

Foreward

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide society ofusers of
computers, computer peripheral equipment and software manufactured by Digital Equipment Corporation. The U.S.
Chapter of DECUS has approximately 60,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local, national and
international levels to fulfill its primary functions of advancing the art of computations and providing a means of
interchange of information and ideas among members. Two major technical symposia are held annually in the United
States.

For information on the availability of back issues of U.S. Chapter Proceedings as well as forthcoming D ECUS symposia,
contact the following:

DECUS U.S. Chapter
219 Boston Post Road, BP02
Marlboro, MA 01752-1850

All issues of past Proceedings are available on microfilm from:

University of Microfilms International
300 North Zeeb Road
Ann Arbor, MI 48106

Preface

This volume of the Proceedings contains papers which were presented at a symposium sponsored by the Digital
Equipment Computer Users Society during the Fall of 1987.

The Fall 1987 Symposium was held at the Anaheim Convention Center, in Anaheim, California, from December 7
through 11, 1987. Over6000 DECUS members joined together in Anaheim for a week of intensive learning, training, and
sharing.

One of the highlights of this symposium was the introduction of several featured speakers. While the national sym
posium traditionally has been sponsored and presented entirely by users and Digital, the DECUS Symposium
Committee is to be commended for going out of their way to attract a few special speakers who have presented especially
exciting sessions. While these keynote and featured speakers may not have brought in-depth technical information to
the symposium, their experience and breadth over a wide variety of fields gave DECUS members new insights into old
problems.

The VAX computer system project was begun ten years ago this year, and the VAX SIG held special festivities to celeb
rate the event. Digital pitched in by providing an almost-authentic original VAX-11/780 in the exhibition hall running
VAX/VMS version 1, with an RP06 disk drive and VT52 terminals. The VAX SIG held a well-attended banquet dinner
one evening, complete with design lore, anecdotes, and the usual war stories and prophesies-come-true.

Cathy Ditamore, the DECUS volunteer who has led the Symposium Publications Committee for the past year, has
agreed to move her management skills and enthusiasm up the DECUS ladder, and will be serving as Vice Chair of the
Communications Committee. My thanks are due to both her and Beverly Welborne for their support and hard work on
behalf of the Proceedings. DECUS Board of Directors members Bill Brindley and Bob Curley also provided me with a
great deal of personal guidance this past year, and their help is well appreciated.

My thanks on behalf of the attendees of the Fall National Symposium go out to Chris Wool and Emily Kitchen, the
DECUS volunteers who led the Symposium Committee. They worked together with DECUS staff members led by
Nancy Wilga to put together a highly successful and seamless Fall meeting. The leadership of the entire Symposium
Committee is sincerely appreciated. I'd also like to thank the DECUS staff members who make my life a lot easier --
Judy Mulvey, Cheryl Smith, Beverly Dandeneau, and Gloria Caputo.

Joel M Snyder
Proceedings Editor

Proceedings
of the

Digital Equipment
Computer Users

Society

USA FAii 1987

Papers Presented at
Fall, 1987 Sy01posiu01

Anaheint, California
Decentber 7 - 11, 1987

Table of Content

Artificial Intelligence SIG
Artificial Intelligence Applied to the Help Function
Robert Stanley 1

The Use of PHIGS in an Artificial Intelligence
Environment For Mechanical Engineering
Mike Thompson, Jim Roth 15

An Overview of the Common LISP Object System
Richard P. Gabriel Linda G. DeMichiel 23

Business Applications SIG
Postage & Mailing Cost Saving Computer Programs
Richard L. Fleischer 3 7

Data Acquisition, Analysis, Research,
and Control SIG
Developing a CIM Architecture
Nigel P. Weymont, Jeffrey S. Honeyager 45

Interactive Control Engineering Computer Analysis
Program
Robert L. Ewing, Sam C. Huges, Kris L. Larsen,
Gary B. Lamont 67

RT-11/VMS Networking for Real-Time Applications
Jonathan D. Melvin, PhD 73

Data Management SIG
An Automatic Source-Code Generator Generating
Subroutines for Accessing an Rdb Database
David M Hansen. 79

DATATRIEVE SIG
Using DATATRIEVE with VAX/DBMS
Alan H. Beer 89

Managing ALI.rlN-1 with DATATRIEVE
Bart Z. Lederman 93

Solving Equations in DATATRIEVE
Bart Z. Lederman 105

EDUSIG
Voice: A Computer Controlled Telephone Information
System
Lisa M Rotunn~ Edward C. Hohmann, Son V. Phan,
James A. Rounds 115

Graphics Applications SIG
Report Generation Using a Visual Programming
Interface
Tim Dudley 123

Introduction to SMG, The VMS Screen Management
Utility
Robert L. Hays 131

Languages and Tools SIG
Customizing V AXLSE for your Language
Jana Van Wyk 139

Automating a Software Development Environment
Linda L. Craddock 147

Large Systems SIG
The Internet Domain Name System
S. Robert Austein 157

Networks SIG
An Architectural Perspective of a Common Distributed
Heterogeneous Message Bus
Howard Kilman, Glen Macko 171

A Local Area Network for a Multivendor Environment
Roger G. Ruckert 185

Office Automation SIG
Personnel Computers and ALL-IN-1: Document
Transfer and Translation
C.F. Stan/and 193

Basic Networking for Office Automation
Robert Gary Mauler, Valerie Cabral Mauler 199

Office Automation Security: Closing the Doors to Your
Computer System
Robert A. Clyde 209

Writers as User Interface Designers
Peter Donahue 215

Personal Computer SIG
Trojan Horse Software
Kenneth A. Stricker 223

PC Workstation to VAX Connections for Maximizing
Resource Flexibility
Robert Gary Mauler, Valerie Cabral Mauler 227

RSX-11 SIG
Modifying FMS-11 to Provide Read-With-Timeout and
Video Attribute Control
Joseph E. Kulaga 237

RT-11 SIG
XL/XC/CL Programming for RT-11/TSX-PLUS
Ned W. Rhodes 243

Real World Disk Comparisons
Robert C. Peckham, Milton D. Campbell 257

Site, Management and Training SIG
Diary of a Novice System Manager
Mark Roark Chartier 283

VAX Systems SIG
Viruses, Worms, and Trojan Horses-Part II
Robert A. Clyde 297

REMPRINT: Remote Printing for VAX/VMS
Marty Adkins 301

SOFTQUOTA: A Diskspace Management Utility
Shari Dishop 307

Fast Response on Overloaded Systems (or the alchemy of
the VMS scheduler)
Silvano de Gennaro 313

Evaluation of Third Party VAX/VMS Disk
Compression Products
MarianK Iannuzzi 317

VMS Disk Performance
Wef Fleischman 331

Coping with Full Disks
Melcolm Dunn 341

Presentation Title: Artificial Intelligence Applied to the HELP Function

Code: AI020

Author: Robert Stanley

Address: Cognos Incorporated
P.O. Box 9707
3755 Riverside Drive
Ottawa, Ontario
CANADA Kl G 3Z4

Audience: Technical
Managerial
General Interest '1

Abstract:

Title: Senior Researcher

Telephone: (613) 738-1440

Language: English

Skill Level: New User
Mid-range '1
Sophisticated '1

Traditionally, on-line help for computer software has been based on one of two
broad approaches, the on-line manual, and context-sensitive help text. Both
mechanisms have spawned numerous sub-genres, many of which demonstrate
considerable ingenuity and sophistication. The key factor in the development of
these help facilities has been the increasing availability and decreasing cost of
high capacity storage, both memory and disk, which has made it feasible to have
large volumes of text on-line to computer users.

Most recently, further improvements in the price-performance ratios of
computer hardware, coupled with steady progress in artificial intelligence
research, have made it possible to consider harnessing so called knowledge-based
technologies to the provision of help facilities. Smart help, as it is usually known,
can simply be a more sophisticated version of one of the two existing approaches,
but this technology also introduces the possibility of new mechanisms.

This paper describes a research project designed to develop a prototype advisor
for Cognos' QUIZ report writer. An advisor is a knowledge-based program
capable of conducting a dialogue with a user and answering questions within its
domain of knowledge, in this case knowledge of a 4th generation computer
application programming language. As well as describing the results of the
research to date, this paper briefly introduces other potential applications of the
technology, discusses their viability, and proposes likely time-scales for their
practical availability.

DECUS: AI and HELP - Abstr (Oct/87)

Artificial Intelligence Applied to the HELP Function

Robert Stanley
Cognos Incorporated

Ottawa, Ontario

Abstract

Traditionally, on-line help for computer software has been based on one of two
broad approaches, the on-line manual, and context-sensitive help text. Both
mechanisms have spawned numerous sub-genres, many of which demonstrate
considerable ingenuity and sophistication. The key factor in the development of
these help facilities has been the increasing availability and decreasing cost of
high capacity storage, both memory and disk, which has made it feasible to have
large volumes of text on-line to computer users.

Most recently, further improvements in the price-performance ratios of computer
hardware, coupled with steady progress in artificial intelligence research, have
made it possible to consider harnessing so called knowledge-based technologies
to the provision of help facilities. Smart help, as it is usually known, can
simply be a more sophisticated version of one of the two existing approaches,
but this technology also introduces the possibility of new mechanisms.

This paper describes a research project designed to develop a prototype advisor for
Cognos' QUIZ report writer. An advisor is a knowledge-based program capable
of conducting a dialogue with a user and answering questions within its domain
of knowledge, in this case knowledge of a 4th generation computer application
programming language. As well as describing the results of the research to date,
this paper briefly introduces other potential applications of the technology,
discusses their viability, and proposes likely time-scales for their practical
availability.

Historical Background

I vividly remember the first time I saw a video display terminal
which had a dedicated help key; finally, it appeared, a
manufacturer was addressing the real needs of computer users.
My initial excitement rapidly turned to frustration as I realized
that the key didn't actually do anything other than generate a code
that could be uniquely identified within a program, should the
programmer choose to check for it. The experience was a
salutary one, in as much as it made me examine some of the
fundamental underpinnings of computer systems, which in turn
sparked an interest in human-computer interaction that has never
waned. But on that day in the early 'seventies, it was the
frustration and anger at the thoughtlessness of system designers
that predominated. How, I wondered, could an industry
continually introduce potentially wonderful mechanisms that for
all practical purposes have no useful application?

usually only under the regis of a determined champion or
visionary. The classic example of this in recent years has been
the introduction of the Apple Macintosh, which has finally won
acceptance for ideas that have been discussed for more than a
decade. Of course, the ideas also required the introduction of
affordable delivery technologies for their realization, and this is
the heart of the problem.

The answer, as always, turns out to be simply the perpetuation
of a tradition that has its origins in the exigencies forced by
engineering limitations in pioneering days. The commercial
data-processing industry has been, and generally still is,
hidebound and conservative in the extreme; only a trickle from
the flood of research ever finds general acceptance, and then

Proceedings of the Digital Equipment Computer Users Society 3

In the earliest days of computing, all users were programmers,
and errors manifested themselves as system failures of varying
degrees of subtlety. Tracking down the source of a problem was
a time-consuming and demanding exercise, and the only help
available was discussion with colleagues. Non-programming
users first appeared on the scene with the introduction of batch
processed applications, which were accompanied (after the need
for them rapidly became apparent) by detailed user instructions
for running the application, and a book full of possible error
situations, each identified by a cryptic code. Hardware
limitations, particularly in memory capacity, necessitated the use
of codes rather than text messages. The form of the
documentation, which was written by the program authors,
reflected the tastes and habits of the programmers, which in tum
were shaped by the development environment in which the
programmers worked, which ultimately were rooted in the
engineering design decisions taken by the hardware

Anaheim, CA - 1987

manufacturers. The only variation on this theme was provided
by the introduction of separate quality assurance or 'testing'
sections, who at least verified the correctness of the
documentation as well as the applications.

It was really the appearance of interactive computer terminals in
the late 'sixties which first started a trend towards addressing
more fundamental user needs than simply the raw mechanism for
running an application. The problems faced by an
unsophisticated computer user (usually described as one with no
real understanding of the operating system and programming
language characteristics) in attempting to successfully execute a
job necessitated impractical levels of training or a radically
different approach. In the short term, operators developed
startling skills, and major computer centres placed all
programmers on operational trouble-shooting detail, frequently
on a three-shift basis. The answer was the development of
interactive or on-line help facilities, but these were slow in
arriving because they required vast (by contemporary standards)
amounts of on-line direct-access storage.

The most widely adopted approach was that of context-sensitive
help, whereby an interactive user could enter a predetermined key
sequence (usually a question mark) at any point where the
application was waiting on input. Of course, this only worked
where the application design and the programmer had together
conspired to provide some meaningful information to be
displayed on request. Poor programming all too frequently
resulted in a help message of the form:

EMPLOYEE NAME:1 "Enter the name of the employee"

when what the user really wanted to know was whether the
initials were supposed to precede or follow the name, or if the
name was supposed to match some other field, and so on.
However, this system has merits, and is widely in use today,
usually with multiple levels of information being made
available. I.e., one request returns possible syntax of an entry, a
second the value restrictions, a third a textual description of the
purpose of the field. The major limitation with this approach is
that the user is utterly dependent on what the program developer
has decided is relevant, and has no alternative recourse except to
consult any available written documentation, or to contact the
program developer.

The other approach that has been widely adopted is the concept of
the on-line manual, whereby the user is free to browse through a
structured set of documentation made available on-line. This
mechanism was slow to be adopted because of its massive
requirement for on-line direct-access storage. Now that disk
storage is cheap, comparatively speaking, this approach is being
more widely adopted, particularly because it places little or no
demand on the programmer. The on-line manual is typically
accessed via one simple mechanism, and then behaves as a self
contained application. However, from the user's point of view,
the on-line manual suffers from all the deficiencies of paper
documentation: obscurity, poor layout, useless or non-existent
indexes and/or tables of contents, inconsistency, and omissions.
An interesting recent studyl also revealed that many users fail to
exploit the capabilities of even the best designed on-line

1 "Helping Users Find Help: Models of Online Help
Organization"; Marj()rie S. Horton, IBM Human Factors Center,
in ihe ACM/SIGCHI bulletin for October 1986.

4

information systems, because they fail to perceive the structure
of the on-line information, even when it is designed to be
intuitively obvious.

Cognos' products to date have all followed the approach of
providing multi-layered, context-sensitive help facilities.
However, the technical writing group have recently produced a
working prototype of an on-line documentation system, which
includes 'smart' indexing and searching, as well as editable
examples that can be executed against a demonstration database
from within the help context. Also, the research division has
now produced the first working prototype of a completely
different kind of on-line help, an advisory system based on
artificial intelligence techniques. It is this 'advisor' that is the
subject of the remainder of this paper.

Overview
The aim of the 'Advisor' project is to create a software advisor or
assistant capable of answering questions, phrased in a minimally
constrained English-like language, about the use of a typical
Fourth Generation Language (4GL). For the prototypes we have
chosen QUIZ, Cognos' 4GL report writer, as the experimental
subject, both because it is a mature and reasonably well
understood product, and because there is a large body of users
with a well documented history of problems encountered using
the product.

The 'Advisor' is a joint industrial-academic project between
Cognos Incorporated and the University of Ottawa, with grants
from the National Research Council of Canada, The Natural
Sciences and Engineering Research Council of Canada, and the
Ontario Ministry of Colleges and Universities. The work is
being carried out at the University of Ottawa's Artificial
Intelligence laboratory, by a mixed team of Cognos research
group members, and University of Ottawa professors, graduate
students and paid assistants.

The project was started in the Autumn of 1985, and is scheduled
to be completed in the late Summer of 1987 with delivery of a
full demonstration prototype system. The first year of the
project was spent on theoretical research, with practical
experiment starting early in the Summer of 1986. A proof of
concept prototype was completed at the end of October 1986, and
successfully demonstrated to the various sponsoring
organizations in the following month.

The current development uses two different software
environments running on two different computer systems, linked
by a 10 megabit/sec Ethernet: Quintus Prolog running on a
Sun/3 workstation, and IntelliCorp's KEE™ (Knowledge
Engineering Environment) running on a Xerox 1186 (Dove)
InterLisp machine. This separation was deliberately chosen to
ensure that the research project investigated the relative merits of
a number of different technical approaches, although experience
to date indicates that we might have encountered severe
difficulties in attempting to build the complete system to run on
a single machine of the classes available to us.

It is worth noting that at our current stage of experiment
enormous computing resources are required to implement our
various mechanisms. Only when we have the full prototype
completed will we start to address the issue of efficient
implementation in a less specialized environment. Our ultimate

goal is to produce a system capable of running on an IBM
PC/AT, or equivalent. Preliminary experiments in this direction
indicate that this should be an achievable goal within a very few
years, partly because of the appearance in this market of
sophisticated AI tools, and partly because of the continuing trend
in increasing hardware performance for a given price. It was only
the comparatively recent availability of affordable, very powerful
work-stations, epitomized by the Xerox Lisp machine, that made
this project possible.

Approach

We adopted a somewhat unusual approach as we embarked on the
research project by consulting the records of Cognos' telesupport
group for documentary evidence of problems encountered by
QUIZ users. The important point was that these were end users
of QUIZ, who were attempting to use it as the tool of choice to
solve real-life data-processing problems. Their calls to the
telesupport group could thus be construed to be typical of
questions that any 'advisor' should be capable of answering.

We screened the questions for obvious irrelevancies, and then
classified them according to a system which we developed. The
majority of the questions were split between only two categories,
the 'how do I .. .' (HDI) and the 'why did .. .' (WHY) or causal;
other categories, including syntactic (SYN), explanation of
obscure error messages (ERR), definitional (DEF), and
hypothetical (HYP) accounting for the rest. The HDI's alone
accounted for more than half the questions, and it was decided to
make answering this type of question one major focus of the
project. A second sub-project was initiated to tackle the next
two most frequent categories, the WHY's and the SYN's. The
SYN's (questions such as "can there be more than one ACCESS
statement in a report?" or "what is the syntax of a FOOTING
statement?") are the traditional meat of context sensitive help
systems, but accounted for less than 15% of the total number of
questions, indicating that what was needed did indeed lie outside
the capabilities of contemporary help systems.

Once we had classified the questions, we made a detailed study of
those falling into the categories of interest, further analysing
them by topic. Perhaps the greatest beneficiaries of this exercise
were our technical writers, who received a weighted list of six
topics that clearly gave many users difficulties, and which
therefore required new treatment in the reference manuals. Once
we had classified the questions by topic, decided what problems
appeared to characterize each, and what general characteristics
could be inferred, we performed a final screening of the questions
to eliminate those which could be classed as relating to very
obscure issues or to technical tricks outside the mainstream use
of QUIZ. This left us with a representative set of some 200
questions, and we defined our goal for the working prototype as
the capability to answer any question which can clearly be shown
to be directly related to one of these 200 questions.

Of course, in order to prove the correctness of an answer, one
needs at least a model answer for each of the questions to act as a
yardstick. We therefore circulated our 200-question set to
members of various groups within the Cognos head office,
including tele-support (where the questions originated), product
development, and a variety of technical specialists. Interestingly
enough, in many cases there proved to be no one correct answer,
indicating the depth of the problem when using one of the

5

sophisticated software tools that characterize a 4GL. Where more
than one answer was produced for any given question, we had the
experts weight each answer and recorded the set of answers,
ordered by weight, with the question.

At this point we had the necessary information to start designing
possible question answering mechanisms, and were able to
embark on the real work of the project. We eventually broke the
project down into four sub projects, and treated each as a
relatively independent development up to the first (proof of
concept) prototype stage (Pl). These four sub-projects were:

• a parser capable of syntactically analysing any question
asked by the user of the system, couched in a formalized
English-like language, and integrated into a user interface;

• an HDI question-answering system;

• a causal (WHY and SYN) question-answering system; and

• an 'apprentice' system with the capability of learning from
the user.

Each of these is briefly described in the following sections of the
paper.

The Parser and User Interface
The parser was developed as a Master's thesis under the guidance
of a natural language specialist (Dr. Stan Szpakowicz) at the
University of Ottawa. The parser is designed to accept four types
of input, as follows:

• an assumption or descriptive text fragment providing
background information which may help to clarify the
context of a question. These are entered in a restricted form
of English (see below), delimited by a full stop, and can be
annotated with various special symbols to help the parser.
Examples of such assumptions are:

'employees' is a keyed file •

'emp_num' is a key of 'employees'
'surname' is a key of 'employees'

• a question, which is also entered in restricted English, but
delimited by a question mark. Questions can also be
annotated with various special symbols to help the parser.
An example of a typical question (in the context of the
previous assumptions) is:

how do i access 'employees' using 'emp_num' and

'surname' ?

another example (showing some annotation to help the
parser correctly identify dependent clauses) is:

how do i print an item at [the beginning of a

detail line] ?

• a fragment of QUIZ code, presumed relevant to the questions
being asked. Only minimal syntax checking is performed
on the code fragment.

• the literal text of an actual QUIZ error message about which
questions are being asked.

The subset of English that the parser is designed to accept is in
fact a formalism specifically designed for knowledge
representation called LESK: Language for E.xactly S.tating
Knowledge. The LESK language has been developed over a
number of years by Dr. Skuce of the University of Ottawa, and
the work that had already gone into the specification of this
language was one of the starting points for the Advisor project.
In practice, LESK had to be considerably extended to make it fit
our particular application, but its straightforward simplicity is
easy to pick up, and once mastered, LESK can be used to express
a wide variety of concepts. Any limitation in vocabulary is a
relatively trivial problem to solve, requiring only additional
entries in the lexicon; the grammar is sufficiently extensive to
cope with the variety of constructions needed to state
assumptions and frame questions about programming with
QUIZ.

A question on its own, or a question accompanied by one or
more assumptions, and/or a fragment of QUIZ code, and/or a
QUIZ error message constitute a logical query, which is the unit
of input to one of the question-answering systems. The parser
outputs a successfully parsed fragment in the form of a parse
tree, represented either as a Prolog list or as a Lisp S-expression
according to a user specification. In the case of the parser failing
to parse an input fragment, an interactive dialogue is initiated
with the user to attempt to resolve the problem. The user is
given the choice of respecifying the fragment (abort parse for this
fragment), either ignoring or altering the specific word over
which the parser has stumbled, or of undertaking a more
technical dialogue via which a new word can be defined in the
parser's lexicon.

The parser itself is written in Quintus Prolog, and runs under
UNIX on a Sun/3 workstation. The design of the current
implementation is based on some fairly standard natural language
processing theories for syntactic analysis, driven by a
sophisticated lexicon, and is capable of parsing any input
fragment in between 0.1 and 0.5 seconds.

Building the lexicon2 proved to be one of the most interesting
exercises, in as much as we wrote a special concordance program
through which we fed a large body of machine-readable
documentation, including the complete text of the QUIZ
reference manual. The output from this gave us some 1,500
words for inclusion in the lexicon, together with all the
necessary references and annotations required to complete each
lexical entry. This linguistic analysis of existing documentation
raised a number of interesting side issues, chief among which
was that, while natural language theory suggested that we might
expect some 400-450 different verbs to have been used, in fact
the total was only about 150. When we investigated this with
the technical writing group, we discovered that the technicians in
the development group who had vetted the documentation for
technical accuracy had insisted on particular usage of a variety of
technical terms, and it was this insistence that had led to the
relative paucity of the vocabulary.

Much more interestingly, because each of these words was
serving multiple duty, they tended to gain a variety of context-

2 A lexical entry is similar to the entry for a word in an English
language dictionary, but with a variety of annotations
describing the part of speech, and possible rOles that the word
can play.

6

dependent meanings, which turned out to be the root cause of a
number of the misunderstandings demonstrated in our sample
questions. Since the QUIZ documentation has won awards as the
best documentation of its kind, this is clearly not an isolated
problem, and indicates not only the need for early involvement of
technical writers in the product development cycle, but also that
formal technical glossaries must be developed which assign
unique and unambiguous meanings to each technical term.
Interestingly enough, one possible application of the Advisor
prototype is to the development and formalization of such
technical glossaries for future products.

The parser development thus proved to be an interesting exercise,
and the working prototype has proven to be fast and effective in
use. It does constrain the user somewhat with respect to freedom
of expression on input, but experiment and constant usage over
several months have shown that it is easy to adapt to the parser's
constraints, and that these do not interfere in any important way
with the user's freedom of expression.

The HDI Question-Answering System

The How-Do-I question-answering system (HDI) is the area into
which the most effort has been directed, mainly because we
wished to explore the capabilities of available large-scale AI
tools. For a variety of reasons, we eventually settled on the
Knowledge Engineering Environment (KEE™, from
IntelliCorp™) running under Interlisp-D on the Xerox-1186
(Dove) Lisp machine. This has proved to be a nearly ideal
prototyping environment, but its tremendous richness resulted in
a long and relatively steep learning curve which we believe will
take some 12 months to travel to the level of neo-expert.

Using these tools, we have developed a question-answering
system that utilizes three fundamental mechanisms: frame-based
representation of knowledge; a forward-chaining, rule-driven
inferential system; and object-oriented methods written in
InterLisp. These three mechanisms are combined in various
proportions to answer a submitted query in three stages, as
follows:

• Using an approach known as semantic interpretation, the
parsed S-expression for a user query is received over the
Ethernet, and translated into a formal representation using
KEE frames, based on the system's understanding of the
query. Understanding, in the context of semantic
interpretation, means being able to classify all phrases of the
input query in terms of concepts defined in the knowledge
base, and correctly assigning all objects into r61es which fit
the activities mentioned.

The semantic interpretation phase can fail completely {I
don't understand the question) or may start an interactive
dialogue with the user to clarify and disambiguate phrases of
the input query which are causing confusion.

• Once the semantic interpreter has completely transformed the
query into a conceptual representation as a KEE knowledge
base, it invokes a mechanism that attempts to match the
query against known knowledge. This matching mechanism
may yield a perfect match (the query is completely
answerable), a partial match (in which case the user will be
solicited to supply additional information), or a mis-match
(unable to answer the query). All queries must eventually
reduce either to an acceptable match, or a rejection of the
query as unanswerable in its submitted form.

An acceptable match is comprised of a set of potentially
useful KEE units, each of which is deemed to hold
information relevant to answering the query.

• In the case of an acceptable match, a syntax generating
mechanism is invoked, which assembles and displays an
answer from information held in the set of potentially useful
units. This mechanism has sufficient knowledge of QUIZ
syntax to enable it to formulate an answer in the form of
QUIZ statements, although the resultant code may have
instantiation points representing generalities (e.g. <report
item>) and unknown specifics (e.g. <file name>);
these are represented in angle brackets.

In addition, or as an alternative, to the QUIZ code generated
(the definition of an HDI question is one for which an
adequate answer is a piece of QUIZ [pseudo-]code), the
answerer may generate a plain text message. Typically, this
occurs in the cases where the query has an explicit negative
answer, e.g. "It is not possible to report a heading to a
subfile".

In fact there is no clear boundary between these three stages, and
the decision as to which mechanism should be responsible for
what has tended to be taken on the basis of implementational
ease. However, it helps to think of the process broken down in
this fashion, because the major consideration is the construction
of generalized mechanisms driven from separate knowledge bases.
The more domain-specific (QUIZ in our case) knowledge there is
hard coded within the actual mechanisms, the less useful (read:
extensible, portable, maintainable, etc.) the system becomes. A
brief example may serve to highlight some of these ideas.

The previously discussed query:

'employees' is a keyed file •

'emp_num' is a key of 'employees'

'surname' is a key of 'employees'

how do i access 'employees' using 'emp_num' and

'surname ?

Is translated by the parser into the following set of Lisp S
expressions, which are combined into a single list before
submission to the question-answering mechanisms:

Assertion 1: (is_a yes (variable employees)
(count_nounphrase 1 () keyed_file

(variable employees) ()))

7

Assertion 2: (is_a yes (variable emp_num)

(count_nounphrase 1 () key (variable

emp_num) ((of (count_nounphrase 1 ()

keyed_file (variable employees)
())))))

Assertion 3: (is_a yes (variable surname)

(count_nounphrase 1 () key (variable

surname) ((of (count_nounphrase 1 ()

keyed_file (variable employees)

())))))

Question: (hdi yes () access ((nil sub

(personal_pronoun ill (nil d_o

(count_nounphrase 1 () keyed_file

(variable employees) ())) (nil using

(and (count_nounphrase 1 () key

(variable emp_num) ((of

(count_nounphrase 1 () keyed_f ile

(variable employees) ()))))

(count_nounphrase 1 () key (variable

surname) ((of (count_nounphrase 1 ()

keyed_file (variable employees)

())))))))

Careful examination of the above S-expressions reveals that all
the information represented in the assertions is duplicated in the
question. In fact it would be possible to generate an identical
question S-expression by posing the following question without
any assertions:

how do i access a keyed file 'employees' using a

key 'emp_num' of 'employees' and a key 'surname'

of 'employees' ?

LESK allows the user considerable flexibility and freedom of
expression when formulating queries. The Semantic Interpreter
takes the S-expression list output by the parser, and creates a
knowledge base containing the following units:

0 1 an ACCESSING activity, with a target of 02, and an
agentof03;

0 2 a FILE .QbjW, named 'employees', with an access
mechanism of 'keyed', a key-list of 04 and 05, and
membership in the class of DATA-FILES;

03 am:Qf KEYS, pointing to 04 and 05;

0 4 a KEY~. named 'surname', with membership in the
class of DATA-ACCESS-KEYS;

0 5 a KEY .QbjW, named 'emp_num', with membership in the
class of DATA-ACCESS-KEYS.

A number of inferences have been made, including the fact that
the keys are data access keys rather than sort keys, and that the
file is a keyed data file. In this latter case, while the 'keyed'
attribute can be readily inferred even when it is not explicitly
stated, the 'data file' attribute is not obvious (there are a number
of possible alternatives). Where disambiguation proves difficult,
the Semantic Interpreter either asks for confirmation, e.g.

Please confirm that the referent: FILE

(employees) is a member of the class of DATA

FILES (Y)/N ?

or leaves the problem to be tackled by a subsequent processing
phase. At present the Semantic Interpreter draws the inference
and requests user confirmation, but this has caused problems in
more complex situations, and we may choose to let this type of
problem stay unresolved until a subsequent phase.

The second (matching) phase extends this first representation, by
altering existing units and generating new units, to generate the
following set of potentially useful units:

0 1 an ACCESSING activity, with a target of 02, and a sub
activity of 06;

0 6 a LINKING~. with a target of 07 and 08, and an
agent of03;

0 2 a FILE ~. named 'employees', with membership in
the class of PRIMARY-DATA-FILES;

0 7 a FILE ~. named 'employees', with an access
mechanism of 'keyed', a key-list of 04, an alias of '<alias
for-surname>', and membership in the class of
SECONDARY-DATA-FILES;

0 8 a FILE ~. named 'employees', with an access
mechanism of 'keyed', a key-list of 05, an alias of '<alias
for-emp_num>', and membership in the class of
SECONDARY-DATA-FILES;

0 3 a~ KEYS, pointing to 04 and 05;

0 4 a KEY Qb.iw, named 'surname', with membership in the
class of DATA-ACCESS-KEYS;

0 S a KEY~. named 'emp_num', with membership in the
class of DATA-ACCESS-KEYS.

Notice that the name of an object is merely another attribute of a
unit and not its identifier, thus allowing three FILE units to
exist for the same file. At this point the query can be classed as
fully matched, because all the concepts mentioned have been
successfully matched with known concepts, with sufficient
precision to generate an answer. The answer generating phase is
invoked, and in fact increases the set of potentially useful units
with a number of units to represent syntactic fragments. The
new units are:

0 9 an ACCESS-CLAUSE, with a target of 02, and a link-list
of 10and11;

1 0 a LINK_ CLAUSE, with a target of 07, and a linkage-spec
of 12;

11 a LINK_ CLAUSE, with a target of 08, and a linkage-spec
of 13;

12 a LINK-BY-KEY-SPEC, with a file-refof07, and a key
refof 04;

13 a LINK-BY-KEY-SPEC, with a file-ref of08, and a key
refof 05.

8

These are much simplified representations, but show the type of
cross-references that are constructed, together with a degree of
redundancy that eases navigation between units in the knowledge
base. From these syntactic fragments, the following QUIZ
pseudo-code is generated and displayed in the answer window:

ACCESS EMPLOYEES &

LINK TO SURNAME OF EMPLOYEES ALIAS <alias-for-

surname> &

LINK TO EMP NUM OF EMPLOYEES ALIAS <alias-for-

emp_num>

This is the correct answer to the query, but will require the user
to code the actual alias names to be used before the statement
becomes executable.

The Pl prototype is capable of answering a handful of queries on
the topics of accessing (the previous example is a typical such
query), reporting and sorting. Achieving this required knowledge
representation for a total of some 85 concepts (both objects and
activities) plus about a dozen syntactic fragment specifications,
supported by some 70 rules and several dozen Lisp methods.
However, the fundamental mechanisms appear readily extensible,
and adding knowledge about new concepts should prove merely
time-consuming.

The Causal Question-Answering System

The causal question answering system, known as QAUZ, is the
subject of a Ph.D. thesis by Branka Tauzovich, a member of
Cognos' Research Division on scholarship at the University of
Ottawa. The requirements for originality in a doctoral
dissertation necessitated keeping this portion of the project
independent, and it has thus been treated as a parallel
development. The QAUZ system has been implemented entirely
in Quintus Prolog on a Sun/3 workstation; its only direct
interaction with the rest of the Advisor is that it invokes the
same parser to process its raw input.

The QAUZ system typically accepts a fragment of QUIZ code as
part of a query, because the usual WHY question requires the
code in order to be able to establish the context in which the
query is being asked. For ERR type questions (explaining error
messages), should it prove impossible to answer the question
without reference to the context, the user will be prompted to
enter the code. In the prototypical implementation no provision
was made to allow direct access to machine readable QUIZ code,
but this would certainly be the approach adopted for any more
serious implementation. The text of QUIZ error messages are
also acceptable as input, because one major category of user
question is the "why did such and such an error occur?".

The QAUZ system comprises a knowledge base (implemented
mainly in declarative rules, but augmented with a custom frame
based mechanism), which describes a mini-QUIZ model (a subset
of QUIZ similar to that used in other parts of the Advisor
project), a user interface with links to the parser, a forward
chaining inference mechanisms, a backward-chaining inference
mechanisms, a rule base, and a variety of tools such as frame
compilers. The system uses a combined forward- and backward
chaining strategy to reason forward from a question, and
backward from actual QUIZ code, to generate an explanation
which satisfactorily accounts for the reported facts.

While processing a problem, the QAUZ system constructs an
internal representation of the problem state which shows all the
various dependencies and causal mechanisms that may be
contributary factors. Even if a focused answer cannot be reached
by the system, a browsable display of the internal representation
of the problem frequently yields sufficient information to enable
the user to answer the query. The following example shows the
QAUZ system reasoning about the circumstances under which a
default heading should appear on a report; note that the system is
capable of handling inconsistencies:

Enter your QUIZ code:
>> REPORT X HEADING "Name"
>>

> Why is the column heading set to the dictionary
heading?

Your query is INCONSISTENT!

Contradiction found regarding:
the column_heading of a report_item is set
to the dictionary_heading of an item

Either your QUIZ statements are incorrect
or you did not formulate your question properly!

Assuming the latter ...

The NEGATION of your question is TRUE
because the following DOES NOT HOLD:

all record_items are requested for reporting (f),
CONSEQUENCE OF:
using 'REPORT with the ALL_option' statement (f)

AND

OR

a record item is an accessible record item (?),
CONSEQUENCE OF:
the record item is a declared record item (?),

the record item is a record item of a file (?)
AND
the file is a declared file (?),
CONSEQUENCE OF:
using first_file_declaration in 'ACCESS'
statement (?)

OR
using subsequent_f ile_declaration in
LINK_TO_part in 'ACCESS with a
LINK_TO_option' statement (?)

a default for the column_heading of a
report_item is used (f),
CONSEQUENCE OF:

using format_part without HEADING_part
in report_item
in report_items
in report_group
in 'REPORT with a report_group' statement (f)

> Why j s not the column beadj ng set to the
dictionary heading?

Because the following DOES NOT HOLD:
all record_items are requested for reporting (f),
CONSEQUENCE OF:

using 'REPORT with the ALL option' statement (f)
AND

9

a record - item is an accessible record item (?) ' -
CONSEQUENCE OF:
the record item is a declared record item (?) ' -
CONSEQUENCE OF:
the record_item is a record_item of a file (?)
AND

OR

the file is a declared file (?),
CONSEQUENCE OF:
using first_file_declaration in 'ACCESS'
statement (?)
OR
using subsequent file declaration in
LINK_TO_part

a default for the column heading of a
report_item is used (f),-
CONSEQUENCE OF:

using format_part without HEADING_part
in report item -
in report_items
in report_group
in 'REPORT with a report_group' statement (f)

The fundamental mechanisms of the QAUZ system are capable
of dealing with all the various categories of question discussed in
the Approach section of this paper. However, only the WHY,
ERR, HYP, and SYN categories have actually been addressed in
detail, and these only for the defined mini-QUIZ subset of QUIZ.

Obviously, the QAUZ and HDI systems overlap in capability,
but the need to keep the QAUZ system independent of the rest of
the project has allowed us the luxury of developing two totally
separate approaches. The second prototype (P2) will benefit
from the work done in both systems.

The QUIZ Apprentice

The QUIZ Apprentice is a parallel project being undertaken at the
University of Ottawa by a team led by Dr. Stan Matwin, and is
not formally a part of the Advisor Project. However, it sprang
from work started by Dr. Matwin in the early stages of the
Advisor Project, and there are close ties between the two teams.

One of the chief reasons for the separation is that the Apprentice
has been implemented entirely in Prolog, and as yet we have
found no way to tightly couple Prolog with a Lisp-based
knowledge representation mechanism. The Apprentice thus has
its own internal model of QUIZ, complete with its own
knowledge base constructed entirely in Prolog. In its earliest
incarnation it used approximately the same subset of QUIZ as
was chosen for the HDI question-answerer.

The prime characteristic of the apprentice approach is that it is
capable of learning. For a rule-based system, this means that the
operational system can create new rules as a standard part of its
normal processing, as well as extending its knowledge with each
new solution generated. In practice, the system designer seeds
the knowledge base with a basic set of rules, using an interactive
teaching mechanism to do this. This infant system can then be
introduced into a user environment. Whenever it encounters a
new problem for which it is unable to find a solution, or when it
offers an incorrect solution, the user can enter the interactive
teaching mode and help the system define a set of rules which, in

• Transferring the existing system into a smaller self
contained environment running on a computer such as the
IBM-PC/AT.

• Replacing the current independent syntactic parser with
extensions to the semantic interpreter.

• Development of deeper models of QUIZ, to enable greater
understanding of queries by the system, and thus generation
of more sophisticated answers.

• Focusing on a single topic, such as file access, and attempt
to create an advisor with effectively complete understanding
of this one topic.

• Development of more sophisticated reasoning strategies,
capable of dealing with incomplete queries.

• Development of alternate answering mechanisms, to enable
the user to get more out of the system than one blunt
answer.

This last problem is really the heart of the design problem. It is
very easy to develop a system that answers a question of the
form 'Can you tell me the time?' with a blunt 'yes'; this is of
little use, and serves only to irritate the user. It is essential that
an advisory system be capable of interpreting the reason behind a
question that is asked, and thus generating a meaningful answer,
rather than blindly answering the literal interpretation of the
question that was asked.

It used to be that the way to test whether a computer system was
working was to pose the same problem repeatedly, and check that
the answers were consistent, which usually meant identical.
Perhaps the distinguishing feature of a knowledge-based system
is its ability to learn. This means that the second time a
question is posed the response should at the very least be faster,
and that multiple repetitions should trigger some alternate action.
In an ideal system this would include proposing alternate
approaches in an attempt to help the user reach a solution to the
real as opposed to the expressed problem.

Given the limited lifespan of the current project, it is unrealistic
to expect that we will solve more than a fraction of these
problems. However, it is to be hoped that we will make some
forward progress, and perhaps come closer to the currently
perceived ideals.

Practical Implementations

Thus far this paper has been concerned mainly with reportage of
what has been achieved, and a description of possible short-term
research goals. Quite clearly, the Pl and P2 prototypes have
little direct application in the resource-conscious practical data
processing world, relying as they do on costly and largely non
standard dedicated hardware and software environments. However,
although the goal of research is knowledge, there are some clear
pointers to what the future holds in store.

Firstly, these technologies are practical. That is to say, it is
possible to build a knowledge-based system capable of doing real
work in real environments. The problem is that at present it
costs hundreds of thousands of dollars to implement such
systems, which makes them cost-effective only in the most

IO

specialized of applications. Most of this cost is sucked up by
the need for highly skilled development personnel, expensive
tools, and the fact that very large machine resources are typically
consumed by the operation of such systems.

Today, machine costs are falling, and the latest generation of
chips (DEC MicroVax, Intel 80386, Motorola 68020, National
Semiconductor 32032, TI Explorer, etc.) offer more than adequate
raw power. Once this power has been packaged in suitable
architectures, it will become an easy matter to boost a
conventional system with an AI co-processor, much as floating
point co-processors have been integrated into conventional
architectures. In addition, the cost of stand-alone micro-systems
will continue to fall, at least in terms of their price/performance
ratios. The machine resource problem will disappear as certainly
as has the memory problem over the last few years.

Todays costly tools are rapidly being migrated from the esoteric
Lisp machine environments of their engendering to the relatively
conventional UNIX world, and will soon be available
implemented in conventional programming languages such as C.
At the same time, the primitive first generation PC-based AI
tools are giving way to sophisticated second and third generation
offerings that are beginning to rival the big tools. History tells
us that competition will trigger falling prices until levels deemed
acceptable by the user community are reached.

The problem of skilled personnel for development will also
diminish as more and more sophisticated tools are developed. A
logical extention of the QUIZ Apprentice is a system that can
be taught by a domain expert who can be relatively ignorant of
the internal mechanisms. This problem is analagous to the
problem of data-base specialists, who are still required in
sophisticated environments, but who can be ignored when simple
applications are implemented using sophisticated DBMS
systems.

Knowledge-based systems are a reality. Within three to five
years they will become the norm. Should a QUIZ advisor be
considered a reasonable product, a commercially attractive
implementation capable of running on a dedicated IBM-PC/AT or
equivalent could be brought to market within three years, i.e.
first quarter 1989. It is by no means clear that such a product
has a market, but the underlying technology has many
applications, and a few of these are introduced in the following
paragraphs.

Although true advisors are a possibility, they are unlikely to
appear integrated into applications (in the same fashion as current
help facilities) for several years yet. However, they are feasible
packaged as stand-alone applications on dedicated hardware, which
certainly introduces the possibility of a PC-based system. An
alternative solution is to build a multi-user, server-type front end
for a large-scale, central system dedicated to running one or more
advisors, and allow users to query an advisor remotely via local
network or telecommunications links.

A much more likely scenario is that, instead of an advisor, a
teacher will be created. Computer-based training is a growing
field, as the widespread adoption of computers, particularly at the
desk-top level, exacerbates the problem of the relative scarcity of
teachers. The AI community is currently focusing considerable
attention on the problems of teaching, and AI is seen as the most
likely technology to provide a quantum improvement over the

conjunction with its existing knowledge, will enable it to
generate the correct solution.

The system's knowledge is based on problem-solution pairs, and
all that is needed to teach the system is to supply the correct
solution to a new problem. The apprentice not only stores the
problem-solution pairs but is capable of reasoning, so that by
decomposing problems into partial problems, and matching these
against its knowledge base, it is capable of solving problems for
which no explicit solution is stored. Although the underlying
mechanisms are conceptually simple, even the initial prototype
QUIZ Apprentice was capable of demonstrating remarkable
performance.

Clearly the first user of an infant system needs to be fairly
knowledgeable, in order to detect the situation where incorrect
solutions are being offered by the apprentice. However,
experiment has shown that the number of rules needed to
adequately cover a given topic, while not fixed, can be quickly
identified. In operation, the Apprentice rapidly builds up a few
dozen rules (typically 2- or 3-) for a given topic; thereafter, new
rules only need to be generated to cover exceptional cases. As
soon as this point (where the rate of rule creation drops off
sharply) is reached, the system can be turned over to a narve user.
Typically, from this point on there will be no incorrect solutions
generated, and the system will only require teaching when new
problems are encountered. When this occurs, the user can ask an
expert to supply the correct solution.

The advantage of this approach is that it eliminates the problem
of requiring a technical specialist to make changes in the
system's stored knowledge, which is the major problem with
most of today's operational expert systems. However, the more
complex the fundamental knowledge representation and reasoning
mechanisms, the harder it is to ensure that the rule construction
mechanisms are correct: and the need to detect potentially
incorrect solutions, at least in the early stages, introduces the
much wider issue of the verification of knowledge bases. Not for
nothing is this approach named 'apprentice', and it is important
to remember that the step from apprentice to journeyman has
always been a big one, requiring years of effort carefully directed
by an experienced and capable master.

The First Prototype (Pl)

The first prototype (Pl) was completed in October of 1986, and
was successfully demonstrated to Cognos' Research management
and to a committee from the National Research Council in mid
November. The Pl system requires a Sun/3 workstation with at
least 4 megabytes of real memory running under UNIX (System
4.2) with Quintus Prolog, linked via a 10 megabit Ethernet to a
Xerox 1186 (Dove) Lisp machine with the maximum memory
configuration (3.7 megabytes) running under Interlisp-D with
IntelliCorp's KEE™ version 2.1. Both systems require access to
at least 50 megabytes of individual disk space.

For Pl, the various components of the system were linked
together within a very basic user interface, written in a mixture
of C and Quintus Prolog, and running on the Sun workstation.
This user interface initializes all the communications
mechanisms, controls the Lisp machine as a slave AI problem
solver, and allows the user to enter, edit, debug, and submit (to
the appropriate question-answering system) all the various

II

components of a query. Although primitive in appearance and
behaviour, this interface has proven to be a robust and
indispensible tool for working with all the various components
of the system, as well as acting as a prototype for the more
ambitious interface planned for the second prototype (P2).

This system could be run entirely from the Xerox Lisp machine
(the slave!) by opening an Interlisp window and running a
terminal emulation via which the user interface on the Sun could
be accessed. Queries could thus be entered in this window, and
the rest of the screen used to display the question answering
process in action.

For Pl we limited ourselves to a handful of questions on a few
major QUIZ topics, namely: data access, reporting, sorting, and
selecting (QAUZ only). A set of mechanisms that could be
adapted to all these topics were developed, and based on the
experience with Pl we expect little difficulty in extending the
knowledge base to include new topics, as well as to cover these
first topics more extensively. QUIZ has some 31 main verbs,
and there is a rough equivalence between these and Advisor
topics. The main purpose of the Pl prototype was to
demonstrate the feasibility of answering questions, and to test a
variety of implementation mechanisms. Both of these objectives
were satisfied.

Although performance was not an issue for this prototype, it
may be of interest to note that it took the KEE/Interlisp-based
mechanisms between 4 and 20 seconds to answer each Pl
question. This in a development environment with multiple
levels of debugging active, and with extensive graphic traces
being displayed. One of the P2 issues that we intend to address
is the question of what sort of response might be considered
reasonable for an advisory system.

The QAUZ system Pl prototype runs totally independently, and
is self contained on a Sun/3.

The Second Prototype (P2)

The second prototype (P2) is scheduled for July 1987, and will
be based on the work done to date, once this has been extensively
reviewed. At present it is too early to state with any certainty
what will and will not be attempted, but a number of
possibilities are open. These include:

• Integrating the entire system into a single machine
environment. This will require the availability of new
tools, notably KEE on the Sun/3.

• Coping with procedural or time-dependent problems.

• Extending the Pl prototype with lots of knowledge to give
coverage of the majority of QUIZ rather than the limited
subset used for Pl.

• Developing a sophisticated user interface, taking full
advantage of windows, interactive graphics, and other
available techniques.

• Closely coupling Prolog with Lisp-based knowledge
representation mechanisms.

rather pedestrian on-line tutorials available today. The key to a
good teaching system is not its ability to detect correct answers,
but its capacity for understanding why a wrong answer has been
entered, and for developing a strategy to correct the user's
misaprehension. The same knowledge required to implement an
advisor serves to implement a teacher, although in the case of the
latter this must be augmented with knowledge about the types of
mistakes that can be made. Typically the ratio of information is
about 8:1; for every correct fact there are roughly eight possible
misunderstandings.

One direct application is to a tool to help software product
designers keep their facts straight, and ensure that all the various
components are functionally complete and correctly
interconnected. This includes the development of technical
glossaries in which each term is uniquely and unambiguously
defined. Although such a system is a design tool, aimed at
ensuring the correctness and completeness of a software product,
it could also be extended to create outline technical
documentation that conforms to a standard structure. By the
same token, such a system could also ultimately be used to proof
final documentation for completeness, accuracy, and consistency.
The key to making any such system work will be ensuring that
it is sufficiently easy to use, and directly beneficial, that
development teams will be careful to keep its knowledge current
and accurate. The major flaw in most paper-based design tools
has been that the effort required to keep the paper up to date has
tended to detract from the true development tasks.

Beyond such design aids, which ought to be equally useful to all
builders of software applications, lie some very exciting
possibilities. It is only a short step from an advisor which
answers a 'how do I' question with a piece of pseudo-code to a
system capable of generating executable code. This would allow
users to program a system at a very high level, by expressing
their needs in a fairly informal fashion. With an adequate control
structure, the AI-based programming tool could help the users
refine their ideas by posing questions until the application was
completely defined. The major step forward needed to make this
sort of tool a reality is the development of knowledge bases
describing typical applications, but it transpires that a significant
portion of the knowledge needed to implement an advisor is just
this.

The key to all these systems lies in the user interface, which
must allow the user to communicate with the system in a natural
fashion that is as easy to use as the natural language and
scribbled diagrams we use to communicate our ideas to other
humans. The human tendency to make life as easy as possible
means that we seldom use a long form when a shorter is
available; typing true English at a keyboard is a non-starter, if
quicker mechanisms are available. Even if affordable voice input
technology makes spoken natural language a possibility, we will
still need the ability to diagram, annotate, doodle, and so on. It
is the availability of these latter mechanisms that will determine
the time-scales for the widescale introduction of true AI-based
tools.

Within two years, high resolution (1276 x 1024 minimum)
colour graphic displays will be achieving affordable levels. We
already have excellent interactive pointing devices. Three years
will see the arrival of reliable voice input technology; it is
already affordable, but has too low an accuracy rate to be really
useful. In the same timescale very large data storage (optical

12

disks), high quality hard copy devices (laser printers), and very
fast desk-top architectures will all have achieved widescale
commercial viability. All that is missing is the software, first
its development and then its acceptance into the market place.
Today, it exists only in fragmented prototypical form in research
establishments around the globe.

A useful model that we can examine for what to expect is the
introduction of the graphic desk-top metaphor pioneered by
Xerox on its Star systems. Although demonstrably viable, it
was far too expensive for all but a handful of users, and even the
far more affordable Apple Lisa failed to achieve widespread
acceptance. The introduction of the Apple Macintosh, however,
offered the necessary price break-through that triggered both
widespread acceptance of the technology, and a trend towards
making an interactive, iconographic interface standard on all
systems. The Macintosh is not yet four years old, at least in
terms of its market availability. By analogy, we can expect
today's high priced experimental interfaces to reach the mass
market level in the same timescale as the necessary hardware
becomes affordable. Another two to three years should serve for
such products to gain credence similar to that now afforded the
Macintosh. Thus, by 1992 it is very probable that systems
based on current experimental advisor technology will be
commonplace.

Acknowledgements

To the National Research Council of Canada, the Natural
Sciences and Engineering Research Council of Canada, and the
Ontario Ministry of Colleges and Universities for various grants
which have helped make this project possible.

To the University of Ottawa for its joint sponsorship of this
project.

To Drs. Skuce, Matwin, and Szpakowicz of the University of
Ottawa, and Dr. Oppacher of Carleton University for their
participation in this project, and for advice freely given.

To Branka Tauzovich, Charles Truscott, Sylvain Delisle,
Deborah Lazar, Patrick Constant, Zbigniew Koperczak, Yannick
Toussaint, and Claude Queant for their technical contributions,
both theoretical and practical.

To Bob Barr, Ian Craib, Al Slachta, and Phil Archdeacon,
creators of the QUIZ on-line manual.

References
[Cline et al.]

Cline, T.; Fong, W.; Rosenberg, S.: "An Expert Advisor
for Photolithography". Procs., UCAI-85, pp. 411-413,
1985.

[Constant et al.]
Constant, P.; Matwin, S.; Szpakowicz, S.: "A Question
Driven Approach to the Construction of Knowledge-Based
Software Advisor Systems". Procs., Third IEEE Conference
on AI Applications, Orlando, Florida, February 1987.

[Fargues and Adam]
Fargues, J.; Adam, J.P.: "KALIPSOS: A Text Processor for
Knowledge Acquisition". Presented at the IBM Europe
Linguistic Seminar, Davos, Switzerland, 1984.

[Fargues et al.]
Fargues, Jean; Landau, Marie-Claude; Dugourd, Anne;
Catach, Laurent: "Conceptual Graphs for Semantics and
Knowledge Processing". IBM Journal of Research and
Development, Vol. 30, No. 1, January 1986.

[Fikes]
Fikes, R.E.: "ODYSSEY: A Knowledge-Based Assistant".
Artificial Intelligence, Vol. 16, No. 3, 1981.

[Fikes and Kehler]
Fikes, R.; Kehler, T.: "The Role of Frame-Based
Representation in Reasoning". Communications of the
ACM, Vol. 28, No. 9, pp. 904-920, 1985.

[Gomez]
Gomez, F.: "A Model of Comprehension of Elementary
Scientific Texts". Procs. Theoretical Approaches to Natural
Language Understanding, Halifax, NS, 1985.

[Hiz]
Hiz, H. (Editor): "Questions". Dordrecht, 1978.

[KEE]
The KEE™ (Version 2.1) Technical Documentation Set for
Xerox (Interlisp-D) machines, IntelliCorp™, Palo Alto,
1985:

[Kiefer]
Kiefer, F. (Editor): "Questions and Answers". Dordrecht,
1983.

[Lehnert]
Lehnert, W.: "The Process of Question Answering".
Hillsdale, NJ, 1978.

[Matwin et al.]
Matwin, S.; Skuce, D.; Szpakowicz, S.: "Question-driven
Approach to the Design of a Software Advisor System".
Department of Computer Science, University of Ottawa,
working paper, 1985.

[Matwin & Queant]
Matwin, S.; Queant, C.: "Knowledge Acquisition by
Simple Learning in a QUIZ Programmer's Apprentice". To
appear in the Procs. of the 2nd International Conference on
Computers and Applications, IEEE Computer Society,
Beijing, June 1987.

[Queant]
Queant, C.: "A QUIZ Apprentice". Department of
Computer Science, University of Ottawa, Thesis TR-86-13,
1986.

[QUINTUS]
The Quintus Prolog Technical Documentation Set (Version
6), Copyright© 1986, Quintus Computer Systems Inc.:

[Schank]
Schank, R.: "Intelligent Advisory Systems". In: AI
Business, P.H. Winston, K.A. Prendergast (editors),
Cambridge, 1984.

13

[Skuce-83)
Skuce, D.: "The LESK Tutorial". TR-83-03, Department of
Computer Science, University of Ottawa, 1983.

[Skuce-86)
Skuce, D.: "Natural Language Synthesis of a Database
Reporting Language Using Commercial Expert System
Technology". Working paper, University of Ottawa,
December, 1986.

[Skuce et al]
Skuce, D.; Matwin, S.; Tauzovich, B.; Oppacher, F.;
Szpakowicz, S.: "A Logic-Based Knowledge Source System
for Natural Language Documents". Data and Knowledge
Engineering 1, North Holland Publishing, 1985, pp. 201-
231.

[Sowa]
Sowa, J.F.: "Conceptual Structures: Information Processing
in Mind and Machine". Addison-Wesley Publishing Co.,
Reading, MA, 1984.

[Sowa and Way]
Sowa, John F.; Way, Eileen C.: "Implementing a Semantic
Interpreter Using Conceptual Graphs". IBM J oumal of
Research and Development, Vol. 30, No. 1, January 1986.

[Szpakowicz et al]
Szpakowicz, S.; Matwin, S.; Skuce, D.: "QUIZ Advisor: A
Consultant for a Fourth Generation Software Package". In
procs. of the 2nd International Workshop on Expert
Systems, Avignon, May 1986, pp. 155-168.

[Tauzovich]
Tauzovich, B.: "Representing Causal Relationships in an
Expert Advisor for a Fourth Generation Language". Ph.D.
thesis (in progress), Department of Electrical Engineering,
University of Ottawa, 1986.

[Tauzovich-86)
Tauzovich, B.: "Representing Causal Relationships in an
Expert Advisor for a Fourth Generation Language".
Working paper, University of Ottawa, December, 1986.

[Tou et al]
Tou, F.N., Williams, M.D.; Fikes, R.E.; Henderson, D.A.;
Malone, T.W.: "RABBIT: an Intelligent Database
Assistant". Procs. AAAI-84, Pittsburgh, 1984.

[Wilensky et al]
Wilensky, R., Arens, Y.; Chin, D.: "Talking to UNIX in
English: an Overview of UC". Communications of the
ACM, Vol. 27, No. 6, pp.574-593, 1984.

[XEROX]
The Interlisp-D Reference Manual, Xerox Corporation, Palo
Alto, 1985.

[Zarri]
Zarri, G.P.: "RESEDA: an Information Retrieval System
Using Artificial Intelligence and Knowledge-Representation
Techniques". Research and Development in Information
Retrieval, Sixth Annual International SIGIR Conference,
1983.

THE USE OF PHIGS IN AN ARTIFICIAL INTELLIGENCE ENVIRONMENT FOR
MECHANICAL ENGINEERING

Mike Thompson and Jim Roth
CAD/CAM Technology Center
Digital Equipment Corporation

Chelmsford, Massachusetts

Abstract

The combination of artificial intelligence techniques with advanced computer
graphics is an attractive approach to implementing mechanical engineering ap
plications. This paper describes how PRIGS (Programmers Hierarchical In
terface to Graphics) is relevant to our work in mechanical CAD. We describe
our experience in implementing a subset of the standard and its use by Lisp
programmers.

MOTIVATION

We are a part of the CAD /CAM Technology Center (OTC)
and are carrying out advanced development in CAD tools
for special applications in mechanical engineering internal
to Digital.

The Programmers Hierarchical Interface to Graphics
System (PRIGS) will soon be an ANSI and ISO standard,
see [1-4]. We have been investigating the suitability of
PHIGS for our work by implementing a subset of the stan
dard. Our experience leads us to conclude that the com
bination of PHIGS and Lisp suits our needs very well.

Why Artificial Intelligence?

The application of AI tools in the area of mechanical en
gineer will emphasize richer data structures. Increasing
the semantic content of the run time structures used by
CAD applications is a precondition for finding solutions
to problems such as routine design decisions, dimension
ing and tolerance. CAD tools will need to deal explicitly
with engineering objects rather than just geometry, see [5].

Why graphics?

Mechanical parts are difficult to describe in words and the
engineer must see three dimensional objects to understand
them. The graphics software must be able to support in
teractivity such that modifications made by the engineer
to the design will be displayed immediately. Ideally, the
mechanical engineer should feel that the parts being dis
played are 'really there'.

Why PHIGS?

The CAD tool must support three dimensions for mechan
ical design (as distinct from mechanical drafting). PHI GS

Proceedings of the Digital Equipment Computer Users Society 15

supports three dimensional modeling, viewing and user in
put.

A hierarchical structure is natural for mechanical
CAD. Consider how parts move with assemblies and de
tailed features move with an engineering part. PHIGS
models this structure very effectively. Changes in the hi
erarchy are reflected lower down. For instance, removal of
a part also removes all the details of that part. Changing
the spatial orientation of a part is achieved in PHIGS by
making a single change and having this apply to the whole
of the hierarchical structure below that point.

Although, in the past, mechanical engineering ap
plications used mainly graphic information such as lines
and text, more and more non-graphic information will be
added in the future. Manufacturing requires information
related to function, process and materials. It is difficult
to reconcile high performance computer graphics with the
use of data structures constantly being augmented by non
graphic information.

When considering the software design of data struc
tures for storing engineering data and for driving the
graphics, we may come to the conclusion that different
requirements of access and performance necessitate differ
ent implementation. PHIGS implementations are able to
optimize data structures concerned only with the graphics.
However, there is an overhead in maintaining consistency
between these two representations. This overhead may be
acceptable if typical updates to the corresponding parts of
the engineering and the graphics data structures are local
ized and small. To support this activity, PRIGS provides
a rich mapping between the two.

Over the next few years, there will be increased avail
ability to mechanical engineers of workstations designed
with hierarchical graphics in mind. On such a worksta
tion, a change to the PRIGS data will be immediately

Anaheim, CA - 1987

*Element names

SET COLOR
are simplified

SET WIDTH

PRECONCAT. CALL
EXECUTE

.... _

RETURN ,
POLYLINE

SET COLOR

REPLACE

POLYLINE

Figure 1: The execute structure element

displayed. Such graphics hardware must be capable of
completely traversing of the hierarchy many times a sec
ond.

Why Lisp?

We chose Lisp because of its good runtime data structure
capability. Lisp is suitable for fast prototyping because
it can be run in interpretive mode. It also seems a good
environment for other AI tools.

EXAMPLES OF "HOW TO"

We shall now present some of the typical activities that a
programmer will implement using PHIGS.

• Inheritance of attributes (color, location etc)

• Managing views

• Mapping between application and PHIGS

• Editing the display list

• Picking

• Dragging a structure

• Rubber banding

Inheritance of Attributes

In order to display a mechanical CAD part, the program
mer places in the PHI GS 'Structure Store', sufficient infor
mation to model the graphic appearance of that part. The
programmer then 'posts' this model for display. The term
'PHIGS Structure Store' might give the reader the impres
sion of a store containing objects that would presumably
be coded in a declarative manner. This would immediately
appeal to a Lisp programmer conversant with object ori
ented style. However this is not the case, and the contents
of the structure store are more akin to assembly language
code.

