run" 
sentences. Certainly, "vriters must make 
some assumptions about the reader's ability 
to process information or all manuals would 
be primer books. The 'vriter, therefore, must 
kno"\.v ·which techniques to use in order to 
help the reader understand. 

\vhile the first guideline reminds the 
writer of hovv much content to put in, this 
second one relates to assumptions about the 
reader's sophistication. The third guideline 
has the "\'\triter determine what the reader 
will do "\Vith the material. 
3. What will my Reader do with the 
Material? 

Readers read for many purposes. Technical 
manuals provide general information about 
systems and programs. as "veil as specific 
information on how they ""rork and ho"\v to 
use them. tvfanuals. by definition, are sets of 

0 

instructions for performing some action. 
Therefore, elements of successful 
instructions are important: white space, small 
steps. appropriate definitions, visuals, and so 
on. Yet, there are really t"vo major kinds of 
instructions: what "\Ne can call the arrnchair 
variety and 'vhat we call the "\vorkbench 
variety (a distinction Cunningham makes, [6]). 
Armchair Instructions: Armchair 
instructions are those meant to be read and 
absorbed into memory so that the reader can 
go some place and perform them. For 
example, "\vhen you re.ad a set of instructions 
on controlling the slice of a golf ball, you need 

479 

to be able to remember them so that when 
you are at the golf course, you can perform 
better. You don't take the instructions with 
you. Writers must prepare armchair 
instructions so th.at they are easil;y 
remembered when the reader is a"\vay from 
them. 
Workbench Instructions: Workbench 
instructions, on the other hand, are meant to 
be read and used on the spot. A manual that 
tells technicians how to trace a signal 
problem through a circuit board is used at the 
spot "\vhere they need the material. The 
demands on memory, consequently, are 
considerably less. The writer must 
accommodate readers who shift their gaze 
from manual to board and back again. 
Operators are similar. They must be able to 
read an instruction, perform the action, and 
return to the page for the next step. If the 
'vriter assumes that readers can hold t'vo or 
more steps in mind while performing the 
action and writes .accordingly, problems could 
easily ensue "\vith this demand on memory. 
Because of the job demands, operators read to 
perform at two levels. 

At one level, operators "\-vrant to re.ad 
instructions that "\vill .allo"v them to perform 
an isolated action or series of actions 
("merge", for example). Infrequent use of this 
material means operators will not need to 
remember it. On the other hand, a command 
such as "insert" is one operators 'vill use 
frequently and "\Vill need to learn. The 
.approach to these t"\vo 'vriting problems 
decidedly influences ho"\v the ·writer prepares 
the text. 

What that means involves not only the 
actual ·writing, but also layout and design. If 
operators are going to make immediate use of 
the material, the ·writer might be able to ask 
them to hold a little more in memory than if' 
they "\Vere going to memorize or other,vise 
learn the material. Like"\vise, if the '\.Titer can 
assume that operators know a particular key 
sequence (''Insert," for example), the 
instruction might be a little more complex 
than if they did not kno'v the sequence. The 
individual instruction could then need special 



attention, being laid out in such a way as to 
make it easier for operators to locate in case 
they needed to return to the page. This means 
using white space or even subpoints; grouping 
instructions and visuals into chunks is 
another way. 

When operators must learn the material. 
then small steps, plus the usual white space 
and visuals are an approach the ""Titer could 
use. Learning through repetition. as most 
manuals approach the problem, is another 
·way. Like"\vise, the writer can link the 
known with the known, allowing them to 
relate the new material to the old. One 
manual. for example, describes moving a 
block of text in terms of a knife, cutting, and 
pasting-all activities familiar to most people. 
(7)So. knowing -..vhat the reader -..viii do ·with 
the material influences hovv the \·Vriter 
prepares the material. 

