

Proceedings

of the

Digital Equipment
Computer Users
Society

USA Spring 1987

Papers Presented at
Spring, 1987 Symposium
Nashville, Tennessee
April 27, - May 1, 1987

Printed in the U.S.A.

“The following are trademarks of Digital Equipment Corporation”

ALL-IN-1 FALCON Q-bus
BASEWAY 1AS Rainbow
DATATRIEVE LA100 RSTS

DEC MASSBUS RSX

DEClab MicroPDP-11 RT

DECmate MicroPower/Pascal UNIBUS
DECnet Micro/RSX VAX
DECpage MicroVAX VAXcluster
DECSYSTEM-10/20 MicroVMS VMS

DECUS PDP (et al) VT100 (et al.)
DECwriter PDT Work Processor
DIBOL P/0S WPS-PLUS
Digital logo Professional

Copyright °DECUS and Digital Equipment Corporation 1987 All Rights Reserved

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation or DECUS. Digital
Equipment Corporation and DECUS assume no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS “DECUS PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER PRODUCT
WILL NOT CONTAIN TECHNICAL DATA/INFORMATION THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY THE U.S. DEPARTMENT
OF STATE’S INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR).”

DECUS and Digital Equipment Corporation make no representation that in the interconnection of products in the manner described herein will not infringe on any existing
or future patent rights nor do the descriptions contained herein imply the granting of licenses to utilize any software so deseribed or to make, use or sell equipment con-
structed in accordance with these descriptions.

Adais atrademark of the U.S. Government, XEROX, and XNS§ are trademarks of Xerox Corporation, IBM, PROFS, PC-XT, and BITNET are trademarks of International
Business Machines Corporation, UNIX is a trademark of AT&T Bell Laboratories, CP/M, PL/I are trademarks of Digital Research, Inc., MS-DOS is a trademark of Mic-
rosoft Corporation, TSX-PLUS is a trademark of S&H Computer Systems Inc, R:BASE.4000 is a trademark of Microrim, Intel 8088 is a trademark of Intel Corporation,
LOTUS 1-2-3 is a trademark of Lotus Development Corporation, MULTIPLAN is a trademark of Microsoft Corporation, Mylar is a trademark of E.I. DuPont deNemours
& Co., PLOTLN is a trademark of Image Research and Compugraphic Corporation, MUMPS is a trademark of Massachusetts General Hospital, Macintosh is a trademark
and licensed to Apple Computer, Ine., Multibus is a registered mark of Intel Corporation, 8086 is atrademark Intel Corporation, VENIX is a trademark of Ventur Com., Inc,
Appletalk, and Applell are a trademarks of Apple Computers, Inc., INGRES is a trademark of Relational Technology, Ine, Seribe is a trademark of Unilogic Ltd, UniLINK
is a trademark of Applitek, HYPERchannel is a trademark of Network Systems Corporation, TIway is a trademark of Texas Instruments, Inc, TCP/IP is a trademark of
Darpa, 32000 is a trademark of National, Cyber 180 is a trademark of Control Data, Modbus is a trademark of Gould, Inc, 68000 is a trademark of Motorola, Inc.

The articles are the responsibility of the authors and therefore, DECUS and Digital Equipment Corporations, assume no responsibility or liability for articles or informa-
tion appearing in the document.

The views herein expressed are those of the authors and do not necessaily express the views of DECUS or Digital Equipment Corporation.

Table of Contents

Artificial Intelligence SIG

A Visual Rule Editor — Rule*Calc
John R. Thorp. John W. Lewis 1

DAARC SIG

Laboratory Environment for the Development of
Microprocessor-Based Fluidic Sensor Systems
Steven J. Choy 7

A Report Generation Language for Control
Engineers
David H. Geer. Jay A. Turner 13

Spatial/Il - A Technical Overview
Mark L. Palmer 25

DATATREIVE/4AGL SIG
Advanced DATATRIEVE Record Definitions

Bart 7. Lederman 35
Solving Equations in DATATRIEVE
Bart 7. l.ederman 45

VAX DATATRIEVE Security Using Environment
Accounts and ACLs
Michael G. Graham 53

EDUSIG

Making an Inexpensive Rainbow Workstation for a
Chemistry Lab
John D. Bak. David M. Hayes. 63

Student/Faculty Communications by Computer

Claude M. Watson. 69
Faculty Retraining: A Report from the Front

Edward A.Boyno 73
Using VAX/VMS to Teach Computer Organization
Linda Lankewicz. 79

Graphics Applications SIG

Readability of VMS Documentation: Then and
Now

C. Eric Kirkland, William P. Brenneman 89
Overview of Human Factors and Software
Engineering

C.EricKirkland. 95
Postscript Applications Using a MNC/DEClab-23
Computer

0. Guetta, D. Fortney, A. Dubois 103
IAS SIG

Experiences with an IAS-VMS DECnet System
Frank R. Borger. 119

Large Systems SIG

AMAR — A TOPS Performance Monitor
Betsy Ramsey 1256

Planning and Implementing a Large Network
LeslieMaltz 133

Table of Contents

High End VAX System Update
Warren Sander 137

A Practical Exercise in System Sizing
Warren Sander, Daniel A. Deufel 147

High End VAX Configuration: Putting the Pieces
Together

High Performance Systems Group 1563
DECSYSTEM-20 Technical Update

Mark Pratt. 173
TOPS-10/20 MS/MX Internals

Mark Pratt. 177
VMS Internals for TOPS-10/20 System
Programmers

David Wager. 179
Languages & Tools SIG

Developing LSE Source Code Templates

James M. Briggs, Raymond J. Bentz 245
VAX/VMS Application Performance

Louise Wholey 251
Networks SIG

Transferring Data Between Heterogenous

Computers: A Tool to Maintain the Integrity of
Foreign Data
Steven J. Kempler. 285

Gaining Control: Information Distribution in a
Multi-Vendor Corporate Environment
Tom Cheatham 291

VMS. XENIX, UNIX and MS-DOS Transparent
Resource Sharing

E. Berelian. L. Farmer, H. Kilman. P. Schoen,
P.Wang. J.Vij. 295

Office Automation SIG

Documenting Single-Package Systems
Michael J. Doyle. 311

RSX SIG

Introduction to the RSX, P/OS, and RT Indirect
Command File Processor
Thomas R. Wyant. IIT. 317

Programming in the RSX Indirect Command

Language

Thomas R. Wyant, III,

Arnold S. De Larisch 331
RT-11 SIG

Moving Decision Points Qutward From

Applications and Utilities and into Command
Level
Maartenvan Swaay 347

Site Management and Training SIG

Analysis of VMS Accounting Data for

Determination of Computing Resource
Consumption

Nancy J.Martin. 353
Computer Room Design and Construction: A Case
History

Brent Teeter. 359
UNISIG

Wading Through Net.News: There’s Gold in Them
Thar Hills!!
Kurt L. Reisler. 365

VAX Systems SIG

Integration of Input/Output Devices Using Silicon
Compilation

Dr. Robert Couranz, Edwin Rogers.

Laurence Specter 373

Defending Against Trojan Horses, Viruses and
Worms

Robert A.Clyde 381
VAX Systems Coexisting in a Multivendor
Environment

Robert C. Groman. 387

The Allocation and Mounting of Magnetic Tapes
Under VMS

Clyde T.Poole. 391
Mysteries of VAX/VMS System Parameters
Revealed

StevenSzep 395

An Introduction to VAX/VMS System Tuning
StevenSzep 409

Table of Contents

Unnatural Resources: Working Sets, Quotas, and
Limits

StevenSzep 415
Utilizing VAX Uptime
StevenSzep 419

Risk Assessment in System Security
StevenSzep 427

Linda: A Tuner’s Home Companion
StevenSzep 433

An Evaluation of Record I/O Versus Block I/O
From a Programmer’s Viewpoint
Darylene Colbert. 443

VMS Disk Performance Management
Wef Fleischman 453

On-Line Security Monitoring System
Marino J. Niccolai, Linda B. Lankewicz. . . . 461

Refereed Paper Compitition Submissions

Estimating Development and Run Time
Resources: A Practical Example

Anthony C. Picardi 463
Improving Technical Manuals through Reader
Analysis

Thomas L. Warren. 475

FOREWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DECUS has approximately 56,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels to fulfill its primary functions of advancing the art of computation and
providing a means of interchange of information and ideas among members. Two major technical
symposia are held annually in the United States.

For information on the availability of back issues of U.S. Chapter Proceedings as well as forthcoming
DECUS symposia, contact the following.

DECUS U.S. Chapter
219 Boston Post Road, BP02
Marlboro, MA 01752-1850

All issues of past Proceedings are available on microfilm from:

University of Microfilms International
300 North Zeeb Road
Ann Arbor, M| 48106

PREFACE

This volume of the Proceedings contains papers which were presented at Symposia sponsored by the
Digital Equipment Computer Users Society during the Spring and Summer of 1987. It includes sub-
missions from the Spring National Symposium.

The Spring 1987 Symposium was held at the Opryland Hotel in Nashville, Tennessee, from April 27
through May 1, 1987. 5730 DECUS members met in Nashville for a week of education, information,
cooperation, sharing, and a good deal of camaraderie.

Digital Equipment Corporation is a very large company. Long overshadowed by the enormous bulk of
International Business Machines, Digital adopted a small-town mentality for many years — - kids selling
computers to kids. But Digital has been growing at a tremendous rate. Financial analysts are beginning
to recognize the trends that Digital users have seen brewing for three years. Last year’'s computer in-
dustry slump, combined with Digital’s quadrupling of stock values over a three year period, has let the
rest of the world see that Digital is ready to play ball with the big boys.

DECUS, in many ways, has not taken Digital seriously enough. Most DECUS leaders remember Digital as
it was five years ago, and their attitudes and decisions are based on their own lifetime of working with
Digital. As natural attrition works on this group, though, replacements are coming from a new community
of business people (men AND women) that have always known Digital as a corporate computing re-
source. If seventy percent of DECUS worked for a University or Research and Development center five
years ago, then seventy percent now work for corporations, software and hardware vendors, and one-
man consulting outfits (specializing not in real-time data acquisition, but corporate MIS planning). These
new members (and new leaders) not only change the face of DECUS; they ARE DECUS.

Mark Grundler, who has admirably led the Communications Committee since 1984, has resigned to
spend more time with his new wife and child. All of us send our best wishes to Krista and Mark, and
thank him for his dedication and hard work. Beverly Welborne has agreed (via unanimous acclamation!)
to take up the baton.

My thanks on behalf of the attendees of the Spring National Symposium go out to Scott Pandorf and
Emily Kitchen, the DECUS volunteers who led the Symposium Committee. They worked together with
DECUS staff members Nancy Wilga, Joanie Mann, Gloria Caputo, Maria Hance, Rosemary Lupo, and
Beverly Dandeneau to put together the Nashville meeting. The leadership of the entire Symposium
Committee is sincerely appreciated. Judy Mulvey deserves my special thanks for her exhausting work for
the Communications Committee and all of our congratulations on her recent marriage. My colleague,
Cheryl Smith did the production and layout work for the Proceedings, and her time and energy is most
sincerely appreciated.

i

s
o
.

e

S
e
e

o

. - - . . - o . .
. - . wﬁmw.m% . . .
- - o . o . - o
. . , = . . . - . .
e

o . . .

o
.

x
.
-
o

. .
. | -
. . . - .

. - ;
. & ‘ & , . . ,
. 5 S s e : . - . . . G .
- . o . . : - - . - - -
. - . . -
. ??xm

’5’;‘%

.

-

-

. . , , . ,
o S i i o i ~ o S @\mi . i -
. , . . , ;
. o
. , . %&M . ; , , . . .
. ... ,, & . . %%Wmf%w 3 . , . . .
. . . ,
o . - - .
- , Mw . . ,
; . & . . ‘ , , . . .
. ‘ , -

o
=

.

.
.
.

wmzyﬁ . - .

.
.
.

.
.

-
. . .

-

A Visual Rule Editor — Rule*CalcTM

John R. Thorp
John W. Lewis

Martin Marietta Laboratories
1450 S. Rolling Rd.
Baltimore, Md 21227

ABSTRACT

Most current expert system tools require a middleman, the knowledge engineer, to code and test
the thousands of rules that constitute the expert system. This knowledge acquisition process typically
requires hundreds of tedious code and test cycles. The visual rule editor, Rule*Calc ™, is an environ-
ment for developing rule-based systems without the continuing assistance of a knowledge engineer.
Rules can be entered on the screen in a Lotus 1-2-3® style format via a syntax similar to that of tradi-
tional decision tables. The semantics of the rules is derived from that of the EMYCIN system. Rule
entry/debug time is well below that required by the expert to formulate rule content.

INTRODUCTION

The most critical resource of expert system
design has been the domain expert, i.e., an individual
whose degree of proficiency in some trade is of great
value to his or her organization. With the maturing
of expert system technology, it has become computa-
tionally feasible to codify the expert’s knowledge and
use this information to emulate the expert’s decisions.
However, experts often have neither the time nor the
inclination to learn how to codify their knowledge.

Therefore, the task of transferring the
knowledge from the expert to the machine is typically
performed by a second individual, a knowledge
engineer, who knows how to translate expert’s
knowledge into software. The knowledge engineer
must then run through several cycles of interviewing
the expert, coding the knowledge, and verifying the
validity of the rules. Each iteration may require
several days, and the entire process is normally
repeated successively to build more complex versions.
The resulting system may contain hundreds of rules.

There are several disadvantages to this
approach: first, the services of a knowledge engineer
are an added expense; second, the expert may not be
available for the uninterrupted meetings necessary for
the transfer of knowledge; and finally, as the size of
the expert system grows, it will begin to suffer from
many of the problems that currently plague large
software projects.

Our proposed solution, Rule*CalcTM, solves

these problems by providing the expert with a
straightforward interface to the machine.

Proceedings of the Digital Equipment Computer 'sers Soctety

FUNDAMENTAL CONCEPTS

Directed acyclic AND/OR graphs were selected
for Rule*Calc™ s conceptual representation of
expert systems since most users are familiar with pro-
positional logic. This representation thus provides an
interface that can be effectively used by individuals
from different disciplines. A tabular screen interface
was also created to access and manipulate the graphs.

AND/OR Graphs

An AND/OR graph contains a hierarchy of nodes
with inputs coming from level N+1 and outputs going
to level N-1, where N is the node’s depth in the
graph. Each node performs some test on its inputs
(ie., and, or, not) and, when a particular input
configuration occurs, "fires" and sends new values to
its neighbors.

It is computationally beneficial to view graph-
oriented logical operations differently from linear log-
ical expressions. Thus, nodes do not need values on
all inputs to determine the output values. Short-circuit
evaluation may be used to determine the node’s value
as soon as it is firm. For instance, should the first
input to an OR node be true, the value of the output
must be true. It is unnecessary to know the values of
any other inputs to the OR node A similar statement
may be made about an indeterminate value on one of
the inputs to an AND node.

Since our inference engine uses a tri-state logic
(true, false, and unknown), special conventions are
needed in addition to those used in traditional logic
(Table 1). Our model uses an open-world assumption

Nashville, TN - 1987

so that if a node’s value cannot be deduced, its value
is set to unknown.

AND OR
NOT T F ? T F ?
T|F T| T F ? T|T T T
FI|T F|F F F F|{T F ?
710 ? ? ? F ? r{T 7 ?
Table 1. Truth tables for Rule*Calc™s standard

logic operations.
Mapping AND/OR Graphs to Expert Systems

From the designer’s viewpoint, an expert system shell
can emulate a forest of AND/OR graphs. The roots
of the graphs correspond to goals in the expert system
and terminal nodes map to facts which obtain their
values from a source outside the system. All other
nodes in the graphs are intermediate nodes, which
receive values from lower level nodes and send
values to higher level nodes.

For this analogy to work, it is necessary to
place some restrictions on the configuration of the
graph. Rule-nodes AND the values on level N+1 and
fact-nodes OR the values on level N+1, as was
described above for AND/OR graphs. The top level,
level 1, of a graph always contains only fact-nodes;
thereafter, even-numbered levels of the graph contain
rule-nodes, and odd levels, fact-nodes.

Digraph Oriented Chaining Methods.

Rule*Calc™ uses a combination of forward
and backward chaining to carry on a dialogue with
the user. The algorithm begins by selecting a top-
level goal and back-chains from it to a terminal node
(or fact). This fact receives a value, either from the
user or an embedded procedure. The new value is
then projected as far as possible through the graph
via forward chaining. If a goal-fact is not satisfied,
the process starts again.

The backward-chaining algorithm consists of
one procedure and one loop.

SELECT-BEST goal-fact

REPEAT-UNTIL current fact is a terminal
SELECT-BEST rule related to current fact
SELECT-BEST fact related to current rule.

The SELECT-BEST function is discussed later.

The system propagates newly set values by
moving the values up the rule/fact graph according to
the standard logical operations. However, to avoid

incorrectly deducing that a fact is unknowable, it
does not set facts to unknown unless ALL immedi-
ately subordinate rule-nodes are unknown or false.

Search Strategies

The inference engine is wholly contained in a single
subroutine, allowing it to be removed and replaced by
a functionally equivalent module. Using this feature,
we have implemented several "graph following" algo-
rithms behind the uniform screen interface.

The first method used to navigate the graph was
a left-to-right, depth-first search (DFS).1 This is the
simplest and most straightforward method of coding
the high-level back-chaining description. The graph’s
traversal path is selected at each node based on the
evaluation of a desirability function (i.e., SELECT-
BEST), thus allowing the path to be dynamically
reconfigured.

The desirability function for each node is calcu-
lated from the cost of test of the node’s subordinates,
the possibility that traversal of the node would lead to
a correct solution and the percentage of the subprob-
lem represented by the node that has been solved.
Weights are assigned to each of the criteria and
varied to tune the system and reflect the importance
of each parameter. Specifically, these parameters are
designated Node Cost, Node Possibility, and
Node Percent_Solved. A simple desirability function
can be described as follows:

When multiple subordinate nodes exist, the infer-
ence engine will select the node with the highest
certainty factor (CF), where:
CF=Node_Possibility/Node_Cost.

When a choice must be made between several
facts with equal CF’s, facts closest to the top of
the table are selected first. Similarly, when the
engine must choose between several rules, rules
with lower rule numbers take priority.

Alternate search strategies with identical desira-
bility functions were tested, including branch and
bound and A* algorithms. While both algorithms
reduced search time and mean queries before solu-
tion, they also made it more difficult for designers to
ensure the coherence of the questioning in end-user
dialogues. Therefore, DES is installed in the current
version of Rule*Calc ™,

Conventional forward chaining was enhanced to
include the desirability function and percolate values
forward. New costs and probabilities for related,
unset nodes were recalculated from the minimum and
maximum values, respectively, of the remaining
subordinate nodes.

THE EDITOR INTERFACE

The editor’s user-interface consists of three
parts, each of which serves to edit some property of
the facts. In some cases, there are custom editors
tailored to facilitate changes to properties of a partic-
ular type. Fact actions and fact relationships, two of
the more important properties which may be manipu-
lated2 in the editor, each have their own editor for-
mat.

The Fact-Relationship Editor

To facilitate learning, the relationship between facts
and rules is displayed in a tabular format.
Specifically, the rule-editor screen is seen as a matrix
whose columns and rows correspond to rules and
facts, respectively. If there is no relation between a
fact and a rule, the entry in the matrix is blank.
However, if the fact is involved in the rule, the inter-
section is filled with the symbol representing the rule
operation to be performed on the fact.

Valid rule operations are:

Category Entry | Key Action
Antecedents = = Test if fact is true.
= - Test if fact is false.
Consequents |-T t Set fact to true.
|-F f Set fact to false.

Most operations in the editor may be performed
by a single key stroke, including fact/rule access,
fact/rule cut and fact/rule paste.

The Fact-Action Editor

Actions are blocks of text that are executed or are
placed on the screen when events related to the fact’s
value occur. This editor provides a means of mani-
pulating the actions associated with a given fact. All
actions related to a fact are displayed in windows on
one screen, and the user may move between these
windows or between screens to perform editing
operations.

The Run-Time Environment

Users’ run-time needs differ widely: designers need a
flexible environment with rule-tracing facilities;
novice end-users need a system that provides clear
queries and statements with additional explanations
when necessary; and more sophisticated end-users
may wish to diregt the system to pursue a particular
line of reasoning.

In Rule*Calc™, the expert system designer
can switch between the end-user environment and the
editor with a single key stroke. This ability enhances
the rule-testing and repair facilities. In the end-user
environment, the programmer has access to the

query-dialogue window, as well as a rule-stack
debugger. The debugger may be used to dynamically
trace chaining and observe fact value assignments.

Alternately, the end user has access to two
query modes: novice and skilled. The novice mode
provides an interface that will guide the user to the
proper conclusion, while the skilled mode allows the
experienced technician to enter facts already inferred
or tests already performed and thus guide the system
in a particular direction.

In addition to optional conversation styles,
Rule*Calc™ offers several different interface styles.
The standard keyboard/CRT combination is sup-
ported, as well as a mouse and menu interface on ter-
minals that support the mouse. Furthermore, the sys-
tem may query the user via a speech synthesizer and
will accept responses entered through a standard tele-
phone keypad.

CODE GENERATION

Rule*Calc™ serves as a standard representa-
tion for expert systems that can be translated into
other computer languages. The run-time environment
can be recreated by programs written in traditional
languages, and Rule*Calc™ has the ability to
automatically generate these programs. This feature
may be used to port the expert system to other
machines or other operating systems.

To demonstrate this capability, we selected
Common LISP as our target 1anguage.4 The generated
code allows users to add application-specific code to
the output program to customize screen formats or
direct the program to acquire data from peripheral
devices. This function of Rule*Calc"™ has generated
several application programs in the diagnostic and
maintenance area.

The language generation feature may be
tailored to write in a target language that is a general
purpose computing language. Initial investigations
indicate that it is feasible to generate expert systems
in PASCAL, ADA, PROLOG, FORTRAN 77, and C.

CONCLUSIONS

Several ideas incorporated in the final design of
Rule*Calc™ have aided the production of in-house
expert systems. Providing a visual editor capable of
single key commands increases the interactivity of the
program and allows the user to see the effects of a
change immediately. Presenting forward and back-
ward chaining as graph operations allows the designer
to grasp these concepts with a minimum of training
time.

In addition, Rule*Calc™ offers several solu-
tions to common expert system problems. Due to the
style of interface, domain experts may code the
expert system without help at their convenience. The
high-level language code-generation facility elim-
inates the task of recoding the developmental proto-
type to a distribution-grade program, and the gen-
erated code automatically reduces the number of
software design errors by providing a structured base
for a larger custom system.

Trademarks for Rule*Calc™ and Lotus 1-2-3®
are owned by Martin Marietta Corporation and Lotus
Development Corperation, respectively. The software
presented in this report is for Martin Marietta use
only and not intended for public release.

REFERENCES

[11 Aho, A. V., Hopcroft, J. E., and Ullman, J.
D., The Design and Analysis of Computer
Algorithms, Reading, Mass.: Addison-
Wesley, 1974.

[2] Lewis, J. W, "An effective graphics user
interface for rules and inference mechan-
isms," in, Human Factors in Computing
Systems, Amsterdam, Netherlands: North-
Holland, 1984.

[3] Waterman, D. A., A Guide to Expert Sys-
tems, Reading, Mass.: Addison-Wesley,
1986.

[4] Steele, G. L., Jr., Common LISP: The
Language, Hudson, Mass.: Digital Press,
1984.

[51 Lewis, J. W., and Wysocki, E. M., "Appli-
cability of Expert System Technology To
FAA Maintenance," ATCA Fall Confer-
ence Proceedings, 1986.

=

- -
e . - - - .
- h - ‘ .
- . . . , , - . -
e - u u ,‘ ;, . ,. \,‘ v gr?sxwmfay?mwigﬁﬁ;

o

-

- - &J»w -
-

-
.

5&4 , \EN?%
. -
. o
.
..

.
.

Laboratory Environment for the Development
of Microprocessor-Based Fluidic Sensor Systems

Steven J. Choy
U.S. Army Laboratory Command
Harry Diamond Laboratories
Adelphi, MD 20783-1197

Abstract

The Harry Diamond Laboratories Fluid Control Group uses a variety of embedded
microprocessors as an integral part of its realtime control systems. Typical processors
include the Digital Equipment Corporation (DEC) J11 and the Motorola MC68000
integrated into a GESPAC G64 bus-based system. A laboratory environment for the
development of these fluidic sensor systems has been established which consists of a
DEC VAX 11/780 computer, loosely coupled to a DEC pyPDP 11/73 controlling a vari-
ety of analog and digital devices, attached to a IEEE-488 bus. The hardware/software
components of the laboratory environment and how they are being used to develop
new realtime systems are presented. The discussion also focuses on insights acquired
and problems experienced when dealing with interfaces between DEC and non-DEC

components.

Overview

As microprocessor hardware technology becomes faster, more
complex, and available in smaller and cheaper packages, the
domain “of applications to realtime systems has become un-
bounded. General-purpose microprocessors with tremendous
computing abilities can now be affordably integrated into tiny
rcaltime systems where, not too long ago, this was not consid-
ered feasible. The hardware possibilities appear to be endless.
This “utopia” of microcomputer processing does not
come without cost. It takes a considerable amount of time
and effort to design, develop, integrate, and test these proces-
sors into a workable and usable system. In order to harness
this computing power into a useful productive system in a
timely manner, a flexible development environment must be
established, allowing an engineer to experiment and analyze
the possibilities for integration of these microprocessors in an
embedded realtime control system. This paper discusses a lab-
oratory environment developed by the Fluid Control Group at
Harry Diamond Laboratories (HDL) for the explicit purpose of
designing and developing prototype realtime control systems
using embedded microprocessors. The discussion presents an
overview of both the laboratory hardware and software.

Fluidics, A Brief Summary

Fluidics is a technology that uses liquids and gases to per-
form sensing, logic, amplification, and control functions with-
out moving mechanical parts. Fluidics is finding its way into
systems that require high reliability because of the absence
of moving parts, and low maintenance costs. Some of the

Proceedings of the Digital Equipment Compuier * ‘sers Sociely

applications pioneered at HDL, for this technology include
temperature sensing, hydraulic stabilization, and angular rate
sensing. The last of these applications can be used for build-
ing low-cost, reliable, autonomous navigation systems. (Since
the theory of operation behind these devices is beyond the
scope of this paper, the reader is referred to reference [1] for
more background in this area.) The discussion in this paper
focuses on the laboratory environment devised at HDL for us-
ing microprocessors and fluidic elements in developing such
navigation systems.

Laboratory Hardware

The laboratory hardware can be divided into two major cat-
egories: (1) there is the digital processing hardware used for
both development and for the actual application, and (2) the
analog interfacing hardware used for measurement and con-
trol. Some of this hardware is for development and testing,
and some of this hardware is an integral part of the application.

The interrelationship of the various laboratory hardware
components is shown in Figure 1. The digital processing hard-
ware involves three systems:

1. An embedded application processor (i.e., DEC J11, Mo-
torola MC68000) for controlling the realtime application.

2. A DEC VAX 11/780 system for cross-development of the
embedded microprocessor used in the application system.

3. A DEC uPDP 11/73 system for data acquisition and en-
vironmental control used for testing and simulating the
application system.

Nashville, TN - 1987

SERIAL LINK
NAVIGATION .
DEBUG TERMINAL PROCESSOR BAROCELLS [ZT 77
[
SERIAL COUNTER/TIMER | VRmP______] .- FLUIDIC |
DOWNLINK BOARDS | PCO COUNTS | | SENSOR b
VAX 117780 TO RAM PUMP D/A RTD SIGNAL PACKAGE v
RTD T . b
CONTRAVES I
RATE TABLE b
PROGRAM IEEE-488 BUS WITH o
DEVELOPMENT ENVIRONMENTAL| ! |
CHAMBER -
uPDP-11/73 .
I
IEEE-488 BUS | ! Ps
SERIAL DATA | i CONTROL
DATA TRANSLATION _ _ PRESSURE SIGNALS (volts) _____ 4 Loor
LINK A/D, D/A !
Kermit) BOARDS &
SOFTWARE DATAMETRICS
----------------------- ~ SERVOVALVE
Ps SETPOINT CONTROLLER
CONTROL

Figure 1: Laboratory hardware configuration

The analog hardware is made up of control components
for simulating various environmental parameters as well as
measuring components for analyzing the system response to
different controls. Connected on an IEEE-488 bus is a Con-
traves combination temperature control chamber and rate ta-
ble, used for sensor testing under different environmental
conditions. Also attached to this bus are several Hewlett-
Packard multi-meters and a platinum temperature probe for
high-accuracy temperature readings.

Connected on the Q bus via a DTI (Data Translation Inc.)
interface is a 12-bit, digital-to-analog converter (D/A) used for
scrvo pressure control. On the input side of the interface are
a number of counters to collect data from the fluidic oscil-
lators, along with several analog-to-digital converters (A/D)
for monitoring the Barocell pressure transducers, flowmeter
inputs, and other miscellaneous sensor inputs.

The Embedded Processing System

The embedded processing hardware used by the navigation
system is built around a G-64 bus-based system available from
Gespac Inc. This hardware was chosen because of it is rela-
tively small and compact and has low power requirements (ow-
ing to the use of CMOS parts). In addition, Gespac provided
boards with a wide range of powerful processors, including the
DEC J11, the Motorola 680X0, the National Semiconductor
32010, and the Intel 80X86. These processing boards, along
with the availability of various supporting peripherals such
as counters, parallel and serial input/output (I/O) interfaces,
A/D’s and D/A’s, and other digital support devices, made it
possible to quickly assemble and arrange a prototype system
without lengthy hardware development times.

The particular example navigation system described in
this paper uses an 8-MHz M68000 processing board with 16

Kbytes of random access memory (RAM) and 128 Kbytes of
electrically programmable read-only memory (EPROM). Fig-
ure 2 shows the basic layout of the system and its supporting
devices. In this system, a realtime clock is used to set a fixed
rate (usually in the range from 10 to 100 Hz) to sample two
realtime inputs.

The angular rate of the system comes from the fluidic rate
sensor via a 32-bit counter, and the distance traveled comes
from a distance sensor via a 16-bit A/D. The distance direction
is a transitor-transitor logic (TTL) level that is connected to
the CTS pin of an RS-232 port on the multifunction I/O board.
The system communicates to an operator by way of a 64 by
256 pixel flat panel liquid crystal display (LCD) overlaid by a
4 by 10 sectioned touch panel. Two serial ports are available
for interactive terminal debugging and program downloading
from the VAX to the on-board RAM. During the development
stage, an extra 32-Kbyte memory board is used along with an
IEEE-488 bus interface for communication to the yPDP11.

The Cross Development System

Software for the embedded processor hardware is developed
on a VAX 11/780 (running VMS, not ULTRIX) using a cross
compiler system. As shown in Figure 1, the two systems arc
linked via a standard 9600-baud RS-232 serial link. During the
program development phase, the test programs for the embed-
ded processor are loaded into RAM over the serial link. When
the program logic has been “debugged,” the object module is
converted to hexadecimal and sent to a DATAIO EPROM pro-
grammer connected to the VAX on another serial interface.

Using the VAX as a software development system (as
opposed to using the embedded processor) provides several
advantages:

1. The VMS operating system provides an excellent envi-

ON/OFF [>D_—:—;[TERMINAL STRIP |
IN.CGND] —r]
POWERCUBE *5 S
+5,+15,-
POWER SUP. +15.AGND-]5 Power (o] :I:V
— 5 Board O |12
10-15 Vdc] T O [+
O |oND
CGND
— —
[} | BTTRY
RATE 6}}128' TERMINATOR
SENSOR ::g:ﬁ*
:Z::LL nllg= — A/D BOARD
DISTANCE |
SENSOR Rl
— CONV/START
= MULTI-
FUNCTION
BACK-UP :I l: I/0
SIGNAL =
34 PIN FLAT CABLE J l: |
HITACHI LM213B - INDUSTRIAL
LCD GRAPHICS 1/0
DISPLAY
RS232 P2
— L 68000
RS232 :l |: CPU
ALPHA- — P
NUMERIC
1/0 |
RESET

Figure 2: Embedded processor hardware

ronment for program development, including support for
program source code preparation, debugging, documen-
tation, management, and backup.