16

Figure 2: Sheet metal example

The term 'inheritance' and 'instance' used in the
PHIGS standard are different from its meaning as used
in object oriented programming, both references [1] and
[7] have glossaries that clarify this.

Attributes of graphic entities include line style, color,
and width. These attributes are like registers, the con
tents of which are pushed on occurrence of an execute
structure command which is similar to a jump subrou
tine. They are accessible to the called routine and may be
modified. They are restored on return from the structure.

In Figure 1, the programmer sets the color, line width
and spatial orientation (by concatenating a transformation
matrix), before making the execute structure command.
Note that the attribute values that were set before the
execute structure, will be restored after returning from
the structure although they may no longer be needed.

PHIGS uses this 'assembly language style' to place as
few restrictions as possible on the programmer who may
be seeking maximum performance from the graphics hard
ware.

Managing views

PHlGS places no restrictions on the layout of the views.
Figure 3 shows an arrangement typical of mechanical CAD
systems, which may be implemented using a 'top struc
ture'.

In order to set up this structure, the programmer first
prepares the view matrices. The views are then defined by
references to the view indices from within structures. The
top structure is created and then posted as a root and
immediately PHI GS starts traversal of the hierarchy from
this root and displays the views.

Panning and zooming in a view can then be achieved
by repeatedly updating the corresponding view matrix.

Mapping between application and PHIGS

Consider a CAD application that is displaying the sheet
metal part shown in Figure 2. This simple part consists

Roots

Flat-1

(Open-structure
Fla:t-Struct-id Flat-1) L.. Flat-1

Polyline

Execute

Execute

Top
Structure

EXECUTE

EXECUTE

EXECUTE

EXECUTE

Structures
to Define

Views
SET VIEW INDEX

EXECUTE

SET VIEW INDEX

EXECUTE

SET VIEW INDEX

EXECUTE

View
Matrices

• •

SET VIEW INDEX t--\--LJ~

EXECUTE

• Hierarchy,

• •
of Graphic Objects
/ '\

Figure 3: Managing four views with PHIGS

PHIGS

Bend
Flat-2

,--.

D Pick-id

Polyline

(Geth ash
Pie

Pi
k-id
ck-table)

Polyline is Pi eked

Figure 4: Mapping bet.ween Applicat.ion and Graphics

17

PHIGS Slruclure

0 POLYLINE

COLOR

2 LABEL +'Random'
3 TRANSFORM Elements
4 POLYLINE
5 POLYLINE

LABEL

NAME SET

TRANSFORM
EXECUTE

+Orderly
Sequence

Some
Object

Figure 5: Orderly editing of the PHIGS structure store

of two 'flats' connected by a 'bend'. One of the flats has a
slot stamped in it.

Figure 4 shows run time data structures that might
be created for such a sheet metal part. The upper half
of this Figure shows how the sheet metal part is mod
eled by Lisp structures for a flat, bend, and edge. Note
how a flat points to a linked list of edges, and in turn the
edges point to zero, one or more bends that are attached
to them. In the lower half of the same Figure are shown
run time structures created by PRIGS. This has a different
structure with, for instance, edges represented by a single
polyline. Also flats reference other flats directly using /bf
execute structure. The data structures the programmer
will create in the PRIGS structure will be optimized for
display and user interaction.

PRIGS provides ample mapping capability between
display list and engineering objects in the application
achieved via structure id, labels, pick id and name sets.
When going from application to graphics, (usually with
the purpose of modifying the graphics) one uses struc
tures identifiers and labels to get to a given location in
the PRIGS structure store. This is done with the PRIGS
command open structure.

When going from graphics to the application, (usu
ally after the user has picked some graphic element on the
display) one may use the pick identifier to map back into
some application object. Figure 4 shows how this may be
done using Lisp hash tables.

Editing the PHIGS display list

The programmer may concentrate on the editing of the
PRIGS structure store and let PHIGS deal with the dis
play. To do this editing effectively, the programmer must
keep track of what is in the structure store and devise
some well organized way of modifying it without intro
ducing faulty edits. Clearly it is difficult to keep track of

18

random edits of structure elements. Figure 5 shows an
orderly sequence of elements following a label. The trans
formation matrix is always the second element to follow a
label.

Severe software maintenance problems are likely to
result from having numerous software modules in the ap
plication carry out such edits. A better approach is to
implement a data abstraction that does this editing and
hides the offsets used from the higher levels of the appli
cation. Commonly used engineering objects may be repre
sented by Lisp structures. For example, in an application
to sheet metal design, we might have:

...)

(def struct bend
first-flat
second-flat
angle
radius
length
distance-from-origin-of-flat-1

We write functions to create, delete, print and mod
ify bends. These functions maintain the correspondence
between Lisp and the PRIGS structures. It is our expe
rience that such an approach works well when the data
abstraction is built for a specific application.

Picking

Consider the user picking the bottom edge of slot-1
with the mouse, in Figure 2. How the application deals
with this probably depends on the context, for instance,
it might decide that the user wished to pick the whole
slot rather than just the bottom edge. The programmer
can benefit from the PRIGS pick path capability in this
situation.

The pick path is a list of structures starting with the
one picked and continuing up the hierarchy to the root.
The PRIGS structures for the sheet metal part and the
pick path returned are shown in Figure 6 ..

While debugging, the programmer can use the pick
to check the structures that underlay the graphics being
displayed. Figure 7 shows how the Lisp programmer could
print out the pick path.

Dragging a structure in a plane

Consider the following scenario. A CAD application
displays the sheet metal part as shown in Figure 2. The
engineer picks a line on slot-1. The application offers a
menu of options that specifically apply to slots. The engi
neer selects the option to reposition the slot.

Figure 8 describes how we would do the dragging us
ing a combination of PRIGS and fast workstation hard
ware. PRIGS make it relatively easy to implement activi
ties such as this with application code that is independent
of the view.

5

1 10 bend

PRECONC T1 3 flat-1
EXECUTE 3 ~PICK-ID 85Wi

Data returned:
struct-1d
1
3
11
19

p1ck-1d
0
86
45
21

EXECUTE 10

PICK-ID 86
PRECONC T2
EXECUTE 11

element
5
34
10
8

11 flat-2
_.... ,..

PICK-ID 45
PRECONC T3

10 EXECUTE 19

Transform
T1
T1xT2
T1xT2xT3
T1xT2xT3
(not standard)

19 Slot

.... PICK-ID 20
arc
arc

PICK-ID 21
8 line

line

[User picks this

Figure 6: Structures and corresponding pick path

A global buffer to receive the pick path. Avoids frequent
space allocation but needs programmer discipline to ensure
data is used before another pick is requested.

(def constant *max-depth* 10)
(defvar *pick-xf orm*
(make-array

(list *max-depth* 4 4)
:element-type 'single-float))

(defvar *pick-path*
(make-array
(list *max-depth* 3)
:element-type '(signed-byte 32)))

; ; ;USER MAKES A PICK
(pprint (request-pick *WS* *max-depth* *pick-path* *pick-xform*))

Figure 7: Use of picking while debugging

19

Get the following:
Transformation T mapping coordinates

of flat-2 into world coordinates
by concatenation of all matrices
down path from root to flat-2.

View matrix V computed from view
parameters.

Transformation M mapping coord
of slot-2 into coords of
flat-1.

Current location of slot-1 on
flat-2.

To drag, we repeat the following:
Get locator's screen position L.
Using T and V, map L to point P

on flat-2.
Calculate translation of P

from previous P, and apply
to matrix M.

Replace old matrix M with new
matrix M.

Figure 8: Dragging in PRIGS

Get the following:
Transformation T to map the

coord system of f lat-2
into world coordinates
(supplied by HGS pick path) .

View index.
Transformation M mapping coord

of slot-1 into coords of
flat-2.

Create temporary instantiation
of slot-1 using a structure
with transform M and execute
structure.

Change writing mode to complement.

To drag, we repeat the following:
Redraw structure in current

position (erase).
Get locator's screen position L.
Using T, map L into a point P

on flat-2.
Calculate translation of P

from previous P, and apply
to matrix M.

Replace old matrix M with new
matrix M.

Redraw temporary structure.

Figure 9: Dragging in HGS

Figure 9 describes how we do the dragging on a device
that does not have hierarchical graphics in hardware.

Rubber banding

Although PRIGS implementations may support a stan
dard 'rubber band' feature as a part of the locator func
tion, we preferred to handle this ourselves so that the 'in
ner loop' passes through application code and the pro
grammer determines the subtle detail of human interface.

As an example of this, consider how we might imple
ment the dragging of the slot in Figure 2. At each pass
through the loop, the application could check if the slot
still lay within the boundary of fiat-2. If this proved to
be demanding on performance, then the check might be
performed only when the user hesitated in the dragging
action.

HGS IMPLEMENTATION

The Hierarchical Graphics System (HGS) is a PHIGS
like system implemented by CADM Advanced Develop
ment. We are using it to prototype CAD tools for special
applications (internal to Digital). We expect PRIGS may
be used for future production versions of these tools.

HGS omits the following PRIGS capabilities which
were less important from the point of view of a mechanical
CAD evaluation: archiving, metafile, text output prim
itives, input widgets such as valuator and choice. HGS
is also not device independent but is specific to the Mi
cro VAX workstation and is layered on the MicroVMS
workstation graphics software (also known as UIS), see
[8].

HGS provides some extra control over dynamics that
is not a part of the PRIGS standard. We expect that
by the time the CAD tools we are developing come into
production use, workstations will be available that will
support full dynamics with PRIGS. In the meantime, we
retain device specific control of the VAXstation II/GPX
to implement smooth dynamics.

We have HGS bindings for FORTRAN, C, Pascal and
Lisp, but the Lisp binding is a special case. We discuss
here aspects that particularly concern the Lisp program
mer.

• External calls

• Inline compilation

• On-line documentation

• Useful macros

External Calls

Lisp contains a routine that interfaces Lisp functions to
precompiled routines in shareable libraries. This rou
tine define-external-routine takes care of mapping the
shareable library and can set up calls to routines that con
form to the VAX Procedure Calling Standard.

20

(defmacro with-open-structure ((struct init) &body body)
"WITH-OPEN-STRUCTURE (VAR INIT) BODY

This function opens a structure for editing.
If the structure does not already exist then a new

empty structure is created.
BODY consists of one or more forms which might be used
to make calls to PHIGS for instance to put elements into
the open structure, however any Lisp forms may appear.
These forms may use the symbol VAR. Typically VAR would
be the symbol to be used to reference the id of the
structure that has just been opened. VAR gets INIT as
its initial value."

'(let ((,struct (or ,init (hgs:alloc-struct-id))))
(unwind-protect

(progn (hgs:open-structure ,struct) . ,body)
(hgs:close-structure))))

Figure 10: Part of HGS.LSP file

Inline compilation

In our Lisp binding to HGS, we never have the user call
the external routine by name:

(CALL-OUT HGS$COMPOSE_MATRIX_3 A B C)

Rather we always define a Lisp function that in turn
calls the graphic function. This introduces another level
of call only when the code is interpreted e.g. during devel
opment. The extra level is stripped out when the code is
compiled with the proclamation of INLINE ensuring that
the 'extra' call is removed.

On-line documentation

We have made our HGS binding to Lisp rather more elab
orate than our Pascal, C or FORTRAN bindings. In par
ticular the on-line documentation is worth the effort.

With VAX Common Lisp, the describe function is
available through the mouse by clicking on a symbol. The
documentation string for that function is then displayed.
In the case of with-open-structure, see Figure 10, this
documentation string is the whole section enclosed in dou
ble quotes.

Useful macros

We have implemented some macros that assist the
Lisp programmer, for example: with-open-workstation
and with-open-structure. These are based on the style
of with-open-stream, see Steele [6].

The code for with-open-structure is shown in Fig
ure 10 and an example of its use is shown in Figure 11.
When debugging the programmer may invoke a lengthy ac
tivity with immediate graphics output. Use of Control C
to get out is convenient with with-open-structure clean
ing up before returning to the Lisp prompt.

21

; ; ; CREATE A NEW STRUCTURE
(defvar *my-structure*

(alloc-struct-id))
(with-open-structure

(s *my-structure*)
(hgs:set-view-index *view-1*)
(add-names-to-set *incl-set*)
(store-object-with-pick-id
small-xy-square)
(list-structure s)
(hgs:post-root *ws* s))

Now see if that was ok.
(redraw-all-structures *ws*)

; ; ; It is worth writing a function to
; ; ; print the contents of structures.
(list-structure *my-structure*)

; ; ; This is very useful interactively
(delete-structure *my-structure*)
; ; ; Now we can try to again.

Figure 11: Use of with-open-structure

SUMMARY

We find PRIGS offers suitable functionality for mechanical
CAD. In order to arrive at this conclusion we implemented
the Hierarchical Graphics System, a subset of PRIGS.

We are using Lisp to prototype CAD tools and have
implemented a binding from Lisp to HGS. We feel that the
Lisp binding for PRIGS can usefully serve a greater role
than simply supporting external subroutine calls.

We look forward to using a full implementation of
PRIGS. We expect PRIGS will come into its own over the
next few years as workstation hardware with high perfor
mance and low cost occupy the desks of more and more
engineers.

References

[1] ANSI PRIGS X3.144-198x Functional Description.

[2] Heck, Michael, Understanding PH/GS. Megatek Cor
poration 1985.

[3] Plaeln, Martin. PRIGS: Programmers Hierarchical
Interactive Graphics Standard. Byte. Nov 1987.

[4] Abi-Ezzi, Salim S., and Steven E. Kader. 'Phigs in
CAD' Computers in Mechanical Engineering. July
1986.

[5] Wilson, Peter R. Information and/or Data? IEEE
Computer Graphics and Applications. Nov 1987.

[6] Stefik. Mark, and Daniel. G. Bobrow, Object
Oriented Programming Themes and Variations. The
Al Magazine.

[7] Steele. Guy L, Common Lisp - The Language. Digital
Press 1984.

[8] Micro VMS
Workstation Graphics Programming Guide. Digital
Equipment Corporation.

[9] Shuey. David, PRIGS: a graphic platform for CAD
application development. Computer-Aided Design
October 1987.

The following are trademarks of Digital Equipment
Corporation: MicroVAX, VAX, MicroVMS, VAXstation.

22

An Overview of the Common Lisp Object System

Richard P. Gabriel and Linda G. DeMichiel
Lucid, Inc.

Menlo Park, California

Abstract

The Common Lisp Object System is an object-oriented system that is based
on the concepts of generic functions, multiple inheritance, and method combi
nation. All objects in the Object System are instances of classes that form an
extension to the Common Lisp type system. The Common Lisp Object System
is based on a meta-object protocol that renders it possible to alter the fundamen
tal structure of the Object System itself. The Common Lisp Object System has
been proposed as a standard for ANSI Common Lisp and has been tentatively
endorsed by X3Jl3.

History of the Common Lisp Object System

The Common Lisp Object System is an object-oriented
programming paradigm designed for Common Lisp. The
lack of a standardized object-oriented extension for Com
mon Lisp has long been regarded as a shortcoming by the
Common Lisp community. Two separate and indepen
dent groups began work on an object-oriented extension
to Common Lisp several years ago. One group is Symbol
ics, Inc. with New Flavors, and the other is Xerox PARC
with CommonLoops. During the summer of 1986, these
two groups met to explore combining their designs for sub
mission to X3J13, a technical working group charged with
producing an ANSI standard for Common Lisp.

At the time of the exploratory meetings between Sym
bolics and Xerox, the authors of this paper became in
volved in the technical design work. The major partic
ipants in this effort were David Moon and Sonya Keene
from Symbolics, Daniel Bobrow and Gregor Kiczales from
Xerox, and Richard Gabriel and Linda DeMichiel from Lu
cid.

By March 1987 this three-way collaborative effort had
produced a strong draft of a specification for the bulk of
the Object System. X3J13 has voted an endorsement of
that specification draft, stating that it would almost cer
tainly be adopted as part of the standard and encouraging
implementors to proceed with trial implementations. This
paper is a report on the specification that was presented
to X3J13.

The Common Lisp Object System View of
Object-Oriented Programming

Several aspects of the Object System stand out upon in
spection: a) it is a layered system designed for flexibility;

Proceedings of the Digital Equipment Computer Users Sociezr 23

b) it is based on the concept of generic functions rather
than on message-passing; c) it is a multiple inheritance
system; d) it provides a powerful method combination fa
cility; e) the primary entities of the system are all first-class
objects.

The Layered Approach

One of the design goals of the Object System is to provide a
set of layers that separate different programming language
concerns from one another.

The first level of the Object System provides a
programmatic interface to object-oriented programming.
This level is designed to meet the needs of most serious
users and to provide a syntax that is crisp and under
standable. The second level provides a functional inter
face into the heart of the Object System. This level is
intended for the programmer who is writing very complex
software or a programming environment. The first level is
written in terms of this second level. The third level pro
vides the tools for the programmer who is writing his own
object-oriented language. It allows access to the primitive
objects and operators of the Object System. It is this level
on which the implementation of the Object System itself
is based.

The layered design of the Object System is founded
on the meta-object protocol, a protocol that is used to de
fine the characteristics of an object-oriented system. By
using the meta-object protocol, other functional or pro
grammatic interfaces to the Object System, as well as
other object systems, can be written.

Anaheim. CA - 1987

The Generic Function Approach

The Common Lisp Object System is based on generic
functions rather than on message-passing. This choice is
made for two reasons: 1) there are some problems with
message-passing in operations of more than one argument;
2) the concept of generic functions is a generalization of
the concept of ordinary Lisp functions.

A key concept in object-oriented systems is that given
an operation and a tuple of objects on which to apply the
operation, the code that is most appropriate to perform
the operation is selected based on the classes of the objects.

In most message-passing systems, operations are es
sentially properties of classes, and this selection is made
by packaging a message that specifies the operation and
the objects to which it applies and sending that message
to a suitable object. That object then takes responsibility
for selecting the appropriate piece of code. These pieces
of code are called methods.

With unary operations, the choice of a suitable ob
ject is clear. With multiary operations, however, message
passing systems run into problems. There are three general
approaches to the problem of selecting a suitable object to
which to send a message: currying, delegation, and distri
bution of methods.

Currying is a technique for turning a multiary opera
tion into series of unary operations. In message-passing
systems, this is accomplished by having the objects in
question send messages among themselves to gather the
contributions of each object to the final result of the op
eration. For example, adding a sequence of numbers can
be done by asking each number to add itself to some ac
cumulated total and then to send a message to the next
object for it to do the same. Every object must know how
to start and end this process. Currying may result in a
complicated message-passing structure.

Delegation is a technique whereby an object is defined
to handle an operation on a number of other objects. For
example, to sum a sequence of numbers, there can be an
object that will accept a message containing the identities
of the numbers and then perform the addition. Thus, every
object that can be involved in a multiary operations must
know how to further delegate operations.

Distribution of methods is a technique whereby every
object that can be involved in a multiary operation can
be outfitted with enough information to directly carry out
the operation.

In the generic function approach, objects and func
tions are autonomous entities, and neither is a property of
the other. Generic functions decouple objects and opera
tions upon objects; they serve to separate operations and
classes. In the case of multiary operations, the operation
is a generic function, and a method is defined that per
forms the operation on the objects (and on objects that
are instances of the same classes as those objects).

Generic functions provide not only a more elegant so
lution to the problem of multiary operations but also a
clean generalization of the concept of functions in Com-

24

mon Lisp. Each of the methods of the generic function
provides a definition of how to perform an operation on
arguments that are instances of particular classes or of
subclasses of those classes. The generic function packages
those methods and selects the right method or methods to
invoke.

Furthermore, in Common Lisp, arithmetic operators
are already generic in a certain sense. The expression

(+ x y)

does not imply that x and y are of any particular type, nor
does it imply that they are of the same type. For example,
x might be an integer and ya complex number, and the+
operation is required to perform the correct coercions and
produce an appropriate result.

Because the Object System is a system for Common
Lisp, it is important that generic functions be first-class
objects and that the concept of generic functions be an
extension and a generalization of the concept of Common
Lisp functions. In this way, the Object System is a natural
and smooth extension of Common Lisp.

A further problem with message-passing systems is
that there must be some way within a method of naming
the object to which a message was sent. Usually there
is a pseudovariable named something like "self." With
generic functions, parameters are named exactly the same
way that Common Lisp parameters are named-there is
conceptual simplicity in using the fewest constructs in a
programming language.

Some message-passing systems use a functional nota
tion in which there is a privileged argument position that
contains the object to which a message is to be sent. For
example

(display x window-1)

might send a message to x requesting that x display it
self on the window window-1. This expression might be
paraphrased as

(send 'display x window-1)

With generic functions there are no such privileged argu
ment positions.

In addition to these advantages over message-passing,
there are three other fundamental strengths of generic
functions:

• It is possible to abstract the definition of a generic
function into parts that are conceptually independent.
This is accomplished by splitting the definition of a
generic function into separate parts where each part
is the partial function definition for a particular set of
classes. This leads to a new modularization technique.

• It is possible to spread the definition of a generic func
tion among the places where the partial definitions
make the most sense. This is accomplished by placing
the appropriate defmethod forms where the relevant
classes are defined.

• It is possible to separate the inheritance of behavior
from the replacement of code. Generic functions select
methods based on the structure of the class graph, but
the generic functions are not constrained to be stored
within that graph.

In a message-passing system, the class graph and the
instances are truly central because the methods are associ
ated with a particular class or instance. It makes sense in
this setting to think of the methods as part of the structure
of a class or an instance.

In a generic-function system, the generic functions
provide a very different view of methods. Generic func
tions become the focus of abstraction; they are rarely asso
ciated unambiguously with a single class or instance; they
sit above a substrate of the class graph, and the class graph
provides control information for the generic functions.

Despite the advantages of generic functions, there may
at times be reasons for preferring a message-passing style;
such a style can be implemented by means of generic func
tions or by means of the Common Lisp Object System
Meta-Object Protocol.

The Multiple Inheritance Approach

Another key concept in object-oriented programming is
the definition of structure and behavior on the basis of the
class of an object. Classes thus impose a type system-the
code that is used to execute operations on objects depends
on the classes of the objects. The subclass mechanism
allows classes to be defined that share the structure and
the behavior of other classes. This subclassing is a tool for
modularization of programs.

The Common Lisp Object System is a multiple
inheritance system, that is, it allows a class to directly
inherit the structure and behavior of two or more other
wise unrelated classes. In a single inheritance system, if
class C3 inherits from classes C1 and C2, then either C1
is a subclass of C2 or C2 is a subclass of C1; in a multiple
inheritance system, if C3 inherits from C1 and C2, then
C1 and C2 might be unrelated.

If no structure is duplicated and no operations are
multiply-defined in the several superclasses of a class, mul
tiple inheritance is straightforward. If a class inherits two
different operation definitions or structure definitions, it is
necessary to provide some means of selecting which ones
to use or how to combine them. The Object System uses a
linearized class precedence list for determining how struc
ture and behavior are inherited among classes.

The Method Combination Approach

The Common Lisp Object System supports a mechanism
for method combination that is both more powerful than
that provided by CommonLoops and simpler than that
provided by Flavors.

Method combination is used to define how the meth
ods that are applicable to a set of arguments can be com
bined to provide the values of a generic function. In

25

many object-oriented systems, the most specific applica
ble method is invoked, and that method may invoke other,
less specific methods. When this happens there is often a
combination strategy at work, but that strategy is dis
tributed throughout the methods as local control struc
ture. Method combination brings the notion of a combi
nation strategy to the surface and provides a mechanism
for expressing that strategy.

A simple example of method combination is the com
mon need to surround the activities of a method's invoca
tion with a prologue and an epilogue: the prologue might
cache some values in an accessible place for the method,
and the epilogue will write back the changed values.

The Object System provides a default method com
bination type, standard method combination, that is de
signed to be simple, convenient, and powerful for most
applications. Other types of method combination can eas
ily be defined by using the define-method-combination
macro.

First-Class Objects

In the Common Lisp Object System, generic functions and
classes are first-class objects with no intrinsic names. It is
possible and useful to create and manipulate anonymous
generic functions and classes.

The concept of "first-class" is important in Lisp-like
languages. A first-class object is one that can be explicitly
made and manipulated; it can be stored anywhere that can
hold general objects.

Generic functions are first-class objects in the Object
System. They can be used in the same ways that ordinary
functions can be used in Common Lisp. A generic function
is a true function that can be passed as an argument, used
as the first argument to funcall and apply, and stored
in the function cell of a symbol. Ordinary functions and
generic functions are called with identical syntax.

What the Common Lisp Object System Is Not

The Object System does not attempt to solve problems
of encapsulation or protection. The inherited structure
of a class depends on the names of internal parts of the
classes from which it inherits. The Object System does
not support subtractive inheritance. Within Common Lisp
there is a primitive module system that can be used to help
create separate internal namespaces.

Classes

A class is an object that determines the structure and
behavior of a set of other objects, which are called its
instances. It is not necessary for a class to have any in
stances, but all objects are instances of some class. The
class system defined by the Object System and the Com
mon Lisp type system are tightly integrated, so that one
effect of the Object System is to define a first-class type

system within Common Lisp. The class of an object de
termines the set of operations that can be performed on
that object.

There are two fundamental sorts of relationships in
volving objects and classes: the subclass relationship and
the instance relationship.

A class can inherit structure and behavior from other
classes. A class whose definition refers to other classes for
the purpose of inheriting from them is said to be a subclass
of each of those classes. The classes that are designated for
purposes of inheritance are said to be superclasses of the
inheriting class. The inheritance relationship is transitive.

A typical situation is that one class, C1 , represents
a possibly infinite set of objects, and a second class, C2 ,

represents a subset of that set; in this case C2 is a subclass
of C1.

An object is an instance of a class if it is an example
of a member of that class. If the class represents a set
then an instance is a member of that set. '

Classes are organized into a directed acyclic graph.
There is a distinguished class named t. The class t is a
superclass of every other class.

Classes themselves are objects and are therefore in
stances of classes. The class of a class is called a meta
class. The existence of metaclasses indicates that the
structure and behavior of the class system itself is con
trolled by classes. Generic functions are also objects and
therefore also instances of classes.

T~e Object System maps the Common Lisp type
space mto the space of classes. Many but not all of the
predefined Common Lisp type specifiers have a class as
sociated with them that has the same name as the type.
For example, an array is of type array and of class array.
Every class has a corresponding type with the same name
as the class.

A class that corresponds to a predefined Common
Lisp type is called a standard type class. Each standard
type class has the class standard-type-class as a meta
cl~s: _Dsers can write methods that discriminate on any
pnm1t1ve Common Lisp type that has a corresponding
class. However, it is not allowed to make an instance of a
standard type class with make-instance or to include a
standard type class as a superclass of a class.

All programmer-defined classes are instances of the
class named standard-class, which is an instance of the
class named class; the class named class is an instance of
itself, which is the fundamental circularity in the Object
System.

Instances whose metaclass is standard-class are like
Common Lisp structures: they have named slots which
contain values. When we say that the structur~ of an
instance is determined by its class and that that class is
an instance of standard-class, we mean that the number
and names of the slots are determined by the class, and
we also mean that the means of accessing and altering the
contents of those slots are controlled by the class.

26

Defining Classes

The macro defclass is used to define a new class.
The definition of a class consists of the following: its

name, a list of its direct superclasses, a set of slot specifiers,
and a set of class options.

The direct superclasses of a class are those classes
from which the new class inherits structure and behavior.
When a class is defined, the order in which its direct super
classes are mentioned in the defclass form defines a local
precedence order on the class and those superclasses. The
local precedence order is represented as a list consisting
of the class followed by its direct superclasses in the order
mentioned in the defclass form.

A slot specifier includes the name of the slot and zero
or more slot options that pertain to that particular slot.
The name of a slot is a symbol that could be used as a
Common Lisp variable name. The slot options of the de
fclass form allow for the following: providing a default
initial value form for the slot; requesting that methods
for appropriately named generic functions be automati
cally generated for reading or writing the slot; controlling
whether one copy of a given slot is shared by all instances
or whether each instance is to have its own copy of that
slot; and specifying the type of the slot contents.

There are two kinds of slots: slots that are local to
an individual instance and slots that are shared by all in
stances of the given class. The :allocation slot option to
defclass controls the kind of slot that is defined.

In general, slots are inherited by subclasses. That is,
a slot defined by a class is also a slot implicitly defined
by any subclass of that class unless the subclass explicitly
shadows the slot definition. A class can also shadow some
of the slot options declared in the defclass form of one of
its superclasses by providing its own description for that
slot.

Slots can be accessed in two ways: by use of generic
functions defined by the defclass form and by use of the
primitive function slot-value.

The syntax of defclass provides several means for
generating methods to read and write slots. Methods can
be requested for all slots or for particular slots only. Meth
ods can be requested to read and write slots or to read
slots only. If a slot accessor is requested, a method is
automatically generated for reading the value of the slot,
and a setf method is also generated to write the value of
the slot. If a slot reader is requested, a method is auto
matically generated for reading the value of the slot, but
no setf method for it is generated. Readers and acces
sors can be requested for individual slots or for all slots.
Reader and accessor methods are added to the appropriate
generic functions. It is possible to modify the behavior of
these generic functions by writing methods for them.

The function slot-value can be used with any of the
s~ot nam~s specifi:d in the defclass form to access a spe
cific slot m an obJect of the given class. Readers and ac
cessors are implemented by using slot-value.

Sometimes it is convenient to access slots from within

the body of a method or a function. The macro with-slots
is provided for use in setting up a lexical environment in
which certain slots are lexically available as variables. It
is also possible to specify whether the macro with-slots
is to use the accessors or the function slot-value to access
slots.

A class option pertains to the class as a whole. The
available class options allow for the following: requesting
that methods for appropriately named generic functions
be automatically generated for reading or writing all slots
defined by the new class; requesting that a constructor
function be automatically generated for making instances
of the class; and specifying that the instances of the class
are to have a metaclass other than the default.

For example, the following two classes define a repre
sentation of a point in space. The class x-y-position is a
subclass of the class position:

(defclass position () ())

(defclass x-y-position (position)
((x :initform 0 :accessor position-x)
(y :initform 0 :accessor position-y)))

The class position is useful if we want to create other
sorts of representations for spatial positions. The x- and
y-coordinates are initialized to 0 in all instances unless
explicit values are supplied for them. To refer to the x
coordinate of an instance of the class x-y-position, po
sition, one writes

(position-x position)

To alter the x-coordinate of that instance, one writes

(setf (position-x position) new-x)

The macro def class is part of the Object System pro
grammatic interface and, as such, is on the first of the three
levels of the Object System. When applied to an appropri
ate metaclass, the function make-instance provides the
same functionality on the second level.

Class Precedence

Each class has a class precedence list. The class prece
dence list is a total ordering on the set of the given class
and its superclasses for purposes of inheritance. The total
ordering is expressed as a list ordered from most specific
to least specific.

The class precedence list is used in several ways. In
general, more specific classes can shadow, or override, fea
tures that would otherwise be inherited from less specific
classes. The method selection and combination process
uses the class precedence list to order methods from most
specific to least specific.

The class precedence list is always consistent with
the local precedence order of each class in the list. The
classes in each local precedence order appear within the

27

class precedence list in the same order. If the local prece
dence orders are inconsistent with each other, no class
precedence list can be constructed, and an error will be
signaled.

Generic Functions

The class-specific operations of the Common Lisp Object
System are provided by generic functions and methods.

A generic function is a function whose behavior de
pends on the classes or identities of the arguments supplied
to it. The methods associated with the generic function de
fine the class-specific operations of the generic function.

Like an ordinary Lisp function, a generic function
takes arguments, performs a series of operations, and re
turns values. An ordinary function has a single body of
code that is always executed when the function is called.
A generic function is able to perform different series of op
erations and to combine the results of the operations in
different ways, depending on the class or identity of one or
more of its arguments.

The operations of a generic function are defined by its
methods. Thus, generic functions are objects that can be
specialized by the definition of methods to provide class
specific operations. The behavior of the generic function
results from which methods are selected for execution, the
order in which the selected methods are called, and how
their values are combined to produce the value or values
of the generic function.

Thus, unlike an ordinary function, a generic function
has a distributed definition corresponding to the defini
tion of its methods. The definition of a generic function
is found in a set of defmethod forms, possibly along
with a defgeneric-options form that provides informa
tion about the properties of the generic function as a
whole. Evaluating these forms produces a generic func
tion object.

In addition to a set of methods, a generic function ob
ject comprises a lambda-list, a method combination type,
and other information. In Common Lisp a lambda-list is
a specification of the parameters that will be passed to
a function. The syntax of Common Lisp lambda-lists is
complex, and the Object System extends it further.

The lambda-list specifies the arguments to the generic
function. It is an ordinary function lambda-list with these
exceptions: no &aux variables are allowed and optional
and keyword arguments may not have default initial value
forms nor use supplied-p parameters. The generic function
passes to its methods all the argument values passed to it,
and only these; default values are not supported.

The method combination type determines the form of
method combination that is used with the generic function.
The method combination facility controls the selection of
methods, the order in which they are run, and the values
that are returned by the generic function. The Object
System offers a default method combination type that is
appropriate for most user programs. The Object System

also provides a facility for declaring new types of method
combination for programs that require them.

The generic function object also contains informa
tion about the argument precedence order (the order in
which arguments to the generic function are tested for
specificity when selecting executable methods), the class
of the generic function, and the class of the methods of
the generic function. While the Object System provides
default classes for all generic function, method, and class
objects, the programmer may choose to implement any or
all of these by using classes of his own definition.

Generic functions in the Object System are nearly in
distinguishable from ordinary functions: they can be ap
plied, stored, and manipulated exactly as ordinary func
tions are. In this way, the Object System is smoothly inte
grated into the Common Lisp framework, and there is no
sense in which Common Lisp programs are partitionable
into the functional parts and the object-oriented parts.

Defining Generic Functions

Generic functions are defined by means of the defgeneric
options and defmethod macros.

The defgeneric-options macro is designed to al
low for the specification of properties that pertain to the
generic function as a whole, and not just to individual
methods.

If a defgeneric-options form is evaluated and a
generic function of the given name does not already ex
ist, a new generic function object is created. This generic
function object is a generic function with no methods. The
defgeneric-options macro may be used to specify prop
erties of the generic function as a whole-this is some
times referred to as the "contract" of the generic function.
These properties include the following: the lambda-list of
the generic function; a specification of the order in which
the required arguments in a call to the generic function
are to be tested for specificity when selecting a particular
method; declarations that pertain to the generic function
as a whole; the class of the generic function; the class of all
the methods of the generic function; and the method com
bination type to be used with this generic function. The
Object System provides a set of default values for these
properties, so that use of the defgeneric-options macro
is not essential.

When a new defgeneric-options form is evaluated
and a generic function of the given name already exists,
the existing generic function object is modified. This does
not modify any of the methods associated with the generic
function.

The defmethod form is used to define a method. If
there is no generic function of the given name, however,
it automatically creates a generic function with default
values for the argument precedence order (left-to-right, as
defined by the lambda-list), the generic function class (the
class standard-generic-function), the method class (the
class standard-method), and the method combination
type (standard method combination). The lambda-list of

28

the generic function is congruent with the lambda-list of
the new method. In general, two lambda-lists are congru
ent if they have the same number of required parameters,
the same number of optional parameters, and the same
treatment of &allow-other-keys.

When a defmethod form is evaluated and a generic
function of the given name already exists, the existing
generic function object is modified to contain the new
method. The lambda-list of the new method must be con
gruent with the lambda-list of the generic function.

Methods

The class-specific operations provided by generic functions
are themselves defined and implemented by methods. The
class or identity of each argument to the generic function
indicates which method or methods are eligible to be in
voked.

A method object contains a method function, an or
dered set of parameter specializers that specify when the
given method is applicable, and an ordered set of quali
fiers that are used by the method combination facility to
distinguish among methods.

Each required formal parameter of each method has
an associated parameter specializer, and the method is
expected to be invoked only on arguments that satisfy its
parameter specializers. A parameter specializer is either a
class or a list of the form (quote object).

A method can be selected for a set of arguments when
each required argument satisfies its corresponding param
eter specializer. An argument satisfies a parameter spe
cializer if either of the following conditions holds:

• The parameter specializer is a class, and the argu
ment is an instance of that class or an instance of any
subclass of that class.

• The parameter specializer is (quote object) and the
argument is eql to object.

A method all of whose parameter specializers are t is
a default method; it is always part of the generic function
but often shadowed by a more specific method.

Method qualifiers give the method combination pro
cedure a further means of distinguishing between methods.
A method that has one or more qualifiers is called a qual
ified method. A method with no qualifiers is called an
unqualified method.

In standard method combination, unqualified meth
ods are also termed primary methods, and qualified meth-
0ds have a single qualifier that is either :around, :before,
or :after.

Defining Methods

The macro defmethod is used to create a method ob
ject. A defmethod form contains the code that is to be
run when the arguments to the generic function cause the
method that it defines to be selected. If a defmethod

form is evaluated and a method object corresponding to
the given generic function name, para:rn"eter specializers . ' and qualifiers already exists, the new definition replaces
the old.

Each method definition contains a specialized lambda
list, which specifies when that method can be selected.
A specialized lambda-list is like an ordinary lambda-list
except that a parameter specifier may occur instead of
the name of a parameter. A parameter specifier is a list
consisting of a variable name and a parameter specializer
name. Every parameter specializer name is a Common
Lisp type specifier, but the only Common Lisp type spec
ifiers that are parameter specializers names are type spec
ifier symbols with corresponding classes and type specifier
lists of the form (quote object). The form (quote ob
ject) is equivalent to the type specifier (member object).

Only required parameters can be specialized, and each
required parameter must be a parameter specifier. For no
tational simplicity, if some required parameter in a spe
cialized lambda-list is simply a variable name, the corre
sponding parameter specifier is taken to be (variable-name
t).

A future extension to the Object System might allow
optional and keyword parameters to be specialized.

A method definition may optionally specify one or
more method qualifiers. A method qualifier is a non-nil
atom that is used to identify the role of the method to
the method combination type used by the generic function
of which it is part. By convention, qualifiers are usually
keyword symbols.

Generic functions can be used to implement a layer
of abstraction on top of a set of classes. For example, the
class x-y-position can be viewed as containing informa
tion in polar coordinates.

Two methods are defined, called position-rho and
position-theta, that calculate the p and (} coordinates
given an instance of the class x-y-position.

(defmethod position-rho ((pos x-y-position))
(let ((x (position-x pos))

(y (position-y pos)))
(sqrt (+ (• x x) (• y y)))))

(defmethod position-theta
((pos x-y-position))

(atan (position-y pos) (position-x pos)))

It is also possible to write methods that update the 'virtual
slots' position-rho and position-theta:

(defmethod (setf position-rho)
(rho (pos x-y-position))

(let• ((r (position-rho pos))
(ratio (/ rho r)))

(setf (position-x pos)
(• ratio (position-x pos)))

(setf (position-y pos)
(• ratio (position-y pos)))))

29

(defmethod (setf position-theta)
(theta (pos x-y-position))

(let ((rho (position-rho pos)))
(setf (position-x pos)

(• rho (cos theta)))
(setf (position-y pos)

(• rho (sin theta)))))

To update the p-coordinate one writes

(setf (position-rho pos) new-rho)

This is precisely the same syntax that would be used if the
positions were explicitly stored as polar coordinates.

Class Redefinition

The Common Lisp Object System provides a powerful
class-redefinition facility.

When a defclass form is evaluated and a class with
the given name already exists, the existing class is rede
fined. Redefining a class modifies the existing class object
to reflect the new class definition.

When a class is redefined, changes are propagated to
instances of it and to instances of any of its subclasses.
The updating of an instance whose class has been redefined
(or that has a superclass that has been redefined) occurs
at an implementation-dependent time; this will usually be
upon the next access to that instance or the next time that
a generic function is applied to that instance. Updating
an instance does not change its identity. The updating
process may change the slots of that particular instance,
but it does not create a new instance.

A similar task is to change the class of an instance.
The generic function class-changed is invoked automat
ically by the system after change-class has been used
to restructure an instance to conform to the new class.
Users may define methods on the generic function class
changed to control the change-class process.

For example, suppose it becomes apparent that the
application that requires representing positions uses polar
coordinates more than it uses rectangular coordinates. It
might make sense to define a subclass of position that
uses polar coordinates:

(defclass rho-theta-position (position)
((rho :initform 0

:accessor position-rho)
(theta :initform 0

:accessor position-theta)))

The instances of x-y-position can be automatically up
dated by defining a class-changed method:

(defmethod class-changed
((old x-y-position)

(new rho-theta-position))
;; Copy the position information
;; from old to new to make new

;; be a rho-theta-position at the
;; same position as old.
(let ((x (position-x old))

(y (position-y old)))
(setf (position-rho new)

(sqrt (+ (* x x) (* y y)))
(position-theta new)
Catan y x))))

At this point we can change an instance of the class x-y
position, pl, to be an instance of rho-theta-position
by using change-class:

(change-class p1 'rho-theta-position)

Inheritance

Inheritance is the key to program modularity within the
Object System. A typical object-oriented program con
sists of several classes, each of which defines some aspect
of behavior. New classes are defined by including the ap
propriate classes as superclasses, thus gathering desired
aspects of behavior into one class.

Inheritance of Slots and Slot Description

In general, slot descriptions are inherited by subclasses.
That is, slots defined by a class are usually slots implicitly
defined by any subclass of that class unless the subclass
explicitly shadows the slot definition. A class can also
shadow some of the slot options declared in the defclass
form of one of its superclasses by providing its own de
scription for that slot.

In the simplest case, only one class in the class prece
dence list provides a slot description with a given slot
name. If it is a local slot, then each instance of the class
and all of its subclasses allocate storage for it. If it is a
shared slot, the storage for the slot is allocated by the class
that provided the slot description, and the single slot is ac
cessible in instances of that class and all of its subclasses.

More than one class in the class precedence list can
provide a slot description with a given slot name. In such
cases, at most one slot with a given name is accessible in
any instance, and the characteristics of that slot involve
some combination of the several slot descriptions.

Methods that access slots know only the name of the
slot and the type of the slot's value. Suppose a superclass
provides a method that expects to access a shared slot of a
given name, and a subclass provides a local description of
a local slot with the same name. If the method provided
by the superclass is used on an instance of the subclass
the method accesses the local slot. '

Inheritance of Methods

A subclass inherits methods in the sense that any method
applicable to an instance of a class is also applicable to
instances of any subclass of that class (all other arguments
to the method being the same).

30

The inheritance of methods acts the same way re
gardless of whether the method was created by using
defmethod or by using one of the defclass options that
cause methods to be generated automatically.

Class Precedence List

The class precedence list is a linearization of the subgraph
consisting of a class, C, and its superclasses. The def
class form for a class provides a total ordering on that
class and its direct superclasses. This ordering is called
the local precedence order. It is an ordered list of the class
and its direct superclasses. A class precedes its direct su
perclasses, and a direct superclass precedes all other direct
superclasses specified to its right in the superclasses list of
the defclass form. For every class in the set of C and its
superclasses, we can gather the specific relations of this
form into a set, called R.

R may or may not generate a partial ordering, de
pending on whether the relations are consistent; we as
sume they are consistent and that R generates a partial
ordering. This partial ordering is the transitive closure of
R.

To compute the class precedence list at C, we topo
logically sort C and its superclasses with respect to the
partial ordering generated by R. When the topological
sort algorithm must select a class from a set of two or
more classes, none of which is preceded by other classes
with respect to R, the class selected is chosen determinis
tically. The rule that was chosen for this selection process
is designed to keep chains of superclasses together in the
class precedence list. That is, if C1 is the unique super
class of C2, C2 will immediately precede C1 in the class
precedence list.

It is required that an implementation of the Object
System signal an error if R is inconsistent, that is, if the
class precedence list cannot be computed.

Method Combination

When a generic function is called with particular argu
ments, it must determine what code to execute. This code
is termed the effective method for those arguments. The
effective method can be one of the methods of the generic
function or a combination of several of them.

Choosing the effective method involves the following
decisions: which method or methods to call; the order in
which to call these methods; which method to call when
call-next-method is invoked; what value or values to re
turn.

The effective method is determined by the following
steps: 1) selecting the set of applicable methods; 2) sort
ing the applicable methods by precedence order, putting
the most specific method first; 3) applying method combi
nation to the sorted list of applicable methods, producing
the effective method.

When the effective method has been determined, it is
called with the same arguments that were passed to the

generic function. Whatever values it returns are returned
as the values of the generic function.

The Object System provides a default method combi
nation type, standard method combination. The program
mer can define other forms of method combination by us
ing the define-method-combination macro.

Standard Method Combination

Standard method combination is the default method com
bination type. Standard method combination recognizes
four roles for methods, as determined by method qualifiers.

Primary methods define the main action of the effec
tive method; auxiliary methods modify that action in one
of three ways. A primary method has no method qualifiers.
The auxiliary methods are :before, :after, and :around
methods.

The semantics of standard method combination are
given as follows:

If there are any :around methods, the most specific
:around method is called. Inside the body of an :around
method, call-next-method can be used to immediately
call the next method. When the next method returns, the
:around method can execute more code. By convention,
:around methods almost always use call-next-method.

If an :around method invokes call-next-method,
the next most specific :around method is called, if one
is applicable. If there are no :around methods or if
call-next-method is called by the least specific :around
method, the other methods are called as follows:

• All the :before methods are called, in most specific
first order. Their values are ignored.

• The most specific primary method is called. Inside
the body of a primary method, call-next-method
may be used to pass control to the next most specific
primary method. When that method returns, the first
primary method can execute more code. If call-next
method is not used, only the most specific primary
method is called.

• All the :after methods are called in most specific last
order. Their values are ignored.

If no :around methods were invoked, the most spe
cific primary method supplies the value or values returned
by the generic function. Otherwise, the value or values
returned by the most specific primary method are those
returned by the invocation of call-next-method in the
least specific :around method.

If only primary methods are used, standard method
combination behaves like CommonLoops. If call-next
method is not used, only the most specific method is
invoked, that is, more general methods are shadowed by
more specific ones. If call-next-method is used, the ef
fect is the same as run-super in CommonLoops.

If call-next-method is not used, standard method
combination behaves like :daemon method combination

31

of New Flavors, with :around methods playing the role of
whoppers, except that the ability to reverse the order of
the primary methods has been removed.

The use of method combination can be illustrated by
the following example. Suppose we have a class called
general-window, which is made up of a bitmap and a
set of viewports:

(defclass general-window ()
((initialized :initform nil

:accessor general-window-initialized)
(bitmap :type bitmap
:accessor general-window-bitmap)

(viewports :type list
:accessor general-window-viewports)))

The viewports are stored as a list. We presume that it is
desirable to make instances of general windows but not to
create their bitmaps until they are actually needed. Thus
there is a flag, called initialized, that states whether the
bitmap has been created. The bitmap and viewport
slots are not initialized by default.

We now wish to create an announcement window to
be used for messages that must be brought to the user's
attention. When a message is to be announced to the
user, the announcement window is exposed, the message
is moved into the bitmap for the announcement window,
and finally the viewports are redisplayed:

(defclass announcement-window
(general-window)
((contents :initform "" :type string

:accessor announcement-window-contents)))

(defmethod display :around
(message (w general-window))

(unless (general-window-initialized w)
(setf (general-window-bitmap w)

(make-bitmap))
(setf (general-window-viewports w)

(list
(make-viewport

(general-window-bitmap w))))
(setf (general-window-initialized w) t))
(call-next-method))

(defmethod display :before
(message (w announcement-window))

(expose-window w))

(defmethod display :after
(message (w announcement-window))

(redisplay-viewports w))

(defmethod display
((message string)

(w announcement-window))
(move-string-to-window message w))

To make an announcement, the generic function dis
play is invoked on a string and an annoucement window.
The :around method is always run first; if the bitmap
has not been set up, this method takes care of it. The
primary method for display simply moves the string (the
announcement) to the window, the :before method ex
poses the window, and the :after method redisplays the
viewports. When the window's bitmap is initialized, the
sole viewport is made to be the entire bitmap. The order
in which these methods are invoked is the following: 1) the
:around method, 2) the :before method, 3) the primary
method, and 4) the :after method.

Meta-Object Protocol

The Common Lisp Object System is implemented in terms
of a set of objects that correspond to predefined classes of
the system. These objects are termed meta-objects. Be
cause meta-objects underlie the rest of the object system,
they may be used to define other objects, other ways of
manipulating objects, and hence other object-oriented sys
tems. The use of meta-objects is specified by in the Com
mon Lisp Object System meta-object protocol.

The meta-object protocol is designed for use by im
plementors who need to tailor the Object System for par
ticular applications and by researchers who wish to use
the Object System as a prototyping tool and delivery en
vironment for other object-oriented paradigms. It is also
designed for the implementation of the Object System it
self.

The Object System provides a number of predefined
meta-objects.

Evaluation of the Design Goals for the Common
Lisp Object System

Even when designers start with a clean slate, it is diffi
cult to achieve the design goals of a language, but the task
of satisfying those goals is very much more difficult when
two different languages with existing user communities are
being merged. The final design of a language-its shape
and clarity--depends on the ancestor languages. If the an
cestor languages do not have a clean design, the designers
must weigh the desirability of a clean design against the
impact of changes on their existing user communities.

In this case there were two such ancestor languages,
each with a young but growing user community. Com
monLoops has a relatively clean design. Its experimental
implementation, "Portable CommonLoops," is freely dis
tributed to a small user community. New Flavors is the
second generation of a basic system called "Flavors." Fla
vors is an older, commercially supported message-passing
system. New Flavors is a generic-function-based descen
dant of Flavors, but a descendant that supports compati
bility with its ancestor. The design of New Flavors is not
as clean as that of CommonLoops, but its user community
is larger and is accustomed to commercially motivated sta
bility.

32

With these facts in mind, let us examine the design
goals for the Common Lisp Object System.

• Use a set of levels to separate programming language
concerns from each other.

This goal was achieved quite well. The layering is well
defined and has been shown to be useful both in terms
of implementing the Object System as well as in terms
of implementing another object-oriented system (Hewlett
Packard's CommonObjects). CommonLoops already has
a layered design.

• Make as many things as possible within the Object
System first-class.

This goal was also achieved quite well. Both classes
and generic functions are first-class objects. Generic func
tions were not first-class objects in either CommonLoops
or New Flavors, but fortunately the user-community dis
ruption is minimal for these changes.

• Provide a unified language and syntax.

It is tempting when designing a programming lan
guage to invent additional languages within the primary
programming language, where each additional language is
suitable for some particular aspect of the overall language.
In Common Lisp, for example, the format function de
fines a language for displaying text, but this language is
not Lisp nor is it like Lisp.

There are two additional languages in the Object Sys
tem: the language of method combination keywords and
a pattern language for selecting methods, which is used
when defining new method combination types. Method
combination was considered important enough to tolerate
these additional languages.

CommonLoops has no additional languages. New Fla
vors has a rich method combination facility with more
complex versions of the two additional languages just men
tioned; these two languages were simplified for inclusion in
the Object System.

• Be willing to trade off complex behavior for concep
tual and expository simplicity.

This was largely achieved, although it required a con
siderable amount of additional technical work. For exam
ple, the class precedence list algorithm was altered from
its original form largely because the original was not easily
explainable.

• Make the specification of the language as precise as
possible.

The specification of Common Lisp is fairly ambiguous
because it represents a technical compromise between sev
eral existing Lisp dialects. The ground rules of the com
promise were explicitly established so that with a small

effort each of the existing Lisp dialects could be made into
a Common Lisp.

The Object System design group was in a similar po
sition to the Common Lisp design group, but on a smaller
scale. The language of the specification is considerably
more precise than the language of the Common Lisp spec
ification.

Conclusion

The Common Lisp Object System is an object-oriented
paradigm with several novel features; these features allow
it to be smoothly integrated into Common Lisp.

References

[DGBl] Daniel G. Bobrow, Linda G. DeMichiel, Richard
P. Gabriel, Sonya Keene, Gregor Kiczales, and
David A. Moon, Common Lisp Object System
Specification, X3J13 Document 87-002.

[DGB2] Daniel G. Bobrow, Kenneth Kahn, Gregor Kicza
les, Larry Masinter,Mark Stefik, and Frank Zdy
bel, "CommonLoops: Merging Lisp and Object
Oriented Programming,'' ACM OOPSLA Confer
ence, 1986.

[AG] Adelle Goldberg and David Robson, Smalltalk-
80: The Language and its Implementation,
Addison-Wesley, Reading, Massachusetts, 1983.

(GLS] Guy L. Steele Jr., Common Lisp: The Language,
Digital Press, 1984.

(ES] Reference Guide to Symbolics Common Lisp:
Language Concepts, Symbolics Release 7 Docu
ment Set, 1986.

33

POSTAGE & MAILING COST SAVING COMPUTER PROGRAMS

Richard L. Fleischer

RICHARD L. FLEISCHER & ASSOCIATES, INC.
Roslyn Heights, New York

Abstract

The U.S. POST AL SERVICE work sharing discount schemes and
acceptance requirements offer volume mailers opportunities
to save substantial costs by properly preparing mailings
utilizing computer software.

This presentation describes the postal requirements,
identifies volume mailers, and suggests their potential
return on investment from four computer mailing systems. It
describes the functions performed by (A) Carrier Route
coding and mailing, (B) ZIP+4 coding and mailing, (C) Five
Digit ZIP code correction and insertion, and (D) Merge/
Purge-duplicate elimination programs written in ANSI COBOL
74 and operational on DEC and other medium to large-scale
computers.

I. Postal Regulations and Discounts

The U.S. Postal Service offers discounts to
volume mailers that presort 1st, 2nd and 3rd
class for profit and non-profit mail. A sample of
this rate scheme is shown herein.

The Post Office offers discounts of I .Sc per
piece of qualifying Carrier Route Coded 3rd class
mail and 1.0 for I st class letters and postcards
(in addition to the ZIP Presort discounts of 2.4c
and 4.0c respectively).

The Post Office offers discounts of 0.5c and .9c
each on machine-readable First Class mail bearing
a 9-digit ZIP Code (ZIP+4).

Carrier Route coded mail moves through the Post
Office at least one day faster than uncoded mail.
In peak season it may save three days or more.

On all three classes of mail a discount is
offered if a specific number of pieces of mail
all having the same 5-digit ZIP code are
presorted and bundled together. If the mailer
further identified, marks and bundles (>ieces
being delivered by the same letter carrier (known
as Carrier Route code) an additional discount is
offered. This requires 10 pieces in a carrier
route in I st and 3rd class mail and 6 pieces in

1st Class
5-Digit ZIP+4

Basic Rate 22.0c 21.2c
ZIP Presort 18.0c 17.5c
Carrier Presort 17.0c 17.0c

Proceedings of the Digital Equipment Computer Users Society

2nd class mail. On first class mail in addition a
discount is offered for mail if it contains the
ZIP+4 code.

For all classes of mail the Postal Services
specifies how many pieces of mail are required in
a tray, bag or pallet and how these must be
labeled.

For all classes of mail the Postal Services
specifies how many pieces of mail are required in
a tray, bag or pallet and how these must be
labeled.

2nd and 3rd class mail without 5 digit ZIP codes
or with incorrect ZIP codes are not delivered and
1st class mail so addressed is frequently
delayed. Computer programs can easily correct
wrong five digit ZIP codes, assign ZIP+4 and
Carrier Route codes and perform the mail
qualification and preparation functions.

II. Volume Mailers and their
Potential Return on Investment

For purposes of this analysis 'volume mailers'
are described as those organizations mailing two
million or more pieces of mail per year. Such
mailers can normally obtain a return on
investment on the installation of Carrier Route

2nd Class 3rd Class
Qer QleCe Regular NonQrofit

12.3c 12.5c 6.0c
9.6c JO.le 4.9c
7.8c 8.3c 3.4c

37 Anaheim. CA - 1987

coding or ZIP+4 coding software in less than one
year. The larger second and third class carrier
route discount results in more dollar savings
than in I st class. Obviously the larger and more
dense mailings offer greater potential benefits
than smaller more geographically spread mailings.

For example, an organization that mails two
million pieces of third class mail per year but
does not presently carrier route code its
mailings could save S28,800 of postage per year,
if it achieved 80% carrier qualification.

Generally, organizations that can benefit most
mail to the consumer rather than to other
businesses and have either a main frame computer
or a large mini. Industries included are: Direct
Mail Marketers, Department Stores, Specialty
Stores, Commercial Banks, Savings Banks,
Insurance Companies, State, Local and Federal
Agencies, Associations, Charities, Religious
Organizations, Fraternal Groups, Labor Unions,
Credit Bureaus, Letter Shops, Direct Mail
Computer Service Bureaus, Credit Card Companies,
Utilities, Printers, Publishers, Magazines and
other large mailers.

Organizations selling products and services or
soliciting funds normally mail to individuals not
on their own list. Typically they rent multiple
lists from other organizations whose customers or
members hopefully will be interested in
responding to the organization's offering. Since
many individuals' names and addresses are
frequently on more than one list or even
duplicated in slightly different form on the same
list, the prospective recipients' names and
addresses are run through a merge/purge duplicate
elimination system so that a given individual
will receive only one piece.

Typically this process could reduce the number of
pieces mailed by as much as 20 percent. This
results in elimination of unnecessary paper
printing, assembling, postage and mail
preparation costs.

Also direct marketers need to identify good
versus poor prospects to improve the response
rates achieved. Four tools assist the mailer to
achieve this goal.

a Merge/purge - duplicate elimination packages
identify and remove duplicate names from both
internal and rented lists.

b ZIP code correction systems prevent many
undeliverable addresses (because of bad ZIP
codes) from being mailed.

c Census encoding system allows for affixing
demographic data to lists.

d Profiling, targeting and measuring systems
identify customers with buying histories that
would be probably respondents and then
measure the response by sub group.

When a prospect responds to a promotion it is
critical to efficiently and promptly provide the

38

product or service requested. This function is
fulfilled by mail and phone order processing
systems.

Some organizations purchase one or more mail
related computer services from Direct Mail
Service bureaus, letter shops or printers.

However, the availability or programs written in
ANSI COBOL offer the volume mailer with a DEC VAX
computer an opportunity to perform such
activities in-house frequently (I) improving
operational control, (2) reducing lead times, {3)
saving costs, (4) enhancing the security of its
list (a very valuable asset), and (5) providing
greater flexibility in selecting an outside
vendor to perform the physical mail preparation
function.

m. Carrier Route Coding and
ZIP+4 Coding and Mail Systems

The functioning of a carrier route coding and a
ZIP+4 coding system are very similar in nature.
The differences are that data file utilized in
the first is the Post Office supplied CRIS and in
the second is the Post Office supplied ZIP+4
file. From CRIS the carrier route code can be
obtained but from ZIP+4 the ZIP+4 code, carrier
route code and residence type can be derived. The
ZIP+4 file consists of over 22 million records
while the CRIS file only contains about 4 million
records. In 1987 ZIP+4 discounts apply only to
first class mail and as a result most 2nd and 3rd
class only mailers find carrier coding more
economic.

Some differences exist in default rules in
matching to each file and the mail qualification
rules vary from class to class. However, the
major functions, logic and flow of the two
systems are almost identical. Therefore, this
presentation will describe only one, the ZIP+4
system.

An overview of the functions performed by ZIP+4
system follows:

Conditioning and Maintaining
ZIP+4 File

I. EDIT
Provides ability to correct or modify Post
Office file of Carrier Route Codes, ZIP+4
Codes and street addresses. Reads the Post
Office file and applies internal logic to
correct and reorganize records on the Post
Office file. Reads 131 character records and
reduces these to 110 characters. Another
option allows compacting to 35 characters.

2. SORT
Provides ability to resequence Post Off ice
tape. Sorts the corrected and edited Post
Office file into sequence for matching with
the user's name and address file. The sort
sequence from high to low order is as
follows: ZIP Code, street name, street
suffix, street direction, primary house
number range.

3. PRINT
Prints Post Office File. Prints the Post
Office tape or ranges of ZIP Codes the user
selects. The printout is a valuable tool for
diagnosing and correcting conditions
preventing a proper matching of the user's
addresses with the Post Office file.

This program can generate a tape copy of only
those ZIP Code ranges specified by the user.
Processes the ZIP+4 tape provided by the Post
Off ice containing 131 character records.

4. UPDATE
Applies manual addition or deletion of
records to the reduced size (110 characters)
and standardized Post Office file. Reads the
edited file and performs the same selective
printing and tape copy functions as described
above. Also it allows the user to (A) delete
bad records; (B) create additional records in
which the data located in the secondary name
field has been transferred to the primary
name field; and (C) to generate records with
changed street names and other data.

After initial match has taken place and
uncodable addresses have been identified, can
be used to extract selected ZIP Codes and
correct misspellings and other errors on the
Post Office file so that more addresses can
be coded.

Editing Mailer's File

5. EDITS AND PARSE ADDRESS
Reads user name and address file (and/or
change file) and establishes a match address
field which conforms to the requirements and
conventions prescribed by the Post Office.
Expands abbreviations, identifies the
separate components of the address (street
name, suffix, direction and house number,
apartment number) and properly organizes this
information. Post Off ice box and rural routes
receive special handling.

The program contains a series of tables of
valid directions, special street name
contractions, valid suffixed and alternate
abbreviations for them and of frequently used
abbreviations appearing in street names.
Additions or deletions to these tables can be
made to customize the program to best handle
special local conditions. Other special rules
have been inserted to solve significant
problems relating to some street names. The
output file from this program contains all
the information on the user input file plus a
match field of 42 characters used by a
subsequent program. It designates additional
fields for it to place the Carrier Route Code
and ZIP+4 add-on digits if locations were not
specified in the user's input field.