CONCLUSION 
My point in this paper has been to suggest 

that while manuals for ""Titers such as those 
from DEC stress that the writer understand 
and kno""' the reader, they don't go far 
enough. Too often the writer understands the 
reader's sophistication based on how much 
the reader knows about the program at hand. 
The result is that the material is confusing 
and unclear, leading to misunderstandings and 
certainly additional evidence that the manual 
should be the l.ast thing read. 

Writers should therefore consider three 
questions as they prepare to ·write the 
material and "\Vhile ""·riting it: 

1. What does my reader need to know? 
<The details) 

2. How can I help my reader understand? 
<Definition, word/sentence/paragraph length, 
etc.) 

3. \~'hat is my reader going to do with the 
material? (Learn, apply immediately) 

REFERENCES 

1. Johnson, Wendall. "The Fateful Process of 
Mr. A Talking to Mr. B," Harvard Business 
Review, 31, No. 1 <1953), 49-56. 

2. Pearsall, Thomas E. "Introduction," 
Audience Analysis for Technical Writing. 
Beverly Hills, CA: Glencoe, 1969. 

3. Digital Equipment Corporation. Personal 
Computer: Documentor's Guide. Marlboro, 
MA: DEC. 1983. 

4. \-v'illiarns. Joseph M. Style: Ten Lessons 
·-1 .l '~ 

in Claritv and Grace. 2nd ed. Glenvie·w. IL: 
'; 

Scott, Foresman and Company. 1985. p. 112. 

5.Warren, Thomas L. ''Putting Readers Back 

in ~Januals: Computer ~fanuals .and the 
Problems of Readability.'' l\farlboro, i\1A: 
Digital Equipment Corporation t.:sers Society 
Pr·oceedin..g.s, Fall. 1985, pp. 457-482. \.varren. 
Thomas L. ''PuttinB Readers Back in ~fanuals: 

"j 

Computer Manuals and the Problems of 
r•~-A-t-:1: .... "\.' ll £'\" '-""a'"lt--.~.~~ '" .·\ · r,;,,: .. ~1 
C\.t'dUdLJlltl)' - V .w.V. 1V1 I l.LJVI V, 1v1.~; L'l~lld.I 

Eauiornent Corooration Users Society 
... ' 1 •' 

Proceedings, Spring, 1987, pp. 387- 396. 

6. Cunningham, Donald H. Personal 
conversation, June, 1981. 

7. Microsystems Engineering Corporation. 
1\.JASS-11 Reference i\f anual: WS-200 Editor. 
Hoffman Estates, IL: Microsystems 
Engineering Coporation, 1984, p. 6-9. 

480 



l:NFLUENCE 
n lust.r::itions. 

Type 

Number 
Comp le>: i ty 

Cover ·'39•?. 
Depth/ Br e:adth 

1..!oc::ibul:::iry 

APPENDIX A 
Summary of Reader Analysis 

From t££~90]! G9IDDY1£r: 
R9£~ID!D19I'§ GYi~f 

I~ E f.U!E RS 
PRE 1.JIUUS 

NOVICE OTHER SOFTWARE USEP 

Obvious>>>> >>>>>>>>>>>>>> Sophisticaterl 

Many>>>>>>> >>>>>>>>>>>>>> Few 
·:; i m p l ~? > > > > > > > > > > > > > > > > > > > C o m p 1 e >' 

Step-by >>> >>>>>>>>>>>>>> Summarips/ 
";t,c~p 

Overview>>> >>>>>>>>>>>>>> 
( genl':)r .:i l) 
How to '-'~'·€:' 

Concrete>>> >>>>>>>>>>>>>> 
~>ho rt 
~" entences 
M<.rnos.yl l :i-­

bl 1':~-S. 

In--deP,th or 
topic:: of 
l':)Vl2I'yd.3y 

COf"ICl':)l' n. 

Ab~;tr'3ctions 

J. cm '.3 
~=entence<::. 

Adapted from E~t!Q011 ~QillRYi~t: QQ~Yffi~Oi9t'! Q~i~~' pp. 1-1-7 to 
I··l-El .. 

481 