. The VAX is a multi-user system, allowing several persons
to work on the software development simultaneously.

. Since the VAX does not require the use of the embedded
processor, hardware development can also be occurring
simultaneously with the software development.

. The VAX has a variety of shared peripherals available
such as line printers, plotters, and disks, which are not
normally connected to an embedded processor.

. Since most of the software development is in a high-
level language, device-independent algorithms can be de-

bugged completely without the actual hardware ever hav-
ing to be used.

. By having a central repository for all software, much of

the developed program code is easily reused and shared
among different systems. This reduces the development
effort significantly for subsequent systems.

In addition to providing cross-development facilities for

the embbeded processor, the VAX can also be used as a file
server for the embedded processor during data collection pe-
riods. Through a simple, compact protocol on the serial inter-
face, test programs loaded into the embedded processor can
make file system service calls to open, close, read, and write
transparently to VMS files.

The Environmental Control System

The pPDP11 is an RSX11M based system that is responsible
for all the test measurement and control in the laboratory. It
is also used for analyzing collected test data and producing
calibration information for the fluidic sensors. The calibration
information is forwarded to the VAX via a serial link to be
incorporated into the embedded processing software. The in-
formation is usually in the form of numerical tables that are
reprocessed and converted to binary images on the VAX and
eventually burned into PROM’s. The data can also be ana-
lyzed further and plotted on the VAX, where high-quality laser
plotters are available.

As described above, most of the test and measurement
hardware is connected to the yPDP11 via an IEEE-488 bus.
The remaining components are connected to the uPDP11 via
interface hardware on the Q bus provided by DTI. In the lab-
oratory setup, the collection of data requires the cooperation
of two processors.

e The main control processor (the uPDP11) establishes and
monitors the test environment.

e The embedded application processor (the M68000) col-
lects the data in realtime and forwards the data to the
uPDP11,

In a typical setup, the embedded processor is downloaded
with a data collection test program that communicates with
the uPDP11 over the IEEE-488 bus. The puPDPI11 sets the
environmental test chamber (also connected on the IEEE-488
bus) to the required test conditions and then commands the
embedded processor to begin data collection from the fluidic
sensor. The sample size and the sample rate along, with other
variables involved in the data collection, are all settable by
the embedded processor via commands from the 4PDP11. The
collected data values are buffered in the embedded processor’s
memory and sent to the uPDP11 via the IEEE-488 bus.

This cooperative processing configuration allows an engi-
neer to easily test the application system in different environ-
ments via hardware simulation in the laboratory. In addition,
the uPDP11 can be used to monitor the fluidic sensor output
in parallel with the application processor to provide a perfor-
mance reference for the application system. This performance
information can be used to calibrate individual application sys-
tems.

Support Software

As mentioned in the previous section, using the VAX as a cen-
trally located program development system allows much of the
developed software to be reused in subsequent systems. The
HDL fluidics control group uses its own “generic” embedded
realtime operating system, which provides an ever-expanding
library of system-level support, such as device drivers for dif-
ferent peripheral chip interfaces, memory management, task
management and communications. In addition, application
software libraries have been developed to support such func-
tions as graphics display, user interfacing, operator input, and
command parsing.

10

Most of the software is written in the C language using
a cross compiler. Because of the special attention given to
processor independence, most of the code can be transported
to different target processor boards. The cross-development
system provides for a universal linker and librarian. Thus
the same linker and librarian may be used for different target
processors, providing uniformity for the program development
process.

Two target processors have been used thus far, the DEC
J11 and the Motorola M68000. From a software viewpoint,
the two processors are architecturally similar. Both proces-
sors provide several general-purpose registers, using similar
addressing modes. Both use memory mapped I/O, along with
privileged and user operating modes.

The J11 has the advantage of providing hardware-assisted
floating-point math in both single- and double-precision
modes. The M68000 only provides for integer calculations.
In the context of the navigation software, in order to minimize
drift error, the nature of the mathematics requires a high level
of precision over a wide dynamic range. The double-precision
math processor in the J11 is ideal for this calculation. In order
to implement the same calculations on the M68000 in realtime,
it is necessary to construct abstruse integer math algorithms
that operate on even more abstruse integer representations of
the data structures.

However, the M68000 has the advantage of being able to
directly address more memory than the J11 because of its log-
ical 32-bit architecture. The J11 requires the programming of
a memory management unit when addressing beyond the abili-
ties of the 16-bit program counter. This advantage is minimal
for the navigation systems since the programs rarely extend
beyond 48 Kbytes.

The Embedded Processor Operating System

The HDL-developed embedded realtime operating system is
not only being used on various G-64 bus-based boards, but is
also being used extensively with VERSABUS- and VMEBUS-
based processor boards, as well as in-house-designed processor
boards. The transportability of the system is attributed to the
use of high-level language programming and system modular-
ity. Features of the operating system include

o multitasking or foreground/background system configu-
rations including support for multiprocessor as well as
uniprocessor systems;

e memory management utilities to support dynamic stor-
age allocation and the manipulation of data on stacks,
heaps, queues, and dequeues (linked or contiguous data
structures);

e integral runtime debugging utility;
e extensive runtime library support; and

e modular software components, making the system adapt-
able and reconfigurable to small, minimal configurations
as well as large, complex ones;

Depending on the particular system being developed, the
operating system can be configured for multiple task support or
for foreground/background support. Often the overhead (both
processor and memory) incurred by multitasking is undesir-
able, and so some systems are configured without this feature.
In addition to using less overhead, foreground/background sys-
tems are often less complicated to use (depending on the ap-
plication).

However, multitasking support provides dynamic creation
and deletion of tasks along with task prioritization and several
forms of intertask communication. Dynamically created mes-
sage systems and shared data sections are available, along with
semaphores for intertask synchronization and shared resource
protection. The software library also includes a message sys-
tem for intertask, interprocessor communication. When mul-
tiple processors are used, the operating system provides con-
structs for remote booting of a task to another processor along
the system bus (i.e., VMEBUS).

Although the embedded operating system has no disk
drivers or file system support, these functions, when needed,
can be fulfilled in one of two ways. Drivers are provided to
make the VMS file system transparently available to the em-
bedded operating system via an RS-232 serial interface and
standard C language I/O library calls. Using this method,
the VAX can act as a file server to several different slave
systems. The disadvantage to using this method is the slow
transfer rate of the data. However this technique is useful for
quickly generating programs to log test data onto the VAX for
later analysis. It is also useful for building command files of
comprehensive diagnostic sequences that are normally expect-
ing interactive command input from a terminal. It provides
the functionality of a disk file system during the development
phase without the need to actually interface a disk drive and
associated controller hardware to the embedded processor sys-
tem. Using familiar C language I/O library functions such as
fprintf() and fscanf() provides an easy-to-use interface to the
file system.

When an application requires an integral disk drive with
the system, then the embedded operating system is used as a
bootstrap to a commercially available, reconfigurable, UNIX-
like operating system that provides complete file system sup-
port. At this point, the HDL-developed operating system dis-
appears and is replaced with the “UNIX clone” operating sys-
tem. This method requires writing appropriate disk controller
device drivers. Currently no disk devices are used on the
GESPAC bus-based systems. However, drivers are written to
support disk controllers from Interphase, Inc., and Motorola,
Inc., on both VERSABUS and VMEBUS.

The Software Library

The software library provides support for a variety of hard-
ware interface chips. Drivers are available for a number of
serial interfaces (UART’s) as well as counters, timers, periph-
eral interface adapters (PIA’s), D/A’s, and A/D’s. Some of
the UARTS currently supported include the NEC7201, the
MCR8650, the SIG2661, the MC68681, the SCN2681, and
the Z8530. Counter chips supported include the Z8536, the

Global Data
Collection Area

Data Acquisition
Task (IEEE-488)

Data Analysis
Task (IMSL)

Data Display
Task (GRAPHELP)

Figure 3: Memory resident RSX11M software modules

MC6840, the AMD2915, and the INTEL8254. Drivers are
also written for the INTEL IEEE-488 bus chip set.

Higher level application software libraries exist to support
bitmap graphics, including vector-to-raster routines and soft-
ware font character generators. These routines are useful for
driving flat-panel displays such as the one used in the fluidic
navigator. Routines to provide vector graphics using Tektronix
4010 protocols are also contained in the application software
library along with VT100 screen manipulation routines (ANSI
X3.64 escape sequences) and easy to use command parsing
routines. These functions, along with the standard C language
library functions for formatted I/O and character manipulation,
make it easy to quickly generate custom interactive hardware
diagnostic and testing packages for new systems.

All the functions are stored in modular object libraries for
easy access and reusability. When a new function is required
that is almost provided for by a pre-existing library routine,
the source code of the original library function can be accessed
and tailored to the modified requirement. In this manner the
software development time is still shorter than for developing
a completely new function.

Data Acquisition Software

The data acquisition and analysis software is written com-
pletely in FORTRAN-77 running under RSX11M on the
pPDP11. The software is broken into four basic memory res-
ident modules, as shown in Figure 3. There are three tasks
that communicate with each other via a single RSX11M global
data section.

The data acquisition task is responsible for the environ-

mental control and collection of data along the IEEE-488 bus.
Note that all software related to device interaction was built
upon already existing interface libraries provided by the hard-
ware manufacturers (i.e., DEC for the IEEE-488 interfacing,
and DTI for the D/A’s, A/D’s, and counters). Once the data
values are stored in the global data section, a second task
can be activated to analyze the data. In reality, there are
several different analytical tasks built upon a commercially
available subroutine library called IMSL. A third task is avail-
able to display raw and processed data on a medium reso-
lution (1024 by 800) graphics display terminal. The display
software is built on an in-house-developed graphics package
called GRAPHELP which runs on both the uPDP11 and the
VAX. The reader should see reference [2] for more information
about the graphics support.

It should be noted that the original data acquisition system
was developed under RT11. With that system, the three tasks
were run separately, passing data between them through tem-
porary files. The multitasking nature of RSX11M allowed the
system to be redesigned as three memory-resident tasks shar-
ing a fixed memory-resident data area. In addition to saving
disk space, this structure eliminates the need to perform un-
necessary, time-consuming file I/O. The practice under RT11
was to collect lots of data onto the disk before invoking the
analysis and display tasks. Under RSX11M the data sets are
analyzed as they are collected, and only data sets of “signifi-
cant interest” are stored on the disk.

Conclusions

The HDL fluidics control group has found the laboratory en-
vironment described in this paper to be an extremely useful
tool in developing embedded microprocessor-based realtime
systems. The close integration of the test hardware with the
application hardware has made it possible to quickly and easily
develop and test new systems in a timely fashion.

The use of modular software libraries and high-level lan-
guage programming has made it easy to evolve the system and
application code to new processor systems and new application
systems as new technology becomes available. The reusability
of software has become an important factor in developing new
application systems.

Future plans include the migration to embedded proces-
sors that run at higher clock rates and support floating-point
calculations. These will probably not include the J11 be-
cause of its low availability in a commercial product. In
addition, work is on-going to provide better integration and
reconfiguration for multiprocessor systems. The application
software library will continue to expand. It is also believed
that closer coupling between the VAX development system
and the uPDP11 environmental control system via a DEC-
NET/Ethernet interface (as opposed to the RS-232 serial in-
terface currently in use) will enhance the overall system de-
velopment process.

References

[1] Stephen Tenney and John Grills, Development of a
Low-Cost Navigation Aid, Proceedings of The Amer-
ican Society of Mechanical Engineers, Winter 1986,
86-WA/DSC-4.

[2] Steven Choy, Interactive Graphics Support For Mini-
computer Systems, Proceedings of the Digital Equip-
ment Corporation Users Society, Winter 1978.

A Report Generation Language
for Control Engineers

David H. Geer
General Electric Co.
Schenectady, NY 12301

Jay A. Turner
Digital Equipment Corp.
Albany, NY 12203

Abstract

Report Generator Language (RGL) is a tool for retrieving data from a controls data
base and producing printed reports from that data. It is targeted at Control Engineers
and plant operators, who have used computers but whose specialty is not computer
programming. RGL features include (1) ease of access to the plant data base, (2) a
menu-driven interface, (3) detailed, English error messages, (4) structured program-
ming, (5) powerful output formatting constructs, (6) arithmetic tunctions, and (7)
subroutine capability, including recursion.

RGL has been successfully used for formatting reports of current and historical
data from plant sensor data bases, monitoring plant equipment, billing, and diagnosis
of equipment failures. Because RGL is easy to leamn and requires less coding and less
debugging, it is a powerful tool for the users of control systems. This paper discusses

the development of the RGL language, its features and its benefits.

Introduction

Modem power plants require many kinds of printed reports.
Daily, weekly, and monthly production reports are used by op-
erations management. Thermal performance reports are used
by plant engineers to monitor the health of plant equipment.
Maintenance management reports keep track of parts inven-
tory and equipment running time to aid in scheduling planned
maintenance. Emission reports monitor combustion products
in the exhaust gas for regulatory agencies. All of these re-
ports require changes from time to time as plant equipment,
operating practice, and regulatory requirements change.

Before RGL was developed, plant engineers had two
choices: either leam to program in FORTRAN, BASIC or
PASCAL, and learn to use the complex subroutine library sup-
plied by the computer vendor, or rely on the vendor to pro-
vide the complete logging package. The first approach meant
diverting control or instrument engineers from their normal
duties for many months of training. The latter meant static
formats for logs and reports, or software development charges
from the vendor each time a change was made to plant equip-
ment, process, or administrative procedures.

With RGL control engineers can write their own logs
after only three days of training. The toolkit guides the user
through the phases of editing, compiling, and testing. The
familiar syntax and powerful formatting features allow him
to leamn to use the language quickly and produce exactly the

Proceedings of the Digital Equipment Compuier Users Socien

output he wants.

The Plant consists of a collection of equipment such as
boilers, turbines, pumps, valves, and motors. The plant is
monitored by Data Acquisition Systems or DASs. These are
special purpose microcomputers which are designed to moni-
tor sensors, convert their readings to digital form, and transmit
the data samples to the Station Computer for processing and
storage. The station computer is a VAX or Micro-VAX, de-
pending on plant size.

A single sensor is called a point. A sensor reading is
called a data point, or sample. The Station Computer main-
tains a file called the Data Dictionary that lists the names of the
DASs, the names of each point, and the information needed
to convert samples of each point for printing.

The Station Computer maintains two data bases: The
real time data base, which contains the most recent value
of each point, and the historical data base, which contains
a record of the data points that the system has received over
time. The real time data base is keyed on point name, and the
historical data base is keyed on point name and time.

What is a Report Generator?

A Report Generator is a system of programs that are designed
to make it easy to produce printed output. RGL components
are shown in Figure 1.

Nashville, TN - 1987

| Text | ==-=> | RGL | ===>] RGL |
| | | Source| | +
| Editor| | Code | |Compiler|
n x Fmmmmms + ! n
- + fommm——— +

—————————— +
RGL |
|Executable]
Code |
—————————— +

Figure 1: RGL Components

RGL programs (reports) read data and format the results
into the output (view) file. The output file is processed with
the Report Viewer program to produce printed output and color
plots. RGL data flow is shown in Figure 2.

The Viewer program lets the user preview the output be-
fore printing or plotting.

Ease of Access to Plant Data

RGL provides routines to get data from the historical and
real ime databases as well as from the data dictionary file,
Maintenance Management files and ASCII text files. In all,
RGL supplies over forty data access procedures. The most
commonly used procedures for data access are CURRENT,
LEVEL, EDGE, and SEARCH.

CURRENT is used for real-time database access.
The syntax is: .CURRENT PointName, UnitName,
LatestValue, Time,EngUnits,Status

A sample of CURRENT code and output is shown in Fig-
ure 3. The PointName and UnitName specify the sensor and
Data Acquisition System (DAS) where the sensor is located.
The CURRENT procedure returns the value of the most recent
sample of a point, along with the time at which the sample
was taken. The engineering units of the point (e.g. DEG C,
or PSI), and a status code (indicating success or failure) are
also returned.

To read the value of a specific sensor from the histori-
cal database at a specific time, LEVEL is used. The syntax
is .LEVEL PointName, UnitName, Time, Value,
EngUnits, Status

A sample of LEVEL code and output is shown in Fig-
ure 4. The “Level” procedure returns the value of the sample
at or before “time” of the point “pointname”.

The EDGE procedure is used to search for many occur-
rences of a given point in a time range. A sample of EDGE
code and output is shown in Figure 5. To begin the search
the FIRST parameter is passed with the value TRUE. In sub-
sequent searches it must be passed FALSE.

Edge returns only transitional values. This includes
changes of state of logic signals and changes in value of other
points. The syntax is .EDGE PointName, UnitName,
First, StartTime, EndTime, Value, Time,
EngUnits, Status.

The SEARCH procedure expands on the EDGE proce-
dure by providing a means to search for many occurrences of
any of several points on several units. A sample of SEARCH
code and output is given in Figure 6. An array of point

14

names and an array of unit names is passed to the procedure.
The point name and unit name are returned with the point
value. The values are retumed in ascending time order. The

syntax is .SEARCH PointList, UnitList, First,
StartTime, EndTime, Value, Time, EngUnits,
PointName, Unit, Status

Menu-driven Interface

The Report Generator can be used either through a menu-
driven interface, called the Toolkit, or via DCL commands.

The main menu of the Toolkit provides an interface to
the EDT editor, RGL compiler and run time system, and the
Report Viewer. The user selects options on the menu screens
by moving the selection arrow (==>) to the desired option
with the arrow keys and pressing RETURN or SELECT. The
main menu is shown in Figure 7.

The Toolkit keeps track of what reports are available, and
maintains a series of menus from which the user may select
a report. The Toolkit remembers the last report selected, and
will assume that the user wants to edit, compile, or run that
report when he selects a menu option. If there is no current
report as yet, then an option that requires a report name will
put up the Report Selection Menu. The Report Selection Menu
is shown in Figure 8.

Since the user actually is creating a multitude of files in
his current directory, and since he may not be familiar with
DCL, a Maintenance Menu is provided to help him manage
his directory. The Maintenance Menu provides selections to
purge or delete reports, and to list the directory. The Main-
tenance Menu also allows the user to check schedule status
for periodically scheduled reports. The Maintenance Menu is
shown in Figure 9.

Reports produce intermediate output files that may or may
not be directly printable. The Report Viewer allows the user to
preview his text or graphic output, and allows him to produce
plots, printouts and screen copies of his report output.

Detailed, English Error Messages.

One very important design goal for the Report Generator was
that its error and warning messages be as helpful as possible,
and that they not be in cryptic computerese. It is assumed that
the average user of the Report Generator will not be familiar
with VMS error messages, and will need to be told not only
what is wrong, but what to do about it.

fomm +
| RGL | ———>
| Executable|
| Code |
| |
o —————— +

Report
Generator

---> | Report

Figure 2: RGL Data Flow

.Current "VARS","GTG1l01l",vars,time,units, status

.1f status=1

";units;"

at

";time

.display "Error status=";status

12.3 MVARS at 03-MAR-1987 09:13:59.02

Figure 3: CURRENT Procedure

.Level "VARS","GTG101","02-Feb-1987 13:00:00.00", -
vars,units, status

.display vars;"

" .
’

units

.display "Error status=";status

.then
.display vars;"
.else
.end
OQutput:
Sample:
.if status=1
.then
.else
.end
Output:

12.3 MVARS

Figure 4: LEVEL Procedure

Sample:

.Set First=True
.Repeat
.Edge "VARS", "GTG101", first, -
"02-Feb-1987 13:00:00.00",-
"02-Feb-1987 23:59:59.99", -
vars, time, units, status
.set first=false
.if status=1
.then
.display vars;" ";units;" at ";time
.end
.until status<>1l
.if status<>3
.then
.display "Error status=";status
.end

Output:

.0 MVARS at 02-FEB-1987 13:00:00.00
.5 MVARS at 02-FEB-1987 13:23:41.35
.2 MVARS at 02-FEB-1987 17:28:01.27
.0 MVARS at 02-FEB-1987 23:11:12:41

R W oo

Figure 5: EDGE Procedure

16

Sample:

.table points(3) "L52GX","L4","L30B"
.table units(4) "GTG101","GTG201","GTG301l", "GTG401"
.Set First=True
.Repeat
.search points,units, first, -
"02-Feb-1987 13:00:00.00", -
"02-Feb-1987 23:59:59.99", -
value,time, engunit, point,unit, status
.set first=false
.if status=1

.then
.display unit;":";point;"=";value;" ";engunit;
.display " at ";time

.end

.until status<>1l
.1f status<>3
.then
.display "Error status=";status
.end

Output:
GTG201:L52GX=1.0 at 02-FEB-1987 15:41:32.21

GTG301:L30B=0.0 at 02-FEB-1987 17:00:32.99
GTG101:L52GX=1.0 at 02-FEB-1987 24:11:37.17

Figure 6: SEARCH Procedure

Report Development Toolkit

I
I
\%

Create a new report

Edit the report source file
Compile the report

View the compilation log file
Test run the report

View the report source listing
View the report output

Switch the scheduling status
Maintenance Menu

Select a different report

Make a selection, then press return.

Figure 7: Main Menu

17

Report Development Toolkit

DD LOCAL2 PNTSEARC
80COL DISPLAY LONG POWER
ADDT DUMMY LYSHIFT PRINT
ALPHA ==> ECHO LYSHIFT2 PRTAB
ARGSORT EDGE MMIO PU
ARITH ELSE MMIOZ2 READINT
ARITH2 ERR MMIO3 REPEAT
ARRAY EV MMIO4 RETURN
ARUN FACTORIAL NESTED RL2TM
CALL1 FOR NESTED2 SDANAL
CALL2 FORWARD NOT SEARCH
CALL3 IF NOT2 SET
CALLTAB IF2 OPERAND SHIFT
CAT INC PAREN SINCOS
CONCAT INCLUDE PASSWRONG STRING
CTIM LOCAL PERIODIC SUANAL
Make a selection, then press return. MORE. ..

Figure 8: Report Selection Menu

Report Development Toolkit (Maintenance)

Purge a report
Purge all reports
Delete a report
List the Directory
Schedule status

1l
1l
v

Make a selection, then press return.

Figure 9: Maintenance Menu

SiteName REPORT VIEWER

11-FEB-1987

Report text appears here for previewing

<UP>
CURRENT PAGE: 1 CURRENT LINE: 13 LAST PAGE COMPILED: 2 <RIGHT>
PAGE SELECT : 1 LINE SELECT : 13 <DOWN>
<NEXT-DISP>:NEXT PAGE <F11>:SEL PAGE <SET-UP>:SETUP MENU <F13> : FIGURE
<PREV-DISP>:PREV PAGE <F12>:PRINT <EXIT> :RETURN <F17> : PLOT
e e o +

Figure 10: Report Viewer Menu

The error messages are also site tailorable. In other
words, the customer can change the error messages, and for
example, translate them to his native language. In fact, the
source language of RGL is tailorable and extensible. (A Span-
ish prototype exists.)

For the Pascal program shown in Figure 10, the standard
VAX Pascal compiler produces a much more cryptic set of
error messages than does RGL.

The RGL program shown in Figure 11 is functionally
identical to the Pascal program, but the error messages that
RGL provides tell the user in plain English what was wrong
and what needs to be changed.

The RGL compiler produces the messages shown in Fig-
ure 12.

This example also shows that RGL is a more compact
notation than Pascal. The Pascal program required about
55 percent more keystrokes to enter than the RGL program
(144 vs. 93).

Structured Programming

The RGL flow constructs lend themselves to structured pro-
gramming. REPEAT/UNTIL,
FOR/NEXT, IF/THEN/ELSE/END, and SUBROUTINE/END
constructs encourage structure, and hence encourage readabil-
ity and software maintainability. There is no GOTO statement
in RGL. The only statements that produce jumps are RETURN
and EXIT. RETURN is used to jump to the end of a subrou-
tine, and EXIT is used to terminate the program. Syntax for
RGL structures is shown in Figure 13.

Powerful Output Formatting Constructs

The RGL language provides output to the terminal and an
output file. The most commonly used constructs are listed
below.

Unformatted print
.PRINT
.PRINTUSING
.DISPLAY
.DISPLAYUSING
.ECHO

Unformatted printing is a what-you-see-is-what-you-get
mode of output. RGL source lines that do not begin with a
dot are printed directly as is. Such lines may have variables
embedded in them by preceding the variable name with a dol-
lar sign. In this case the formatted value of the variable is
substituted for the variable name in the output.

Unformatted printing prompted the use of the dot prefix
for RGL language statements, as an easy way to distinguish
between unformatted print lines and statements. A sample of
unformatted print is shown in Figure 14.

The .PRINT and .PRINTUSING statements are similar
to their BASIC counterparts. Their output normally goes to
the output file. The .DISPLAY and .DISPLAYUSING output
goes to the terminal or log file.

The ECHO statement is used to divert the output from
the output file to the terminal, or to echo the output to both
the terminal and the output file. Unformatted print lines, and
statements such as PRINT and PRINTUSING (but not DIS-
PLAY or DISPLAYUSING) are atfected by ECHO.

.ECHO 0 - Write to the output file
only.

Program Simplest (input,output) ;
var
i:integer;
begin
readln (i) ;
if i>0
thenn
writeln(’i=",1i)
else
writeln(’abs(i)=’,-1i);
end.

Pascal produces the following error messages:

00007 0 1 thenn

1
%$Pascal-E-SYNTHEN, (1) Syntax: THEN expected
$Pascal-E-ENDDIAGS, Pascal completed with 1 diagnostic

Figure 11: Simple Pascal Program

.getkb str
.str2int str,i
Lif i>0
.thenn
.print "i=", i
.else
.print "abs(i)=",-i
.end

Figure 12: Simple RGL Program

20

. THENN
1

An unresolvable problem was found on source line number 4.
Unknown directive or boolean operator, "THENN".

A DOT (.) was found, but it was not part of a real number or a
known keyword. Check and see if you misspelled a directive or
boolean operator (.AND, .OR, or .NOT).

.PRINT "i=",I
!
Source line number 5 may not produce the desired results.
.THEN expected.

The .IF directive has been found without a matching .THEN directive.
.THEN has two forms:
.IF condition .THEN
and
.IF condition
. THEN
No statements may come in between the .IF and the .THEN.

RGL finished with 1 warnings, and 1 errors
No object file has been produced.

%DT_XOORPT-F-ABORT, report generator terminated abnormally

Figure 13: Error Messages

.REPEAT
statements
.UNTIL condition

.FOR variable = Start,End
statements
.NEXT

.IF condition .THEN
statements

.ELSE

statements

.END

.SUBROUTINE name parameters
statements

.END

.RETURN

.EXIT

Figure 14: RGL Program Structures

21

$name
$addressl
$address2

Name :
Addr:

Monthly fuel bill:

Gas used:
0il used:

$gasused $gasunits @ $gasprice
$oilused $oilunits @ $oilprce

Total billable Sbillable
Pay by : $payduedate

$date

$$Gasbilled
$$0ilbilled

Figure 15: Unformatted Print Example

.ECHO 1 - Write to both display and
file.
.ECHO 2 - Write to the display only.

Forms may be drawn on the screen using ECHO and
unformatted print statements, for example. RGL provides the
keyboard input routines needed to handle simple forms.

Arihmetic Functions

RGL provides expression evaluation for a a small set of arith-
metic operators and functions. These were created specifically
to give the plant engineer the tools to write thermal perfor-
mance calculations. Performance reports can be written using
either real time data or historical data.

Binary operators:

Addition
Subtraction
Multiplication
Division
Exponentiation

>N * 1+

Unary functions:

.SIN x s8ine of x

.COS x <cosine of x

.TAN x tangent of x

.ATAN x arctangent of x
.ABS x absolute value of x
.LN x natural log of x
.LOG x Dbase-10 log of x
.EXP x e”x.

.SQRT x square root of x.

All angles are in radians.

22

Subroutine Capability

As RGL was used by engineers for more and more sophisti-
cated applications, it became clear that RGL needed subroutine
capability. Programs were becoming longer and longer, and
typically contained repetitive code.

Subroutine capability was added in the last major release
of RGL.

RGL supports subroutines with strongly-typed arguments,
and with local variables stored on the stack to permit recursion.

Since a subroutine’s name and argument list must be de-
clared before it can be used, RGL has a FORWARD statement.
This allows a subroutine’s body to be defined separately from
the declaration of its name and arguments.

RGL'’s subroutine syntax is somewhat of a cross between
FORTRAN and Pascal, but without the parenthesis.

Figure 15 shows the .FORWARD construct, while Fig-
ure 16 shows recursion.

Conclusions

The Report Generation Language (RGL) has been very well
received by its customers. Easy access to plant data using only
a few function calls has encouraged experienced programmers
to use the language, rather than leam dozens of complicated
subroutines in Pascal or Fortran. The menu driven Toolkit and
English error messages have made the language accessible to
engineers and others who are not trained programmers. The
use of structured flow control statements results in code that
is easy to read and maintain. Powerful output formatting con-
structs, like unformatted print and printusing, allow users to
compose the output directly on their screens.

RGL provides an easy, understandable, and cost-effective
way to produce plant reports. This approach has made it suc-
cessful.

.SUBROUTINE A INT:INTEGER
. FORWARD

.SUBROUTINE B
.FOR I=1,10
.CALL A I
NEXT I
.END

.SUBROUTINE A
.PRINT INT
.END

.CALL B

Figure 16: Example of FORWARD Construct

23

.SUBROUTINE FACTORIAL X:INTEGER, Z:INTEGER
!
! X IS THE INPUT AND Z IS THE OUTPUT
!
.IF X>1
. THEN
.CALL FACTORIAL X-1,Z
.SET 2Z=2Z*X
.ELSE
.SET 2z=1
.END
.END ! of FACTORIAL

.SUBROUTINE FACT I:INTEGER

'

! ANOTHER WAY TO WRITE FACTORIAL
!

.LOCAL J:INTEGER

JIF I>1
.THEN
.SET J=I-1
.CALL FACT J
.SET I=I*J
.ELSE
.SET I=1
.END

.END ! of FACT

! here is the main body of the program
.set i=5

.call fact i

.print "Fact 5 = ";i

.set fact = 0
.call fact fact
.print "fact 0 =";fact

.call factorial 5,1i
.print "Factorial 5=";i

.s8et zero=0
.call factorial 0, zero
.print "factorial 0=";zero

Figure 17: An Example of Recursion

24

SPATIAL/II - A TECHNICAL OVERVIEW

Mark L.

Palmer

Digital Equipment Corporation

Marlboro,

Massachusetts

ABSTRACT

This paper briefly discusses what a
spatial database is and is used for,

and describes the components of Digital's
Spatial Database product, Spatial/II.

SPATIAL DATA

Spatial data is any information
which requires specification of
locality in a dimensional frame of
reference. 1In particular, it is
information which represents
entities existing in 3 dimensions.

Spatial data may exist implicitly
in a collection of data the purpose
of which does not require that the
spatial elements be managed per se.
An example of this might be a
customer database application which
stores customers' street addresses
along with their financial figures
and order information.

A large and growing number of
applications, however, need to
perform operations on the
geometric, or spatial, entities
"behind" the other data they
manage. In the above example, the
"address" data provided would not
be enough to write a program which
finds possible delivery routes
connecting a group of customers
within a given area. By making the
spatial data associated with the
street addresses explicit in terms
of coordinates, representing
certain spatial relationships, and
performing operations on this data,
the problem could be addressed.

25

Proceedings of the Digital I-quipment Computer Users Society

Some application areas with needs

to manage spatial data explicitly
are:

O Astronomy

Automated Cartography
Robot Vision

O Geological Exploration
o Facilities Management

o Molecular Modelling

o Automated Navigation

o Land/Geographic Information
Systems

Much progress has been made towards
isolating the set of operations
required and common to all spatial
entities, and providing them in
systems designed to manage spatial
data explicitly. These operations
apply and are useful regardless of
whether the spatial entities in
question represent railroads or
molecular structures.