6. SORTS FILE
Sorts the user file into the same sequence as

39

the sorted Post office file.

Matching Edited Mailer's File with Edited Post
Office file

7. CODES FILE
Matches the Post Office ZIP+4 file with the
reorganized user name and address file. It
assigns ZIP+4 and Carrier Route Codes where a
match exists and for those addresses that
cannot be looked up automatically prints an
error listing designating the reason for the
failure. CN030 produces two output tapes (a)
all matched addresses containing ZIP+4,
Carrier Route Codes and residence codes, and
(b) all unmatched addresses. The format and
record sizes of both output tapes can be
specified by the user. When insufficient
information exists on the mailer's file to
code an addition to the most accurate code
the program applied various default rules
approved by the postal service. For example,
if no apartment number is present the
building or block face code can be applied.

Mail Qualification and Preparation

8. SORTS
Sorts mailing file into Carrier Route Code
within ZIP Code (5 digit) sequence.

9. PRINTS CARRIER QUALIFICATION REPORT
Prepares a control summary report for the
Post office and a control file containing
counts of the number of qualified and
unqualified addresses by Carrier Route Code
for each ZIP Code. To prepare the report for
the Post Off ice only the qualified tape
should be run. To prepare an internal
document for analysis both the qualified and
unqualified tapes should be run. This
program, the next two steps would only be run
if the mailer was doing Carrier Route
presorting in addition to ZIP+4 coding.

10. SORTS
Sorts control file. Resequences the control
file placing ZIP code count records in front
of Carrier Route Code count records.

11. PRINTS BAG/TRAY LABELS for Carrier Route Code
qualified mail.

12. ORGANIZES FILES
Splits the user file into separate Carrier
Route qualified and unqualified address
files. The non Carrier Route qualified
addresses are run through the user's existing
label printing program and codified to print
the ZIP+4 code. If Carrier Route Coded
qualified mail is not part of the job there
will be no qualification file as input and no
Carrier Route Code address file out. Produces
a ZIP Code qua Ii f ication/residual report and
a control file that is used to (a) print
bag/tray labels for ZIP presorted mail.

If comingling is not allowed, performs a
critical function of determining which ZIP+4
coded mail should be qualified and which
should be commingled with S digits coded mail
so as to optimize the discount actually
obtained. To obtain the presort discount (of
3 cents) the mailer must have IO or more
pieces in a S-digit ZIP Code or SO or more in
a 3-digit Sectional Center. Therefore this
program determines when to forego the ZIP+4
discount (of .Sc) in order to achieve the
presort discount.

13. SORTS the control file generated in the last
step.

14. PRINTS bag/tray labels for ZIP qualified
mail.

IS. SPLITS the I st Class mailing into four (4)
separate groups based on the postage rate
applicable. These are:

A. ZIP+4 coded presorted mail
B. ZIP+4 coded residual mail
C. S-digit presorted mail
D. S-digit residual mail or the residual

ZIP+4 and residual S-digit may be
commingled. if the mailing contains a
sufficient percent of ZIP+4 coded mail
the ZIP+4 and S-digit presorted may be
commingled.

IV. ZIP Code Correction

ZIP Code Correction and Insertion software
utilizes two U.S. Postal Service files, the
city-state file and the CRIS file. Both files are
edited and sequenced similarly to steps I though
4 of the ZIP+4 coding process. The mailer's file
is also edited using step five of that process.

In addition, the system performs three major
functions, (I) separates addresses located in
single ZIP-coded areas from those located in
multi-zoned cities and towns, (2) matches the
mutli-zoned address with the CRIS file and (3)
matches single zoned addresses with the city
state file.

I. SEPARATES MULTI AND SINGLE ZONED CITIES
Identifies and separates addresses with ZIP
Codes where the first three digits represent
a unique ZIP Coded office. These
approximately 300 offices are defined in the
Domestic Mail Manual (Exhibit 122,634) and
comprise most major cities and highly
populated areas such as 100 New York, NY; 108
New Rochelle, NY; 122 Albany, NY; 441
Cleveland, OH; 981 Seattle, WA, etc. Edits
city, state field.

2. CORRECTS MULTI-ZONED ADDRESSES
Edits, sorts these addresses and then matches
them against an edited, sorted Post Office
CRIS file. The matching program compares the

40

mailer's street address and house number
against the corresponding information on the
Post Office file and if the ZIP Code does not
match, corrects it. The program can assign
Carrier Route Codes in the same pass, if
desired.

3. CORRECTS SINGLE ZIP CODED ADDRESSES
Compares city and state of mailers' addresses
that are not part of a multi-ZIP coded city
or town with a Post Office file of office
names and their ZIP Codes. These ZIP Codes
are mainly suburban and rural areas, such as
l IS76 Roslyn, NY or I IS77 Roslyn Heights, NY.
If the ZIP Code on the mailer's file does not
match the ZIP on the Post Office file for the
same Post Office name, then the Post Office
ZIP Code for that Post Office name is
substituted.

V. Merge/Purge - Duplicate
Elimination

The system enables mailers to identify duplicate
names and addresses within a file and between
multiple files. Also, it can be run to suppress
names existing in one file from being selected
when occurring on another file.

The system is written in ANSI COBOL and can run
in conjunction with the Carrier Route Coding; the
Merge/Purge system uses the Carrier Routing
System Edit Program to standardize address
fields.

The system provides mailers with a wide variety
of optional criteria for deciding if a name and
address are unique such as (a) address only; (b)
address and last name; (c) address, last name and
first initial; or (d) address and last name for
single family and duplex residents and address,
first name and initial for building with four or
more apartments.

Merge/Purge-Duplicate Elimination systems consist
of (A) edits that standardize the address (step S
of the ZIP+4 system), (B) edits that manipulate
the individual's name and construct a key using
some or all of the letters, (C) sort and merge
utilities (D) purge and suppress programs that
compare the edited name and addresses of
successive records to identify records to be
eliminated from the mailing file and (E) report
programs that provide management with an ability
to examine the use made of each list.

I. FORMAT: converts outside lists to the house
list file size, record format and blocking
factor. if the Merge/Purge question is
answered yes, the program generates a
six-character name code which is used in the
matching logic. Format calls a sub-routine
called SOUND which manipulates certair
frequently confused letter combinations.

2. SOUND is a subroutine that can be used by
FORMAT which utilizes phonics m name
standardization.

3. EDIT parses and standardizes the street
address.

4. A SORT utility is used to arrange each file
to be merge/purged into into the same
sequence based on a 52-character key
consisting of the standardized name and
address and a purge priority code. The use of
a multi-tape input SORT-MERGE utility where
multiple files are involved is also possible
and will reduce the number of merges required
where many files are involved.

5. MERGE Utility is used to merge together
multiple sorted files.

6. PURGE takes the edited standardized sorted
merged file, identifies duplicates based on
the parameters entered into the FORMAT and
PURGE programs. It creates two output files,
one containing unique records and one
containing duplicates. Where duplicates are
encountered the name and address used for
mailing is from the list assigned the highest
priority from 00 to 68. The lowest number is
the highest priority.

7. SUPPRESS takes in two edited, standardized
and sorted files. File A is used to suppress
mailing to any duplicate address on file B.
The outputs are two files: (a) the B File
without any names and addresses contained on
the File A and (b) the names and addresses on
file B that duplicated names on File A and
were, therefore, suppressed.

The unique names and addresses out of PURGE
AND SUPPRESS go into the next step in the
mailer's process.

The Duplicate and File ID files from Purge
and Suppress go into one or more of five
report programs that print reports:

8. BROKER REPORT - By list report indicates
level of dupes with each other list. Shows
following data for each other list relative
to a list: total records in, invalid
addresses, addresses into merge/ purge, total
out, matched in merge/ purge, percent
matched, percent to total, percent dropped,
percent of total, subtotal, intra file dupes,
suppression results by file and total.

9. DUPE REPORT - Multi-buyer report by list and
in total; identifies number of two-time
buyers, three- time buyers and four or more.

IO DROP REPORT - Listing of dropped (duplicate)
names and address (sample only).

I I. SUMMARY REPORT - Summary report of one line
per list input indicates total records in,

41

records dropped, multi-buyers, records
retained, percent retained, percent of total.

12. SUPPRESS REPORT - Dropped address report (by
list) indicates number of duplicates and
number suppressed.

VI. Other Mailing Applications

The coding systems previously described
standardized and code addresses so that mail can
qualify for the lowest postage rates available
and can move through the postal system with
minimal delays. ZIP correction and merge-purge
software eliminate undeliverable and duplicate
pieces from being mailed thereby doing away with
substantial otherwise unproductive costs.

Other opportunities exist to eliminate costs by
not mailing to individuals with low propensity to
respond to a given promotional mailing. Computer
programs that assist in accomplishing this goal
perform two functions:

I. Direct marketing management, profiling,
targeting and measuring systems create
detailed past buying history records that can
be used to predict the customer's future
actions.

2. Census coding systems by attaching census
tract and block codes can allow further
profiling of customers and non-customers with
demographic data that can help to predict the
behavior of non-customers based on their
similarity to customers.

A future presentation will discuss these complex
applications.

VII. Summary

Carrier Route coding, ZIP+4 coding, ZIP code
correction and insertion and merge/purge
duplicate elimination software can save volume
mailers substantial postage and other mailing
costs. Organizations doing sufficient mail volume
using DEC computers can achieve excellent return
on investment by acquiring software written in
COBOL so these functions can be performed
in-house.

Suggestions for improvements, requests for
additional information including upates on
changing postal discounts and questions can be
directed to

Richard

Roslyn

Richard L. Fleischer
L. Fleischer & Associates, Inc.

135 Village Road
Heights, New York 11577-1522

(516) 621-2826

DEVELOPING A CIM ARCHITECTURE

Nigel P. Weymont
Jeffrey S. Honeyager

Texas Instruments
Industrial Systems Division

Hunt Valley
Maryland 21030

ABSTRACT

From an analysis of the requiremnts for Computer
Integrated Manufacturing, or CIM, systems, a generic
system model has been developed using structured design
techniques. Basic elements common to all systems have
been identified including business cells, production
cells, area controllers, a common data manager and CIM
users. The model has been validated using a
pharamaceutical packaging line as a practical example.
Comments concerning the design and implementation of
CIM systems are also included.

1.0 INTRODUCTION

Currently, Computer Integrated
Manufacturing, or CIM, is
widely viewed as the solution
to automation. Unfortunately
this has led to a great deal of
confusion about what
constitutes CIM, how it should
be developed, implemented and
managed. When we were faced
with the problem of developing
answers to these questions, it
became apparent that some sort
of CIM model was needed to
allow us to understand the
functional requirements for CIM
systems. It was also
recognized that CIM is highly
customized for each application
and possibly each system is
unique. Nevertheless, we
wished to analyze CIM systems
so that we could identify some
basic elements, and hopefully,
some elements common to all CIM
systems.

A common representation of CIM
architecture uses a triangle,

Proceedings of the Digital Equipment Computer Users Society 45

shown in Figure 1, which is
divided into horizontal
slices(!). The lowest
level, along the base of the
triangle represents the
factory floor and successive
upward layers represent a work
cell, a department, a plant
and finally, at the apex, a
corporation. However, such
an abstraction does not
provide a particularly useful
model, and its basis as a
triangle is unclear. Such
models are not useful because
they do not represent a
fundamental requirement of CIM
as we see it, which is the
need to move data around an
organization in such a way
that each part of the
organization has the data
necessary to contribute to the
operation of the organization.
Furthermore, such pyramid

models do not give any insight
into how CIM would be
implemented in an

Anaheim. CA - 1987

organization. Obviously
another methodology for
modelling is necessary in order
for the model to meet the needs
outlined above.

We found that there has not
been a systematic method for
defining a generalized CIM
model, and so it was decided to
develop a model from scratch
which would enable us to do the
following,

o understand the structural
elements of CIM

o analyze the fundamental
processes within CIM

0 generate
model which
to identify
products
incorporated
systems

a reference
could be used

how our own
should be

into CIM

Because we view data and
information movement as a
fundamental property of CIM
systems it is appropriate to
use Structured Design
Techniques which off er the
ability to include real time
properties, data flows and data
transformations. Such models
are similar to energy, mass and
material flow models widely
used in engineering. To date
structured design techniques
have played a key role in
understanding the automation
needs of our clients. This
has led to a two-way benefit.
We gain credibility with our
clients by demonstrating an
understanding of their business
and we gain confidence in being
able to address our clients
needs. Therefore, the use of
Structured Design techniques is
very appropriate.

This paper will first discuss
what is to be modelled, and
after a brief review of
structured desi•n techniques
the model for CIM will be
described using a context
diaaraa at the highest level
followed by decomposition of
the processes identified in
the context diagram.
Following the model
description, we will discuss
how we checked the
applicability of the model to
some CIM type systems, namely
a pharmaceutical packaging
facility. Some
implementations of the CIM
processes will then be
presented, followed by a brief
discussion of some of the more
salient points of the model
and some of the concepts which
we have drawn from the model.

2.0 REQUIREMENTS FOR A CIM
MODEL

The subject being modelled is
a completely integrated
business system. In setting
out to develop the CIM model,
a list of features to be
described by the model was
first developed.

46

o There must be a real time
exchange of data and
information between
different business or.
work areas and that real
time would have different
meaning to different
users.

o There will probably be a
need to integrate a
number of local databases
which already exist
throughout the business

0

0

0

0

0

0

0

0

0

0

enterprise.

There will be
integrate all
the business
which means

a need to
aspects of

environment
a diverse use

information and of data,
resources.

There will be existing
resources as well as a
need to share resources
such as data.

Areas of automation will
most likely already exist
and be the nucleus of the
CIM system.

Future expansion of the
automation system will
certainly occur.

A wide range of packaged
application programs will
be used by the CIM system
including such
applications as
statistical analysis,
material and resource
planning (MRP) and
payroll systems.

The system must provide
for user friendliness and
easy accessibility.

The system must provide
useful and accurate data
in a form appropriate for
all users.

The model
understandable
adapted to
applications.

must be
and easily

specific

The model must not be
specific to a particular
hardware environment.

The model must be

sufficiently rigorous and
complete to be useful.

The model was then developed
by identifying data flows
around a typical business
system and the processes that
act upon the data to transform
the data to useful
information. The data flows
identified do not provide a
comprehensive picture of a
business, but are sufficiently
characteristic for the design
purposes.

3.0 STRUCTURED DESIGN
TECHNIQUES

Before developing the model it
is necessary briefly outline
the techniques and tools of
structured design. A more
detailed discussion is
available elsewhere(2). The
elements of structured
analysis that we used are,

0

0

0

0

0

0

Context Diagrams
Data Flow Diagrams
State Transition Diagrams
Mini-Specifications
Data Dictionaries
Walk-Throughs

3.1 Context Diagrams.

Context diagrams are used to
model the boundary of a
system. It is effectively a
statement of scope in which
the system is bounded by
processes over which there is
no control. Within the
boundaries of the context
diagram individual processes
transform data according to
rules of the process.

3.2 Data Flow Diagrams.

47

Data Flow Diagrams (DFD) are
used to model the flow of data
and show the processes which
transform data in the "system.
Data Flow Diagrams are layered
to decompose the system into
functional parts.

3.3 State Transition Diagrams.

State Transition Diagrams
(STD) are used to model the
dynamics of the system and
show how the state of the
system can change and the
paths between these states.

3.4 Mini-Specifications.

Mini-Specifications are
pseudo-code descriptions of
what is happening inside a
process.

3.5 Data Dictionary.

The data dictionary contains
the definitions of all the
terms used in the context
diagrams, DFDs and STDs and
mini-specs.

3.6 Walk-Through.

A walk-through is a procedure
used for reviewing the
designs, specifications,
programs or other technical
materials and checking them
for errors and completeness.
Walk-through allow de-bugging
to take place before the
implementation phase of the
project.

Most of these tools and
techniques were used during
development of the
model,although Data
Diagrams and Walk-Through
the most helpful
developing a coherent

Flow
were

for
CIM

model. In fact the model
presented here is the result
of several iterations as a
result of walkthroughs.

4.0 THE STRUCTURED MODEL FOR CIM

4.1 Model Description.

The environment of a generic
CIM system is shown in Figure
2, which is the system context
diagram. The generic CIM
system is structured around a
Common Data Manager which is
consistent with the concept of
transferring information and
data around the business
enterprise.

Around the Common Data Manager
are User, Business and
Production processes. The
user is primarily concerned
with requesting and receiving
data from the system. We
have made the distinction that
the user represents a manual,
human interface to the CIM
system, in contrast to the
business and production
processes which are more
automated in nature and may
include applications packages
which take data from the
system depending
application.

upon the

4.2 Business processes.

Business processes are the
administrative and management
units of a plant or facility.
The processes provide support
to production processes.
Examples of business processes
are the functions provided by
purchasing, sales, marketing,
finance, accounting, and human
resources. They are
secondary to production in the
sense that their functions do

48

not directly
manufacturing on
basis.

influence
an hourly

Data used by the business
processes is production data
which is analyzed for
production management
information. Additionally,
the data is likely to be used
to for developing the goals
and objectives for the
production process. Both
data flows from the business
processes are shown passing
into the common data manger
where the data is available to
others.

4.3 Production processes.

The concept of the production
process is similar.
Production schedules and
supervisory control data is
passed into the production
process. This data is
transformed by the particular
manufacturing process into
actual production data for the
business. An extra data flow
into the production process,
an Interface Configuration, is
also shown. This data flow
contains information about how
data is to be gathered from
the production cells. An
example would be a request for
total hourly production from
each cell.

Each process is now decomposed
into the next lowest level to
describe each processes in
more detail

4.4 Area Controllers.

It was found that business and
production processes could
both be decomposed into the
same generic structure, which

49

has been
Controller,
Figure 3.

called an
as shown in

Area

The elements
controller

of an area
are a

communications interface to
the data manager, operating
procedures, data stills, a
communications interface to
the physical devices in the
cell, and a local area control
database.

4.5 Communication Interfaces.

The communications interface
accepts arriving data streams
and transforms them into the
appropriate format for
upstream or downstream users.

The communications interface
performs limited data
manipulation. Its main
function is to provide a
logical connection to other
CIM functions and it is the
lowest level of
interconnection between
devices and the system.

Examples of communications
interfaces are,

0

0

0

0

Gateways (includes
hardware, software and
specific processes).
Database distributors.
Mail Routing.
Interfaces to other
network protocols.

The communications interfaces
may be levels 2 through 5 of
the OSI model(3) which are,

Level 2 - Congestion Control
(Node to Node)

Level 3 - Traffic Flow
(End to End)

Level 4 Network Access and
Security (Access)

Level 5
Communications

Interprocess
(User)

Note that the communications
interface assumes some form of
networking methodology.
Consequently, all devices on
the network must have a
physical connection to the
communications media. It is
the responsibility of these
devices to provide a minimum
of OSI Level 1 (Link Control)
connectivity.

4.6 Operating Procedures.

Business operating goals and
objectives are created by
analyzing information such as
current sales, market trends,
current inventory levels, and
production capacity. The
objectives are then
communicated to the
manufacturing arm of the
organization which determines
production schedules and
receives production feedback.
This very general activity is
extremely complex and can be
broken down into sub
processes.

Within a production cell, an
example of operating
procedures would be area
optimization, energy
management and statistical
process/quality control.

4.7 Data Still.

The main
Still is
data into
data. An

function of the Data
to manipulate raw

valid meaningful
example of data

distillation in a production

cell is the conversion of a
bottling line count, received
from a packaging machine, into
total bottles per lot. The lot
quantity is subsequently
archived and made available to
an inventory update procedure.
Other examples of production
cell data still functions are
data validation, summations,
calculation of moving
averages, shift summaries and
efficiency calculations.
Examples of a data still in a
business cell are sales
summaries and project cost
summaries.

4.8 Local Area Control
Database.

During development of the
model it was recognized that
any real CIM system would
contain a number of local
databases. For example, a
production cell may contain a
control system database which
would not be available to
other users within the overall
system. In fact it may be a
specific requirement to
preclude global access to
certain local databases for
security reasons. It was
also recognized that local
databases are necessary for
local data storage prior to
processing through the still.
Additionally, operation and

system security considerations
usually mean that individual
cells should continue to
operate independently in the
event of problems elsewhere in
the system. This is commonly
referred to as distributed
processing.

4.9 Common Data Manager.

The common data manager is

so

shown in Figure 4 and consists
of communications interfaces,
data templates, a database
manager and a database.

4.10 Database Manager.

The database manager is a
software 'engine' whose sole
purpose is to maintain the CIM
data. Ideally, the Database
Management System (DBMS) is
consistent between the
different business and
production cells such as
accounting, marketing
functions, the engineering
workstations, and numerically
controlled machines. In
reality, however, this is
rarely the case.

A central theme throughout the
factory automation literature
is that the database must be
logically central but
physically dispersed. The
rationale for locating data
locally is based upon desired
local throughput, frequency of
use and as mentioned above,
security. If all database
applications use the same
database management system,
integration of the local
databases becomes trivial.
However, because this is not
usually the case, the best
alternative is to convert the
local data to global data as
soon as possible and to use a
standard global database when
data must be shared between
users. This also allows
preservation of the local
databases together with the
benefits discussed above.

A number of advantages are
realized by converting data to
a standard form as close to
the data source as possible.

These are,

o Maximum use of
computing resources

local

0 Data validation at the
origin

o The data is available to
the maximum number of
nodes or devices

Since databases and database
manipulation are not new
concepts, there are a large
number of database management
systems available on the
market.

4.11 Data Template.

The data template provides an
interface between the database
management system and the area
controllers and users. It
includes a mask that
transforms data between local
and global formats. The
database manager includes this
functionality to convert data
into formats for insertion
into the database or for
converting data extracted from
the database by other users
and cells. Additionally, the
data template handles the
procurement of data for the
database and the shipment of
data to area controllers.
Examples of this are,

0 Sending
production
Database
System

data
data

such as
to the

Management

o Requesting data from the
Data Base Management
System such as scheduling
data for production
cells,

51

0 Handling and queuing
transactions to and from
the Data Base Management
System

0 Logging events during
system downtime

o Formatting data to and
from the communication
interface and the Data
Base Managemnet System

Ideally an integral part of
the data template is to
provide common interfacing to
the DBMS. This is the same
functionality as DIGITAL
Standard Relational Interface
(DSRI) which is beginning to
emerge as a de facto standard.

4.12 User Interface.

The final process shown in the
CIM context diagram (Figure 2)
is the user. This is
decomposed in Figure 5. This
distinct functionality is
included in the context
diagram (Figure 2) because
there will always be a need
for casual human interface
with the CIM system. Part of
this functionality will be the
creation of ad hoc reports
from the database, manual
manipulation of the database,
and system utilities such as
configuration.

Note that it is tacitly
assumed that each area will
contain a man-machine
interface as one of the
physical devices in the cell.
Consequently, the user
interface is included to
represent system management
functions and the ability for
users to
demand

initiate
rather

sessions on
than by

schedule. The latter case of
scheduled system use is more
representative of the
business cells and in
particular the production
cells.

52

5.0 VALIDATION OF THE MODEL

As in any model development
procedure it is necessary to
validate the model by
comparing its behavior with
actual behavior. For
validation of the model we
applied it to some systems with
which we were familiar and
checked to see that a CIM
system described by the model
would be realistic,
implementable and provide the
appropriate automation
solution. Application of the
model to a pharmaceutical
packaging facility will be
described here although
other examples were also used.

5.1 Pharmaceutical Packaging
Line.

The motivation for introducing
automation in this example is
the improvement of the
management and control of a
bottle filling and packaging
facility. These improvements
are to be achieved by,

0

0

0

keeping
database
product
basis.

an historical
of the bottled
on

Maintaining
database
batch/lot,
personnel
data.

a per-lot

an operator
including

shift and
utilization

Inventory
data is
directly
production
production

and operator
to be collected

from the
floor as

occurs.

Using these desired objectives
the required data flows were

53

succesfully mapped onto the
CIM model. The system
context diagram is shown in
Figure 6, and a data flow
diagram for the process is
shown in Figure 7. It may be
seen that the model developed
in the previous sections can
be used to identify the
required functionality of the
desired automation system.

6.0 MODEL IMPLEMENTATION

So far, hardware
implementation of a CIM system
has not been mentioned. This
is completely consistent with
our approach for developing
the system functionality in
terms of data flows using
structured techniques. The
consequence of this procedure
is that the hardware is
selected to fit the
functionality rather than
having a functionality
dictated by a hardware
solution.

In actuality there are usually
many possible hardware
implementations for a CIM
system once the functionality
has been identified.
However, the CIM architecture
should have a consistent
approach in terms of
information analysis, data
exchange and software
development. An advantage of
structured design techniques
is that they enforce
consistency and validation.
Therefore, once the design is
available any number of
implementation methodologies
may be used.

After the initial hardware and
system
there

solution
will be

is
many

reached,
forces

acting to mandate the
decision. Again, this
reinforces the need for a
rigorous and complete
functional design so that
implementation can be made with
care and forethought. The CIM
solution must be consistent at
as many levels as possible.
The networking strategy must
remain the same and the global
data manager must be
consistent. Even the
development tools should not
deviate from a norm.

6 . 1 =-T_.,y_.p::..;i::..· c=a'-=l=------'b::c..u=s-=i:..:.n:::.;e::..s=s
configurations.

The business areas may reside
on a mainframe, a mini
computer or a micro-computer.
Typically, many of the
business cell applications
will already have been at
least partially implemented.
Characteristically, these will
fall under the auspices of
material control, finance and
accounting, production
planning and scheduling, sales
and marketing and human
resources. When implementing
CIM, one of the primary issues
is often integration of the
existing business cells with
production cells.

During
business
following
emerge.

integration of the
cells some of the
issues are likely to

0 Data retrieval -Is
existing data in a simple
format or in a
proprietary database?

-Can the data be accessed
using common techniques?

-If the data is in a

0

proprietary database
expect expensive
interface development.

-If the data is easily
accessible integration
will be somewhat easier
using standard tools.

-If the data management
is accomplished using the
same mechanism as the CIM
global data manager, then
integration will be much
easier.

Data Archival

-If there is an interface
with an integrated
application, all writes
to the data must be
accomplished using the
constraints established
by the integrated
application.

-Only as a last resort
should a new application
write directly to a file
that is being maintained
by an existing applica
tion.

-Accounting systems must
be secure from un
authorized access.

-Once data is forced into
an integrated applica
tion, the integrity of
the system becomes
suspect.

6.2 The Communications
Interface.

This process is
critical elements
implementation.
interface must
handle multiple

54

one of the
of a Cirn

The
be able to

devices,

multiple
multiple

protocols and
communications media.

The type of communications
interfaces needed is heavily
dependent upon the devices
that must be supported.
Current possibilities are
Ethernet and MAP
(Manufacturing Automation
Protocol).

6.3 Operational Procedures and
Data Stills.

The procedures and the stills
depend upon the nature of the
business, the production cells
and the business cells. It
is anticipated that in a
process plant, for example, a
still may be implemented which
takes point data collected at
one minute intervals, and
after data validation,
calculates ten minute, hourly
and shift averages. These
averages are then transferred
to the global data base.

An example of a procedure is a
boiler dispatch which optimize
load distribution between
multi-unit multi-fuel steam
boilers. Typically such an
application would reside on a
small host computer with a
communications link to a
real time process control
system. Inputs to the
procedure include fuel costs,
which are available from a
business cell, current demand
filtered or averaged by a
still, and boiler efficiencies
available from a local
database. The procedure
outputs the operating points
for each boiler to produce an
optimal steam cost.
6.4 The Database Manager.

The Database Manager is the
heart of the system. It
provides the necessary data
for other parts of the system
to enable them to function in
a way that is optimal to the
complete enterprise

A common database manager
should be chosen early in the
CIM implementation process.
However, over the past few
years, factory automation has
frequently been implemented as
point solutions or as islands
of automation. The approach
works well during the
prototype phase, but because
data compatibility was often
not an initial requirement,
problems arise when the
interfacing phase arrives. By
selecting a common data
manager at the outset, the
effort needed to later
interface different systems
will be less.

6.5 Data Template.

In practice the data template
will often be part of the data
base manager. For example,
many data base packages
include a feature for
distributing sections of the
database around different
users. Utilities are also
included which will
periodically update the local
databases to incorporate
changes made in the main
database. Other features that
may be incorporated in the
database manager are
transparent access to the
database, provided that
applications conform to some
standard. This is therefore a
data template function because
it provides format conversion
for data.

55

7.0 DISCUSSION

The model and its development
demonstrate a number of
concepts which are worth
mentioning.

Firstly, it was apparent to us
that CIM has been around in
the continuous process
industries such as steel and
petroleum for a long time.
In these sectors of industry,
computers have been directly
involved in manufacturing for
at least twenty years,
although they have tended to
be islands of automation as
isolated plant process control
and automation systems and
business systems.
Nevertheless, they represent a
CIM system.

It has also become apparent to
us that each user can be
represented in the same way.
It can be seen that a generic
area controller can be used to
describe either a production
process or a business process
The differentiation between
each depends upon the cell
product.

During development of the
model we found it necessary to
include a database in each
area to contain cell specific
information which is not
useful to other users.

Another enhancement made
during model development was
the inclusion of direct cell
to cell communications.
After initial attempts
model validation, it
realized that channeling
information through

at
was
all
the

database manger was not
realizable and unnecessary.

After identifying the
functional elements of CIM
systems it can be seen th~t
the elements are actually
distributed around the
hardware and software
implementation of the CIM
system. However they must
exist somewhere in the system,
and unless they can be
identified within the
architecture it is unlikely
that the system will perform
satisfactorily.

The actual characteristics of
system must be determined with
the implementation team and
the plant engineers. Network
traffic analysis, system
sizing, disk requirements,
speed constraints all must be
collated into the CIM system.
Our conceptual model does not
preclude many types of
implementations but is does
facilitate understanding the
requirements.

8.0 CONCLUSION

Early in the study we realised
that the desire for CIM has
been around for a long time
and consequently most
businesses today will already
include islands of automation.
Frequently, the integration

of these islands of automation
will be a principal objective
of CIM projects.

56

Although each CIM system is
likely to have a set of unique
characteristics and
applications, the model which
has been developed
demonstrates that all CIM
systems will share key
functional processes. Once
these processes are
recognised, it is much easier
to plan and implement in a
methodical and logical manner
the complete CIM system.
Moreover, by dividing these
systems into key elements it
is possible to maximise the
transportability of these
elements both around and
between systems.

Because of the nature of the
problem, the key to successful
implementation of CIM is
understanding the functional
requirements of the system.
Unless these requirements are
established at the outset of a
CIM implementation, the
eventual result is unlikely to
match or even resemble the
original intent.

57

9.0 REFERENCES

1. Stern Jr, D.E. Tying Islands of Automation into CIM
Systems, DEC Professional, Q(11)44-52, November 1987.

2. Ward, P.T. Structured Development for Real Time Systems,
Yourdon Press, New York, 1985.

3. Weik, M.H. Communications Standard Dictionary, Van
Nostrand Reinhold Company, New York, 1983.

58

Strategic
Planning

Plant Operations

Production Floor
&/or

Process Systems

FIGURE 1. The classic CIM model showing
a hierarchy of business functions.

59

Business Cell 14---~ ...

Global/Common
Database

Production Cell

FIGURE 2. Context diagram for a CIM system.

60

Local
Database

Local
Database

Logically Adjacent

Production
Cell (k)

Cell Operating
Objectives

Virtual Link

Local Area Control
i...----_. Database

Supervisory
Control Signals

Business
Area

Data
Manager

Logically Adjacent

Business
Cell (j)

Composed Data

Raw Data

Production

FIGURE 3. Data flow diagram for a business or
production area controller.

61

Comm.
Interface

Comm.
Interface

Database
Storage

FIGURE 4. Data flow diagram for the
Common Data Manager.

62

System
Configuration
Data---------

System...------1

User

Constr cts ~-~

Query
Constraints Requested Data

New/Modified
Configuration
Data

Report Form ing

Configuration
Data

DBMS
Data
Reques s

Data,
System
Messages

Data, Input Templates,
Validation Messages

User ata

Data,
System
Messages

Communications _______ __.
.__ _____ ~91 Interface

User Data

FIGURE 5. Data flow diagram for the User Interface.

63

Inventory Mgmt.
Application

Transaction
Confirmations

Batch Inventory
Update (eg. All raw
material depletion
transactions)

Lot Tracking &
Historical Database

Pkg Line Data &
Operator Data
for a particular
lot number.

Plant Operating Database

Example Data for the Plant Db
Production Routing
Quality Specifications
Start-up/Shut-Down Procedures

ransaction
onfirmation

Inventory &
Labor Data
(Shift Basis)

Transaction Confirmation

Data Management, Intermediate
Data Storage, Plant Database
Transactions

ime &
ttendance Appl.

Batch Operator
Update (eg. All Operators
during shift X)

Operator & Inventory
Transaction Accumulation

Inventory Event Archive
T&A Event Archive

Pkg Line
Data &
Operator
Data
(Hourly
Basis)

Pkg Line
Control
Signals

Capsulating Line: Machine Status & Packaging Line:

IPLCs I IBelt Sensors I lPLCs I §cal es I

FIGURE 6. Example context diagram for a pharmaceutical packaging facility

64

Data
Manager

Inventory Data :
Time Stamp,
Destination Trans. Confirm

Current
Quality
Readings

Set Point
Parameters

urrent Product Status

New Set Points Based
on SOC Calculations

Capsulating Line:

lPLCs I jaelt Sensors I

Business
Area

Controller

Operator Status
& Inventory Trans.
with : Time Stamp,
Destination

Plant Oper.
Database

Operator Data
(Shift Basis)

Pkg. Data (per minute)

Inventory Data
(Shift Basis)

Labor Data
(when operator
clocks in/out)

Set Points
Mapped into
PLC netork

PLC Events & Data
(Polled Labor & Pkg Data)

Machine Status

Packaging Line:

jPLCs I jscales I

FIGURE 7. Example data flow diagram for a pharmaceutical
packaging plant.

65

INTERACTIVE CONTROL ENGINEERING
COMPUTER ANALYSIS PROGRAM

ROBERT L. EWING
SAM C. HUGHES

KRIS L. LARSEN
GARY B. LAMONT

Department of Electrical and Computer
Engineering

School of Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433

Abstract

The interfacing and modification of
the software program "Interactive Control
Engineering Computer Analysis Package
(ICECAP)" is presented. This enhanced
version of ICECAP uses double precision
(D & G Formats) along with new plotting
capability by utilizing the GWCORE
standard graphics package interface with
drivers developed for the VT240,
Tektronix 4014 and LN03 laser printer.
Methodology, description and problems are
included for a detailed analysis of the
modification of the package, giving
insight into future possible
modifications. This package originated
at the Air Force Institute of Technology
through the efforts of several thesis
students.

Introduction

ICECAP is a computer aided design
package, written in both the Fortran and
Pascal languages under VMS, and utilizing
interactive graphics for control theory
design, analysis and performance
evaluation. It can plot root locus,
frequency response, or time response for
either the s or Z domains (Continuous or
Discrete). Transfer functions or matrix
can be updated or recovered from previous
sessions. User friendly transfer
function manipulation is provided such as
the TUSTIN transform, along with on-line
help capability.

Objectives

Design is largely a trial and error
process. A designer often employs
heuristics or "rules of thumb" in design,
but they rarely result in a final
acceptable solution without interactive
feedback. CAD tools typically provide
most of the manipulative functions
required to synthesize and analyze a

design based on objects and requirements,
but, contain very little knowledge of the
design "process" itself. CAD software
is a tool, and as much, the user must
direct the process and interpret its
output. In essence, the designer defines
objects (entities) whose attributes are
to be instantiated (given values) in an
iterative manner. For example, the
development of a second-order compensator
(object) requires the instantiation of
its coefficients (attributes) based upon
desired performance requirements (over
shoot, damping, ...). ICECAP provides
input/output dialogue for the
coefficients (or poles and zeros) as well
as manipulating the attributes to
determine performance.

Proceedings of the Digital Equipment Computer Users Society 67

ICECAP attempts to provide a very
"friendly" user interface with on-line
help for the novice as well as the expert
control engineer.

Anaheim, CA - 1987

The following list reflects the general
CAD tool considerations:

CAD Objectives

Automatic/Interactive Design Process
Improved Effectiveness/Efficiency
Friendly User Interface

Design is a Trial and Error Process

Complex/Not Completely Understood
Iterative Feedback Process

Design Model

Determine Design Goals
Conceptual Design Phase
Design Procedure/Design Knowledge
Design Evaluation

CAD Tool Interface

User Directs Process
Tool Package Guides User at Some Level
Requires Feedback
Partial Synthesis Algorithms
Various Data Presentation Methods
Storage and Timing Considerations

structure of ICECAP

System design data flow diagrams and
associated data dictionary entries were
used as the software development tools
for ICECAP. (See Figure 1 and 2) The
data dictionary completely documents
every process entry, data flow entry, and
data file represented in the data flow
diagrams. The data flow diagrams are
layered or pari tioned into hierarchical
levels. The top-level diagram, called
the context diagram, defines the
interface between the system and its
environment. The lower-level diagrams
expand into greater and greater detail.
This type of documentation provides for
ease of maintenance and modification.

Capabi1ities

ICECAP (Interactive Control Engineering
Computer Analysis Package) is a highly
structured modular program (375
subroutines) that provides the tools for
a Control Designer's Workbench in the
general areas of:

1) Conventional Control Design
(Discrete/Continous)

2) Quantitative Feedback Theory Design
3) Modern and Optimal Design Theory
4) Graphics Environment for Performance

Analysis

68

Figure l

usu_IHPUT ...
DISPUT

Data Flow Diagram for ICECAP System Diagram

lHTEIPRETED CDIWfD

DEYICE_DATA

Halle 1

Data Flow Diagram for ICECAP Context Diagram

Figure :l

PROCESS ENTRY

PROCESS NUMBER: 1.0

DATE OF LAST REVISION: 15 AUG 83

PROCESS NAME: EXEC!11'E_ICECAP

PROCESS DESCRIPTION: EXECUTE_ICECAP represents the execution phase of
the computer program ICECAP, a modern interactive computer-aided design
and analysis package for control systems.

INPUT DATA FLOW(S): USER_ INPUT

OUTPUT DATA FLOW(S): DEVICE DATA
PROMP'CMENUS

SOURCE(S) 1 USER_ KEYBOARD

SINl(S)I USER.JlISPLAY

FILES READ: MEMORY

FILES WRITTEN: ANSWER
MEMORY

DATA FLOW ENTRY

DATA FLOW NAME: ABORT_COHHAND

DATE OF LAST REVISION: 15 AUG 83

DESCRIPTION: ABORT COMMAND is a user-supplied character in the command
buffer that informs the system that the user wishes to delete the
current contents of the command buffer and have subsequent characters
processed as a new command •

SOURCES(S): DETERMINE_INVALID_COMMAND_TYPE

DESTINATION(S): PROVIDE_COHHAND_ABORT_HESSAGE

ICECAP has its origins in TOTAL, an
interactive control system design program
developed at the Air Force Institute of
Technology as a research project in
1978. (8) TOTAL was hosted on a Control
Data Corporation's Cyber computer. In
1982, it was rehosted on the vax-11/780
computer, and renamed ICECAP.(6) A front
end Pascal program was added to make the
software more user friendly. In 1984,
descrete and matrix functions were added.
(1, 10, 14) GWCORE (George Washington
University's Core) was added in 1985 (3),
providing root-locus and time response
plots. Quantitative Feedback Theory
(QFT) was added in 1986, with double
precision and advanced graphics just
being completed. A PC version (ICECAP
PC) has been implemented for continuous
systems design. A expert system called
"TOTAL-EASE" has been developed using
ICECAP-PC for designing lead
compensators.

MATLAB is also an integral component of
ICECAP. MATLAB was originally developed
by C. Moler at the University of New
Mexico. It was written as a convient
tool for computations involving matrices.
MATLAB provides access to the LINPACK and
EISPACK software; these two packages
represent the state of the art in matrix
computational methods. EISPACK contains
routines for matrix eignevalue
computations while LINPACK provides
subroutines for solving and analyzing
simutaneous linear equations. The MATLAB
program has been enhanced with control
design functions to form a complete
interactive computer-aided control system
design package.

General numerical analysis primitives,
in ICECAP, perform the solution of
simultaneous linear equations, matrix
inversion, eigensystem analysis, singular
value decomposition, and other matrix
decompositions. Other specialized
primitives are provided for conventional
modern control design. These include
root locus design, state feedback design,
optimal control design (via the algebraic
Riccate equation) and quantitative
feedback theory design (QFT) Both
continuous and discrete systems are
supported.

Double Precision Conversion

The conversion of ICECAP from single
to double precision deals with the
changing of variables and intrinsic
functions from single precision to double
precision. ICECAP presently has over 98
common blocks that are used in 375-plus
modules. These common blocks have from
one element up to 50 elements contained
in them.

69

The conversion started with analyzing
the local, global and common block
variables and deciding which variables
needed to be double precision. After the
analysis, the .MAP file, which is created
when the modules are LINKed together, was
an aid in converting the variables to
double precision. All the common, local
and global variables were changed to
double precision and recompiled. After
the variables were changed to double
precision, the intrinsic functions were
ready to be changed. The LANGUAGE
SENSITIVE EDITOR and its split screen
capability was extensively used with the
.LIS files to correct errors in the
FORTRAN77 code, during this time.

After all the routines compiled, the
recompiled modules were LINKed to all the
modules that were not changed. A command
file was created using VAX/VMS DCL, so
that when a user logs into the system,
the command files creates a separate
directory for the user and allows the
user to run either the single or double
precision version of ICECAP.

The present format is D-FLOATING, due
to a limitation of a ploynomial root
function subroutine, but it is planned by
AFIT to code its own polynomial root
function so that ICECAP will run in G
FLOATING format. The D-FLOATING format
has a 16-digit mantissa and a 2-digit
exponent and a range of approximately
0.29E-38 <= x <= 1.7E+38. The preferred
double precision format is G-FLOATING
format which has a 15-digit mantissa and
a 3-digit exponent and a range of
approximately 0.56E-308 <= x <= 0.9E+308.
G-FLOATING has greater precision with the
size of the exponent which is more
desirable in control engineering than the
extra digit in the mantissa. Later
development plans also include changing
from double precision to quadruple
precision. (See Table 1 for sample of
Single and Double Precision)

ICECAP GRAPHICS

The graphics offered by ICECAP consist
of printer-type plots, graphics plots and
hardcopy plots. Data plots are created
by using the DISPLAY or PRINT commands.
The printer plots can be run on any
terminal are are stored in ANSWER DAT
when the print command is used. Drivers
exist that support GWCORE graphics for VT
and Tektonix terminals. Tbe screen dump
subroutine can be used with the VT241
terminal to procure a hard copy of the
plot to be printed on an LN03 laser
printer. Three types of data plots are
available from ICECAP: 1) Time response,
2) Frequency response (including phase,
magnitude, Bode and Nichols charts) and
3) Root Locus plots.

Table 1

******"'********* SINGLE PD.BCISION ICECAP **********************
ICl!lCAr;. Dl!lF CLTF FAC

FACTOD.ED INrUT oF CLTF
ENTED. NUM "DBNOM DBGD.EES cnn SOUD.CE)• l 0 G
ENTEil NUMEJl.ATOD. CONSTANT: l 1
CLTF NUMERAToD. (CLNPOLYI CLTF ZED.OS (CLZED.O)

(J.0011) POLYNOMIAL CONSTANT= 1.000
ENTER. DENOMINATOD. CONSTANT: ;, 1

ENTED. EACH RooT RB.IM
HPnLE(1)= l ·3.& O
HPOLE(2)= i .3,r, 0
HPOLB(3)= l ·3.& O
HP()LE(4 }= l -3.ti o
HPC>LB(!>)= l -3.& 0
HPOLB(G)= ;. -3.l> O

CLTF DENoMINATOR (CLDroLY) CLTF roLES (CLPOLE)
1.1100)S** 6 (-3.MlO) t .J(O.Of.HIOEfOO)
2i.oo JS*"' b (-3.MlO) + .1(o.ooon:a+oo)
183.8)S** 4 (-3.MlO) t .T(O.OOOOEfOO)
s&T.!J JS"'* 3 t -3.!Joo J + .T(o.0000E+oo1
221>1. JS** 2 t -3.tiooo J + .T(o.ooooB+on)
31&1. JS**" t (-3.t>Oo) + J(o.onoos+oo J

{ 1838.) POLYNOMIAL CONSTANT= 1.000
ICECAP;. DEF GTF POL

POLYNOMIAL INPUT OF GTP'
ENTER NUM "DENoM DEGRBES (on soun.CE)• ! 0 6
BNTED. 1 NUMBD. co,FF HI TO LO: l 1
GTF NUMERAToD. (GNr<>LY) GTF ZEROS (GZl!lD.Jl)
t.rum) POLYNOMIAL CONSTANT= l.IJOO

l!INTl!ID. T Dl!INOM Col!IPP HI TO LO: i. 1 21 183.8 8tiT.ti 22bl 31Ll 1838
GTF Dl!lNOMINATllR (GDrOLY) GTF roLES (GPOLl!l)
1.0110)$'""* G (·2.422) + .T(0.4782)
21.1111)S** & (-2.422 I t J(-O.<T82)
183.8)S"'* 4. (-3.1&5 I + .1(1.371 I
8bT.b)S"'"' 3 (·3.lbb) + .J(-1.371)
22&1. IS"'"' 2 (-4.923) + .J(1.11 '7)
3101. 1s•• 1 I -4.023 I t .J(-1.117 I
1838.) roLYNOMIAL CONSTANT= 1.000

"'"'"'"'*"'**** DoUDLB PD.BCISION ICECAP **"'*******
ICECAP;. DEF CLTF FAC
PACTon.Bn INPUT op CLTP

ENTER NUM & DENOM DEGREBS (OR SoURCE)• l O 6
ENTER. NUMBD.ATOD. CONSTANT: I 1
CLTF NUMERATOR (CLNP<>LY) CLTP ZBROS (CLZERO)

(o.1oooooooooonn+o1) J'()LYN<>MIAL CONSTANT=fl.lOOOOOOOOOOOD+o1
ENTER DENOMINATOR CONSTANT• l 1
ENTER. BACH Jl.ooT ll.B,IM

CLP<>LE(l)= ! -3.b 0
CLr<>LE(21= l -3.b 0
CLr<>LB(3)= l -3.f> O
CLrOLl!l(4)= ;. -3.b O
CLPOLl!l(b I= ;. -3.b II
CLPOLID(6)= i -3.6 0

CLTF Dl!lN<>MINATOR (CLDrOLY) CLTF POLES (CLPOLE)
co.1onooonooooon+o11s** G {-.35oooooooooon+o1) + .1co.oooooooooooon+oo1
f o.21nononooooon+o21s** 1> (-.3600000000000+01) + .J(o.ooooooonoooon+oo 1
f o.t83TMmoooonn+n3)S** 4 (-.3&ooooonoooon+o11 + .J(o.001100110000000+00 I
(o.stiTtinonononon+n3)S** 3 (.. 3r,ooooooonoon+n1 I + .J(o.oooonoonoooon+oo)
f n.22&n93noonon+o4)S** 2 (-.3bOIH10oooooon+n1) + J(o.ouooooonooonn+oo)
< n.3t&t312M1ooon+u4)S** 1 (.,3r,ooonoooooon+o11 + Jf o.ooooouoooooon+ou)
(U.18382GbG2bllOD+04) POLYNOMIAL CONSTANT=O.lOOOOOOUOOOOD+o1
ICECAr i. DEP GTP POL

roLYNOMIAL INrUT OF GTP
ENTER NUM "DENOM DEGRBES con SOURCl!l)• l "6
BNTETI. 1 NUMER COBPP HI TO LO: i 1
GTF NUMED.ATOR (GNPOLY) GTF ZED.OS (GZBRo)

f n.100011ooooooon+o1) r<>LYN(>MIAL cc>NSTANT=o.1nonooo1100000+01
ENTER. 7 DBNOM COEPP HI TO LO: i. 1.0 21.U 183.Tr:i 8!JT.b 22b0.93Tb

31bl.312ti 1838.2G&G2ti
GTF DBNOMINATOR (GDroLY) GTF roLl!lS (GroLE)

(o.1ooonoooooflnD+o11s*"' G (-.31>noooooooonn+o11 + .l(n.ooooooooonoon+oo1
fo.21onno111rnonnn+o21s** & (•• 3r,ooooonononn+o1) + .T(o.oooooonooooon+oo)
(0.183TbOOnooono+n3JS** 4 (-.3bOOOOllOOOOOD+n11 + .J(0.00000011000011n+o111
(n.sr,nnnnnoooon+o3)S** 3 (·.3r,onoooooooon+nt I + .l(n.oononnooooono+nn I
(0.22&11937t.OOllllD+of)$"'* 2 (-.3bOOOOOOOOOOD+o1) + .T(o.00000000000110+011)
(0.3151312bOllOOD+n4.)S"'* l (-.3&0000000000D+ot) + .tfn.0000000000000+001
(0.18382GbG2bOOD+n4) Pt)LYNC>MIAL CONSTANT=n.10ooonoooonnn+o1

The printer type plots are the default
when ICECAP used with the VT100 terminal.
These plots are composed of a number of
so character arrays which are filled with
asterisks for data points, dashes for
grid lines, etc. These arrays are
written to the screen to form the plots.
The resolution is composed of 1 * 's
representing data but will do as an
approximation. The printer plots were
available prior to this new version of
ICECAP. 70

The graphics plots use the GWCORE
graphics package. This is the George
Washington University implementation of
the SIGGRAPH CORE graphics standard.
Drivers for the VT125, VT241, Tektronix
4010 or Tektronix 4014 are used. The
VT241 supports 3 colors whi).e the other
terminals are monochrome. The VT driver
was derived from an existing Tektronix
driver. (3) The time response and
frequency plots automatically scale the
plots. The root locus and Nichols chart
allows for both autoscaling and zoom. A
grid may be displayed by turning the grid
switch on. The Nichols chart allows up
to ten constant magnitude and ten
constant angle curves to be super imposed
on the plot.

Each graphics plot may be saved into a
file by the operator. This is done with
a bit map screen dump subroutine and is
available only on the VT241 terminals.
The screen dump subroutine stores the
plot screen bit map in SIXEL format and
attaches the appropriate parameters to
the beginning of the file to give it the
correct aspect ratio when it is printed.
The plot may be sent to the printer using
a utility command procedure which
displays the file names in the users
directory and sends the SIXEL file of the
desired plot to the LN03 in landscape
mode. (See Figure 3)

QFT Capabilities

Quantitative Feedback Theory is a
frequency domain design technique that
provides robust performance and
incorporates disturbance attenuatin and
output decoupling despite plant
uncertainties. This method may be
applied to the following types of
systems: linear time-invariant single
input-single-output (SISO), nonlinear
SISO, linear time-invariant multiple
input-multiple output (MIMO) and
nonlinear MIMO. (4)

ICECAP provides the following QFT
operations:

Plant Transfer Function Definition
- Definition of a maximum of 50 plants.

Interactive Tracking Model Generation
Define upper and lower tracking

control ratios(TUTF and TLTF,
respectively) .

Display or print the time and
frequency response of TLTF and
TUTF.

Interactive Distrubance Model Generation
Define the disturbance model control

ratio, TDTF.
Display or print the time or

frequency response of TDFT.

54.0

dB

-27. C1

-210.

9.00

-3.0C•

3Ci.O

dB

-3•).0

Figure 3

ICECAP GRAPHICS

CLTF FREOUEllC'1 RESPONSE (HAGNITUDD

OL TF ROOT LOCUS
I{
I /,

/•

/:
/ :

/ I

I

I
' \ I

\ I

I---.:.---- - - - - - - - - - -- - -------';+, .----;9..µ- -----. '
/

_l .l _l i
-18.C•

LOG MA1;1mUDE-At1GLE DIAGRAM itl!CHOLS)

-31JO.
ICECAF VERSICll 4, •)

71

Plant Template Determination

- Template defined as a set of points
on the Nichol's chart whose
coordinates correspond to the
magnitude and phase at a patricular
frequency. A curve is not drawn
thru the points. For better
accuracy, input more plants.

Nominal Plant Selection

Tracking Bound Determination

- Tracking bounds determined, based
upon template points described
above. Bound determined when where
is the difference in the frequency
response of the upper and lower
models at a particular frequency at
M is the maximum difference in M
contours.

Disturbance Bound Determination

- Determines the upper disturbance
bound.

Composite Bound Determination

- Define this transfer function (LOFT)
- Display or print its time or

frequency response.

Prefilter Definition (FTF)

Cascade Compensator Transfer Function
(GFT) Formation

Loop Transmission Transfer Function (LFT)
Formation

Determine the disturbance closed-loop
transfer function (CLTF) for each
plant and display or print its time
response.

Determine the tracking closed-loop
transfer function (FCTF) for each
plant and display or print its time
response.

Summary

ICECAP runs on versions 4.X of the VMS
Operating System or on any Micro Vax or
higher class machine. It requires one of
the following terminals:

1. VT - 100 (non-graphics)
2. VT - 125
3. VT - 240
4. TEK 4010 / 4014 (graphics only)

Future enhancements by graduate students
at the Air Force Institute of Technology
will focus on;

Possibility of Quad-Precison (Multi-)

IBM-PC (1985) Version Extended (9,
11, 12)

Interface Module Design

Kahlman Filter Design Additions

Stochastic Performance Additions

3-Dimensional Graphics

simulation Extended (Users Inputs)

Block-Diagram Manipulation and Display

The LANGUAGE SENSITIVE EDITOR (LSE) is
designed to be used in tandem with the
SOURCE CODE ANALYZER (SCA), the COMMON
DATA DICTIONARY (CDD) and the CODE
MANAGEMENT SYSTEM (CMS) . They will be
used in the future to create a full
development environment for ICECAP. The
SCA will aid in the analysis of the code
and the LSE will allow the ICECAP system
to be run and tested while writing the
code. The CDD will keep track of the
variables in the ICECAP system and their
definitions in one location for future
developers of the system. The CMS will
be used to keep track of all development
of the system especially if it is
occurring concurrently.

Biblography

1. Armold, Abraham T., "Further
Development of an Interactive control
Engineering Computer Analysis Package
(ICECAP) for Discrete and Continuous
Systems", M.S. Thesis, AF Institute of
Technology, WPAFB, 1984.

2. Birdwell, J.D., et al, "Cascade,"
=::P=r-=o-=c-=e::..:;e:..:d::.:i=.:' n:.:.g:;;i..:;;s--=-..:;o;..::f:...........:2:::.cn=d'---=I:..:E::.::E=E Symposium on
Computer-Aided control System Design,
1985.

3. Bullard, John R. Interactive Computer
Graphics for Analysis and Design of
Control Systems. MS Thesis, Wright
Patterson Air Force Base, Ohio: Air
Force Institute of Technology, Dec 1985.

4. Cole, Sandra R.H. A Computer-Aided
Design Package for Quantitative Feedback
Theory. M.S. Thesis. Wright-Patterson
Air Force Base, Ohio: Air Force
Institute of Technology, Dec 1986.

72

5. D'Azzo, John J. and Constantine H.
Houp is, Linear Control Systems Analysis
and Design. McGraw-Hill, 1981.

6. Gembarowski, Charles J., Development
of an Interactive Control Engineering
computer Analysis Package (ICECAP) for
Discrete and Continuous systems. M.S.
Thesis. Wright-Patterson Air Force Base
Ohio: Air Force Institute of Technology:

7. Houpis, C. and Lamont, G.B., Digital
Control Systems: Theory, Hardware
Software, McGraw-Hill, 1985. '

8. Larimer, Stanley J. , An Interactive
Computer-Aided Design Program for Digital
and Continuous Control system Analysis
and synthesis. M.S. Thesis. Wright
Patterson Air Force Base Ohio: Air Force
Institute of Technology, Mar 1978.

9. Mashiko, Susan K. and Gary c.
Tarczynski, "Development of a computer
Aided Design Package for Control System
Design and Analysis for a Personal
Computer. II AFIT/GE/EEG/885D/ WPAFB,
Ohio, Dec, 1985.

10. Nara thong, Chiewcharn, A Modern
Control Theory Enhancement Tool to an
Interac;:tive Control Engineering Computer
An~lysis Package (ICECAP). M.S. Thesis.
w:ight-Patterso~ Air Force Base Ohio:
Air Force Institute of Technology Dec
1986. ,

11. Parisi, Vincent M., Development of a
Computer Aided Design Package for Control
system Design and Analysis for use on a
Personal computer," AFIT/GE/EE/83D-53
WPAFB, Ohio, Dec 1983. ,

12. Schiller, Mark W., "TOTAL EASE": A
Personal Computer Based Expert system for
C<;>ntrol System Engineering", M.S. Thesis,
Ai: Force Institute of Technology, WPAFB
Ohio, Dec 1986. '

13 · Travis, Mark A., Interactive
Computer _Graphic~ for system Analysis.
M.S. Thesis. Wright-Patterson Air Force
Base, Ohio: Air Force Institute of
Technology, Dec 1983.

14. Wilson, Robert E., Continued
Development of an Interactive Control
Engineering Computer Analysis Package
(ICECAP) for Discrete and continuous
S~stems. M.S. Thesis. Wright-Patterson
Air . Force Base, Ohio: Air Force
Institute of Technology, Dec 1983.

RT-11/VMS Networking for Real-Time Applications

Jonathan D. Melvin, Ph.D.
California Institute of Technology

Mail Stop 104-44, Pasadena, CA 91125, (818)356-4126
and

Interfield Research Associates
2314 La Mesa Drive, Santa Monica, CA 90402, (213)395-5841

ABSTRACT

Very fast (2.5 to 4 MBits/sec) Ethernet software allows LSI-lls and PDP-lls to
serve as powerful front-end real-time processors for VAXes and microVAXes in a

number of industrial and academic settings. This IRANET software is easily
configured for any kind of data acquisition or process control application.

Operating applications include nuclear data collection, plasma physics
measurements, semiconductor device testing, and medical imaging. With this

software, multi-processor 16-bit plus 32-bit systems are assembled which
outperform 16-bit- and 32-bit-only systems.

INTRODUCTION

It is important to recognize that 16-bit PDP-11 and
LSI-11 computers with 1970s architecture can help solve
today's most demanding real-time problems. Real-time
operations requiring fast interrupt response and efficient
hardware control are easily implemented on 16-bit
computers running simple real-time operating systems
(RT-11). Complex data analysis and process control are
easily programmed on 32-bit computers running full-function
operating systems (VMS). By linking 16-bit and 32-bit
computers with high-speed Ethernet communication software,
multiprocessor systems have been developed which
incorporate these 16-bit and 32-bit advantages.

This paper describes IRANET, a real-time network
soft ware system developed for such high-speed
communication between 16-bit and 32-bit computers by
Interfield Research Associates in Santa Monica, California.
Using IRANET, networked systems are solving problems
ranging from nuclear data acquisition to medical image
processing at Caltech, Kodak, General Dynamics, radiology
facilities at a number of large hospitals, and other
locations.

OVERVIEW OF IRANET

Hardware Configuration

IRANET connects one or more RT-11 computers,
called "satellite computers", to a VAX or microVAX
computer, called a "host computer", with standard Ethernet
hardware. Connections through DELNis, thin- or thick-wire
Ethernet cables, and fiberoptic repeaters are all supported.
Multiple hosts can communicate on one cable, and IRANET
can communicate on a single cable concurrently with
DECnet, TCP /IP, and other network software systems.
Figure 1 illustrates the typical hardware configuration.

Unique Features

1.

2.

IRANET differs from other network systems in three
ways:

It is designed specifically for real-time
communication, i.e., it implements
a. fast data transfer;
b. fast communication of unexpected events over

the network.

It uses no network-specific protocols:
a. satellite computers communicate over the

network as if with disks (called "pseudodisks");
b. host computers access pseudodisk data in

shared-memory regions (VMS global sections).
Pseudodisk data are automatically saved in host

Proceedings of the Digital Equipment Computer Users Society

3.

73

real-time 10

one or more workstations/minicomputers

VMS
one or more

real-time

computers

RT-11

IRANET hardware configuration

Figure 1: Hardware Configuration for IRANET

disk files by the VMS operating system.
Figure 2 illustrates the "protocol-free"
communication.

SATELLITE COMPUTER

IRANET data transfer:

functional description

D~data ove< the networl<., of <eadonglwntong d"k data

\ HOST COMPUTER

shared memory holds

satellite data

Figure 2: Diagram of IRANET Communication

User tasks can be easily added to the network: Any
user-programmed subroutine can be added to the host
software so that it executes when a satellite reads
or writes specific files on a pseudodisk. Typical
user-programmed tasks implement
a. analysis by the host of data acquired by a

Anaheim, CA·· 1987

satellite;
b. f e e d b a c k c o n t r o 1 b y t h e h o s t o f

computer-controlled equipment interfaced to the
satellite;

c. access to host-based data bases in response to
satellite requests.

Applications

The software structure of IRANET lends itself to
implementation of networked RT-11/VMS applications. A
typical RT-11/VMS application which includes data
acquisition, process control, graphics, and an operator
interface is diagrammed in Figure 3. IRANET carries data
and control information between satellite and host
computers. User-programmed tasks in the host software
provide menus for system control and live graphical data
display in two separate windows on a V AXstation-Il screen.

Typical Application of IRANET

LSl-11 satellite computer

real-time,

Interrupt-

driven

software
- experiment control

data collection

TH ER NET• carries control command• to satelllte

• carriea data to host

Workatation provides:

Interactive graphical

cffsplay ot Incoming da

rr======:-1"' . control

experiment control

Figure 3: Diagram of a Typical Application

Code in the appendix illustrates programming of
IRANET's "protocol-free" communication. Operating
applications include:

1. Medical image processing and archiving;
2. Nuclear data acquisition;
3. Plasma physics experiments;
4. Laser-doppler velocimetry measurements;
5. Magnetic media testing;
6. GaAs device testing;
7. Molecular beam epitaxy system control.

PERFORMANCE

Figure 4 compares performance of IRANET with
other network software executing on the same computers
and Ethernet interfaces. The simple, real-time design of
IRANET give it two-to-ten times greater speed.

Notes follow on IRANET data transfer speed
measurements: (1) 4 MBits/sec is measured for
host-to-satellite communication. Satellite-to-host
communication speed is 2.6 MBits/sec, limited by
microVAX-11 processor speed. The new microVAX-3000
series processor should be considerably faster. (2) VAXelan
speeds reflect one-way communication (no guaranteed
delivery of data). DECnet speed is measured during file
copy where delivery is guaranteed. IRANET speeds include
guaranteed delivery.

IRANET speed for response to unexpected events is
determined by measuring the time for: (1) a satellite
computer to request data over the network; (2) a host to
execute a user-supplied task associated with the satellite's

Data Transfer Speed

I 4 MBits/s IRANET

D 1 MBil/s TCP/IP

D 60 KBytes/s DECnet

I 2.6 Mbits/s VAXelan

(Note: no handshake for VAXelan speed)

Figure 4: Real-time Performance

data request; and (3) subsequent delivery of the data to the
satellite (see Figure 8 below). The average forthis time is
5. 7 milliseconds on a LSI-11/23 or LSI-11/73 communicating
with a VAXstation-Il over DEQNA interfaces. This time
compares favorably with the absolute minimum
communication time measured by DEC personnel for VMS
Ethernet device drivers and DEQNA interfaces on
microVAX-Ils (4 to 5 milliseconds - DECUS talk DA051,
December 7, 1987, Anaheim, California).

74

TECHNICAL DF.sCRIPTION OF IRANET

IRANET--Operated Ethemet Interfaces

On the satellite computer, IRANET includes disk-like
device drivers with which RT-11 programs can access
Ethernet though DEQNA or Jnterlan NI1010 or NI2010
interfaces. IRANET host programs communicate through
the VMS QIO interface with standard DEC Ethernet device
drivers. Any VMS-supported Ethernet interface can be used
on any VAX, micro VAX, or VAXstation. Furthermore,
IRANET operates on VMS systems through an Ethernet
interface concurrently with other network software such as
DECnet, TCP/IP, LAT, and LAVC.

Efficient Commwli.cation Protocol

IRANET communicates with protocols diagrammed in
Figure 5. Three features of this protocol provide optimal
real-time performance:

1.

2.

3.

Minimum memory-to-memory copy. While many
network software systems copy network data several
tim~s before delivery to a user program, IRANET
a voids data copy entirely for host-to-satellite
comm1;.1nication. It copies data only once for
sa telh te-to-host :om~unication. Consequently,
network communication occurs near maximum
Ethernet interface hardware speed.

Man~ packets are sent before acknowledgement is
required -- IRANET assumes that communicating
com!:>uters have sufficient speed and memory to
receive a sequence of packets without error. This
assu~ption ~inimizes the communication delays
associated with transmission of acknowledgements.
However, all communication is checked to guarantee
accurate data delivery. In the rare case of error
(due to excessive network traffic or computer load)
transfers are retried as necessary.

Large memory buffers for receipt of data are
assumed. IRANET does not notify a remote

IRANET Disk Emulating Transfer Protocols
_/ E1heme1 address of computer to which request sent

/ / Protocol type of program to proceH request

I I I I I I- Byte count , •• ·······~
" ' ' An IRANET request Tr11naler ~pe: Ft_EAOIWRITEISIZE OF "DISK•

Ylhleh ~iak·

Block number (offset in •disk•)

READ "disk" data over the network

request Hnl from aatellile to host

dam sent from host to Htellite In a sequence of p.mckets

WRITE data to "disk" over the network

request and write dale Hnt

atatus sent baek

Any transfer not completed successfully In one Hcond is reltied.

Figure 5: Network Communication Protocol

computer in advance when a large block of data will
be sent. Thus, advance notification delays are
avoided.

Simple Network Addressing

IRANET uses simple network addressing in order to
optimize communication speed. The satellite computer
directs communication to a host by using the host's physical
Ethernet address. Further, the satellite selects a single
program on the host by using Ethernet protocol types
assigned to the satellite. (When IRANET is installed, the
user assigns two protocol types to each satellite. These
protocol types must not be in use by other active network
software such as DECnet or TCP/IP. A host program is
associated with a particular satellite by assignment of the
same pair of protocol types. Up to 32768 satellites can
address separate programs on a single host.)

Configuration of Basie IRANET Applications

Figures 6, 7, and 8 illustrate configuration of
IRANET for three basic applications: data collection,
process control, and network-activated execution of
user-supplied tasks. Complex applications consist of a
combination of these basic applications.

Application to Data Collection

----;::,,.D SATELLITE COMPUTER COLLECTS DATA experiment t writeadata to hoat"d"'k"

data available to

many host programa

? ~ I archives data I I plolSdala I ... elc

Figure 6: Data Collection

APPENDIX

Sample Data Acquisition/ Analysis Program Using IRANET

75

Application to Process Control

aq.tm.nt

SATELLITE CONTROLS eoy PMENT

HOST PROVIDES GLOBAL CONTROL

AND MONITORS THE APPLJCATION

Figure 7: Process Control

Execution of User Tasks

SATELLITE

2 · ••ad-'"'""••~• - 3. ••~•••"disk" da1

.------~

USER·SUPPLIED TA K

HOST

Figure 8: Execution of User-programmed Tasks

At the RT-11 end (the network looks like a disk named
NT):

PROGRAM ACQUIR
INTEGER*2 BUFFER(256),CONTRL(256)

c
c Open channels to data and control files
c on pseudodisk NT
c

c

*

*

OPEN(UNIT=l,N AME='NT:DATA.DAT', TYPE=
'OLD',ACCESS='DIRECT',RECORDSIZE=l28)

OPEN(UNIT=2,N AME='NT:CONTRL.DAT', TYPE=
'OLD',ACCESS='DIRECT',RECORDSIZE=l28)

c Acquire data and transmit data to host for
c analysis until instructed to stop
c
10 CONTINUE

CALL ACQUIR(BUFFER) !acquire
WRITE(l 'l)BUFFER !send data over net

c <causes host READ ROUTINE to execute)
READ(2'l)CO-NTRL !get control from net
IF(CONTRL(l).NE.O)GOTO 10

CLOSE(UNIT=l)
CLOSE(UNIT=2)
END

At the VAX end (common blocks can be mapped to
network data):

c

PROGRAM DAQ
INTEGER*2 BUFFER(256),CONTRL(256)
EXTERNAL READ_ROUTINE,WRITE_ROUTINE

c DAQ must be linked with IRANET subroutines
c and with the page-aligning link options
c PSE=BUFFER DAT,PAGE
c PSE=CONTRCDAT,PAGE
c so that the following common blocks are mappable
c to RT-11 files:

c

COMMON/BUFFER DAT/BUFFER
COMMON /CONTRL-=-DAT /CONTRL

c Set up network disks and Ethernet protocol
c types for communication with the satellite
c computer; set up READ ROUTINE and
c WRITE ROUTINE to be executed when the
c satellite reads data from BUFFER.DAT and writes
c data to CONTRL.DAT respectively; start IRANET.
c

c

CALL SETUP AND START(READ ROUTINE,
* WRITE_ ROUTINE,BUFFER,CONTRL)

c Map common blocks BUFFER DAT and CONTRL DAT
c to RT-11 files BUFFER.DAT and CONTRL.DAT -
c in pseudodisk NT
c

CALL MAP _BLOCKS(BUFFER,CONTRL)
c
c hibernate until the satellite sends data
c

c

CALL SYS$HIBER()
END

SUBROUTINE READ_ ROUTINE(BUFFER)

c Analyze data in BUFFER from satellite
c

c

INTEGER*2 BUFFER(256)

END

SUBROUTINE WRITE_ROUTINE(CONTRL)

c Instruct satellite to stop acquisition
c after 100 buffers of data are acquired
c

INTEGER*2 CONTRL(256),COUNT
DATA COUNT/O/
IF(COUNT.LT.lOO)THEN

CONTRL(l)=l !continue
COUNT=COUNT+l

ELSE
CONTRL(l)=O !stop

ENDIF
END

76

An Automatic Source-Code Generator
Generating Subroutines for Accessing an Rdb Database

David M. Hansen
Battelle Pacific Northwest Labs

Richland, Washington

Abstract

Some databases can be characterized by a number of related yet indepen
dent relations. To avoid the many tedious programmer hours devoted to the
repetitious coding of functionally identical database access routines, we have de
veloped an automatic source-code generator which generates FORTRAN source
code with embedded Rdb data manipulation commands. The resulting source
code provides routines to read, write, update, and delete data for each relation in
th database. This code generator is providing quick prototyping, ease of main
tenance, and insulation of application programs from the underlying database
for the implementation and evolution of a distributed integrated manufacturing
information system.

Introduction

The purpose of this paper is to describe the circumstances
and motivation for the development of the source-code
generator which is currently being used in the design and
implementation of an Integrated Manufacturing Informa
tion System (IMIS). The paper briefly describes the design
and function of the code generator, and reports on some of
the advantages and disadvantages of using this approach
to software generation. This paper is not intended to be
a "how to" discussion but rather to share some experi
ences and ideas, hoping to stimulate the reader's thinking
regarding the development of similar general-purpose soft
ware development tools.

Database Characterization

There are any number of ways that a database might be
characterized, including the type of data in the database,
the size of the database, the users of the database, etc.
The method of characterization which is pertinent to this
discussion is the characterization of a database by its pri
mary method of use.

Most databases have a definite pattern of use. There
are for example, databases which are primarily "analyti
cal" in the sense that their primary method of use is for
data analysis. Queries are often complex and sometimes
unpredictable or unanticipated. Analytical databases usu
ally grow at measured rates, often slowly or not at all.
A "transaction processing" database can be characterized
by queries which are more predictable than the analyti
cal database. The database is often dynamic with a good

Proceedings of the Digital Equipment Computer Users Society 79

deal of transient data. As a final example, an "archival"
database can be characterized as a data collection and stor
age database. Its use is characterized by a large volume of
data entry. Queries might be simple, single table queries.

The IMIS Database

While any database will certainly be a hybrid of some or
all of the elements composing such a classification scheme,
the IMIS database can safely be classified as primarily
an archival database. Its main function is to replace the
factory's current record keeping system with a paperless,
semi-automated data collection and storage system. This
is not the only purpose of the IMIS system. Data anal
ysis in both production and quality data are perhaps the
most important features of the system. However, those
tasks do not comprise the bulk of the system nor do they
characterize the vast majority of operation of the system.

Tables in the IMIS database tend to have a one-to-one
correspondence with the real world. As a result, data en
try takes place on a table-by-table basis, independently of
other tables in the system. A quality engineer, for exam
ple will be dealing with a single table as he/she enters the
quality information while inspecting the product through
out the shift. Likewise a production engineer is dealing
with a single table as he/she records production figures
throughout the shift. Data in the two tables are implic
itly related via timestamps. In fact, the database in gen
eral is comprised of independent tables related temporally
through the use of timestamps. Routine reports perform
the majority of the data analysis tasks in the system, relat
ing all areas of production, quality, as well as maintenance

Anaheim. CA - 1987

data, thus synthesizing the overall plant activity during a
shift.

It is this "independent yet related" character of the
tables in the lMIS database, together with the mode of
single table operation which provided both motivation and
opportunity for development of the code generator.

Another contributing factor to the implementation
of the source-code generator was contained in the early
functional specifications and structured design documents
where functional database access was generically described
in some detail. Five basic database access functions were
identified for all tables. Two methods of reading data from
a table were specified; the ability to access a single row
via a unique key, and the ability to sequentially access a
number of rows as a subset of the table by matching some
selection criteria. The ability to update and delete a single
row via the key fields as well as the ability to add new rows
to a table were also identified. These basic functional de
scriptions were deemed general enough to be implemented
in most any database, from a simple RMS indexed file sys
tem to a complex relational database management pack
age, providing a consistent definition for accessing all ta
bles in the database. This generic approach to database
access made the implementation of the functions a perfect
candidate for automation.

Perhaps the most important motivation came as we
began the task of implementing these database access rou
tines for each table once DEC's Rdb had been selected as
our database management package. It was immediately
apparent that the code developed was functionally identi
cal for each table in the database with the names of the
table and its fields being the only variables from one set
of access routines to the next.

The Source-Code Generator

The functional interface described by the system de
sign documents was implemented using FORTRAN record
structures (figure 1) as the means for passing data back
and forth between the database access routines and the
calling applications. The record definition for each file is
stored in a simple file which is then included into any func
tion or routine which needs these definitions. In this way
consistency is maintained throughout the software.

As a first step toward automation a functional tem
plate was developed. The initial process of coding access
routines for new tables was at that time a simple, repet
itive cut and paste process. In time, the automated code
generator was seen as a more elegant solution to this inef
ficient use of programmer time.

The code generator was designed to accept the name
of the file in which the FORTRAN record definition for a
specific table was stored. The generator also accepts a ta
ble name which is used as the Rdb table name within the
generated database access routines. In addition to reading
the FORTRAN record definition file, the generic template
(figure 2) is also read by the generator which simply substi
tutes field and table names into the template at the spec-

80

ified points thus automatically generating a set of access
routines for the specified table (figure 3). This processing
is made possible in part due to the fact that the applica
tions programmers and system designers have been very
regular and consistent in their construction of the FOR
TRAN record definition files. This makes the record defi
nition files very easy to parse. Field names in the database
tables are conveniently defined identically to those in the
FORTRAN record definitions in most all cases, the notable
exception being arrays. Arrays are prevalent in the IMIS
record definitions as they are very appropriate data struc
tures for much of the data being stored. One of the au
tomating features of the code generator is the "unrolling"
of arrays for database storage, and the reconstitution of
arrays on retrieval. ln this way, the concept of arrays
are transparently maintained in the application programs
and the FORTRAN record definitions. (The use of arrays
however, eliminates the shorthand method allowed by the
precompilers of correlating a FORTRAN record definition
with an identical Rdb table definition through the use of
the A.* = B. * convention for specifying a complete record
transfer from a database record B to a FORTRAN record
A).

The original code generator simply read the FOR
TRAN record definition and the access routine template
file and produced FORTRAN source-code with embedded
Rdb data manipulation commands ready for compilation.
An early enhancement to the code generator was to output
an additional file which contained the Rdb data definition
commands for the definition of the table as well as the ta
ble's primary index. The ability to create a data definition
file is due to the method we have chosen for field defini
tion within the database. In the IMIS database, all fields
within a table are "based on" simple global field defini
tions (figure 5). This is practical because the IMIS system
is intended as the only database access method and all
data integrity and validation checks are made by IMIS.
By basing all fields on global definitions, the output of the
data definition file by the code generator is simply a mat
ter of determining the type and size of a variable and then
basing it on the proper global definition. Thus creation
of a new table by application programmers has become a
simple process whereby they design the table using a FOR
TRAN record structure, run the code generator, execute
the data definition file (figure 4), and compile the access
routines. This has allowed an iterative development and
testing process as new tables are designed and added to
the database.

Advantages to Using the Generator

The code generator provides a number of significant ben
efits for the development of the IMIS system. The most
important advantage from a programmer's point of view
must certainly be the 30,000 lines of RFO source code it
has generated as well as the 2,000 lines of data definition
statements. The tedious cut and paste method of code de
velopment was replaced with a quicker, automatic method.

Reliability and correctness were also greatly improved as
the possibility of accidentally introducing coding or nam
ing errors was eliminated.

Application programmers have been very accepting
of this method of database access as it has insulated them
from the actual database software itself by providing a
generic set of database access functions with which they
are able to satisfy the great majority of their database
access needs. They are able to define, develop, and test
new tables in the database without the slightest knowledge
of the workings of the underlying database and in this case
with little or no Rdb expertise.

Future Enhancements (and Current Limitations)

A number of the current features of the code generator
are poised for future enhancements which would further
automate the process of code development and improve
the functionality of the code which is generated.

The IMIS project uses DEC's MMS package to help
"make" the entire IMIS system and maintain consistency
and currency among the various elements of the software.
Currently the MMS specifications are designed to invoke
the code generator automatically if the access routine tem
plate has changed or the FORTRAN record definition has
been altered. This has provided a powerful means for fur
ther automating the development of the access routines.
A significant enhancement to this process would be to
intelligently determine what changes had been made to
the FORTRAN record definition and rather than output
the data definition statements for defining the entire ta
ble, which is obviously not very useful once the table is
already defined, output the data definitions necessary to
make just the changes. These changes could then be auto
matically effected using MMS. The process of tuning the
contents of tables has been a continuing part of the de
velopment of IMIS and this enhancement would give the
application programmers complete and automatic control
of the database table definitions by simply altering their
FORTRAN include files.

The capability to sequentially read a qualified set of
rows from a single table is currently implemented using an
undocumented form of the "with" clause which does not
appear to function with all of the precompilers. Ordinar
ily the precompilers reject clauses where both objects on
either side of a boolean operator are "host" variables i.e.

with fortran_var1 > fortran_var2

However, through some experimentation we have
found that substituting a literal or constant for one of the
host variables is acceptable to the FORTRAN precompiler
such that:

with fortran_var1 > 0

will work properly. The need to qualify the contents of
a table dynamically at run-time is accomplished by creat
ing a "with" clause which contains every field in the record
and checks to see whether the field is equal to the value of

81

the record in the database, or whether the field is set to
some predefined wildcard value as in:

tor p in personnel with
(p.employee_number = employee_number or
employee_number = 0) and

(p.last_name = last_name or
last_name = ' ') and ...

The "or" clause allows only the fields specified by the
user via a form to influence the query since other fields will
be set to the predefined wildcard value making the right
half of the "or" expression true. There are at least two
drawbacks to this method. First, we have found experi
mentally that the query will never use any indices even if
an index exists for precisely the fields being used. In fact,
if an index over all the fields of the table exists, the query
will still never use the index. This is unfortunate and is
probably due to our non-standard method of query qualifi
cation. Second, it is not elegant and is not extensible. It is
a working brute-force method of creating dynamic queries.

There are two alternatives to our dynamic query fa
cility, both of which leave much to be desired. Callable
RDO is an alternative but only if we are willing to man
age concurrent queries with embedded RDO and callable
RDO, and to pay an unacceptable performance penalty.
The second alternative would be to generate DSRI calls.
We are constrained however, by the fact that the software
must be easily maintainable by the client at the end of the
implementation phase of the project. Furthermore, devel
oping the capability to construct dynamic DSRI compat
ible queries is seen as too much effort for too little return
when in fact the dynamic query capability is very useful
but not central to the operation of IMIS.

Although our current method has been found to ig
nore the existence of indices, its implementation is simple
and its performance acceptable under most circumstances.
One would hope that the capability to construct run-time
queries would be enhanced under future versions of Rdb,
as this is one of Rdb's weaker points when compared with
other relational database management systems. Many sys
tem implementations stretch databases to their limits and
the ability to construct intelligent queries at run-time is
of major importance. Having this capability would also
allow us to enhance our record selection process by adding
relational operators, specifying ranges, handling pattern
matching, etc.

One final general enhancement to the source-code gen
erator would be the generation of SQL compatible data
manipulation statements for transportability across rela
tional database management systems. This would be a
very simple enhancement to make since it would require
little more than a reworking of the access routine template.

Conclusion

The Rdb source-code generator has proven to be a unique
and valuable tool for our development environment. It has
allowed application developers with little or no database

expertise to design, prototype, and implement database
tables and applications which access the database quickly
and completely.

The generator and its accompanying template provide
a central focus for maintenance and enhancement of some
30,000 lines of generated source code. The template itself
has been through numerous revisions and enhancements
such that the 30,000 lines of finished source-code reflect
only a fraction of the number of lines actually generated
throughout the useful lifetime of the source-code genera
tor.

Finally, the modular nature and generic capability of
the source-code generator will allow us to use it in the
prototyping and implementation of similar databases in
the future. While the source-code generator began its
life as a simple solution to a tedious problem, the con
cept has proven valuable and general enough that it has
evolved into a more general purpose and generally useful
software development tool tailored to our development en
vironment.

82

Figure 1: FORTRAN Record Definition File

c+++ production.inc +++

structure
character•6
character•1
integer
integer
integer

/production/
shift_date
shift_code
line_number
parts_in
product_out

end structure

c--- production.inc

'* '* '*

Figure 2: Access Routine Template Fragment

ccc
entry read_key_GREC_IAME(CIREC_IAME,istatus)

ccc
c Initialize the status to our own system defined error
c for missing data. If no record matches the key fields,
c this status will be returned.

istatus = record_not_f ound

c Copy the key fields from the structure to local
c variables for use in the query.

CICOPY_KEY

c Get any record in the database with the given key.
tRDBt for r in CITABLE_IAME with

CIKEY_LIST
c Read the database record into the record structure.
tRDBt get

tRDBt
CICOPY_TO_RECORD

end_get

c Set the status to TRUE indicating a successful read
istatus = .true.

tRDBt end_for

return

83

Figure 3: Ready to Precompile Source-Code

ccc
entry read_key_production(production,istatus)

ccc
c Initialize the status to our own system defined error
c for missing data. If no record matches the key fields,
c this status will be returned.

istatus = record_not_found

c Copy the key fields from the structure to local
c variables for use in the query.

shift_date = production.shift_date
shift_code = production.shift_code
line_number = production.line_number

c Get any record in the database with the given key.
tRDBt for r in production_data with

r.shift_date eq shift_date and
r.shift_code eq shift_code and
r.line_number eq line_number

c Read the database record into the record structure.
tRDBt get
tRDBt
tRDBt
tRDBt

production.parts_in = r.parts_in;
production.product_out = r.product_out;

end_get

c Set the status to TRUE indicating a successful read
istatus = .true.

tRDBt end_for

return

Figure 4: Definition for Relation and Primary Index

define relation production_data.
shift_date based on chr_6.
shift_code based on chr_1.
line_number based on standard_integer.
parts_in based on standard_integer.
product_out based on standard_integer.

end production_data relation.

define index production_index for production_data
duplicates are not allowed.

shift_date.
shift_code.
line_number.

end production_index index.

84

Figure 5: Global Field Definitions

define field chr_1 datatype is text size is 1
missing value "<XAO>".

define field chr_6 datatype is text size is 6
missing vaule "<XAO>".

define field standard_integer datatype is signed longword
scale 0 missing vaule -2147483646.

85

Using Datatrieve with VAX-DBMS

Alan H. Beer
ASK Computer Systems
Los Altos CA 94022

Abstract

The Datatrieve interface to DBMS is flexible and very powerful.
This paper reviews DBMS structures used in database design and the
DTR structures for accessing DBMS data and metadata. Examples
illustrate using a database through DTR from READY to FINISH with
emphasis on DBMS-specific keywords. DBMS data is merged with data
from non-DBMS sources and a RESTRUCTURE from DBMS to RMS is
demonstrated.

I Introduction

DBMS is DIGITAL's network database product. With proper
administration, DBMS is suitable for applications
requiring large databases with quick on-line retrieval.

Datatrieve, DEC's report writer and small-database
manager, has a complete interface to DBMS which allows
access to existing databases for query and update.
Datatrieve is a useful tool for

ad-hoc formatted report generation
color graphics display generation

- quickly interfacing DBMS databases with
VAX FMS or TOMS form utilities
the VMS SORT utility
Rdb databases and RMS files
other DBMS databases

II Structural Considerations

II.A The DBMS Database

II.A.l Metadata - the SCHEMA

A DBMS database is logically described
The SCHEMA is written in VAX DDL and
maintained in the COD. In the SCHEMA
(data files), RECORDS with data
(pointers) relating different RECORDs.

in its SCHEMA.
compiled into and
are named AREAs
ITEMS, and SETS

The SUBSCHEMA is a mask over the SCHEMA, restricting the
users access to named RECORDs, ITEMs and SETs. In this
respect it is similar to a VIEW DOMAIN.

All DBMS applications access databases thru a SUBSCHEMA.
A default SUBSCHEMA is generated when a SCHEMA is first
compiled.

II.A.La RECORDS and ITEMS

RECORDS describe logical entities. Data ITEMS in
RECORDS are attributes of the entity -- quantities,
measurements, descriptions.

Each individual of a logical entity type is stored as an
occurrence of the RECORD of that type. If the RECORD
described EMPLOYEES and there were 200 employees to be
listed, there would be 200 occurrences of the EMPLOYEES
record, each with its own ITEM values.

II.A.Lb SETS

SETS are pointers from RECORDS to related RECORDS. DBMS
maintains these internally. While the connection they
establish is meaningful to the user, the actual pointer
values are meaningful only to DBMS.

Proceedings of the Digital Equipment Computer Users Society 89

Fig I - Sample SCHEMA DDL

* THIS IS THE USGEOG DBMS SCHEMA.
SCHEMA IS USGEOG

* AREA DEFINITIONS

AREA NAME IS GEOG

* RECORD DEFINITIONS

RECORD NAME IS STATES
WITHIN GEOG

ITEM STNAME
ITEM STCODE
ITEM STPOP

TYPE IS CHARACTER 12
TYPE IS CHARACTER 2
TYPE IS SIGNED LONGWORD

RECORD NAME IS CITIES
WITHIN GEOG

ITEM CTNAME
ITEM CTPOP

TYPE IS CHARACTER 15
TYPE IS SIGNED LONGWORD

* SET DEFINITIONS

SET NAME IS STSORTSET
OWNER IS SYSTEM

MEMBER IS STATES
INSERTION IS AUTOMATIC
RETENTION IS FIXED

ORDER IS SORTED BY
ASCENDING STNAME

DUPLICATES NOT ALLOWED

SET NAME IS STCITYSET
OWNER IS STATES

MEMBER IS CITIES
INSERTION IS AUTOMATIC
RETENTION IS FIXED

- -----------------------------

Chain SETs - SETS can describe relationships between
RECORDS of different types when those differences are
innate to the entity the RECORD describes. Such
relationships might include ownership (people to
things), residency (states to people), products
(companies to merchandise), etc.

A SET relating cities to their home states would have
the RECORD STATES as OWNER and the record CITIES as
MEMBER. An occurrence of the SET might relate Tempe,
Tuscon and Phoenix to Arizona.

Anaheim. CA - 1987

Fig II - Sample SUBSCHEMA DDL
- -----------------------------

* COD path to schema is " CDO~TOP.ALBEER.OBMS.USGEOG"

·------------------------=---------------------~-------
SUBSCHEMA NAME IS USGEOGDTR FOR USGEOG SCHEMA

REALM GEOG
IS GEOG

RECORD NAME IS STATES
ITEM STNAME TYPE

QUERY HEADER
ITEM STCODE TYPE

QUERY HEADER
ITEM STPOP TYPE

QUERY HEADER
EDIT=STRING

RECORD NAME IS CITIES
ITEM CTNAME TYPE

QUERY HEADER
ITEM CTPOP TYPE

QUERY HEADER
EDIT-STRING

SET NAME IS STSORTSET

SET NAME IS STCITYSET

IS CHARACTER 12
IS "STATE"
IS CHARACTER 2
IS "STATE" "CODE"
IS SIGNED LONGWORD
IS "STATE" "POPULATION"
IS "ZZ,ZZZ,Z99"

IS CHARACTER 15
IS "CITY"
IS SIGNED LONGWORD
IS "CITY" "POPULATION"
IS "ZZ,ZZZ,Z99"

- - - - - _-_

System-owned SETs - SETs can also determine sequence
(sort order) or placement (using hashing) of a single
type of RECORD within the database. These sets are
"System owned" and have one occurrence in the entire
database. All the sequenced or placed records are
members.

A sorted SET with STATES as MEMBERS would present any
user "walking" that set with all stored STATES in
pre-sorted order. All STATES are sequenced within the
single occurrence of that SET.

II.A. 2 Database Implementation

When a database is created from the SCHEMA, DBO creates
a root file and area files. The root file serves as the
database header, with pointers to and status of all area
files. A copy of the SCHEMA and SUBSCHEMAS is
incorporated in the root.

The various area files hold the actual data for which
the database was created. The areas are READYed as
needed for data retrieval and update.

II.B The Datatrieve - DBMS Interface

II.B.l Oatatrieve Structures

The Oatatrieve DATABASE structure references a DBMS
database and the SCHEMA from which the database was
created. The DATABASE and SCHEMA may be kept in the
same or different COD nodes.

oatatrieve learns the structure of the DBMS database by
retrieving the SCHEMA and SUBSCHEMA named in the
DATABASE. Oatatrieve then binds the root file of the
database specified. The Database Control System (OBCS)
then processes the Oatatrieve DBMS queries.

90

- -----------------------------
Managed by DATATRIEVE

COD

Interaction of
DATATRIEVE and
DBMS Definitions

Managed by DBMS

AREA

Oatatrieve users can optionally define DOMAINS to
reference individual records in a DATABASE. These
domains may link records to FMS or TOMS forms.

Fig III - DATATRIEVE Structures for Accessing DBMS - _-_-_-_-_-_-_-_-_-_-_-_-_-_ - - _-_-_-_-_-_-_-_ - - -
DEFINE DATABASE us_GEOG USING SUBSCHEMA USGEOGDTR OF

SCHEMA COO$SCHEMA.USGEOG ON DB$DIR:USGEOG.ROO;

DEFINE DOMAIN CITIES USING CITIES OF DATABASE us_GEOG;

DEFINE DOMAIN STATES USING STATES OF DATABASE us_GEOG;

II.B.2 Report Format Items

SUBSCHEMAS can specify query headers, edit strings and
query names for data ITEMS. All these are used by
Oatatrieve if defined in the SUBSCHEMA.

III Accessing a Database

III .A READYing with DBMS

Databases can be READYed from Oatatrieve RECORD by
RECORD or all at once. The command

DTR> READY USGEOG

will ready all RECORDS in the USGEOG database for SHARED
READ. The command:

DTR> READY USGEOG USING STATES READ, CITIES WRITE

will allow adding CITIES to existing STATES but prevent
adding STATES. In this example, STATES and CITIES are
the RECORDS, not the DOMAINS.

When RECORD DOMAINs have been defined, the command

DTR> READY STATES

provides access only to STATES and STSORTSET (see figure
above).

VIEWs can only be defined based on other DOMAINs. As a
result, DBMS VIEW definitions require the use of RECORD
DOMAINS. A VIEW definition naming a DATABASE will not
READY.

III .B FINDing COLLECTIONS

Most Datatrieve user training makes liberal use of the
FIND command. FIND will create a COLLECTION of RECORDs
to be accessed in some way. Streams can be formed from
COLLECTIONS as they can be from files or databases.

Unfortunately, when a COLLECTION is formed, locks are
placed on all records within the COLLECTION. KEEPLISTs
are maintained and system resources are tied up. This
is known to slow down all users on a VAX, particularly
other users of the database.

COLLECTIONS are not needed for simple streaming of
records for reports or modifications. Locking can be
minimized by incorporating RS Es in FOR or REPORT
statements. If the use of FINDs is unavoidable, try to
use the DROP statement to unlock individual RECORDS no
longer needed.

III.C Committing Transactions and Rolling Back

All changes to the database made during a Datatrieve
session are volatile until the user issues a COMMIT or
ROLLBACK. These statements affect all READY databases
and do not accept arguments.

COMMIT will make the STORES, MODIFYes and ERASES on all
READY databases permanent. It also retains any
COLLECTIONS the user may have.

ROLLBACK
session
releases
database

will leave the database as it was
began (or since the last COMMIT).
all COLLECTIONS and leaves the user
freshly READYed.

when the
ROLLBACK

with the

When a user FINISHes their last READY database, either
explicitly or by EXITing Datatrieve, all transactions
that have not been ROLLBACKed are COMMITted
automatically. This includes those on databases which
were FINISHed earlier in the session.

IV SET Relationships through Datatrieve

The power of Datatrieve as a relational database package
is the ability to gather records of different types that
contain related data. For these ends Datatrieve
logically links records in inner lists or in CROSSes.

While we discuss ways to use the DBMS relationships in
conditional RSEs, remember that Boolean conditional RSEs
are still an available option. SETs optimize retrieval
of related records, but simple value comparisons will
still prove useful when

no existing SET suits your need, - or -
combining database data with data from outside
sources.

91

IV.A Recognition of SETs

As DBMS RECORDs are readied in Datatrieve, all SETs with
ready OWNERs and MEMBERs are recognized. System owned
SETs are recognized when the MEMBERs are readied.

Datatrieve will fail to recognize a SET
occurrences of that SET exist in the database.

if

Figure IV - Sets Recognized as Records are Readied

DTR> READY STATES
DTR> SHOW SETS

Set: STSORTSET
Member: STATES, automatic fixed

DTR> READY CITIES
DTR> SHOW SETS

Set: STSORTSET
Member: STATES, automatic fixed

Set: STCITYSET
Owner: STATES
Member: CITIES, automatic fixed

DTR> FINISH
DTR> SHOW SETS
No sets are currently useful.

IV.B Walking SETS - Retrieval

IV.B.l Formatting Inner Lists

no

A one-to-many relationship is often represented on paper
as a list of the many subordinate to the one. All
cities found within their state boundaries would be
formatted:

ALABAMA
MOBILE
MONTGOMERY
SELMA

ALASKA
ANCHORAGE
FAIRBANKS
JUNEAU

While we read the city and state names, the
relationships are implied by the position of the inner
lists within the main list.

This list would be produced from our database with the
command

DTR> FOR STATES PRINT STNAME, ALL CTNAME OF CITIES
WITHIN STCITYSET

The "ALL printlist OF domain" syntax is vanilla
Datatrieve. The ''WITHIN set'' conditional expression in
the RSE is the only DBMS twist.

Interchangeable Keywords

When specifying SET conditional RSEs, the
keywords OWNER and MEMBER specify the direction
of the relationship within the SET. The keyword
WITHIN can be substituted for either keyword
OWNER or MEMBER.

IV.B.2 Flat Records from CROSSes

Crossing records in Datatrieve is, in effect, taking
several related records of different types and making
one long record out of them. One record is found for
every permutation of source records meeting any
conditions in the CROSS RSE. CROSSed records can be
sorted on any field(s) within the resulting combination
record.

A CROSS WITHIN a SET retrieves OWNER-MEMBER
combinations. CITIES without OWNER STATES (like
Washington, D.C) and STATES without cities would not be
included in the resulting stream.

The "flatness" is illustrated by printing crossed
records. Note the repitition of data where a STATES
record completed more then one CROSS.

Figure v - The Flatness of CROSSed RECORDS

DTR> SORT BY CTNAME
DTR> PRINT
No record selected, printing whole collection.

STATE STATE
STATE CODE POPULATION CITY

CALIFORNIA CA 23,668,562 ANAHEIM
CALIFORNIA CA 23,668,562 BAKERSFIELD
NORTH DAKOTA ND 652,717 BISMARCK
MASSACHUSETT MA 5,737,037 BOSTON
ILLINOIS IL 11,426,518 DECATUR

IV.B.3 Saving SET-walks in VIEW DOMAINS

VIEW DOMAINS can be built from DBMS DOMAINS
as from RMS DOMAINS. The VIEW provides
specification of CROSSes and hierarchies for
The OCCURS FOR clause can elaborate a CROSS:

CITY
POPULATION

221,847
105 '611

44,485
562,994

94,081

as readily
a permanent
retrieval.

DFN> 01 BIGCITIES OCCURS FOR CITIES CROSS STATES
WITHIN STCITYSET WITH CTPOP > 200000.

OCCURS at higher levels can use SET hierarchy:

DFN> 01 BIGSTATES OCCURS FOR STATES WITH STPOP
5000000.

DFN> 03 STATES FROM STATES.
DFN> 03 BCITIES OCCURS FOR CITIES WITHIN STCITYSET.
DFN> 05 CITIES FROM CITIES.

The VIEW can also specify TOMS or FMS forms, edit
strings, etc.

Another use for VIEWS is establishing links between a
DBMS database and other sources of data. An
agricultural database can be connected to a weather
database through a CROSS kept permanent in a VIEW:

DTR> DEFINE DOMAIN RAINGROW OF
ASTATES, ... ,MSTATES, ...

DFN> 01 GROW OCCURS FOR ASTATES CROSS MSTATES OVER
STNAME.

DFN>

The source DOMAINS could access various DBMS or Rdb
databases or RMS files.

IV.C CONNECTing RECORD occurrences to SET Occurrences

IV.C.1 Automatic Insertion

When storing MEMBERS of an AUTOMATIC chain SET like
STCITYSET, the OWNER-to-be must be current. This
currency is established with the SELECT statement or a
FOR structure. Whichever of the OWNER type RECORDs is
current will become the OWNER of that MEMBER occurrence
when it is stored.

No currency is needed for System-owned SETs. DBMS
determines placement of these RECORD occurrences within
sorted or hashed sets.

IV.C.2 Rearranging SET Memberships

Once stored, a MEMBER-type-RECORDoccurrence of SETS that
are not FIXED can be RECONNECTed to a different OWNER-
type-RECORDoccurrence within that SET. If Michigan were
to annex Cleveland we might try

DTR> FOR STATES WITH STCODE = "MI"
CON> FOR CITIES WITH CTNAME = "CLEVELAND"
CON> RECONNECT CITIES TO STATES.STCITYSET

In similar actions we could CONNECT Washington, D.C. to
Georgia or DISCONNECT San Francisco from California.
Frightening ...

V Pseudo-unload of a DBMS Database

Datatrieve can be used to copy DBMS data to
machine-usable ASCII files. The RESTUCTURE feature
copies data from domain to domain, matching field names
and converting data formats.

1. A view of DBMS records is defined, if needed

DEFINE DOMAIN CITYDBMS FROM CITIES, STATES
01 CITY OCCURS FOR CITIES SORTED BY CTNAME.

03 CTNAME FROM CITIES.
03 STCODE FROM STATES OWNER STCITYSET.
03 CTPOP FROM CITIES.

2. An RMS record is defined with the format desired.

DEFINE RECORD CITYRMSREC
01 CITYDATAREC.

ASCII, 35 byte records
03 CTNAME PIC X(15).
03 STCODE PIC X(2).
03 CTPOP PIC 9(8).

EXTERNAL format

3. A domain is defined to use the RMS record

DEFINE DOMAIN CITYRMS USING CITYRMSREC ON CITY.DAT;

4. A file is created to recieve the data

DEFINE FILE FOR CITYRMS

5. The view is made READY for READ

READY CITYDBMS

6. The new domain is made READY for WRITE

READY CITYRMS WRITE

7. Restructure

CITYRMS = CITYDBMS

Data is converted and moved field for
matching-name field.

This technique is not limited to creating ASCII data
files; subsets of DBMS data can be extracted for any
software application.

92

Managing ALL-IN-1 with Datatrieve

Bart z. Lederman
World Communications Inc.

New York, NY 10004-2464

This session
uses for
ALL-IN-1,
environment
file.

ABSTRACT

will illustrate some of the
Datatrieve in managing

include the ALL-IN-1
and processing the logging

All of the Datatrieve definitions used
in this session, and many others, may be
obtained through the DECUS Library, on
the Datatrieve/4GL SIG Library Tape
collection, or the VMS SIG Tape
Collection.

In addition to the data that
ALL-IN-1 and WPS Word Processing manage
for you, these products create and use
their own database files in their own
operation. While they also come with
their own utilities and commands for the
examination and maintenance of those
files, there are times when Datatrieve
allows faster, easier, or more versatile
access or management of this
information.

MODIFIED
MAIL ORIG
F3

24-Aug-1987

MAIL STATUS
F2
DOCNUM
DELETABLE
MODIFIABLE
CREATED
CREATED TIME
MODIFIED
MODIFIED TIME
VlTYPE
DSAB
F6

114
y
y
28-Jul-1987
11:17:13.45
24-Aug-1987
10:52:24.59

WPSPLUS
I will present a number of such uses,
starting with the document database (the
DOCDB.DAT file) which contains the list
of documents for each user of ALL-IN-1
and/or WPS-Plus. One example is shown
here:

Vhy access this other than with
ALL-IN-1?

DOCUMENT
REFNUM
TITLE HASH
FILENAME
DAF POINTER
TITLE
AUTHOR
TYPE
UNUSED SETUP
FORMAT
KEY'WORDS
CREATED

DEC
999886
DRAFTR
[.DOC4]ZRNWAXDCF.WPL
p

draft review
Bart z. Lederman
DOCUMENT
NONE

28-Jul-1987

Proceedings of the Digital Equipment Computer Users Socie(v 93

The VMS file name can be obtained,
and correlated to the files on the
system. Uses for this include
rebuilding DOCDB.DAT if it becomes
corrupted, and if VMS file expiration
dates are being used to purge old files
and they must be correlated with the
appropriate documents.

It should be noted that if your
DOCDB.DAT becomes corrupted, you should

Anaheim, CA - 1987

first try to rebuild it using the
verification procedures supplied with
ALL-IN-1, accessible to the system
manager. I have found that with V2.0
they did not work too well, but with
V2.2 they have done a good job of
re-correlating files with documents. As
a general rule, you should always let
ALL-IN-1 try to fix itself first, before
manipulating the files directly
yourself. And if you do ever have to
modify DOCDB.DAT, run the verification
procedure afterwards.

Another use is to obtain faster
reports, or reports different from those
supplied with ALL-IN-1.

DELETE DOCDB REPORT;
REDEFINE PROCEDURE DOCDB REPORT

Get a listing of a users' documents with corresponding VMS file names.

! B. Z. Lederman
I
REPORT DOCDB ON *."file specification"
SET COLUMNS PAGE = 132
SET LINES PAGE = 42
PRINT REFNUM, FOLDER, TITLE USING T(48), FILENAME USING T(24)
END REPORT
END-PROCEDURE

This report format looks like this:

REFNUM FOLDER TITLE FILENAME

PERSONAL 999998
999874
999852
999877
999872

DICTIONARIES
EXAMINER
OUTBOX
PICTURES
VPS

install process
accruals blocks only
EIA null modem/Ethernet
rendition

USER$DEVICE:[LEDERMAN]PERSONAL.LGP
[.DOC6]ZRQJAQVXO.VPL
OA$SHARE1:ZRUCATMDI.VPL
[.DOC3)ZRPTAYCQL.VPL
[.DOC8]ZRRMARIIS.VPL

Reporting with Datatrieve allows
locating documents by directory or disk;
locating documents by creation or
modification dates; locating documents
on multiple fields (a word contained
within a title and an author name);
reporting all documents by author, and
other formats not supplied by ALL-IN-1.

A Datatrieve report procedure can be put
into a form and included as an ALL-IN-1
application so users can type one
command obtain a complete index of their
documents on their default printer.

94

Shared definitions and system
management.

Rather than define one for every
user, you can take advantage of the
logical name created during login to set
the correct directory to access:

DEFINE DOMAIN DOCDB USING DOCDB RECORD
ON OAUSER: DOCDB. DAT; -

You might also want to define one domain
just for the postmaster:

DEFINE DOMAIN DOCDB POSTMASTER USING
DOCDB REC ON

SYS$SYSDEVlCE:[ALLIN1.POSTHASTE]DOCDB.DAT

This allows you to look at the
POSTHASTER's database without logging
into VHS POSTMASTER account: the
release notes for ALL-IN-1 V2.1 warn
against logging into the POSTMASTER
account as it can lock out the message
router and cause mail messages not to be
delivered.

The user profile.

The data looks like this:

USER
VHSNAM
FULNAM
TITLE
DEPART
STATUS
PASYRD
PHONE
RESERVED
DCL
SUP
ERR
CMD
SRC
CPHD
LOG
MULTI NODE
RSVD FOR TCS
AD DR I
ADDR2
ADDR3
ADDR4
ZIPCOD
NOTICE
BATCH NOT
PRINT-NOT
MAIL READ REC
TICKLER
ACT ITEM
DIRECTORY
FORM LIB
!NIT FORM
EDITOR
PRINTER
NODE
PRINT PORT
TERM MODE
HAIL-FORYARD
MAIL-REPLY
MAIL-MENU
MAID ES

LEDERMAN
LEDERMAN
Bart z. Lederman
Project Engineer
Advanced Systems Dev

212-607-2657

y
y
y
y
y
y
y
y

2572 E. 22nd Street
Sheepshead Bay, NY

(718) 743-9593
11235-2504
y
y
y
y
y
y
USER$DEVICE:[LEDERMAN.OA]

MAIN
YPSPLUS
LN03$PRINT

y
s

EMC
ALLIN!

95

CALTIHEING
SETUSR
YESDAYS
STARTD
ENDD
STARTH
ENDH
HEALS
HEALE
CALDAY
UFLAGl
UFLAG2
UFLAG3
UFLAG4
UFLAG5
UFLAG6
UFLAG7
UFLAG8
UFLAG9
UFLAGlO
CLASS
LANGUAGE
END

00: 15
y
N
2
5
08:00A
4:30P
12:00P
Ol:OOP
2

ENGLISH

Processing multiple entries.

Since ALL-IN-1 gives you access to
these fields, why would you use
Datatrieve? One answer is that ALL-IN-1
management is oriented to processing one
user at a time. For example, If you
want to find out which users have DCL
access enabled you have to go through
several menus and screens to get an
index of users, write down their names,
then examine them all one at a time to
find the ones with DCL. Yith
Datatrieve, you can ready the PROFILE
domain and enter the command
'PRINT PROFILE YITH DCL = "Y"' to find
all such users. Similarly, operations
on large numbers of users such as
turning DCL access, turning logging on
or off for everyone, finding users whose
accounts point to certain disks and/or
re-assigning them to other disks, or
finding which users are assigned to
which default printer, are easier in
Datatrieve than in ALL-IN-1 as presently
supplied. You can also use Datatrieve
to produce formatted reports of all
users or groups of users, and you can
select which information fields are
printed in that report.

DTR> for profile print user, directory

USER

SMITH
BROWN
IVP
LEDERMAN
MANAGER
POSTMASTER

DIRECTORY

USER$DEVICE:[SMITH.OA]
USER$DEVICE:[BROWN.WPSPLUS)
SYS$SYSDEVICE:[ALLIN1.IVPUSER]
USER$DEVICE:[LEDERMAN.OA]
SYS$SYSDEVICE:[ALLIN1.MGR]
SYS$SYSDEVICE:[ALLIN1.POSTMAST

Because ALL-IN-1 manipulates several
files for user profiles, it is not a
good idea to add or delete user profiles
using Datatrieve, though it can be done
in emergencies.

The network profile.

OA$DATA:NETWORK.DAT also contains
information.

USER NAME
NO DE-
LA ST UPDATE
UPDATE TIME
FULL NAM
TITLE
DEPARTMENT
TELEPHONE
ADDRl
ADDR2
ADDR3
ADDR4
ZIPCOD
NETWORK ADDRESS

TIMESTAMP
M NODE
DELETED

LEDERMAN
SYS31
9-Jan-1987

15:10:15.81
Bart Z. Lederman
Project Engineer
Advanced Systems Dev
212-607-2657
2572 E. 22nd Street
Sheepshead Bay, NY

11235-2504
LEDERMAN AT Al AT
SYS31

y
N

Cleaning up after ALL-IN-1.

Removing a user from ALL-IN-1 does
not remove the entry in this file for
that user, it just marks the user as
"DELETED". There may be cases where you
want to know that a user used to be on a
system (or is located elsewhere: see
the next section), but when a user is
off my system I want them to be
completely off of the system, and when a
user is deleted I want the entry to be
removed. Datatrieve is a useful tool
for cleaning up after ALL-IN-1.

96

Copying users from the
Corporate Telephone Directory?

In a conversation I had with some
users at the Symposium, I was asked if
it would be possible to copy entries
from the Corporate Telephone Directory
to the network profile. Their
configuration was that many users on
many nodes were entered into the
directory so people can find each other.
They then also enter every user into the
network profile, so when you send mail
to someone it will be routed to them
even if they are not on your node. They
were doing this by hand, and wanted to
know if it could be automated.

First, it is easy to read the
telephone directory with Datatrieve. [I
have not shown this here because it's
not part of managing ALL-IN-1, but it
has been published in the newsletter and
is on the DTR/4GL SIG tapes and VAX SIG
tapes. The telephone directory actually
works better in Datatrieve than in
ALL-IN-1.) I have some reservations
about writing new data into the network
profile: but as long as a backup copy
of the un-modified file is made first I
see no reason why the experiment should
not be tried.

One precaution which should always be
taken is to open all files SHARED so you
won't accidentally lock out ALL-IN-1.
An easy way is to issue a command
similar to the following:

$ DEFINE DTR$READY MODE "SHARED"

preferably in your LOGIN.COM file. This
way, Datatrieve will by default open all
files SHARED.

Time Management.

Here is a definition for
OA$DATA:CALACCESS.DAT, the file which
determines which users are allowed to
access which other users' calendars.

REDEFINE RECORD All CALACCESS RECORD
01 All CALACCESS REC.

10-GRANTUSER-PIC X(30) EDIT STRING T(l6)
QUERY HEADER 11 User 11 / 11Granting11 / 11Access 11 •

10 ACCUSER PIC X(30) EDIT STRING T(16)
QUERY HEADER 11Access11 / 11Given 11 / 11To 11 •

10 READ PIC-X QUERY HEADER 11Read 11 / 11 Your 11 / 11 Calendar".
10 \.TRITE PIC X QUERY HEADER "Schedule"/ 11 for 11 / 11 You".
10 PHONE PIC X QUERY-HEADER 1111

User Access Read Schedule
Granting Given Your for

Access To Calendar You

ERSKINE STEVE y y
ERSKINE ELLIOTT y y
LEROY REGGIE y y
LEROY BOVIE y N
LEROY STEVE y y
RKELLY VICKIC y N
STEVE ERSKINE y N
VICKIC BEATE y N
VICKIC IRENE y y
VICKIC RKELLY y N

Documenting use of data.

The additional information placed
in the record definition which describes
what the fields are used for (which also
automatically prints out as column
headers when the data is accessed), and
additional comments which can be stored
in the Datatrieve definition, is good
documentation as to what the data is and
how it's used which is not always found
in ALL-IN-1 FMS forms descriptions.

More cleanup after ALL-IN-1.

ALL-IN-1 did not delete users from
this file when I removed their user
profile, nor from the others shown
below. Using Datatrieve, it is easy to
locate and delete all records which have
the name of a person who is no longer an
ALL-IN-1 user in either the GRANTUSER or
ACCUSER fields and thus clean up the
file. I also find it easier to obtain a
quick listing of all users in the
CALACCESS file with Datatrieve than it
is with ALL-IN-1.

OA$DATA:ATTENDEE.DAT contains the
list of meetings and attendees.

97

NAMEl !VP
DATE 1-Jan-2010
TIME 08:00
LENGTH 0001
NAME2 NOT A REAL NAME
FLAG
YES NO YES
MESSAGE I will be a little late.

DATE 18-Nov-1858
TIME 00:00
LENGTH
DATE 18-Nov-1858
TIME 00:00
LENGTH
DATE 18-Nov~1858
TIME 00:00
LENGTH
DATE 18-Nov-1858

TIME : 00:00

END

LENGTH
DATE 18-Nov-1858
TIME 00:00
LENGTH
DATE 18-Nov-1858
TIME 00:00
LENGTH

Purge old users and meetings
for better performance,

and to save space.

Removing a user from ALL-IN-ldoes
not remove that users' meetings from the
data file, nor does there appear to be
any mechanism to remove past meetings
automatically: Datatrieve can be used
to easily remove them. I have not found
an easy way to get ALL-IN-1 to tell me
which days (especially in the past)
still have meetings assigned, and the
tendency may be for users to simply
leave all past meetings scheduled.
Using date comparisons within Datatrieve
makes it easy to find and delete all
past meeting records, or a past meetings
could be moved into a separate domain
for record keeping.

OA$DATA:MEETING.DAT is the file
which contains a list of meetings.

SCHEDULER
DATE
TIME
LENGTH
DATE
TIME
LENGTH
PURPOSE

LOCATION
PRIORITY
A
NAME2
B

IVP
l-Jan-2010

08:00
0000

l-Jan-2010
21:00
000
To test Installation
Verification Procedures
Charlotte
Al

As before, this domain contains records
of obsolete meetings, meetings for
persons no longer using the system, and
IVP meetings that are scheduled for the
future but really don't need to remain
in the file once the Installation
Verification Procedure finishes.
Datatrieve is an easy way to remove
them.

ATTENDEE and MEETING files should
match: you shouldn't have meetings
without attendees, and vice versa.
Datatrieve can find records that match
(and records that don't):

DTR> for meeting cross attendee over
meeting pointer -

CON> print scheduler, attendee name,
date -

SCHEDULER

ERSKINE
ERSKINE
ERSKINE
HOWIE
IRENE
IVP
IVP
IVP
LEDERMAN

ATTENDEE
NAME

RALPH
STEVE
IRENE
STEVE
PATMC
NOT A REAL NAME
NOT-A-REAL-NAME
YHTALEOJ -
MANAGER

Pending mail count.

DATE

29-Aug-1985
29-Aug-1985
30-Aug-1985
30-Aug-1985
30-Aug-1985
l-Jan-2010
l-Jan-2010
l-Jan-2010

15-Dec-1986

OA$DATA:PENDING.DAT contains the
pending mail count.

98

PENDING KEY c A B D ENUM

FETCHER QUEUE 0 4 0 0
MAIL JONES 0 4 0 34
MAIL SMITH 0 152 148 2
MAIL DEMO 0 0 0 0
MAIL IVP 0 0 0 0
MAIL MANAGER 0 0 0 0

Once there is a Datatrieve domain which
accesses this data, it's easy to find
out how many messages are waiting
(without going into ALL-IN-1):

REDEFINE PROCEDURE PRINT PENDING

Find out how much ALL-IN-1 Electronic
Mail is Pending

B. Z. Lederman
I
READY All PENDING SHARED
DECLARE KEY FIELD PIC X(65).

Get the pre-defined user name
I and make it into a retrieval key
I
KEY FIELD

"MAIL " FN$TRANS_LOG ("USER_NAME")

FOR All PENDING WITH
PENDING KEY = KEY FIELD
PRINT "Pending Messages

I
FINISH
END PROCEDURE

", ENUM(-)

A logical name is used here so one
procedure could be used by everybody in
the system (invoked from SYLOGIN.COM for
example) A complete description of this
process has been published in the
combined DECUS Newsletter.

ALL-IN-1 usage and tuning:
the logging file.

ALL-IN-1 can generate a logging
file, but doesn't do much with the
information generated. A small portion
of the raw data looks like this:

FACIL MSG PROC SYS SYS ELAP
ID ID ID DATE TIME TIME

287 18842411 10329 19-May-1987 13:27:44.02 0
287 18842411 10329 19-May-1987 13:27:44.13 11
287 18842411 10329 19-May-1987 13:27:44.24 21
287 18842411 10329 19-May-1987 13:27:45.04 65
287 18842411 10329 19-May-1987 13:27:45.06 67
287 18842411 10329 19-May-1987 13:27:45.40 90
287 18842411 10329 19-May-1987 13:27:45.41 91

287 18842411 10329 19-May-1987 13:27:45.52 95
287 18842403 10329 19-May-1987 13:28:35.18 155
287 18842411 10329 19-May-1987 13:28:35.19 156
287 18842411 10329 19-May-1987 13:28:35.21 158
287 18842411 10329 19-May-1987 13:28:35.22 158
287 18842411 10329 19-May-1987 13:28:35.47 175
287 18842411 10329 19-May-1987 13:28:35.48 176
287 18842411 10329 19-May-1987 13:28:35.49 177

Datatrieve can process the data to
extract useful information: for
example, FORM and DO script usage,
including matching it up to the library
where the form or script is stored. I
include the procedure here to
demonstrate an important point.

REDEFINE PROCEDURE Ail NORMALIZE

INPUT

Function:
Function:
Function:
Function:
Function:
Function:
Function:

Function:
i{CR}
Function:
Function:
Function:
Function:
Function:
Function:

FUNCTION TEXT

SET MENU DEFAULT
FORM MAIN
OA$FORM_MENU
GET llCURDOC="$WPDOC"
FORM FCl/MORE=WP
OA$FORM_MENU /MORE=WP

.IF @llCURDOC:6:30 N
OR @ llURDOC:6:30 NE
THEN CAB CURRENT
@llCURDOC ELSE CAB c

CAB CURRENT @llCURDOC

OA$FLD DONE -GET INDEX="Document"
FORM WPINDX/STYLE=CHOICE
GET !IINPROMPT='0'
GET llgoldAexit = 3
DISPLAY Enter search fields

press RETURN, or EX
SCREEN to return t

Process ALL-IN-1 logging file so that the form names are extracted
and normalized. This allows looking them up in a table to
find out which library they are in, and to allow summation
for statistics on use.

B. z. Lederman
!
DEFINE FILE FOR Ail NORM
READY Ail NORM WRITE
READY Ail-LOG

I need a few working variables
I
DECLARE A FORM PIC X(24).
DECLARE B-FORM PIC X(24).
DECLARE El PIC 99 EDIT STRING Z9.
DECLARE E2 PIC 99 EDIT-STRING Z9.

Go through the logging file and pick out uses of forms and
! scrips
!
FOR Ail LOG WITH FUNCTION
I

"FORM", "DO" BEGIN

99

Now comes the fun part. Ye want to extract only the form (or
script) name and normalize it.

El = 0 ! initialize end of string
E2 = 0 ! position counters
A FORM = FN$UPCASE (FORM NAME) ! force upper case
EI= FN$STR LOC (A FORM,-" ") look for end of form name
E2 = FN$STR-LOC (A-FORM, "/") may have command attached
IF El > 0 EI = El = 1 want last character
IF E2 > 0 E2 = E2 - 1 not search character

take out the form name if it is not null: the form either ends
with a null or space or with a slash if there was a command
attached.

IF ((E2 > 0) AND ((E2 < El) OR (El = 0))) THEN
B FORM = FN$STR EXTRACT (A FORM, 1, E2) ELSE
B=FORM = FN$STR=EXTRACT (A=FORM, 1, El)

If we can find this form (script) in the domain table we
created which lists the library each form is in, use that
libraries' name, otherwise use a blank space.

IF (B FORM IN FORM TABLE) THEN
A-FORM = B FORM VIA FORM TABLE ELSE A FORM 11 11

we now have nicely normalized data: store it.

STORE All NORM USING BEGIN

END
END

FACIL-ID
MSG ID
PROC ID
SYS DATE
ELAP TIME
FUNCTION
NAME
LIBRARY

END PROCEDURE

= FACIL ID
= MSG ID
= PROC ID

SYS DATE
= ELAP TIME
= FUNCTION
= B FORM
= A-FORM

The information, after processing, looks
like this:

FACIL MSG PROC SYS SYS ELAP
ID ID ID DATE TIME TIME FUNCTION NAME

287 18842411 10329 19-May-1987 13:27:44.13 11 FORM MAIN
287 18842411 10329 19-May-1987 13:27:45.06 67 FORM FCl
287 18842411 10329 19-May-1987 13:28:35.22 158 FORM YPINDX
287 18842411 10329 19-May-1987 13:28:51. 74 292 DO WPLIST
287 18842411 10329 19-May-1987 13:28:52.'35 324 FORM OA$LIST
287 18842411 10329 19-May-1987 13:29:01.10 433 DO WPDELETE
287 18842411 10329 19-May-1987 13:29:08.76 486 DO FCDELFDR
287 18842411 10329 19-May-1987 13:29:14.69 517 FORM WPINDX
287 18842411 10329 19-May-1987 13:29:34.49 635 FORM YPINDX
287 18842411 10329 19-May-1987 13:29:46.97 730 DO WPMDMP
287 18842411 10329 19-May-1987 13:29:52.52 863 FORM YPINDX

100

LIBRARY

MEMRES
OAFORM
OAFORM
OA$DO
MEMRES
OA$DO
OA$DO
OAFORM
OAFORM
OA$DO
OAFORM

Vhy is this done in Datatrieve?

A program in a "third generation"
language such as COBOL or FORTRAN which
processes this data would be much longer
and more complicated, and it would take
much longer to write and test it, than
the Datatrieve procedure shown above.
In addition, many "office environment"
systems aren't going to have a
traditional programming language
available (or programmers to use them),
but will have Datatrieve.

There is a lot of information which
can be extracted from this data. For
example: how many users access
ALL-IN-1; when they use it; the sequence
of commands entered; what features
within ALL-IN-1 are being used; which
FORMS and DO scripts are or are not
being used; etc. Datatrieve allows
quick ad-hoc querying and reporting of
the data with much less work than "3rd
generation" languages:

REDEFINE PROCEDURE All NORM RPT
I - -

Report summarized use of forms and
scripts

B. z. Lederman
!
READY All NORM
REPORT AII NORM VITH LIBRARY NE 11 "

SORTED-BY FUNCTION, NAME ON
*."TT or file name"

AT BOTTOM OF NAME PRINT FUNCTION,
SPACE 1, LIBRARY, SPACE 1, COUNT,
SPACE 1, NAME

AT BOTTOM OF FUNCTION PRINT NEV PAGE
END REPORT -
END-PROCEDURE

FUNCTION LIBRARY COUNT NAME

FORM MEMRES 3 AUTO
FORM OAFORM 1 DISPREMINDER
FORM OAFORM 4 EMC
FORM OAFORM 1 EMHEAD
FORM MEMRES 4 MAIN
FORM MEMRES 1 OA$EDIT
FORM MEMRES 2 OA$LIST
FORM OAF ORM 1 WP
FORM OAFORM 2 VPINDX

Other files and information:
gaining insight into ALL-IN-1.