Nashville, TN - 1987

SPATIAL DATABASES

Current data and database models
are proving inadequate for managing
spatial data as needed by the
above-mentioned application areas.
Here are some reasons why:

1. Size - A typical spatial
application uses tens of gigabytes
of data. Current database
implementations aren't built to
handle these amounts, or if they
do, access based on locational keys
is too slow to provide interactive
response.

2. Graphics - Management and query
of spatial data is inherently a
graphic operation. The ability to
work with pictures of geometric
entities is essential. Traditional
database models don't provide
utilities which allow graphic
plotting and manipulation of their
contents based on coordinates.
Systems which produce images from
the data and store them separately
are not adequate, since the images
don't reflect successive changes to
the data and become incorrect.

3. Cost of data capture - Obtaining
spatial data is expensive. It is
labor-intensive (e.g. digitizing)
or requires expensive technology
(e.g. remote sensing). Traditional
data models make it difficult to
preserve this investment. They
provide no means of isolating
spatial data for use with different
sets of thematic data.

4. Storage utilization - Spatial
entities are composed of widely
varying amounts of coordinates
which are needed in queries. Most
traditional models require
definition of fixed numbers of

numeric attributes.

26

5. Spatial Operations - Certain
operations are essential to query
and manage spatial data and occur
so frequently that they must be
fast.

These operations in tradtional data
model implementations are too slow
or are not feasible within the
model itself. Some examples:

o recognizing entities partially
or fully inside of others

o finding line segment
intersections over large areas

o recognizing, representing, and

using connectivity between
entities

o neighbor finding

o quick, locationally-based search
for entities.

SPATIAL/II

Digital's Spatial/II product is
intended for use as a standard for
representing and accessing spatial
data, providing diverse
applications utilizing spatial data
a common base on which to build.

The product consists of a file
structure, a callable interface to
routines which manipulate the file
structure, a library of geographic
and cartographic routines for use
in processing the data, and a set
of utilities which allow generic
spatial data manipulation and
management .

Data Pool

Each Spatial/II file has a set of
components which work together to
provide access to the data:

Header

Tables

Index

Data Dictionary

0000

Means of manipulating (creating,
modifying, and deleting) each
component are available both via
the callable interface and also
interactively, via use of the
utilities.

Header

The "Header" component provides
storage for information about the
file as a whole: its bounding
figures, creation date, size,
topic, password, etc. Part of the
header is maintained by Spatial/II,
the other part is available for
user-defined purposes.

Tables

The "Tables" component allows users
to store formatted "matrices" of
information which are used in

27

processing their data. A table may
define what graphic symbols are to
be used when displaying a file, or
the format for displaying records
as text. It may also be used to
store "filters", which are ways of
specifying spatial and attribute
constraints for a set of records to
express queries. Tables may be
transferred between files.

Index

The "Index" component allows
storage of indices, which are lists
of record numbers. Users may
generate and use indices in many
ways, for example to mark the
subset of records which satisfy a
given filter in order to access
them quickly in the future, or to
provide multiple orderings for
different types of spatial
processing on a file.

Data Dictionary

The "Data Dictionary" component
keeps track of the organization of
attributes on each record. User
definitions created to extend the
information kept about the spatial
data are stored here.

A distinction is made between
Locational, Topographic, and
Thematic attributes. Locational
attributes are those which specify
position of an entity (these are
usually coordinates or quantities).
Topographic attributes consist of
pointers to other records which
have specific spatial relationships
(e.g. "parent" and "neighbor"
relationships). Thematic
attributes are those which provide
information about what a spatial
entity represents (e.g. street
name, oil well output, etc.).

Locational and Topographic
attributes are defined and managed
by the Spatial/II software.

Spatial/IT1

CIMI

Organizer

\\\\\\\\\\

Builder Data Editor
Pool

__—""_ Routines

Library

Scanner Manager

MO+ I a0 Aac)

28

Thematic attributes may be defined
by the user. The data dictionary
allows synonyms, or "aliases", for
attribute names to be created; it
also supports multiple versions of
an attribute within a record.

The last and largest component of a
Spatial file is the data itself,
which the other components exist to
assist in manipulating. This is
the set of actual records with
Locational, Topographic, and
Thematic attributes.

Spatial/II file structure employs a
vector-type representation.
Topographic operations are
especially facilitated by using VMS
indexed files for direct access -
records keep "pointers" to
topographically related records by
using actual record numbers.
Locational attributes need not be
continually processed to guide
access since topographic
relationships are explicitly
represented. In most cases,
Topographic information may be
automatically generated and is
preserved by the operation of the
various utilities.

Data Entities and Structure

A Spatial/II file may contain one
of the following data types (listed
in order of increasing complexity):

Point

Resel

Chain

Polygon

Triangluated Irregular Network
(TIN)

00000

Points are simply X,Y, and Z
coordinate triples with which
Thematic attributes may be
associated. Points are typically
used to represent objects such as

oil wells and telephone poles.

29

A Resel is a rectangular plane
defined within a grid coordinate
system. The Resels in a file
completely cover all grid cells in
the coordinate system. Each resel
is defined by lower left and upper
right corners. Resels are useful
for data in "map sheets" format,
for example to represent areas of
different ground elevation.

Each Chain is a set of coordinates
which have an order and a
direction. At least 2 Points
(start and end) are needed;
intermediate points are called
"Detail Points". Topographically,
Chains may have parents and may
share end points. Locational
attributes such as width and length
are provided. Chains are useful for
representing land features such as
roads and rivers, or for molecular
structures.

A Polygon is a set of Chains which
may share endpoints but do not
otherwise intersect. Topographic
attributes include: parent, child,
and right and left neighbor.
Locational attributes include type
(convex or concave), center, area,
status (open or closed) etc.

Polygons are often used in
cadastral maps to identify land
parcels.

TIN files are typically used in 3D
modelling of land surfaces such as
mountains or multiple layers of
geologic substratum. A Triangle is
a plane in three dimensions
enclosed by three Chains.
Locational attributes of Triangles
include centroid, area, slope, and
direction. Some Topographic
attributes are: parent, child,

vertices (points), neighbor, and
nesting level.

The primary entity represented by a
file is made of a hierarchy of
components which are usually
present as data. Polygons are made
of chains, which are made of nodes.
Triangles in a TIN may be grouped
into polygons; the sides of a
Triangle are Chains. Corresponding
entities between data types are
homologous, i.e. Chain records
found in Triangle, Chain, and
Polygon files have common
attributes.

Each entity and its components has
a set of system-defined attributes
which are maintained by the
utilities supplied; further
attributes may be added by users,
extending the record structure.
This is why Chains can be used to
represent rivers as well as
chromosomes. A standard attribute
naming scheme is used, so the only
difference between attributes
across file types is in the names'
prefix.

CALLABLE INTERFACE

The callable interface allows
programs to access and manipulate
records which make up spatial
entities, as well as providing a
libary of geometric and
cartographic procedures which
operate on the records. The routine
library supplied is used to by the
utilities, which allow users to
manipulate data interactively.

Each component of Spatial/II has a
group of procedures which provide
the set of operations required to
manipulate that component.
Procedures are supplied which
create, delete, and modify entries
in the data dictionary, indices,
tables, and file management
components.

30

Since the Spatial/II routine
library is written in FORTRAN, it
is very easy to call from VAX
FORTRAN. The documentation gives
examples of how these calls are
made from VAX FORTRAN.

UTILITIES SUPPLIED

All of the utilities interact with
the user via a common user
interface, called the Command,
Input, and Messaging Interface
(CIMI).

The menu structure associated with
controlling any utility is
non-hierarchical. A function may
be executed by typing almost any
abbreviation of its name from
"anywhere" in the menu. Most
functions are named with two short
words which are unique enough that
they can usually be abbreviated
using two letters.

The menu structure is also easily
changeable by users interactively.
A user may, for example, rename a
function to his liking and relocate
the function to a place in the menu
tree which is more suited to his
purposes without exiting the
utility.

Manager

The Manager provides for
manipulation of the data at the
"file" level, and management of
file access to various users. info
kept about each user, or "owner",
and each file, including passwords
for both owners and files.

The utility allows file creation
and deletion, modification of
information associated with each
file, as well as "import" of data
into the system. User accounts may
be similarly manipulated.

Builder

Builder allows "fleshing out" the
topographical information in a file
by analyzing existing info to
determine relationships which are
then stored. For example, Builder

allows generating polygons from
chains.

Organizer

This allows manipulation of spatial
data on the file level while
preserving topographic data in the
file. Organizer allows files to be
split apart and later rejoined, and
for previously unrelated files to
be merged.

Editor

The Editor provides access to
individual files on a record basis
and is the most complex utility.
It allows users to graphically
display and manipulate their
spatial data.

Each component of a Spatial/II file
is accessible:

Tables

Indices

Data Dictionary

Header

graphic data editing (add,
delete, modify)

00000

By defining and activating
"filters" (part of the tables
component) spatial queries may be
conducted and their results made
available graphically. Also, the
display arrangements for graphic
and textual information to specify
labelling, coloring, symbol use,
etc. in accordance with ranges and
limits set up using the Editor.

31

Scanner

The Scanner is used to detect
locational and topographic errors
in the data, and also derives
geometric locational data (areas,
bounds) by processing existing
locational info (eg bounding poly,
rect, flow, etc), and adds this
information to the other spatial
information already stored.

Advanced DATATRIEVE Record Definitions

B.Z.Lederman
ITT World Communications
New York, NY 10004-2464

Abstract

This session is intended to illustrate some of the more advanced features of DATA-
TRIEVE record definitions. Lower case text indicates commands typed in by a user,
upper case is printed by DTR or is material stored in the CDD. Please keep in mind
that most examples are “stripped down”, showing only the fields necessary to illus-
trate the principles being demonstrated: “real applications would require additional
fields, and in most cases more descriptive field names. Most of these examples use
advanced features found in VAX-DTR and DTR-20, and unfortunately will not work
in DTR-11 (or PRO-DTR).

Introduction DEPENDING ON REC_LEN.
20 VTEXT PIC X.
Reading a file whose records differ in length and field layout 10 A REDEFINES TOP.
is a common problem. In the following sample file, there are 20 FILLER PIC X.
records whose total length is not given directly by a field in 20 NBRA PIC 99 EDIT STRING 29.
the record. 20 FILLER PIC X.

20 TXTA PIC X(6).
10 B REDEFINES TOP.
20 FILLER PIC X.

$ type var.seq

g; ig Eizzs;ecord 20 NBRB PIC 99 EDIT STRING Z9.
20 FILLER PIC X.
01 10 bytes. 0 ¢

20 TXTB PIC X(11).
10 C REDEFINES TOP.
20 FILLER PIC X.
20 TXTC1l PIC X(7).
20 FILLER PIC X.
20 NBRC PIC 99 EDIT_STRING Z9.
20 FILLER PIC X.

03 This is 20 bytes..

02 15 byte record

04 This is 25 bytes long...
01 10 bytes.

03 This is 20 bytes.

02 15 byte record

gi ;gi:yzzsés bytes long. 20 TXTC2 PIC X(8).
01 10 bytes o 10 D REDEFINES TOP.
: 20 FILLER PIC X.

You can just define a text field the length of the longest 20 TXTD1 PIC X(7).
record, but you get “Record too Short...” error messages, and 20 FILLER PIC X.
the short records are padded with blanks or zeroes. Also, it 20 NBRD PIC 99 EDIT_STRING Z9.
would be hard to look at the individual data items within each 20 FILLER PIC X.
record. A first try at a better record definition could be: 20 TXTD2 PIC X(13).

DTR> show var_rec This record definition depends upon a table that converts
the record type to a record length. This happens to be in a
domain table in this example, but could also be in a dictionary
table.

RECORD VAR_REC
01 VAR_REC.
10 TYPE PIC 99 EDIT_STRING 2z9.

10 REC_LEN COMPUTED BY
TYPE VIA VAR_LEN TAB.
10 TOP.
15 VARIABLE OCCURS 0 TO 30 TIMES

Proceedings of the Digital Equipment Computer Users Society

DTR> show var_tab_rec

RECORD VAR_TAB_REC
01 VAR_TAB_REC.

35

Nashville, TN - 1987

10 TYPE PIC 99 EDIT_ STRING Z9.
10 LENGTH PIC 99 EDIT_STRING zZ9.
DTR> show var_ len_tab
TABLE VAR_LEN_TAB FROM VAR_TAB_DOM
USING TYPE : LENGTH
END_TABLE

DTR> print var_tab dom

TYPE LENGTH

1 10
2 15
3 20
4 25

If you print this domain, you get the first field by default.
DTR> print var

REC
TYPE LEN VTEXT

1 10

o

0w 0O U

(6 o

o < o

K OO0 0K

and so on. This is very useful in cases where you want to
get each character in the record separately, such as for “pars-
ing” data, and you get the length of the text without having to
add an FN$STR_LENGTH function to DTR. However, if you
want all of the data in a single field:

36

DTR> for var print a

NBRA TXTA

10 Dbytes.
15 byte r
10 Dbytes.

Illegal ASCII numeric
0 s is 2
15 byte r

Illegal ASCII numeric
0 s is 2

10 Dbytes.

Illegal ASCII numeric
0 s is 2

15 byte r

10 Dbytes.

Illegal ASCII numeric
0 s is 2

10 Dbytes.

DTR> show var-print

PROCEDURE VAR _PRINT
FOR VAR BEGIN

" Th" .

"Th" .

" Th" .

" Th" .

and the same happens for all other REDEFINEA fields, because
the numeric fields don’t “line up”. One altemative is to use
a CHOICE statement in a procedure to get the proper field
to print out. (You can also use IF-THEN-ELSE statements to
accomplish the same result, and that approach will also work
with DTR-11, but CHOICE is more compact.)

PRINT TYPE, CHOICE OF

TYPE = 1 THEN A
TYPE = 2 THEN B
TYPE = 3 THEN C
TYPE = 4 THEN D
ELSE " "
END_CHOICE
END
END_PROCEDURE
DTR> :var-print
TYPE
1 10 bytes.
2 15 byte record
1 10 bytes.
3 This is 20 bytes...
2 15 byte record
4 This is 25 bytes long...
1 10 bytes.
3 This is 20 bytes...
2 15 byte record
1 10 bytes.
4 This is 25 bytes long...

1 10 bytes.

This suits many applications, but is sometimes inconvenient.
An alternative is a record definition (actually a VIEW) that will
print out the proper fields by default. (See figure 1 following.)

This has the slight drawback that, since there is nothing
which identifies unique records in this example, all records
of a given type are obtained for each record in the view. In
cases where there was an additional field with a unique key,
this would not be a problem: in this case, however, some ad-
ditional work can solve the problem. (See figure 2 following)

This is one way to one complete set of records. Another
method is:

DTR> find vari
[12 records found]

The following is not quite what we
want.

DTR> for current print av

NBRA TXTA
10 Dbytes.
10 bytes.
10 Dbytes.
10 bytes.
10 Dbytes.
10 bytes.
10 Dbytes.
10 Dbytes.
10 bytes.
10 bytes.
10 bytes.

Execution terminated by operator.

but you can do this:

DTR> select first

Now, you can do some interesting things, like separating
the different groups of similar records.

DTR> print av

NBRA TXTA

10 Dbytes.
10 bytes.
10 bytes.
10 Dbytes.
10 bytes.

DTR> print bv

37

NBRB TXTB

15 byte record
15 byte record
15 byte record

DTR> print cv

TXTC1l NBRC TXTC2
This is 20 bytes...
This is 20 bytes...

DTR> print dv

TXTD1 NBRD TXTD2
This is 25 bytes long...
This is 25 bytes long...

Normally I would discourage the use of FIND and SE-
LECT, but in this case it can be used to sort and separate all
records of a given type.

Still, this is not quite what we were looking for. If you
can put a CHOICE statement into a procedure, why not put it
into the record definition.

DTR> show cvar_rec

RECORD CVAR_REC USING
01 CVAR_REC.

10 TYPE PIC 99 EDIT_STRING 29.

10 REC_LEN COMPUTED BY TYPE VIA
VAR _LEN TAB.

10 FILLER PIC X.

10 TOP.

15 VARIABLE OCCURS 0 TO 30

TIMES DEPENDING ON REC_LEN.
20 FILLER PIC X.

10 A REDEFINES TOP.
20 ANBR PIC 99.
20 FILLER PIC X.
20 ATXT PIC X(6).

10 B REDEFINES TOP.
20 BNBR PIC 99.
20 FILLER PIC X.
20 BTXT PIC X(11).

10 C REDEFINES TOP.
20 CTXT1 PIC X(8).
20 CNBR PIC 99.
20 CTXT2 PIC X(9).

10 D REDEFINES TOP.
20 DTXT1 PIC X(8).
20 DNBR PIC 99.
20 DTXT2 PIC X(14).

10 TEXT COMPUTED BY CHOICE OF
TYPE = 1 THEN ATXT

DOMAIN VARI OF VAR USING
01 VARIX OCCURS FOR VAR.
10 TYPE FROM VAR.
10 REC_LEN FROM VAR.
02 AV OCCURS FOR VAR WITH TYPE
10 NBRA FROM VAR.
10 TXTA FROM VAR.
02 BV OCCURS FOR VAR WITH TYPE
10 NBRB FROM VAR.
10 TXTB FROM VAR.
02 CV OCCURS FOR VAR WITH TYPE
10 TXTC1 FROM VAR.
10 NBRC FROM VAR.
10 TXTC2 FROM VAR.
02 DV OCCURS FOR VAR WITH TYPE
10 TXTD1 FROM VAR.
10 NBRD FROM VAR.
10 TXTD2 FROM VAR.

[]
o

]
N

[]
w

]
'S

DTR> print vari

REC
TYPE LEN NBRA TXTA NBRB TXTB TXTCl NBRC TXTC2 TXTD1 NBRD X

1 10 10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record
10 bytes.
10 bytes.

2 15 10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record
10 bytes.
10 bytes.

1 10 10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record This is 20 bytes... This is 25 bytes
10 bytes. 15 byte record
10 bytes.
10 bytes.

Execution terminated by operator.

Figure 1: Example

38

DTR> show print-first-vari

PROCEDURE PRINT_FIRST_ VARI
DECLARE N PIC 9.
N=1
FOR VARI BEGIN
WHILE N = 1 BEGIN
N=N+1
PRINT
END
END
END_PROCEDURE

DTR> :print-first-vari

REC

TYPE LEN NBRA TXTA NBRB TXTB TXTCl NBRC TXTC2
1 10 10 bytes. 15 byte record This is
10 bytes. 15 byte record This is

10 bytes. 15 byte record

10 bytes.

10 bytes.
TYPE = 2 THEN BTXT
TYPE = 3 THEN CTXT1 |||
TYPE = 4 THEN DTXT1 |||
ELSE "
END_CHOICE.

TXTD1 NBRD X

20 bytes... This is 25 bytes
20 bytes... This is 25 bytes

Figure 2: Example

CTXT2
DTXT2

10 NUMBER EDIT STRING Z9 COMPUTED

BY CHOICE OF
TYPE = 1 THEN ANBR

TYPE = 2 THEN BNBR
TYPE = 3 THEN CNBR
TYPE = 4 THEN DNBR
ELSE O

END_CHOICE.

~e

DTR> print cvar

REC
TYPE LEN TEXT
NUMBER
1 10 bytes.
2 15 byte record
1 10 Dbytes.
3 20 This is Dbytes...
2 15 byte record
4 25 This is Dbytes long...
1 10 Dbytes.
3 20 This is Dbytes...
2 15 byte record
1 10 bytes.
4 25 This is bytes long...
1 10 Dbytes.

Just to prove that NUMBER is really numeric

10
15
10
20
15
25
10
20
15
10
25
10

39

DTR> for cvar print £n$loglO (number)

1.000
1.176
1.000
1.301
1.176
1.398
1.000
1.301
1.176
1.000
1.398
1.000

Now we finally have the data in the form we want. Some-
thing which is not visible when you look at this print-out on
paper is that the field TEXT always prints out the length of
the actual field: it does not pad short records with spaces or
zeroes which is what would happen if you just defined one
field of 25 bytes (you also don’t get the “Record too Short”
€ITor messages).

There are a number of applications where data validation
in the record definition is desired. In this example, the em-
ployee number contains a sort of “check sum”, where the last
two digits are the sum of the first two. This sort of thing is
sometimes done to verify that the data does not contains er-
rors (I'd rather depend on the operating system facilities, but
some people would prefer this). This particular check sum is
a bit crude, and done only to demonstrate the methods which
may be used. If you were going to do this a lot, it would be
worthwhile to define a new FN$— function to do the compu-
tation, especially if the check method was more complicated

such as some sort of “rule of 117, but not everyone wants to
add functions to DTR. The interesting part of all this is that
you can define a VALID IF clause to work on parts of the
same field it validates, and that the fields used can be defined
after the VALID IF clause.

DTR>show empno_rec

RECORD EMPNO_REC
01 EMPNO_REC.
10 EMPLOYEE NUMBER PIC 99999
VALID IF CK = (N1 + N2 + N3).
10 NBRS REDEFINES EMPLOYEE NUMBER.
20 N1 PIC 9.
20 N2 PIC 9.
20 N3 PIC 9.
20 CK PIC 99.

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32308

Something that users don’t always realize is that a COM-
PUTED BY field can be anywhere in the record definition, and
does not have to be computed from fields that come “ahead”
of it in the definition. DTR will read and parse the entire
record definition to resolve all field names before doing any-
thing with the record: thus, a field can, in some cases, even
be computed by itself.

With this definition, you can prevent invalid numbers
from being stored.

DTR> store empno
Enter EMPLOYEE NUMBER: 32301

Validation error for EMPLOYEE NUMBER.
Re—-enter EMPLOYEE_NUMBER: 32308

You can also find out if all the numbers currently in the
domain are still valid (something which a normal VALID IF
won’t do):

DTR> for empno print ck, (nl + n2 +
n3)

CK

06
17
24
02
01
08
08

N =
O N & JO0

Now look at what happens if an invalid number is present
in the domain.

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32301 [this number is invalid]

DTR> print empno with ck ne (nl+n2+n3)

EMPLOYEE
NUMBER

32301

We can use DTR to go in and fix any checksums. (I would
advise looking at the data first to be certain it really is valid,
unless you want to do something like this to add checksums
to data that was stored previously without checksums.)

DTR> ready empno modify
DTR> for empno with ck ne (nl+n2+n3)

begin
CON> modify empno using ck = nl+n2+n3
CON> end

DTR> print empno

EMPLOYEE
NUMBER

12306
65617
98724
11002
00101
32308

While thinking up stuff for this presentation, I came up
with the following example which, quite frankly, I didn’t think
would work.

DTR> show sci_rec

RECORD SCI_REC
01 SCI_REC.
10 SCI_NOT USAGE REAL
EDIT_STRING 99.99.
10 N2 COMPUTED BY *."N2".

.
14

Depending upon how you access the domain, you can be
prompted for N2 once per record (might be used to make the
system pause during loops), once per domain, or not at all.

DTR> for sci print sci_not
SCI_NOT

00.01
00.88
01.20
09.80
23.40

DTR> print sci
Enter N2: 30

SCI_NOT N2

00.01
00.88
01.20
09.80
23.40

30
30
30
30
30

DTR> for sci print sci_rec

SCI

NOT N2
Enter N2: 30
00.01 30
Enter N2: 20
00.88 20
Enter N2: 10
01.20 10
Enter N2: 1
09.80 1
Enter N2: O
23.40 0

Having done this, I’'m not at all sure what I would use
it for, but one possibility might be to calculate prices from a

41

stored price list where the discount might change for different
customers, or where you might have to convert prices into for-
eign currencies (where the exchange rate changes daily). The
factor by which the prices are multiplied could be entered as
the prompted field, and then this field can be used to multi-
ply the stored price into a COMPUTED BY field with the net
rice.
P Some COMPUTED BY fields are more useful than oth-
ers. For example, if several departments share a data base and
you want to make sure that each department enters the correct

sequence of numbers (this example assumes a valid range of
numbers for each department, just to make it more difficult):

DTR> show po_rec

RECORD PO_BEC
01 PO_REC.

10 DEPT PIC XXX.

10 PO_NUMBER PIC 99999 VALID IF 1 = CHOICE OF
(DEPT = "AAA" AND PO_CHECK BETWEEN 01 AND
THEN 1;

(DEPT = "BBB" AND PO_CHECK BETWEEN 21 AND
THEN 1;
(DEPT = "CCC" AND PO_CHECK BETWEEN 41 AND
THEN 1;
ELSE 0
END_CHOICE.
10 PO_CHECK REDEFINES PO_NUMBER.
20 DEPT_NO PIC 99.

20)
140)

60)

DTR> print po

PO
DEPT NUMBER

AAA 01001
BBBE 21001

DTR> store po
Enter DEPT: AAA
Enter PO_NUMBER:
DTR> store po
Enter DEPT: BBB
Enter PO_NUMBER:

01002

01003

Validation error for field PO_NUMBER.
Re-enter PO_NUMBER: 21002

This isn’t bad, but it could be better. Why store the
department number and verify it, when you could change the
record definition and force it to always be correct? (This time
I’m assuming one prefix per department.)

DTR> show po_rec

RECORD PO_REC
01 PO_REC.
10 DEPT PIC XXX VALID IF DEPT = "AMA",
|IBBBI' , "ccc ” .
10 HIDEIT.
20 FILLER PIC 999.
10 REAL_STUFF REDEFINES HIDEIT.
20 DEPT_SEQ PIC 999.
10 PO_NUMBER PIC 99999 COMPUTED BY CHOICE OF
DEPT = "AAA" THEN DEPT_SEQ + 01000
DEPT = "BBB" THEN DEPT_SEQ + 02000
DEPT = "CCC" THEN DEPT_SEQ + 03000
ELSE "00000"
END_CHOICE.

BBB 02002

AAA 01001
We can also force the sequence number to be correct. BBB 02003
BBB 02004
CCC 03001

DTR> show store-po

Something which I have run into, and which others have
asked for at past Q&A sessions, is how to get non-VMS date
strings into the VMS/DTR date type, especially when you
are not able to restructure the data. The following very non-
standard date and time is the type of data I've actually en-

PROCEDURE STORE_PO

DECLARE MAXSEQ PIC 999.

DECLARE TMPDEP PIC XXX.

TMPDEP = FNSUPCASE (*."Department")
MAXSEQ = MAX(DEPT_SEQ) OF PO

countered.
WITH DEPT = TMPDEP

STORE PO USING BEGIN

DEPT = TMPDEP

DEPT_SEQ = MAXSEQ + 1 $ type date.seqg
END
END_PROCEDURE 86:01:02 1003a

85:03:14 120P

DTR> :store-po 86:09:29 1100P
Enter Department: bbb 86:11:11 332A

DTR> print po
DTR> show date_rec

PO
DEPT NUMBER RECORD DATE_REC
01 DATE_REC.

BBB 02001 10 INPUT.
BBB 02002 20 I_YEAR PIC 99.
AAA 01001 20 FILLER PIC X.
BBB 02003 20 I_MONTH PIC XX.

20 FILLER PIC X.
DTR> :store-po 20 I_DAY PIC 99.
Enter Department: bbb 20 FILLER PIC X.
DTR> print po 20 T HOUR PIC XX.

20 I_HOUR PIC 99 COMPUTED

PO BY T HOUR.

DEPT NUMBER 20 I_MINUIT PIC 99.

20 I_AP PIC X.
BBB 02001 10 O _DATE COMPUTED BY
BBB 02002 FNSDATE(I_DAY |o"=-"
AAA 01001 I _MONTH VIA MONTH_TABLE |
BBB 02003 "-19" | I _YEAR).
BBB 02004 ;
If you try to store a department which has no records yet, The date part is easy: you just need a table to turmn the

you get an error message, but you also get the correct result numeric month into an upper case alphanumeric month.

anyway:
DTR> show month_table
DTR> :store-po

TABLE MONTH TABLE
Enter Department: ccc -

01 : "JAN",

02 : “FEB",

Can’t take MAX,MIN,or AVERAGE of 03 : "MAR",
zero objects. g; ‘:gisp

DTR> print po 06 : "JUN",
07 : "JuL",

PO 08 : "AUG",

DEPT NUMBER 09 : "SEP",
10 : "ocT",

11 : "NOV",

BBB 02001 12 : "DEC"

42

END_TABLE

DTR> print datei

I I I T I I I o

YEAR MONTH DAY HOUR HOUR MINUIT AP DATE
86 01 02 10 10 03 A 2-Jan-1986
85 03 14 1 01 20 P 14-Mar-1985
86 09 29 11 11 00 P 29-Sep-1986
86 11 11 3 03 32 A 11-Nov-1986

Not too bad: but when you have to add the time things
get a little bit more complicated. I've shown only the hour
and minuit here, but you can add seconds and fractions of a
second as well. Note that I'm also using FILLER to hide the
input fields, so by default only the wanted fields print.

DTR> show date_rec

RECORD DATE_REC
01 DATE_REC.
10 HIDEIT.
20 FILLER PIC X(14).
10 INPUT REDEFINES HIDEIT.
20 I_YEAR PIC 99.
20 FILLER PIC X.
20 I_MONTH PIC XX.
20 FILLER PIC X.
20 I_DAY PIC 99.
20 FILLER PIC X.
20 T_HOUR PIC XX.
20 I_HOUR PIC 99 COMPUTED BY

T_HOUR.

I_MINUIT PIC 99.

I_AP PIC X.

A_HOUR COMPUTED BY CHOICE OF

(I_AP = "A" AND T_HOUR = 12)
THEN 00
(I_AP = "P" AND T_HOUR < 12)
THEN T_HOUR + 12
ELSE T_HOUR
END_CHOICE.
B_TIME COMPUTED BY
((A_HOUR * 60) + I_MINUIT) *
600000000.

10 O_DATE COMPUTED BY
FN$DATE (I_DAY |
I_MONTH VIA MONTH_TABLE |
"-19" | I_YEAR |||
FNSTIME (B_TIME)) .

20
20
20

20

won l

.
’

The hard part is converting the AM/PM time to a 24 hour
time, then getting it to print in the proper format. There are
a number of ways it might be done depending upon the exact
input format: in this case I convert the hour and minute to
“clunks”, then use FN$TIME to put it back to characters long
enough to use FN$SDATE to put the date and time back to

43

clunks. This might seem a bit “clunky”, but it’s actually the
easiest way to get it to work every time. The alternative is
to make all of the fields “print” in the FN$DATE function the
way the day and year do. (It is sometimes also possible to
do this sort of thing in DTR-11: though there are no FN$—
functions, DTR-11 will handle dates with embedded times in
clunks.)

DTR> print datei
O_DATE

2-Jan-1986
14-Mar-1985
29-Sep-1986
11-Nov-1986
7-Aug-1986
4-Jul-1976

DTR> for datei print i hour,
CON> i ap, fn$time(o_date)

i minuit,

I I I
HOUR MINUIT AP FNSTIME

10 03 A 10:03:00.00
01 20 P 13:20:00.00
11 00 P 23:00:00.00
03 32 A 03:32:00.00
12 01 A 00:01:00.00
12 58 P 12:58:00.00

The net result is that O_DATE now contains the complete
date and time in VMS format, and all of the normal DTR
Boolean comparisons will work.

Solving Equations in DATATRIEVE

B.Z.Lederman
ITT World Communications
New York, NY 10004-2464

Abstract

This paper highlights some of the methods of solving equations by using the mathe-
matical, logical and statistical functions available in DATATRIEVE. This paper will
not attempt to teach equation solving, but will highlight the facilities available in
DATATRIEVE, demonstrate some approaches to solving problems, and will point out
some of the difficulties or limitations to the process.

Why?

The first question many people will ask is: “Why would any-
one want to solve mathematical equations in DATATRIEVE?
Isn’t DATATRIEVE a data retrieval and reporting language?”
The answer, briefly, is that there may be applications which
are totally non-mathematical (perhaps a library card catalog)
that would be implemented in DATATRIEVE with no math
functions; and some totally numerical applications (such as
a computer controlled milling machine or Fourier analysis of
a video image) that would probably not be implemented in
DATATRIEVE,; but there are no sharp boundaries between data
retrieval which is totally non-mathematical and data retrieval
which requires some math. It is perfectly reasonable to imple-
ment applications which primarily store and retrieve data in
DATATRIEVE which also require some math, such as inven-
tory control, accounting, payroll, and probably as many other
applications as there are people using DATATRIEVE, and it
may be easier to implement the entire application in DATA-
TRIEVE than to do some pieces in DATATRIEVE and other
pieces in some other language. There is also the practical con-
sideration that many people who are able to quickly learn and
use DATATRIEVE do not have any “traditional” programming
background, and may not have access to other programming
resources and are faced with the prospect of doing it entirely
in DATATRIEVE or not doing it at all.