There are quite a few other
ALL-IN-1 files which may be read with
Datatrieve: the lists of font styles,
file formats, printer device types,
queue priorities, communications hosts
and lines, and others. Most of the
reasons given for manipulating the files
shown before don't apply to these:
either because they are so little used,
because the ALL-IN-1 facilities are
adequate, or because they are never (or
should never be) modified. There is
value in looking at these files,
however, because examining them may give
you a better insight into what data is
needed by ALL-IN-1 for it's operation
and maintenance, and how this data may
be used or modified for the user
environment.

Bow the Definitions Vere Obtained.

The easy way: get the Datatrieve I
Forth Generation Languages SIG Library
Tape Collection from the DECUS Library,
or from the VAX SIG Symposia Tape. Some
definitions have also been published in
the DECUS Newsletter.

The hard way: DUMP, ANALYZE/RMS, and a
Datatrieve record definition with just a
few large fields. Field boundaries
usually become obvious as the data
"lines up", and field names could
usually be derived from how the
information is used (for example, the
PROFILE form). Specifically for
ALL-IN-1: there may also be a form with
the same name as the file, which
contains field definitions. I have not
been able to find ALL-IN-1 forms which
display ATTENDEE.DAT or PENDING.DAT so I
cannot be certain that I have the same
names for these fields that ALL-IN-1
uses.

If there is an ALL-IN-1 form which
matches a data file you can sometimes
use it within ALL-IN-1 to manipulate the
data, though I have not found any forms,
menus, or scripts in ALL-IN-1 that will

IOI

lead you to the DOCDB form (and I have
looked), and once you are in this form
it is tedious to use as you can only get
one record at a time by using the FIXER
field (entering a FOLDER doesn't seem to
work). Manipulating some of the other
files is easier. This access method
does use FMS to spread the fields out on
one screen, which can be nice, and it
will allow you to add, delete, or modify
records, but I prefer Datatrieve: I can
always define my own form (or even copy
the ALL-IN-1 form) and use it from
within Datatrieve if I want to.

Questions from the presentation.

A user stated that he was seeing
corruption in electronic mail
(apparently in the association of mail
files with users) and asked for
comments. As I have not seen this
problem myself, I cannot comment on it.
There was no other response from the
audience.

A representative from DEC made the
statement that everything I was doing
with Datatrieve could be done with
ALL-IN-1 scripts, and that the script
language contained facilities to
manipulate all of the fields in all of
the files mentioned. He then further
stated that it was "dangerous~ to
perform any operation on an ALL-IN-1
data file with anything other than
ALL-IN-1.

My response to this is threefold.

First: although I did not say so, it
should be obvious that I should not have
to be doing most of this work at all.
For example, ALL-IN-1 should not leave
meetings and calendar accesses assigned
for users which have been deleted, and I
shouldn't have to go in and correct
this.

Second: given the fact that we must
deal with the product as it currently
exists, I, as a system manager, must
choose the most efficient tool for the
job. I have worked a little with
ALL-IN-1 scripts and find them to be
cumbersome, hard to learn, difficult to
understand, and not very flexible. If I

were to write a script which, for
example, changed all of my users'
profiles to enable DCL, that script
would not find all users assigned to a
particular disk: an entirely new script
would have to be written. Vith
Datatrieve, once I have the record
definition for the user profile I can do
whatever I want without having to write
new code. Besides, writing ALL-IN-1
scripts is not my job: managing the
system is. My time is valuable, and
using major portions of it to learn to
write scripts just to be able to manage
ALL-IN-1 is not practical.

Finally, I take exception to the
statement that accessing these files
will somehow damage or compromise
ALL-IN-1. I do agree that one should
try to use ALL-IN-1 first, and I have
stated clearly that, for example, one
should not try to add a new user just by
entering a record in the profile. On
the other hand: all of these files are
identified to VMS as normal RMS files,
and if I access them using normal system
services I should not be able to damage
them. If this upsets ALL-IN-1, then
ALL-IN-1 must be doing something
drastically incorrect in the way IT is
accessing these files, such as bypassing
normal RMS access. From a practical
standpoint, I and others have been
manipulating these files with Datatrieve
for several years with no ill effects
yet. And in the case of processing the
ALL-IN-1 logging file to extract useful
information on how ALL-IN-1 is being
used: once the file is written and
logging is stopped ALL-IN-1 isn't using
it anymore, and reading it with
Datatrieve cannot cause any harm. Other
DEC personnel have reacted favorably to
this one particular use of Datatrieve
fQr managing ALL-IN-1.

Of course, the more powerful a tool
is the more dangerous it is, and it is
entirely possible for a person to
accidentally or deliberately enter
incorrect data into one of these files
and cause problems: but this could be
done by the same person with EDT or even
with the VMS COPY or RENAME commands.
Until DEC can demonstrate that a problem
really exists (or provides tools that
make this alternate access unneccessary)

102

I intend to continue using Datatrieve to
make my live as a system manager
responsible for ALL-IN-1 easier.

A subject which was only briefly
covered is that Datatrieve has graphics.
It is often much easier to understand
information in a graph than in tables of
numbers. One example is in analyzing
the logging file to see where the forms
and scripts which are being used are
stored. The following is just one
simple example of the type of graphs
which may be obtained.

FREQUENCY OF oAkfEBRARY

OAFORM /

/
/

39/.

MANAGER

103

Solving Equations in Datatrieve

Bart z. Lederman
World Communications Inc.

New York, NY 10004-2464

ABSTRACT

This paper highlights some of
methods of solving equations by

the
using

and
in

the mathematical, logical
statistical functions available
Datatrieve.

Vhy?

Although there may be applications
which are totally non-mathematical math
functions, and some totally numerical
applications that would probably not be
implemented in Datatrieve, there are no
sharp boundaries between data retrieval
which is totally non-mathematical and
data retrieval which requires some math.
It is perfectly reasonable to implement
applications which primarily store and
retrieve data in Datatrieve which also
require some math, such as inventory
control, accounting, payroll, and many
other applications, and it may be easier
to implement the entire application in
Datatrieve than to do some pieces in
Datatrieve and other pieces in some
other language. There is also the
practical consideration that many people
who are able to quickly learn and use
Datatrieve do not have any "traditional"
programming background, and may not have
access to other programming resources
and are faced with the prospect of doing
it entirely in Datatrieve or not doing
it at all.

One Alternative: Callable Datatrieve

There is an alternative for
programs which require a large amount of
math but for which you would still like

Proceedings of the Digital Equipment Computer Users ,)"'ociety

to use Datatrieve for data storage,
retrieval, and reporting, and that is to
use the call interface. You can write a
program in most VAX languages and have
it call Datatrieve: this allows you to
write the math portion in your favorite
language, and then have it pass data to
or retrieve data from Datatrieve and
execute Datatrieve statements from
within your program. This is not part
of this presentation.

Basic Requirements

Datatrieve has all of the basic
requirements for solving mathematical or
logical equations, which are:

1. Mathematical operators:

2.

Addition +
Subtraction
Multiplication *
Division I

The ability to control the
calculations by logical
operators (IF-THEN-ELSE).

flow of
(Boolean)

3. The ability to repeat an action
until a condition is met (FOR and
WHILE).

This is enough to solve almost any

l OS Anaheim, CA - 1987

equation: it is, in fact, all that any
computer has, or what any person would
have if the equation were to be solved
by hand.

Other Functions

Most languages have libraries of
functions for commonly used complex
calculations (such as Logarithms,
Trigonometry, Statistics, etc.), and so
does Datatrieve. In addition, it is
possible to add new functions to
Datatrieve, either as "true" functions,
or by writing procedures which are then
used like subroutines or functions.

First Example

In order to illustrate the process,
I will set up a sample domain and run
through a series of examples. The
record definition is:

01 SAMPLE REC.
03 ITEM PIC 9.
03 A PIC 999 EDIT STRING ZZ9.
03 B PIC 999 EDIT-STRING ZZ9.
03 C PIC 999 EDIT-STRING ZZ9.
03 Tl PIC 9999 EDIT STRING ZZZ9.
03 T2 PIC 9(6) EDIT=STRING ZZZ,ZZ9.

The domain is SAMPLE, and ITEM is a
keyed field. This very simple domain is
for demonstration purposes only.

The first example will be to
calculate Tl by the formula
Tl = (A + B) * c. While this could
easily be done by making Tl a
COMPUTED BY field it serves as a simple
starting point. The FOR statement will
be used as it is the easiest way to
perform the same calculation for every
record in a domain or collection.

For
put the
domain.

demonstration purposes, I've
following data into the sample

106

ITEM A B C Tl

1 3 5 7 0
2 7 5 3 0
3 2 6 4 0
4 7 3 4 0

T2

0
0
0
0

A possible command sequence
perform the calculation is:

READY SAMPLE MODIFY

is to

FOR SAMPLE MODIFY USING Tl = (A + B) * C

PRINT SAMPLE SORTED BY DESC Tl

After the commands, it looks like this:

ITEM A B C Tl T2

1
4
2
3

3 5 7 56
7 3 4 40
7 5 3 36
2 6 4 32

0
0
0
0

Next: Running Totals

To do this it is necessary to store
data from one record to another in some
sort of variable or field, and this
raises the first important point
concerning "programming" in Datatrieve:
there are no default variables as there
are in BASIC or FORTRAN. All fields
must be DEFINEd in a record or DECLAREd,
and you must make the field large enough
to hold the data planned for it.

DECLARE RUNNING PIC 9(6).
RUNNING = 0
FOR SAMPLE MODIFY USING Tl = (A + B) * C
FOR SAMPLE SORTED BY DESC Tl

MODIFY USING BEGIN
RUNNING = RUNNING + Tl
T2 = RUNNING
END

Since the running total will be in field
T2, RUNNING has been declared to be the
same size as T2 (though it doesn't have
to be: it just has to be large enough

to hold the largest number which will be
encountered). Notice that RUNNING must
be initialized to zero: Datatrieve does
not initialize any fields, though
sometimes you get lucky and get a blank
area of memory. The data is placed in
the current collection rather than
storing the running totals as the
collection is being totaled by field Tl
rather than by the primary key field of
the sample domain.

ITEM A B c Tl T2

1 3 5 7 56 56
4 7 3 4 40 96
2 7 5 3 36 132
3 2 6 4 32 164

More Difficult: Square Roots

This is useful for standard
deviation and other statistical
calculations. To test my algorithm, I
will make a procedure which will accept
a number and calculate the square root,
printing out the value to see if it's
correct.

DEFINE PROCEDURE TEMP
DECLARE Tl PIC 9999 EDIT STRING ZZZ9.
DECLARE ROOT PIC 9999V99-

EDIT STRING ZZZZ.Z9.
DECLARE TRY PIC 9999V99

EDIT STRING ZZZZ.Z9.
DECLARE DIF PIC S9999V99

EDIT STRING SZZZZ.Z9.
Tl = *.INPUT
TRY = 2
DIF = 1
WHILE DIF > 0.01 BEGIN

ROOT=Tl/TRY
TRY=(ROOT+TRY)/2
DIF=ROOT - TRY
IF DIF<O DIF=DIF*-1
PRINT ROOT,TRY,DIF
END

PRINT Tl,ROOT,TRY,DIF
END PROCEDURE

Notice that ROOT, TRY and DIF all have 2
decimal places reserved: if they did
not, the square root would be calculated
to the nearest whole number only. Note
also that DIF has space reserved for a
sign, as the difference between the last

107

try and the present try
positive or negative.

could be

The WHILE statement is
indispensable for this type of
calculation as there are no labels and
no GOTOs in Datatrieve. There is
generally only two methods of performing
repetitive calculations: the FOR
statement which is used to perform some
operation once on each record of a
domain, and the WHILE statement for
other repetitive calculations as it is
not tied to a domain. The WHILE
statement repeats until DIF (the
difference between the present guess and
the previous guess) is less than .01,
this being the chosen limit of accuracy
as the numbers were declared to have two
decimal places. The constant 0.01 could
be another field or variable, but if it
is explicitly stated as it is here, it
must have the leading zero.

The next three lines are the
algorithm: divide the number by a guess
and average the difference between the
guess and the answer to form the next
guess, repeating the process until the
required accuracy is obtained. Notice
that while spaces around math operators
are usually optional, if you enter the
second line as DIF=ROOT-TRY Datatrieve
will tell you that field "ROOT TRY" is
undefined or used out of context. I
recommend using spaces between items to
make things more "readable", to avoid
the minus sign vs. dash problem, and it
usually makes things easier to edit.

The next line forces the value of
DIF to be positive (the absolute value)
to meet the condition of the WHILE
statement, otherwise any negative value
for DIF would end the calculation
prematurely. The loop ends not when DIF
is calculated but at the end of the
block, which is how most "do loops"
operate. The print line within the
BEGIN-END block is a debugging aid: by
placing a print statement here I can
watch the values for each variable for
each pass through the loop and determine
if my logic is correct. When the
procedure is correct, this line may be
removed so that the final answer is
printed by the last PRINT statement.

Another method of debugging is to place
the commands in an indirect command
file: this way syntax errors are more
visible as each line is printed when
read in by Datatrieve. (Remember to
SET VERIFY to see things happening on a
VAX.)

Two samples of the printout (with debug)
look like this:

DTR> :TEMP
Enter INPUT: 25

ROOT TRY

12.50 7.25
3.44 5.34
4.68 5.01
4.99 5.00

Tl ROOT

25 4.99

DTR> :TEMP
Enter INPUT: 35

ROOT TRY

17.50 9.75
3.58 6.66
5.25 5.95
5.88 5.91
5.92 5.91

Tl ROOT

35 5.92

DTR>

DIF

5.25
1.90

.33

.01

TRY DIF

5.00 .01

DIF

7.75
3.08

.70

.03

.01

TRY DIF

5.91 .01

One of the advantages of Datatrieve
is that it appears to the user as an
"interpreter", like the original BASIC:
this means that you can take statements
and execute them immediately without
having to go through some intermediate
compilation process. Since you can also
edit your procedures from within
Datatrieve, and examine your data before
and after executing the procedure within
Datatrieve, the development cycle can be
quick, and the user only has to work
with one product (or two, if you count
the editor separately).

108

Making the Procedure Useful

Now that this procedure works, I
will put it into a form where it can be
used elsewhere, and call it SQRT. This
is a way to build up a library of
"functions" or "subroutines" usable in
Datatrieve (which will even work in
Datatrieve-11)

DEFINE PROCEDURE SQRT
IF Tl LE 0 ABORT "No Negative Numbers"
DECLARE ROOT USAGE IS REAL.
DECLARE TRY USAGE IS REAL.
DECLARE DIF USAGE IS REAL.
TRY = 2
DIF = 1
VHILE DIF > 0.01 BEGIN

ROOT = Tl I TRY
TRY = (ROOT + TRY) I 2
DIF = ROOT - TRY
IF DIF < 0 DIF = DIF * -1
END

END PROCEDURE

The print statements and definition of
Tl have been removed: Tl must be
defined before the procedure is called
(so the calling procedure will make the
space reservation and assign a value to
it before calling this procedure), and
ROOT will contain the answer when
finished. It is the responsibility of
the person writing the procedure to
document carefully the fields which must
be defined before the procedure is used,
what types of fields they should be, and
what field will contain the answer when
finished.

Since negative numbers have no real
square root, the first line has been
added to insure that input to this
procedure is not negative. The variable
declarations are also slightly
different. Rather than limit the range
and accuracy of the procedure, the use
of REAL variables allows these fields to
accept very large or very small values.
This procedure is now ready to be used
as part of another procedure.

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl = A + B + C
:SQRT

T2 100 * ROOT
END

The current domain now looks like this:

ITEM A B c Tl T2

1 3 5 7 15 387
2 7 5 3 15 387
3 2 6 4 12 346
4 7 3 4 14 374

It should be noted that there are
alternate methods of dealing with an
incorrect value for Tl. One method is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
ROOT = 0
VHILE Tl GT 0 BEGIN

DECLARE --- variables as before
--- initialize variables

VHILE
---- procedure as before

END
END

END PROCEDURE

In this case, the entire procedure will
be executed only if Tl is greater than
zero, otherwise nothing is done, and
ROOT defaults to zero (the rest of the
procedure is unchanged). Another
alternative is:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.
IF Tl GT 0 BEGIN

procedure as above
END ELSE

ROOT 0
END

END PROCEDURE

Here the IF-THEN-ELSE statement is used
to execute the procedure if Tl is valid,
and return a dummy value of zero for the
root if T2 is invalid. The last three
lines could be condensed into one, but
writing it this way brings it closer to
"normal" programming. One caution:

109

most "structured" programmers would put
the ELSE statement at the beginning of a
new line, to clarify the structure.
is not possible in Datatrieve: the
ver~ELSE cannot be the first word on a
line. (Generally speaking: there are
some "tricks" that can be done, but they
generally aren't worth doing.)

The last example could also be
performed in this manner:

DEFINE PROCEDURE SQRT
DECLARE ROOT USAGE IS REAL.

IF Tl GT 0 BEGIN
---- procedure as above ---

END
IF Tl LE 0 ROOT = 0

END PROCEDURE

This appears to be both less structured
and less efficient than the previous
version, but it has one advantage in
that it "compiles" faster under some
circumstances (and uses less pool space
in Datatrieve-11, though this won't
bother VAX-DTR or DTR-20 users). In the
first version, all of the statements
from the IF to the last END (before the
END PROCEDURE) must be "compiled" before
any- part of the IF statement is
executed, including evaluation of the IF
condition itself, and this takes time
(and pool). In the second version, each
IF statement is "compiled" separately
and executed separately. If you are
going to be going through a repetitive
series of calculations many times, it's
usually faster to put all of the
statements into one big VHILE statement
or BEGIN-END block, let it all be
compiled once when you enter the
routine, and then let it run. The
program may seem to "stall", while the
statements are compiled, but once done
the procedure will run very fast, about
as fast as code compiled in other
languages. If, however, you have a
procedure which will probably be
executed once only (or once in a while),
and it contains a large number of IF
conditions, it may be better to put them
in as separate IF statements so you
won't waste time compiling everything
just to execute one small statement.

It should be noted that the

statement

WHILE DIF > 0.01 BEGIN

could have been written in many
different ways, such as

WHILE (DIF > 0.01 OR DIF < -0.01) BEGIN

or

WHILE DIF BETWEEN -0.01 AND 0.01 BEGIN

or any other valid Boolean expression.
If any of these had been used, the line

IF DIF < 0 THEN DIF = DIF * -1

which converts negative values to
positive values would not be required.

It should also be noted that the
procedure name SQRT isn't really very
descriptive. It would probably be
better to call it something like
"SQUARE ROOT" or even "SQUARE ROOT 2"
(for 2-decimal places), and place it-in
a common dictionary for everyone to use
once it has been debugged. The above
example of use would then look more like
this:

READY SAMPLE MODIFY
FIND SAMPLE
FOR CURRENT MODIFY USING BEGIN

Tl = A + B + C
:CDD$TOP.USER$LIBRARY.SQUARE ROOT
T2 = 100 * ROOT -
END

Procedures versus Functions

Should this be a procedure, or
should a function be added to
Datatrieve? Adding a function to
Datatrieve is not at all difficult,
especially if you are adding one of the
VMS library routines, as you don't have
to write any code. Doing the
calculation in a function is often more
efficient as Datatrieve doesn't have to
"compile" the code each time it's used,
and this is especially important if the
function is going to be used often. If
you want to add a function of your own,
however, the first step is to write a

110

subroutine to implement the function in
some programming language that supports
the VMS calling standard. This is going
to be the first stumbling block for many
Datatrieve users, who don't have a
traditional "programming" background.
Next, the function must be linked into
the Datatrieve image: this isn't
difficult, but many system managers
resist change. Of more practical
difficulty is what happens if your
Datatrieve procedures have to be
distributed to many different systems
(for example, if you have developed
something that is going to be throughout
a company or corporation). If you do
everything as Datatrieve procedures, you
can distribute the Datatrieve code and
be certain it will work: if you depend
upon special functions, then you must be
certain that those functions have been
built into every Datatrieve image where
your code will run. This can be
especially difficult if the corporation
is widely distributed, and, as often
happens, different systems are running
different versions of the operating
system and Datatrieve.

An Application: Least Squares Data Fit

This is the "least squares" method
of fitting the best line to a set of
data points, and is often used for such
things as predicting future growth.
Though there is a least squares fit for
many PLOTS in Datatrieve, the values are
not retrievable for use within
Datatrieve and this procedure will make
the values usable for storage in a
domain or other use.

The procedure is:

DEFINE PROCEDURE TREND
DECLARE SUMX USAGE IS REAL.
DECLARE SUMY USAGE IS REAL.
DECLARE SUMXY USAGE IS REAL.
DECLARE SUMXSQ USAGE IS REAL.
DECLARE SUMYSQ USAGE IS REAL.
DECLARE SLOPE USAGE IS REAL.
DECLARE INTERCEPT USAGE IS REAL.
DECLARE FIT USAGE IS REAL.
DECLARE TEMP USAGE IS REAL.
DECLARE N USAGE IS INTEGER.
N = 0

SUMX = 0
SUMY = 0
SUMXY = 0
SUMXSQ = 0
SUMYSQ = 0
READY SAMPLE
FOR SAMPLE BEGIN

SUMX = SUMX + ITEM
SUMY = SUMY + Tl
SUMXY = SUMXY + (ITEM * Tl)
SUMXSQ = SUMXSQ + (ITEM * ITEM)
SUMYSQ = SUMYSQ + (Tl * Tl)
N = N + 1
END

TEMP = ((SUMX * SUMY I N) - SUMXY)
SLOPE = TEMP I

((SUMX * SUMX I N) - SUMXSQ)
INTERCEPT = (SUMY - SLOPE * SUMX) I N
FIT = SLOPE * TEMP I

(SUMYSQ - (SUMY * SUMY I N))
PRINT SLOPE USING ZZZ9.9999,

INTERCEPT USING ZZZ9.9999,
FIT USING ZZZ9.9999

FINISH SAMPLE
RELEASE N
RELEASE TEMP
RELEASE FIT
RELEASE INTERCEPT
RELEASE SLOPE
RELEASE SUMYSQ
RELEASE SUMXSQ
RELEASE SUMXY
RELEASE SUMY
RELEASE SUMX
END PROCEDURE

The FOR statement is used to process the
domain and sum up some values which will
be required for the calculation. The
the procedure is summing up the values
for X (ITEM) and Y (Tl) and counting up
the number of items in N rather than
using the SUM and COUNT commands because
it has to go through the domain once
anyway to sum the squares of the
variables and the products of the two
variables, and it is more efficient to
also sum the other values at the same
time than to have Datatrieve make
additional passes through the domain to
to the summing and counting. Also note
the use of an intermediate calculation
for the value of TEMP: this expression
is used in two other places, and it is
more efficient to store the value than
to calculate it twice, and it is also
faster.

111

ITEM A

1 0
2 0
3 0
4 0
5 0
6 0

DTR> :TREND

SLOPE

137.1429

DTR>

B c Tl

0 0 1200
0 0 1800
0 0 1600
0 0 1900
0 0 1800
0 0 2100

INTERCEPT

1253.3334

FIT

T2

0
0
0
0
0
0

0.6954

A Few Suggestions

More complex problems may be
approached by breaking them down into
smaller sections, each of which should
yield to one of the methods presented.
The following subjects in the Datatrieve
manual will be of interest: the ABORT,
DECLARE, FOR, WHILE, CHOICE, and
IF-THEN-ELSE commands; arithmetic and
Boolean expressions; (procedures and
indirect command files; optimization;
and especially the section dealing with
the USAGE clause, which describes the
internal format of the different types
of numbers. COMP (INTEGER, BYTE, WORD,
LONG, QUAD} is usually the most
efficient type of storage; for real
numbers REAL (FLOAT} and DISPLAY (the
default) should be the next most
efficient. The author recommends
avoiding COMP 3 (PACKED}, COMP 5
(ZONED}, and COMP 6 except when needed
to read data written by other programs,
and DATE (except for date calculations)

Built-In Functions

VAX-Datatrieve has the following
built-in functions which might be used
for mathematical operations (not
including the date functions):

FN$ABS FN$ATAN FN$COS FN$EXP FN$FLOOR
FN$HEX FN$LN FN$LOG10 FN$MOD FN$NINT
FN$SIGN FN$SIN FN$SQRT FN$TAN

Functions are quite simple to use.

FOR SAMPLE MODIFY USING BEGIN
Tl A + B + C
T2 = 100 * FN$SQRT(Tl)

END

or, if the intermediate value of Tl
isn't needed:

FOR SAMPLE MODIFY USING T2 100 *
FN$SQRT(A + B + C)

Or you can modify the original record
definition:

01 SAMPLE REC.
03 ITEM PIC 9.
03 A PIC 999 EDIT STRING ZZ9.
03 B PIC 999 EDIT-STRING ZZ9.
03 C PIC 999 EDIT-STRING ZZ9.
03 T2 COMPUTED BY-

FN$SQRT (A + B + C).

Or, if you don't want to store the
value:

FOR SAMPLE PRINT FN$SQRT(A + B + C)

Functions have the advantage that they
can be incorporated into places where
procedures cannot be used, or cannot be
easily used.

To add your own functions to
Datatrieve, you have to modify a file,
DTRFND.MAR, supplied with Datatrieve.
Yhen installing Datatrieve, you are
asked if you want to save certain
customization files: say YES to save
the function file. Although this is a
Macro-32 language source file, it
doesn't really look like assembler
language as it simply consists of
function definitions

In this instance you don't have have to
write your own routine to do the work as
it uses a routine in a library supplied
with VMS. More function definitions
like this, and a Datatrieve procedure
that generates the definitions, may be
found in the Datatrieve I Fourth
Generation Languages SIG Library tape,
which is in the DECUS library and on the
VAX SIG Symposia tape.

Vhere to find Equations

Books on the particular subject
(for example, a book on statistics for
standard deviation or trend line
fitting) are a good beginning,
especially the older books which give
instructions for solving the equations
by hand. They will also give worked
examples, so the user can compare the
answer obtained in Datatrieve with the
answers in the book to determine if the
equation has been correctly solved.
There are also books published for
high-school and college math classes
containing nothing but formulas, and
some have functions expanded into
series, which are particularly suitable
for solution by computer.

FN$POYER - Raise a real number to a real power

Output is a floating value in RO, Rl
Input is two floating values passed by immediate value

DTRFUN DEF FN$POWER, OTS$POYRR, 2
DTRFUN OUT ARG TYPE = FUN$K VALUE,
DTRFUN-HEADER HOR = <"Power">
DTRFUN-IN ARG TYPE FUN$K VALUE,
DTRFUN-IN-ARG TYPE = FUN$K-VALUE,

DTRFUN_END=DEF -

DTYPE = DSC$K DTYPE F - -

DTYPE DSC$K DTYPE F, ORDER
DTYPE = DSC$K=DTYPE=F, ORDER

112

1
2

WICE: A CCJIPUTER <nnK>LLm 'l'ELEPlmE INFORMATICfi SYSTEM

Lisa M. Rotunni
Edward c. Hohmann

Son V. Phan
James A. Rounds

College of Engineering
California State Polytechnic University

Pomona, California 91768

The College of Engineering at California State Polytechnic University,
Pomona announced a new experimental information system called VOICE in January
of 1987. VOICE is a computer controlled system which can be accessed from any
touch-tone telephone. The object of the system was to provide access to the
best information available on such items as the engineering course schedule,
and faculty office hours, the College of Engineering and its academic
departments, scheduling deadlines and other important dates.

The VOICE system consists of a computer driven voice synthesizer and a
telephone. The computer is able to take input from the buttons on the phone
the same way it can from a computer terminal. Through a series of menus, the
caller is able to interactively acquire information, rather than listening to a
fixed tape-recorded message.

This paper will discuss the planning of the VOICE menus, the database
information which VOICE puts on-line over the phone, the progranming required
to control the telephone interaction, and the current operation of VOICE.

The College of Engineering at Cal Poly
University, Pomona, has 8 undergraduate
majors and a Master of Engineering program
with approximately 4,000 graduate and
undergraduate students. we offer 800 course
sections per quarter in each of 4 quarters
per year and we have about 300 full and
part-time faculty and staff members.

In the College of Engineering Dean's
office, we are using the database ROM from
Interactive Technologies Inc. on a PDP 11/23
computer for administration and instructional
planning. our administrative personnel
database system contains all employees and
their positions, the salary schedule, and
other support data files. It is used for
faculty hiring, cost estimation, and
directory reports. The course scheduling
system is used to prepare the course
offerings for a given quarter. It is not an
on-line registration system. It contains the
course schedule, course catalog, and various
support files. In our student petition
tracking system, we log the status of change
of major and general academic petitions which
students must submit to our office for
approval.

These database systems, developed over
the past three years, have now reached a
fairly mature state. However, when we looked
at the system we realized that something was

Proceedings of the Digital Equipment Computer Users Society 115

lacking. We had all of this information on
the computer, but it was only available to
us, or to other people through printed
reports. Much of the information we had
compiled was of interest to others on campus,
and even people off campus. So, we
instituted the VOICE project. The purpose of
VOICE is to make information more easily
available on campus, to make information
available off campus, and to unburden
secretaries from having to answer routine,
often repeated questions.

THE DF.ctalk

The hardware which makes the VOICE system
possible is the DECtalk. The DECtalk is a
box that converts written text into speech.
Send the DECtalk a page of written text, and
the DECtalk will read it aloud. An internal
dictionary tells it how to pronounce a great
many words, and it will attempt to sound out
words it does not know. The DECtalk can be
hooked up to a computer and to a terminal
and/or telephone. Using the escape sequence
commands which the DECtalk understands, you
can get it to answer the phone, take input
from the phone buttons and relay it to the
computer, and speak the information the
computer sends.

The DECtalk comes with nine defined
voices, which DEC has given names like

Anaheim, CA - 1987

Perfect Paul, Beautiful Betty, Frail Frank,
and Huge Harry. The instructions provide
some information on how to create your own
voice. However, they discourage you from
attempting it because the voice development
process is very difficult.

The computer controls the DECtalk, taking
input from the phone and sending information
to be spoken. We decided to write our
controlling program for the system in
Fortran, because it is easily portable
between computers and because we had
available sufficient expertise in that
language. Any progranuning language should be
able to control the DECtalk.

As soon as we started dealing with the
DECtalk, we discovered that it had some
limitations in interpreting written text. It
does well, when you consider that it cannot
think as it reads in the same way that we do.
However, we make many assumptions in
converting written text into speech; DECtalk
does not always make the same assumptions.
The person at the other end of the phone has
no idea what the written word looks like,
thus care must be taken to make the spoken
word understandable.

For example, the DECtalk does interpret
numbers correctly. If you write the number
1,300, the DECtalk will say "one thousand
three hundred". But we do not always read
numbers that way. We certainly don't read
phone numbers that wayl And we also don't
read room numbers that way. If you write
the numbers 214 and 301, the DECtalk will say
"Two hundred fourteen" and "Three hundred
one". But, when those numbers are rooms we
usually say "Two fourteen" and "Three oh
one". The easiest way to get the DECtalk to
say these rooms properly is to split up the
numbers when printing them; for example, 2
14. However, if you write 3 0 1, the DECTalk
will say "Three zero one". You have to put
the letter O in the middle to get the usual
pronunciation.

our preferred approach has been to adjust
the text we send to the DECtalk to get the
proper pronunciation. The DECtalk can handle
phonetic spellings, and words spelled
phonetically can be mixed in with ordinary
words in your text. However, phonetic
spellings are somewhat difficult and
definitely time-consuming to produce.

We have come up with some other ideas to
adjust the pronunciation of words without
resorting to phonetic spelling. Short forms

116

of words present a special challenge to the
DECtalk. They are often not spoken as they
are written. For example, the California
State Polytechnic University, Pomona is
locally called just "Cal Poly University".
The Poly is short for Polytechnic and is
pronounced like the name "Polly". However,
according to the rules of English language
pronunciation, "poly" rhymes with "holy", not
"holly" ("polly"). The DECtalk speaks
according to the rules. The phonetic
spelling for "polly" is "[p' awliy] ", and we
could substitute that in our text every time
as "Cal [p'awliy] University", but rather
than have to remember or use that, why not
just write "Cal Polly University". A simple
spelling change will allow the DECtalk to
pronounce the word properly.

Some words have to be adjusted to local
pronunciation. When the DECtalk says the
word "for" it sounds like "fur" rather than
"four". We substitute "four" for "for".
"Status" comes out as "state us", so we
separate out the syllables to get "stat us",
which sounds better - at least here in
Southern California.

It is also easiest to leave out anything
you do not want read, like leading zeros in
numbers.

The DECtalk speaks with expression. It
is not a computer monotone. It adjusts it's
tone with punctuation as well, so that a
sentence followed by a question mark has the
rising inflection of a question. An
exclamation point works well to add emphasis,
especially on words of once syllable. on
multisyllabic words the end effect sounds
less desirable.

Unfortunately, not all problems can be as
easily solved with spelling changes. Several
parts of our application read faculty last
names. our experience has been that the
DECtalk will get about 50% of last names
correct with no adjustments, which is not a
bad average. But we couldn't have it
mispronouncing half the faculty! In this
case, we did opt to use phonetic spellings.
We added a field to our faculty database
called Phonetic Last Name. Whenever a new
faculty member is entered, Phonetic Last Name
is entered as the normal spelling of that
person's last name. The pronunciation is
then tested on the DECtalk, and if it is
properly pronounced, no phonetic spelling is
needed. If the name is not correct on the
DECtalk, a phonetic spelling is entered in
the field and adjusted until the DECtalk
reads the name properly.

APPLICATIW DESIGN

It is always important to remember that
the user cannot see what he is listening to.
This critical fact has led us to rephrase an
old proverb - VOICE is "Heard but not Seen" -
and is the primary factor in designing the
application. This leads to our two most
important design considerations. The first
is limiting the number of choices per menu;
you cannot pick from a list of twenty read to
you over the phone. Four or five is about
the most that can be reasonably handled.
With these limitations, you will need menus,
submenus, and even sub-submenus. The second
most important design consideration is to
group items into reasonable categories,
making it possible to search through the menu
in a logical fashion.

Our application is called VOICE. In
VOICE, we chose to have several defined
movement keys, used throughout the
application. The asterisk will always return
you to the previous menu; zero, typed from a
menu, will repeat that menu. we considered
it important also to have some overt way for
the user to end the conversation. People are
used to logging off computers or saying
good-bye at the end of a phone conversation.
The pound sign terminates the session,
causing VOICE to say "Thanks for calling.
Goodbye." and hang up the phone. The DECtalk
will hang up the phone automatically after a
certain amount of time with no input. If the
user doesn't bother to hit the pound sign and
just hangs up the phone, the DECtalk will
hang up. However, if the user wants to feel
that he has completed the call, he can hit
pound and have VOICE say good-bye to him.
This use of symbols seems consistent with
what other people. are using in other phone
systems we have seen.

For our application, we chose to use the
voices Perfect Paul and Beautiful Betty.
These are the most "normal" voices the
DECtalk provides. Contrary to DEC's
reconunendation, we have made minor
adjustments to Paul which we think improve
his sound.

The format for our menu files can be seen
in Figure 1. In the design of our
controlling program, any line which begins
with a period is interpreted as a conunand and
not sent to the DECtalk to speak. In the
case of a menu, the ".FILE" conunand indicates
what menu to read next based on what menu
choice the user selects.

117

Now,
select from the schedule menu.

To look up courses in the class schedule,
press 11

To look up faculty class schedules, press 21

To look up faculty or staff office hours,
press 31

At any time, to back up to the previous menu,
press *·

Make your choice any timel

.FILE:l,"CLASSES.MNU

.FILE:2,"FAC CLASSES.MNU"

.FILENAME:3,,,.0FFICE_HOURS.MNU"

.CHOOSE

Figure 1

M.TA

It is easy to get the DECtalk to speak
prepared text like the menu. It is little
more than a very flexible tape recorder if
that is all it does. This has led us to the
very emphatic conclusion that IT IS ALL
USELESS UNLESS YOU HAVE THE DATAl If you do
not have an established data management
system, it would be a monumental task to put
information into a computer for the sole
purpose of having the information read over
the phone. However, if you already have the
data in a computer, and are using it for
other applications as well, it is relatively
simple to hang a DECtalk onto the system.
Then you can develop an application which
gets the ?esired information out over the
phone, to those who would not be able to
access it otherwise.

In our case, information from the
employee data file, department codes file,
faculty office hours file, and course
schedule all go to make up the VOICE class
schedule, faculty class schedule, faculty
office hours, and phonebook. The change of
major petitions and general academic
petitions stand alone as data files, which go
out directly to VOICE.

VOICE does not access the database
directly. We run reports from our database
to excerpt the public information and put it
into the VOICE data file format. VOICE then
reads those reports. In that respect, VOICE
is not really on-line information. We update
the reports periodically as changes occur in
the related data. However, VOICE is still
the best possible information available,
considerably more accurate than any printed
report, and the only information available
over the phone. Figure 2 shows how our
academic personnel system data flows into the
VOICE system.

SAPS DATA VOICE

(Dalo. Fiie J 8 VOICE Information

Faculty Cl111 Schedules

Figure 2

VOICE data files are constructed
differently from the VOICE menus. We use
fixed length records for ease of searching
the files, so the first item in the file is
always the number of lines per record. Then,
we have the message which is always spoken
when someone searches the file. This message
tells the date that the file was last
updated. Then comes the message that is
spoken after an unsuccessful search of the
file. Finally we have the data which is
searched by and the information which is read
on a successful search. This format is shown
in the class schedule data file sample in
Figure 3.

118

CI.J\SS SCHEOOLE lll\.TA

007

.MESSAGE
Fall schedule was up dated on 10 29 87.
.END

.NOFIND
I cannot find an engineering course,
with that code in the schedule.
.END

6111001
['iyjiy'ar] 1 10, section 1, meets,
Monday, Wednesday, Friday,
8 ['eyehm], through, 10:50 ['eyehm],
in Building 9, Room 1 33,
with instructor Hudspeth.

6330201
[s'iyeych'iy], 3 02, section 1, meets,
Monday, Tuesday, Wednesday, Friday,
7 [p'iyehm], through, 7:50 [p'iyehm],
in Building 13, Room 2 14,
with instructor [jhorjhiy'aadiyz).

Figure 3

For the course schedule, we search by the
course code, which is a seven digit number.
It was more difficult picking the search data
for the faculty schedules. We decided not to
try and work out some way of searching by
name. This would by necessity be quite
complicated, what with three letters per
phone key and Q and z missing entirely.

Almost every faculty member has his own
phone extension, so we chose to use the four
digit phone extension to search for faculty
data. If two faculty members do share a
phone, VOICE tells you that and asks you
which one you want. Besides ease of
implementation, we considered phone extension
to be a good choice because it was readily
available, common information. And VOICE is
a phone oriented system. In the student
system, students can search by their
university personal identification numbers.
This has the added benefit of providing some
security, in that generally the individual
student is the only non-administrative person
who would know that number.

Since we were using phone extensions, we
needed a way for people to get these numbers
if they didn't happen to have a campus phone
book handy. This led to the VOICE phone

book. The phone book reads phone extensions
for the entire faculty of a department when
you enter the phone extension for that
department. This list was very difficult to
listen to, so we added a pause every three
names.

ADDITICHU.. FFA'lURES

Additional, non-data features of the
VOICE System were designed primarily to
answer oft repeated questions. One of these
is the important dates and deadlines section.
The university puts out a flyer each quarter
listing such things as the last day to add
classes, the last day to drop without record,
and so on. We put this information into
VOICE. Currently, we have this information
in a text file, which must be updated
manually to remove dates which are past. We
are working on an advanced feature in which
we can bracket the information with a
conditional statement indicating between
which dates and times to read the
information. Then only the appropriate
announcements will be read at any given time.

Several of our engineering programs are
impacted and have elevated admission
standards. These standards are somewhat
complicated, since they depend on how many
college units the student has, their high
school GPA, SAT scores and/or college GPA, as
well as requiring certain mathematics and
physics courses. Many questions are asked by
potential students regarding the impaction
criteria, and so we wanted this information
available on VOICE. Written out in words for
VOICE to read, the impaction criteria for one
major alone takes an entire page of text.
The only way to understand the information is
to be ready on the phone with pencil and
paper. The best feature of this part of the
system is that it give the phone number of an
answering machine where the applicant can
leave a message to have the admission
criteria mailed out in written form. The
DECtalk is capable of dialing out, and we are
working on having it transfer people to the
answering machine so that they will not need
to dial again.

Lastly, we have included narratives. In
the University Catalog they have a brief
narrative at the beginning of each major
describing the department and its emphasis.
It was virtually free to include this in
VOICE, and so we did.

For ourselves in the system, we have
created a log file which our controlling
controlling program updates automatically.
It shows when a caller dialed in, what menus

119

were progressed through, what data was
searched. For diagnostic purposes we
included where in the data file the data was
found. The last item shows when the call
ended whether the system timed out or the
caller exited using the pound sign.

When we first announced VOICE last
January, we put out a flyer showing the menus
and their interrelationships, the phone
number of the system, and some important
notes. For example, you can key on the phone
as fast as you like. Your input will be
processed immediately and you will not need
to listen to the intermediate menus. Callers
who have this flyer can progress rapidly to
the information they want out of the system.
This flyer is shown on the following page in
Figure 4.

At this point we are very happy with
VOICE. It is being used. Calls are more
frequent at the beginning of the quarter than
at the end, but this is expected. No program
is finished until the users start
complaining, and I actually had a faculty
member complain to me last quarter that I had
not updated the office hours; that made me
feel that I had accomplished something. My
greatest concern with the DECtalk is that it
sounds like it learned English as a foreign
language. We have the single-line DECtalk,
and I learned at DECUS that the multi-line
version is supposed to sound better. We are
working on getting an upgrade of our system
to take advantage of DEC's new letter to
sound conversion rules. We are still working
on improving our controlling program and our
embedded command structure to make them more
powerful and easier to work with.

Cal Poly University, Pomona

College of Engineering

Interactive VOICE Information System at (714) 869-2604

On your touch-tone phone press
Main Menu keys to key-In Information when

Key 1 • To Introductory Menu
requested

2 • To Schedule Menu Key anytime you like
3 • To Academic Calendar Key as fast as you like
4 • To Academic Procedures Key o to hear last phrase again
5 • To Phone Book Key * to back up one Menu

Key # to say goodbye

1--- 1. Introductory Menu
Hear Dept K Key Dept"'\

Hear Dept

Key 1 . Hear College Narrative v Phone List Extension Narrative

2 • To Department Information
3 • Hear How To Apply
4 • Hear List of Campus Phones

~K~Cocnse\ Hear Course

1--1 2. Schedule Menu Information

Key 1 • To Class Schedule
t--tey Facultf\- Hear Faculty 2. To Faculty Class Schedule

3. To Faculty Office Hours ~ Extension Class Schedule

Hear Faculty
{Key Facultyl Office Hours

Extension
t--1 3. Academic Calendar

Key 1. To Department Hours N K Key Dept'
Hear Chair 2. Hear Important Dates Hear Dept

3 • Hear CAE Hours Phone List Extension & Dept Hours

1-- 4. Academic Procedures vc KeyPIN Hear Your C/M
Key Number Petition Status

1 • Hear Change of Major Info
2. To Change of Major Petitions
3. Hear How To File GA Petition
4. To General Academic Petitionsl--{ Key PIN

Number Hear Your GA
Petition Status

'--1 5. Phone Book

Hear Department
KKeyDept \ Office Phone List Hear Staff & Extension

Faculty Phone
List

August 1, 1987

120

Introduction:

Report Generation Using a Visual Programming Interface

Tim Dudley
Cognos Incorporated

3755 Riverside Drive
Ottawa, Ontario

KlG 3N3
CANADA

(613) 738-1440

Command language interfaces are not always the most appropriate tool at the initial stages
of report design. A loosely constrained graphical notation can be much more useful.
Visual pro¥"arnming techniques introduced on the Xerox Star™, and popularized by the
Apple Lisa Mand the Macintosh TM, have now made the use of such a graphical notation
much more feasible. Also, the direct manipulation techniques described by Schneiderman
are now viable because of the wide-spread availability of bit-mapped graphics screens and
pointing devices such as the mouse.

This paper briefly discusses visual programming concepts, and then describes the
implementation of a visual programming interface (VPI) for a 4GL report writer. The basis
for the design is an object-action syntax. A set of icons was designed which represent
atomic report entities, and a graphic editor built to manipulate these entities into a report
structure. Attribute sheets associated with each of the report entities allow definition of the
report entities to the data dictionary. A menu bar controls menus of all possible actions to
be performed on the objects. A facility to switch easily between the graphical and textual
representation of the report is provided, with direct manipulation editing available in both
representations. Modifications made in one representation are automatically reflected in the
other.

The combination of the VPI with a 4GL makes the design and modification of reports
remarkably straightforward, and suitable both for end users and application programmers.

In late 1984 and early 1985, Cognos Inc. was involved in a
consulting contract with the Ice Branch of Environment
Canada, to produce a conceptual design, functional
specification, hardware-software specification, and detailed
implementation plan for a system which was to archive all
available information on sea and lake ice, and iceberg
conditions, in Canadian and adjacent waters [I]. Two
constraints had a considerable impact on the approach that
was taken in the design of the system: only two people
were available to produce the work, and the work was to be
done over an elapsed time of four months, including the
Christmas and New Years holidays. The limited resources
and timeframe forced us to rely primarily on computer
generated diagrams, made up from a minimum closed set of
icons (which we designed), as the basis for the work. We
simply didn't have time to produce a textual specification.
We found that our design approach was completely altered
as a result. In the process of cleaning up system diagrams,
we discovered connections in the diagram that were
incorrect. Some areas of the diagram had become extremely
cluttered; attention was being drawn to those areas, strictly

because of their visual appearance. By rearranging the
diagrams to eliminate the clutter, we were able to remove
unwanted redundancies, minimize the number of
interconnections between entities, and in effect produce a
"canonical form" drawing of the system. One system
diagram was shown to a colleague who had been involved
earlier in the project. He looked at the diagram for about
fifteen seconds, and asked where the connection was
between two of the system modules, knowing that that
connection had been part of the original User
Requirements. He had found a mistake in the design,
which had appeared visually as a blank area in the system
diagram. At that point, we realized that we could literally
design graphically at the high level. We also realized that
we could concisely communicate a tremendous amount of
conceptual information, by primarily using diagrams
illustrated by text, rather than by using text illustrated by
diagrams. The diagramming also forced us to modularize
our design, and do it fairly rigidly, without overspecifying
or overconstraining the individual modules or their

Proceedings of the Digital Equipment Computer Users Society 123 Anaheim, CA - 1987

interfaces, which could have imposed hidden restrictions on
the design.

Our experience with using icons to design this system has
prompted us to fovestigate the potential of applying a
similar approach to business applications. Graphics
hardware, particularly bit-mapped screens and pointing
devices such as the mouse, have now become widespread
and relatively inexpensive. Windowing systems are
becoming common, and object-oriented programming is
fairly well understood. This combination of events has
resulted in some interesting software development
techniques, particularly in the areas of direct manipulation
and visual programming. The remainder of this paper
describes our current research, utilizing these techniques,
toward the development of a visual programming interface
(VPI) to a report writer.

Background:

The terms "visual programming" and "program
visualization" are sometimes used to refer to the same thing,
when in fact they represent entirely different concepts.
According to Meyers [2), visual programming refers to a
system that allows a user to~ a program graphically,
while program visualization, on the other hand, allows a
conventional, textually-specified program to be ~
graphically. This distinction is blurred in the literature, but
can be easily remembered by thinking of visual
programming as the specification stage of programming,
and of program visualization as the documentation or
analysis stage.

Another important concept in this context is that of "direct
manipulation" [3]. Direct manipulation is the set of
principles which include visual representation of the objects
of interest, selection and physical actions instead of
keyword commands, and rapid incremental reversible
operations [4]. It is the principle used by such systems as
the Xerox Star™, and the Apple Macintosh TM and
Lisa TM, as well as most video games. It lends itself well
to object-oriented programming, and is sometimes referred
to as the "point-and-shoot" approach. This is the approach
in which the designer selects an object (points), then causes
some action to be performed on the object (shoots). An
example of this point-and-shoot technique in a word
processing application is to highlight a block of text, and
then to choose a CUT or COPY or DELETE action from a
menu. This approach can be very straightforward and easy
to learn. File manipulation becomes almost automatic: To
delete a file, one drags a picture of it onto a picture of a
trash can. It isn't necessary to try to remenber whether the
command to delete a file is DELETE ' DEL, REM, x, KILL,
RMFILE, and so forth The principle at work here is that
our reading vocabularies are considerably larger than our
speaking or writing vocabularies, and that we can do more

124

error-free work by pointing at things and moving them
around, than we can by writing about them. ·

The visual programming and direct manipulation techniques
also make it easier for a designer to present a system to the
user in the user's own framework, rather than in computer
ese. Users " ... develop conceptual models - mental
representations of the workings of the system." [5]. The
user's conceptual model must correctly predict the behavior
of the system. The system designer must therefore
anticipate the conceptual model, and present a consistent
external myth which will reinforce it. (The reason the
word "myth" is used is because it is a representation of the
internal workings of the system, and may not correspond to
the actual internals of the system. [5]). If the user's
conceptual model corresponds well to the designer's
external myth, the user will be able to deal with his problem
at a higher level of abstraction, and not get mired in the
workings of the application or the user interface. The use
of icons and their direct manipulation lends itself well to the
presentation of an external myth. The most common
example of an external myth is the familiar desktop
metaphor.

Design of the VPI:

The visual programming interface which we are designing
is based on a noun-verb-adjective/adverb syntax, in which
nouns are represented by icons, verbs by menu items, and
adjectives and adverbs by property sheets and dialog
boxes. This syntax is presented to the user, using the
desktop metaphor, as shown in Figure 1:

•990tt1 (di Formal l Action Page i layoUI llol'Ull l

O None

o•......,.._.
0

Q Kmd'Wrk

Q R•dOr.Jy

0 Aa:-Dt:nlird

Figure 1

The user creates a report specification by selecting the
appropriate icons from the icon menu, arranging them on
the desktop workspace according to how the final report is
to look, and defining each of the report elements
(represented by the icon and its attributes or properties) to
the dictionary, through the use of menu selections and
property sheets.

Each icon has an associated property sheet, which can be
considered as the window into the dictionary for the
particular report element represented by that icon. The
report writer itself is completely defined by the
determination of what report elements are made available to
the user through the icon menu, which actions are available
through the menu bar, and what attributes are available on
the property sheets associated with each report element.
Dialog boxes are available for actions which require
clarification. The combination of icon, menu items and
property sheets must present a consistent graphics
vocabulary to the user in order to be effective.

The icons used in our VPI, and their definitions, are listed
in Figure 2:

---- lkm valu~

~ ---- Vt-"fllcalll'ilolnlucso(anlkm

~ -- llorlronlalli.dolV1lucsufanlkm

················ Cruu,Ububtion ti nlu<S Q an Item

11 ---- CondiOonal n-portlne l-luncnl
.

CD ·························· ~bd
D Summarhod llcm

---- Control break 1pcci!lcr

D-

Figure 2

(The design of the icons, and in fact the design of the
whole desktop, is a critical part of the success of a visual
programming interface. This issue is very well addressed
by Verplank in [6]. The icons must visually resemble the
report elements which they represent, and give the illusion
of directly manipulable objects. The whole desktop needs
to present visual order, and provide user focus. In
addition, the entire system needs to reveal a structure
which is consistent with the user's conceptual model, so
that the user always knows where s/he is, and what will
happen ifs/he hits the DELETE key [6], [7]. It must be
noted that in our system, the graphical design of the icons
and the desktop has not been finalized, and the
representations shown here are intendedto act only as
prototypical vehicles, in order to convey the general idea of
the interface.)

The best way of describing the VPI is with an example.
(For this example, it is assumed that the hardware includes
a bitmapped graphics screen and a single-button mouse.)
Suppose a report is to be created which consists of a sorted
list of an organization's employees and their telephone
extension numbers. The telephone numbers are four digits
long, the first digit of which indicates the floor on which

125

the employee works. The list is to be sorted
alphabetically, by floor, with appropriate titles.

Using the VPI to produce the structure for this report, the
user creates the diagram shown in Figure 3:

§33

Iii
CD

D

: : :
Ac:lloft j Pa~ layout l •or..,. i

! rr:::mm !

i u::J CD !-·•
:Jt'i

Figure 3

Icons are placed on the desktop by clicking on them in the
icon menu with the mouse, then dragging them into place
on the workspace. In this example, two vertical list icons
are placed next to each other, representing lists of the
employee names and the employee extensions. Label
icons are then placed above each list. A label and item icon
are placed above that group, adjacent to each other. This
picture represents the portion of the report for one floor.
Because this group is to be repeated for each floor, the
control-break-specifier icon is placed around it. (In the
cases of the control-break-specifier icon and the
report/subreport-specifier icon, once they are placed on the
desktop workspace, they can each be selected and
stretched to any rectangular shape, in order to enclose
other icons.) The direction indicator on the control-break
specifier icon is set to point to the right, indicating that the
group is to be repeated horizontally, instead of vertically.
The report/subreport-specifier icon is then placed such that
it encloses the entire group. The resulting diagram defines
the structure of the report, and all that remains is to identify
each of the report elements to the dictionary.

Figure 4 shows how items are identified:

[jJ

D

§33

cm
(iJ

D

Joonnal Adon roge loyCKJ ! Sfalut j

ji~··>

(b)

Figure4

The property sheet for the left list is brought up by double
clicking the icon (Figure 4a). When the property sheet is
displayed, the user keys in the item name for the list. If
that item is defined in the dictionary, its attributes are
placed on the property sheet. The user then clicks the
close box in the upper left corner of the property sheet.
The resulting picture (Figure 4b) indicates that the item is
defined by displaying the item name at the top of the list.
The icon is also expanded by the system to the size
necessary to correspond to its size attribute in the
dictionary.

Figure 5 shows how items are defined which aren't
already in the dictionary. The item icon in t)l.e title for the
repeating group is double-clicked, bringing up its property
sheet. When the item name is keyed in, and the name is
not found in the dictionary, the system prompts for a
definition. In this case, the item is the floor number,
which is calculated as indicated on the property sheet in the
diagram. Default attributes are assigned, depending on
what is keyed in. The resulting picture is shown in Figure
5b.

126

i§:3

Iii
IIl

D

~

rm
[iJ

D

•POftl ; (di JOft'Mlll i AdlOft Pog• lay~ ! ttotut

, , :i

! u:::::JI ;(i;i1 ~ i cw L:J

lti i =,=~~~

(b)

Figures

Figure 6 shows how control breaks are specified:

= tl±i:I'"

mt
L:i.11
IIl

·o

ID

D

0

(a)

~~-!'.'!;~•.......•........
l tloar Ja1.m

l II:lWlJ'
l II:] II:] ...
l~~~ ~~ jt=llB

(b)

Figure 6

~l

The control-break-specifier icon is double-clicked,
bringing up its property sheet, and the control break
variable is keyed in (Figure 6a). Note that the control
break variable does not have to appear on the report itself.
The resulting picture is shown in Figure 6b.

The employee list is to be sorted. This is an action, which
is invoked as shown in Figure 7:

~

Ii
[IJ

D

ID

D

0

: :
. • Pae• LarW ; lla4UI i

(b)

Figure 7

The employee name list icon is highlighted by clicking on
the top item, then dragging the cursor down the list. This
selects the entire list, as opposed to just the first item in the
list. While the list icon is highlighted, the Action menu is
pulled down, and the Sort item is selected (Figure 7a).
This causes a dialog box to be displayed, asking what type
of sort is to be performed. Because the list associated with
the selected icon is alphabetic, the numeric sort options are
disabled. (This is an example of how the system can be
constructed to prevent the user from making errors.)
When the OK? box is clicked, the menu is hidden, and the
resulting picture is displayed (Figure 7b). Note that the fill
pattern of both lists has been changed. This shows two
things: that some action has taken place on the indicated
report element, and that the indicated report element has
some dependencies on other report elements. The actual
dependencies are not shown on the report structure
diagram, but are available on the relevant property sheets.

127

Figure 8 shows how label strings can be defined. Note
that the string value appears i.D.llik the icon, becoming part
of that icon. The icon is also expanded to accomodate the
string. The font and size of the string can either be set or
modified on the icon itself, by highlighting the icon, then
selecting the size and font, or on the property sheet.

D

• ml
[IJ

D

•poft1 (di ; Jonnot AdOf\ i Po;• i layout llotue

(a)

port• t:ctl l Fonnal Acfl°" J l'ag• j LayoU SlolUI

~-"""'

(b)

Figure 8

Figure 9 shows how the report/subreport is named:

:_..

0

:--~?': .. '!~ •••••••••....•••••••••••• i
! ftoor_JIUlll !
! I h•.r tfM ~
i ,,_, CESEl !

11•1•r·
(a)

(b)

Figure 9

:~

.~

Once completed, the report/subreport can be saved by use
of the Save item in the File menu.

128

All physical layout on the page in the above example is
done by defaults in the system, depending on the relative
spacing of the icons in the report structure diagram.
However, in the case of pre-printed forms, certain layouts
are predetermined, and the report must fit the layout. The
Layout menu provides the facility for accurately placing
report elements on a page, through the facilities of grids,
rulers, and calipers (Figure 10).

§33
m'I
Ull
ID

D

1111

~
i--
' •
m
[jJ

D

(a)

(b)

.. _
~ •u~
"""-lh.-1111•• ,. __
·;:;;c;uo;·····················
9-G<ld"

MQr\loGlld
AIQn Otljecta._

Show'kultn
Cudo111R..&rL-

, - 0 -+ll+-

·;:,;;;;· ® i
si... T
Al .. 0 """"' Ali4'1 ® °"' 0 ~-0 """" @)

Figure 10

Rulers can be displayed across the top and down the left
side of the screen, and can be set to a variety of units
(centimeters, inches, points, etc.). As the cursor is moved
across the work area, the current cursor position is tracked
on both of the rulers. Used in conjunction with an enabled
grid, this makes it quite straightforward to accurately
position report elements on a physical page.

The calipers provide a mechanism for directly specifying
distances between report elements, and sizes of report
element fields. (The caliper icon does not appear in the
icon menu, because its use is one of action, and it is not
part of the report structure.) The calipers are used by
selecting the horizontal or vertical caliper icon from the
Layout/Calipers menu and dragging it onto the work area.
One end of the caliper can be locked by clicking on it, and
the other end positioned by dragging to the desired.
(horizontal or vertical) position, then clicking on that end
to lock it. If the Show size or Show gap menu items have
been selected, the distance spanned by the caliper will be
continuously displayed between the caliper ends while the
caliper is being set. If not, it will not be displayed until
both ends are locked into position. In order to force a·
dimension onto the caliper, the user locks it into position,
then clicks on the displayed dimension, and keys in the
desired dimension. The caliper will be adjusted to the new
dimension by the system, and can then be repositioned as
desired.

The actual positions ofreport elements can be seen on the
property sheet associated with the report/subreport icon, or
by highlighting an icon or pair of icons and selecting the
Show size or Show gap menu items from the Layout
menu.

Some Problems:

One of the major principles in the design of user interfaces
is "Know thy user". This presents some severe difficulties
in designing an interface to something like a report writer
(which is in fact a graphical language), because of the
diversity of potential users. These users range from the
hacker/guru, to the application programmer, to the Vice
President of Finance, to the CEO's administrative assistant.
Each of these users approaches the system with a different
conceptual model, and with different expectations of how to
use it. In spite of the popularity of systems that utilize
direct manipulation and icons, many of these users simply
don't take them seriously ... they don't believe that such
systems provide enough flexibility to allow them to do what
they want to do. This, in turn, poses the question of
whether or not to design a closed system that does only the
tasks which have been specified for it in the Task Analysis
(which is another of the major principles of system
design ...).

We are addressing this problem of appealing to a diversity
of users by providing several interfaces, and making it easy
to switch among them. The Visual Programming Interface
produces an internal report definition, which can then be
edited using a syntax editor, or which can be run to create a
report. The report itself can then be manipulated using the
What-You-See-Is-What-You-Get (WYSIWYG) principle,
in combination with direct manipulation techniques. If the
report structure is not satisfactory (in the example above,

129

maybe the control break group should be printed vertically
rather than horizontally), the system provides the capability
for the user to switch to the interface which is best suited
for making the required changes. (Incidentally, this change
is extremely easy to make using the VPI...one just changes
the direction of the control-break-specifier icon. The
system does the remainder of the formatting.) The problem
that this approach (the provision of several interfaces) leads
to is how to make a smooth transition between interfaces,
and how to maintain an internal representation of the report
which can be efficiently operated on by all three interfaces.

Another problem with which we have been dealing is that
of conditional reporting. One of the underlying principles
of the VPI is that people recognize documents initially by
their visual appearance ... that is, how they are laid out. The
VPI takes the approach that the user lays out the report how
s/he wants it to look, then goes about defining each report
element to the dictionary. However, the case arises in
which the report format may change, depending on some
condition. In other words, there may be instances when a
report has three columns in a group, but other instances
where it may only have two. Our first attempts to solve this
were seriously frustrating, and we eventually decided that it
couldn't be done in the VPI context. We have subsequently
decided to include the concept of a Black Box, (and
developed an icon for it), to represent a conditional
reporting situation. Our current thinking is that the Black
Box will appear in the report structure wherever there is a
conditional reporting situation. When the Black Box icon is
opened (by double-clicking, for example), the alternative
report structures will be displayed, as will the determining
condition associated with each of them. At the time of this
writing, this problem had not been fully addressed.

The conditional reporting problem causes some
philosophical consternation with the VPI. The diagrams
generated using the VPI were intended to be analagous to
the schematics for an electrical diagram or printed circuit
board. The idea was that the diagram was essentially a
so.:ftware schematic ... a diagrammatic representation of the
actual report, which was recognizable immediately, and
fairly clearly understood, because of its visual shape (the
idea of "revealed structure" again). However, the analogy
suffers with conditional reporting, particularly when the
conditional reporting variable doesn't physically appear on
the report. The analogy suffers further, because a printed
circuit board schematic doesn't necessarily look like the
finished board, but we are saying that the report structure
"schematic" strongly resembles the finished report. We are
still struggling with this one.