One Alternative: Callable DATATRIEVE

There is an alternative for programs which require a large
amount of math but for which you would still like to use
DATATRIEVE for data storage, retrieval, and reporting, and
that is to use the call interface. You can write a program in
most, if not all, VAX languages (and with some limitations,
PDP-11 and TOPS) and have it call DATATRIEVE: this al-
lows you to write the math portion in your favorite language,
and then have it pass data to or retrieve data from DATA-
TRIEVE and execute DATATRIEVE statements from within
your program. It is even possible for the DATATRIEVE task

Proceedings of the Digital Equipment Computer Users Society

to be running on a separate system linked to yours via DEC-
net, which is often advantageous. Solving equations in other
languages is outside the scope of this presentation, however,
and this is mentioned here simply to inform you about some
of the alternatives available.

Basic Requirements

DATATRIEVE has all of the basic requirements for solving
mathematical or logical equations, which are:

e Mathematical Operators, such as addition, subtraction,
multiplication, and division

e The ability to control the flow of calculations by logical
(Boolean) operators (IF-THEN-ELSE).

e The ability to repeat an action until a condition is met
(FOR and WHILE).

While this may not seem to be a very large repetoire, it is
enough to solve almost any equation: it is, in fact, all that any
computer has, or what any person would have if the equation
were to be solved by hand.

Other Functions

“Traditional” computer languages (such as FORTRAN, BA-
SIC, Pascal, etc.) may have exponentiation (which can be
added to DATATRIEVE), but otherwise they generally have
only the same basic math operators. For convenience, most
languages have libraries of functions for commonly used com-
plex calculations (such as Logarithms, Trigonometry, Statis-
tics, etc.), and so does DATATRIEVE. In addition, it is pos-
sible to add new functions to DATATRIEVE, either as “true”
functions, or by writing procedures which are then used like
subroutines or functions. (Unfortunately, DATATRIEVE-11 /
PRO-DATATRIEVE doesn’t have “true” functions, but users
can still write their own procedures that are used like subrou-
tines or functions.)

Nashville, TN - 1987

First Example

In order to illustrate the process, I will set up a sample domain
and run through a series of examples. The record definition
is:

01 SAMPLE REC.

03 ITEM PIC 9.

03 A PIC 999 EDIT STRING ZZ9.

03 B PIC 999 EDIT STRING ZZ9.

03 C PIC 999 EDIT_STRING 2Z9.

03 T1 PIC 9999 EDIT STRING ZZZ9.

03 T2 PIC 9(6) EDIT_STRING
222,229.

14

The domain is SAMPLE, and ITEM is a keyed field. This
very simple domain is for demonstration purposes only.

The first example will be to calculate T1 by the formula
Tl = (A + B) * C. While this could easily be done by
making T1 a COMPUTED BY field it serves as a simple start-
ing point. (In DATATRIEVE-11, it is not possible to sort on a
computed field, but it will be possible to sort on T1.) The FOR
statement will be used as it is the easiest way to perform the
same calculation for every record in a domain or collection.

For demonstration purposes, I've put the following data
into the sample domain.

ITEM A B Cc T1 T2
1 3 5 7 0 0
2 7 5 3 0 0
3 2 6 4 0 0
4 7 3 4 0 0

A possible command sequence is to perform the calcula-
tion is:

READY SAMPLE MODIFY

FOR SAMPLE MODIFY USING T1l =
C

PRINT SAMPLE SORTED BY DESC T1

(A + B) *

After the commands, it looks like this:

ITEM A B Cc Tl T2

1 3 5 7 56 0
4 7 3 4 40 0
2 7 5 3 36 0
3 2 6 4 32 0

Next: Running Totals

Something which will find a greater range of applications than
the first examples is running totals: for this, it is necessary to
store data from one record to another in some sort of variable
or field, and this raises the first important point concemning
“programming” in DATATRIEVE, which is that there are no

46

default variables as there are in BASIC or FORTRAN. All
fields must be DEFINEd in a record or DECLAREd, and you
must make the field large enough to hold the data planned
for it. Starting with the same sample domain, the commands
would be:

DECLARE RUNNING PIC 9(6).

RUNNING = 0

FOR SAMPLE MODIFY USING T1 =

c

FOR SAMPLE SORTED BY DESC T1
MODIFY USING BEGIN

(A + B) *

RUNNING = RUNNING + T1
T2 = RUNNING
END

Since the running total will be in field T2, RUNNING has
been declared to be the same size as T2 (though it doesn’t
have to be: it just has to be large enough to hold the largest
number which will be encountered). Notice that RUNNING
must be initialized to zero: DATATRIEVE does not initialize
any fields, though sometimes you get lucky and get a blank
area of memory. In this example, the data is placed in the
current collection rather than storing the running totals as the
collection is being totaled by field T1 rather than by the pri-
mary key field of the sample domain. The domain (sorted by
descending T1) now looks like this:

ITEM A B Cc Tl T2
1 3 5 7 56 56
4 7 3 4 40 96
2 7 5 3 36 132
3 2 6 4 32 164

The running totals are now in place, and the current col-
lection is ready for the report writer. Since the original ver-
sion of this paper other methods of obtaining running totals
in reports have appeared, but this method is still useful for
obtaining running totals outside of the report writer, or when
you want to obtain totals to store into a new domain or for
other calculations.

More Difficult: Square Roots

The next step in difficulty will be to calculate the square root
of a number (this is useful for standard deviation and other sta-
tistical calculations) using the Newton-Raphson method. First,
to test my algorithm, I will make a procedure which will ac-
cept a number and calculate the square root, printing out the
value to see if it’s correct.

DEFINE PROCEDURE TEMP
DECLARE T1 PIC 9999
EDIT STRING 22Z9.
DECLARE ROOT PIC 9999Vv99
EDIT STRING 2ZZZ.Z9.
DECLARE TRY PIC 9999Vv99

EDIT STRING 222Z.Z9.
DECLARE DIF PIC S9999v99
EDIT STRING SZ2zZZ.29.

Tl = *.INPUT
TRY = 2
DIF = 1

WHILE DIF > 0.01 BEGIN
ROOT=T1/TRY
TRY=(ROOT+TRY) /2
DIF=ROOT - TRY
IF DIF<0 DIF=DIF*-1
PRINT ROOT, TRY,DIF
END

PRINT T1,ROOT, TRY,DIF

END_PROCEDURE

There are several important points in this procedure.
First, to repeat a previous statement, it is necessary that all
fields be declared, and that they be large enough to hold the
expected data. Notice that ROOT, TRY and DIF all have 2
decimal places reserved: if they did not, the square root would
be calculated to the nearest whole number only. Note also that
DIF has space reserved for a sign, as the difference between
the last try and the present try could be positive or negative.
Again, TRY and DIF must be initialized as DATATRIEVE
does not initialize variables.

The WHILE statement is indispensable for this type of
calculation as there are no labels and no GOTOs in DATA-
TRIEVE. There is generally only two methods of performing
repetitive calculations: the FOR statement which is used to
perform some operation once on each record of a domain, and
the WHILE statement for other repetitive calculations as it is
not tied to a domain. In this case, the WHILE statement re-
peats until DIF (the difference between the present guess and
the previous guess) is less than .01, this being the chosen limit
of accuracy as the numbers were declared to have two decimal
places. Incidentally, the constant 0.01 could be another field
or variable, but if it is explicitly stated as it is here, it must
have the leading zero.

The next three lines are the algorithm: divide the num-
ber by a guess and average the difference between the guess
and the answer to form the next guess, repeating the pro-
cess until the required accuracy is obtained. Notice that while
spaces around math operators are usually optional, if you en-
ter the second line as DIF = ROOT - TRY DATATRIEVE
will tell you that field ROOT_TRY is undefined or used out of
context. I have deliberately “squeezed” everything together
in this example to show that DATATRIEVE is reasonably tol-
erant of variations in programming “style”, but I recommend
using spaces between items to make things more “readable”,
to avoid the minus sign versus dash problem, and it usually
makes things easier to edit.

The next line forces the value of DIF to be positive (the
absolute value) to meet the condition of the WHILE statement,
otherwise any negative value for DIF would end the calcula-
tion prematurely. The loop ends not when DIF is calculated
but at the end of the block, which is how most “do loops”
operate. The print line within the BEGIN-END block is a de-

47

bugging aid: by placing a print statement here I can watch the
values for each variable for each pass through the loop and de-
termine if my logic is correct. When the procedure is correct,
this line may be removed so that the final answer is printed by
the last PRINT statement. Another method of debugging is
to place the commands in an indirect command file: this way
syntax errors are more visible as each line is printed when
read in by DATATRIEVE. (Remember to $ SET VERIFY to
see things happening on a VAX.)

Two samples of the printout (with debug) look like this:

DTR> :TEMP
Enter INPUT: 25

ROOT TRY DIF
12.50 7.25 5.25
3.44 5.34 1.90
4.68 5.01 .33
4.99 5.00 .01
T1 ROOT TRY DIF
25 4.99 5.00 .01
DTR> :TEMP
Enter INPUT: 35
ROOT TRY DIF
17.50 9.75 7.75
3.58 6.66 3.08
5.25 5.95 .70
5.88 5.91 .03
5.92 5.91 .01
T1 ROOT TRY DIF
35 5.92 5.91 .01
DTR>

One of the advantages of DATATRIEVE is that it ap-
pears to the user as an “interpreter”, like the original BASIC:
this means that you can take statements and execute them
immediately without having to go through some intermediate
compilation process. Since you can also edit your procedures
from within DATATRIEVE, and examine your data before and
after executing the procedure within DATATRIEVE, the devel-
opment cycle can be quick, and the user only has to work with
one product (or two, if you count the editor separately). If you
are working on a procedure, like this one, you can run it, see if
it’s correct, make whatever changes are necessary, and re-run
the procedure all from within DATATRIEVE.

Making the Procedure Useful

Now that this procedure works, I will put it into a form where
it can be used elsewhere, and call it SQRT. This is a way to
build up a library of “functions” or “subroutines” usable in
DATATRIEVE (which will even work in DATATRIEVE-11).

DEFINE PROCEDURE SQRT

IF Tl LE 0O ABORT "No Negative Numbers"
DECLARE ROOT USAGE IS REAL.

DECLARE TRY USAGE IS REAL.

DECLARE DIF USAGE IS REAL.

TRY = 2

DIF = 1

WHILE DIF > 0.01 BEGIN
ROOT = T1 / TRY
TRY = (ROOT + TRY) / 2
DIF = ROOT - TRY
IF DIF < 0 DIF = DIF * -1
END

END_PROCEDURE

The print statements and definition of T1 have been re-
moved: T1 must be defined before the procedure is called
(so the calling procedure will make the space reservation and
assign a value to it before calling this procedure), and ROOT
will contain the answer when finished. As there are no argu-
ment lists as there may be when calling subroutines in other
languages, it is the responsibility of the person writing the pro-
cedure to document carefully the fields which must be defined
before the procedure is used, what types of fields they should
be, and what field will contain the answer when finished.

The first line in this procedure is very important: in order
for any equation to yield the correct answer, the input data
must be correct (remember Garbage In, Garbage Out?). Since
negative numbers have no real square root, it is necessary
to insure that input to this procedure is not negative. The
variable declarations are also slightly different. Rather than
limit the range and accuracy of the procedure, the use of REAL
variables allows these fields to accept very large or very small
values: this is very handy for cases when you may not know
just what values the variables will have, and it occupies less
space than a large number with one character per byte (the
default DISPLAY data type). This procedure is now ready to
be used as part of another procedure. For example, let us put
the sum of A, B and C into T1, and 100 times the square
root of T1 into T2.

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl = A + B + C
:SQRT

T2 = 100 * ROOT

END

48

The current domain now looks like

this:

ITEM A B C T1 T2

1 3 5 7 15 387
2 7 5 3 15 387
3 2 6 4 12 346
4 7 3 4 14 374

It should be noted that there are alternate methods of
dealing with an incorrect value for T1. One method is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.

ROOT = 0
WHILE Tl GT 0 BEGIN
DECLARE --- variables as before

—--- initialize variables ---
WHILE ...
—-—-—-- procedure as before ---
END
END
END_PROCEDURE

In this case, the entire procedure will be executed only
if T1 is greater than zero, otherwise nothing is done, and
ROOT defaults to zero (the rest of the procedure is unchanged).
Another altemative is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
IF Tl GT 0 BEGIN
---- procedure as above ---
END ELSE
ROOT = 0
END
END_PROCEDURE

Here the IF-THEN-ELSE statement is used to execute
the procedure if T1 is valid, and return a dummy value of
zero for the root if T2 is invalid. The last three lines could
be condensed into one, but writing it this way brings it closer
to “normal” programming. One caution: most “structured”
programmers would put the ELSE statement at the beginning
of a new line, to clarify the structure. This is not possible in
DATATRIEVE: the verb ELSE cannot be the first word on a
line. (Generally speaking: there are some “tricks” that can be
done, but they generally aren’t worth doing.)

The last example could also be performed in this manner:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
IF Tl GT 0 BEGIN
—-—--- procedure as above ---
END
IF T1 LE 0 ROOT = 0
END_PROCEDURE

This appears to be both less structured and less effi-
cient than the previous version, but it has one advantage
in that it “compiles” faster under some circumstances (and
uses less pool space in DATATRIEVE-11, though this won’t
bother VAX-DTR or DTR-20 users). In the first version, all
of the statements from the IF to the last END (before the
END_PROCEDURE) must be “compiled” before any part of
the IF statement is executed, including evaluation of the IF
condition itself, and this takes time (and pool). In the sec-
ond version, each IF statement is “compiled” separately and
executed separately. If you are going to be going through a
repetitive series of calculations many times, it’s usually faster
to put all of the statements into one big WHILE statement or
BEGIN-END block, let it all be compiled once when you en-
ter the routine, and then let it run. The program may seem to
“stall”, while the statements are compiled, but once done the
procedure will run very fast, about as fast as code compiled
in other languages. Although it sometimes appears to be one,
DATATRIEVE is not an interpreter (like the original BASIC)
where individual lines of code are interpreted and executed be-
fore moving on to the next line: each “block” of code is com-
piled, then executed. If, however, you have a procedure which
will probably be executed once only (or once in a while), and
it contains a large number of IF conditions, it may be better
to put them in as scparate IF statements SO you won’t waste
time compiling everything just to execute one small statement.
[For DATATRIEVE-11 users, in this example, the savings in
pool will be small because the second IF statement is so short,
but with more complicated IF-THEN-ELSE conditions this
method of breaking up the computations into smaller segments
can save a considerable amount of pool, and is especially use-
ful in DATATRIEVE-11.]

It should be noted that the statement

WHILE DIF > 0.01 BEGIN

could have been written in many different ways. One could
also say WHILE (DIF > 0.01 OR DIF <
-0.01) BEGIN, or WHILE DIF BETWEEN -0.01 AND
0.01 BEGIN, or any other valid Boolean expression. If any
of these had been used, the line

IF DIF < 0 THEN DIF = DIF * -1

which converts negative values to positive values would not
be required.

It should also be noted that the procedure name SQRT
isn’t really very descriptive. It would probably be better to call
it something like SQUARE_ROOT or even SQUARE_ROOT.2
(for 2 decimal places), and place it in a common dictionary
for everyone to use once it has been debugged. The above
example of use would then look more like this:

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl =A+B + C

:CDDSTOP . USERSLIBRARY.SQUARE ROOT
T2 = 100 * ROOT

END

49

(DATATRIEVE-11 procedures will look like the original
examples.)

Procedures versus Functions

The next important question is: should this be a procedure, or
should a function be added to DATATRIEVE? This is going
to depend a lot on what other facilities are available, how
often the function will be used, and on how many systems the
function will be used.

Adding a function to DATATRIEVE is not at all difficult,
especially if you are adding one of the VMS library routines,
as you don’t have to write any code. Doing the calculation
in a function is often more efficient as DATATRIEVE doesn’t
have to “compile” the code each time it’s used, and this is es-
pecially important if the function is going to be used often. If
you want to add a function of your own, however, the first step
is to write a subroutine to implement the function in some pro-
gramming language that supports the VMS calling standard.
This is going to be the first stumbling block for many DATA-
TRIEVE users, who don’t have a’traditional “programming”
background. Next, the function must be linked into the DATA-
TRIEVE image: this isn’t difficult, but many system managers
resist change. Of more practical difficulty is what happens
if your DATATRIEVE procedures have to be distributed to
many different systems (for example, if you have developed
something that is going to be throughout a company or cor-
poration). If you do everything as DATATRIEVE procedures,
you can distribute the DATATRIEVE code and be certain it
will work: if you depend upon special functions, then you
must be certain that those functions have been built into ev-
ery DATATRIEVE image where your code will run. This can
be especially difficult if the corporation is widely distributed,
and, as often happens, different systems are running different
versions of the operating system and DATATRIEVE.

An Application: Least Squares Data Fit

One more example of this type of operation will be fitting a
trend line to data in a domain. This is the “least squares”
method of fitting the best line to a set of data points, and is
often used for such things as predicting future growth. Though
there is a least squares fit for many plots in DATATRIEVE,
the values are not retrievable for use within DATATRIEVE
and this procedure will make the values usable for storage in
a domain or other use.

The procedure is:

DEFINE PROCEDURE TREND

DECLARE SUMX USAGE IS REAL.
DECLARE SUMY USAGE IS REAL.
DECLARE SUMXY USAGE IS REAL.
DECLARE SUMXSQ USAGE IS REAL.
DECLARE SUMYSQ USAGE IS REAL.
DECLARE SLOPE USAGE IS REAL.
DECLARE INTERCEPT USAGE IS REAL.
DECLARE FIT USAGE IS REAL.
DECLARE TEMP USAGE IS REAL.

DECLARE N USAGE IS INTEGER.
N =20
SUMX = 0
SUMY = 0
SUMXY = 0
SUMXSQ = 0
SUMYSQ = 0
READY SAMPLE
FOR SAMPLE BEGIN
SUMX = SUMX + ITEM
SUMY = SUMY + T1
SUMXY = SUMXY + (ITEM * T1)
SUMXSQ = SUMXSQ + (ITEM * ITEM)
SUMYSQ = SUMYSQ + (Tl * T1)
N=N+1
END
TEMP =
SLOPE =

((SUMX * SUMY / N)
TEMP /
SUMXSQ)
INTERCEPT = (SUMY - SLOPE * SUMX) / N
FIT = SLOPE * TEMP /
(SUMYSQ - (SUMY * SUMY / N))
PRINT SLOPE USING 22z9.9999,
INTERCEPT USING ZZ29.9999,
FIT USING 22Z9.9999
FINISH SAMPLE
RELEASE N
RELEASE TEMP
RELEASE FIT
RELEASE INTERCEPT
RELEASE SLOPE
RELEASE SUMYSQ
RELEASE SUMXSQ
RELEASE SUMXY
RELEASE SUMY
RELEASE SUMX
END_PROCEDURE

- SUMXY)
((SUMX * SUMX / N) -

The procedure follows the same rules as before as to
declaring all variables and initializing them. The FOR state-
ment is used to process the domain and sum up some values
which will be required for the calculation. The question might
arise as to why the procedure is summing up the values for
X (ITEM) and Y (T1) and counting up the number of
items in N when it could simply FIND the domain and then
use the SUM and COUNT commands to have DATATRIEVE do
the work. The answer is that the procedure has to go through
the domain once anyway to sum the squares of the variables
and the products of the two variables, and it is more efficient
to also sum the other values at the same time than to have
DATATRIEVE make additional passes through the domain to
to the summing and counting, especially if this were to be done
on a large domain. It is a good general rule to gather as much
data at one time as possible to save time in processing (but
don’t store values you won’t need). This is also shown by the
use of an intermediate calculation for the value of TEMP: this
expression is used in two other places, and it is more efficient

50

to use four bytes of pool to store the value than to calculate it
twice, and it is also faster. The data now in the domain and
the answers look like this:

ITEM A B cC T1 T2

1 0 0 0 1200 0

2 0 0 0 1800 0

3 0 0 0 1600 0

4 0 0 0 1900 0

5 0 0 0 1800 0

6 0 0 0 2100 0
DTR> :TREND

SLOPE INTERCEPT FIT

137.1429 1253.3334 0.6954

DTR>

The statements which were missing from previous ex-
amples but are included here are FINISH and RELEASE. In
DATATRIEVE-11, pool is always a scarce resource, it is good
practice to free up pool space by closing out domains and re-
leasing space reserved for variables which are no longer used.
On the VAX, it is often thought that, since the system uses
virtual memory, there is an unlimited supply. This is not true:
memory is not unlimited, and keeping around structures you
don’t need will eventually cost you something. Although only
global variables actually require explicit release, it is best to
get into the habit of releasing resources as soon as possible: in
this example, if the RELEASE statements were not included,
the variables would still be stored in pool after the procedure
was finished.

A Few Suggestions

At this point, the reader should have a grasp of what is pos-
sible in the way of equation solving in DATATRIEVE. More
complex problems may be approached by breaking them down
into smaller sections, each of which should yield to one of the
methods presented. For those who plan to go further with
this approach, the following subjects in the DATATRIEVE
manual will be of interest: the ABORT, DECLARE, FOR,
WHILE, CHOICE, and IF-THEN-ELSE commands; arith-
metic and Boolean expressions; (procedures and indirect com-
mand files; optimization; and especially the section dealing
with the USAGE clause, which describes the internal format
of the different types of numbers. COMP {INTEGER, BYTE,
WORD, LONG, QUAD} is usually the most efficient type of
storage; for real numbers REAL {FLOAT } and DISPLAY (the
default) should be the next most efficient. The author recom-
mends avoiding COMP_{PACKED}, COMP_{ZONED/}, and
COMP_6 except when needed to read data written by other
programs, and DATE (except for date calculations).

Where to find Equations

Readers may be interested in knowing where to find equa-
tions in suitable form for solution in DATATRIEVE (or other
computer languages). Books on the particular subject (for ex-
ample, a book on statistics for standard deviation or trend line
fitting) are a good beginning, especially the older books which
give instructions for solving the equations by hand; and even
better, books which show how to solve the equations on pocket
calculators. When such calculators were more expensive than
they are now, and most had only four functions (rather than
the specialized math or financial calculators now available), a
number of books showing how to break down trigonometric
functions, financial equations, etc. into a form which could
be solved on a four function calculator were published, and
these methods should be easily transferred to DATATRIEVE.
They will also give worked examples, so the user can com-
pare the answer obtained in DATATRIEVE with the answers
in the book to determine if the equation has been correctly
solved. Another good source is the manuals provided with
programmable pocket calculators, (if you can still find one)
which often give the formula and a worked example: the trend
line example was obtained in this way. There are also books
published for high-school and college math classes containing
nothing but formulas, and some have functions expanded into
series, which are particularly suitable for solution by computer.
Finally, for those wishing to solve trigonometric functions, the
Fortran-IV (Fortran-77) manual set contains an appendix de-
scribing the methods used to provide those functions and the
accuracy obtained.

Built-In Functions

VAX-Datatrieve has the following built-in functions which
might be used for mathematical operations (not including the
date functions):

FN$SABS FNSATAN FN$COS FNSEXP
FNSFLOOR FN$HEX FNSLN FN$SLOG10
FNSMOD FNSNINT FN$SSIGN FNS$SSIN
FN$SSQRT FN$STAN

Many users appear reluctant to use these functions as they
are not “english-like” as is the rest of DATATRIEVE, but in
fact are really quite simple to use. For instance, the square
root example could be reduced to:

FOR SAMPLE MODIFY USING BEGIN
Tl = A +B + C
T2 = 100 * FN$SQRT(T1)
END

or, if you aren’t really interested in the intermediate value
of T1:

FOR SAMPLE MODIFY
USING T2 = 100 * FNSSQRT(A + B + C)

51

Or you can modify the original record definition:

01 SAMPLE_REC.

03 ITEM PIC 9.

03 A PIC 999 EDIT_STRING 2Zz9.

03 B PIC 999 EDIT_STRING ZZ9.

03 C PIC 999 EDIT_STRING 2Z9.

03 T2 COMPUTED BY FN$SQRT(A + B +
c).

;
Or, if you don’t want to store the value:
FOR SAMPLE PRINT FNS$SQRT(A + B + C)

Functions thus have the advantage that they can be in-
corporated into places where procedures cannot be used, or
cannot be easily used.

To add your own functions to DATATRIEVE, you have
to modify a file, DTRFND . MAR, supplied with DATATRIEVE.
When installing DATATRIEVE, you are asked if you want to
save certain customization files: say YES to save the func-
tion file. Although this is a Macro-32 language source file,
it doesn’t really look like assembler language as it simply
consists of function definitions. For example, the following
function definition adds a function which raises a number to
a power.

; FNSPOWER - Raise a real number to
a real power

Output is a floating value in RO, R1
; Input is two floating values
; passed by immediate wvalue

$DTRSFUN_DEF FN$POWER, OTS$POWRR, 2
DTRFUN_OUT_ ARG
TYPE = FUN$K VALUE,
DTYPE = DSC$K DTYPE F
DTRFUN_HEADER HDR = <"Power">
DTRFUN_IN ARG

TYPE = FUN$K_VALUE,

DTYPE = DSC$K_DTYPE_F, ORDER = 1
DTRFUN_IN_ARG

TYPE = FUN$K VALUE,

DTYPE = DSC$K_DTYPE F, ORDER = 2

DTRFUN_END_DEF

In this instance you don’t have have to write your own
routine to do the work as it uses a routine in a library sup-
plied with VMS. More function definitions like this, and a
DATATRIEVE procedure that generates the definitions, may
be found in the DATATRIEVE / Fourth Generation Languages
SIG Library tape, which is in the DECUS library and on the
VAX SIG Symposia tape.

VAX DATATRIEVE Security Using

Environment Accounts and ACL s

by Michacl Gi. Graham
Sanders Associates
95 Canal Street
Nashua. NH 030061

Abstract

The security and integrity of databaze system information iz paramount, particularly as it applies to personnel
and financial records of groups and, or companies. External security enhancements now include such devices as
Defender 11 type security call-back schemes, which require the use of special passwords and having the computer
call back the user, if connected to the system by modem. This presentation addresses the issue of internal
security, that of preventing otherwise authorized system users from accessing sensitive database information
residing on the machine. This presentation concerns it=zelf specifically with DATATRIEVIE Security. The scheme
defined herein uses a two-fold approach.

Since DATATRIEVE data files reside within VAX 'VMS sub-directories, and since the DATATRIEVE Domain
and Record Definitions, Procedures; and Tables reside within the Common Data Dictionary (CDD), security
precaution= for both must be implemented. It is assumed that the data 15 to be shared by some but not all
system users. Security for the actual data files will be first discussed, followed by a discussion of DATATRIEVE

security and a layered approach to data integrity.

- 3 ,
Data File ACL’s e UIC identifiers that depend on the User Identi-
fication Code (UIC) that uniquely identify cach
user on the system.

The ordinary SET PROTECTION scheme for files is

nullified within an Environment Account. The entire) . i
e General identifiers that are defined by the Secu-

purpose of the Environment is to allow users within _ . .
rity Manager in the system rights database to

a common nced Lo access files within that EKnviron-))
ment. However, there are still instances wherein cer- identify groups of nsers on the system.
tain data files may require restrictions, limiting the
access 1o specified users within the group. This can
be accomplished by the use of FILE and/or DIREC- ®
TORY ACL’s. The ACL offers a way to match the
specific access you want to grant or deny to specific

System-defined identifiers that describe certain
types of users (BATCH, NETWORK, DAILUP,
INTERACTIVE, LOCAL, REMOTE).

users for each object.

UIC identifiers conform to the specific UIC’s. The Se-
curity Manager creates and assigns the general iden-
tifiers and UIC’s to the system users with the Au-
thorize Utility (AUTHORIZE). System-defined iden-

Identifiers are the means of specifying the users in
ACL. There are three types of identifiers:

Proceedings of the Digital Equipment Computer Users Society 53 Nashville, TN - 1987

tifiers are automatical}y defined by the system when
the rights database is created at system installation

time.

The next step in this protection scheme 1s to define
what access to grant or deny to the holders of each
of these identifiers, for each file that needs this level
of protection. Because there may be more than a few
identifiers needed to represent. differing access needs
for cach object it is fairly common to create a whole
list of entries, cach of which define groups of access
rights to grant or deny. Such a hst s called an access
control hst (/\(.jlj)
called an access control list entry (ACE). ACLs offer

, and cach entry within the hist s
the user an opportunity to fine-tune the action taken
when access is sought to an object. You can provide
an ACL on any object to permit as much or as little
access as is desirable inocach case. They can even
cause security alarms to be set ofl when access to an

object succeeds or fails.

The obvious advantage to having an intricate scheme
While file

ACL’s enhance the security of the system, the pay-

of file ACL’s also has its negative side.

ment comes in user time required Lo generate and
maintain them and the processor time required to
perform the functions that ACL’s mandate.

For a full description of File ACL’s, their use and
implementation, refer to the VAX/VMS DCL Dictio-
nary and the VAX/VMS Utilitics Referenec Manual.

ENVIRONMENT Accounts

An Environment. Account can be implemented on any
VAX system, and it permits the designated “owner”
to define who may or who may not access the files
residing within that account. When a user logs into
an Environment Account, it is essentially the same
as logging into a regular account, with the exception
that passwords are not normally used. An Environ-
ment Account usually appears as a sub-directory to
some “user” account on the system. Whose account
the Environment is established in is usually dictated

by the needs of the group, department, ete.. which

54

will be accessing the databases and data. An exam-
ple of an actual Environment Account is diagrammed

below for illustration:

Account 24402

|

J
ENVIRONMENT ACCT
[24402 FESERVICE]

N
Sub-dir (A)

In the above illustration, a user account (24402 (my

company Clock Number) contains several sub-directories.

One of those sub-directories is named “FESERVICI”
and is an Environment Account. The account even
contains a LOGIN.COM file so that specifically tai-
lored commands can be included, as well as setting
the default CDD dictionary for DATATRIEVIS use.
Another part. of the Environment includes an
NV USERS.DAT file, which when used with specific
commands, allows the “owner™ to ADD, DELISTI,
MODIFY, and PRINT the list of users who have au-
thorized access to the Environment. From this point,

additional sub-directories can be built as required.

The interesting feature here i1s that the normal pro-
cess of access to user files is bypassed, all other sub-
directories in vonr VMS account can be protected as
desired. and only those individuals who are on the
Authorized Aceess List to the Environment may be
allowed into the Environment. You may also wish to
keep a record of who accessed the Environment Ac-
count. and when. Figure 1 illustrates an example of
a .COM file which I wrote for that purpose. As cach
ISnvironment, Account, user accesses the account, he
is automatically logged into a record file, which is
periodically scanned for security and accounting pur-
poses. This .COM file 1s one of the immediately ex-
ecuted files as the user accesses the account. Figure
2 tllustrates the LOGIN.COM file as | have it imple-
mented on my account. Any bell and whistle you wish
to add can, of course, be done.

To have an Environment Account established within
your own User Account, you must see your System
Manager. The Manager will also provide you with

Sub-dir(B)

|

$CONTEXT = «”

$PID = F$EXTRACT(0,17,F$PID
(CONTEXT)' |

$TIMEIN = F$EXTRACT
(0.17.F$TIME()) }

$NAME = F$GETJPI(PID,
“USERNAME")

{ SOPEN/APPEND OUTFIL

| DISK: [24402.FESERVICE|TIMEIN.LOG

$WRITE OUTFIL “USER: >, NAME,
“LOGON: ” , TIMEIN!