Future Work:

At the time of this writing, the implementation of the actual
VPI was just beginning, and consequently, we have not yet
been able to test our ideas in a prototypical environment.

We believe that we will benefit considerable from building
the prototype, and will be able to refine the design to
provide an excellent interface. The main area where we
expect to learn is in the definitions of the actions which
appear in the menu bar. Because we are building a closed
system with this interface, we must ensure that this set of
actions is at least necessary and sufficient, and we can't
expect to determine a priori whether this is the case.

We have not yet decided how to handle file access and
linkages. We are considering having the system infer
which files are required, and how they should be linked,
from the report structure. Other alternatives are to have the
user select file names from a scrolling dialog box, or to
provide another desktop at the file level, and have the user
specify the required files and linkages graphically.

We also haven't finalized the characteristics of the property
sheets ... what goes on them, how they are organized, and
how they interface to the dictionary. We are considering
using a scrolling dialog box on the property sheet, from
which the user can select item names instead of keying them
in. There is also the question of whether the propertry
sheets should look the same to all users, or if they should
be different, depending on the user's security access to the
dictionary.

When the interface is stabilized, we expect to have learned
enough about how to deal with visual programming and
direct manipulation to provide a VPI for the entire STORM
environment, and potentially to operating systems in
general.

Summary:

We have designed, and are in the process of building, a
visual programming interface to a report writer. This
interface will allow users to graphically design report
structures, which can then be executed to produce finished
reports. We believe that this approach makes the design
and modification of reports remarkably straightforward,
and can significantly improve the productivity both of
application programmers and of end users.

References:

[1] Tim Dudley. "Graphics in Software Design."
Computer Graphics World, 9(2), February 1986.

[2] Brad Meyers. "Visual Programming, Programming by
Example, and Program Visualization: A Taxonomy."
Human Factors in Computing Systems: Proceedings
S/GCHI '86. Boston, MA, USA. April 13-17, 1986

[3] Ben Schneiderman. "Direct Manipulation: A Step
Beyond Programming Languages," IEEE Computer.
16(8) August 1983

[4] Ben Schneiderman. "Direct Manipulation: An Object
Oriented Visual Programming Language," Human
Factors in Computing Systems: Tutorial 17. SIGCHI
'86. Boston, MA, USA. April 13-17, 1986

[5] Richard Rubinstein and Harry Hersh. The Human
Factor: Designing Computer Systems for People,
Digital Press, 1984

[6] Bill Verplank. "Designing Graphical User Interfaces",
Human Factors in Computing Systems: Tutorial I.
SIGCHI '86. Boston, MA, USA. April 13-17, 1986

[7] Adele Goldberg. Keynote address, SIGCHI '86.
Boston, MA, USA. April 13-17, 1986

130

INTRODUCTION TO SHG, THE VHS SCREEN MANAGEMENT UTILITY

Robert L. Hays
KHS Fusion, Inc.

Ann Arbor, Michigan

ABSTRACT

This article introduces VAX/VHS application programmers to the
Screen Management Utility (SHG) provided with VHS and includes
FORTRAN examples. Windows, pull-down menus, pop-up windows and
menus, and forms are all only a few SHG calls away. SMG
concepts and ways to use SMG to perform screen management for
a friendlier user-interface are discussed.

INTRODUCTION

Digital Equipment Corporation's Screen
Management Utility (SMG) provides a set of native
mode, run-time library (RTL) routines for terminal
display management. Disk space and link time
decreases when SMG is used because RTL routines are
not included in the executable image as code, but
instead as a transfer address.

SHG controls display and input at terminals in
a device-independent fashion and at a higher level
than terminal control sequences like Regis. All
SHG features are not available on all terminals;
for non-VT terminals, a terminal description,
called a terminal table, must be created that
describes the way the terminal supports SMG
functions.

The Screen Management Utility keeps track of
mundane display problems like redrawing areas of
the screen that were occluded, simple line and box
drawing COllDllands, and also asynchronous input and
broadcast message trapping and display. SMG can
even be used with FMS, the Forms Management System,
with caution.

Reference information is provided by Digital
Equipment Corporation in the following:

Volume SC, VAX/VHS System Routines
Guide to Programming on VAX/VMS

Playing with other programs and systems is also
essential for gleening the most useful techniques
for user interfaces. Books and papers on
interactive graphics can provide additional user
interface ideas.

THE SHG ROUTINES

The three major elements of
output are pasteboards, virtual
virtual keyboards. Each of these
with an identifier returned when
elements are created.

Pasteboards

SMG input and
displays, and
are associated

any of these

Pasteboards are like a bulletin board: information
can be pasted onto the pasteboard, removed from the
pasteboard or moved on the pasteboard, much like

Proceedings of the Digital Equipment Computer Users Society 131

paper on a bulletin board. The RTL call used to
create a pasteboard is SMG$CREATE PASTEBOARD.
SMG$CREATE_PASTEBOARD accepts, as input: the output
device desired for the pasteboard, which defaults
to SYS$0UTPUT, and a flag for clearing the screen
on pasteboard creation. The function returns a
pasteboard identifier and the number of rows and
columns for the output device.

Virtual Displays

Virtual displays are like paper; you put down what
you want to appear on the paper, and then paste the
display on the pasteboard, which makes the dis.play
visible. SMG$CREATE VIRTUAL DISPLAY creates a
virtual display and r;turns ; display identifier
used to address the display. The call specifies
the number of rows and columns for the display, any
display attributes desired, such as a display
border or control character display, and video
attributes, such as bold or reverse video.
SMG$PASTE_VIRTUAL_DISPLAY pastes, or outputs, the
data on the virtual display specified by the
virtual display identifier to a specified
pasteboard. This call associates a window defined
by the virtual display with physical screen rows
and columns. SMG$MOVE_VIRTUAL_DISPLAY changes the
location for a virtual display on a pasteboard.
Virtual Displays can also be removed and deleted.
SMG$UNPASTE VIRTUAL DISPLAY removes a display from
the pasteb~ard, a~d therefore from the output
device. SMG$DELETE_VIRTUAL_DISPLAY deletes a
virtual display. Until a display is deleted, it
can be pasted, unpasted, and then pasted again as
many times as desired. Virtual Displays can also
be 'popped', which removes all displays created
after the specified display.
SMG$POP VIRTUAL DISPLAY deletes all displays
created- after - the specified virtual display
identifier.

Output to a virtual display can be done with
the following routines:

SMG$PUT CHARS(HIGHWIDE)(WIDE)
SHG$PUT=LINE(_HIGHWIDE)(_WIDE)

Anaheim, CA - 1987

SMGPUT_CHARS, SMGPUT CHARS HIGHWIDE, and
SMG$PUT_CHARS_WIDE place; a -character string
starting at a specified virtual display location,
leaving the cursor at the end of the characters
output. SMGPUT_LINE, SMGPUT_LINE_HIGHWIDE, and
SMG$PUT LINE WIDE places characters at the current
cursor location for the entire line length, padding
the line with blanks at the end if necessary. The
SMG$PUT LINE routines also automatically scroll a
window if text reachs the top or bottom line,
depending on the scroll direction specified in the
PUT LINE call. Video attributes can be controlled
by ;alues found in $SMGDEF:

SMG$M_BOLD
SMG$M_REVERSE
SMG$M_BLINK
SMG$M_UNDERLINE

Bold video
Reverse video
Blinking video
Underscore video

SMG$PUT VIRTUAL_DISPLAY_ENCODED allows multiple
video ;ttributes on one line in one call.
SMG$PUT WITH SCROLL acts similarly to SMG$PUT_LINE,
but supports-line wrapping.

Buffering output to the terminal decreases the
number of I/O operations performed. One way to
buffer output is with SMG$BEGIN DISPLAY UPDATE,
which batches all output to the-virtual-display
until a call to SMG$END_DISPLAY_UPDATE occurs.
Additionally, the SMG$CONTROL_MODE call can set the
pasteboard to enable buffering, enable minimal
buffering, clear the screen on exit, and not use
tabs in screen output.

Virtual Keyboards

Virtual keyboards permit user input from an input
device, for example a terminal keyboard.
SMG$CREATE VIRTUAL KEYBOARD associates a keyboard
identifier-with an- input device. A default file
specification and the recall buffer size can be
added to the call. Like virtual displays,
keyboards can be deleted, in this case by a call to
SMG$DELETE VIRTUAL KEYBOARD. SMG provides the
following ~alls fo~ performing user input from a
virtual keyboard:

SMG$READ STRING
SMG$READ-KEYSTROKE
SMG$READ=COMPOSED_LINE
SMG$READ_VERIFY

SMG$READ_STRING reads multiple characters into a
data buffer until a terminator or maximum string
length occurs. Terminators are defined in the
include file $SMGDEF in the form
SMG$K_TRM_(key_name), where (key_name) is
UPPERCASE (letter) or LOWERCASE (letter) for any
(letter) in the alphabet, ONE through NINE (note
that ZERO is missing) for the typewriter number
keys, CTRL(letter) for the CTRL control key held
while pressing a letter key, KP(number) for the
keypad keys, PF(number) for the PF keys, F(number)
for the function keys, HELP for the help key, DO
for the DO key, UP for the up arrow, DOWN for the
down arrow, LEFT for the left arrow, RIGHT for the
right arrow, and El through E6 for the FIND through
NEXT SCREEN keys. The other keys also have names;
extract the $SMGDEF module from
SYS$LIBRARY:FORSYSDEF.TLB and read it for more
information.

132

Special terminators, such as '?' for help, can
be specified in SMG$READ_STRING and SMG$READ_VERIFY
through use of the terminator set arguement. This
is a descriptor, passed by reference, containing
the table length in bytes and the address of a bit
mask, where each bit corresponds to a key, e. g.
the zero bit of the first word is Control-A.
SMG$READ VERIFY acts like SMG$READ_STRING, accept
that it ;erifies the input string with a picture of
the desired string, as defined in the VAX/VMS I/O
User's Reference Manual: Part I.

SMG$READ_KEYSTROKE waits for any key, and
returns a unique value for the keystroke.
SMG$READ_COMPOSED_LINE accepts input of characters
and keys, and translates the key strokes based upon
values in the key definition table, which can be
set up with a calls to SMG$CREATE KEY TABLE,
SMG$ADD KEY DEF, SMG$LOAD_KEY_DEFS~ - and
SMG$DEFINE_KEY; this is useful for redefining key
functions.

The input
arguement which
typical choices
TRM$M_NOECHO.

Unsolicited Input

functions
accepts

are

accept a modifiers
values from $TRMDEF;

TRM$M_NORECALL and

SMG$ENABLE_UNSOLICITED_INPUT enables asynchronous
input via AST routine. Whenever unsolicited input
occurs, the AST routine is called with the
arguements: pasteboard identifier, an optional
arguement specified by
SMG$ENABLE UNSOLICITED INPUT, registers RO, Rl, the
program co~nter and the program status register.
The AST routine must perform any reads desired;
control is all that is passed to the routine.
SMG$ENABLE_UNSOLICITED_INPUT uses the mailbox
interface to pass status messages to the AST
routine. Note that a call to
SMG$FIND_CURSOR_DISPLAY returns the most recently
pasted virtual display with the cursor in it, which
can be used by an AST routine to operate in a
particular window. SMG$DISABLE_UNSOLICITED_INPUT
disables all AST routines for a pasteboard.

Control Keys and Broadcast Messages

Out-of-band ASTs, such as CTRL-T, and broadcast
messages, such as operator messages and new mail
messages, can be trapped and displayed through SMG.
SMG$SET_OUT_OF_BAND_ASTS can enable or disable out
of-band character trapping. The routine uses a key
mask to define which characters to trap and which
to pass. An AST routine is also specified, with
the first arguement a structure containing the
pasteboard identifier and an optional value
specified in the call to SMG$SET_OUT_OF_BAND_ASTS;
the remaining arguements are the registers RO, Rl,
PC, and PSL. Broadcast messages are trapped when
SMG$SET BROADCAST TRAPPING is called. An optional
AST routine and ;rguement is available. When a
broadcast message is sensed, the AST routine is
called. Typically, this routine will open a small
window to warn the user that a message is waiting.
Then, when the user wants to see the message(s),
SMG$GET BROADCAST MESSAGE will return each message
one at ; time until the error status SMG$_NO_MORMSG
is returned, indicating no more messages waiting.
SMG$DISABLE_BROADCAST_TRAPPING will stop broadcast
trapping. Be careful, as there is a note that
using the LIB$SPAWN routine while trapping
broadcast messages can cause problems.

Non-SMG output while SMG is using a device

Non-SMG output can be done while using SMG; it is
critical to save the current screen and then
redisplay it once non-SMG output is complete.
Create a virtual display of one row and one column,
then specify this display in the call to
SMG$SAVE_PHYSICAL_SCREEN before non-SMG output and
SMG$RESTORE_PHYSICAL_SCREEN after non-SMG output.
Note that SMG will clear the screen by default on
the calls to SMG$SAVE PHYSICAL SCREEN and
SMG$RESTORE_PHYSICAL_SCREEN. - -

Screen or line repainting is performed with
SMG$REPAINT_SCREEN and SMG$REPAINT_LINE,
respectively. Alternatively,
SMG$INVALIDATE_DISPLAY marks a given display as
invalid, ie. corrupted, and repaints the display
only.

SOME RULES FOR USING SMG

Separate I/O from calculations as much as
possible. By using separate modules for screen
I/O, program flow is more obvious and such modules
can be reused.

Always pass the pasteboard ID to any routine
that opens a window. Event flags get allocated
with each call to SMG$CREATE PASTEBOARD and are not
deallocated if the pastebo;rd already exists, so
eventually all the local flags get used up. While
it might seem better to call SMG$CREATE PASTEBOARD
in any self-contained routine and ch;ck for the
status return of SMG$_PASALREXI, it doesn't work
correctly now; this should be fixed in V. 5.0 of
VAX/VMS.

If a routine must do I/O to a window thats
already created, pass the display ID; pass the
keyboard ID if user response is required.

Only delete a pasteboard if the current level
created it; this simplifies maintenance later. The
error return from SMG$CREATE PASTEBOARD indicates
whether the pasteboard existed before the call to
SMG$CREATE_PASTEBOARD. Delete windows and
keyboards at same level as creation, also.

Borders take up one column and one row, so
leave room on your display for them. If you start
a display in physical column one with a border, the
left hand border will not appear.

Bold the current menu title could DEC
support holding the border some day, please?).
This gives the user a visual indicator of where
current activity is.

Watch out for control-y and control-z.
Control-z can mess up a display quickly, leaving a
reverse video Exit message.

For error processing, either write one routine
and call it, assuring that the routine has access
to a window, outputs info, waits for user response
and then cleans up, or use a one or more line area,
open the window at the start, and then pass the
required IDs to all other routines. If the first
option is chosen, then the error routine can either
open and close the display as needed, or instead
resize, reposition, and then repaste the display.
Another alternative for error handling is a
condition handler that uses SMG for output. This
requires the use of the MESSAGE utility for all
error values and messages, but can trap all system
errors and faults as well.

133

Don't perform output to an occluded window.
SMG can get the display confused if this rule is
not followed. Unpaste the occluding window,
perform output, and then repaste, or move the
occluding window around so that it no longer
occludes the display.

Watch out for requesting input past the edge
of the terminal screen; SMG does not care, and can
hang up in this case.

When using SMG$READ_STRING, by default up
arrow is a call to the recall buffer. To use up
arrow as a terminator, you must include the
TRM$M_NORECALL value to the call to SMG$READ_STRING
in the modifiers field. Using the TRM$M_NOECHO
modifier will allow for no echo input, for example
passwords. Note that if you use NORECALL, there
will be no additions to the recall buffer for the
given input. If you don't use TRM$M_NOEDIT to turn
off line editing, then the returned terminator for
up arrow is SMG$K TRM CTRLB, not SMG$K TRM UP.

Provide a r;pai~t screen featu~e. - This is
very important and easy to do, using
SMG$REPAINT SCREEN, SMG$REPAINT_LINE, and
SMG$INVALIDATE_DISPLAY.

EXAMPLES USING SMG

The following code fragments show ways to use
SMG calls. The first fragment (Figure 1) creates a
pasteboard, a virtual keyboard, and a virtual
display. The size of the display is number of rows
by number_of_columns, and .is positioned- o~ the
physical device at row first row and column
first_column. The code in Fig~re 2 turns the
cursor off and labels the window border with a
title. Note that the title is displayed in bold
face. Data is displayed in a window in Figure 3.
The code in Figure 4 displays the current item at
row i in reverse-video, waits for user input, and
then clears the reverse video. Final clean up,
consisting of redisplaying the cursor, forceing any
waiting output to the screen, and deleting the
virtual display, is shown in Figure 5

MENU SYSTEM FUNCTIONS

One use for SMG
based user interface.
required:

is a bar and pulldown menu
The following functions are

INITIALIZE_DISPLAY
CREATE_SMG_WINDOW
MAIN_PULLDOWN_MENU
PULLDOWN_MENU
MULTIPLE_PULLDOWN_MENU
PULLDOWN_LIST
MULTIPLE_PULLDOWN_LIST

where MAIN_PULLDOWN MENU is a bar menu routine,
PULLDOWN_MENU pulls down lists for selection,
INITIALIZE DISPLAY creates a pasteboard and virtual
displays f~r error messages and saving SMG displays
for non-SMG output, and CREATE_SMG_WINDOW creates a
virtual display used by MAIN_PULLDOWN_MENU and any
other user-designed displays. An additional
routine, MULTIPLE PULLDOWN MENU, is useful; this
routine allows - multipl; selections before
returning, much like checking off items on a list.
List, or non-modifiable, versions of the pulldown
menu routines are also useful for displaying
information.

In all cases, a standard set of terminators
are used:

Up arrow -

Down arrow -

Left arrow -

Right arrow -

Enter -

Return -
PF2 -
Help -
Prev Screen -

in pulldown menu, up one
selection;
in pulldown menu, down one
selection;
in bar menu, pull down menu
or select item;
in bar menu, move left one
selection;
in bar menu, move right one
selection;
select current item and
exit to next level down,
such as pull down a menu;
Same as Enter;
Help
Help
Up one page or left one
line;

Next Screen - Down one page or right one
line;

Cursoring past either end of a menu wraps the
cursor back to the opposite end of the menu.

The current item is displayed in reverse
video. In multiple selection menus, the currently
selected items are also displayed in bold video.
The current window title is displayed in bold
video.

The menu routines return a character string
for the selection, where an item in the bar menu is
demarcated by one or more blanks; the pulldown
menu routines use two character string arrays, one
for item display and a corresponding one for the
return values. They can be the same array.

A windowed help interface that uses SMG and
the LBR$0UTPUT_HELP utility call to access standard
help library modules is important; this was the
first routine written, and hooks exist in all the
modules for inclusion of help. A general help
interface technique, such as having each menu layer
be a numbered layer of help, is not developed yet.

Creating non-menu displays is easy. Use
INITIALIZE_DISPLAY to create a pasteboard and
virtual keyboard. CREATE_SMG_WINDOW makes a
display the desired size and in the desired
location on the screen. Fill the display using
SMG$PUT_CHARS and SMG$PUT_LINE. Whenever input is
desired, use the SMG$READ routines as appropriate.
Positioning is much like most graphics systems,
where the virtual display coordinates are like
world coordinates and pasteboard coordinates like
device coordinates.

USING SMG FOR A WINDOWED USER INTERFACE TO VMS

A menu toolbox makes user interfaces much
faster to whip up. The only ingredient missing is
a simple, small forms driver using SMG. This would
allow display and updating of system and user
information quickly and easily. Other tools using
SMG are already available for use in a VMS
interface.

SWING is a tool by Eric Andresen of General
from the Fall 1986 DECOS
displays the directory tree

Research Corporation
Symposium Tape. SWING
visually from left to
the arrow cursor keys
tree. The routine

right, up to down, and uses
to change directories in the

uses SMG for all input and

134

output. Modifying this routine to operate in a
sized window is not difficult, and can then be used
inside a program to allow users to specify a
directory to work in.

RADIX is also on the Fall 1986 DECUS Symposium
tape and was written by Phil Worth at E-Systems.
RADIX provides a friendly way to perform base
conversion and ASCII conversion in bits, bytes,
words, and long words. RADIX originally used a
local VTlOO screen management package, but has been
converted to use SMG.

Calculators are easy to program using SMG. As
a matter of fact, almost any application is fairly
easy to apply SMG to. DCL-like SHOW collllllands are
good candidates, since the information is often
paged or listed.

A general interface to DCL, one not unlike the
Macintosh user interface, is a long-term goal.
This has worked quite well so far except for SPAWN
collllllands and broadcast trapping. Some VMS
facilities are not available to higher-level
languages, such as wild-card searches on anything
other than file specifications. Some system
services are not clearly documented and require
some playing with to get right.

A simple interface for updating a general
interface with new routines and to allow non-SMG
programs to be executed from within the shell is
needed. One possible portion of the answer is the
VPW subprocess routines, since V. 5.0 will probably
support SMG across subprocesses, a necessity for
creating a complete environment that is currently
lacking.

status
status

SMG$CREATE_PASTEBOARD (pbid, 'SYS$0UTPUT', , ,)
SMG$CREATE_VIRTUAL_KEYBOARD (kdid, 'SYS$INPUT',

+ ' ' 0)
SMG$CREATE_VIRTUAL_DISPLAY number_of_rows,

+
+

+

+

+

+

+
+

status

status

status
status

number_of_cols, vdid,
SMG$M_BORDER, ,)

SMG$PASTE_VIRTUAL_DISPLAY vdid, pbid, first_row,
first_column)

Figure 1

SMG$SET_CURSOR_MODE (pbid, 1)
SMG$LABEL_BORDER (vdid, main_name(l:i),

, , SMG$M_BOLD, ,)

Figure 2

IF (last_page .NE. curr_page) THEN
DO i = first_item_page, last_item_page

curr_col = 2
curr_row = curr row + 1
status SMG$PUT_CHARS (vdid, prompts(!),

curr_row, curr_col
END DO

END IF

status

status
status
status
status

Figure 3

SMG$CHANGE_RENDITION (vdid, i, 1, 1, num_cols,
SMG$M_REVERSE,)

SMG$SET_KEYPAD_MODE (kdid, 1)
SMG$FLUSH_BUFFER (pbid)
SMG$READ_KEYSTROKE (kdid, term_code, , , vdid)
SMG$CHANGE_RENDITION (vdid, i, 1, 1, num_cols,

Figure 4

SMG$M_REVERSE,
SMG$M_REVERSE)

status = SMG$SET_CURSOR_MODE (pbid, 0
status = SMG$FLUSH_BUFFER (pbid)
CALL SMG$DELETE_VIRTUAL_DISPLAY (vdid

Figure 5

"Prepared for the Department of Energy under Contract No.
DE-AC08-87DP10560."

"By acceptance of this article, the publisher and/or
recipient acknowledges the U.S. Government's right to retain
a nonexclusive, royalty-free license in and to any copyright
covering the article."

NOTE: This notation need not appear in the published
article.

135

Customizing VAXLSE for your language

Jana Van Wyk
SAS Institute Inc.

Cary, North Carolina 27512

Abstract

Many software developers are not familiar with all the syntax rules of a particular
language, especially if that language has many features or they are novices in the
use of the language. Program development can be enhanced with a customized
application of the VAX Language Sensitive Editor (VAXLSE) that contains lan
guage specific information to help programmers develop programs quickly and
accurately.

This paper presents an application of VAXLSE that was developed to be
used with the SAS language. The SAS language is a programming language used
with the SAS System, a software system for data management and analysis, sta
tistical analysis, report writing and presentation graphics. This paper includes
a description of the definition of VAXLSE language constructs and templates
and the formation of tokens and placeholders. An example of how to customize
VAXLSE by transforming a language's context free productions and terminals
into the corresponding VAXLSE placeholders and tokens is presented.

The intended audience for this paper is programmers who are familiar with
the idea of the grammar of a language and who wish to develop a tool which helps
themselves or others in learning and using the syntax of a specialized language.

Overview of VAXLSE - What is VAXLSE and
why use it?

VAXLSE is an advanced text editor with language specific
information that aids in writing and compiling source code.
V AXLSE provides:

need an extra END statement. VAXLSE can help you
avoid this frustration by providing the semicolon or END
statement for you when it is needed. The customization
capabilities of VAXLSE allow you to help automate the
writing of any kind of program by creating a language
specific VAXLSE environment file.

• pre-defined formatted language constructs for many
VAX/VMS supported languages like Ada, PL/1 and
c.

• templates for VAX subroutine libraries.

• complete integration with VAXSCA, VAX DEC/CMS
and VAXTPU.

• source can be compiled, errors reviewed and corrected
within one editing session.

• a VAXLSE definition language which allows you to
customize VAXLSE by creating templates for your
own specialized language needs.

These features can be of help to programmers in many
different ways. They can help a novice programmer learn
about the syntax of a language and what individual com
ponents make up a language. We have all experienced the
frustration of sorting through program statements trying
to figure out where we omitted a semicolon or where we

Proceedings of the Digital Equipment Computer Users Society 139

You can write a program using VAXLSE by learning
the use of 4 control key sequences plus the normal editing
commands of either EVE or EDT. The use of language
templates can be completely controlled by the use of

• control-e,

• control-p,

• control-n and

• control-k.

Control-e allows you to "expand" a placeholder, Control-n
moves the cursor to the beginning of the "next" place
holder, Control-p moves the cursor to the beginning of
the "previous" placeholder and Control-k erases or "kills"
the current placeholder. More experienced VAXLSE users
might also want to unerase placeholders (PFl control-k)
and unexpand tokens (PFl control-e).

Anaheim. CA - 1987

Terminology of VAXLSE

Before presenting a sample VAXLSE session, a few defi
nitions are needed. The main concepts in VAXLSE are
templates, placeholders and tokens. They are language
constructs that define the syntax and grammar of the lan
guage.

• A placeholder is a marker inserted into the buffer by
VAXLSE that "holds the place" of appropriate syntax
of a language in a given context. It indicates a loca
tion in the source code where the user must provide
additional program text by expanding the placeholder
or typing over the placeholder.

• Tokens are words that are typed into the editing buffer
by the user and expanded to provide templates for
their corresponding language constructs.

• A template is any combination of text and place
holders which is brought into the editing buffer by
VAXLSE in response to a user's expansion of their
current placeholder. It is in fact a substitution of one
word (the name of the placeholder) by several words
and strings.

Placeholders are key elements of VAXLSE and require
a little more explanation. Placeholders can be required
or optional. For example, you may have a programming
language where the second statement in a module clause is
optional but the first is required. This can be represented
with the appropriate VAXLSE symbols. There can also be
list placeholders where either zero or more or one or more
substitutions of the placeholder can occur.

The operations that can be performed on placeholders
are

• directly type over,

• erase or

• expand the placeholder.

When the placeholder is directly typed over, the place
holder is deleted by VAXLSE and the text the user types
is added to the current editing buffer. When the place
holder is erased, it is deleted from the buffer. One of three
things can happen when a placeholder is expanded.

• If the placeholder is a nonterminal placeholder, it is
replaced with a template consisting of more placehold
ers and possibly text, such as language keywords or
punctuation.

• If the placeholder is a terminal placeholder, an ex
planatory description of the text needed for the place
holder appears in a separate window. The user types
in the text, and the window and placholder is erased.

• If the placeholder is a menu placeholder, a menu ap
pears in a separate window that the user can scroll
through and then select the item that they wish to

140

expand. The item can be a template that is text only,
a placeholder which is expanded or a combination of
the two.

The following sample VAXLSE session will highlight
how to:

• Expand nonterminal and terminal placeholders.

• Delete placeholders.

• Type over list placeholders.

• Expand menu placeholders.

• Expand tokens.

After invoking VAXLSE by typing LSEDIT EXAM
PLE.SAS, the initial placeholder {@sas..statement@} is
placed in the buffer as shown below. The cursor is on
the first 's'. The curly braces indicate that this is a re
quired placeholder and the ellipsis (...) means that it is
a list placeholder where more that one occurence of the
placeholder may be substituted.

l{Gsas_statementG} ...
I
I
I
I
I
I
!BUFFER EXAMPLE.SAS

To expand the {@sas..statement@} placeholder, the user
types control-e and sees this on the screen:

l{Gsas_statementG} ...
I
!BUFFER EXAMPLE.SAS
1->DATA_STEP : A SAS Data Step
I {Gprocedure_statementG} : Procedure!
I {Gglobal_statementG} : Global stmt I
I "ENDSAS;" : Ends a SAS session I
!CHOOSE ONE OR PRESS HELP KEY I

Since the placeholder {@sas..statement@} is a menu place
holder, a new window with the menu is displayed. Using
the up and down arrow keys, the user can scroll through
the menu and choose one of the items by hitting RETURN,
control-e or ENTER when the arrow is pointing to the
chosen item. If the DATA-STEP item is chosen and the
RETURN key is pressed the following screen is displayed.

IDATA [Gdataset_nameG];
I [Gdatastep_statementG] ...
I
I
I
I
I
!BUFFER EXAMPLE.SAS

Note that the word DATA and the semicolon which is re
quired in the SAS syntax has already been added by the
VAXLSE template. The placeholder (@dataset..name@] is
optional since it has square brackets. At this point the user
can type control-k to erase the placeholder or control-e to
expand it. If control-e is typed the following explanatory
sentence is printed at the bottom of the screen.

IDATA [Gdataset_namel];
I [ldatastep_statementG] ...
I
I
I
I
!BUFFER EXAMPLE.SAS
1-- A string of letters and digits

When the user begins typing the dataset name, the place
holder is deleted by VAXLSE and the screen result is the
following.

IDATA X;
I [ldatastep_statementl] ...
I
I
I
I
I
!BUFFER EXAMPLE.SAS

After the user types the X the cursor is, of course, po
sitioned immediately after the X. To continue to write
the program, the user types control-n to go to the next
placeholder then types control-e to expand the placeholder
named (@dataset..statement@]. Note that this is an op
tional list placeholder. The control-e gives this result:

141

IDATA X;
I [ldatastep_statementl] ...
I
!BUFFER EXAMPLE.SAS
I-> ASSIGIMEXT : Assignment statement
I IXPUT : Input statement
I IF : If statement
I DO : Do statement
!CHOOSE OIE OR PRESS HELP KEY

If the user positions the arrow at IF and presses RETURN,
the following screen results.

IDATA X;
I IF {lexpressionl} THEI
I {ldatastep_statem.entl}
I [Gelse_statementl]
I [ldatastep_statementl] ...
I [lsas_statementG]
I
!BUFFER EXAMPLE.SAS

The placeholder (@datastep..statement@] was replaced by
a template with the syntax for an if-then-else state
ment. Note that the placeholders {@expression@} and
{@datastep..statement@} are required but the placeholder
(@else..statement@] is optional.

For programmers who are experienced with most of
the syntax for a language and view all the control key
typing as combersome but who still want occasional help
in remembering punctuation, tokens are provided. If the
implementor of the VAXLSE environment file for a lan
guage has declared a string to be a token, the user can
type the string and then press control-e. For example, if
the user typed means, for the SAS procedure MEANS, and
then typed control-e the following template for procedure
MEANS would be inserted into the editing buffer.

IPROC MEAXS [lmeans_optionsl] ...
I [lvar_statementl]
I [lby_statementl]
I [lfreq_statementl]
I [lweight_statementl]
I [lid_statementl]
I [loutput_statementl]
I
!BUFFER EXAMPLE.SAS

The SAS Language and Grammar

What is SAS and why does VAXLSE make SAS
easier to use?

The SAS language is a programming language developed
to be used with the SAS system, a software system for data
management and analysis, statistical analysis, report writ
ing and presentation graphics. There are two main parts
of the language: the DATA step and the PROC (short for
procedure) step.

The data step is used to create and manipulate flat
data files and SAS datasets. It has similar statements
to other high level languages like assignment, if-then-else
and do-while-loop statements but the input and output
statements are particularly easy to learn and use.

Once a SAS data set is created, SAS procedures an
alyze and process that data set by reading the data set,
performing various calculations on the data and printing
the results of the calculations. For example, the PRINT
procedure reads your SAS data set, arranges the data val
ues in an easy to read form and prints them. The MEANS
procedure reads your SAS data set, computes the mean
and other descriptive statistics, and prints those statistics
or creates another SAS data set containing the results of
the computations.

The DATA and PROC steps get their names from
the SAS statements DATA and PROC, which start off the
steps. For example, this DATA step

DATA TEST;
INPUT X Y Z;
CARDS;
1 2 3
4 5 6

begins with a DATA statement and creates a SAS data
set. This PROC step

PROC PLOT;
PLOT Y•X;
TITLE 'PLOT OF EXPERIMENTAL DATA';

begins with a PROC statement and processes a data set.
As with most languages that have many features and

functionality, some of the SAS DATA step syntax is hard
to remember. VAXLSE can provide templates for this
syntax. The syntax of the PROC step is usually straight
forward but each procedure has many options. VAXLSE
is particularly well-suited to prompting the user with a
choice of strings for these options.

This is a small sample of some very high level produc
tions of the grammar for the SAS language.

SAS_PROGRAM SAS_STATEMENT+

142

SAS_STATEMENT ··= DATA_STEP I
PROCEDURE I
GLOBAL_STATEMENT

DATA_STEP ::= "DATA"
[DATASET_NAME]";" <DATASTEP _STATEMENT>

DATASTEP_STATEMENT ::= IF_STATEMENT I
ASSIGNMENT_STATEMENT

INPUT_STATEMENT I
PUT_STATEMENT I

DO_STATEMENT

PROCEDURE::= MEANS_PROCEDURE
PRINT_PROCEDURE I

(etc. for each procedure in
the SAS System)

MEANS_PROCEDURE : :=
"PROC MEANS" [MEANS_OPTION] *
[<llVAR_STA TEMENT<ll]
[<llBY_STATEMENT<ll]
[<llFREQ_STATEMENT<ll]
[<llWEIGHT_STATEMENT<ll]
[<llID_STATEMENT<ll]
[<llOUTPUT_STATEMENT<ll]

... "
'

How to Define a Language using its Context Free
Grammar

One of the most useful features of V AXLSE is that it al
lows a customized application for a specific language to
be developed, that is, you can extend an existing envi
ronment file for a language or create a new one. This
feature can be applied in a variety of ways. One result
could be that a particular user of C might wish to extend
the existing C language template and add a placeholder
for a template of a module comment header which can be
expanded while using VAXLSE for C. The second, more
powerful, customization for a user of VAXLSE is creating
the templates for a new language from scratch and that is
what the rest of this paper describes.

Before creating the VAXLSE language constructs it
is important to become familiar with the language and
how it is used. If the environment will be used mostly
by users who are learning the language, then they will
probably want many layers of placeholders to make the
structure of the language as clear as possible. If it will be
used by users who will often edit existing files, then many
tokens are required. Also, it is necessary to be aware of
how the grammar productions may be "collapsed" so that
fewer VAXLSE keystrokes are required to fully expand a
program.

Next, the creator of the VAXLSE environment should
translate the context-free grammar into VAXLSE language
definitions. This involves understanding how the context-

free grammar terminology relates to the VAXLSE lan
guage constructs. The following table illustrates my point.

Context-free grammar terms VAXLSE terms

PRODUCTIOI where body of IOITERMIIAL
rule has at least one PLACEHOLDER
nonterminal production

PRODUCTIOI with terminal
as body of rule

TOKEI

no equivalent

TERMIIAL
PLACEHOLDER

strings
within a
template

TOKEI

A production of a context-free grammar in which the
body of the production contains at least one nontermi
nal can be thought of as a nonterminal placeholder in
VAXLSE terminology. A production with only a termi
nal as the body of the rule is equivalent to a VAXLSE
terminal placeholder.

A token returned by a lexical analyzer and used as a
terminal in a grammar is a context-free concept which is
not used by VAXLSE. This is because VAXLSE does not
accept source and carve it into tokens, that is to say it
does not parse. It instead is a tool which starts with the
beginning production of a grammar and PRODUCES the
defined templates associated with each nonterminal until
no more nonterminals appear in the buffer. But you can
think of the strings within the quoted text of a body of a
placeholder as a type of token. The VAXLSE term token
is confusing because the definition is not closely related to
the traditional definition of token. It instead means that
whenever you want to allow a user to type a word into the
buffer and expand that word to a template or menu you
must define that word as a token.

VAXLSE Language Definitions

There are only three VAXLSE language definitions used
to define a language. The commands are

• DEFINE LANGUAGE

• DEFINE PLACEHOLDER

• DEFINE TOKEN

The DEFINE LANGUAGE command has numerous
qualifiers which can be used to describe the languge for
which you are creating a new VAXLSE application The
DEFINE PLACEHOLDER defines either a nonterminal,
terminal or menu placeholder. The DEFINE TOKEN de
fines a token and the associated template. Several exam
ples of these language constructs follow.

143

Examples of VAXLSE statements

The following is the DEFINE LANGUAGE command used
to define the SAS language. The qualifiers of most interest
are the delimiters which indicate the optional and required
placeholders and the initial string.

DEFIIE LAIGUAGE SAS -
/FILE_TYPES = (.SAS) -
/IDEITIFIER_CHARACTERS = -

"abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMIOPQRSTUVWXYZ
0123466789_$." -

/PUICTUATIOl_CHARACTERS = -
II;> t: ()•-+/" -

/OPT= ("[G","G]") -
/OPTL = ("[G","G] ... ") -
/REQ=("{G","G}") -
/REQL=("{G", "G} ... ") -
/IIITIAL_STRIIG= -

"{Gsas_statementG} ... " -
/TAB_IICREMEIT = 4 -
/COMPILE_COMMAID = "sas "

The following is an example of the definition for a
required list placeholder that is a menu. Note that this
placeholder is nonterminal.

DEFIIE PLACEHOLDER sas_statement -
/LAIGUAGE = SAS -
/DESCRIPTIOI = "Sas statement" -
/DUPLICATIOI = VERTICAL -
/TYPE = MEIU
"DATA_STEP" -

/TOKEI -
/DESCRIPTIOl="A SAS Data Step"

"procedure_statement" -
/PLACEHOLDER/IOLIST -
/DESCRIPTIOI= -

"A procedure statement."
"global_statement" -

/PLACEHOLDER/IOLIST -
/DESCRIPTION= -

"A global statement."
"EIDSAS;" -

/DESCRIPTION= -
"Ends the SAS program."

END DEFIIE

You can see how this directly correlates to the grammar
production:

SAS_STATEMEIT ::= DATA_STEP I
PROCEDURE I
GLOBAL_STATEMENT

In general, a production with several OR clauses is a good
candidate for a menu placeholder.

Taking one of these menu options and continuing with
the language definition produces the following statement.
This menu placeholder has every item defined as a token.

DEFIIE PLACEHOLDER procedure_statement -
/LAIGUAGE = SAS -
/DESCRIPTIOI= -

"A procedure statement" -
/TYPE = MEHU
"PRIIT" -

/TOKEI -
/DESCRIPTIOI= -

"The Print Procedure"
"SORT" -

/TOKEI -
/DESCRIPTIOI= -
"The Sort Procedure"

"MEAIS" -
/TOKEI -
/DESCRIPTIOI=
"The Means Procedure"

EID DEFIIE

Expanding the "MEANS" token into its definition
gives this DEFINE TOKEN statement.

DEFIIE TOKEI MEAIS -
/LAIGUAGE = SAS -
/DESCRIPTIOI = "Means procedure"
"PROC MEAIS [Gmeans_optionCI] ... ; "

[Clvar _statementCI]"
[Clby _statementCI]"
[Clfreq_statementCI]"
[Clweight_statementCI]"
[Clid_statementCI]"
[Cloutput_statementCI]"

EID DEFIIE

The quoted strings make up a template for the to
ken MEANS so that when a user types MEANS and ex
pands it, the template is inserted into the buffer. Continu
ing with the development of these definitions, we take the
means-option placeholder that is within the template and
define it to get the following definition.

DEFIIE PLACEHOLDER means_options -
/LAIGUAGE = SAS -
/DESCRIPTIOI = "Means options"
/DUPLICATIOI = HORIZOITAL -
/SEPARATOR = II II -

/TYPE=MEIU
"DATA={Cldataset_nameCI}"
"IOPRIIT" -

144

/DESCRIPTIOI= -
"Do not print statistics."

"MAXDEC={ClnumberCI}" -
/DESCRIPTIOI= -

"Max decimal places when printing."
"VARDEF={ClnumberCI}" -

/DESCRIPTIOI= -
"Divisor used in calculating variance"

"keyword"/PLACEHOLDER/LIST
EID DEFIIE

This definition is an example of a menu placeholder
where the first, third and fourth items are a mixture of
text and a placeholder, the second item is text only and
the last item is a list placeholder. Defining the placeholder
dataset-name produces the final example that I would like
to look at.

DEFIIE PLACEHOLDER dataset_name -
/LAIGUAGE = SAS -
/DESCRIPTIOI = "Sas dataset name" -
/TYPE = TERMIIAL

"String of letters and digits starting
with a letter."

EID DEFIIE

The placeholder dataset..name is a terminal placeholder
with help text that is displayed when the user tries to
expand it.

Creating and using an environment file

After creating the file with VAXLSE statements, an envi
ronment file can be created by following these steps.

• Invoke VAXLSE using the file with the languge defi
nitions by typing

$ LSEDIT FILE.LSE

where FILE.LSE is the file containing the definitions.

• Type control-z to place the cursor at the command
line and then type

LSE>DO

to process the definitions.

• To save the language definition in an environment file
type

LSE>SAVE EIVIROIMEIT IEWLAIGUAGE

This creates an environment file named NEWLAN
GUAGE.ENV.

• To use the environment file with VAXLSE you can
either define a logical name LSE$ENVIRONMENT
to point to a full pathname or invoke VAXLSE us
ing the command $ lsedit /environment =
pathname_of..IEWLAIGUAGE.

Conclusion

In conclusion, I'd like to encourage you to consider design
ing an application of a customized VAXLSE environment.
I hope this paper will help you get started. The applica
tion will be useful and easy to use and the reward should
be satisfied user's of your language.

145

Automating a Software Development Environment

Linda L. Craddock
SAS Institute Inc.

Cary, North Carolina

Abstract

Thorough source code management, bug tracking, regression testing, and per
formance coverage and analysis are all essential parts of software development.
Since we develop several software products at our company, we decided that
we wanted to automate all of these tools and integrate them into one software
development environment.

Using a source code management system and bug tracking system developed
in-house along with a complete regression testing system using the VAX/DEC
TEST Manager (DTM) and the VAX Performance and Coverage Analyzer
(PCA), we were able to automate our methods for software development test
ing and source code coverage and performance analysis; thus, ensuring software
integrity.

Introduction

To work toward our objectives of software integrity, we
decided that the following issues needed to be addressed
before project development could begin:

Source development cycle requirements How could
we ensure compatibility of our software products be
tween operating systems and source code levels?

Automation needs What utilities were needed during
the course of our software development cycle?

Automation tools What types of tools should we use to
address these needs?

Tool Integration How would we implement such a sys
tem into our current software development environ
ment?

Software Development Cycle Needs

In order to produce better software, we felt that we needed
to adhere to more restrictions in our development cycle
than we had in the past. Therefore, we decided that we
should focus more attention on source code management,
bug tracking, regression testing, and performance and cov
erage analysis on our software products.

Automation Needs

Historically, our typical software development cycle per
release takes at least a year to a year and a half; therefore,

Proceedings of the Digital Equipment Computer Users Society 147

we needed to make sure that we covered both immediate
and long-term automation needs.

We needed a source code maintenance utility that
closely monitored source code activity at both the devel
opment and system level. I'll quickly review what I mean
by "development" and "system" levels:

• At the development level, we needed a source code
management system that allowed developers to access
different levels of existing source code. They need the
ability to "pull" or extract source code from one of the
source code levels in order to perform fixes. They also
need to be able to "push" or integrate their source
code into fixes or new source code the source code
level, referred to as the INTegration level.

• At the system level, we needed a Source Code Man
agement System that allows the Source Code Man
ager to "push" or move entire levels of source code at
appropriate time intervals.

The source code levels that the Source Code Man
ager manages include: INTegration level-where all
new source code or source code fixes are "pushed"
or integrated into existing software products; TEST
level-where the INTegration level is pushed to once it
passes several regression tests; and MASTER level
where TEST is pushed to after regression testing and
other operations are performed-this is the most sta
ble or "frozen" level and is where our final software
products eventually evolve from.

We also found that we needed a bug reporting sys
tem that would not only be used to effectively to report

Anaheim, CA - 1987

software errors, but could also be integrated into our re
gression testing cycle. This facility would consist of a bug
reporting mechanism that would also keep track of bug
fixes. By performing both functions, bug verification and
removal of bugs from the outstanding bug report would
become an easier task for the Test Administrator.

It was also critical for us to obtain a regression test
ing system that would play an important role in the early
detection of any new problems or regressions in any of our
software products. Again, we needed to find a regression
testing system that was flexible enough to run at both the
development and system levels. During development, re
gression testing needed to become an essential step when
testing new source code and/or testing software fixes be
fore the source is pushed into the INTegration level to
reduce the chance of introducing new bugs into our soft
ware. Additionally, if we could detect possible regressions
between source code levels during the integration phase,
we would prevent the introduction of bugs into more sta
ble source code levels.

Finally, we decided that we needed to do more per
formance and coverage analysis on the source code that
makes up our software products. By doing such analyses,
we can be more confident of better performance and qual
ity of our software products before they are sent out to the
customer.

Automation Tools

When looking for tools to use in our automated system,
we decided that we wanted to use some tools already de
veloped in-house and combine them with existing software
development tools. Before choosing a tool, we took into
consideration its ease of use and the degree of difficulty
it would require to integrate with other tools. The tools
chosen for automation included:

• XLIB (a tool developed in-house) for our source code
management system

• SAS(R) software products for our bug tracking system

• VAX DEC/Test Manager (DTM) for our regression
testing system

• VAX Performance and Coverage Analyzer (PCA) for
performance and coverage analysis

Source Code Management System (Using SDS
Commands and XLIB)

Approximately three years ago, as the number of software
products offered on the VAX continued to grow rapidly, we
realized that we needed to upgrade our source code man
agement system that consisted of several independent com
mand procedures. These procedures required too much
human intervention. We investigated several other tools
that were offered by several vendors before deciding to
write the tool in-house. Due to the fact that our eight

148

software products consist of 4638 different source modules
existing in 92 different directories--which translates to
over 3,313,926 lines of code and produces 366 executable
images, we felt that we could better customize a source
code management system to address all the needs of such
a large system rather than to try and supplement an exist
ing tool. As you can imagine, when you are dealing with a
system of this size, speed of execution for each update op
eration is of great importance and we were able to build a
system that could handle the size of our software products
as well as execute operations quickly and efficiently.

The source code management tool developed in-house,
XLIB, is virtually transparent to the developer, because
it is used in conjunction with "system development ser
vice" or "SDS" commands. The SDS commands specify
what source management application is to be performed.
These commands act as a "front-end" to each host sys
tem's source code management system. Since the SDS
commands are a company-wide source management ap
plication, the functionality of all commands are the same
across all host systems. Therefore, a developer can log onto
any host system and issue an SDS command to perform a
source management application and the operation would
execute the same as it would on any other host system.

XLIB coupled with SDS commands, makes it possi
ble to perform source code pulls and pushes across several
source code revision levels and separate software product
tracks. Developers are able to "pull" or extract source
from any of the three source code levels but are only able
to "push" source into the INTegration level. On the other
hand, the Source Code Manager is able to perform any
update operation at any level.

All source access is recorded in an audit trail. This in
formation is later used to create status reports of the daily
or weekly activity at the INTegration level. Additionally,
we often refer to the audit trail when investigating a new
bug that has surfaced in the INTegration level.

Another access feature that is essential, is "locking''
or "checking out" source code when it is "pulled" from
one of the source code levels. Therefore, when another
developer tries to pull a piece of code that has already
been checked out, the developer is notified that the file is
currently locked and by whom in order to discourage si
multaneous updates. This locking mechanism is sufficient
for our environment because our developers have very spe
cialized areas of expertise and the need for simultaneous
update is minimal, yet requires some coordination effort.

Source push verification is achieved when the devel
oper's push request has been successfully executed. XLIB
compiles the source code modules and links any executable
images associated with the update request. Thereafter, the
VAX DEC/Test Manager is invoked and regression test
ing is performed. XLIB also checks for differences between
the new source code and existing code at the INTegration
level. If differences exist, XLIB archives the existing code
onto tape. Only if all steps are successful, XLIB pushes
the source code, object code, and image(s) into the INTe
gration level.

If any errors occur, no update to the INTegration level
is performed and the developer is notified of the errors that
occurred during the update phases.

Module management is performed by XLIB in con
junction with an in-house utility, BUILD. BUILD deter
mines which header files, source code, object files and li
braries are out of date and sends this information back
to XLIB who then performs the necessary compiles and
links to form a new, updated image. BUILD uses "build
scripts" when determining what files need to be updated
and are portable across all host systems at our company.

Bug Tracking System (Using SAS(R) Software
Products)

We chose to use the SAS/ AF(TM) software product to
produce an interactive full-screen application that could
easily be used by developers on our system. Since the
functionality of this bug tracking system is also similar to
other tracking systems on other host machines; other host
developers can log onto our host machine and report bugs
found in the software on our machine.

The primary functions of the bug tracking system are
reporting any bugs found in our software, tracking tests
that exhibit these bugs, tracking bug fixes and removing
bugs from the outstanding bug list.

When a bug is entered, the developer is required to
enter certain information about the bug such as: a title
and description of the bug, a test program that exhibits
the bug's behavior, etc.

The information entered is then added to a master
database. It is then the Test Administrator's duty to as
sign priorities to the bugs reported. Once this information
is merged into the master database, SAS(R) is used to ma
nipulate the data and generate various types of reports.

We currently distribute "portable" bug reports and
"non-portable" bug reports. The portable bug reports are
sent to developers on other host machines who are respon
sible for bugs found in the software on any host machine
so the portable bug can be fixed and the fixed source code
transported back over to the VAX. The non-portable bug
report is distributed to the developers on the VAX since
these types of bugs exist only in the host-layer of the soft
ware products and are specific to our host machine.

Furthermore, since this bug tracking system is used
across several host machines, "transaction files" contain
ing specific information about bugs entered, fixed or veri
fied are transported (via tape) to other hosts on a periodic
basis so their bug tracking systems can be updated to re
flect when bugs have been entered, fixed or verified on the
other host machines.

Regression Testing System (Using the VAX
DEC/Test Manager)

When looking into obtaining an automated regression test
ing system, we wanted an application that could be used
both by the developers during development as well as be-

149

come integrated into the source code management sys
tem, XLIB, to perform system-wide testing before pushing
source code levels. We chose to use the VAX DEC/Test
Manager because it was flexible enough to be used for both
functions. It also provided us with the ability to have
groups of tests pertaining to different needs.

In order to provide the developers as well as the
Source Code Manager with a better method for running
regression tests at any of the source code levels, we cre
ated a command that could be used to invoke DTM. The
format of the command is given in Figure 1.

At the deveiopment level, developers use the
SDSREGRESSS command when testing out their source code
fixes or new source code development. The test results help
the developer to determine whether or not the source code
is ready to be pushed out into the INTegration level.

At the system level, DTM is used to run rigorous
regression tests at different time intervals (daily, weekly,
monthly, etc.). The SDSREGRESSS command is also used
for this purpose when running all test groups that exist in
a DTM library at a certain source code level in the form
of a batch job. If any tests fail during the execution of
the batch job, the Test Administrator is notified by mail
so the regression can be investigated on the following day.
By running regression tests at regular intervals at differ
ent levels of intensity, the Source Code Manager can better
determine when a source code level is ready to be pushed
to a more stable environment.

Performance and Coverage (Using PCA)

Performance of our software is a growing concern of ours.
We chose the VAX Performance and Coverage Analyzer
(PCA) because it enabled us to check the performance of
our software and its affect on system resources; to check
coverage of our source code in our regression testing; and
to generate statistics for a particular release of our all soft
ware products.

We currently use PCA to check the software products'
affect on important system resources such as CPU usage,
I/O operations, and page faulting. This is to help us to
determine which parts of our software products require
more fine tuning before being shipped out to customers.

We also use PCA to check the coverage of our source
code in the tests in our regression testing system to ensure
that all source code in our software products have been
exercised thoroughly. As a result, we can be assured that
our regression testing system is an effective tool in our
software development process.

At the end of each software development cycle, we
use PCA to generate final performance statistics on all
software products. These statistics are compared to the
previous release to check for any possible performance re
gressions.

To make life easier for our developers, we have cre
ated a command in-house, SASPCA, that helps them to
collect information about the performance and/or cover
age of their source code without having to deal with the

SDSREGRESS -n test(s)

name(s) of
tests known
by the DTM
library

-g group

I
group(s) of
tests (that
test different
software products)
known by the DTM
library

-level

source code
level

Figure 1: Using the SDSREGRESS command

the compiling and linking operations required to use PCA.
We are currently working on adding PCA as an op

tion for the SDSREGRESSS command. This command will
make it easier for developers who do not have experience
with either DTM or PCA to obtain test results and in
formation about the performance and/or coverage of their
source code.

Tool Integration

After getting all automation tools in place, we were able
to create an automated system that was able to serve our
needs at the development level as well as at the system
level. We'll take a look at how we use this system at both
levels.

Development Level Activities

Development level activities are performed by software de
velopers on our syf!tem and typically include activities such
as:

• reporting a bug

• fixing the source

• pushing the source code into the INTegration level

Reporting a Bug

• A user on the system invokes the Bug Tracking Sys
tem and enters the following information:

o title describing the bug

o a description of the bug

o a test program exhibiting the behavior of the bug

• After the user exits the Bug Tracking System:

o the information is added to the master data base

o the test program is copied to the "test bed" area

o mail is sent to the Test Administrator and as
signed support person

Fixing the Source

• The assigned support person moves to his/her work
area and:

o Issues the SDSPULL command which requests
that source code is pulled (INT is searched first,
then TEST, then MASTER - to ensure that
they get the most recent version of the source).
Once the source code is successfully pulled (and
not locked by someone else), the source code is
copied to the work area and notification of a suc
cessful pull is issued. The developer is then re
sponsible for:

o Running the program (located in the "test bed")
to determine where the bug is occurring.

o After making the source code fix, the developer
issues the SDSBUILD command which compiles
the source code and links the necessary exe
cutable images. Once the BUILDing process is
completed, copies of the object code and exe
cutable images are placed into the work area.

o The developer then submits the SDSREGRESSS
command to invoke DTM and run regression
tests. After testing is done, the DTM process
sends mail back to the developer about the sta
tus of the test run.

Pushing Source

150

• The developer then issues the SDSPUSH command
which involves running the following steps:

o The source code is run through a filter mech
anism to check the syntax of the program and
ensures that coding standards are not violated.

o The source code is compiled with DEBUG so
that development debugging is enabled

o Executable images affected by the source push
are linked.

o The DEC/Test Manager is invoked to run the
test collection (determined by the software prod
uct class specified in the SDSPUSH command).

o The new output results are compared against
DTM benchmarks:

• If successful, XLIB copies source code, ob
ject code, and executable images into the
INTegration level and mail indicating SUC
CESS is sent back to the developer

• If unsuccessful, XLIB does not perform the
push and information about the problems
that occurred during update is mailed to the
developer.

• Once the push is complete, the developer invokes the
bug tracking utility and gets into the FIXED panel
and marks the bug as fixed. By entering the bug
as fixed, the Bug Tracking System sends mail to the
Test Administrator about the fix. It is then the Test
Administrator's responsibility to re-run the test (out
of the "test bed" area) and verify that the bug is fixed.

o if the bug is fixed, the Test Administrator cre
ates a new benchmark for the test and inserts
it into the DTM library; thus, completing the
entire development cycle

o if the bug is not fixed, the Test Administra
tor contacts the developer about the results and
changes the status from FIXED back to OUT
STANDING.

System Level Activities

The Source Code Manager in coordination with the Test
Administrator, run the system level activities that affect
an entire levels of source code. These activities involve
regression testing to check the stability of a level; linking of
executable images; pushing one level to the next, etc. and
are run at daily, weekly and "pre-change day" intervals.

Daily activities

Certain activities are performed daily so pushes to the
INTegration level are reflected in the software on the fol
lowing work day. Running regression tests is essential in
order to ensure that all pushes made during the day do
not "break" other parts of the software products.

A daily list of activities include:

• Running batch jobs that re-link base images at the
INTegration level

• Running all regression tests included in the DTM li
brary

• Comparing all new output results against DTM li
brary benchmarks. If any regression tests failed, the
Source Code Manager and Test Administrator are no
tified so the problems can be investigated on the next
day.

151

Weekly Activities

At the end of each week during the development cycle,
we attempt to push the INTegration level to the TEST
level. This push integrates new development and source
code fixes into a more stable environment. Since in-house
testing is often performed at this level, we must:

• Run several intensive regression tests on ALL software
products at the INTegration level in order to make
sure that no regressions have occurred.

INTegration level will NOT be pushed to TEST if the
new output and benchmarks do not match.

• All INTegration level files are then copied to TEST
level

• All executable images are relinked

• Regression tests are re-run to ensure that the new files
from the INTegration level combined with the existing
TEST level source code have not produced any new
bugs.

If any problems have occurred and are determined
insurmountable, the old TEST level is restored from
the archive tapes.

Pre-Change Day Activities

Pre-change day activities only occur when a very stable
TEST level exists. Before TEST is pushed to the "frozen" ,
MASTER level, the DTM library test suites are executed
once again to determine whether or not the push should
be performed. If tests are successful:

• MASTER level is archived

• TEST level is copied to MASTER Level, then:

• All source is compiled without the DEBUG option.

• All executable images are re-linked.

• DTM is invoked again to run all test suites to check
the stability of the MASTER level to see if any prob
lems have surfaced from compiling all source without
/DEBUG.

If any regressions occur, the Test Administrator and
Source Code Manager are notified about the prob
lem(s).

• Batch jobs are then submitted to generate PCA statis
tics regarding our software's performance and effect
on system resources. These statistics are later com
pared against the previous release's statistics in order
to check for any performance regressions. Once we
are finished with these statistics they are archived for
later use.

SUMMARY

We have successfully achieved system integrity by ensur
ing the completeness of our source code management, bug
tracking, regression testing and performance and coverage
analysis system. Through integration of new and improved
automation tools, we have been able to develop and main
tain a more efficient software development cycle. Our com
pany not only benefits through the use of our automated
environment, but also ensures that our customers receive
reliable software products consisting of better quality and
performance.

152

TOOL INTEGRATION
AT THE DEVELOPMENT LEVEL

Report bug aend mail Developer
runs
SDSPULL

Developer
Work Area

Make
aource
f h

Run
SDSBUILD in Bug ----------------> Run

SDSREGRESS
Run
SDSPUSH Tracking to Developer

System

TIME
INTERVALS

DAILY ----->

I
I
I
v
I
I
I
v

I
I
I
v

I
I
I
v
I
I
I

PULL

f
I

r
I
I

------>-------------------
! I r MASTER I LEVEL

! I

TEST LEVEL
I

i------------1=============
t INTEGRATION LEVEL :

f
I

Source Code
Levels

t
I

•compile
• 1 ink

• regress
• check aource

coverage

•filter

• SDSBUILO

* SDSREGRESS

I
v---------> PUSH I

<--v

ACTIVITIES

= = = = = = == = = = = = = = === = = = = = = == = = = ==== = =.= I Process SDSPUSH Requests:

TOOL INTEGRATION
AT THE SYSTEM LEVEL

SOURCE COOE LEVELS

I •Run filter on source code ----------> PASSED ----------------------------> PUSH I •Compile source & link images
\ • Run regression teats
====================================

I
I
I

I INTEGRATION LEVEL
I
I •Re-link base images
I • Run regression tests

WEEKLY ----> I • Run regression tests at INT Level
I • Archive TEST level

v
PASSED ----------------------------> PUSH

I

PRE
CHANGE
DAV

I • Run regression tests at TEST level I
I • Archive MASTER I eve 1 I

153

TEST LEVEL

•Re-link ALL executable
images

• Re-run ALL regression
tests

v
PASSED ----------------------------> PUSH

I

BASE LEVEL I
I

•Recompile all source I
code without DEBUG I

•Re-link all executable I
images I

• Re-run ALL regression I
tests I

• Generate PCA. statistics!

The Internet Domain Name System

S. Rohert Austein
Massachusetts lnstitutP nf Technology Laboratory for Computer Science

Cambridgt'. \[assac huset ts

Abstract

The rapid growth of packet switchPd computer nf'tworks in recent years has
created an environnlf'nt where the mere task of locating a particular network host
(computer) or user presPnts a significant challenge. On a large network such as
the INTERNET it is no longer practical to maintain a single comprehensive tablP
of all the hosts on the network. let alone all the users.

The Domain Same System (DNS) is a collection of concepts. algorithms,
and protocol specifications which address this problem. ThP DNS is part of the
TCP /IP protocol suite. and the concepts and architecture of the DNS are gaining
a foothold in other network communities such as BITNET and USENET.

This paper presents an overview of the DNS. along with notes on some
lessons learned in developing ;in implementation of the DNS.