$CLOSE OUTFIL

_ Figure 1

Mill instructions as to the methods to maintain the
account. You arce now, in cffect, an Account Man-
ager. I your DATATRIEVE account is structured
such that the full dictionary path name is specified in
the Domain Definitions for all your DATATRIEVIS
data files (which it should be), then those data files
which are to be shared by your Environment Users
maust reside within the Environment.

To illustrate my point, my DATATRIEVE account for
the Field Engineering Services Department has the
CDD pathname CDD$TOP.USERS.FESERVICES.
Within that dictionary object are sub-dictionaries.
One such dictionary is PERSONNEL. Within the sub-
directory PERSONNEL is a Domain entitled FSE.
The Domain Definition for that database, following
the above guideline. is:

“DOMAIN FSE USING FSE REC ON
DISK:[24402.FESERVICES.DBASE]
FSE.DAT”!

"Note: The above example wonld be typed on one line.

55

“ . .
You can also sce that there is a sub-directory within

the environment entitled “. DBASE”.

Within that sub-directory, all DATATRIEVE datafiles
reside. By always specifying the full pathname for the
.DAT file, you ensure that only those who have ac-
cess to the Environment can access the file, as well as
reduce confusion if a person has neglected to set his
default directory to the right place.

$SET NOON
$SET PROT=(S:RE,0:RWED,G,W)
/DEFAULT'

 $DTR = =4“$SYS$SYSTEM

; :DTR32.EXE™!

- ASSIGN/PROCESS “CDD$TOP.USERS
i FESERVICES” CDD$DEFAULT!

$ASSIGN DISK:[24402.FESERVICE.HLP)|
RESUME HLP$LIBRARY 1!

$RESET :==SET DEF DISK:[24402

.FESERVICE}'
$BASE :==@DISK:[24402
.FESERVICE.DBASE]|
DBASE.COM!
$USERS :==@QDISK:[24402
.FESERVICE.USERS]
USERS.COM!
$HLP :==@DISK:[24402
.FESERVICE.HLP|
HLP.COM?
$VID*EO :==ODISK:[24402
.FESERVICE.VIDEO)]
VIDEO.COM!

:==SET DEF DISK:[24402
.FESERVICE.CAI]!

$CAI

—continued—

~ Figure 2

$SHORT :==SET TERM/ |
WIDTH=80
$LONG :==SET TERM
WIDTH=132
- $SHORT
' $QTIMEIN

C$WRITE SYS$OUTPUT “Welcome to the
" FESERVICE Enviromment Area.”
" “In case of disaster. call Mike Graham,

|

$TYPE DISK:[24402.FESERVICE|NOTICE

' $WRITE SYS$OUTPUT & *

X-5206'

$WRITE SYS$OUTPUT =~

.TXT!

$EXIT

Figure 2, continued

DATATRIEVE Security

The CDD also has a protection enhancement which
allows the “owner” of the Dictionary Object to pro-
tect it in a variety of ways. Essentially, there are
thirteen different levels of protection which can be
implemented on any dictionary object. The choices,
and how to implement them, can be somewhat con-
fusing. Protecting the data files within the Environ-
ment Account is only closing one of the barn doors.
To keep the cows at home, to ensure that only autho-
rized personnel have access to both data and CDD
objects, Access Control Lists (ACL’s) should be im-
plemented within DATATRIEVE. The new DATA-
TRIEVE User’s Guide (a super book, by the way)
contains a rather lengthy discussion on implementing

Access Controls. However, through experience and a
lot of plain knocking my head against brick walls, 1
have devised a rather simple, but quite effective case
method of CDD item protection. Two overall general

rules apply:

e There are only two people authorized to create
sub-dictionaries, define Domains and Records,

and create Procedures and Tables.

o All other users are confined to reading writing
to, or modifying established databases.

If this perhaps sounds restrictive, it is meant to. The
principles involved here are based on military and
government control systems. The reason for hav-
ing two full-access personnel is really sell-explanatory.
People get ill. take vacations, have babies, cte. There
should be a backup person with full access to man-
age the database system in the event of the untimely
demisc of the System Manager. 1t is also a proven fact
that the potential for system compromise inereases i
direct proportion to the number of people who have

unhimited system access.

The following illustration is of a DATATRIEVIE sys-
tem using the CASE method of implementing DATA-
TRIEVE security. The system uses six cases. ach
case provides for a certain level of security within
the system. To view, add, or delete names from the
DATATRIEVE ACL’s. the following DATATRIEVE

terms are used:

DEFINEP define an ACL for a given
individual or UIC.

DELETEPY delete an individual from the
ACL for the object.

SHOWDP list the ACL for the specified

object.,

The normal method of defining an Access Control List
consists of adding users to cach object in the following
manner:

DEFINEDP [objectname] [position#]

GRANT=|priv].DENY=|priv],
BANISH=|priv]*

Note: The above example would he typed o one line.

The method of deleting names from the ACL is of the

form:

DELETED [objectnaime] [position#]

To view the ACL for a given object (WOMBAT):
SHOWDP WOMBAT

In all, as previously mentioned, there are thirteen dif-
ferent. Access Controls which can be implemented. It
15 sometimes confusing. Without going into great de-
tail. the following six CASES can be used to apply
99.9% of all your sccurity needs. They are:

GRANT=ALL

(grant all privileges)
GRANT=P.DENY=
CDERSUWX (pass-through only)?
GRANT=PRS.DENY=
D.BANISH=FG (allow pass-
through, view objects)?
GRANT=EPRSW.DENY=
D.BANISH=FG (allow write,
read objects/data)”
GRANT=EPRS.DENY=D,
BANISH=FG (allow read

object /data)®

DENY=ALL (deny all privileges)

CASE #1
CASE #2

CASE #3
CASE #4
CASE #5
CASE #6
Let’s apply them to a DATATRIEVE account. which

takes the form: '

CDD$TOP.UlSERS.YOURNAME {level 0}

1
SUB (D)
{level 1)}

I 1 i
SUB (A) SuB (B) SUB (C)

-

OBJECT 1OBjECT 1 OBJl'ECT 1 OBJECT 1
OBJECT 20OBJECT 2 OBJECT 2 OBJECT 2
etc. etc. etc. etc.

{level 2}

Level O can be considered a gateway. At this level, all
that should be seen are the sub-dictionaries below it.

Do not include any objects at this level.

Level 1 objects are only the sub-dictionaries. They
can be named whatever you please, but certain thoughts
should be considered. One sub-dictionary should con-
tain the Domain and Record Definitions for the sys-
tem. One sub-dictionary should be for the System
Manager’s use in creating new objects. (They can be
relocated later.) The other sub-dictionaries might be
for functional groups within your division, ctc.

Level 2 objects are the Domains, Record Definitions,

Procedures. and Tables.

Assume four users:

YOURNAME (you’re the SYS
MGR /programmer /etc.)
SMITH (two real pistols,
read/write /modify)
WESSON
ACES (only a reader of data...

manager type)

Now let’s implement at each level using the CASES:

At Level 0. every user for the system get o in:

YOURNAME gets CASE 1.
SMITH, WESSON, ACES get CASE 2.
Anyone clse gets the boot!

DEFINEP YOURNAME 1 USER=
YOURNAME,GRANT=ALL*

DEFINEP YOURNAME 2 USER=
SMITH,GRANT=P.DENY=CDERSUWX?

DEFINEP YOURNAME 3 USER=
WESSON.GRANT=P.DENY=CDERSUWX*

DEFINEP YOURNAME 4 USER=
ACES,GRANT=P.DENY=CDERSUWX*

DEFINEP YOURNAME 5 UIC=
[*.*].DENY=ALL

“Note:r At position 5 is the baot! This is CASE #6. It is
the key to the entire ACL scheme. It prevents anyone else
other than those listed from accessing your DATATRIEVE

workspace.

At Level 1, people can go different directions, de-
pending on how you structure the ACL’s for cach
sub-directory. Suppose SMITH and WESSON have
a need to access the Procedures of databases in SUB
(A). but not, ACES. By the same token, only ACES
has access to the objects in SUB (B). Isveryone has
access to SUB (C) (the Domain and Record Defini-
tions reside there, or at least the master databases

do). Only YOURNAMUI has access to SUB (D).

DEFINEP SUB (A) 1 USER=
YOURNAME,GRANT=ALL?

DEFINEP SUB (A) 2 USER=
SMITH,GRANT=PRS,DENY=D,
BANISH=FG®

DEFINEP SUB (A) 3 USER=
WESSON.GRANT=PRS,DENY=D,
BANISH=FG?

DEFINEP SUB (A) 4 UIC=
[*,*],DENY=ALL?

Here again, note position 4. The catchall is used at
the end of cvery ACL!! At this level, SMITIH and
WISSSON can pass into SUB (A), ACES can’t, and of
conrse YOURNAMIE s always there. The CASISS at
this level used were CASE | for YOURNAMIE, CASE
3 for SMITH and WESSON, CASIE 6 for everyone
clse. To define the ACL™s for SUB (B), (C). and (D),
vou would use the exact same format. only changing

the names:

DEFINEP SUB (B) 1 USER=
YOURNAME.GRANT=ALL?

DEFINEP SUB (B) 2 USER=
ACES.GRANT=PRS.DENY=D,
BANISH=TFG?

DEFINEP SUB (B) 3 UIC=
[*,*,DENY=ALL?

DEFINEP SUB (C) 1 USER=
YOURNAME,GRANT=ALL?

DEFINEP SUB (C) 2 USER=
SMITH.GRANT=PRS,DENY=D,
BANISH=FG*

DEFINEP SUDB (C) 3 USER=
WESSON.GRANT=PRS,DENY=D,
BANISH=FG?

DEFINEP SUB (C) 4 USER=
ACES.GRANT=PRS.DENY=D,
BANISH=FG?

DEFINEP SUB (C) 5 UIC=
[*,*].DENY=ALL?

DEFINEP SUB (D) 1 USER=
YOURNAME,GRANT=ALL?

DEFINEP SUB (D) 2 UIC=
[*,*],DENY=ALL?

At each Level 2, each object, be it Domain Definition,
Record Definition. Procedure, or Table, must be de-
fined. This s particularly true in those arcas where
all personnel will have access to the same databases.
For example. OBJECTS 1 and 2 within SUB ()
arc a Domain and Record Definition respectively. von
would use CASE 1 for SMITH and WIESSON, C'ASES
b for ACES and of course, CASIE 6 as the last entry.

Example:

DEFINEP OBJECT! 1 USER=YOURNAME
L GRANT=ALL?

DEFINEP OBJECTI1 2 USER=SMITH.GRANT
=EPRSW . DENY=D.BANISH=FG

DEFINEP OBJECTI1 3 USER=WESSON.GRAN1T
=EPRSW DENY=D.BANISH=FG

DEFINEP OBJECT1 4 USER=ACES,GRANT
=EPRSW.DENY=D.BANISH=FG

DEFINEP OBJECT1 5 UIC=[**].DENY=ALIL

*Note: The process for OBJECT2 would be identical.

User ACES can only access the database for read priv-
ileges, whereas users SMITH and WESSON can ac-
cess the same database for read/write ‘modify privi-

leges.

However, none of the users except YOURNAME (re-
member, the boss! has privileges which would al-
low them to modify, delete, create, or otherwise per-
form actions within the sub-dictionary which could
be detrimental to the system. Absolute control over
the system is retained by the Systermn Manager. One
additional thought: the above scheme also proves the
argument that a SMITH and WESSON beats ACES
always!

The alphabet soup of letters used in conjunction with
the DEFINEP command merely determines the ex-
tent of privileges within your DATATRIEVE account.
Il care is taken, vou can use the CASE method for

most applications. If other privileges are required,

consult the DATATRIEVE User’s Guade. This particular

scheme has been in effect for over three years at my
company on an extremely large database system, and
it has never failed. 1t does. however. place a burden
on the system Manager to ensure that ACL s are kept

current .

In conclusion. by combining the use of an Environ-
ment Account and FFile ACLs 1o protect the DATA-
TRIEVE data files, and by using the CASE method
to create ACLs within a layered DATATRHISVIS ac-
count. vou can afford your DATATRIEVE system the

maximum in internal security.

59

e
e
i é‘;} o

b
G

.

o

‘wum@mw?

.

.

o

mwsmmmo

.

.

S

o

wwmm%w -

.

=

e
e

.
rgm%@m,ﬁwmm

.

. &Awwﬁz@w

ﬂ:(v«ﬁ L
.

-

.

%&xg

.
.

.

.

L

v
o
L

Making an Inexpensive Rainbow Workstation for a Chemistry Lab

John D. Bak and David M. Hayes
Department of Chemistry, Union College
Schenectady, New York 12308

Abstract

Chemical kinetics is the study of how quickly and by what means chemical

reactions proceed.

Some reactions are so fast and complicated that data

must be taken very quickly and then lengthy calculations done to get results.
Computers speed these studies greatly. The system described herein uses a
DEC-Rainbow microcomputer as a terminal for a workstation. The system may
collect 8k of buffered data at a rate of IMHz and then upload the data to a
VAX for analysis using the same Rainbow as a graphics terminal. The program
for data analysis will then accept the data and also other information about the
chemical reactions in the same symbolic format that chemists use so that the

analysis may be done.

Introduction

This system was specifically designed to collect and
analyze data from an instrument called a flash photolysis
spectrophotometer, but it may also be used with other
instruments. The way the “flash rig” works is that the
chemicals to be reacted are put in a glass container, and
then flashed by high intensity light from a xenon flash
lamp or a laser. The length of this flash is typically less
than 10 microseconds. Some of the energy of the light is
absorbed by the chemicals and causes them to react. The
reactions studied by this method may go to completion in
as short a time as a hundred microseconds. The reaction
is monitored by passing a continuous probe light through
the sample cell and measuring the variation in transmitted
intensity at a particular wavelength as a function of time.
The transmitted light intensity can usually be correlated
with the concentration of particular reactants, transients
or products in the sample cell. This transmitted light is
first converted to an electric current by a photomultiplier
tube and then converted to a voltage by passing the
current through a known resistance. This voltage is
directly proportional to transmitted light intensity at the
selected wavelength through the sample cell. This is the
input the interface circuit between the instrument and the
Rainbow.

There are two basic needs that we want this system
to fulfill. First we want to be able to collect data by
computer. Second, we want to be able to analyze this
data using the college’s VAX cluster. The basic system
is an instrument connected to an interface circuit with a
buffer which is connected to a Rainbow. The Rainbow
acts as the data collection station and also as a VAX
terminal for the school’s VAX cluster, where data analysis
software resides. These two basic components, the data

Proceedings of the Digital Equipment Computer Users Society

63

collection system and the data analysis software will be
described herein.

Data Collection
System Requirements

There are several characteristics that this system has to
have in order to be used to study the reactions that we
have in mind. The minimum needs are:

e Variable timing: 1Mhz maximum rate

e A 2000 data point buffer

e Greater than 8 bits per data word

e Capability to upload data to VAX

e Graphics with hardcopy

e Must be inexpensive

The core of our system is a Rainbow microcomputer

with a graphics board and an LA50 printer. This gives us
our graphics and hardcopy capabilities as well as being a
terminal to the VAX, so that data may be uploaded right
after it is collected. The analog to digital (A/D) converter
in the interface between the instrument and the Rainbow
is a HAS1201 made by Analog Devices. This converter
has a maximum rate of 1.05MHz at 12 bits per word. We
wanted more than 8 bits to give us the sensitivity to make
accurate readings in areas where the converter’s full range
was not being utilized. To get variable timing an 8253-5
programmable interval timer is used. It is configured in
such a way that it gives us data sampling intervals ranging
from lpusec to about 8.9 years(more about how that is
done later). The interface circuit has a 16k byte buffer
so that it gives 8k words. Finally an 8251A USART is
used to communicate between the Rainbow and the buffer
circuit. The cost for the interface circuit was under $1000
(this excludes the price of the Rainbow and printer). The

Nashville, TN - 1987

most expensive item was the A/D converter at $512. The
final characteristics we ended up with are:
e Variable sampling rate from lusec to 8.9 years per
data point
8k word buffer for data
12 bit per data word
Rainbow graphics and LA50 printer
Also usable as a VAX terminal
Inexpensive: less than $1000

Using the System

The system has an 8085 microprocessor which receives
commands from the Rainbow and then acts on them. To
use it one first sets up the internal registers of the circuit
by sending them commands from the Rainbow. The data
collection process is started either by sending a command
from the Rainbow, or through the remote start input
on the circuit itself. The circuit then sends the data it
collects back to the Rainbow and the process can start
over again.
The circuit operates in three possible modes :

o Buffered operation.

e Real time operation.

e Programmed operation.

Buffered Operation

This mode allows rapid collection rates of up to 1MHz.
This is possible because all the data is first stored in the
8k buffer before it is sent to the Rainbow. The number
of sets of data to be taken must first be specified. Each
of these sets of data will be taken in succession after the
start collecting signal is received. This is a very nice
feature because the rate at which each set is taken can
be different, so that in the beginning data may be taken
quickly, but at the end data may be taken more slowly as
the reaction slows. After the number of sets of data to
be taken is loaded, the periods for each set are loaded.
The restriction on the data collection intervals is that
each period after the first must be an integer multiple
of the period before it. In other words, the period for
data set two will equal the period for data set one times
the number entered for data sets two timer register, and
data set three’s period will equal the period for data set
two times the value entered for data set three’s timer
register. The number entered for period one is in halves
of microseconds—1 and is between 0 and 65535. So if a
period of 60usec is desired the register is loaded with 119,
and if a rate of IMHz is desired a 1 would be loaded. The
next thing to be loaded would be the number of points
to be taken for each set. The total number of points
taken cannot exceed 8191 points because of the buffer
size. Finally, the remote start input would be enabled
if the start collection signal is to come from outside, or
the data collection could be started from the Rainbow.
After data collection, the data would be transmitted to
the Rainbow where it may be stored on floppy disk.

64

Real Time Operation

This mode is only usable at lower rates of data collection.
Because the data words are 12 bits long, two bytes are
required to transmit one word, so the maximum rate of
data transfer into the Rainbow is about 600 words per
second at the rate of 9600 baud. To use this mode the
timer registers are loaded with the period of the sampling
rate as before and then either the remote start is enabled
or the timer is started from the Rainbow. Now the circuit
will send each data word to the Rainbow as it is collected
without buffering it. To stop the process, a command to
stop is sent from the Rainbow.

Programmed Operation

Since there is an 8085 microprocessor in the interface
circuit, small programs may be loaded into the circuit.
This option is included for completeness and maximum
flexibility.

Commands

The commands that the interface circuit can accept are:
e Stop and reset

e Get 1,2 or 3 sets of data
Set up to take buffered data at one, two or three
different rates

e Set up for real time collection

e Get one data point
e Load timer register 1,2 or 3
Loads the timer registers. Each register is 16 bits

e Load count registers 1,2 or 3
Loads number of points to be taken with each rate
for the buffered data. Total cannot exceed 8191.

e Select timing from counter 1,2 or 3
When taking real time data, selects which timer the
timing will be taken from.

e Start/Stop Timer
Starts or stops timer without waiting for remote
start.

e Allow/Disallow remote start

e Load Temporary program
May load a temporary program. Up to 15 may
be loaded as long as they fit into the memory
restrictions.

¢ Run Temporary program.

¢ Run diagnostic tests

e Load Status Register
This is an important register with hardware switches.
More will be explained later.

Hardware Design

The interface circuit itself is a small microprocessor system
with DMA (Direct Memory Access) capabilities for storing
data from the A/D converter. The CPU is an 8085A and
is used to control the states of the circuit and also to
generate a 2MHz system clock from which all the timing
is derived.

The A/D converter is a HAS1201 made by Analog
Devices. This unit has a 1.05MHz maximum conversion
rate, internal track and hold circuitry and 12 bit resolution.
The one drawback to this unit is that there is no end of
conversion signal. This is gotten around by tying the start
conversion signal and the register strobe together so that
the start conversion signal is also used as a pseudo end
conversion signal. This does mean that the output will be
delayed one period of the clock but this is only a minor
problem that can be compensated for by programming.

The system’s DMA control circuitry consists mainly
of two sets of four T4LS191 presettable up/down counters.
The first set is operated in count-up mode and is used to
generate the addresses for DMA operations. When the
CPU is held, the outputs of these counters are put on the
address lines and they are incremented every time there is
a start conversion signal. The other set is preloaded with
the number of data points to be collected and then counts
down with each start conversion signal until it reaches
zero and then it interrupts the CPU.

The system has four memory chips. The first one
is an 8k EPROM with the operating system on it. The
next is an 8k RAM for variables, the stack and a ny
temporary programs that might be loaded. The last two
are set up for DMA operations to be preformed on them.
One chip stores the most significant byte (MSB) and the
other stores the least significant byte (LSB) of the A/D
converter’s data word. These two chips share the same
address space when the CPU is held, but not the same
data bus, but when the CPU is operating, one chip is in
the 8k past the other and the two data busses are linked
into one.

The USART (Universal Synchronous/Asynchronous
Receiver/Transmitter) is the circuit’s link to the outside
world. The data received pin of the chip has been tied
to the RST5.5 interrupt on the 8085A, so that whenever
a command is received, it will be able to get the CPU’s
attention. This allows the chip to be stopped in the
middle of an operation.

The timing circuitry is the most complex part of
the circuit. The heart of the circuitry is the 8253-5
programmable interval timer. This chip has three 16-bit
gated, presettable repeating down counters. The outputs
of these counters are tied to the clock input of the next
counter, with the first tied to the 2MHz system clock.
Timer one has a 2MHz input, timer two gets its input
from timer 1 and timer 3 gets its input from timer 2. This
gives the chip the range of a 48 bit counter, but more
flexibility, because the outputs of these counters are also
multiplexed so that the counter that the start conversion

65

signal is derived from may be chosen from among the
three. The fourth input to the multiplexer is taken from
the device select logic for the A/D converter, so that a
conversion may be started by the CPU directly. The
gates for the counters are active high and the flip/flop
that controls this may be set either from the remote start
signal, or from a bit in the status register. The flip/flop
is reset when a terminal count is reached in the DMA
counter for the number of points to collect, or when it is
reset by setting the status register bit to zero. The final
piece of the timing circuitry is the status register. This
important register is used to set the modes of operation
for the circuit. Its contents are as follows:

Bit: Use:

0,1: Used as address for multiplexer to get start conversion

source.

1 allows remote start for timer,

0 remote start gives a CPU interrupt.

: Start timer

: DMA/CPU.

Remote start mask: 0 blocks remote start completely.

: Unused
Bits 2 and 5 work in conjunction with each other

where bit 5 will block the remote start signal completely,

but when it is set to allow the signal in, bit 2 will select

what happens with the signal, a 1 starting the timer

and a 0 interrupting the CPU. Bit 3 will start the timer

regardless of what else is on. Bit 4 selects what happens

when the timer starts. If it is a 1, then the CPU is held

and a DMA operation will be performed to collect the

data, otherwise the start conversion signals will also be

sent as CPU interrupts so the CPU will be able to collect

the data from the A/D converter directly. Finally bits 0

and 1 are used to encode the multiplexer, a 00 being the

device select for the A/D converter and the other numbers

being the respective timer registers on the 8253-5 timer.

2:

N0 w

6,

Buffered Data Collection Process

The multiple data sampling rates of the buffered data are
achieved through programming. First the timer registers
are each loaded. The first timing rate is put into timer
register one, the second into two, and the third into three.
Then the number of points to be taken is loaded into
the DMA register and the DMA address register is set
to the beginning of the DMA memory. Next the status
register is loaded to allow remote start on the timer and to
select DMA operation and finally start conversions from
timer 1. When the remote start comes, the data will be
collected until the end count is reached and the CPU will
be interrupted. The end count register will now be loaded
with the number of points to be collected at the second
rate and then the status register will be loaded. DMA
will be selected with the start conversions from timer 2,
but this time the start timer bit will be set so that as
soon as the register is loaded the timer will start and the
CPU will be held again. Now data collection will proceed
and when the terminal count is reached, the CPU will

be interrupted again. Now if a third set is to be taken
the process will be repeated but with data for the third
collection rate. The neat part of this system is that the
address register is only loaded at the beginning of the
process, so that it will continue to be incremented as the
data is taken, but the first point taken in a set of data
will be right after the last point taken in the previous set
because the register still contains the old number. After
the last set is taken the data will be sent out to the
Rainbow.

Data Analysis

The program that was written to analyze the data
is in FORTRAN-77 and uses routines from IMSL
to integrate the equations and RGL (ReGIS Graphics
Library) to make the graphics output on the Rainbow.

Some Basic Chemistry

In order to understand the program it is necessary to
first understand how equations for the rates of chemical
reactions are derived. First, all chemical reactions can
be broken down into a series of steps which describe the
reaction. These steps describe the interactions between
each of the species in the reaction. For example, take the
following reaction:

A+B+C—D+E

This equation means that reactants A, B and C combine
to give products D and E. This might be broken down
into the following mechanism:

A+ BXiuF

F+CcXta
Gﬂ»D-i-E
FE444+B
GEuF 4

D+ EX.g

A+crnE 41

Reactions 1 to 3 are the basic mechanism which gives
us the products but there are other processes which also
occur. Reactions 4 to 6 are the reverses of 1 to 3, and
7 is a reaction that uses the reactants up, but does not
contribute to the system of interest; this is a competing
or side reaction. All of these things must be taken into
account when developing chemical mechanisms. The k’s
over the arrows are called the rate constants. This is a
proportionality constant that helps tell how quickly each
step of the mechanism proceeds with respect to the others.

These mechanism steps are important because they
can be easily converted into differential equations showing

66

the rate that the step proceeds at. There are four types
of mechanism steps:

ALy, products
A — products
A+ B — products

A+ B+ C — products
These may be converted to a rate equation as follows:

v=>®I,
v = k[A]
v = k[A][B]

v = k[A][B][C]

In these equations the v is the rate of each step in the
mechanism above. The first equation is a photochemical
reaction so it is different from the rest. Here the rate
is proportional to the amount of light absorbed (I;) and
the quantum yield (®) which is the ratio of the number
of molecules that react to the number of photons of light
absorbed. The other ones are easier. The rate of the step is
proportional to the product of the concentrations (denoted
by the square brackets) of the reactants. Since the rate
for each step is proportional to the concentration of the
reactants, the rate constant converts this proportionality
to an equality. The rate constants are very important
quantities because a mechanism step does not depend
on what mechanism it is in. If the rate constant for a
particular mechanism step can be found in one mechanism
it will be exactly the same if that mechanism step is found
in an entirely different chemical reaction.

Now that we have the rates for each step in the
mechanism we can find the rate of change of each species
in the reaction. This is done by adding together the rate
of all steps where the species is formed and subtracting
the rate of all steps where the species is used up. For
example, take this sample mechanism:

A+B—C+D
C+E—F
F—C+E
C+D— A+B
With rate equations:
vy = k1[A][B]
v2 = k2[C][E]
vz = k3[F)
vq = k4[C][D]

From this we can see the rates of change for the some of
the species in the reaction would be:

al4] _

5t =-—v1+ vy

O[F

<[§t]= 27

5]
§=Ul—vz+vs—v4

These are a set of coupled non-linear differential equations
which can be numerically integrated, using the Gear
method because of the sizes of the terms involved, to give
concentration versus time for each species in the reaction.

Now that concentration versus time data can be
generated for a given mechanism and set of rate constants,
we can compare this with the experimental data for the
same reaction. When we find agreement between the two
this shows that we have discovered a plausible mechanism
and the corresponding set of rate constants. This approach
is used in the program to solve for the mechanism and
rate constants. One puts in a proposed mechanism and
rate constants, the computer integrates the differential
equations corresponding to that mechanism and then plots
both the experimental data and the calculated data on
the screen. The mechanism and rate constants can then
be modified until there is agreement between the two.

Running the Program

In order to use the program, the experimental data must
first be loaded into VAX data files. For photochemical
reactions, a VAX file must also be created giving the
light intensity versus time profile for the incident light.
After this is done the program may be run. It is
menu driven to make it easy to use. A mechanism, a
set of rate constants, and the initial concentrations are
entered into the program. They may be saved for later
use. The program will then automatically calculate the
differential equations so that they may be integrated.
This is an improvement over other kinetic simulation
programs where the differential equations are coded into
subroutines of the program and every time the mechanism
is changed that subroutine has to be rewritten. When
the program is run, it will plot both the experimental
and simulated concentration versus time data for any
chemical species in the reaction. Changes may be made
to the mechanism and the data may be replotted, all
interactively, until agreement is reached between the
experimental and simulated data. The program also gives
hardcopy of the graphs and the mechanism, as well as
tabular results of the data.

How the mechanism is stored

The data structure that was developed for storing the
mechanism is interesting. It consists of a series of arrays
where mazm is the maximum number of steps that can be
stored in the mechanism:

rtype(maxm): Type of reaction step.
nlhs(maxm): Number of reactants in step.
1lhs(4,maxm): Internal code for each reactant
in the step.
nrhs(maxm): Number of products in step.
rhs(4,maxm): Internal code for each product in

the step.

67

The data structure is simple and it allows a general
routine to evaluate the velocities (v) for each step as
follows:

function evalv(egn, j, i,t ,c)
implicit none
integer eqn, j, lp

C eqn is the step being evaluated
double precision t, c(j), i

C t is current time, c(j) is concentration

C of each species in the reaction
external i

C evaluates light intensity at time t
include’commondef.for/nolist’

C data structure for mechanism
goto(10, 20, 30, 40), rtype(eqn)
write(6,*)’ Error, no mechanism step’
write(6,*)’type ’,rtype(eqn)
stop

10 evalv= k(eqn) * i(t)
return
C photochemical
20 evalv= k(eqn) * c(lhs(1,eqn))
return
C single reactant
30 evalv= k(eqn) * c(lhs(1,eqn) *
* c(lhs(2,eqn))
return
C two reactants
40 evalv= k(eqn) * c(lhs(1i,eqn) *
* c(1lhs(2,eqn) * c(lhs(3,eqn))
return

C three reactants

end

This function will return as its value the velocity of
the mechanism step specified. It may be called by another
routine (see below) that evaluates the first derivative of
the function called by the DGEAR integration routine in
IMSL. This subroutine is defined as follows:

subroutine evmech(j, t, c, dc)
integer j, q, T
double precision t, c(j), dc(j),
* v, evalv
c(j) is concentration of each species
dc(j) is the first derivative returned by
this routine.
t is current time
external evalv
C function for velocity of mechanism step
include ’commondef.for/nolist’
C mechanism and other information
do 5 q=1,j
5 dc(q)=0.0d0
C zero array
do 10 g=1,m
v=evalv(q, j, t, ¢)

aaoaaa

S .. . —

These same techniques can be applied to the process
of evaluating assignments. When the material is due,
it can be collected electronically with the date and
time included. The speed and accuracy of collection
and evaluation provides better and more timely feed-
back to the student.

The ease of comparison of students programs makes it
easier for the instructor to identify duplicate code,
indicating undesirable collusion, while still en-
couraging students to work together to help each
other learn.

A spread sheet is maintained in the "leader account"
that is linked to one in the student library. The
student can examine a complete and up-to-date pro-
gress report at any time without access to the
source record.

Course Preparation of a Computer Course

Tests, handouts, syllabi, problems, solutions, and
sample programs are prepared by instructors using
the editor - word processor and the language inter-
preters and compilers. The heirarchical directory
structure encourages the cataloging of this material
in appropriate subdirectories. The instructor
accounts are assigned in groups by subject matter.
The normal default access protection is to share

the reading and executing of all files and direc-
tories with the other member instructors in the
staff account group. However, protection can be
changed when privacy is desired. The normal group
access encourages the sharing of materials. Team
activities frequently evolve. These can be formal-
ized for better organization by assigning a coordina-
tor to multi-section classes., The team approach
better reaches the part-time and night time instruc-
tor. The syllabus and handouts with dates, recom-
mended deadlines, and grading standards are collec=
ted and prepared by the course coordinator and dis-
tributed electronically to the individual instruc-
tors. These can be edited, added to and tailored

by each instructor.

Common problems can be detected and dealt with as a
group without the necessity of scheduling a group
meeting.

These management activities are a bonus in that they
place little, if any, burden on the computer system.
Most of the activities take place at off péak times
when there is no contention for ports. Instructors
with modems can do much of their activity at times
when there are few, or no, other users on the sys-
tem.

Some of these activities can be performed by stand-
alone micro computers, but many of the benefits are
lost without the communication and central file
storage system provided by a minicomputer. The
specifics required for an operating system to sup-
port the endeavors described above are: Multi-
tasking capabilities, heirarchical directories, and
a modifiable command language such as UNIX or VMS
with adequate protection schemes. The new wave of
micro computers based on 32 bit processors should
provide superb and cost effective delivery systems.

70

APPENDIX

Managing a Class Leader account

Example: Leader account name [BASQ.BASQO0]
Student account names [BASQ.BASQOl] to [BASQ.BASQ30]
Library access LIB:
Master library CPSLIB:

Local VMS commands

upP
DOWN
NEXT
HOME
CAT

Commands for viewing student directories

$ DIR or CAT [BASQ.BASQ*] All accounts in group
$ DIR or CAT [BASQ.BASQl0) Student number 10

$ DIR or CAT [BASQ.BASQ*]*.BAS All source code files
$ DIR or CAT [BASQ.BASQ*]*.EXE All executable files

Commands to view student files

$ TYPE [BASQ.BASQ*]#*,* All files
(Unwise to type EXE files)
$ TYPE [BASQ.BASQ*]#*.BAS All source code
$ TYPE [BASQ.BASQ*]#*,0UT All output files
$ TYPE [BASQ.BASQ*]PROBl.* All PROB1 files
$ TYPE [BASQ.BASQ*]PROB1.OUT PROB1 output files

Commands to check the operation of a student file

$ RUN [BASQ.BASQ10]PROB1.EXE Runs a student program
$ PRINT [BASQ.BASQ*]PROBl.BAS Prints students source

Commands for checking errors by bringing students source file
to the instructors account.

$ DIR [BASQ.BASQ1l0]

$ COPY [BASQ.BASQl0]PROB1.BAS PROBl_10.BAS

$ BASIC

Ready
RUN PROB1_10.BAS

The above commands print to the screen. A file of this
output can be created for later printing by using a simple
command procedure that redirects the screen output to a file.
This process is controlled by assigning a short symbol to run
the command procedure.

FIGURE 2

71

$! Procedure directs system output of commands made in default

$! directory to a temporary file in the default directory then

$! restores the terminal to normal operation.

$! by Claude M Watson May 2, 1985

$!

$ DEFINE SYS$OUTPUT TEMP_FILE.PRT !Assigns system output to a file.

$ SET TERM/NOANSII/NODEC !Sets terminal to ignore escape
! sequences

$ 'P1' 'P2' 'P3! !Accepts up to three words

$ DEASSIGN SYS$OUTPUT !Returns system output to terminal CRT

$ SET TERM/ANSII/DEC=2 !Resets terminal to recognize escape
!sequences

Sample of files in LIB: the 9th week of the Winter Term 1987.

$ @PRINTSCREEN CAT LIB:
$ PRINT TEMP_FILE.PRT

Directory L$CPS_:[L$CLS.L$BASQ]

BUBBLE.EXE;1 10/10 31-MAY-1986 17:41 (RWED,RWED,RE,RE)
LAB5.DIA;2 3/3 13-FEB-1987 15:19 (RWED,RWED,RE,RE)
LOGIN.COM;1 1/1 12-MAY-1986 08:25 (RWED,RWED,RE,RE)
MESSAGE.DOC;16 2/2 9-MAR-1987 12:10 (RWED,RWED,RE,RE)
MESSAGE1.DOC;1 1/1 9-JAN-1987 15:48 (RWED,RWED,RE,RE)
MESSAGE2.DOC; 1 1/1 5-FEB-1987 11:00 (RWED,RWED,RE,RE)
MESSAGE3.DOC;1 2/2 6-FEB-1987 07:52 (RWED,RWED, RE,RE)
MESSAGE4.DOC;1 2/2 16-FEB-1987 11:49 (RWED,RWED,RE,RE)
MESSAGES.DOC;1 1/1 17-FEB-1987 13:36 (RWED,RWED,RE,RE)
MESSAGE6.DOC;1 1/1 27-FEB-1987 11:46 (RWED,RWED,RE,RE)
OLD.DIR;1 2/2 7-JAN-1987 14:04 (RWE,RWE,RWE,RE)
PIC2.DAT;1 14/14 21-MAY-1586 08:27 (RWED,RWED,RE,RE)
PIC3.DAT;1 13/13 21-MAY-1986 08:27 (RWED,RWED,RE,RE)
PIC4.DAT;4 13/13 10-JUN-1986 12:40 (RWED,RWED,RE,RE)
PIC5.DAT;3 15/15 10-JUN-1986 12:41 (RWED,RWED,RE,RE)
PIC6.DAT;3 9/9 10-JUN-1986 12:42 (RWED,RWED,RE,RE)
RESUME.QUES ;1 1/1 9-JAN-1987 15:53 (RWED,RWED,RE,RE)
SAMPLE.BAS;1 2/2 10-FEB-1987 09:56 (RWED,RWED,RE,RE)
SES.EXE;1l 9/9 25-MAY-1986 12:20 (RWED,RWED,RE,RE)
SORT.EXE;2 20/20 19-MAY-1986 09:17 (RWED,RWED,RE,RE)
STRING2.S86;10 17/17 5-JUN-1986 12:13 (RWED,RWED,RE,RE)
STR EXAMP.BAS;11 4/4 2-JUN-1986 10:00 (RWED,RWED,RE,RE)
STR_EXP.BAS;3 7/7 4-JUN-1986 15:01 (RWED,RWED,RE,RE)
STR_EXP.EXE;1 10/10 4-JUN-1986 16:22 (RWED,RWED,RE,RE)
T2 Q22.BAS;1 4/4 16-FEB-1987 16:14 (RWED,RWED,RE,RE)
TAB.DAT;1 11/11 16-NOV-1986 21:28 (RWED,RWED,RE,RE)
TRANS . DAT; 4 1/1 30-JAN-1987 10:26 (RWED,RWED,RE,RE)

Total of 27 files, 176/176 blocks.

FIGURE 1

72

FACULTY RETRAINING

Edward A. Boyno
Montclair State College
Upper Montclair, New Jersey 07043

Suggestions on programs for retraining faculty in Computer
Science from someone who has been through such a program.

There are 21 colleges and Universities of the
state of New Jersey ranging from Princeton Universi-
ty on down to unaccredited schools, and a score of
two year institutions. For reasons that are similar
everywhere, they have difficulty attracting and re-
training instructors of Computer Science. During
the past 10 years, enrollment in their Computer Sci-
ence programs has mushroomed. The only staffing
solution available before 1984, and still the most
used solution, was the employment of adjuncts for
many of its courses. A solution that I suspect is
widely used elsewhere. Because of the number of
"high tech" industries in our region (Bell Labs, for
example) as well as a number of pharmeceutical and
insurance companies we are, in general, able to get
high quality part-timers, but the situation is still
not good.

In 1983, The Department of Higher Education
(DHE) proposed to increase the pool of available,
full-time, Computer Science instructors by retrain-
ing certain of its existing faculty. I was a par-
ticipant in the first year of the "Faculty Retrain-
ing Program" (FRP), an admitted guinea pig. It is
this program that I'd like to speak about today.

I hold a Ph.D. in pure mathematics from Rutgers
University. Prior to the summer of 1984 I had had
zero experience with computers and I was (and am) a

full-time faculty member at Montclair State College

Proceedings of the Digital Equipment Computer Users Society

a former "teachers' college" that now offers a full
range of liberal arts courses and grants masters de-
grees in several areas including computer science.

I am exactly the person that the FRP was aimed at (I
almost said "designed for" but "aimed at" is more
accurate). I was one of thirty persons that began
the program. All but three of us held a Ph.D. in

one of the natural sicences, the other three held
masters degrees in mathematics. All but three of us
held tenure, and almost exactly half of us were in
the senior ranks. We were not a shabby group.

About half were mathematicians, and most had had
no previous experience with computing beyond the hob-
byist level. Its fair to say that I was the modal
student (if not a model one).

The program consisted of a fifteen month course
of study from June 1984 to August of 1985 held at
Stevens Institute of Technology in Hoboken, New Jer-
sey resulting in an MS degree. The curriculum was
developed by the DHE in conjunction with Dr. Lawrence
Levine, the programs director, and the Computer Sci-
ence faculties at Rutgers and Stevens.

Stevens is a Ph.D. granting institution that is
widely reputed, at least in the East for its Engi-
neering and Applied Mathematics programs. It is one
of the Colleges and Universities that have a special
relationship with DEC. Every incoming freshman must

purcahse a PRO-350, at a very low price, and more

Nashville, TN - 1987

recently, they've received a grant to, essentially,
network the entire campus. In passing I must note
that Stevens possesses THE most spectacular view
imaginable of the New York shyline.

As you might guess, the hardware availabe to
us was exclusively from DEC. Levine had wangled the
exclusive use of nine 350's for us. There were sev-
eral other 350's one of which was connected to a
VAX, used by other Levine students for CAI develop-
ment and were occasionally had accessible to us.

We were also given student accounts on a DEC-10 that
is available for instructional purposes.

The courses we took were with a couple of nota-
ble exceptions usual graduate courses that is we
weren't spoon fed special courses. We were, however
placed in special sections, took our courses in lock
step and (importantly, it turned out) were not
given the freedom to choose our instructors.

The faculty for the program for the most part
full-time Stevens staff (for whom, though, we were
well paid overload). We did have two adjuncts, one
of whom was a "regular" part-timer, the other being
a special import.

For the duration of the program, a variety of
undergraduate students were avaiiable to help us
learn the machines we used and with programming
difficulties. I'm going to have some not-particu-
larly-pleasant things to say about Stevens, but no
criticism at all can be attached to these "kids".
They were uniformly pleasant, bright, knowledgeable
and PATIENT.

Last, but by no means least, is the method in
Tuition at

which the program was financed. Stevens

for an MS degree is something over $10,000. The
DHE, fearful that we would take our degrees and run,

refused to grant us the money preferring to LEND it

74

to us and then to forgive the loan at the rate of
25% per year, thus binding us to the State for four
years. When I joined the program, I did not under-
stand the nature of the fiscal responsibility I was
accepting, believing the assurances of the DHE and
Dr. Levine that all would go well in the long run.
It was not until a month after we had all signed
promissory notes for the first half of our tuition
that the excrement hit the fan. The awakening came
in the nature of the loan forgiveness agreement that
the DHE had promulgated. It seemed that if FOR ANY
REASON we were unable to complete the program in the
allotted time, we would become liable for the entire
loan. Completion of the program was defined to be
the successful receipt of the MS degree. There was
absolutely no provision made for someone leaving the
program because of illness or family emergency.
There was no provision made for people who simply
found the program unsuitable to their needs. There
was no provision for anything! Needless to say, we
were more than a little unhappy with this and nego-
tiation did produce a marginally acceptable agree-
ment, but I still can't go on sabbatical without
risking abrogation of the agreement. If there's any
lesson to be learned from the Stevens program it is
that other ways must be found to finance such pro-
grams if faculty are going to join them. I might
add that in a second cycle, when all the monetary
facts were known to the participants AND an escape
provision that we did not have was added, only
twelve people joined the program. A third cycle has
had to be cancelled.

As I begin my discussion of the program per se,
I'll ask you to keep in mind that, at all time, all

of us were aware that if we washed out, it would

have been in a sea of red ink.

For me, and I reiterate that I consider myself

the absolute average participant, the fifteen months
that I spent in the program were a nightmare. A
year later I can see the worth of what I've received
much more clearly, but the rate of return will have
to accelerate if I'm ever to recover the physical
and psychical costs.

It is clear to me that I myself was responsible
for at least some of my problems. Most mathemati-
cians view computer science with disdain. I've
learned the hard way that it's a discipline of its
own. However, in June of 1984 I still thought that
I would breeze through the next year or so with lit-
tle if any effort, I would even go so far as to say
I was anticipating a year and a half of vacation.
Thus, I was completely unprepared for the shock of
being a student again.

I resented having to fight with other students
for parking places. I'd forgotten what it's like to
wait on line for an hour at a college bookstore, or
what it's like to argue with a clexk in the business
office over an error in a bill. I learned the joy
of being all ready to get to work only to find that
the terminal room was locked and the only secretary
who had a key had just left for a two hour lunch.

I found it terribly hard to have to study some-
thing that I wasn't an expert at. Submitting to
someone else's classroom discipline was also very
hard and taking tests again was dreadful experience,
especially when I got a "B" on my very first one.

In shoxt I HATED being a student.

Any program of this sort is going to invelve a
certain amount of "Student Shock Syndrome" but in
our case absolutely nothing was done to alleviate
it. If good financial arrangements is lesson num-—

ber one of Retraining programs, then making provi-

75

sion for easing the participants back into the class-
room must be lesson number two. I understand that
the original plans for such programs called for
counselors to be available to minimize ego damage we
certainly could have used one.

Let me turn my attention for a second to the
actual course of study that we followed. As I said,
it's been a year now, a year in which I've taught
several Computer Science courses, and I look back on
the curriculum with somewhat more expert eyes.

Our first summer was designed to "bring us up
to snuff" mathematically and computer-scientifical-
ly(?). We were given courses in discrete math
structures, probability and "Intro. to Computer Sci-
ence I and II", one of only two courses specifically
created for us.

What we weren't given was a course

in programming! The "Intro." course did contain a
small programming component but for the most part we
were expected to learn PASCAL on our own. Lesson
number three: give the retrainees a programming
course. The lack of same haunted many of my fellows
for the rest of the program.

In the fall of 1984 we took three courses:
Data Structures, Machine Architecture and Program-
ming Languages I. I have no complaints about any of
these but in hindsight it would have been much better
to eliminate the ill conceived summer courses and
replace them with a real programming course and Data
Structures. The only exposure to assembly language
programming I've had to date was tiny little bit
of "MACRO 10" (The "quaint and curious" MACRO 10 as
one of my colleagues called it) in the "Architec-
ture" course and while I haven't yet noticed a pro-
nounced gap in my background, I really wish we'd
been given a real course in a "real" assembly lan-

guage. Typical of the program as well, the assembly

language segment of the curriculum which could have
come almost anytime after the first two weeks, was
postponed until the last three weeks to ensure that
we'd have the maximum competition with other stu-
dents for machine time!

The spring of 1985 was consumed by Finite Auto-
mata, Operating Systems and Programming Languages
II. Which later turned out to be a course in Com-
piler design. In that semester, I taught two grad-
uate courses, wrote an operating system for a simu-
lated machine and wrote a compiler for a subset of
PASCAL. It

nearly killed me.

Lesson number four: Give faculty full releas-

ed time for the retraining program.

Lesson number five: If you violate lesson num-

ber four at least organize the courses so that the
programming intensive course don't all fall in the
same time period.

Spring '85 was very bad time for me an many of
my colleagues. The stress had accumulated to a ter-
rible level. As bad as my description of this sem-
ester might sound, it was much worse.

To explain some of our distress, I have to
spend a few minutes talking about the men who staff-
ed our program. I really expected that Stevens
would trot out their best and brightest faculty for
this program ... after all, I'm in a position to
counsel students on their choice of graduate pro-
grams, so if for no other reason than adveritising,
I expected to be dazzled. What we got was pretty
much a cross section of their faculty. Two were ab-
solutely brilliant, others were good, some were aw-
ful., We saw an instructor who sometimes seemed
uncertain of his SUBJECT matter and another who no
more belonged in the classroom than I belong in the

Green Berets, We had an instructor who threatened

76

to fail some of us if we didn't stop complaining
about him. We had an instructor who put a question
on an exam that couldn't be answered with the given
information (his solution for the problem was bla-
tantly fallacious). A couple of our instructors
literally played favorites. Pet students didn't
have to do all the work that the rest did. 1In an-
other course, all of programming assignments were
graded by other, "regular", graduate studnets and
I'll go to my grave believing that this one, merci-
fully anonymous person, assigned grades by counting
the number of comments in the program. I hope you
can understand that we often had the feeling that
grades were being distributed in a essentially ran-
dom manner., If you recall, we could be expelled
from the program (thus assuming what was by now a
debt of over ten thousand dollars) if, for any rea-
son, we didn't complete the masters program on time!
At the time, I considered it completely possible
that one of these capricious instructors would give
me an F for no other reason than that I had been a
very vocal critic of the program. (By this time I
had already published a highly critical article in
the New Jersey AAUP newsletter). Some of my col-
leagues were struggling along with exactly "B" aver-
ages, for them a "C" would have been fatal. Let me
add that some of my impressions of the program have
softened after a year or so, but I'm still convinc-
ed that the grading at Stevens Tech is a stochas-
tic process.

Lesson six: Choose your faculty very careful-
ly.

I can't emphasize this too strongly. A class-
room full of experienced college faculty members is
a far different audience than the run of the mill

graduate class. We were very demanding consumers.

We could spot lack of preparation, bluffs, laziness
and all of the other bad habits that poor instruc-
tors fall into, and, as I've alluded to, we com-

our weaknesses were not

plained loudly. Moreover,

the weaknesses of a "normal" class nor were our
strengths. One instructor constantly berated mem-
bers of my group for being poor programmers but made
no attempt to improve our programming skills, anoth-
er spent hours teaching us Boolean Algebra when it
was clear that most of us knew a lot more about it
than he did. The people at Stevens were clearly un-
prepared for a class such as ours. Very little was
done to shore up our weak points and nothing was
done to take advantage of our considerable
strengths. In fact, I think it's fair to say that
they seemed surprised we possessed skills that might
be of use to the program.

Lesson seven: Tailor the program to the stu-
dents.

Let me return to my main narrative., Most of us
did survive the Spring of 1985 despite the fact that
we often felt like the characters of Sartre's No
Exit.

Summer of '85 was an anti-climax. Levine had
managed to provide a selection of courses for us to
choose from, allowing us to select two of "Expert
Systems", "Database Management", "Computation Chem-
istry" and for the mathematicians, "Program Verifia-
bility and the Theory of Computation" (the second of
the specially provided courses and an absolutely
brilliant course it was). We finished the program,
again in lock step, in "Systems Programming" and
"Algorithms". As before, I've since learned the
value of these courses and have no quarrel with any-
thing except the fact that they came last. The

"Systems Programming" course probably should have

77

come before either the "Operating Systems" or the
course in compilers.

This last leads me naturally to the most seri-
ous flaw in the program (after the financial ar-
rangements) the overall lack of coordination and
planning. In the course of fifteen months I wrote
no fewer than four machine simulators (interpretors)
for four different courses. It seems to me now that
it would have been so easy to agree on a simulator
so that students could write practice operating
systems and the like and to use that simulator for
the entire program building on it as they went a-
long. I know of at least one such simulated machine
that is specifically designed for that purpose.

I'm going to hazard a final piece of advice:

Lesson eight: Plan carefully.

There are many substantive questions that have
to be asked and answered before any project of this
sort is undertaken and I'd like to pose some of them
for you. What ought to be the most obvious (but did
not seem to occur to any of the people involved in
planning the Stevens project) is "What sort of
Computer Science are we talking about?". At Rut-
gers, Stevens and in fact at Montclair State, our
programs are highly mathematical as opposed to what
one might call Data-Processing-intensive. It's very
clear to me now that the lack of mathematical back-
ground was a great handicap to the non-mathemati-
cians in my group. Those of you with training in
mathematics will understand that there is a "mathe-~
matical" way of thinking about things that many
"laymen" have difficulty acquiring. (It is my per-
sonal belief that the ability to think "mathematic-
ally" is a talent like drawing or hitting a baseball
that some very intelligent and/or gifted people just

don't have.) There is some mathematical component

in any reasonable Computer Science curriculum but
I'm sure that it could be minimized.

This first issue leads me directly to the sec-
ond: Which faculty will you retrain? There are a
good number of college presidents right now who
would love to turn their Geography departments into
a nest of computer scientists but even if the Geo-
graphers were willing, I'd question whether the
transition could be successful on a side scale.

Most Social Scientists and experts in the Humanities
that T know simply don't have the mathematical back-
ground to just jump in an study Computer Science.

I can see a Computer Science program with no course
in Finite Automata and maybe you could avoid a
course in algorithms, but I can't see leaving out
Data Structures and I can't see Data Structures
without very mathematical things like "Trees" and
"Recursion".

Rumor has it that the DHE originally planned
to invite ANY faculty member in the state to join
the program. Mercifully, wiser heads prevailed!

Another important consideration, I think is
the matter of awarding degrees. Few of the programs
that I've seen offered to do so. A year ago I would
have agreed that the "training was the thing", but
now I'm not so sure. I'm glad to have the formal
recognition of my accomplishment and Montclair State
is pleased to display my new credential in its cata-
log. People in academia seem to place great store
by letters after ones name.

Finally, and I always seem to wind up here, is
the matter of paying for the whole thing. It seems
to me that an organization that benefits from a re-
training program ought to be the one that pays for
it. That seems simple enough, but at least one of

the people that started at Stevens with me but who

78

had to leave at the half way point is paying off a
$5000 bill.

It is my strongly held belief that any such
program should be completely funded by the agencies
that sponsor them. Books and other materials should

also be paid for (mine were not) and the grant should

be as free of strings as possible.

Using VAX/VMS to Teach Computer Organization

Linda Lankewicz
Spring Hill College
Mobile, Alabama

Abstract

VAX/VMS provides tools which enhance the teaching of Computer Organization
and increase the likelihood of achieving the course objectives. These include the
Debugger, the TPU editor, and System Services and Run Time Library routines.
Students need concrete experiences when mastering material in a foundations course.
Using these VMS features, the professor can provide students with sufficient materials
so that they can grasp the details and have an opportunity to consider the broader

picture of the operating system environment.

Computer Organization is the first upper division course
taken by computer science majors. The course prerequisites
are two programming courses in which students solve prob-
lems using a high-level language. Computer Organization in-
troduces students to computer architecture and the machine
instructions used to invoke activity within the framework of
that architecture.

The course is a hurdle in the computer science curricu-
lum which must be mastered before continuing in the pro-
gram. Based upon their success in the course, students decide
to major or minor in computer science or to change majors.
Students consider the course difficult because of the amount
of material that must be covered and because of the unfamil-
iarity of the subject. Faculty consider the course difficult to
teach because the students’ experience is limited and because
there are few supporting instructional materials available. The
professor would like to stimulate the students and challenge
them without discouraging them.

While some students will take a second organization
course later, the goal of the first course is to introduce stu-
dents to the underlying organization of a computer. The first
course COvers

o the representation of information in the computer
e processor and memory structure

e assembly language programming

o the operation of the assembler and the linker

The tendency might be to spend most of the time on the
syntax of an assembly language. One would prefer that stu-
dents leave the course with more than that. When a subject
has as many intricacies as assembly language, students be-
come immersed in details. They tend to see the trees rather
than the forest, intent on the brackets used in the displacement
mode rather than considering the advantages of selecting one

Proceedings of the Digital Equipment Computer Users Society

79

addressing mode over another. While it is difficult to over-
come this, students should be given the opportunity to reach
a higher level of understanding.

The goal in a Computer Organization course is that the
student understand the relationship between a computer’s orga-
nization and programming. In reaching that goal the objectives
for the student include the following:

¢ understand how information is represented in a computer
system

o understand how simple data structures such as pointers,
arrays, and stacks are implemented

¢ understand how programming features such as procedure
calls, recursion, and macros are handled

e program in an assembly language

When devising course objectives, one should consider
how the course fits into the curriculum. The goal of Com-
puter Organization is not so much to provide students with
proficiency in another language, but to give them the foun-
dation for understanding a computer system which will be
needed in the Data Structures, Organization II, and Operating
Systems courses.

Students should leave a Computer Organization course
with a clear picture of the utility of data structures such as
pointers and stacks. In this course, students can see how these
data structures are implemented on a machine. This view
will be helpful when using the data structures in a high-level
language. Students in Computer Organization should become
comfortable with calling procedures and passing parameters
from both internal and external modules including modules
written in different languages. These ideas can be expanded
later in the Operating Systems course to demonstrate principles
of interprocess communication and synchronization.

Students need concrete experiences when mastering ma-
terial in a foundations course. VAX VMS provides tools which

Nashville. TN - 1987

enhance the teaching of Computer Organization and increase
the likelihood of achieving the course objectives. These in-
clude the Debugger, the TPU editor, and System Services and
Run Time Library routines. Using these VMS features, the
professor can provide students with sufficient materials so that
they can grasp the details and have an opportunity to consider
the broader picture of the operating system environment.

The Debugger is an excellent tool for programming at
any level. Students should be introduced to the Debugger in
their first programming classes. But the Debugger is espe-
cially effective for teaching Computer Organization. Using
the Debugger at the beginning of the course when considering
how information is represented in a computer allows students
to see the twos complement representation of negative num-
bers; the binary, hexadecimal, and decimal representation of
integers; and the difference between the ASCII, integer, and
floating point representation.

The Debugger command to examine data in memory
is EXAMINE. The qualifier /BYTE, /WORD, /LONG, or
/QUAD can be used to specify the size of the memory to
be examined. The qualifiers to specify the data type include
/ASCI], /INTEGER, /BINARY, /HEX, and /FLOAT. The de-
fault display consists of integer longwords in hexadecimal.

In the assembler program shown below, memory is desig-
nated for the variables ATWO, ITWO, FTWO, NTWO which
contain the ascii, positive integer, floating point, and negative
integer representations of the number two.

atwo: .ascii /2/
itwo: .long 2
ftwo: .float 2
ntwo: .byte -2
.entry program, “m<>
movl #1,r0
ret
.end program

Using the Debugger, a student can observe how these
representations differ. The command EX/BYTE/BIN ATWO
displays the ascii two stored in ATWO. One byte is displayed
in binary as 00110010. The command EX/LONG/BIN ITWO
displays the longword integer representation of ITWO in bi-
nary while the command EX/LONG/BIN FTWO displays the
floating point representation of the number two. The command
EX/BYTE/BIN displays the twos complement representation
of a negative two as shown in figure 1.

The Debugger can be used for class demonstrations in-
teractively or by capturing a Debugger session. A captured
session is safer when it is important to ensure that specific
material is covered in class. The commands to capture De-
bugger sessions are listed below. The commands and resulting
output of the Debugger session will be recorded in a file, and
that file may be displayed for the class in an editor or printed
on overheads.

DBG> SET LOG filename
DBG> SET OUTPUT LOG

80

Capturing Debugger output does not provide students with the
full-screen display that is useful when stepping through ma-
chine code. The interactive use of the Debugger can stimulate
discussion if students are asked "what if” questions about the
outcome of Debugger sessions. For the source code shown
below involving subtracting, incrementing, and adding values,
students can discuss the outcome of each instruction while the
professor steps through the code interactively.

w: .byte 0

X: .byte 127

y: .byte 9

z: .byte 11
.entry program, “m<>
subb3 Z,Y/W
incb X
addb V,Z
movl #1,r0
ret
.end program

When discussing the processor structure, interactive De-
bugger displays are useful because the contents of the regis-
ters can be seen. The register display on the upper right of
the screen can be invoked with the command DISPLAY REG
or with the keypad keys PF1 7. Registers O through 15 are
displayed along with part of the stack and the Process Status
Word (PSW).

While stepping through code, students can see how the
Program Counter (PC) maintains the location of the next in-
struction. In the Debugger display shown in figure 2, the PC
is pointing to address 0000020D which is the next instruction
to be executed as indicated by the arrow in the source code.

Also apparent is the use of register 0 for a status code
at the end of each program. Moving the number one into RO
indicates the successful completion of a program. Students
can move other numbers into RO to see the resultant error
messages. They begin to understand that their source code
is a routine that executes within a larger framework of the
operating system.

A classroom demonstration of how the PSW bits are set
when negatives, zeroes, overflows, or carries are encountered
helps students understand how branching is accomplished. For
the same source code shown above, the register display pro-
vides information as to the setting of the PSW bits. Students
can see the bits change as each instruction is executed. See-
ing the effect of each instruction on the PSW bits leads to
a discussion of branching. In the example shown above, the
subtraction instruction has been executed subtracting 11 from
9 giving -2. The negative and carry bits have been set. A
branch-if-negative (BNEG) instruction at this point would re-
sult in a branch because the N bit of the PSW is set.

The Debugger is also useful for demonstrating how point-
ers work. Students can see that an address of a value is placed

-OUT -output
.MAIN.\ATWO:
.MAIN.\ITWO:
.MAIN.\FTWO:
.MAIN.\NTWO:

00110010
00000000
00000000
11111110

00000000 00000000 00000010
00000000 01000001 00000000

Figure 1: Debugger Output

INST -scroll-instruction REG
00000206: suBB3 B~.MAIN.\Z |R0:00000000
>0000020D: INCB B~.MAIN.\X |R1:00000000
00000210: ADDB2 B~.MAIN.\Y |R2:00000000
00000215: MOVL S~#01,R0 |IR3:7FF47394
00000218: RET |R4:00000000
|[R5:00000000
|R6:7FF47049
|R7:0001E4DD
|R8:7FFED052
|R9:7FFED25A

IN:1 Z:0

R10:7FFEDDD4
R11:7FFE33DEC
AP :7FF473CC
FP :7FF47384
SP :7FF47384
PC :0000020D
@AP:00000006
+4:7FFE6440
+8:7FF9802C
+12:7FFE640C
v:0 C:1

@SP:00000000
+4:00000000
+8:7FF473CC

+12:7FF473BB

+16:000008A7
+20:000005FF
+24:00000005
+28:00000204
+32:00000000
+36:00000001
+40:0000000D

Figure 2: Debugger Output

in a register or in memory and referenced indirectly. Often
students have a vague idea of how pointers work when using a
high-level language. Once they view pointers at the Debugger
level, they understand the concept.

The advantage of using pointers can be shown with an
example using arrays. Students might be asked to consider
the addition of the contents of two arrays. They might suggest
adding each item in one array to the corresponding item in the
second array as shown below. For word arrays containing 100
items, it would be necessary to have 100 ADDW instructions.
(See figure 3)

Then students can be shown how to accomplish the task
by using registers to hold the addresses of the arrays as shown
in figure 4. The arrays are added by referring to them indi-
rectly using the registers. Students can see that the amount of
code is reduced since each array item can be referenced in a
loop by the register name rather than by individual memory
locations. The advantage of using a pointer becomes apparent
since incrementing the pointer enables one to reference the
entire array.

The source code for the above treatment of arrays is
shown below. Stepping through this code with the Debug-
ger allows students to see how RO is used as a counter for
looping, how array addresses are stored in R1 and R2, and
how these pointer registers are incremented by two in order to
reference the next words in the arrays.

num=4
arrayl: .word 5,2,8,9
array2: .word 4,6,9,2

’

81

.entry program, “m<>
#num, r0
arrayl,

array2,

start: movw
moval

moval

rl
r2

addw
addw
addw
decw
bgtr

(rl),
#2, rl
#2, r2
r0
loop

loop: (r2)

movl #1, rO0
ret
.end program

This demonstration can be altered to cover autoincre-
ment, indexed, and displacement addressing modes. For ex-
ample, the ADDW instruction shown above can be altered
to ADDW(R1)+, (R2+ for autoincrement mode. Students
have difficulty perceiving why addressing modes are neces-
sary. Using the Debugger the professor can present a natural
progression of addressing modes for handling large blocks of
information.

One problem associated with teaching assembly language
is how to accomplish I/O before students have been introduced
to macros or procedure calls. I/O routines can confuse the
issues at early stages of the course. Students need to examine
contents of memory and registers, to view results in binary or
hexadecimal, and to step through a program to see branching

in terms of the PC and the PSW. I/O routines alone would not

ARRAY2

ARRAY2+2
ARRAY2+4
ARRAY2+6

ARRAY1 ARRAY2

5 4 ADDW ARRAY1,

2 6 ADDW ARRAY1+2,

8 9 ADDW ARRAY1+4,

9 2 ADDW ARRAY1+6,

Figure 3: Arrays

ARRAY1 ARRAY2
R1l: address of -> 5 R2: address -> 4
of 2 of 6
ARRAY1 8 ARRAY2 9
9 2

Figure 4: Arrays

provide these experiences.
Even after students use macros or subroutine calls for I/O,
the Debugger is useful for demonstrating the following:

e subroutine branches vs procedure calls
o referencing arguments by AP or SP

e passing parameters by value, by reference, or by descrip-
tor

e internal and external routines

These ideas are important for later courses. A Data Struc-
tures class may require that a user stack be created for the
passing of parameters. An Operating Systems course may
demonstrate the readers and writers algorithm for interprocess
communication by calling system routines. Students under-
stand these concepts better when they have worked with them
at the Debugger level.