The problems that the DNS attempts to solve

Back in the early days of computer networks it was a rel
atively straightforward task to maintain a comprehensive
table of all thP hosts on a network. In an environnlf'nt of.
at most, a few hundred hosts. a table consisting of one en
try per host was quite tractable, and weeks or evPn months
could go by without anyone needing to makP a change to
the table .1

Since tllP adoption of the TCP /IP 2 protocol suite,
however. it has been possible to hook an entire network
onto the INTERNET with little more effort than it used to
take to hook up a single host. This ease of connection,
combined with the trend towards large numbers of mini
computers and workstations instead of a small number of
mainframPs. has caused the INTERNET to grow at a rate
surprising Pwn to its designers. It is no longer fea'lible to
maintain a romprehensive host table for the I'.'ITERNET. 3

Quite apart from the human suffering involved in attempt
ing to maintain such at able. the scale oft hP problem <'ffec
tiwly guarantPt's that. by the time the <Putral authority

1 In prPhisturic times. when the ARPA.NET still used the NC'P
protocol suite (pre-1982). it was even possible (or at least conceiv
able) to keep a list of all the authorized users on the network.

2 "TCP" and ·•[p" stand for "Transmission Control Protocol" and
"Internet Protocol." respectively. See [DDN 85] for more information
on TCP/IP.

3 The staff of the DD:\ \etwork Information Center ('.\!IC') at
tempt to rl.o ~o anyway for the benefit of hosts which have not yet
been taught how to use the Dl\:S, but it is a losing battle. As this
article goes to press. the :\IC' host table has ~ 6SOO entries; MIT
alone has~ 1700. many of which are not in the NIC table.

Proceedings of the Digital Equipment Computer Users Society 157

can verify all the entries in thP table, enough entries will
have become obsolete to render their efforts largely use!Pss.
To make matters even worse, mathematical analysis of the
way in which people use host tables indicates that an inor
dinate amount of CPU time and network bandwidth will
be consumed nwrely attempting to retrieve and examine
a comprehensive host table for a network of this size: se••
[RFC-1034] for dPtails.

Other problems of scale

While the problem of host table maintenance and distri
bution was the driving force behind the development of
the DNS (in the sense that it was clear that something
would have to be done about the host tablP problem in
relativdy short order), it was by no means the only prob
lem of srale that the INTERNET was facing. One partic
ularly noticeablP4 problem was the increasing complexity
of t hP addrPsses used in electronic mail nJPssages. From
its humble origin as an amusing gimmick of an obscure
operating systPm at the Dawn of Timesharing, electronic
mail has grown to become a major network and social phe
nomenon. Indeed. to many usPrs. the "network" consists
of t hosP sitPs reachablP by electronic mail; other network
servicPs. while useful. pale in significance beside this single
serVJce.

.Just as different network communities havP develop•·d
differmg low-level protocols, different electronic mail cum
munitiPs havP developed differing electronic mail protocols
and addrPssing schemes. Unlike lower-level protocols. h<Jw-

4 Noticeable, that is, to the "users."

Anaheim. CA - 1987

PWr. ther•' is no coIH'Pptual diffknlty involved in having a
ho1;t that 1;its on two different networks relay electronic
mail mt->ssagPs across tlw boundary. In practice, for the
sake of mutual sanity. the electronic mail message header
formats on the various networks that can communicate via
eli>ctronic mail relays have tended to rnuvPrg!:' towards a de
/ado standard which closely ri>sembles but is not identical
to the prevailing INTERNET standard. The principle prob
lem here was the difficulty involv!:'d in constructing and
deciphering the "address" fields. those fields which name
the originator and recipient(s) oft lw nwssage. As the "net
work" of sites reachabk hy i>lectronic mail grt'W, thi> com
plexity of these addresses placi>d them bi>yond the grasp
of the non-specialist.5 Ri>medying this situation calkd for
a naming convention which could be ust>d on both sid!:'s of
thi> relay boundaries and a protocol that could be used to
hidi> the complexity involved in using the relays from the
end users.

Yet another problem on the horizon, relatt>d in that
it involved problems of transparently re-routing electronic
mail, was the growth of environments containing large
numbers of workstations with little or no provision for
filesystem backup. The user of such a workstation might
legitimately want to participate in electronic mail ex
change but presumably would not want her mail to be
stored on a filesystem with poor backup servict>; rather,
she would like to have any mail addressed to her work
station re-routed to some central repository. Some mecha
nism was needed to allow the various electronic mail agents
to handle such cases intelligently, again without forcing the
typical user to pay much attention to the details of how
this happens.

What these problems have in common

While the problems of excessive host table size and trans
parent electronic mail routing may, at first, seem unre
la.tt>d, they have common features. Both are essentially
the problem of constructing and managing a large-scale
data.base, with some special constraints:

• The primary da.tahase key (the "name ..) must he sim
ple enough for usns to rPmember, hut must contain
enough information for the database software to an
swer qui>ries hoth promptly and correctly.

• The nanws usi>d should hide unnecessary detail from
the usPrs.

• The datahasi> slin1tld look like a single name space
from the u:-.ers · puint of view.

'The tendency has been to use some form of explicit rout
ing. whether in th<> (unofficial) IN'IERNET "%" syntax such as
"user%host1%host2Clhost3" or in the USENET "!'' convention
as in "host3!host2 !host1 !user." The inherent difficulty of this
sch<>me arises when one attempts to parse an address such as
"name1 !name21.name3Clname4." Depending on the rules used to parse
~w·h iUl address this might be interpreted as mail for user name2 at
host namel via name4 and name3, or as mail for user name2 at host
name3 via name! and name3. Clearly, more perverse examples can be
<"onstructed readily.

158

• The database must be highly available: failure of a
handful of computers should not cripple tlw entire
network.

• The system should be reasonably reliable; it is permis
sible for there to be transitory inconsista.ncies while
updates propagate, but the database should conwrge
towards a consist ant state.

• The system must scale up well, to meet the needs of
a rapidly growing network community.

• The system must allow for extension to meet new
needs.

• The system must allow administrative control of por
tions of the database to be delegated to the adminis
trative entities best suited to maintaining them. No
single administrative entity should have the impossi
ble task of maintaining a comprehensive table.

How the DNS addresses these problems

The DNS is the result of several years of development
and experience with one of several schemes that were pro
posed to address the problems discussed in the preceding
section; see [RFC-1034] for more information on the an
tecedents of the current specification. It is neither possible
nor desirable to completely describe the DNS in a paper
of this length; if you want all the details, see [RFC-1034],
which discusses the general design of the system, and
[RFC-1 Q:l5], the protocol specification. For the present
purpose, it will suffice to present the broad operation of
the system and describe how it simplifies life on the net
work for users and administrators.

Structure of Domain Names

The DNS uses little-endia.n.6 tree-structured names, with
". ·· characters delimiting the fields within the name. For
example. "Loki. CC. Miskatonic. EDU" names a machine
locally known as ·'Loki" at the Computer Center of Miska
tonic liniversity. which is an educational institution. 7

Thert> are several noteworthy points about domain
names. First. all domain names have an invisible suf
fix: properly speaking. there are five fields in the name
'"Loki.CC.Miskatonic.EDU." the last being the invisible
field (to the right of ··Eou··) denoting the root of the naming

6 Th<' term "little-endian" is borrowed from the terminology used
to label b)·t.e-ordering schemes. It refers to the semantics of domain
names--the left.most field of the name is the least significant field uf
the name while the rightmost field is the most significant. In other
words. the name starts at the "little end," hence the term "little
endian."

7 See (RFC-920, RFC-1032, RFC-1033] for a discussion of thte ad
ministrative constraints on choice of domain nam.,s: ,;ep [RFC-llJ:l;,,
pp. 7-8] for the technical considerations.

trce.8 Second. heing tree-structured, this naming scheme
is recursive: "'EDU'" has a child node "'Miskatonic. EDU"
which in turn has a child node "CC. Miska tonic. EDU ... and
so forth. Last, the choice of names follows organizational
boundarif's; the names hide irrelevant detail while empha
sizing detail that may aid users in remembering the nanws.
The assumption is that the mythical "average user" is
more likely to remember an electronic mail correspondent
as

Fred Dorf, who works at at the Totally Winning
Software Company

than as

Fred Dorf, whose home machine MUMBLE can
be reached via relay by host BUMBLE on the
FROTZNET.

The choice of organizational boundaries in the naming
scheme also has implications for the delegation mechanism,
discussed below.

Delegation of Authority in the DNS

As previously mentioned, it is absolutely vital that the
DNS have a mechanism for breaking the namespace up
into reasonable sized administrative chunks. These ad
ministrative chunks are referred to as "zones of authority,"
or just ·'zones:' A zone is a subtree of the naming tree,
delimited:

• At its base (root of the subtree) by a node containing
a special record called a "'Start Of Authority" record.

• At its leaf nodes.

• At branches containing a record delegating authority
for the name at that branch to some other zone.

The administrator of a zone is said to haw authority over
the name of the zone and any c hildrt>n thereof. 9 The
zone administrator can, at hn option. cr<'ate and destroy
records associated with names that arf' children of the zone
name. and create and dt>stroy database records associated
with those names. 01w particular kind of database record
that the administrator ran rreate is a record which dele
gates authority for the nam<' at which tlw delegation ap
pears to another zone. to Such a delegation passes author
ity from thP part>nt zone to the child: the parPnt cannot

'The D'."S. ilS sp,.cified, is not an ·•,.xplicitly-rooted" naming
~ch<>me. This turns out to be somewhat inconvenient when attempt
ing to design a friendly user-interface. An explicitly-rooted syntax
is used in certain parts of the DNS ("Loki.CC.Kiskatonic.EDU" be
<·omes "Loki.CC.Kiskatonic.EDU."), but the canonical form of do
main names in ,.\ectronic mail messages is not the explicitly-rooted
fonn.

~This is not quite tnie: SPe discussion of the CLASS attribute.
below. for details.

10 Properly sp .. aking. the delegation specify the hosts that provide
authoritative name servi<'e for the designated zone.

159

claim to bie authoritative for any name within the child
zone.

The Tone is the basic unit of administration in the
DNS. Sinc·e the DNS was developed on the INTERNET.
original atJ1thority rests with the DDN Network Informa
tion Center (NIC). by fiat; the NIC is authoritative for
the root Z<Jl!le. \Vhen the NIC receives a registration re
quest from an organization that is willing and able to ad
minister its own portion of the tree, the NIC delegates
that porti•Jn. of tlw tree to the requesting organization;
for exampk the NIC might delegate authority for the
Miska tonic. EDU subtree to the Telecommunications of
fice of Miskatonic University, thus giving administrative
control for the name "Miska tonic. EDU" and any children
thereof to the organization most likely to know what data
should in t. be portion of the database representing Miska
tonic Unin~rsity. Note. however. that the NIC has the
option of revoking the zone delegation at a later date if.
in the Nlf'"s opinion, the delegatees are not administering
their zone properly; in practice this would only happen if
more politoe attempts by the ~IC to remedy the situation
were unsu1.~cessful.

The process of delegation need not stop at one
level. To continue the example. Miskatonic University
is a large l)rganization in its own right. containing many
organizations (departments, laboratories, and so forth)
which may or may not be large enough to present an
administraitive challenge. Some of these organizations,
such as the computer renter. may want to adminis
ter their U\l\'n portions of the database; some, such as
the payroH office. may prefer to leave this task to the
Miskatoni.c. EDU zone administrators; some, such as a fra
ternity with a collection of personal computers on the cam
pus network. may not be considered technically compe
tent or responsible enough to act as administers. The
Miskatoni c. EDU zone administrators can chose to dele
gate authority in the first case while rt>tain control in the
second and third cases. Thus, the Miska tonic. EDU zon<'
administrators can dt>legate the name CC, Miskatonic. EDU
to the }riskatonic Fniversity Computer Ct>nter, al
lowing th<> Computer Center to create names lih
Thor. CC .Miskatonic. EDU and Loki. CC. Miska tonic. EDU
constrained only to their own judgment, retain control of
the name Payroll. Miskatonic. EDU. insuring that only
Telt>comm1mications Office staff can modify the database
records des-cribing the host Payroll. Miskatonic. EDU.
and retain control of the name Frat. Miskatonic. EDU.
forcing tlw members of thf' <M1S1 fraternity to ob
tain the approval of the Tt'lecommunications Office hP
fon' rreating names like Beer. Frat. Miska tonic. EDU and
Brew. Frat. Miska tonic. EDU. This process of breaking ad
ministration down by organization considerations goes on
at Pach lt>vel. nntil things finally come to rest with. Wt'

hope, t>ver:rone except the downtrodden <I>nn fratNnity
rt>asonahly happy.

Th us the D '.\ S provides a flexible nwc ban ism for
parceling .. ut control of tlw datahase as needt>d. whilt· rP

taining a "drnin-of-1·ommand'" structure useful in handling

the occasional incompetent or malicious administrator. It
is important to remember that this division of the database
into zones is only visible to the administrators; it is. and
should be, of no concern to the naive user.

Resource Records. N a1ne servers, and Resolvers

Conceptually, there are three major components of the
DNS 11 :

• The database. a set of Resource Records (RRs). RRs
are organized into zones, as described in the preceding
section, but this is usually invisible to the end user:
the user sees a single. romprehensive database.

• Resolvers. programs which search the database for
RRs, on behalf of users. The user communicates to
the resolver (via a local user interface outside the
scope of the DNS specification) what RRs the user
wants to find; the resolver initiates one or more trans
actions with one or more name servers in order to re
trieve the desired information or determine that the
quny cannot be answered with the information cur
rently available.

• Namt Seri1ers. programs responsible for dispensing
RRs. in response to queries from resolvers, on be
half of zone administrators. Name servers are passive;
they answer queries put to them, if possible, but do
not initiate transactions other than occasional main
tenance operations. Zone administrators make the
information in tlwir zones available by loading it into
name servers running on the hosts to which the par
ent zone has delegated authority; this is the only way
that new information enters the database.

The conceptual distinction between resolver and name
server is sometimes blurred in practice; implementors may
chose to combine both functions into a single program, and
there are some optional features in the DNS specification
that may make it difficult to keep track of which program
is currently acting in what role. Nevertheless, the basic re
lation between these three components is simple: resolvers
obtain resource records from name servers. Each of these
components are discussed in slightly more detail. below.

Resource Records

A RR is a data structur<" with si>vnal att.ributi>s. One of
these. thi> NAME. is alre:idy familiar. The next two are
small integers .:ailed CLASS and TYPE. TYPE specifies
the kind of resource described by this RR, such as onP
ll('twork address of a host or the name of a host providing
name service to a zone. CLASS provides a mechanism for
creating parallel trees in the DNS in cases where differing
assumptions about data formats for RRs with the same

11 The presf'ntation in this section closely follows [RFC-1034, pp. 6-
7], q.t'.

160

NAME and TYPE need to lw made explicit, such as the
network address of a host under different protocol suites. 12

The triplet (NAME. CLASS. TYPE) completely speci
fies a RR: the queries sent out by a resolver consist of such
a triplet and not much else. RRs may (and do) exist which
have identical NAME. CLASS. and TYPE values but differ
in the data portion of the RR, but, since they match the
same triplet, if any one of them is returned by a query,
they will all be returned by a query. The DNS uses this
to represent ·'one-or-more" values such as host addresses
or members of a mailing list.

The remaining attribute common to all RRs is the
''Time-To-Live" (TTL). Given the scale on which the DNS
is intended to operate, tracking down a particular set of
RRs will probably be a fairly expensive operation in the
general case, so a caching mechanism is provided. When a
name server sends an RR to a resolver in answer to a query.
the resolver has the option of keeping a copy of that RR
for the period of time specified by the TTL attribute and
using that cached copy to answer user requests rather than
undertaking another conversation with the name server.
Note that the value of the TTL attribute, like the rest of
the RR. is under the control of the administrator of the
zone whence it came: thus, the zone administrator has
some amount of control over how often resolvers think it
is necessary to query her zone's name servers.

The rest of the RR is the resource data (RDATA). This
is the payload that the rest of the system transports. The
format of the RDATA portion is dependent on the CLASS
and TYPE values; it may consist of zero or more integers,
domain names, text strings, or bit.vectors. In the message
format used in conversations between resolvers and name
servers. the RDATA field is preceded by a byte count. A
resolver need not understand the format of the RDATA
attribute of every RR it handles; it can preserve RRs of
unknown CLASS and TYPE unchanged.

For a detailed description of the existing RR TYPEs
and formats, see (RFC-1035]. For this presentation it will
suffice to list the general kinds of data that are currently
defined:

• Zone information: RRs describing the zone structure,
listing electronic mail addresses of administrators. pa
rameters used in automatic name server maintenance
operations.

• Host information: RRs describing a host's network
addresses, hardware/software type. and supported
network protocols.

• :Wail Agrnt i11Jormatw11: RRs describing how to send
mail to a spi>cific "mail agent,'' essentially a virtual

12 Readers interested in further details should sf'e [RFC-1034, p. 1:2]
and [RFC-1035. p. 13], but shou1rl not f'Xpect that that doing so will
make everything crystal-dear. A morf' detailed discussion of then
current ideas on CLASS was pr.,sent in [RFC-883, pp. 8-10], con
cluding "[the] concepts of CLASS. recursive servers and other mech
anisms are intended ao tools for acquiring experience and not a.; final
solutions."

hostnanlf' that may or may not correspond to an a
network host by the same name.

• Mai/Box information: RRs describing how to send
mail to a particular "mailbox,'' such as a user or a
mailing list. The current specification of mailbox RRs
is known to be inadequate and will almost certainly
need revision before it. can be used effectiVPly.13

• User information: The Hesiod ([Dyer 87]) system
uses the DNS to support distribution of publicly
readable user information, such as thf' encrypted form
of a user's password, in an highly distributed work
station environment.

Experimentation with storing new kinds of information in
the DNS is actively encouraged by its designers. provided
that such experimentation takes the correct stf'ps to avoid
distressing other users of the system. The listing above
should be viewed as a snapshot of known uses the DNS
as this article goes to press, with the understanding that
new TYPE and CLASS parameters may be added in the
future; the TYPE and CLASS parameters used hy Hesiod,
for example. are recent additions to the DNS protocols.

Name Sen'ers

Name servers exist to answer queries from resolvers. There
are several steps a name server might take in composing
its answer:

1. The name server might look 111 its locally loaded
database, if any.

2. The name server might ask a resolver running on the
same machine as the name server to look in its cache
for the answer.

3. The name server might ask a rf'solver running on the
same machine as the name serwr to attempt to resolve
the query.

4. The name server might df'cidf' that it 1s unable to
answer this quny.

Implementations may fold together sevnal of thPse steps.
Support for the first and la'lt steps are required in all name
snver implementations to insure that the name snver will
be ahle to answl'r any query it re<"eives, at lt'ast to the
f'Xtent of an explirit rt>ply indicating that it is unable to
find a useful an~wer. St Pp 2 is optional: RRs obt.ained
this way art> not <·011,;icl•'ri·d authoritativf'. Step 3 is also
optio1rnl. and is referred to as a recursiN q1ur:i1.

Rt>r:-ursive queries allow the implementation of very
simplP resolvers for applications such as a memory-bound
personal computer; the resolver on the deficient machine
;;imply sends all its requests off to one or more local name

1 'This ih du" to t.he sanw problem that resulted in the MD and
MF TYPEs being ,.,.placed hy the MX TYPE; see [RFC-973. p. 4]
for tlw rf"asnning behind that decision.

161

servers known to support recursion, and takes whatever
answers these servers rf't urn as the final answer to the
query. TherP are some restrictions on the use of recursive
queries: of particular interest, the resolver acting on be
half of the name server that received the recursive query is
not allowed to issue another recursive query. Without this
restriction. a single recursive query could trigger an ex
ponential progression of subsequent recursive queries until
the tlf'twork ground to a halt due to lack of resources.

Besides answering queries, there are some mainte
nance operations associated with running a name server.
Depending on the implementation, these operations may
or may not be handled by the same program that handles
queries. Currently, maintenance operations consist of ob
taining complete copies of zones and discarding old copies
of zones that have expired. 14 This mechanism allows a
zone administrator to configure one of her name servers
as the "primary" server. and the ot.hers as "secondary''
servers: with such a configuration the administrator need
only update the primary server, because the secondary
servers will periodically ask the primary if the zone has
changed, and, if so. the secondaries will obtain and install
the new version of the zone. Thf' parameters controlling
how oftf'n these checks and updates happen are attributes
of the Start-Of-Authority RR that defines the base of the
zone, in keeping with the philosophy that all the "magic
numbers'' in the DNS should be under the control of the
appropriate zone administrators.

Resolvers

Resolvers are the programs that attempt to track down
RRs in the DNS in response to user requests. Resolver im
plementations can vary widely in complexity. The simplest
implementation. mentioned above, translates the user's re
quest into a recursiv<' query. and sends it off to some name
server which (we hope) offers recursive service. Such a
resolver is sometimes referred to as a '"stub resolver;'' we
shall refer to a resolver capable of processing requests with
out having to resort to a recursive query as a "full-service
resolver."

A full-service resolver is a fairly complex program.
Fortunately (for the reader. not the implementor), much
of the complexity involvt>s internal bookkeeping and the
handling of obscure error conditions. The basic operation
of a full-service rt'solver is straightforward.

1. The resolver receives a user request; we assume that
some user interface package has already translated the
user's original rPquest into a (NAME, CLASS. TYPE)
triplet.

:l. The resolver looks in its internal database (loaded
zone files and cached responses from previous queries)
to see if it can answer the request; if so. it •ioes.

14 There has been some discussion of extending the DNS protocol~
to support partial zone updates, but nothing concretP ha.~ f'lllt>rged
to date.

:3. The resolver looks in its internal database to deter
mine which of the name server(s) it knows about is
most likely to be able to answer the query. Con
ceptually, the lookup starts at the root of the global
database and proceeds down towards tlw target name.

4. The resolver attempts to contact one or more of these
name servers and pose the query to it. If too long
goes by without an answer. the resolver gives up and
returns a timeout nror to the user.

5. If the name server df'finitely answered the user's quf's
tion, either successfully or with an error indicating
that the requestt>d RRs do not exist, the rt>solver re
turns the answn or error to thf' user. If analysis of the
name server's answer detects an error (for example,
a name loop caused by a. circular chain of nickname
pointers) has occurred, the resolver returns an error
to the user.

6. The name server may have been able to supply a re
ferral to other name servers that the responding name
server thinks might be able to answer to the query. If
so, and if the rf'solver agrees that this is a useful re
ferral, the resolver changes its list of name servers to
reflect this rf'ferral, and loops back to step 4.

7. If steps :) and 6 do not apply to the response the name
server sent, the resolver removes this name server from
its list of relevant name servers, and loops back to
step 4. If the resolver reaches this step with no name
servers left to contact, there is something seriously
wrong with either the resolver or the name servers it
has been talking to, so the resolver returns an error
to the user.

The reader is now in a position to understand why non
recursive queries are also known as iterative queries.

Several points about the algorithm for iterative query
processing are worth mentioning.

• Assuming no blatant errors in the programs or
database. this algorithm will be able to locate any
desired RRs. if tlwy f'Xist. by walking down from the
root of the tree. One piece of information conspicuous
by its absence in tlw above discussion is just how the
resolver goes about !orating the root. The answer is
that the addresses of thf' root name snvers (or the ad
dresses of name servns that can supply the addresses
of thf' root name serwrs) must he supplied to the re
solver from a 1·onfi~uration file or some otlwr source
outside the n~s itself, when the resolver boots.

• Any software that attempts to make intelligent use of
the DNS must hf' prPpared to handle a soft error due
to a query timeout. It may be that a particular appli
cation can safely treat soft and hard error identically,
hut is by no means a foregone conclusion. l'nfor
tunately. many existing network programs make the
implicit assumption that only success and hard error

162

are possible. This problem will presumably rnre it:cwlf
in the long run.

• This algorithm can take a long time to run to com
pletion, and there is a tradeoff involved in select
ing the timeout. If the timeout is too short, some
queries will become unanswerable because the servers
involved will never be able to respond quickly enough
to suit this impatient resolver. If the timeout is too
long, applications (and their users) will waste a lot of
time waiting for the resolvn to give up on a query
that is '"obviously" a lost cause. See the section on
t.he CHIVES system, below, for one way of handling
this problem.

Transport protocols

The DNS is intended to be useful in more than just the
TCP /IP world of the INTERNET. The message protocols
can be used over any reliable 8-bit byte-stream protocol.
They can also be used over any (possibly unreliable) data
gram protocol. On the INTERNET, the DNS protocols op
erate over the Transmission Control Protocol (TCP) and
the User Datagram Protocol (UDP). All transactions con
sist. of a single query message followed by one or more re
sponse messages. \<Vhen using UDP, messages correspond
to one datagram packet; when using a byte-stream proto
col such as TCP, the first two bytes of the message are a
16-bit integer indicating how many bytes follow.

Implementing the DNS protocols over any reliable
byte-strPam protocol should be straightforward. Imple
menting the protocols over a message-based protocol such
as is used on the BIT'.\'ET would probably be possible:
the principle difficulty would be the long round-trip time
bf' tween BITNET messages, not any intrinsic difficulty
with the protocols.

Electronic mail support in the DNS

As mentioned briefly. above, the DNS has two kinds of RRs
that support electronic mail. Only one of these is currently
in use: this is mail agent level electronic mail forward
ing. It works as follows: when the program responsiblf'
for actually sending electronic mail messages out over the
network (the ··mailer daemon") receives a message with
an address such as "'Cthulhu«IMiskatonic. EDU," it looks
fur a mail agent RR with name "'Miskatonic.EDU;"' if it
fails to find such an RR. it proceeds in the usual fashion.
looking for a net work address for host "Miskatonic. EDU'"
and attempting to send the message there. If. however.
the mailer daemon does find a mail agent RR, it sends tlw
message to the host named in the RDATA portion of the
RR. 15 The RDATA portion of the mail agent RR also con
tains a small integer, used to rank these RRs if more than
one exists for the same name.

This simple mechanism provides several hPnf'tits:

15 Se .. [RFC-!J74] for a mure detailed discussion of t.h" algurithm.

• It allows the use of DNS style hostnames for
hosts that are not on the network. Sup
pose that Loki. CC. Miska tonic. EDU is not con
nected to the network but exchanges mail with
Odin. CC. Miskatonic. EDU via a dial up protocol. If
the CC. Miska tonic. EDU zone has a mail agent RR
named Loki. CC. Miskatonic. EDU with an RDATA
field indicat
ing Odin. CC. Miska tonic .EDU, electronic mail from
the outside world to Loki. CC. Miskatonic. EDU will
automatidy be routed to Odin. CC. Miskatonic. EDU
for eventual forwarding to Loki. CC. Miska tonic. EDU
with no special effort on the part of the users.

• It allows the creation of "'maildrops," a sort of vir
tual host. There may not be any physical host named
··cc.Miskatonic.EDU," but the appearance of such a
host can be created, with the mail forwarded to what
ever physical host seems appropriate at the moment.
A user can make long term assumptions about what
his electronic mail address will be, without having to
worry that the particular machine on which he cur
rently reads his mail will be decommisioned a Wl'ek
after he places an order for a three year supply of busi
ness cards. Further, the choice of physical host can be
changed quickly and (to the outside world) invisibly;
readers who have had the experience of decommision
ing a network host supports a heavy electronic mail
traffic volume will appreciate how useful this can be.

• It allows the specification of a series of machines
that will accept electronic mail for a particular
host when that host is down. On the INTER
NET, where long-haul links are a scarce resource,
much of the electronic mail traffic moves when the
network load is light, that is, in the wee hours.
If Odin. CC. Miskatonic. EDU happens to be down
some morning, but Thor. CC. Miskatonic. EDU is up,
Thor. CC .Miskatonic. EDU can accept mail bound
for Odin. CC. Miskatonic. EDU and spool it until
Odin. CC. Miskatonic. EDU comes up. This can also
prove useful if Odin. CC. Miska tonic. EDU turns out
to be down for longer than anyone anticipated.

Electronic mailers that use the mail agent RRs have
started appearing on the INTERNET in the last year or
so. The author is not aware of any mailer daemons that
handle the last case. but this will almost certainly change.

The DNS includes support for mailbo.t· RRs, although
these are not currently in widespread use. A mail
box is conventionally written (on the INTERNET, any
way) in the form ··userClhost;'' in order to usefully
represent mailboxes in the DNS, they need to he en
coded. This is trivial: an electronic mail address such
as ··cthulhuCIMiskatonic. EDU" is encoded as the domain
namf' "Cthulhu. Miskatonic. EDU." The existing mailbox
R Rs support mail forwarding and mailing lists. The de
tails of exactly how these RRs should be used have yet to
be worked out.

163

The User Interface

llp to this point we have ignored an important part of any
implementation of the DNS, the user interface package.
This is the set of library routines or operating system calls
responsible for translating between the kinds of requests
users and their programs might want to ask and the kinds
of queries that a resolver can attempt to answer. The
DNS protocol specification does not address this aspect of
the system, viewing it as implementation dependent. This
view, while convenient for the implementors, has proven
somewhat unpopular among the users forced to use the
minimalist user interfaces available with the first imple
mentations of the DNS protocols. The new version of the
DNS specification ([RFC-1034]) presents an outline of a
minimal set of user interface functions:

• A function which translates a host name to an INTER
NET address.

• A function which translates an INTERNET address to
a host name.

• A function that returns arbitrary RRs.

More sophisticated user interfaces have begun to appear;
see the section on the CHIVES system, below, for a brief
description of such an interface.

Reverse translations

The alert reader may be puzzled as to exactly how the
address-to-name function, mentioned in the previous, is
provided. One unfortunate property of a distributed tree
structured database such as the DNS is that, while it is
relatively straightforward to locate a RR given its name,
locating a particular RR without its name is impractical.
The difficulty is that the later operation requires a tree
traversal. which is a hideously expensive operation in the
unlikely chance that it is possible at all. The only situa
tion where such an operation (called an inverse query) is
practical is if a resolver has good reason to believe that a
particular name server will have the information in its lo
cal database. This is not reliable enough to use on a large
scale.

To work around this problem, the DNS uses the use
of a secondary tree of address-to-name translations. An
INTERNET address of the form "a.h.c .d" is encoded as
"d.c.b.a.IN-ADDR.ARPA," that is, to find out the name
of the host at INTERNET address 11.22.33.44. the user
interface asks the resolver to look an RR with a special
TYPE and a name of "44.33.22.11.IN-ADDR.ARPA." The
RDATA portion of the RR returned by such a query con
sists of the host name associated with the address. A
similar scheme is used to encode information about the
network addresses of of the Internet Protocol gateways
connecting the various networks that make up the [;\iTER
NET.16 The ordering of the components ("octets") of the

16 See [RFC-1035, pp. 22-23] for details.

address is reversed because INTERNET network numbers
are big-endian (the most significant bits in the address are
in the leftmost octet) while the DNS naming structure is
little-endian, as mentioned previously.

Several points about this scheme are worth noting:

• It does not do anything about the inverse translation
problem in general; it simply provides a work-around
for INTERNET addresses, which were felt to be the
most critical case.

• It depends on the hierarchical nature of INTERNET
addresses.

• It duplicates data from the "'normal" part of the nam
ing tree. Whenever such a duplication exists, the op
portunity exists for administrators to create an incon
sistent state by incorrectly duplicating the data. For
this reason, use of the inverse naming tree should be
restricted to those applications where it really is the
only possible solution. Unfortunately, much existing
software makes the implicit assumption that name
to-address and address-to-name will always be each
other's inverse functions, and that if one function is
available the other one will also be available.

Lessons learned implementing the CHIVES system

The author of this paper recently released a beta-test ver
sion of an implementation of the DNS protocols, called
CHIVES. While a lengthy discussion of this effort is inap
propriate for the present forum, some of the lessons learned
from this project may be of interest, and are presented
here.

Distribution of data in the DNS naming tree

In the several years since the DNS first became an oper
ational system, some patterns have emerged in the way
administrators name RRs. One interesting feature is the
branching factor at each node of the tree, something that
an implementor would like to know when choosing the in
ternal data representation for a resolver or name server.
The distribution tends to be strongly bi-modal: ei~her a
node has at most a handful of children or it has a lot of
children, in the !}Q-100 range or even greater. This poses
an interesting problem. since there is no way to know in
advance how much the branching factor will vary from
one node to the next in a dynamic representation of part
of the DNS tree: the particularly hard case is represent
ing the resolver's cache efficiently. Hash tables that work
wf'll for small branching factors will not work well for large
ones, and vice versa. Re-hashing when the branching fac
tor exceeds a certain limit would work. but the cost of the
re-hashing operation will probably be high.

The CHIVES system uses a height-balanced binary
trPt' (specifically, an AVL tree) for its internal represen
tation. This works well for insertions and lookups, since
the worst case time for these operations is O(logn). This

164

representation does not, however, work well for deletions,
because maintaining the AVL property during deletions is
expensive: in practice this is not a serious limitation, be
cause some kind of garbage collector is needed to recover
from memory fragmentation, and, depending on the design
of the garbage collector, the need for balanced deletions
may vanish entirely. 1 7

Timesharing, Locking, and the "Shared Database''

As mentioned above, the conceptual distinction between
resolver and name server is not present in all implementa
tions. An implementor might want to combine the two pro
grams (and the name server maintenance functions) into
a single program, or leave the programs separate but have
them use a database in shared memory. Both of these ap
proaches have disadvantages. A single program is subject
to availability problems: if it is engaged in a long trans
action, such as transferring an entire zone, it will prob
ably be unable to service user requests until the transfer
is complete. The shared memory approach requires that
the various programs be able to lock all or part of the
shared database to maintain consistency: this is easy to
say but hard to do correctly, and an error can be disas
trous, particularly if the implementation directly involves
the operating system via special system calls that depend
on correct operation of the locking mechanism.

CHIVES uses the multiple process approach, but does
not attempt to share memory between the processes. The
resolver, zone transfer client, UDP name server, and TCP
name server are all separate processes. Zones are rep
resented as simple text files, using a slightly extended
syntax to allow, for example, the zone transfer client to
record when it obtains a zone so that other programs (in
cluding a later instance of the zone transfer client) will
know when the zone becomes obsolete. In the few cases
where direct communication between processes is required,
CHIVES uses a simple lock-step protocol that can be safely
aborted from either side at any time. Thus, both locking
and scheduling tasks are accomplished by built-in mech
anisms in the operating system: the filesystem code and
the timesharing scheduler. respectively.

As additional benefits, CH IVES is more portable than
a system using the shared memory scheme, and is (po
tentially) more robust than either of the other schemes
could make it: failure or corruption of one component of
CHIVES does not necessarily imply failure or corruption of
any other component.

Obviously, there is a price for all this, which is that
restarting any of t.he processes is fairly expensive, since
it may haw to load a number of tiles into its internal
database. This can be partially alleviated by various tech
niques. such as compiling the text files into a relocatablP

17 In fairness to previous implementors who have chosen simpler
data n-presentations. the author freely admits that, to this clay. at
t.,mpting to visualize the entirety of the in-memory cache repres.,n
tation makes the author's head spin. Drawing a picture of it r"quires
at l"ast four climensions

binary format that can be loaded quickly, or by making a
"dumped" version of each of the process with the appro
priate data already loaded into the process's image file. In
any case, the price seems low compared to the benefits of
this approach.

Bootstrap information

Previously, we mentioned that, in order to know to find the
root of the global name tree, a resolver needs to have some
configuration information supplied to it when it boots.
This can take one of two forms:

• A file of RR.s to load into the resolver's cache.

• A list of default name servers to use when nothing else
seems appropriate.

While cache preloading is occasionally useful, it is a mis
take to use it for this purpose. for several reasons. First,
the bootstrap information is in the form of RRs, which
have to have TTL fields, and. since the resolver would
be crippled if those RRs ever time out the TTLs must
be set to some unreasonably large value. Second, if the
resolver shares memory with or is the same process as a
name server, this information is now available to the name
server to distribute: this is not a good thing, since the lo
cal configuration file may be badly out of date, causing the
name server to distribute obsolete information for zones
for which it has no trace of authority. Exterminating erro
neous RRs (sometimes called ''bogons") from the database
is very difficult; the only way that bogons ever disappear
is when caches are flushed or when the TTLs expire; due
to an unfortunate bit of history, the '"unreasonably large
value" most often used is 99999999 seconds, which works
out to something over 3 years.

CHIVES, as might be guessed from the preceding
paragraph, uses the second method for locating the root
servers. This information can never time out. and is not
part of the database proper, so it can never be distributed.
If this configuration information is incorrect, it will. at
worst, cripple the resolver that uses it to boot: it will not
corrupt the rest of the database. The default snvers need
not be root servers, merely servers that this particular re
solver trusts to either answer correctly or refrain from an
swering. Furthermore, since these default servers are used
only as a last resort. the resolver can tell that it is using
bootstrap information and take steps to remedy the situ
ation. rather than continuing to believe possibly obsolete
RRs.

There is. at this point. no t>Xcuse for writing new DNS
programs that depend on preloading tht> cache: any exist
ing programs that do depend on this method should be
fixed.

Timeouts

One difficultly in designing a resolver is selecting an ap
propriate timeout interval. ~ot only are there drawbacks
(described previously) to timeouts that are too long or too

165

short, but the problems involved may overlap in the mid
dle, that is, some timeout intervals may simultaneously be
both too long and too short. CHIVES sidesteps this prob
lem by using two different timeouts. User queries return
to the user with a timeout error relatively quickly, but the
resolver will continue to attempt to find an answer for a
short while after this happens. The assumption is that
the user may well try again in a little while; this is par
ticularly. true if the "user" is the local host's electronic
mail daemon. If the query is answered during the period
between the two timeouts, the answer will go into the re
solver's cache, and should be immediately accessible when
the user tries again.

Suspicion

Another issue in resolver design is suspicion. A resolver
can not assume that everything it gets in an answer is
true; bogons can and do show up. The CHIVES resolver
makes several checks before caching any RRs it receives:

• Does this message look like it really pertains to a cur
rently outstanding query? The format of an answer
message contains an echo of the question, as well as an
echo of some arbitrary identification bits. This step
flushes totally spurious messages.

• Does the RR pertain to the root? If so, it is ignored
unless the question was about the root. Name servers
will usually supply addresses of servers when answer
ing a query with a referral; this is often helpful, but
experience has shown that it is not safe to blindly ac
cept new addresses for the root name servers. The
CHIVES resolver only accepts new addresses for the
root from its trusted default servers, or servers to
which the trusted default serves referred it.

• Does the TTL attribute of the RR look "reasonable?"
The resolver is skeptical about RR.s with TTLs that
are too large, on the theory that such RRs are prob
ably escaped bogons from somebody's cache preload
file. The resolver will either reduce the TTL to some
more reasonable value, or discard (refuse to cache) the
RR. depending on a flag in the configuration file. The
value of "too large" can, of course. also be changed.

User interface

The CHIVES system has a more sophisticated user inter
face than the minimal approach described in [RFC-1034).
Some of the functions are general purpose, some are geared
specifically towards supporting an intelligent mailer dae
mon. Most of these functions return the "canonical name··
of the target object: that is, they tell the user at what name
the target RRs were found, aft.er following any nickname
pointers. The functions are:

• Primary name and address: Returns the address of a
host in a particular protocol suite (that is. for a partic
ular value of the CLASS attribute). Returns canonical
name of the targt>t host.

• .l!ail .4grnl: Returns a VPdor of host names. sorted
in dPscending order by the preference portion of
the RDATA, for a mail agent lookup in a particular
CLASS. Returns canonical name of the target host.

• Validate .Vanlf:: Checks for the existence of R.R.s that
would demonstratP tlw existPnce of some object not
directly represPntt>d in the DNS. For PXample. a mail
drop exists if eithn a host address or a mail agent
RR exists. Some applications. sue h as an electronic
mail composition program, don't care about how t hP
maildrop is represented: they just want to know if a
particular name is valid. Returns canonical name of
the target host.

• A uthenticafe Address: As previously mentioned, us
ing the inverse mapping tree (IN-ADDR.ARPA) may
cause consistency problems. Furthermore, not a.II
transport protocols can be represPnted in this way.
Some of the programs that ask for an address-to-name
translation are really trying to answer the question
·'is address X really the address of host Y," for ex
ample, an Piect.ronic mail listener process that wishes
to determi1w whet her the entity on the other end of
the network conrwction is lying about the name of its
host due to malice or confusion. In such cases. the
program requesting the address-to-name translation
already has a host name on hand. and the question
can be rephrased as "'does host Y have an address X."
This completely avoids using the inverse naming tree,
and answers the question equally well from the user's
standpoint.

Search paths

In the entire preceding discussion, we have made the
implicit assumption that the user has been specify
ing complete domain names. In practice, a user on
Odin. CC. Miskatonic. EDU does not want to have to type
the complete name ''Loki. CC. Miska tonic. EDU:" since
both are within CC. Miska tonic. EDU. the user wants to
type "Loki" and expects some piPce of software to do the
"obvious'' thing. This i:'; another case of something easy
to say and hard to do. What suffixes are the "obvious"
ones to try'? How long is the usn willing to wait for an
answer'? (The answers are. of coursP, that all the hosts
this particular user wants to talk to are obvious. the other
HD% of the hosts in existance don't matt.er. and the user
is willing to wait rwrhaps a few seconds.)

\Ye define a 8t•irch path to be a list of suffixes to
append to a name when attempting to resolve it. The
CHIVES r ... solver supplies two kinds of search paths: the
!oral search path and the remote search path. The local
,;,_•arch path is only used when looking in locally-loaded
zonPs: the remote search path also searches the cache
and cau,;es actual resolving via the network. Thus a
sitP ran use search paths for names in zones they talk
to often. while limiting the amount of effort spent at
t ernp11ng to resolve possibly non-existent remote names.

166

A name that is terminated with a trailing dot. such as
'·Loki. CC. Miska tonic. EDU.:· is looked up exactly as it
stands except for removal of the trailing dot, without any
use of either of the search paths: this is appropriate for
any application that for any reason knows that it already
has a completely specified name.

For n10re information ...

The DNS is a relatively young protocol, as such things
go. Both the existing implementations and the con
cepts underlying them are still undergoing active de
velopment. There is an electronic mail forum for de
velopers and interested bystanders. the l'.'<TERNET mail
ing list Ramedroppers©SRI-NIC. ARPA. If you are on
the INTERNET or have electronic mail access to it,
and wish to be added to the list. send a message to
Namedroppers-Request©SRI-NIC. ARPA. 18 All of the doc
uments with the notation "RFC" (short for "Request For
Comments ..) are available online in the NETINFO: direc
tory on SRI-NIC.ARPA. If you are not on the INTERNET,
or you prefer your documentation in hardcopy form you
can obtain any of the documents listed in the bibliogra
phy of this article excPpt for [Dyer 87] by contacting:

The DDN Network Information Center
SRI International
333 Ravenswood Avenue, Room EJ291
Menlo Park, CA D4025

CHIVES is a free software package, currently imple
mented on the TOPS-20 operating system but very likely
to be ported to other systems in the near future. Volun
teers interest.Pd in working on the projf'ct are welcome. For
more information on the CH IVES system. send electronic
mail to Bug-CHIVES©XX. LCS. MIT. EDU, or write to:

S. Robert Austein
Massachusetts Institute of Technology
Laboratory for Computer Science, NE43-.503
54.5 Technology Square
Cambridge, MA 02139

References

[DON 85] DDN Protocol Handbook, Menlo Park, CA,
DDN Network Information Center, December
1985.

[Dyer 87] Dyn. S .. and F. Hsu, ''Hesiod". Project
Athrna Technical Plan-Name Service. April
1987. version 1.9.

[RFC-883] Mockapetris. P., "Domain Names ---
lrnplPmentations and Specifications," RFC-
883. r·niversity of Southern California Infor
nrntion Sciences Institute, November Hll<3.

1' Do not send a subscription request directly to fla.medroppers:
doing so will get. you a free lesson in network etiquette from a couple
hundred strangers, in varying degrees of politeness.

[RFC-920] Postel, J ., and Reynolds, J ., ''Domain Re
quirements," RFC-920, University of South
ern California Information Sciences Institute,
October 1984.

[RFC-973] Mockapetris. P .. ''Domain System Changes
and Observations," RFC-973, University of
Southern California Information Sciences In
stitute, January 1986.

[RFC-974] Partridge, C., "Mail Routing and the Domain
System," RFC-974, CSNET CIC BBN Labs.
January 1986.

[RFC-1032] Stahl, M., "Domain Administrators Guide,"
RFC-1032, SRI International. November
1987.

[RFC-1033] Lottor, M .. "Domain Administrators OpPra
tions," RFC-1033. SRI International. Novem
ber 1987.

[RFC-1034] Mockapetris. P .. '"Domain Names-Concepts
and Facilities." RFC-1034. University of
Southern California Information Sciences In
stitute, November 1987.

[RFC-1035] Mockapetris. P., "Domain Names-
Implementations and Specifications,'' RFC-
1035, University of Southern California Infor
mation Sciences Institute, November 1987.

167

An Architectural Perspective
of a

Common Distributed Heterogeneous
Message Bus

Howard Kilman and Glen Macko
DIGITAL EQUIPMENT CORPORATION

MERIDEN, CONNECTICUT

Abstract

Heterogeneous networked computing over the last few years has gained popular
ity in the press and has started to emerge as product. This paper describes a
common heterogeneous message bus abstraction that functions as a bridge be
tween execution units on a single processor or on distributed processors. The
message bus is used for integrated peer-to-peer communications. The bus is in
tegrated because it blends all inputs into a single message queue. Applications
and value-added network services can be built using this peer-to-peer platform.
In addition, this message bus provides: a common application interface, simple
and consistent operations, an efficient implementation, a host of support utilities,
and a flexible choice of underlying networks (with the ability to easily integrate
user specific networking schemes). The bus is heterogeneous because it has been
implemented on VAX/VMS, RT, VAXeln, MS-DOS, RSX, and ULTRIX.

The conclusion is that a Message Bus messaging sub-system is more effective
and efficient than traditional peer-to-peer communications systems.

INTRODUCTION

This paper discusses the concept of a Message Bus. The
basic rationale for a Message Bus is outlined with generic
requirements for distributed applications. An implementa
tion of a Message Bus, called PAMS, is detailed. The basic
PAMS functionality is outlined. Additional services such
as selective broadcasting, non-volatile recoverable queues,
and journaling are discussed. Comparisons are made to
other networking approaches such as custom developed
networking systems and Remote Procedure Calls. Finally,
the paper concludes with some thoughts about the cost
effectiveness of a Message Bus architecture as the peer-to
peer networking platform for distributed application de
velopments.

RATIONALE

Applications over the last 35 years of automation have
become increasingly complex and distributed. From the
centralized batch oriented applications of the 1950s and
60s, today's applications tend to be distributed in both
control and data.

The basic reasons for this trend for distribution lies
with increased demand for expanded application function
ality and performance. In addition, the application hosts

Proceedings of the Digital Equipment Computer Users Society 171

have become increasingly smaller and cheaper, while main
taining relative performance. Finally, the emergence of
interconnecting networking technologies has solidified this
trend towards applications distribution.

As systems have become more distributed, the com
plexity of the solutions have risen proportionally. These
distributed implementations compared to their central
ized counterparts are more complex in: software architec
ture, hardware architecture, and networking architecture.
The software architecture is more challenging due to the
basic asynchronous nature of distributed processing and
the need to coordinate the access of common resources.
The software designed is typically multi-threaded1 . Multi
threaded designed applications are difficult to implement
and maintain. The hardware of these distributed solutions
is often based on multiple heterogeneous platforms. Users
of systems in such networks are often frustrated by the fact
that they can't get those systems to work cooperatively.
In addition, each hardware platform invariably supports
unique development tools, rules, and methods. Finally,
the networking subsystem that provides the means of dis
tribution tends to be hybrid 2 •

1 Multi-threaded in the sense that each module accepts inputs
from multiple sources and has distinct processing control loops

2 Hybrid in the sense that it uses multiple access methods and
communication protocols

Anaheim, CA - 1987

The traditional software development methodologies
and tools are generally ineffective or inefficient when used
with distributed application systems. Applications de
velopers require the automation of software production.
Buzz words like: re-usability, portability, network moni
toring, defect removal, application prototyping, software
design simplification have emerged. Application develop
ers are demanding comprehensive off-the-shelf networking
tool kits. They require networking platforms that have: a
standard interface for accessing the network, a standard
set of networking features, support for multiple host en
vironments, support for multiple networking backbones,
simplification of coding by supporting single-threaded de
signs, existence of built-in productivity tools for simulation
and test, and is "future safe" in that it can accommodate
new emerging environments and networks.

A standard interface for accessing the network implies
that the procedural or message based interface to the net
work should have well defined and consistent syntax and
semantics. These rules should apply equally, independent
of the hardware or system software backbones.

In choosing the physical network to use in a applica
tion design many networking characteristics are mapped
into application requirements. Features such as circuit
based or logical link delivery (one-way), broadcast or
multi-cast delivery (N-way), or connectionless delivery
(any-way) must be selected in addition to transport speed,
processing overhead, message length restrictions, and dis
tance limitations. The characteristics of the network some
times determine the methodology in which the software
must be developed. Application developers should pro
duce code that is independent of the characteristics of the
underlying network. They should use an interface that is
common across many different networking schemes.

Single-threaded designs are possible if all inputs and
outputs to a process are concentrated into a single work
queue. Processes then have a single control loop in which
each item of work (e.g. message) is processed to comple
tion, required output or actions are generated, and the
next work item is then extracted. Hence, this is an exam
ple of one control loop or single-threaded. The items can
be placed on a process's input work queue in a FIFO or
in a priority based manner. Items may be extracted from
the queue either sequentially or by some selection criteria
(i.e. sender, message class, etc). Single-threaded designs
are possible if ALL events that a process requires are inte
grated into this work queue. This implies all messages from
all partners, all timer events, all events from external de
vices, and all general networking events. Single-threaded
design ideally fit the Client/Server model of network ap
plication design.

The Client/Server model defines some processes as
"servers". These are continuously running programs which
wait for client requests (packaged as messages) to be placed
in their input queue, processes them as they arrive, and
send replies when required. This allows the user to de
velop applications with tremendous implicit parallelism.
Distributed application design using this model has proven

172

to be extremely cost effective and popular.
As distributed networking systems are developed, the

need for enhanced productivity tools has become apparent.
Typical gaps in tool sets are:

• message simulators

• message capturing

• a message replay facility

• a general scripting capability

Scripting should allow the encoding and the ability to con
trol the flow of simulated message traffic. The effective
control of an operational network requires yet more tools.
An example of such a tool would be a centralized network
monitoring facility.

The technologies in which distributed applications are
based is constantly changing. New hardware platforms,
software languages, networking backbones are consistently
being introduced. The ability to integrate these new pieces
into an existing distributed network umbrella is highly de
sirable.

The next section defines a generic Message Bus
and a DIGITAL implementation of a Message Bus called
P AMS. The paper will show how the generic character
istics of a Message Bus and PAMS assist in the design,
development, test/integration, and control of distributed
applications.

DEFINITIONS

Message Bus

A Message Bus (see Figure 1) is a data highway in which:

• all network events and work units (data) are packaged
into messages,

• messages can be of variable size and can be catego
rized by user definable classes and types3 ,

• processes have a single attachment point to the bus
where all communication (i.e. messages) to other pro
cesses is funneled,

• the highway uses a simple logical bus topology4 (as
compared to a star, point-to-point, hierarchical, etc)
that spans both inter-cpu and intra-cpu,

• the implementation is host and network backbone in
dependent, and

• processes attached to the message bus can communi
cate to any other PAMS attached process, without a
formal connection sequence required for each partner.

3 The messages preserve the "write" (i.e. record) boundaries of
the sending process.

4 A bus topology is inherently simpler to attadi and control. This
makes peer-to-peer communication simple and efficient.

YMS

MICROYMS

RS><

MESSAGE •us
PAMS

MS-DOS

RT

ELN
ULTRI><

Figure 1: PAMS Message Bus

173

PAMS

PAMS is a heterogeneous implementation of the Message
Bus architecture. PAMS is a heterogeneous, integrating,
extensible, N-way, full-duplex, communication message fa
cility that is network independent.

PAMS is heterogeneous in that it is supported on
the following environments: VAX/VMS, VAX/ULTRIX,
VAXeln, RSX-11, RT-11, and MS-DOS. The VAXeln and
VAX/VMS implementations are full functioned while the
others are end-node implementations.

PAMS is integrating because it blends all the classic
input/output that a networking task requires. As shown
in Figure 2, the user application has a single point of fo
cus for all external work units (input or output). All units
are formed into messages and are presented on this sin
gle queue in either a FIFO or a priority based fashion.
PAMS also supports the capability to selectively receive
messages based on the source network address of the mes
sage. Messages can be received from any other PAMS
attached process, on any PAMS connected network and
can include simulated messages from PAMS SCRIPTS5

and user specified timer messages. '
PAMS is extensible because it is packaged with a de

fined external interface. This interface allows the transpar
ent integration of user specific networks and/or devices.
The input/output to these special networks and devices
occur simultaneously with normal PAMS messaging.

PAMS supports an N-way communication mecha
nism. This implies that any process can communicate to
any other attached process without a formally established
connection between them. This is sometimes referred to as
a "connectionless" environment. In addition, PAMS has
the capability of performing one-way (circuit based), and
any-way (broadcast/multi-cast based) messaging.

PAMS is full duplex in that messages can be simulta
neously sent and received by all PAMS attached processes.

PAMS is network independent because its transpar
e~tly supports (w!th the identical interface): DECnet,
direct Ethernet, duect DDCMP, and LU6.2 communica
tions. All of the semantics and idiosyncrasies of each net
":ork are masked from the user's application. PAMS pro
vides a set of standard interface procedure calls. These
calls are valid over all PAMS supported network backbones
and all supported PAMS host environments.

The c~mmon PAMS interface is invoked procedurally,
but the basic control of the network is message based. Mes
sage based interfaces tend to be more extensible, migrat
able, and portable than procedure call based interfaces.
Classical procedural interfaces are totally synchronous.
The PAMS interface supports both synchronous and asyn
chrono.us operations. However, the default is asynchronous
o.perat10ns. All the synchronous calls have an optional
timer value attached. This feature can eliminate the
deadly "wait forever" condition.

5 PAMSCRIPT is a tool that allows the symbolic simulation cap-
ture and replay capability of PAMS' messages '

174

Finally, the PAMS Message Bus is stateless. After a
process is attached to the bus, messages can flow freely
between any partners, regardless of any explicit or implied
network/ application state 6 .

ARCHITECTURE

PAMS fits within the ISO model for communication net
works as shown in Figure 3. The PAMS interface rou
tines are positioned in the application layer (layer 7). The
characteristics and robustness of the various networking
backbones that PAMS supports determine the specific ISO
layer coverage. When using PAMS in its standard form
(e.g. DECnet), there is support for all ISO layers through
session (i.e. 1 through 5). When used in conjunction with
direct Ethernet, PAMS supports only physical, data link,
and a minimal transport.

Any good peer-to-peer system should be capable of
setting up communications and transmitting and receiving
messages with a minimum of code and hassles. As previ
ously noted, the basic architecture of PAMS is a Message
Bus. The explicit savings of a bus architecture is shown in
Figure 4. In a bus based network, process A can send to
any other process (e.g. B, C, or D) over a single attach
ment point (e.g. PAMS queue). In the classic point-to
point network scheme, process A must maintain separate
links to each of its communication partners. Hence A has
multiple control points and must internalize the prioriti
zation and processing of input work units.

Figure 5 clearly shows how a Message Bus architec
ture simplifies the logical structure of a distributed appli
cation. In the physical layout, processes A through K are
hosted on various hardware and possibly systems software
platforms. Processes Al, A2, and A3 are on a single host.
The network that interconnects these processes is a hy
brid configuration (noted Nl through N5). There is some
indirect connectivity between all potential network part
ners. However, the mechanics and rules for peer-to-peer
communication between any two partners most likely will
be d~fferent. In addition, each partner would most likely
reqmre a separate message port for each active connection
(see ~igure 4). Therefore, using traditional networking
t~chmques, each network process, in the physical applica
tion layout, would require the intelligence to maintain and
control multiple network access points and adjust to the
di~erent network in~erface specifications. This same appli
cation developed usmg PAMS uses a single standard net
wo~k interface and controls all network data flow through
a smgle attachment point.

MESSAGE BUS EXTENSIONS

Since the first PAMS paper (??) there have been signif
icant extensions to the PAMS Message Bus. These ex
tensions fall into four categories: Heterogeneous System

6 LU6.2 peer-to-peer connections are Statefull. Only defined set
of operations are possible per application state

...
...............

PAMS ················ ...
.::.··~···~··======,,;.;.;.;,;--------.--·~···············

:::::::::::::::::::::::::::::

ME~$[$AG.~
simulated

ms gs

User
Application

Code

.......•..••

::: 805

Figure 2: PAMS Integrated Message Bus

User Appl ic_r_tion

Application P~! l:tl'F 7

~
Pre•entation 8

...J
Se••ion 5

" Tran•port 4

"' Network 3

' Data Lint 2

Physical 1

Figure 3: PAMS ISO Architecture

175

.....
MHllll IUI

Figure 4: Point-to-point vs. Message Bus

Phya~ca1 Layout 0¥ a Networ'k.ed App1~cat~on

c

NI

I c
E G

Figure 5: Networked Application

176

Support, Message Recovery Services, Selective Broadcast
Services, and support for additional network backbones.

Heterogeneous System Support

A typical distributed networked application spans multi
ple hosts and multiple host environments. PC to mini, PC
to mainframe, mini to mainframe, are examples of typi
cal implementations. The PAMS Message Bus has been
implemented on a range of DIGITAL computational plat
forms.

VAX-PAMS is the original platform for the PAMS
Message Bus. It supports the full PAMS feature set. Lo
cal messaging is done using VMS global sections with the
added value of protected mode access. VAX-PAMS has a
message routing capability for directing PAMS messages
across PAMS Groups7• VAX-PAMS also supports the Se
lective Broadcast Services (SBS) and Message Recovery
Services (MRS) which will be discussed later. VAX-PAMS
supports the following networking backbones: DECnet, di
rect DDCMP, direct Ethernet, and LU6.2.

ELN-PAMS is the other full functioned implementa
tion of PAMS. The basic communication tools of VAXeln
typically involve local messaging being done with VAXeln
datagrams and remote messaging being done with VAXeln
DECnet circuits. PAMS extends these tools and presents
a single network transparent interface to the user with all
the Message Bus features. ELN-PAMS supports DECnet
and direct DDCMP for its remote messaging and data
gram Message Objects for its local messaging.

PC-PAMS is a MS-DOS, end-node implementation
of the PAMS Message Bus. As an end-node, it requires
a PAMS routing host. It supports automatic connection
to a routing PAMS host and also automatic fail-over to
a secondary router in case of line failure. Limited MRS
and SBS functionality is supported along with a full mes
sage capture facility. PC-PAMS is built using DIGITAL'S
DECnet-DOS product. DECnet-DOS supports Ethernet
and asynchronous DDCMP connections. PC-PAMS sup
ports these networks and all PCs, XTs, ATs, and VAX
mates using PC(MS)-DOS 3.1 through 3.3. As in all
PAMS implementations it supports the PAMS interface
standard and a PAMS based applications can be ported
readily to a PC.

ULTRIX-PAMS is currently another end-node im
plementation of PAMS. It resides with DECnet-ULTRIX.
It operates over DECnet using Ethernet or point-to-point
links. All the features of PC-PAMS are supported in
ULTRIX-PAMS. A routing version of ULTRIX-PAMS is
under investigation.

RT-PAMS is an end-node, direct Ethernet only ver
sion of PAMS. RT-PAMS is typically used as a bridge be
tween an older existing RT application and a newer super
visory VAX application.

7 A PAMS Group is a collection of processes that are utilizing
the PAMS Message Bus on a single host. There can be multiple
PAMS Groups per host. PAMS routing is required to send messages
between PAMS Groups.

177

RSX-PAMS is another end-node implementation
that allows a RSX task to have N-way connections to a
VAX processor. RSX-PAMS supports direct Ethernet and
DECnet backbone networks.

Message Recovery Services

Maintaining consistency of data is a key element in build
ing a data processing system which can withstand failures
of its hardware and software components. VAX/VMS pro
vides standard database products to maintain consistent
data which resides in the file system, such as RMS, DBMS,
and RDB journaling.

Message Recovery Services (MRS) for the PAMS Mes
sage Bus are intended to extend data recovery to the level
of pending messages. Using Message Recovery, the sender
is relieved of the responsibility of tracking the progress of
a message through the next level of computing.

Message Recovery Services increase the robustness
of PAMS Message Bus delivery by providing applications
with the ability to recover from message delivery failures
due to:

• application task abort, or

• communication line failure, or a

• system crash.

In addition, MRS provides a mechanism to allow a
target process to inform the sender of the outcome of mes
sage processing. Applications no longer need to exchange
reply messages for the purpose of communicating a simple
"success/failure" status.

MRS implements these features by using:

• enhanced delivery services utilizing message queues
recorded on disk,

• recovery services for undeliverable messages, and

• journal services for maintaining message traffic logs.

There is an extra cost associated with making mes
sages recoverable via non-volatile disk storage. The
amount of extra processing is enabled on a message basis.
This allows applications to selectively incur the additional
processing imposed by MRS for just those messages which
are not easily recovered.

Figure 6 details an example of an application that
fails and subsequently recovers while using MRS. Task A
is sending messages to Task B. The communication link
between the processes is broken. In this example it is due
to a system failure, but it could be for any reason. For all
messages subsequently sent during this failure mode, MRS
can be instructed to take one of the following actions:

• discard the message, or

• return the message to task A as undeliverable, or

• archive the message in the source recovery queue for
later delivery.

The action taken per item is determined by the sender
of the message (i.e. Task A).

When the link between system A and B is re
established, the messages in the source recovery queue
can either be automatically delivered to Task B or can
requested by Task B manually. The method of recovery
processing is determined by user definable MRS recovery
characteristics. In addition, there also exists a destination
recovery queue that is used for failure/recovery on the des
tination side of a transaction. These are for messages that
arrived at the destination node, but were unable to be
delivered to Task B.