In the source code shown below, four arguments are
pushed onto the stack: the address where the result will be
stored, the number 4, the number 3, and the number 2. The
subroutine CALC is used to multiply the first two arguments,
add this to the third argument, and store the result in memory.

result: .long
.entry program, “m<>
pushal result
pushl #4
pushl #3
pushl #2
jsb calc
addl #16, sp

82

ret

calc:
mull3 4(sp),8(sp),xr6
addl3 r6,12(sp),Q@16(sp)
rsb
.end program

The arguments are referenced using the SP. The three
numeric arguments are referred to as 4(SP), 8(SP), and 12(SP).
In the Debugger display shown below, students can see why
these arguments are referenced in this manner. They see that
the JSB command causes the address needed for the retun
from the subroutine to be placed on the stack so that the first
argument would be 4(SP). The use of @ 16(SP) for storing the
result could be confusing, but the Debugger display shows that
16(SP) contains an address for the result, making it necessary
to use @ 16(SP).

The PC in the display in figure 5 is at 21F. The return
from the subroutine (RSB) is accomplished by popping the
return address 215 from the stack. After the return from the
subroutine, the instruction ADDL #16,SP is used to change
the SP rather than popping the arguments off the stack.

This same program can be altered to demonstrate the use
of CALLG and CALLS. In the source code shown below, the
code for CALLS appears to be almost identical to that using
JSB. However, the differences become apparent when using
the Debugger. The CALLS causes a call frame to be pushed
onto the stack. This call frame contains the masked R6, the
old FP and AP, and the address 216 for restoring the PC after
retuming from the CALC routine. The arguments which were
on the stack are now referenced by the AP. Thus the multiply
instruction becomes MULL3 4(AP),8(AP),R6.

R10:7FFEDDD4 (@SP:00000215
R11:7FFE33DC +4:00000002
AP :7FF473CC +8:00000003
FP :7FF47384 +12:00000004
SP :7FF47370 +16:00000200
PC :0000021F +20:00000000
@AP:00000006 +24:00000000
+4:7FFE6440 +28:7FF473CC
+8:7FF9802C +32:7FF473B8
+12:7FFE640C +36:000008A7

v:0 C:0 +40:000005FF

Figure 5: Debugger Output

INST -scroll-instruction REG
00000204: ENTRY MASK “M<> |RO:00000000
00000206: PUSHAL B~.MAIN.\RE |R1:00000000
00000209: PUSHL S*#04 |R2:00000000
0000020B: PUSHL S*#03 |R3:7FF47394
0000020D: PUSHL S*#02 |R4:00000000
0000020F: JSB L~.MAIN.\CA |R5:00000000
00000215: ADDL2 S*#10,SP |R6:00000006
00000218: RET |R7:8001E4DD
00000219: MULL3 B~04(SP),B”~ |R8:7FFED052

>0000021F: ADDL3 R6,B~0C(SP) |R9:7FFED25A
00000225: RSB IN:0 z:0

result: .long
.entry program, “m<>
pushal result
pushl #4
pushl #3
pushl #2
calls #4,calc
ret
calc: .word *m<r6>
mull3 4(ap),8(ap),r6
addl3 r6,12(ap), @16 (ap)
ret
.end program

Using the Debugger students can see how returning from
the CALLS causes the removal of the call frame from the stack
and the restoration of the registers to their prior states. This
idea is important in understanding how recursion and context
switching are implemented.

A similar demonstration can be used with the CALLG
procedure call. An argument list is created instead of using
the stack. The CALLG instruction includes the names of the
argument list and the called routine.

result: .long

args: .long 4,2,3,4
.address result
.entry program, “m<>
callg args, calc
ret

calc: .word *m<r6>
mull3 4 (ap),8(ap),r6
addl3 r6,12(ap), @16 (ap)
ret
.end program

Students should know how a stack differs from an array
after examining both data structures. They should be able to

83

discuss ditferences between implementation methods for sub-
routine and procedure calls. They should know how recursion
works after they stepping through short recursive programs to
see how call frames are pushed onto and popped from the
stack.

In addition to the Debugger, VMS provides the TPU Ed-
itor, another tool for the Computer Organization course. In
any programming environment, the editor should work hand
in hand with the Debugger. At Spring Hill College our system
manager, Glenn Bell, modified the TPU Editor to permit the
use of the Debugger within the Editor. This improves the De-
bugger experience since students can modify assembler code
and view the results in the Debugger without having to exit
and enter the editor repeatedly. While in the Editor, the code
can be compiled and linked with or without the DEBUG op-
tion. Additionally, the programmer can spawn a process to
pop out of the Editor to read mail or word process, then pop
back to the same location in the Editor.

This modification of the TPU Editor simplifies the edit-
debug experience for the student and encourages the use of
the Debugger. Students can modify code in multiple windows
and view the effect in the Debugger without exiting the TPU
Editor. In addition, output is produced in a window so that it
may be saved as a file for display or printing.

The third VMS enhancement for a Computer Organiza-
tion course is the availability of system routines. Many of the
Computer Organization textbook examples are trivial. Stu-
dents want to do more than add or sort two lists of numbers.
The VMS Run Time Library and System Services routines
open the door to many interesting programming assignments.
These system routines increase students’ understanding of how
information is represented in the computer, how to use the
stack, and how to pass arguments to a procedure.

Listed below are some of the System Services and Run
Time Library routines which may be used by students at this
level. A programming assignment might require students to
write a MACRO program to set an alarm. The solution would
involve spawning a process which would schedule its own
wakeup, hibemnate, wakeup at the prescribed time, and ring
a bell. This could be accomplished by calls to the routines
LIB$SPAWN, $SCHDWK, and $HIBER.

R10:7FFEDDD4 @SP:00000000
R11:7FFE33DC +4:20400000
AP :7FF47370 +8:7FF473CC
FP :7FF47358 +12:7FF47384
SP :7FF47358 +16:00000216
PC :00000219 +20:7FF47049
@aP:00000004 +24:00000004
+4:00000002 +28:00000002
+8:00000003 +32:00000003
+12:00000004 +36:00000004

v:0 C:0 +40:00000200

Figure 6: Debugger Output

INST -scroll-instruction REG
>00000219: MULL3 B~04(AP),B~ |R0:00000000
0000021F: ADDL3 R6,B~0C(AP) |R1:00000000
00000225: RET |R2:00000000
00000226: HALT |R3:7FF47394
|R4:00000000
|R5:00000000
|R6:7FF47049
|R7:8001E4DD
|R8:7FFED052
|R9:7FFED25A
IN:0 z2:0
Activity SS or RTL Routines
hiber/wake a process $HIBER, $WAKE, $SCHDWK
set a timer $SETIMR
spawn processes SLIBSSPAWN

LIB$GET _EF, LIBSFREE EF,
$WAITFR, $ASCEFC

Later Operating Systems class projects might include us-
ing event flags to synchronize the reading and writing of in-
formation to an area of memory ($CREMBX, $MGBLSC),
queueing an I/O request ($ASSIGN, $DASSGN, $QIO), lock-
ing resources ($ENQ), or obtaining information about pro-
cesses ($GETIJPI).

One set of Run Time Library routines which students
particularly enjoy is the Screen Management routines (SMG).
With calls to SMG routines windows can be created and in-
versed, blinking, or large characters can be displayed. Exer-
cises using SMG calls require that students be proficient at
passing parameters by value, by reference, and by descriptor.
For example, to write a line of double-width text on the screen,
the routine SMG$PUT_CHARS_HIGHWIDE is called and the
arguments listed below may be used.

use event flags

Argument Type Access Mechanism
IDENTITY longword unsigned R/O reference
TEXT character string R/O descriptor
LINES longword signed R/O reference
RENDITION longword unsigned R/O reference

The arguments include an identity name for the display,
the text to be displayed, the number of lines to advance after
the display, and a rendition mask whose bits indicate whether
the text should be blinking, bolded, reversed, or underlined.
These parameters have different data types, and they are passed
with different mechanisms. The identity, advance lines, and
rendition mask are passed by reference. If a CALLS instruc-
tion is used, the address of identity, advance lines, and rendi-
tion mask are pushed onto the stack.

A descriptor must be created for the text to be displayed.
The Run Time Library documentation provides the details. A
descriptor is created in memory consisting of the length of
the text to be displayed, the type and class of the descriptor,
and a pointer to the actual text. The address of the quadword
descriptor is pushed onto the stack.

The source code shown below contains the descriptor

84

DSC_VAX which points to the text to be displayed named
VAX_MSG. The actual message to be printed on the screen in
large letters is “VAX-11/750.”

dsc_vax: .word len vax msg
.byte dsc$k_dtype t
.byte dsc$k_class_s
.address vax_msg

vax_msg: .ascii / VAX-11/750

/

len vax msg = .-vax_msg

In order to call the SMG routine to print the large letters,
the arguments are pushed onto the stack in reverse order. In
the example below, the address of the rendition mask is pushed
onto the stack followed by the address of the number of lines
to advance, then the address of the quadword descriptor and
the address of the display identity. The CALLS instruction
contains the number of arguments.

pushal renmask

pushal one

pushaqg dsc_vax

pushal display_idl

calls #4,g"smgSput_chars_highwide

A class assignment might require the creation of a login
menu using calls to the Screen Management routines. The
menu choices might include word processing, editing, or the
use of a database. Selection of a menu item would spawn
a process for the chosen activity then return the user to the
menu.

Students enjoy a programming experience in which they
can apply the things they have learned in the course. Such
programming requires that students understand how data types
are represented in the computer, how to use pointers and stacks
for arguments, how to execute procedure calls, and how to use
macros to make repetitive code more efficient.

VMS provides a means for students to put the concepts to
use and see the practical rationale for them. VMS is effective

in an academic environment because of its openness. Students
get a perspective of the operating system which is not easily
gained on other systems. They begin to see the operating
system as a set of layered modules. At the end of the Computer
Organization course, students should be able to program in
assembly language and understand its execution within the
organization of the computer.

85

L e A e e

- L
.

.

e

i

-

-

e

L

-

.

-

.

e

o

E

L

.
o

e

.

.

e

o
o

e
o

L

S

.
.

...

-

L

.

.

e

L

-

-

-

:

.

.

-

.

o

-

L

.
.

=
.

.

.

.

.

.

.
-

.
e

.

e

.

-
o

S

-

e
o

o

-

-

.

o

e

..

-

.

v

o

.

o
.

S

.

-

s
o
-

e

e

o
o
.

.
.

.

o

.

-

o

o

o

.

.

L

.
o

S

o

.

e

.

L

.

L

-
.

L

.

i

S

.

-

-

T
o

.

L

o

.
.

o

.

o

.

e
o

.

.

-

-

.

=

-

o

.

.
.

o
.

-

.

o

.
.
o

-

o

.

o

.

.

-

L

.

-

S
-

.

.

o

-
.

.
.

o

.
L
e

e

e
S

.

.

S

o

o

.

-

-
L
.

.
-

.

.

o

i

-

.
.
.

-

.
.

.

-

o
.

.
.
.

L
.

S

-
o .
. o

.

.

-
.

o

.

-
o
o

o

o

e
. L

.

e

.

-

.

.

S
.
.

o

.

-

-

e
-

.

o
o
e

i

e
.

.

-
.

-

.
.
o

o

o

.

.

.

S
G
.

e

L

.

.

-

e
o

o

o

o

.

. -
-

.

.
o
.

L

S
e
.

G

o

L

.

.

-

L

s

-

-

G

e

L

.

e

.

L

o

-

- .
- o

.

.

o

o

o

e

o

o

= -

L

L

.

-

o .

.

L

.

.

.

o
.
.

o

i
i

e

.

.
.

e

L

o

o
-

o

e

-

.

GRS R

-

Readability of VMS Documentation
Then and Now

C. Eric Kirkland, Ph.D.
Integrated Microcomputer Systems
Rockville, Maryland

William P. Brenneman
Computer Systems Resource
Charlottesville, Virginia

Abstract

This article introduces the methods and theory of numerical analysis of text known
generally as readability analysis. The foundations for readability are presented, along
with current competing formulae. To illustrate the discussion, selected VMS docu-
ments for Version 3.x will be compared and contrasted with corresponding Version
4.x sections. Though readability analyses per se should not be used as a basis for
rewriting documents, techniques for improving documentation are summarized.

Introduction

A longstanding, significant criticism of computer systems is
that the overall quality of the training manuals and techni-
cal documentation is quite low. (Maynard, 1979; Nickerson,
1982) Often the personnel who would most benefit from an
automated system may prove the least likely to read any of
the documents. What may be the oldest joke in computing
is the pithy statement “When all else fails, read the manual.”
Unfortunately, there has been little effort to comprehensively
address this problem either in the education of technical writ-
ers or other professionals. (Wright, 1977)

One method for addressing this problem is the analysis
of the actual readability of the documentation. This can be ac-
complished using computer programs for counting unfamiliar
words, sentence length, and so forth. From these measures,
a prediction of the readability of the text may be calculated.
The analytic methods also may be used to predict the efficacy
of various revisions of a text.

Readability

Historically, the study of readability has been the province of
composition. A unifying principle of composition, as stated
by Herbert Spencer, is “so [to] present ideas that they may
be apprehended with the least possible mental effort.” (1881,
p- 11) To this end, the use of familiar words in short, simple
sentence structures provides the maximum economy of the
reader’s attention and, therefore, the best comprehension.

A definition of readability is difficult to prepare. On the
one hand, the authors understand that a definition is critical
to understanding. But on the other hand, once a definition
is offered, one is faced with a seemingly endless series of

Proceedings of the Digital Equipment Computer Users Society

89

exceptions and modifiers. Notwithstanding these reservations,
here is a definition the authors have found useful.

Hirsh suggested that readability refers the the “easiness
with which a reader understands a text”. (1977, p. 9) Given
that two texts could convey identical meaning, the text which
evoked the meaning with the lesser effort would be judged the
more readable.

A convenient method of judging readability is the com-
prehension test. The literature includes studies which have
sought to measure readability in a direct, comprehension-
referenced method using standard texts and either multiple-
choice or completion tests.

But this approach may be unfeasible or too expensive.
For example, the body of documentation to be studied may be
too voluminous or may require an expert in a given field as the
reader. In such circumstances, readability analysis provides an
alternative.

Readability analysis is the application of a computational
formula to produce an index that predicts the difficulty or
ease with which people will be able to read and comprehend
the material. The index is calculated from the surface struc-
ture of the text. Features of the surface structure include the
words themselves, the punctuation, spelling, sentence length,
and so forth. Typically, the prediction is expressed as a grade-
equivalent index indicating the level of skill required of the
reader to reach a given level of comprehension.

Readability formulae stem from the advent of formal, sta-
tistical analysis of text. This may be traced to the explosive
growth and diversity of interest in mental measurement fol-
lowing World War 1. The success of standardized tests and an-
alytic methods provided a paradigm for the the further study
of human abilities.

Nashville, TN - 1987

In 1921, Thorndike published a volume entitled The
Teacher’s Word Book which provided 10,000 words that had
been laboriously stratified by the frequency of occurrence in
texts. This provided the springboard for the numerical analy-
sis of text factors related to human comprehension by Vogel
and Washbum.

Vogel and Washburn (1928) used multiple regression
analysis to isolate factors that were most highly correlated
with comprehension scores. They found the number of dif-
ferent words, the total number of prepositions, the number of
words not in the Thorndike list, and the number of simple
sentences (Simplicity was judged by the authors.) produced
a multiple correlation of 0.845 with comprehension scores.
Thus, these four factors account for roughly two-thirds of the
variance.

Of course, few ideas are entirely new to mankind. Quite
similar factors had been suggested by Herbert Spencer in 1881
as being important in writing. His list of factors included word
length in syllables, familiarity of words, abstract level of words
and sentence length.

Nonetheless, the technique of counting various text fac-
tors, particularly vocabulary familiarity, has been carried for-
ward in a number of formulae as general factors which affect
readability. However, before getting too involved in the vari-
ous formulae, an overview of factors that affect comprehension
is needed.

Factors Affecting Comprehension

The syntax of the written composition will have a major
influence on the comprehensibility of the text. Convoluted
sentences with multiple prepositional phrases and embedded
clauses require more effort to understand.

Of course, semantics will impact understanding. The
more difficult the writer’s predicate (intention), the harder it
is to express in words. Consequently it is more difficult to
understand the full meaning.

The reader’s motivation, ability and interest will have a
profound effect, too. These are major compounding factors in
the comprehension studies that attempt to measure readability.
For example, does the testing itself invoke a set of enabling
or disabling attitudes and motivations that affect the ability
to pass the comprehension test that looms at the end of the
session?

Readability Factors

The general method for developing readability formulae has
been to take a standard text, give comprehension tests to read-
ers, and then utilize a multiple regression approach to develop
a formula that predicts the scores that would be obtained by
other readers.

Two common factors are sentence length in words and
number of unfamiliar words. The sentence length may be
viewed as a measure of syntactic complexity. Procedurally,
word familiarity is judged by the percentage of words absent
from a list common words. The unfamiliarity of the words
may be viewed as a measure of semantic complexity.

90

Note that because the reading materials have to be de-
veloped with a given audience in mind and because the test-
takers are representative of only a restricted population, most
readability indices have a limited range of grade-equivalent
scores that can be obtained. Thus, the text book for a gradu-
ate course in physical chemistry might be given a readability
index of ninth grade if it were assessed using a formula that
could not provide a higher estimate of difficulty.

Two Formulae

Two of the many formulae will be given additional coverage in
this section. These are the Dale-Chall and the Flesch. Both are
all-purpose measures with grade-equivalent ranges that would
include most adult readers’ abilities.

Dale-Chall

Edgar Dale and Jeanne Chall introduced a readability formula
in 1948 that is still one of the most widely used readabil-
ity formulae. With this formula, syntax is approximated by
sentence length in words; semantics is approximated by com-
puting percentage of words not include in the Dale list of 3,000
common words. A multiple correlation of 0.70 with scores on
the McCall-Crabbs “Standard Test Lessons in Reading” was
originally obtained.

Flesch

A contemporary of Dale and Chall, Rudolf Flesch published
a formula known as the Reading Ease Formula in 1948. It
also obtained a multiple correlation of 0.70 with the McCall-
Crabbs (above) using the number of syllables per 100 words
and the average sentence length in words as the independent
variables. This formula has an unusual scale of scores wherein
100 is considered easy “for any literate person” (1948, p. 229)
and zero (0) is considered virtually unreadable. Flesch did,
however, provide a table for converting the scores to grade
equivalences.

Peter Kincaid has revised the Flesch to create a new for-
mula that produces grade level equivalent scores for adult
reading materials. This has subsequently been adopted as a
Department of Defense (DoD) standard for military specifi-
cations: MIL-M-38784A, Amendment 5, 24 July 1978. A
more recent edition of the standard, MIL-M-38784B, 16 April
1983, includes procedures for calculating this index in Section
4, Quality Assurance Provisions. This formula, therefore, has
been rejuvenated and given new importance.

VMS Documentation

The preparation of any large body of documentation such as
the VAX/VMS series requires the concerted effort of a large
number of people. These people have a monumental job facing
them with a comprehensive product such as that provided by
DEC with VMS and all its layered products. The dedicated
technical writing and documentation staff which DEC obvi-
ously has employed are to be congratulated for the progress

they have made in the usability and completeness of their fin-
ished product.

Even a cursory inspection of the VMS 3.x and the VMS
4.x documents reveals some startling differences. For exam-
ple, with VMS 4 the graphic layout of the pages was dra-
matically changed with multiple type fonts, graphics, bolding
and other graphic devices. These presentation features may
affect the usability of the documents. Also, these changes can
be implemented with a documentation template system, hence
economically.

But what exactly is DEC doing about the readability of
their documents?

To analyze the complete set of VMS documentation
would be straightforward, but the authors neither had the time
nor the resources to invest in this effort. Instead, a sample
of DCL commands was obtained by asking co-workers to list
their favorites. Admittedly, this is neither scientific nor partic-
ularly comprehensive. Therefore, the results presented below
should be viewed purely as applying to these command ONLY
and not the complete set of VMS documentation.

DCL Commands Analyzed

COPY RUN
DELETE SET DEFAULT
DIRECTORY SHOW DEFAULT
HELP SHOW DEVICES
PRINT TYPE
PURGE

Table 1

The following table is based on the results of the analyses.
The scores for the Dale-Chall and DoD analyses are in grade-
equivalents. Flesch scores range from 0 (unreadable) to 100
(easily read), as was noted above.

Readability Analysis

DOCUMENT READABILITY FORMULA
DALE FLESCH DOD
VMS 3.x 13.99 54.09 10.04
VMS 4.x 14.22 56.02 9.71
Table 2

Clearly, there is not much difference; but no test of sig-
nificance was warranted given the relatively poor sampling
technique.

Before the analysis was conducted, the authors’ intuition
was that the VMS 4 was much more readable than the VMS

91

3 documents. This apparently was driven by the presenta-
tion factors, not the verbal content. This intuition was simply
incorrect. Appearances were deceiving.

Composition

Before any readability analysis can take place, the document
has to be written. This may seem obvious, but the predeces-
sor of readable text is a well-prepared composition. No appli-
cation of readability can replace good composition. Finding
skilled writers is a major challenge.

The documentation life cycle commences with the re-
quirements analysis phase and continues through the final ac-
ceptance of the system. Each major milestone is marked by
a written deliverable to the customer. Indeed, guidelines for
programming emphasize that programs are written to read by
people; and, therefore, clear, concise and relevant comments
are required in the code itself.

Yet system developers often neglect the documentation
or delay it as much as possible. Documentation has some-
how come to be viewed as a last moment — or optional —
accompaniment to the product rather than an ongoing record
of accomplishment and usability.

Often the actual deliverable documents are poorly con-
ceived and executed. Alphonese Chapanis, a world-renowned
human factors engineer, suggested the following:

Report rejected. Too windy, too hard to read, too
long. Final payment on this contract is being held
up until a readable report is received. (1965, p. 14)

In the development of any complex system, humans play
the critical role; and, according the principle of least effort,
people will find the easiest solution to their work. Since
the computer system and its considerable documentation will
doubtless be part of the overall man-machine system, make
it easy on the people who will use the system by adopting
standards, being consistent, and using plain language that they
understand.

General Guidelines

The resolution to improve documentation must be a corpo-
rate commitment in order for the effort to succeed. The skills
required for writing effective prose must be nurtured and re-
warded, and the corporation must consider the documentation
an integral part of quality assurance. Without corporate lead-
ership, any effort will likely fail.

Standards

Given the commitment, the first step toward improving docu-
mentation is to adopt a standard for deliverable and develop-
mental documentation. The standard must include both pre-
sentation and content guidelines. Ideally, it will include stan-
dard tables of contents and outlines for writers to follow.
One standard with which the one of the authors (Kirk-
land) is intimately familiar is DoD STD 7935 for automated

data processing (ADP) systems. The objective of 7935 is to
provide managers and developers of automated systems with a
uniform set of documents that address milestones in the soft-
ware life cycle. These uniform documents serve to guide the
customer with the progress of the project, and provide a perma-
nent record of the technical achievement of the project. Later
these documents are used to guide maintenance and, possibly,
general deployment of the ADP system.

Note well, however, that the use of standards neither lim-
its creativity nor forces formulaic documents. Instead, stan-
dards ensure the development of a consistent set of deliver-
ables to the customer that is organized and presented in a
consistent manner subsystem by subsystem.

Writing

Documents are written to be read by people. Readers often
are not familiar with the programs and the systems. Each doc-
ument, therefore, must provide essential background context
to allow the document to be read and understood.

Ideas for improving the quality of technical writing have
been offered by many authors. Seldom have these ideas been
backed by experimental evidence to support them.

One refreshing report was offered by Hartley, Trueman
and Bumbhill (1980), in which they give a list of suggestions
for improving technical writing that they had found to have no
effect on comprehension. These non-effective rules included
using the active voice, using simpler wording, shortening sen-
tences, shortening paragraphs, and providing procedures in
numbered lists.

But these suggestions look like they were taken directly
from a “How to Write Good Technical Documents” guide. In
their final analysis, however, these changes did NOT make the
text any easier to comprehend!

Also, note that we can infer that certain of these sugges-
tions would have the effect of reducing the computed read-
ability indices for the given text. For example using simpler
(in the sense of more common) words and shorter sentences
is guaranteed to reduce the predicted readability.

It is for reasons such as these readability analyses should
NEVER be used to guide rewriting. By examining the for-
mulae discussed above, an author could quite easily lower the
readability index and yet not improve the comprehensibility.

There are several handbooks, however, that these authors
suggest should be standard accessories for writers. The list
includes Hirsh (1977), Strunk and White (1972), The Chicago
Manual of Style (1982), and the Harbrace College Handbook
(1986). (See references.) Strunk and White’s is the authors’
favorite.

Sentence Composition

The following suggestions are adapted from the Harbrace Col-
lege Handbook. A similar list could be made from other texts.

e Write in complete sentences using correct grammar.

e Make relationship between coordinate clauses clear.

92

Place idea to be emphasized in independent clause, and
subordinate idea in dependent clause.

Avoid ambiguous references using pronouns.

Express parallel ideas using parallel grammatical form.

Eliminate superfluous words.
o Limit the use of the passive voice.

e Vary the length and format of sentences.

Composition of Longer Texts

The need for modular structure is obvious in programming.
But often the modular structure of text is ignored. The ba-
sic module is the paragraph. The following, again adapted
from the Harbrace College Handbook, gives some insights
into paragraphs, and longer chunks of connected discourse.

o Limit paragraphs to a single topic.

e Clearly state the topic, generally near the beginning of
the paragraph.

o Arrange the details of a paragraph according to some plan.
¢ Develop the paragraph with supporting details.

o Strengthen the coherence of paragraphs by using connec-
tives and linking expressions.

o Group related ideas together. Arrange the groups using
an outline.

Presenting Technical Information

Patricia Wright (1977) has suggested a number of things to
improve the presentation of technical information so it can be
remembered. Some of these are summarized below.

e Present information verbally rather than using flowcharts
or tables.

e Verbal lists using short sentences are effective.

e Provide introductory verbal outlines of the material that
will follow.

e Use Headings in Table of Contents and Body of the
text. Number them using arabic numerals separated by
“points”.

e Minimize the use of serial numbers, acronyms and neol-
ogisms.

Note that outlines are important both for the writer and
for the reader. Writers should use them to guide the writing,
so the general outline should be part of the standard. The
outline should be presented to the reader, possibly in the form
of the Table of Contents.

Consistency

In addition to these general guidelines listed above, the im-
portance of consistency cannot be over stated. Use standard
English. Use correct grammar and punctuation. If the ap-
plication being developed is industry-specific, then use the
vernacular of the target population.

Beta Test

No document is ever complete the first time off the printer.
Just as the system should be beta tested, so should the docu-
ments. Unfortunately, the beta testing of the documentation is
a universally neglected activity.

If the users do not spontaneously provide feedback on the
documents, then ask for reader feedback using a simple form
or checklist. DEC includes a reader’s comment form in every
manual.

Also, collect the beta test documents and study them.
Did the users highlight things? Did they write interpretations
or notes? Are some pages dog-eared and stained? These are
important bits of information that will help during the rewriting
and, hence, will lead to a better product.

Rewriting
Having left a document for one or more days, a thorough re-
reading will highlight its weaknesses. Also, the collection of
the beta test documents will provide important clues for the
sections that need the most work.

One of the principles of writing that has proved quite use-
ful to these authors is the notion of linearity as was suggested
by Hirsh (1977).

o Organize ideas into related clusters and present them as
a group.

e Make one idea carry forward logically to the next idea.
o Make connections between ideas clear.

e Minimize demands on memory by frequent closure of
ideas.

Taking an analogy from programming, though it is stan-
dard to use subroutines, avoid them in writing documentation.
State what needs to be stated in-line, sequentially.

Summary and Recommendations

It is important that a set of mutually-supportive goals are de-
veloped to bridge systems development and technical writing
about the systems. The two activities are complementary and
interdependent. Lacking documentation on the available soft-
ware tools, developers would be stuck in the endless task of
reinventing the tools.

The extremely limited study reported herein suggests the
readability of the VMS documentation has not been addressed.
This would be most unfortunate because as system designers

93

and developers we must be assured our personnel can use the
operating system and related tools effectively.

Though this study suggests the documents are compre-
hensible by high school graduates, the issue of their routine
comprehensibility remains. Can system users understand the
documentation under non-test conditions? Do they have the
necessary cognitive skills to read comfortably at a twelfth
grade level in their normal work environment? Will they be
able to use the tools provided by DEC after reading the in-
structions or will they be forced to experiment?

The understandability of the VMS documentation can
only be improved by careful rewriting by skilled writers. This
would be an arduous and expensive process, but the benefits to
the user community would, in these authors opinion, be worth
the effort.

DEC has made considerable progress in applying the
graphic effects that improve the appearance of the VMS doc-
umentation. These changes may improve the usability of the
documentation.

All of us can improve the usability of our documentation
by providing an index and a table of contents for reference,
by using highlighting techniques to help the reader focus on
the important factors, and by writing the document for linear
cognitive processing. VMS provides a free set of tools that can
be used to meet these requirements: text editors (EDT/TPU)
and RUNOFF. So among VMS users, no one can claim they
do not have the means for providing these improvements to
their documents.

Finally, never write a document without asking yourself
if it will make sense to the readers. “Write so you can be
understood by your elders!” (Hopper, 1987)

Acknowledgements

Special thanks are due Maureen E. Kane for her contributions
to this effort. She developed the graphics that accompanied
the original presentation at DECUS, and she provided editorial
assistance in the final writing of this article.

References

Chapanis, A. Words, words, words.
1965,7, 1-17.

Human Factors,

Dale, E. and Chall, J. A formula for predicting readability.
Educational Research Bulletin (Ohio State), Jan 21 and Feb 17,
1948, 11-20 and 37-54.

Department of Defense. Automated Data Systems Docu-
mentation Standards. DoD-STD-7935, Feb 15, 1983.

Flesch, R. A new readability yardstick. Journal of Ap-
plied Psychology, 1948, 32(3), 221-233.

Hartley, J., Trueman, M. and Bumhill, P. Some obser-
vations on producing and measuring readable writing. Pro-
grammed Learning and Educational Technology, 1980, 17(3),
164-174.

Hirsh, E. D., Jr. The Philosophy of Composition.
Chicago: University of Chicago Press, 1977.

Hodges, J. C. and Whitten, M. E. with Webb, S. S. Har-
brace College Handbook (10th ed.). New York: Harcourt
Brace Jovanovich, 1986.

Hopper, G. M., Admiral (USN, Ret). Personal commu-
nication. March 31, 1987.

Maynard, J. A user-driven approach to better user manu-
als. IEEE Computer, 1979, 12, 7275.

McCall, W. and Crabbs, L. Standard Test Lessons in
Reading. Teachers College Record, 1925, 27(3).

Nickerson, R. S. Why interactive systems are sometimes
not used by the people who might benefit from them. Human
Factors, 1982, 24, 509-519.

Spencer, H. Philosophy of Style. New York: D. Appleton
and Co, 1881.

Strunk, W., Jr. and White, E. B. The Elements of Style
(2nd ed.). New York: Macmillan, 1972.

The Chicago Manual of Style (13th ed.). Chicago: Uni-
versity of Chicago Press, 1982.

Thomdike, E. The Teacher’s Word Book. New York: Bu-
reau of Publications, Teachers College, Columbia University,
1921.

Vogel, M. and Washburn, C. An objective method of de-
termining grade placement of children’s reading materials. El-
ementary School Journal, 1928, 28, 373-381.

Wright, P. Presenting technical information: a survey of
research findings. Instructional Science, 1977, 6, 93-134.

94

Overview of Human Factors and Software Engineering

C. Eric Kirkland, Ph.D.
Integrated Microcomputer Systems
Rockville, Maryland

Abstract

This article provides a general overview of Human Factors Engineering and its rel-
evance to Software Engineering. It is assumed the reader has only a very limited
knowledge of human factors engineering and a considerable knowledge of software
engineering. Due to its multidisciplinary nature, only a brief coverage of human fac-
tors is possible; however, areas of emphasis were selected which are most germane
to software engineering. These include the parallels between structured design prin-
ciples and those of human factors, and practical guidelines for improving the design

of systems.

Introduction

Human Factors Engineering (HFE) is an applied science that
concems itself with the design of things that people use. In
particular it studies people and their relationship with machines
and environments. OQOutside the United States, HFE is com-
monly known as ergonomics. Though distinctions between
the two have been offered, today the distinction is so substan-
tially blurred that for the purposes of a general introduction
they may be considered identical.

The focus of HFE is the design and creation of objects,
facilities, products, equipment and environments that are us-
able by people. Included are the procedures for carrying out
work and other activities.

The objectives are to enhance effectiveness, to improve
efficiency, to maintain or enhance human values, and to satisfy
human needs. Examples that come to mind immediately are
health, safety, and job satisfaction.

The approach is to synthesize knowledge about hu-
man abilities, behaviors, characteristics, and motivations with
knowledge of job performance requirements. The goal is to
design and build an harmonious working system that includes
the person, the machine and the work environment.

To apply HFE approaches and techniques to software en-
gineering is quite straightforward. The first and most impor-
tant step is to always strive to include the person as an integral
component of the system. With this perspective, the human
needs are the principal motive for the actual development pro-
cess.

Historical Perspective

During World War II, the discipline of HFE emerged as a
distinct discipline of importance. This emergence was in re-
sponse to the need for training young men to control complex
weapons systems. (McCormick and Sanders, 1982) The HFE

Proceedings of the Digital Equipment Computer Users Society

95

focus on optimizing the combination of humans and machines
was a natural accompaniment to the increased complexity of
the tasks at hand. For example, these weapons systems often
exceeded the complexity of any machine the recruits had ever
seen. These men had to be trained quickly and effectively
to meet the demands of the war. Once trained, their skill in
the use of the systems would profoundly affect their chances
of survival. So the HFE emphasis on modifying the machine
to make it more understandable and usable by people was an
obvious choice: There simply wasn’t enough time to modify
the men.

Of course, as long as people have used tools, there has
been an interest in improving the safety and efficiency of the
tools. Prior to modem medical advances, even a blood blister
from too rough a handle was life threatening. Since the human
musculature provided the power for the tool, improvements in
efficiency lessened the immediate burden of work.

Between 1750 and 1890, machines became dominant in
industry. Jacquard revolutionized the textile industry with the
punch-card controlled loom, thereby providing Hollerith with
a paradigm that marked the path that would later lead to com-
puters. With machines human muscles no longer supplied
the power; the human brain, however, continued to provide
control. Interestingly, the then-current technological forefront
came to be considered a model for the way the human brain
functions: The brain was termed a thinking machine.

Between the last quarter of the nineteenth century and the
onset of World War II, the telecommunications, automobile,
and aviation industries flourished. Everyone needed a motor
vehicle and a telephone. The impact of the telephone was such
that the brain came to be compared to the switchboard.

Much of this period leaves man in control of the machine,
however human strength and endurance are not issues because
the machine provides the power and a portion of the control.
The human role is reduced to a more supervisory or monitoring
function.

Nashville, TN - 1987

The advent of the computer further changed the role of
workers by assuming more of the control functions. In many
highly complex activities, such as flying commercial jet air-
craft, the human being has become little more than an inter-
ested observer. Thus, vigilance becomes an important prob-
lem: It simply is not easy to maintain the level of interest
required. Also, the quality of work life may be negatively
affected by the automation of the system.

Computers aid, relieve and extend human capabilities in
ways that otherwise could not be imagined. Unlike any ma-
chine that has come before it, a computer helps a person ana-
lyze data and make decisions. The computer is an assistant for
thinking; but, as would be predicted, the computer has become
the model for human brain function.

In addressing these many areas of human-machine sys-
tems, several academic disciplines and professions contribute
techniques, tools and understandings. The sciences include
psychology, sociology, anthropology, physiology, biology,
mathematics and statistics. The professions include industrial
engineering, architecture and education. With such a mixture
at its foundation, HFE understandably brings many diverse
views to the problem of building human-machine systems.

Task Analysis

One of the principal tools of HFE is task analysis. Task anal-
ysis produces a carefully specified description of a task and its
constituent processes. The tools required and the flow of in-
formation from one portion of the task to another are included,
as are the environmental and economic constraints.

The technique of hierarchical decomposition is critical
to the success of task analysis. The decomposition yields a
system specification that includes a list of sub-functions and
procedures that can be used in the detailed design of the overall
system. Task analysis may be used to provide a list of skills or
training requirements that will be needed by the system users.
In addition, the task requirements may be shaped into a job
design description that guides personnel selection.

Herbert Simon has argued that all complex systems in-
volving humans are artificial in the sense that they are “man-
made, as opposed to natural”. (1969, p. 4) Furthermore, all
complex systems either are hierarchies or can be depicted as
such.

Hierarchies allow the designer the tremendous freedom
to focus on the goals and functions of a system without be-
coming embedded in the details of any particular sub-function.
Once the overall functional description of the hierarchy is com-
pleted, the designer may exit the process altogether, leaving
the details to other crafts people. In order for this technique to
succeed, however, the designer must carefully and completely
describe all the necessary interfaces between sub-functions and
processes.

Software Engineering

The hierarchical decomposition of tasks described above ap-
plies equally well to software engineering (SE). Indeed, the

96

reader could easily have thought the above was taken from a
text on structured analysis and design. The common thread of
both efforts is the specification of complex systems in terms of
discrete process descriptions and interfaces between functional
components.

One of the techniques of structured analysis and systems
design is the data flow diagram. [For details on data flow
diagramming techniques, see De Marco (1979) or Teague and
Pidgeon (1985).] Figure 1 presents a data flow for the analysis
and design phases of the information life cycle.

Upon receipt of the user request, a survey is initiated to
identify the user needs. A feasibility report is generated to
describe the system that is being requested and to present rec-
ommendations to the organization. This report and the organi-
zational goals are then incorporated in a requirements analysis.

The requirements analysis is the crucial step in the life
cycle. It produces three key components: (1) Functional De-
scription, (2) Physical Requirements, and (3) Budget and Sys-
tem Development Plan.

The Functional Description is a complete specification of
required functions and system interfaces. The entire environ-
ment, including both manual and automated systems already
in use, must be clearly described. The physical requirements
for the system must be discussed because these will affect the
hardware that will subsequently be selected. Of course, the
budget and schedule will have to approved by management
before any work takes place.

Interviews and checklists are useful in the collection of
user requirements. Simple observation of the people as they
work provides valuable insights, too. Who works with whom
and for whom? Who really does the work? Who is responsible
for doing the work? Seldom will an analyst find an organi-
zation where the official chain-of-command is the only one to
consider.

The preliminary design of the product produces a system
specification that guides the preparation of the detailed sys-
tem design. During this phase the analysts prepare an overall
system configuration plan, select an implementation language,
identify major modules and their interfaces, establish controls
and data structures, and provide a test plan. A system hard-
ware configuration and performance requirement document is
forwarded to the hardware study.

The hardware study produces an order for equipment, so
it must incorporate user requirements, performance, and con-
figuration information from the preliminary design. Budgetary
limits and product availability impose additional constraints on
the selection of the vendor. The final system configuration is
forwarded to the detailed design process.

The detailed design phase produces a structurally decom-
posed system at the level of individual modules. These spec-
ifications must include data structures, algorithms, intemnal
program controls, interface requirements, interprocess com-
munications techniques, and other factors that influence the
overall program design. Also addressed are factors affecting
projected sizes, required timing, storage, and other hardware
environment constraints. Standards for test data and a plan
for testing are very important as system constraints. Not only
must the formal technical specifications “describe everything

Organizational
Objectives

User
Request

Feasibility
Report

Analysis

Requirements

Functional

Description

User
Requirements

Preliminary
Design

System

Specifications

Physical &
Performance

Budget & Development
Schedule

Order
Hardware

Physical
Require-
ment

Hardware
Study

Needs

Detailed
Design

Program
Specs

Figure 1: Information Life Cycle

the user does see, including all interfaces; it must refrain from
describing what the user does not see.” (Brooks, 1975, p. 62)

Note that the human factors related to the system have
been given very little attention. Few texts on systems analysis
and design offer any guidance on including human beings in
the design. Certainly, humans are interviewed and feedback
on the design is solicited. Once the user requirements phase
is completed, however, little interest in the ultimate users re-
mains. The human engineering issues aside from performance
simply are not given the importance they deserve.

Synthesis

Human-machine systems are the focus both of HFE and soft-
ware engineering. Both disciplines rely on the hierarchical
decomposition of complex systems. Both disciplines seek to
produce an efficient, safe, usable system. There should be
tremendous harmony between these disciplines. It is entirely
possible, however, that many software engineers have given
only cursory attention to the human component of their system
designs.

Often the software engineer seeks to develop a completely
automated system. There is no analysis of what functions
would be left for the person who uses the system. Such sys-
tems often leave only trivial tasks for the human being. For
example, the system users’ primary jobs may be just monitor-
ing the system. Even worse, the humans who use the system

91

may have been given nonsense “make work™ of no conse-
quence at all.

Of course, humans perceive their inconsequential role in
such systems quite quickly. Their reactions may range from an
initial frustration and anger with the system to a final state of
resignation and apathy. This can be catastrophic in situations
where the system designers have left failure override in human
hands.

Though the designer may have envisioned the workers
suddenly springing into action to “save the day”, the overall
system failure may be unavoidable because the workers really
are not able to bring their full abilities to the problem in a
short period of time. The lack of meaningful work may have
caused such general mental and physical fatigue that the people
simply are not equipped to handle the emergency.

It is this author’s personal philosophy that this state of
affairs should never exist. People should be given meaningful
work that contributes to their personal satisfaction with their
work and their self-esteem. This should be done even if it
means taking work away from the automated system. People
need jobs to help them attain their own individual potential.

Integrated Design

In approaching the integration of Human Factors Engineering
with Software Engineering it is important that a set of explicit
goals be developed. The designer must systematically address

not only the user requirements but also human factors. The
following list can be used to assure basic human factors have
been included in the analysis. (Meister, 1971)

1. What are the system outputs and inputs?

2. What operations produce the outputs from the inputs?
3. What system functions can be assigned to the human?
4. What level of training and skill is required of the users?
5. Are the tasks compatible with human capabilities?

6. What interface will be used between the human and the
system?

7. Are the machine and the human smoothly integrated?

The collection of outputs and inputs is part of the require-
ments analysis phase. The actual target users are the source
of this information.

Each of the operations that are required to produce the
output can be established by preparing a data flow diagram
or work breakdown structure. Task analysis techniques are
useful, too.

Once the system data flow is established, the partition-
ing of those functions to be assigned to the human can be
completed. De Marco has suggested that the diagram of the
system be partitioned to highlight the domain of change. (De
Marco, 1979)

Next, consider the training, skills and human capabilities.
Can a person actually function in the ways required? Would
the human have to be modified to use the system? Of course,
re-designing the machine would be far easier and more eco-
nomic than re-designing the human being.

The issues of the integration of the man and the machine
are important. How can the system be designed such that the
human and machine subsystems complement each other, an-
ticipate each others requirements, and share the work? With
automated systems it is possible the machine will work sub-
stantially faster than the human being. Will the human being
be pressured by the machine’s prompt for more input? Per-
haps the software could be modified to occasionally provide a
break in the monotony.

Task Allocation

The partition of the overall system functions to allocate cer-
tain tasks to the automated system and other tasks to humans
must be undertaken early in the design phase. In making this
partition, it is important that the human be given paramount
importance. Kantowitz and Sorkin use the phrase “Honor Thy
User” (1983, p. 13). This means that the most important
thing the system designer can do is to provide the human a
meaningful role that is designed to maximize the value of the
human in the system.

One approach to the partitioning task is to first assign
tasks to the machine for which it has a “natural” advantage.
Then examine the remaining tasks to insure those left for the

98

human are useful and reasonable. If not, then give certain
functions back to the human. This approach will counteract
the overwhelming tendency to automate every function of a
system.

Models

Another approach to the problem of including people in the
design is model building. Indeed model building is one of the
tools in common to the disciplines of HFE and SE. Models
provide an abstraction of the overall system and its compo-
nents such that the users can understand the system and such
that the developers can build the system.

Rubinstein and Hersh (1984) suggest that a “Use Model”
should be developed that describes how people will use the
system. This model should specify the problems the system
will solve and how it will integrate with the workers environ-
ment. It should depict the relationships of the people using
the same system and explain how their efforts interrelate.

Starting from the Functional Description, the developer
must build a system model that is representative of the domain
of work. The model must be understandable by the users, who
must be able validate both the manual and automated functions
that are specified. The model should reflect the sociological
and political influences that shape the work environment. In
other words, the model must be ecologically valid.

If the users cannot understand the model when it it pre-
sented by the designer, then quite simply the model is useless:
Go build a better model. Simplify the design, and limit the
scope of proposed system. It also may be helpful to decrease
the conceptual load on the users by making the model more
relevant to their work and their knowledge. Though the au-
thor has found data flow diagrams to be approachable by most
users, this is not always the case.

Rubinstein and Hersh also suggest that a system “myth”
(metaphor) be developed, much like the “desk top myth” has
been developed for office workers. But be sure to pick a myth
that is representative of the work being done. It is intuitive
that a “kitchen myth” would not have succeeded in the office
environment. But what of the desk top myth on a shop floor?
Is it ecological valid?

Once this model is understood and accepted, it will be
the major input to the design phases that follow, and it can be
used for the development of a prototype.

User Characteristics

As part of the overall requirements analysis, the detailed char-
acteristics of the user population must be collected. The fol-
lowing items are a minimum set of questions that must be
answered.

1. Who are the users?
2. What level of knowledge to they have?
3. What capabilities are required?

4. What skills must they have?

5. What attitudes must they have?

6. What types of training will be needed?

As may be obvious, these questions quickly become in-
tertwined. If the user population includes business managers
and executives, then the answers that would be obtained are
quite different from those that would be obtained if the user
population was data entry clerks and typists.

In 1973 James Martin listed management and executive
user characteristics with an insight that remains interesting
today. (p. 438) He stated that these users are highly intelli-
gent, will not remember mnemonic commands, are too busy
to attend a training course, and are highly impatient. They,
also, will reject a system if it is confusing or does not provide
worthwhile results. This suggests a system for these users had
better be well-designed and easily usable.

There are other characteristics of the users that should
be considered. Bloom’s Taxonomy (Bloom, 1956) provides a
useful hierarchy of human cognitive powers.

1. Knowledge
. Comprehension

. Application

2
3
4. Analysis
5. Synthesis
6

. Evaluation

As the hierarchy is traversed from knowledge to evalua-
tion, the concomitant load on the users’ abilities is increased.
This increase in cognitive load must be carefully considered.

Knowledge is the possession of facts, possibly only by
rote memorization. Comprehension is the capacity to actually
use the knowledge (facts) stored away in memory. It implies
an ability to thread together the facts such that the pieces fit
into a whole that is usable.

Application is a demonstration that the person has the
comprehension of the matter at hand. In contrast, comprehen-
sion only implies the person could apply the knowledge; not
that he or she will.

Analysis implies the breakdown of the information at
hand into its constituent parts and the detection of their in-
terrelationships.

Synthesis is defined as taking the pieces and building a
coherent whole. Generally, this implies taking the pieces of
previous experience and previous analyses and recombining
them to form something new.

Evaluation rests on the foundation of human judgment.
Both criteria of performance and standards are applied. Solu-
tions are questioned and competing strategies are weighed one
against the other. It involves judging the accuracy, complete-
ness, economy, and efficiency of solutions.

Most people function most comfortably at only so high a
level in this hierarchy. Having worked closely with the people
in developing the functional description, the analyst should be
able to pick the conceptual level that fits the user population.

99

Usability Specifications

John Whiteside of DEC has offered the appealing suggestion
that a key component of a system specification should be a
usability specification. The usability specification must pro-
vide a set of clear and measurable factors related to system
performance and usability under actual conditions.

Setting usability as a goal for designers does not make it
happen. Designers must be given the time and the corporate
commitment to usability that will afford usability the same
priority as other engineering factors.

Whiteside notes that “usability of a system is more a
function of quality than style. Indeed ... the best indicator of
usability relates to the strength of an interface’s design and
amount of effort put into refining and debugging it.” (1986,
p. 28)

Model building and prototyping (above) complement us-
ability analyses by establishing a low-cost platform for users
to experiment with the system and for the usability measures
to be collected.

Language and Documentation

One of the most common mistakes in building systems (and
therefore one of the most common complaints) concems the
language used both by the system and in its documentation.
The author provides a thorough description of this problem
area elsewhere in these Proceedings, so a repetition here is
unwarranted. A summary of factors that will improve the
documentation and the language include the following:

1. Provide an End User’s Manual as a first deliverable.
2. Provide overviews, an index and a table of contents.
3. Use graphic devices to highlight important points.
4. Beta test the documentation.
5.

Rewrite.

The understandability of a document is improved by pro-
viding overviews: “Most documents fail in giving too little
overview.” (Brooks, 1975, p. 165) Also, the usability of the
documentation is improved by providing an index and a table
of contents and by using highlighting techniques help focus
the reader’s attention to important points.

Beta test the documentation along with the system. If
the users do not spontaneously provide feedback on the docu-
ments, then ask them for suggestions to improve the compre-
hensibility and usability of the documents.

Rewrite the documentation following beta test. Unless
this is included in the original plan, the time it takes will likely
preclude its happening. But unless rewriting is undertaken,
then poor manuals will continue to plague computer system
users.

Of the standard three structured programming notions (se-
quence, selection and iteration), only sequence is applicable
to writing. State what needs to be stated in-line, sequentially.

Make each idea carry forward logically to the next. Explic-
itly link ideas. Minimize demands on the reader’s memory by
frequent closure of ideas: Do not leave ideas unresolved and
unclear while expounding a tangential or interjectory idea.

Summary

Human factors engineering is an applied science that stud-
ies people and their interaction with machines. Since the
most pervasive human-machine interaction today is likely the
human-computer interaction, human factors offers a number
of approaches and tools that complement software engineer-
ing. This is particularly true for the initial design, and the final
delivery and acceptance phases.

This article has listed a number of additional, human fac-
tors that should be included in the design of automated sys-
tems. These include an analysis of the user characteristics, a
task allocation plan, a system model, and usability specifica-
tions.

An integrated information life cycle, also, addresses the
comprehensibility of the system and its documentation. Im-
provements in the individual documents, both language and
presentation factors, can help. The consistency and pre-
dictability of the dialog can be improved, too.

The traditional life cycle management approach ignores
the user population during much of the course of system de-
velopment. Often the functional description is the only doc-
ument delivered to the end user population before the system
is developed. The integrated approach advocated in this paper
shifts the focus from the system per se to the users of it; and it
adds an End User’s Manual, which should be a key deliverable
following the approval of the preliminary design.

Figure 2 is a data flow diagram for an integrated infor-
mation life cycle that includes these additional factors.

One final hierarchy of interest is the hierarchy of human
needs specified by Abraham Maslow. The lowest level of
Maslow’s hierarchy is physiologic survival. Directly above
it are safety and then love. These are the most basic three
human needs. As system designers we have a responsibility
to design systems that do not endanger the people who use
them, but other than that there is little we can do with respect
to these three needs.

The next higher three needs are self-esteem, information
and understanding. It is here that our system designs can have
the most impact. Our systems must provide people tools that
enhance their self-esteem by providing them the expression
of meaningful work, work that serves a purpose and does not
denigrate their ability or their stature as fellow human beings.

As a final, simple technique, place yourself in the end
user’s situation. Ask yourself if the system is reasonable and
has internal consistency and integrity. Ask yourself if the work
will be meaningful and satisfying. If your own human values
and needs are supported by the system, then, to at least that
extent, your efforts at improving the human factors will have
been successful.

100

Acknowledgements

Special thanks are due Maureen E. Kane for her contributions
to this effort. She developed the graphics that accompanied
the original presentation at DECUS, and she provided editorial
assistance in the final writing of this article.

References

Bloom, B. (Ed.) Taxonomy of Educational Objectives,
Handbook 1: Cognitive Domain. New York: David McKay,
1956.

Brooks, F. The Mythical Man Month. Reading, MA:
Addison-Wesley, 1975.

De Marco, T. Structured Analysis and System Specifica-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1978.

Kantowitz, B. and Sorkin, R. Human Factors: Under-
standing People-System Relationships. New York: John Wiley
and Sons, 1983.

Martin, J. Design of Man-Computer Dialogues. New

York: Prentice-Hall, 1973.

McCormick, E. and Sanders, M. Human Factors in En-
gineering and Design (5th ed.). New York: McGraw-Hill,
1982.

Meister, D. Human Factors: Theory and Practice. New
York: Wiley, 1971.

Rubinstein, R. and Hersh, H. The Human Factor: De-
signing Computer Systems for People. Bedford, MA: Digital
Press, 1984.

Simon, H. The Sciences of the Artificial. Cambridge, MA:
M.ILT. Press, 1969.

Teague, L., Jr. and Pidgeon, C. Structured Analysis Meth-
ods for Computer Information Systems. Chicago: Science Re-
search Associates, 1985.

Whiteside, J. Usability engineering. Unix Review, June
1986, 4(6), 22-37.

Organizational
User r]
Re@ Objectives
Budget & Development

Schedule

Order
Hardware

Feasibility

Physical
Require-
ment

Requirements
Analysis

Hardware
Study

Functional

User Lo
Characteristics Description ..
Configur-

User ation

Requirements Usabilit

Specs

Physical &
Performance

Needs

Task
AHOICBUOH Preliminary
Plan Design Detailed
etaile
h Program
Design Specs

System
Specificdtion

End User
Manual

Figure 2: Integrated Information Life Cycle

101

POSTSCRIPT APPLICATIONS USING A MNC/DECLAB-23 COMPUTER.

O. Guetta, D. Fortney, A. Dubois
Uniformed Services University of the Health Sciences
Medicine Department
Bethesda, MD 20814 USA

Abstract:

POSTSCRIPT is a high-level interpretive programming language
designed to describe the appearance of text and graphics on printed
pages and to be implemented on printers. However, to transfer
POSTSCRIPT programs and data from a mass storage device to the
printer, a link between the printer and a computer is necessary.
Therefore, we connected the printer to the printer port of a
MNC/DECLAB-23 computer, which is using an RT-11 operating system
and supporting FORTRAN IV. POSTSCRIPT codes and their
corresponding data were sent to the printer using I/O routines written in
FORTRAN. The emulator of the printer interpreted the printing
instructions and processed the data to produce the desired formatted
output pages. We developed a batch word processing program written
in POSTSCRIPT to format and print text files (abstracts, articles,
documentation, ...). The text files were created and edited using a
terminal. They contained, in addition to the text, several sequences of
characters describing their output format. Other applications, such as
listing programs and tabulating, plotting and curve fitting experimental
data, were also written in POSTSCRIPT. This method allows freedom
and flexibility to develop POSTSCRIPT programs, and can be used to
connect any printer with a POSTSCRIPT emulator to the serial output

port of any computer.

INTRODUCTION

The Postscript language' is a high-level interpretive
programming language designed to describe the
appearance of text and graphics on printed pages. The
Postscript interpreter is implemented on the printer.
The present paper describes a method used to operate
the printer and develop Postscript programs, and
demonstrates some of the applications that we have
developed.

OPERATING MODES OF THE PRINTER

The two operative modes of the printer are the
interactive mode and the batch mode.

1. Interactive mode

The interactive mode is the mode by which a user
may interact with the printer from a terminal connected
directly to it. A job consists of a dialogue in which the
user issues a Postscript statement and the Postscript

Proceedings of the Digital Equipment Computer Users Society

103

interpreter executes it and prompts for the next
statement. While the user is sending a Postscript
statement, the interpreter echoes characters and
provides error messages; therefore, this mode is useful
for experimenting with Postscript. Another advantage of
this mode is that, thanks to the Postscript language, the
printer can be used as a general purpose personal
computer. However, this mode is not convenient to
transfer large Postscript files or data files.

2. Batch mode

The batch mode is the mode by which a user may
operate the printer as a printing device for another
computer. The printer is in this case connected to an
open port of the computer. A job consists of the
execution of a Postscript program sent by the computer
to the printer. A Postscript program generally consists
of two parts:
a-the prologue, containing specific definitions and
procedures, but not executed immediately;
b -the script, that consists of references both to
Postscript operators and to definitions made in the
prologue, and interspersed with operands and data

Nashville, TN - 1987

required by the procedures.

The batch mode allows development of programs
with large data input, and is therefore the mode we used
in our applications.

MATERIAL

To develop Postscript programs, we used:

1-a DIGITAL MNC/DECLAB-23 computer, with an
RT-11 interactive, single user, real-time operating
system and FORTRAN IV programming language;

2 - a DIGITAL PDP 11/44 computer, with an RSX-11M
interactive, multiuser, multitasking, real-time operating
system and FORTRAN 77 programming language;

3 -an APPLE LaserWriter Plus printer with Postscript

emulator that was connected to the printer port of either
the computer or the terminal.
The advantage of connecting the printer to the printer
port of the terminal is that whatever is sent to the printer
is visible on the screen, and messages coming back
from the printer can be read. The drawback of this type
of connection is that the printer port of the terminal has
to be opened, and therefore the keyboard cannot be
used during the time of the transfer. In a single job
environment, if the user inadvertently hits one key on
the keyboard, it will echo on the screen and be sent to
the printer, then crashing the program. In a multitasking
environment, for the same reason, the user would not
be able to run another task at the same time.

The applications presented in this paper have been
developed on the MNC computer with the LaserWriter
connected to the printer port. However, the method that
we use to develop and transfer Postscript files to the
printer is independent of the type of computer or
printer.

METHOD

The data to be printed are first stored in a data file.
The Postscript program that will be used to print the
data with the desired format is then developed,
debugged and stored in a Postscript file. At the time of
printing, the Postscript prologue followed by the script
and its corresponding data are sent to the printer from a
program using /O routines written in Fortran. The
interpreter interprets and executes the printing
instructions contained in the Postscript program and
processes the data to get the desired output page. This
method is useful to print large data files, and also allows
the insertion of new Postscript statements (for instance
to save and restore given states, to reset variables, ...)
between different data sets.

104

POSTSCRIPT APPLICATIONS

1. Printing a file

The first application is a program that prints a listing
of afile.

Figure 1 shows the Postscript prologue, which contains
three main procedures:

1- rdis a procedure that reads a line of characters
terminated by a newline character from the current file,
and stores these characters in the string called char,

2 - pris a procedure that first decreases y1 (vertical
printing position), then sets the current point to
coordinates (x1,y1), and finally prints the string char,

3 - priis a procedure that first sets the current point to
the left top of the page and prints the title of the file
stored in the variable title, then sets the current point to
the right top of the page and prints the value of the page
counter ip.

This Postscript prologue is stored in the file named
OGLT9.POS.

Figures 2a and 2b show a listing of the Fortran
program that transfers OGLT9.POS and the data file to
the printer.

-Unit 5 corresponds to the terminal port, unit 7
corresponds to the printer port.

- After a few lines of declarations, the program asks
the user the name of the data file to print, and stores it
into NAMET1.

- File OGLT9.POS is opened; each line of this file is
read and immediately sent to the printer, until the end of
file is reached and the file is closed.

- The name of the file to print, stored in NAMET, is sent
to the printer and stored in the string title. Statement
215 demonstrates one way of passing a Fortran
variable to a Postscript variable.

- The file to print is then opened, and the line counter
NBL is set to zero.

- Each line of the data file is then read with an 132A1
format corresponding to the line width of the terminal
and stored in the string LINE. Statement 225 sends the
Postscript procedure pgr to the printer, which is
executed immediately and expects a line of characters
in the current file. The Fortran variable LINE is
therefore sent to the printer immediately following pgr
procedure. We demonstrated here a second way of
passing a Fortran variable to a Postscript variable.

- NBL is then incremented:

* If it is less than or equal to 45 (maximum number of
lines per page taking into consideration the vertical
spacing and the font height chosen), another line is read
and the same loop is again executed.

*If NBL is greater than 45, statement 245 sends
procedure pr1 to the printer, which prints the title and
the page number, and the showpage command which
allows the current page to be printed. Statement 255
increments the page counter jp and resets the vertical
position y71. Another line is then read until the end of file

is reached and the file is closed.
At the same time, the listing of this program
illustrates an output page.

2. Plotting a signal

The second application is a program that plots a
signal over time. The peaks are determined using a
peak routine and marked with a + sign on each graph,
as illustrated in figure 3. The signal, which is the output
of an A/D converter, consists of a sequential file in
which all the points are evenly spaced over time. The
time of each peak found by the peak routine is stored in
another sequential file. In order to avoid printing too
many pages but to have good resolution, the aim of the
program is to plot 3 graphs per page, each graph
representing 8 minutes of the signal. The time between
two consecutive points is known from the rate of
digitization. The minimum and maximum values are
calculated for each signal.

The Postscript program contains
procedures:

a - the first procedure initializes each graph by defining
the position of the origin, drawing a box around the
graph, reading from the Fortran program the title of the
study and the minimum and maximum values, placing
ticks on the axes, labeling the axes, and initializing the
current point;

b -the second procedure reads from the Fortran
program the time and amplitude of a point and traces a
line to this point. This procedure is invoked for each
data point;

¢ - the third procedure reads from the Fortran program
the time of each peak and prints a + at this location.

The Fortran program divides the time signal into 8
minutes segments. For each segment, the program
sends to the printer the command to initialize the graph,
the command to plot a point immediately followed by the
time and amplitude of the point, and the command to
plot the peak followed by the time of the peak. The
Fortran program also sends to the printer commands to
reinitialize Postscript variables, move the origin of each
graph, and restore given states.

three main

3. Tabulating data

Another important application for biomedical
research is a data tabulation program.

a - Figure 4a shows an example of a formatted data
file. The first line represents the title of the study,
composed of 80 alphanumeric characters. The second
line is the number of measurements in the file. The
following lines represent the different measurements,

each one composed of 9 numbers written with a specific

105

format.

b - Figure 4b shows one type of output. The title of
the study is printed in bold characters and therefore
emphasized; on top of each column is written what each
number represents in the column; in each column, the
numbers are right-justified.

The Postscript program used to generate this output
contains two main procedures:

*one procedure to print the box, the title of each
column, and the title of the study transferred from the
Fortran program;

* another procedure to read the 9 numbers to print
from the Fortran program, to move to the right column,
and to print each number.

The Fortran program first sends to the printer the
commands to initialize the page, then reads each line of
the data file and sends the commands to execute the
second procedure immediately followed by the 9
numbers, until the end of the file is reached.

Figure 4c shows a second type of output, which uses
the same data file for input. Each parameter is plotted
over time, and marked with a + on each graph. The
points are connected with a line that allows visual
determination of major variations of a parameter.

The Postscript program contains two main procedures:

*the first procedure initializes each graph by
positionning the origin, drawing the box, writing the title
of the study, placing the ticks on the axes, labeling the
axes, and initializing the current point;

*the second procedure reads from the Fortran
program the time and amplitude of a point, prints a + at
this location, and traces a line from the previous point to
this point.

For each graph, the Fortran program first sends to the
printer the command to initialize the graph, then for
each point the command to plot it, immediately followed
by its time and amplitude. The Fortran program also
sends to the printer commands to reinitialize Postscript
variables, to move the origin of each graph, and to
restore given states.

Figure 4c shows that some of the peaks seem to
occur at the same time on different tracings, suggesting
a correlation between some of these parameters.
Figure 4d examines this possible correlation and shows,
using the same input file again, a third type of output.
Each of these four graphs represents a plott<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>