Selective Broadcast Services

Distributed applications frequently require the network
to support the broadcasting or multi-casting of a single
message to multiple recipients. PAMS supports Selective
Broadcast Services (SBS). SBS is a facility that allows the
selective distribution of a broadcast message. The distri
bution can be inter or intra cpu.

A process becomes selectable by SBS via a registra
tion message. After registration, the processing of SBS
is totally transparent to the application processes. The
primary selection criteria for a broadcast message is the
target address. PAMS pre-defines a range of addresses
that are reserved for exclusive SBS use. These addresses
are called Multi-point Outbound Targets (MOT) and they
denote broadcasting events in the network. When an ap
plication process generates a message targeted to a MOT,
it directs the SBS server to process the message as a se
lective broadcast event. All matching registrants are de
livered a copy of this message8 .

There are two event types supported by SBS:

• Private - MOTs that fall within the Private range
indicate that all SBS processing will occur on the SBS
Server where the event was declared. Only this SBS
Server's registration tables are scanned and processed
for selection/ distribution.

• Universal - PAMS supports a range of MOT ad
dresses that have global scope. These MOT events,
when declared, are distributed to all SBS Servers in
the PAMS network. The actions performed is the
union of all the SBS Servers' registration databases.

Figure 7 shows the difference between Private and
Universal MOT events. Processes Al through Al5 reside
on a VAX-PAMS host as a single PAMS Group Process
Bl through B6 is a second PAMS Group on a ELN-PAMS
system. If a Private MOT were declared in PAMS Group
A only the registration tables of Group A's SBS Server
would be processed. If, however, a Universal event were

8 The details of SBS processing can be found in reference ??

178

declared on Group A, then all groups that support SBS
functionality would be notified of the declaration and all
tables would be processed for candidates for distribution
(i.e. Group A and B's SBS Servers).

SBS distribution locally requires the replication and
transmittal of a "clone" message to all selected recipients.
Inter-group distribution depends on the physical backbone
network that PAMS is configured. On a DECnet network,
Universal messages are replicated and distributed. But, on
an Ethernet network, the SBS servers use the multi-casting
capability of Ethernet to optimize the distribution phase.
Therefore, only one distribution message would be sent on
the network and only those PAMS groups with registered
interest in the particular MOT event would enable the
reception of this message. Hence, there is a savings in the
CPU demand on both the sending and receiving partners.

Networking

The default inter-node network used by PAMS is DECnet
Phase IV. PAMS utilizes DECnet non-transparent task
to-task to extend the message bus architecture to remote
CPUs. In addition, PAMS provides the capability to in
tegrate other networks under the Message Bus umbrella.
The following are some of the networks that have be added:
direct DDCMP, direct Ethernet, and LU6.2.

The direct Ethernet allows PAMS access to the data
link layer of Ethernet. In addition, PAMS provides a
scaled down transport layer that provides: circuit estab
lishment, large packet disassembly /reassembly, flow con
trol, error free transfer, and link loss 'detection. VAX
PAMS, RSX-PAMS, and RT-PAMS support direct Ether
net.

The PAMS LU6.2 connection provides
a general-purpose interface to DIGITAL's DECnet/SNA
APPC/LU6.2 application programming interface. This al
lows the user to develop "LU6.2 Servers" that meet the
needs of specific applications, while enjoying all the pro
ductivity benefits that PAMS provides. VAX-PAMS is the
only PAMS product that currently directly supports the
LU6.2/PAMS network integration. However, all PAMS
implementations can share access to LU6.2 resources by
requesting services through a VAX-PAMS LU6.2 Server.

Figure 8 shows a hybrid network that includes Eth
ernet, direct DDCMP, and LU 6.2 connectivity. A PAMS
based process can access any other PAMS based process
regardless of the physical network connecting them. For
example, the PC with PC-PAMS connected to the VAX
over a dial-up DDCMP circuit has transparent and equal
access to any process on VAX-PAMS or to a PC-PAMS
computer connected on the Ethernet. Also, any PAMS
process can use the PAMS/LU6.2 facility to transfer files
to or from an IBM based CICS application.

COMPETITIVE APPROACHES

Two common approaches used to resolve an application's
requirement for peer-to-peer messaging are:

Message Delivery after System Loss

Syste111 A

Store
and f orvard
depository

RESTART
COMM.
L:INIC

Figure 6: Message Recovery Services

GROUP A

GROUP 8

Figure 7: Selective Broadcast Services

179

De•tination
recovery queue

RESTART SYSTEm

MRS
SERVER

PANS

MESSAGE

BUS

IBM
DDCMP CICS

RMS

VAX/VMS t---- HSC

RDB

IBM
Ethernet LU 0

IMS

Figure 8: PAMS Networked Application

180

1. To build a callable layer for augmenting the basic
networking facilities schemes available on the target
host(s), or

2. To purchase an off-the-shelf message facility that
meets the application's core requirements.

The PAMS Message Bus is a combination of 1 and
2. It is an off-the-shelf facility that is layered on standard
DIGITAL supplied networking backbones (i.e. DECnet,
Ethernet, SNA Gateway, Global Sections, Message Ob
jects, etc). PAMS provides the added value of a Message
Bus construct.

Figure 9 compares the features of the PAMS Message
Bus against a set of off-the-shelf networking packages.

Custom Implementations

Software designers using VAX/VMS, ULTRIX, VAXeln,
or MS-DOS typically read the supplied documentation and
develop a set of callable procedures to implement the peer
to-peer specific messaging facility they require. These fa
cilities isolate the application writers from the details of
the physical network. For example on VAX/VMS, applica
tions would use Mailboxes for local messaging and DECnet
Task-to-Task for remote messaging. DECnet and Mail
boxes have different feature sets and interfaces. DECnet
is ~vailable on all DIGITAL supplied operating systems,
while the Mailbox facility is specific to VAX/VMS. There
fore, messaging on environments other than VAX/VMS
would require yet another communication facility.

The DECnet Task-to-Task facility provides logical
link (virtual circuit) capability between any two cooper
ating DECnet processes. The connections are point-to
point and messages are delivered to a unique communi
cation port per partner. Therefore, if multiple partners
are required then the application must establish individ
ual sessions (see Figure 2) with each partner and either:
poll the set of input queues, or write the applications so
that it is multi-threaded9 . In addition, networking events
(i.e. link lost, partner disconnect, etc) are delivered to yet
a different collection point.

Although DECnet is supported on all DIGITAL oper
ating environments, the interface to non-transparent Task
to-Task facility differs on each implementation. Therefore,
both the portability and development efficiency suffers.
Traditionally, it requires a seasoned system developer to
design and implement non-transparent Task-to-Task based
applications. Also, DECnet does not provide the capabil
ity to integrate external events (i.e. timer events, device
events, etc) into a single blended input queue. Finally,
J:?ECne~ does not have any facility to perform message
simulation and capture or message tracing.

Custom implementations for peer-to-peer communi
cations have the advantage of the users developing the
specific package that meets their requirements. However,

9 M~ti-threaded in VAX/VMS context means using ASTs, in UL
TRIX it means signals

181

this is at the expense of the time/effort/cost of designing,
building, and supporting a custom package. Finally, it is
unlikely that a custom implementation would have all the
features of a mature off-the-shelf product.

Remote Procedure Call

In Fall 1987, DIGITAL announced a program for a Remote
Procedure Call (RPC) Facility. The details of this program
are not public at this writing, therefore we will compare
the PAMS Message Bus against the current most popular
RPC facility.

SUN Microsystems has designed, specified, and in
troduced an open standard set of protocols that collec
tively are called Remote Procedure Call. RPC is a value
added networking facility that is primarily based on the
Client/Server model. The transactions between the clients
and the server are strictly synchronous. As seen in Figure
10, the client process is blocked until the server process has
received the message, processed the request, formulated
the response, and sent it back to the client. This tight
synchrony can be achieved in PAMS using Message Re
covery Services. But, sender processes employed in PAMS
usually continues execution after the message is either ac
cepted by the local PAMS engine or queued to the target's
message input queue.

In RPC's Client/Server model, the client is the master
of the connection. The roles of the client and server can
be altered using a RPC feature called "Callback". PAMS
processes do not have defined roles and any process can
send a message to any other PAMS attached process. As
previously noted, PAMS is well suited to the Client/Server
based applications.

RPC defines three interface layers for applications.
PAMS provides a single interface definition. RPC also
uses a protocol called XDR which handles the differences
of data encoding in various RPC environments. XDR can
also handle user definable arbitrary data structure defini
tions. PAMS has no such capability.

RPC makes no attempt to provide a blended input
queue, message simulation, selective reception, message
capture, or priority (e.g. out-of-band) messaging.

FUTURE DIRECTIONS

As PAMS evolves, customers request new host and net
working platforms, and suggest new built-in features to the
existing product set. Some of these potential extensions in
clude: OS/2 PAMS, full functioned ULTRIX-PAMS OSI
network, TCP /IP, and Hyperchannel support, and the use
of DECnet Name Server for PAMS address resolution.

CONCLUSIONS

In this paper we have outlined some general considera
tions that an application developer must address when
contemplating a distributed application. A distributed ap
plication is any system that requires multiple processes

Ava fl.able on VMS

:i.lableoii Ava
Too
Ful
Stippo
Port
He.two
Sea
RCV
Mes
Broad
High
Se lee
fllult
Mes
Mes
Me.a
Mon
Int
Con
Dat

noo_;VMS O/S

ls for CustCllll He.tworks
1 Duplex Connections

rt I.Ocal'M8s88ging
able CALL.interface

rk.Transparent
sion-less connections ·
frolil Binsle·qlleue

sage.Recovery
cast/Mulicast Messages
Priority· Queueing
tive Reception·

iple Reader& of· a Queue
sage Capture
sase. Si111Ulation
•ase.RepJ.ay
itor Pending Messases·
esrated Tinier Event&
nectivity to LU&.2
a Encoding/Decoding

PANS . Cu•t- VAX/VMS DECnet . Ethernet. MAP
Messqe l•pl-ent- M•ilbox T•sk-to-

Bus

>< ? >< >< >< ><

>< ?)C. x x
x ?

x ? x x x x
x ? x >< x
x ?
x ? X. x
>< ?
>< ? x
x .?.
.x ? x
>< ?
x ?
x ?
>< ?
x ?
>< ?
X. ?
x ?
x ?

x·

Figure 9: Messaging Features Comparison

182

Remote
Procedu.-e·

-Future

SUN

x·
x
.X

x

x·

x

client service
progrma callrpc() deamon

function execute
request call

service

return
service

answer executes
request

return completed

reply
progr11111

continues Mach::Lne A Mac'h::Lne B

Figure 10: SUN RPC Transaction

183

to execute application transactions. These application's
processes require some base inter-process (peer-to-peer)
communication in order to exchange control and/or data.
Also, these processes can reside on a single or multiple
computational engines. A simple example of a distributed
application would be two processes residing on a single
cpu. One process could be providing an application user
interface while the second process could be servicing an
application database. A complicated example would be
the applications detailed in Figures 5 and 8.

We have defined an architecture called a Message
Bus and have mapped its features against these gen
eral distributed application requirements. It was shown
how a Message Bus simplifies the design and implemen
tation of peer-to-peer applications. Also, it was noted
that the PAMS implementation of a Message Bus provides
tools that enhance test and integration of such systems.
The Message Bus architecture was then compared to dis
tributed application developments using traditional DEC
net and to the newer Remote Procedure Call facilities.

In conclusion, effective and efficient integration of het
erogeneous peer-to-peer communications systems is indeed
feasible and practical using the approach of a common
message bus architecture spread over the diverse comput
ing environments. Using such a sub-system is cost effective
in the design and development due to intrinsically simpler
single-threaded structure of the application software. The
test, integration, and support phases of software develop
ment are vastly enhanced due to the existence of applicable
PAMS tools.

The productivity savings of using a Message Bus ex
ist for the spectrum of distributed applications. The sav
ings are, however, greater in larger and more complex ap
plications. But, all distributed applications benefit from
the simpler, integrated, consistent, and testable network
ing characteristics of a Message Bus. Finally, applica
tions developed using the Message Bus specification can
be ported to other platforms and can integrate new net
works as requirements dictate. The re-usability, simplicity,
and adaptability of a Message Bus based application de
rives great savings in an application's net cost and will
extend the system's expected life.

ACKNOWLEDGMENTS

There are many individuals who contributed to the ideas,
analysis, specification, and implementation of PAMS. The
authors would like to take the time to explicitly thank:
Martin Michelsen, Randy Skelding, Mick Konrad, Steve
Judd, and Walter Stutzman for their technical and inspi
rational contributions.

References

[lJ H. Kilman, E. Berelian, L. Farmer, F. Schoen, P.
Wang, J. Vij, "VMS, Xenix, Unix, and MS-DOS
Transparent Resource Sharing", Proceedings from
1987 Spring DECUS

184

[2] G. Macko, "Developing a Message Bus for Integrat
ing VMS High Speed Task to Task Communications",
Proceedings from 1986 Fall DECUS

[3] H. Kilman, "A Fast Inter-Process Communication Fa
cility for VMS", Proceedings from 1984 Fall DECUS

[4] R.S. Divakaruni and H. Kilman, "Futuristic Trends
in an Integrated Office Environment", May 11, 1985
proceedings from VENCOM '85

[5] A. S. Tanenbaum and Robbert Van Renesse, "Dis
tributed Operating Systems", Computing Surveys,
vol. 17, no. 4, December 1985.

[6] "Selective Broadcast Services Users Guide", Digital
Equipment Corporation

[7] "Remote Procedure Call Protocol Specification", Sun
Microsystem, Inc.

[8] "External Data Representation Protocol Specifica
tion", Sun Microsystem, Inc.

A Local Area Network for a M ultivendor Environment

Roger G. Ruckert
Software Analyst
Medtronic, Inc.

7000 Central Ave., Mail Stop BlOO
Minneapolis, MN 55432

Abstract

In an effort to provide easier access to our different computer systems, reduce
terminal and printer costs associated with these different systems, and provide
for future growth, Medtronic has implemented a local area network. This paper
will detail our hardware selections and describe what software interfaces were
developed. Specific topics include broadband cable issues, protocol conversion,
programmable terminals, and shared printer driver software.

Company Background

Medtronic, Inc. is the world's largest manufacturer of
biomedical devices, including cardiac pacemakers and
heart valves. Medtronic employs about 5,000 people
throughout the world and does business in over 75
countries. International production facilities are located
in Brazil, Canada, France, Puerto Rico, and Holland.
Medtronic corporate headquarters are located in suburban
Minneapolis, MN.

Computer Systems Background

During the years, some of our different departments pro
cured different software packages in order to better per
form their jobs. Often these decisions necessitated buy
ing different hardware. An example of this was the deci
sion to buy Express, a decision support tool. At the time,
it only ran on IBM mainframes and Prime systems. We
opted for the Prime version, which meant we had to buy
Prime hardware. Eventually, we had hardware from IBM,
DEC, HP, Prime, and Sperry. Some users who had signons
on different machines were literally having 2 terminals in
their offices. We considered buying duplicate terminals
and printers as not a very wise or necessary use of our
corporation's resources.

LAN Requirements and Goals

Based on our particular situation, we decided that a Local
Area Network (LAN) would meet all of our requirements.
These requirements are as follows (See [1], p. 119):

• reduce corporate investment in vendor-specific termi
nals, printers, and associated hardware;

Proceedings of the Digital Equipment Computer Users Society

• reduce terminal population in cases where multiple
terminals were in use in the same work area;

• reduce the printer footprint so printers could be lo
cated close to the users (one shared printer takes up
less room than a cluster of vendor specific printers);

• utilize terminals and printers better (for instance, our
vendor specific terminals were often idle due to insuf
ficient demand);

• allow users to access multiple technologies through a
single low-cost, multi-function workstation;

• create an open-ended system for future growth;

• guarantee high performance without the risk of degra
dation in a heavily loaded system;

• distribute the system fully (this requirement would
minimize the down time caused by single component
failures);

• support any-point to any-point communications with
a wide range of hardware on both ends;

• increase the utilization of the nodes attached to the
host computers by means of port contention;

• lower the cost per station by reducing the number of
vendors involved, thus opening the door for volume
discounts; and

• maximize the use of available resources.

Broadband Cable System

Earlier than the LAN issues surfaced, we had installed a
broadband cable system during a major addition to our

185 Anaheim. CA- 1987

Minneapolis campus. At that time, we needed a transmis
sion medium that was economical, provided a large band
width for both data and video, and would allow us to in
expensively move terminals from one location to another.
This latter requirement is important as departments are
constantly moving and the cost to the company in both
time and materials to move dedicated point-to-host termi
nals would be prohibitive.

With regard to using both data and voice, we actu
ally installed 2 cables in our campus. This was done not
only for the convenience of having data on one cable and
video on another, but also for redundancy reasons if one
of the cables failed. The video cable is used for events that
the whole company may wish to see, such as the annual
shareholder's meeting, special events with visiting guest
lecturers, and special broadcasts of UNITE, an educational
program with the University of Minnesota.

The actual hardware components of the broadband
network are as follows (See [5], p. 343):

• 1/2 inch broadband cable: this is standard CATV
industry cable and offers excellent resistance to noise
pickup;

• amplifiers: these can be located wherever necessary,
and provide the signal boost necessary to offset the
losses which occur during the pathing of the signal;

• power inserters: these deliver power to the amplifiers;

• splitters: when the cable needs to be trunked or
branched, splitters are used;

• taps: these are inserted into the cable to "tap off"
signals which are then transmitted to equipment using
flexible drop cables such as RG6; we have found that
one 4-port tap for every 2,000 square feet of office or
lab space is a good rule of thumb; and

• broadband modems: these are similar to standard
modems, except that they operate at a much higher
frequency range (radio frequency or RF); these are es
pecially useful for synchronous terminal connections
between host computers and multiplexers or terminal
controllers.

As this paper will not deal any further with the hard
ware issues involved in our network, let it just be added
that our broadband system is very reliable: We have yet
to experience a system-wide failure in over 5 years of op
eration.

Since we already owned a broadband cable system,
one additional LAN requirement was:

• the LAN must utilize the current broadband cable
system.

186

LAN Details

The LAN we selected was LAN/1 from 3M (now called
VistaLAN/1 and sold by Allen-Bradley). A major feature
is its 2.5 megabit data transmission rate. Another is the
ease which the configuration can be changed. All traffic
between any 2 points on the network passes through a pair
of network interface units (NIUs), similar in concept to the
way a pair of modems works. There is an NIU associated
with each group of ports on the network. Each NIU can
accommodate 4 or 8 ports. Each NIU may be programmed
for chaining to another port if the called port is busy, ac
commodating different baud rates, and recognizing differ
ent flow-control options. Their flexibility of programming
is excellent.

To start a session with the VAX, for example, one
would first try to establish a virtual circuit. This may be
done in either a general way ("CV" for "call the VAX")
or by specific port ("C40,3" for "call node 40, port 3"). If
that node is busy, the call will be rotored to the next port
on the chain if that port is so programmed. If not, or if
all ports are currently busy, a busy message will appear to
the user. This possibility of running out of access ports to
a specific machine is the largest risk for this type of setup.
A general rule we have followed is to allocate 1 NIU port
for every 4 expected users of the host system.

While the physical medium is a single cable (typical
of CSMA/CD transmissions like Ethernet, for example),
the actual method of transmission is token-ring. This is
achieved by defining a "head end" at one point on the
cable, having all transmissions from it at a high frequency,
and all transmissions to it at a low frequency. At the head
end, then, a remodulator folds the low frequency signal
into a high frequency signal to achieve this ring effect.

The major restriction of VistaLAN/1 is that it cur
rently supports only asynchronous devices. This actually
made some tasks easier, such as shared printer driver dis
cussed below. In general, however, this is not as desirable
as synchronous protocol support. The major disadvantage
is that it is difficult to determine an inactive user who is
not using his port currently in order to log him out and
give someone else access to the resource. We currently put
the onus of this responsibility on the individual host (e.
g., "Watchdog" on the VAX).

Equipment Selection

Since our group would be responsible for maintaining all
equipment, we wished to standardize the equipment selec
tion for the following reasons:

• fewer different hardware components meant that we
would need to learn how to fix and maintain a more
limited set of hardware;

• reasonable list prices, coupled with the possibility of
volume discounts, would reduce the corporation's out
side expenses;

• established vendors only, preferably with authorized
service and sales forces in the Minneapolis area;

• size, appearance, and other ergonomic considerations;

• on-site tests of actual functionality and performance;

• keyboard programmability for terminals; and

• ANSI 3.64 (VTlOO) compatible terminal equipment.

Our final equipment selections were:

• terminal: TeleVideo 970 (note: the GA970E chip set
is needed for VAX compatibility)

• medium speed printer: Genicom 3404

• low speed printer: Epson FX 80/100

• modem: Rixon R212A Intelligent Modem

• plotter: HP7475A 6 pen plotter.

In general, we have been pleased with our choices.
The hardest things from a user acceptance point of view
were the Rixon modems (the users would prefer the old
acoustic coupler modems) and the programmable termi
nals. This problem with the terminals was caused by user
frustration when response was slow or keys were incor
rectly programmed. The users would then hit combina
tions of keys in an effort to extricate themselves from their
problems which, unfortunately, usually only exacerbated
the problem.

Now three of the particularly interesting features of
this setup will be addressed: protocol conversion, pro
grammable terminals, and shared printers.

Protocol Conversion

As was mentioned earlier, a restriction of the LAN is that
it only supports asynchronous devices. Since we had to
connect 2 of our synchronous hosts to the network (Sperry
1100/72 and IBM System/3x family), protocol converters
became the logical solution. A protocol converter appears
to the host as a native synchronous terminal (or group
of terminals) while appearing to the terminal as an asyn
chronous host. On the host side, it is the protocol con
verter's responsibility to handle tasks usually associated
with synchronous terminals: answering polls; buffering the
sent and received data; and actually sending and receiving
the data. On the terminal's side, the protocol converter
handles cursor control; screen attributes such as highlight
ing, reverse video, and blinking characters; and producing
the visual effect of being a synchronous terminal. If the
setup is working correctly, the protocol converter should
be totally transparent to both the host and the terminal.

In addition to the advantage of connecting syn
chronous hosts with devices, the other major advantage
is the ease of network expansions. Since it is the protocol
converters that are configured on the host, changes to the

187

network itself are transparent to the host. Some terminal
parameters, such as the Sperry's terminal address (RID
and SID), are not accessible to the end user but only to
the protocol converter, thus providing a modest increase in
protection against malicious people or faulty synchronous
terminals. Finally, there is the obvious advantage of the
price of asynchronous over the synchronous terminal.

Along with these advantages are some limitations.
Some signals to the host, such as carrier detect (CD) and
data terminal ready (DTR), can be filtered out by the pro
tocol converter and are never passed from the terminal.
Another disadvantage is the delay between keystroke and
screen display. Command keys are usually emulated by a
programmed sequence of control and/or escape sequences.
This means that what the user types is not necessarily
what gets echoed back to the screen. On a public data
network, there may be additional packet charges involved
due to this. The delay of echoing is more of a nuisance
than anything else.

Programmable Terminals

The TeleVideo 970 is, to our knowledge, one of the
most completely programmable terminals on the market.
(Though it is not manufactured any more, it can still be
obtained in the used marketplace.) Except for the cen
tral keys with the numbers and letters, all other keys may
be programmed to a predefined sequence of keystrokes.
(Of course, they all have factory defaults if they are not
programmed.) In this way, the feel of the terminal may
be made to simulate any given terminal, be it a Sperry
UTS20, DEC VTlOO, or IBM 5251. To facilitate key load
ing, an "LKEYS" routine, complete with menus, was de
veloped. It resides on our Prime systems and allows the
users to downline load their own keys. We currently sup
port 6 production LKEYS files. (In addition, users can
further customize the keys by local key loading.) The "per
sonal message" area at the bottom of the screen allows one
to have any 9 character or less message one chooses. In
order to identify the particular key programming that is
currently active, we have programmed this area to contain
a message, such as "SPERRY" or "S/3xLD".

Due to the ease of programming the keys and their
flexibility for emulating different terminals, all departmen
tal support personnel have TeleVideo terminals in their
homes. This makes it an easy task to work at home with a
variety of different hardware technologies while using only
a single, inexpensive terminal.

Our network also has personal computers attached to
it. We use VTlOO or VT102 emulator packages, such as
Kermit and SmarTerm 100 as well as SmarTerm 240, a
VT240 emulator.

Shared Printers

One of the many benefits of our LAN setup, and to my
mind the most elegant, is the ability to share printers
across different systems. Due to the size of our company,

we have users of a particular computer system scattered
around. Using a traditional approach, there would be IBM
printers for IBM printouts, DEC printers for DEC print
outs, etc. This would lead to duplication of hardware and
the extra associated costs with that.

Our solution was to place printers throughout the cor
poration that are only attached to the network, not to a
particular machine. The exact method for printing varies
by machine, but the principles remain the same for all
machines. Each machine has a file containing the node
addresses of the different "shared printers", as they are
called. In addition, there is a print queue on each ma
chine associated with each printer accessible by that ma
chine. When the machine determines that there is printout
queued for a shared printer, the following steps are taken:

1. The host machine determines the queue(s) that have
output queued to them.

2. The host tries to make a connection with the port
on the network associated with a given printer. If the
port is already in use (i. e., another system is printing
on it), the next printer that has something queued is
checked, etc. If no other queues have output queued,
the program goes into a wait state and retries later.

3. At this point, the virtual circuit is established. Based
on the specific implementation, the host will either
(a) pass control to a spooling routine to do the ac
tual printing (as on the VAX) or (b) output the print
images by itself.

4. If a spool routine is performing the printing (e. g., a
VAX symbiont), the driver must periodically check to
see if the printing is done. Once it determines that is
is, it will break the virtual circuit and check for more
work to do. If there is none, it waits and retries at
a later time. If the program is outputting the print
images (e. g., Sperry), it will break the circuit when
the output is done and hang up the circuit. It, too,
will then look for work to do or wait and retry later.

On the VAX, the implementation is through the use
of generic queues, one for each shared printer, and one
physical queue (TXA7) associated with a physical port
on the VAX's backplane. When there is work to do, a
connection is attempted between TXA 7 and the desired
shared printer. If it is made, the generic queue's output is
passed to TXA 7 and the printing commences.

One of the disadvantages of this system is that only
1 printer can be active at a time. If a user is printing a
long report on one printer, all of the printouts in the other
shared queues must wait for that one report to finish before
they will print. We have selected an informal limit of 50
pages per printout to guard against this very thing. On
the VAX, we can drive up to 16 print symbionts with one
driver program. On the Sperry, we utilize 1 driver per
symbiont, as the program is the symbiont. Therefore, we
currently have 3 drivers running which all consume system

188

resources. However, this is a necessary evil to ensure good
turnaround time at the printers.

Another related disadvantage of our system is the sen
sitivity of each printer in the group. If a job is printing and
the paper jams, for example, all other print jobs must wait
until the problem is resolved. An interesting note about
our VAX implementation is that when there is ajam and
one tries to find out the printer that is hung, TXA 7 ap
pears as the only active printer since the generic queue is
stopped after its output is passed to TXA7. Therefore,
we write out the currently active shared printer to a sepa
rate file before control is passed to the symbiont so we can
locate the offending printer if the need arises.

A final disadvantage is that this system cannot be ro
bustly implemented with all systems. We currently have
implementations on our Prime, Sperry, and VAX systems.
Especially difficult are the hosts that use protocol convert
ers. (The Sperry does not use these for the shared printer
drivers; we use asynchronous communications boards in
stead.) On the IBM System/38, for example, we have real
difficulty in detecting network messages and carrier infor
mation. The shared printer driver we had on this system
was unreliable at best, but with new levels of protocol con
verter firmware we plan to make another, more successful,
attempt in the future.

Despite these disadvantages, the shared printer setup
works very well. It is interesting to see a printer start a
printout from the Sperry, then pause, then print a VAX
report, pause, and finally print a Prime report. Also, we
know that the utilization of this printer is far better than
would 3 native vendor printers in the same physical loca
tion.

Conclusions

At Medtronic, we needed a flexible and cost-effective net
working tool. A LAN was the preferred solution. By in
stalling our LAN on our existing broadband cable system,
we have been able to realize the following major advan
tages:

• reduced hardware costs by not buying vendor specific
terminals and printers (for example, when we ordered
our VAX 8500, which was our first VAX, no native
terminals or printers were ordered, much to the sur
prise of our sales representative);

• better utilization of existing equipment;

• any-point to any-point communications ease the task
of moving equipment around the corporate facilities;
and

• by using common asynchronous communication,
many types of systems can be accessed using a sin
gle terminal, thus reducing the terminal footprint on
a user's desk; in addition, shared printers attached to
the network can be conveniently located close to the
users, reducing the printer footprint companywide.

All in all, we are very pleased with our network.

References

[1] Dean, John. "Local Area Networking in a Multi
Vendor Environment," Proceedings of the National
Prime Users Group Conference, June 1985 (St. Louis),
vol. 1, p. 117.

[2] Digital Equipment Corporation. Networks and Com
munications Buyer's Guide. July-September, 1987.

[3] Digital Equipment Corporation. Networking: The
Competitive Edge. 1985.

[4] Doll, Dixon. Local Area Networks. Session held at
Battelle Columbus Laboratories, November 10th, 1985.

[5] Gammel, John. "Local Area Networking in a Multi
Vendor Environment," Technical Papers of the Na
tional Univac (USE) Conference, April 1984 (Dallas),
vol. 1, p. 343.

(6] Gammel, John. "Local Area Networking in a Multi
Vendor Environment - An Update," Technical Papers
of the National Univac (USE) Conference, October
1984 (San Diego), vol. 1, p. 389.

[7] Micom, Inc. Recognizing, Evaluating, and Choosing
Solutions to Data Communications Application Prob
lems.

[8] Tanenbaum, Andrew. Computer Networks. Engle
wood Cliffs: Prentice Hall, 1981.

189

-8

MEDTRONIC, INC. LOCAL AREA NETWORK
SPERRY 1100/72
SHARED DEMAND

PAINTER MAPPER
DRIVER TIP

CMS 7R2B

CTA

9.6

I
CTS

9.6

I

DEC VAX 8530
ORACLE

SAS
f HARED PTA DRVR

9.6

DEi.NI
~

iDECserv~
I

B-VT1001 KAUFMAN
19.2 871 PCU • NIUs NI Us

I

I
NI Us

I
TERMINALS

IBM PC-9.
V970-19.

NIUs

BROADBAND
I

NI Us NI Us

I
TELENET

(X.25-4.B}

PRIME 750 (2)
APPLIC. SHARED
EXPRESS PRINTER
INFO DRIVER
SIR/SAS

AMLC

9.6

AMLC

9.6

IBM S/34-36-38s
APPLICATIONS

1 MB

OTHER SYSTEMS
HP iOOO & 9000

VME 10
PC B-BOARDS
19.2 & 9.6

7-VT1001 LOCAL DATA
19.2 5251 PCU

JIIIlil
NI Us NI Us NI Us NI Us

CABLE & A-B VISTALAN/1

NIUs

A SYNC
MODEMS
1.2&2.4

I
NI Us

I COMP

SYNC I/F I .. SYNC
llLTDUXER LINE

AS'tNC 1./F

DEDICATED TB..E CIRCUIT
DSU/CSU

LAN/1-PC GATEWAY
BROADBAND LAN/PC

2.5 MB
IBM PCs

'--- OTHER SERVICES:
DISK SERVERS
PRINTING

J

PRINTER
EPSON

GENICOM

PRINTERS
CIE-9.6

GENIC-2.4
THE THE TO WIDE AREA NETWOAl<(S) WORD PROCESSING

WORLD RBOC

PERSONNEL COMPUTERS AND ALL-IN-1:

DOCUMENT TRANSFER AND TRANSLATION

C. F. Stanland
E. I. du Pont de Nemours and Company

Savannah River Plant
Aiken, SC

ABSTRACT

The Savannah River site is currently utilizing a multi-vendor approach to provide
Office Automation. Personal computer workstations include the Apple Macintosh, IBM
PC, DEC Rainbow and DEC V AXmate. Users of these workstations typically employ
a variety of word processing and graphics packages to produce documents, many of
which need to be exchanged in reviseable form with users of different word processing
packages.

Since most of these same users are utilizing terminal emulators to access the
departmental ALL-IN-1 systems, the need/desire to translate and/or transfer workstation
created documents via electronic mail naturally arose.

We will discuss our enhancements to document transfer capabilities of ALL-IN-1
to support host-initiated file transfers to and from any of the above mentioned worksta
tions. Documents, including attachments, may be uploaded to, or downloaded from,
ALL-IN-1 in their native format or with conversion. Document conversions are per
formed "transparently" using ALL-IN-1 DSAB's or third party packages with attributes
such as rulers, soft returns, holding, and underscoring preserved. Support for translation
independent of transfer is also provided and a "Get From Personal Computer" option
has been added to the editor menus.

Included in our discussion will be a summary of the supported terminal emulator
file transfer packages, the various workstation to VAX hardware connections utilized,
and the capabilities of the file conversion packages that are currently available.

IN1RODUCTION

The phone just rang; it was your boss. His superinten
dent had just called and said that the report originally
due next week must be ready in one hour. Your group
has been working on the individual sections, but noth
ing has been pulled together yet. Jane has a great
graphic that she's done on the Macintosh, while Bill has
his data analysis prepared in a WPS-Plus document
under ALL-IN-1. Joe is just finishing up his conclu
sions using Displaywrite 3 on the IBM PC, while
you've been using Word Perfect to write the introduc
tion. To top it all off, your boss, who's office is 20
miles away, wants to add a last minute management
overview section and he's a Macintosh Microsoft Word
user.

As personal computer and local area networks increase
in numbers, scenarios like the one described above

Proceedings of the Digital Equipment Computer Users Society 193

become increasingly frequent occurrences. This paper
will discuss the approach taken by the Savannah River
Plant in addressing the challenges of document transfer
and translation.

BACKGROUND

The Savannah River Plant (SRP) is a Department of
Energy facility located on a 350-square-mile reservation
outside of Aiken, South Carolina. The plant, which is
operated for the government by E. I. du Pont de
Nemours and Co. Inc., produces special nuclear materi
als, primarily for use in the nation's defense programs.
The site currently employs about 13,000 workers in
technical, production, clerical, construction, and security
roles.

In January of 1985, Du Pont management commis
sioned a study of how the long-term information needs

Anaheim, CA - 1987

of the site could be met. The result of this study was a
10-year plan calling for the implementation of a
sitewide information system which would help solve
problems like the one described above. The final system
would include:

• Extensive local area networks

• Personal computers in all work locations

• Direct workstation to workstation and workstation
to central computing facility (CCF) access

• Office Automation and CAD/CAM computers

The Computer Projects Department (CPD) was subse
quently formed to address the needs of the information
system plan. Since that time, one of the major tasks of
CPD has been to procure and install personal and office
computers and the networks necessary to tie them
together.

Currently, local area networks are being installed at
major plant facilities. These networks are interconnected
via Applitek bridges to the large sitewide broadband
system. (There are 4 I miles of broadband cable at the
site.) Twelve departmental office automation systems,
consisting of Digital VAX 8550 and MicroVAX II
computers, are in place. ALL-IN-I is the primary user
interface for information system access and approxi
mately I,800 of the projected 4,400 users currently have
accounts.

Objectives

There are a variety of word processors and personal
computers in use at the Savannah River Plant.
Currently Apple, IBM, and Digital personal computers
(pc's) comprise the 4,000 workstations in use at the
plant. Of these workstations, approximately 2,000 are
IBM (XT's AT's or PS/2's), I,500 are Apple
Macintoshes, and 500 are Digital Rainbow or
VAX.mates. On these workstations, a variety of word
processors are used and require interchange. Addition
ally, a variety of other applications are in use including
graphics, spreadsheets, and databases.

The goal of the document transfer and conversion effort
was to allow users to electronically exchange reviseable
form documents throughout the site. This was desirable
in order to eliminate the existing "foot-net" method of
transferring documents - a method impractical when
facilities are as much as I5 miles apart. It was also
desirable to eliminate the re-typing of documents which

194

occurred whenever two users of dissimilar word proces
sors wanted to exchange documents.

Given the multivendor environment present at the site,
another of the objectives of the document trans
fer/translation application was to allow users to
continue to utilize their existing workstations and word
processors, whenever possible. It would be impossible
to replace all of the existing workstations at once, much
less with a single vendor solution. Additionally, it was
felt that the training and support workload would be
smaller, and automation efforts would be more openly
received, if users retained as much of their existing
environment as possible.

A final objective was that any document translation
solution be an integral component of the site ALL-IN-I
Information System.

DOCUMENT TRANSLATION

Requirements

As stated above, there were several word processors in
use at SRP which require support. These are listed in
Table I:

Table 1. Word Proc~rs in Use

Apple

Mac write
Microsoft Word

WPS-Plus

IBM

Displaywrite
Wordstar
Word Perfect
Multimate
Microsoft Word

There needed to be a way to convert a document created
using these word processors into any other format,
while retaining as many attributes as possible, espe
cially character attributes (bold, underline, etc.) and
rulers.

Technical Awroaches

There are two approaches which can be taken in order to
meet the above requirements. One can either:

(1) Enhance ALL-IN-1 so that it can read/write/convert
these document types, or

(2) Develop software outside of ALL-IN-1 that per
forms the translations, using ALL-IN-1 just to
mail the documents.

The first option is the more desirable solution because:

• It would not be necessary to translate the entire
document in order to read a portion of it - with
ALL-IN-1, translation occurs a line at a time

• ALL-IN-1 has an implicit conversion capability,
allowing translation to be performed by a simple
copy operation

• Append, merge, list, and other ALL-IN-1 functions
would work on any document.

There are disadvantages to option (1) however, which
include:

• Digital does not supply sufficient technical infor
mation for users to develop and integrate the
required conversion mechanisms

• The programming effort would be large and time
consuming

• CPD would have to support any custom conversion
software

• It assumes access to all word processor file formats

The second option, likewise, has it's advantages and
disadvantages.

On the positive side:

• CPD already knew of a vendor who produced a per
sonal computer based system which did most of the
required conversions.

• The conversion software need not be dependent
upon internal knowledge of ALL-IN-1

On the negative side,

• It would not be a true integration with ALL-IN-1,
therefore a mechanism would have to be developed
to allow ALL-IN-1 to "deal with" the document
types, while not interpreting them.

• The existing software was relatively slow

• A translation would require converting the entire
document in order to read a single line

195

The final solution, as might be expected, is a hybrid of
both approaches.

Translation Software

The word processing document translation is performed
using two pieces of purchased software, ALL-IN-1 and
KEYpak, which minimizes the support and develop
ment and support required.

KEYpak

The stand-alone translation system which CPD had
experience with is produced by Keyword of Calgary,
Alberta. To use that system, floppies are inserted into a
disk drive unit attached to a personal computer, and
software is run to translate between the source and target
formats. CPD approached Keyword with the idea that
they port the translation software to run in a
V AXNMS environment in order to translate files
which had been uploaded from personal computers.
Keyword ported the software to VMS and it is now
available as their KEYpak product. KEYpak does not
support all translations available on the stand-alone
system, but the translations CPD desired are available.

To use KEYpak, an image is run and the following
information is provided on the command line: source
file name and format, target file name and format, con
version log file name, and optionally, a configuration
file name. The configuration file contains special trans
lation directives. A status is returned which indicates the
success of the translation.

ALL-IN-1

In addition to Keyword, CPD also met with Digital to
discuss adding functionality to ALL-IN-1 which would
allow it to read additional word processing formats.
[This ALL-IN-1 facility is commonly referred to as a
Data Set Access Block (DSAB). Standard ALL-IN-1 has
DSAB's for WPS-Plus, ASCII, and DEC DX.]

Savannah River first requested that Digital develop a
DSAB which would allow ALL-IN-1 to read and write
Macwrite files. Macwrite was selected because it was
the dominant word processor on the Apple Macintosh
and because Keyword did not provide a Macwrite trans
lation routine. Also, the users of Macwrite were typi
cally persons who would want the ability to read a
Macwrite document without waiting on a translation to
take place. Digital did develop the DSAB, which is
currently available as the "Macwrite Handler for
ALL-IN-1."

If we were to be able to use ALL-IN-1 to mail docu
ments that were of any file type, we also required a
DSAB which deals with files irrespective of their con
tents. A "foreign" or "binary" DSAB was already under
development by Digital and met just those require
ments. When a user attempts to read or edit a document
which has a DSAB type of "BINARY," a message
appears which reads: "This file cannot be read by ALL
IN- I." Whenever binary files are copied using ALL-IN-
1, the copy is done in a block-mode fashion and no
interpretation of the contents is attempted.

Summrte<I Translations

Using KEYpak and ALL-IN-1, translations can be per
formed between any two of the word processing formats
in use at the site. This is possible because both transla
tion packages support DEC DX as an input or output
format. Because of this, DX can serve as an intermediate
format when no direct translation is possible. To con
vert from WPS-Plus to Word Perfect, for example, the
WPS-Plus file would first be converted to DX using
ALL-IN-I, then the DX file would be converted to Word
Perfect using KEYpak.

Translations supported by each of the conversion pack
ages are listed in Table 2.

Table 2. Supported Translations

AIJdN-1

WPS-Plus
ASCII
Binary
Mac write

DEC DX

ALL-IN-1 Integration

KEXpak

Displaywrite
Wordstar
Word Perfect
Multimate
Microsoft Word
DEC DX

The next step which we faced was to integrate the
DSAB and Keyword conversion mechanisms into
ALL-IN-1. This meant that we would have to incorpo
rate, to some extent, the following support for those
document types ("foreign formats") that ALL-IN-1 could
not read or convert:

• File cabinet storage

• Use as mail message attachments (e.g., Wordstar
attachments to WPS-Plus messages)

196

• "Gold-G" from the editor, with automatic conver
sion

• A "Show Document" function to show the docu
ment type of documents (and any attachments)

• Convert document support

• Translation during document transfer to or from a
workstation

The first task to be performed was to allow ALL-IN-I
to handle and distinguish the various "foreign format"
documents. For compatibility with electronic mail, this
also means that the format of an attached document
must be discernable at the receiving node, provided it is
running the same software. To accommodate this, it
was necessary to modify ALL-IN-1 (i.e., the tables
within OAET.MAR) to define a DSAB for each of the
formats to be supported. This required specification of a
DSAB name, a default file extension, and the routine to
be called to read or write the file. Since there weren't
any action routines which would allow ALL-IN-I to
process the files, the action routine was specified as
being the same as that for the "binary" DSAB. This
ensures (1) that the user is told if he tries to read/edit an
"unreadable" document, and (2) that copies do not affect
the document.

Next several tables were set up as indexed files accessed
by ALL-IN-I entry forms. The document file specifies
all document types the DSAB required, whether or not
the file was intrinsically supported by ALL-IN-I, and
the KEY word translation support and attributes. A con
version file specifies an action to perform (KEYpak or
ALL-IN-1 translation) for each possible conversion.
Conversions not directly possible (e.g., WPS-Plus to
Wordstar) are handled in a two-step process with DEC
DX being the standard intermediate format.

The assignment of a DSAB to each document type
ensures proper file cabinet storage and electronic mail
transmission. The data tables are used during operations
such as "Gold-G," "Convert Document," and
"Document Transfer" to determine the proper routine to
execute to convert the document to the output format
specified by the user.

Document Transfer

Requisite for any VAX-based personal computer file
translation is a good file transfer package. At the time
CPD was formed, there were already a few terminal
emulator/file transfer packages in use. Our task was to

integrate the packages under the ALL-IN-I document
transfer subsystem in as transparent a fashion as possi
ble.

Users are required to provide three pieces of information
in their user profiles which are related to document
transfer: workstation, emulator, and hardware connec
tion. The workstation field indicates whether the user
has an Apple, IBM, or DEC personal computer. The
emulator field indicates which terminal emulator/file
transfer package is being used, and the hardware connec
tion indicates either an Ethernet or serial connection.
These values are used to select the forms and command
files necessary to perform the file transfer.

For Apple file uploads, the user is first prompted for the
file type (e.g., Macwrite, binary, etc) and ALL-IN-I
document filing information (i.e., destination folder and
title). A dialog box then appears and the user indicates
which file is to be transferred through standard point and
click mechanisms. The file is transferred, translated if
necessary, and the ALL-IN-I document created. For MS
OOS workstations, the procedure is similar, except that
instead of a dialog box, the user is asked to input the
full file specification.

For file transfers to the workstation, the procedure is
roughly the reverse of the above. The user frrst selects a
document to download. He then indicates the desired
format of the document that is to be created on the
workstation. For the Macintosh, he is presented with a
dialog box and indicates the output file and directory.
For the MS-DOS systems, the user specifies a full tar
get file specification. If the document has attachments,
the user is asked to specify which combination of
original document and attachments are to be transferred.
Additionally, he is given the option of specifying a
single or multiple output files.

The desirable characteristics for a standard terminal
emulator were those which would allow the most
seamless integration with ALL-IN-I. These included:

• Supports host-initiated file transfers

• Allows specification of host output file
characteristics

• Efficient as well as fast

• Robust in a variety of network connection
environments

• Inexpensive

• Available on all CPD-supported workstations

197

• Has or plans REGIS graphics support

• Has or plans Ethernet support

After having investigated many packages, we chose
pcLINK (from Pacer software) as the emulator we rec
ommend to new users, although our document transfer
enhancements (except for Ethernet support) work with
several terminal emulators, as shown in Table 3.

Table 3. Supported Terminal Emulators

Apple

Serial: pc LINK
MACterminal

Ethernet: pc LINK

CONCLUSION

Di!lital

pcLINK
Poly-COMM

pc LINK

IBM

pc LINK
VTERM

pc LINK

Now, let's re-visit the scenario that we started with.

Jane uploaded her graphics from the Macintosh into a
binary document in ALL-IN-1 and mailed it to you as
an attachment to her message. Bill mailed you his
WPS-Plus conclusions and Joe sent his Displaywrite 3
document. You file all the attachments in their original
format and then begin composing a mail message to
your boss. When it's done, you attach your introduc
tion, Bill's analysis, Joe's conclusions, and Jane's
graphics. You then send the message to your boss.

After your boss reads your message, he performs two
document transfer operations. For the first, he down
loads all of the text files into a single Microsoft Word
document on his Macintosh. Then, he downloads the
graphic. He adds his overview to the report and then
prints the report and graphic on his laser printer. With 5
minutes to spare, he carries the document upstairs to his
boss.

The information contained in this article was developed
during the course of work under Contract No. DE
AC09-76SROOOO I with the U. S. Department of
Energy.

Basic Networking for Office Automation

Robert Gary Mauler
and

Valerie Cabral Mauler

Westinghouse Electric Corporation
Baltimore, Maryland

ABSTRACT

This paper will take the mystery out of networking Workstations for non
technical people. Based on experience gained In networking over 250 PC and
VAX Workstations, guidelines and recommendations will be made to help
simplify the planning, installation, and check out of an Ethernet LAN. The goal of
this paper is to help the poor soul who is told to " ... automate our office and
network our PC's while you are at it."

After working with Ethernet since about
1982, and attending a lot of DECUS
Networking sessions, we are surprised to find
that there are still a lot of people out there that
either don't understand or feel comfortable
when designing or working with a network
system based on Ethernet. The goal of this
paper is to help the not so technical person
become more familiar with Ethernet wiring
systems, thus realizing that there is no magic
going on. If you know and follow a few basic
rules you too can successfully network your
office.

Networking an office should be
approached in an organized manner.
Hopefully the network you install will be around
for a long time, and so it is important to build a
solid foundation upon which you can add. The
first thing that needs to be done is what you
are doing right now, that is learning about the
topic and planning your network. Secondly,
you must either install the network hardware
yourself or at least supervise the installation to
make sure it is installed per your design (you
don't need surprises later on when you find out
that an installer took a short cut). Thirdly, after
installation of the networking hardware, the
cabling and other active devices must be
checked out to verify proper operation. And
finally, you need to implement a network
management system both to provide
diagnostics capability as well as to provide
statistics for planning future growth of the
network.

Proceedings of the Digital Equipment Computer Users Societr 199

This paper will deal exclusively with the
subject of office networking using Ethernet.
That is, we will discuss how to install a network
in an office environment using Ethernet
protocol and RG-58 50 ohm cable between the
desktop workstation and the wiring closet.
One of the first confusing things that you may
encounter is the many terms used by vendors
to say what we just said. You will hear terms
such as ThinWire, ThinEthernet, Cheapernet,
and even 1 OBASE2 used to describe Ethernet
using RG-58 cable. In order to be consistent in
this paper we will use the term "ThinWire",
which is Digital's terminology. Another way of
looking at ThinWire is to compare it to "Thick
Ethernet" or the standard Ethernet RG-225
trunk cable. The main difference is that
ThinWire is smaller in diameter, much easier to
pull, and cheaper (Cheapernet). The size is
the major factor that makes it practical to wire
Ethernet right to the workstation on the office
worker's desk. The other major difference
between the two cabling schemes is the
difference in cable connectors. ThinWire uses
what is called a "BNC" type connector while
the RG-225 cable uses an "N" style connector.
BNC connectors are pictured in Figure 1. The
BNC connector is what you might call a "twist
& lock" since the connector is pushed on and
then rotated 90 degrees to make the
connection. On the other hand the "N" style of
connector is threaded on. When it is
necessary to connect a computer to the
network there is a difference again based on
the type of connectors. Typically

Anaheim, CA· 1987

when using the RG-225 cable a piercing type
of tap is made on the cable and then a device
called a transceiver is clamped onto the cable.
In the case of ThinWire, BNC type connectors
are used. A BNC "T" connector allows two
segments to be connected together and also
provides a male connector to connect to the
workstation's onboard transceiver.

Once you understand the terminology, it
time to start learning the rules of networking.
One source of these rules is a document from
Digital Equipment Corp. entitled "Networks and
Communications Buyer's Guide". Although it is
an excellent source of information be aware
that it only represents networking products
from Digital. The same will be true of almost
any document that you receive from a vendor.
You need to shop around to get the big picture;
there's more than one way to network a
building.

When it comes to office networking there
are only a few rules that you need to
remember. First, the total length of a ThinWire
segment is 185 meters or 606 feet maximum
per segment. Although that may not seem like
a whole lot, in actual practice it is more than
enO,ugh. The second rule is that there can be
no tnore that 30 nodes or devices maximum
per segment. The 30 node rule also implies
that there should be a maximum of 60

185 meter& (6061991) MAXIMUM

connectors per segment (30 nodes X 2
connectors per node). Here again, with the
use of multi-port repeaters, as you will see
later on, your network will probably never
reach the maximum of 30 nodes on a segment.
Third, ThinWire segments are to be connected
together with BNC "T" connectors which are
then directly attached to the workstation. In
other words there should NOT be a length of
cable between the workstation and the BNC
"T" connector. In addition, if a workstation is
removed permanently then it is preferable to
replace the BNC "T" connector with a BNC
barrel connector. The fourth rule is that both
ends of an Ethernet segment of wire must be
terminated with a 50 ohm terminator. In
addition, one end and only one end should be
grounded. All other connectors along the
segment should be isolated from ground by
using the plastic shields provided with your
network interface card. In the case where you
are using a multi-port repeater from Digital
Equipment Corporation (DEMPR), then the
requirements for 50 ohm termination and a
ground on one end of the segment are
provided for by the DEMPR. One last note
before we leave these rules is that Ethernet is
a multi-drop configuration and not a ring type
wiring scheme. Therefore you must insure that
you don't form a ring when wiring with
Thin Wire.

BNC MALE CONNECTOR

/ ~
RG-58 COAXIAL CABLE

--~~"'"'-~~7,~'~~~~~

0.5 meter __ _.,1 ' / I
MINIMUM "' "T" CONNECTOR

T CONNECTOR OR
BARREL CONNECTOR

50'2 TERMINATOR

Figure 1

200

BNC "T • CONNECTOR I ADAPTOR

I
I RG-58 Coax· ThlnWire 50 n TERMINATOR

~

TRANSCEIVER

NODE A

Figure 2

To form the simplest network it is going to
take two nodes. There could be a few
deviations such as one node being a terminal
server and one node a VAX, but for this
discussion we will assume that both are
MicroVAX systems (see Figure 2). In the case
of a MicroVAX, and for that matter most
minicomputers, you will find on the back of the
cabinet a 15 pin miniature D connector (looks
like a small RS-232 connector) labeled
Ethernet. The first item that you will need is a
transceiver cable. The purpose of the
transceiver cable is to provide DC power and
digital data signals to a Ethernet transceiver.
Here is where the real fun starts. The
"transceiver" has had many flavors over the
years. Back in the beginning it was just called
a transceiver, but then DEC, Intel, and XEROX
got together and came out with Ethernet
Version 2. So then you had two types of
transceivers, a Version 1 and a Version 2. To
further complicate matters, another group of
engineers got together and now we have an
802.3 standard. The main difference between
these three types of transceivers is the
"heartbeat test" or SOE (Signal Quality Error
signal). Version 1 and 802.3 transceivers do
not use the SOE signal while the Version 2
transceiver does. It is important to use the
correct type of transceiver for a particular
Ethernet device or controller. In some cases
when you connect the wrong transceiver it just
won't work. But things can really get bad if you

201

Thin Wire
Transceiver

NODE B

connect a transceiver with heartbeat to a
controller that is not expecting the heartbeat
and mistakes it for a real packet collision. In
this case the device will sort of work but you
will wonder why the network is so slow.

One area of confusion that we have
noticed is in how to mix Thick and Thin types
of transceivers on a network. In Figure 2 there
are two types of transceivers shown. The
transceiver on the left represents a Thick
transceiver that has an "adapter" to make it
compatible with ThinWire wiring. There are
several ways to make this transition. One very
expensive scheme used by DEC is to employ
what they refer to as a "Loop Back
Transceiver". This method requires that the
Loop Back Transceiver be modified by
removing it's 50 ohm terminators and replacing
them with "N" barrel and "N to BNC female"
adapters. For those who are budget conscious
there is another approach. AMP Corporation,
the makers of most of the media attachment
devices for DEC and other Ethernet vendors,
offers an adapter that simply replaces the
Thick cable clamp/tap assembly with a new
assembly that provides a BNC "T" connector
for ThinWire cabling. A big advantage to the
AMP method is that the number of connectors
in the cable path is reduced by four. Not only
is this an obvious cost savings but there are
less electrical RF joints to attenuate the signal
and otherwise cause trouble.

The Transceiver on the right in Figure 2 is
an example of a ThinWire Transceiver. A
ThinWire Transceiver is one that is designed
and built to connect directly to ThinWire
cabling without the need for any adapter. If the
network you are installing is in an office
environment then you should take advantage
of these smaller and lower cost devices.

BNC "T" CONNECTOR I ADAPTOR

I
Ethernet

Transceiver

~ TRANSCEIVER CABLE

NODE A

~

As people see the advantages of
networked workstations, the network will
quickly grow beyond a single work group. A
device called a Multi-Port Repeater is used to
connect a building Ethernet Trunk cable to the
ThinWire segments running to desks (see

NODE B

The network that is shown in Figure 3
takes our basic network one step further. We
have now added two workstations. It is
apparent from the illustration that there are no
transceivers associated with the Workstations.
But there must be transceivers, since any
Ethernet connection is through a transceiver.
In this case the workstation has its transceiver
electronics built onto the Ethernet controller
board or in some cases the CPU, memory, 1/0,
and network controller are all on one large
motherboard. The workstation will have a BNC
female connector protruding from the rear of
the cabinet to which a BNC "T" connector is
attached. If the Workstation is physically the
last node on a segment then one port of the
"T" connector is terminated with a 50 ohm
terminator. Otherwise the "T" connector is
placed in a "series" fashion.

Figure 3

202

Figure 4). Digital Equipment Corporation calls
their device a DEM PR which stands for Digital
Ethernet Multiple Port Repeater. This type of
device is available from other vendors besides
DEC, but for simplicity I will use the term
DEMPR in this paper. The DEMPR should be
placed in a wiring closet located such that the
farthest workstation is within a 600 foot radius
of it. A DEM PR has 8 BNC female connectors
to which 8 ThinWire segments can be
attached. If a port is not connected to an
active segment then a 50 ohm terminator
should be installed. An 802.3 type transceiver
(non heartbeat) and cable is used to connect a
DEMPR to the Ethernet Trunk cable. The
transceiver used for this application would be
the piercing type. A maximum configuration for
a DEM PR will allow up to 232 nodes in a 600
foot radius to be connected.

50 n TERMINATION ON UNUSED PORTS
MultiPort ThinWire Ethernet Repeater

1~1

SEGMENT LED SELF TEST PUSHBUTTON

NODE A

The DEMPR can also be used in a "local"
configuration which means that it is not
connected to an Ethernet Trunk cable. This
type of configuration is useful in small
buildings. For example, in a small three story
building the wiring closet could be placed
centrally on the second floor. From the second
floor wiring closet ThinWire segments would be

\
Built-In ThlnWlre Transceiver

NODE B

Figure 4

pulled to all three floors. If one DEMPR is not
enough, up to eight can be connected using
DEC's DELNI (Digital Ethernet Local Network
Interconnect) or a similar type device. An
example of this type of configuration is shown
in Figure 5. With this type of configuration it is
possible to connect up to 1,856 nodes.

ETHERNET LOCAL NElWORK INTERCONNECT

CJ

+-- TRANSCEIVER CABLES

Figure 5

203

MultlPort ThlnWlre Ethernet Repeater

Up to now we have been talking about
workstations that are connected in a serial
fashion. Recently there have been
announcements by DEC, 3COM, and
Synoptics in the area of twisted pair wiring
plans for Ethernet. The motivation for this is
based on the fact that most buildings already
have telephones installed that use twisted
pairs. Therefore, there are usually twisted
pairs already available at a site. In addition,
the twisted pair technology is mature and well
understood by installers and maintenance
personnel. An advantage of the twisted pair
wiring scheme is that it is a point-to-point
connection. That is, the workstation is
connected directly to the network through a
repeater. This type of wiring makes it very
easy to troubleshoot problems because there
are only three pieces to worry about: the
workstation, the copper wire, and the network
repeater. In Figure 6, we show how a point-to
point configuration can be connected using
ThinWire as the media. The picture would look
almost the same if you were to use twisted pair
media except that it would be necessary to add
two adapters to convert from ThinWire to
Twisted Pair and back again. These adapters
would be placed between the workstation and
the DEMPR.

As usual there are trade-offs to be made
when deciding between serial and point-to-

TERMINATOR

'I

Figure 6

204

point wiring plans. But it usually comes down
to what your organization is willing to pay for.
It should be easy to see that in the point-to
point wiring scheme, the cost of the DEMPR
and its transceiver is only divided between 8
workstations. Whereas for the serial wiring
plan the cost of the DEMPR, etc. can be
divided among as many as 232 Workstations.

Now it is time to look at a practical
application for all of the Ethernet devices we
have been talking about so far. Figure 7
shows the layout of a typical office that you
might be required to network. This example
will allow us to explore ideas for placing
computer equipment around the office, as well
as several of the wiring schemes that are
possible. Starting at the lower left corner of the
floor plan you see a computer room. Although
it is not necessary to have a computer room for
a small MicroVAX, it does provide a central
location not only for the computer but also for
the user manuals, software distribution media,
and storage of backup tapes. Another
advantage is that the Server is out of high
traffic areas where people might have a
tendency to "push buttons". The next area
along the bottom is a cubicle set aside for
shared printers. This is definitely a necessity
since printers require supplies of paper

as well as a table to hold print-outs waiting to
be picked up. If your printers are within
approximately 100 feet of the Server, then they
can be hooked up using standard RS-232
wiring. If the distance is much farther or the
VAX server does not have RS-232 ports then
an Ethernet Terminal Server such as the
DECserver-200 will be required to make the
connection.

E3 E2

'COMPUTER ROOM (Server)

The next area that is shown is a wiring
closet. We feel that all communications wiring
should be pulled back to a wiring closet. The
wiring closet should be large enough to handle
both data and voice patch panels as well as
data networking equipment such as modems,
repeaters, bridges, and terminal servers. In
addition the closet should be well ventilated
and have independent power outlets. The
wiring closet becomes even more important
when you want to share twisted pairs with the
telephone people so that you can run Ethernet
over their unused pairs.

All ThinWire segments originate from the
wiring closet. The first segment in our example
is labeled A. This is wired as a point-to-point
segment since it was convenient and there
were no other nodes close by. Segment B
starts out by going to a conference room where

80' O"

there are no workstations currently installed
but a drop is installed for future growth. From
there segment B is routed through the ceilings
and down the walls of the offices along the top
of the floor plan. In each office the ThinWire
cable exits the wall through a face plate and
attaches to a BNC "T" connector on the
workstation. From there it continues on to the
next office.

1::::1
81

Figure 7

205

The middle of the floor plan contains
desks divided into cubicles using free standing
partitions. In most cases the ThinWire is
dropped down from the ceiling through some
type of conduit to floor level. Then if you are
lucky you will be able to route the ThinWire
through data wiring troughs built into the
cubicle partitions. If your partitions do not have
a built in wire trough then you will have to
improvise another way to keep the data cable
off of the floor so that it will not be eaten by the
cleaning crew's vacuum cleaners or floor
polishers. As before, the workstations are
connected in a serial fashion using BNC "T"
connectors.

In this example, you will notice that the
segments on the average have about 8
workstations in series. In addition, the typical
total segment length is about 300 feet. In both
cases we are not anywhere near the design

limits for ThinWire. By using DEMPR's to limit
the number of workstations in series, it is
possible to have multiple segments that are
electrically isolated from one another. That is,
if one of the office ThinWire segments gets cut
by a vacuum cleaner, at worst it will only take
out 5 to 1 O workstations. It is true that it will
take a little longer to isolate the problem since
there are 1 Oto 20 pieces of coax per segment
to check, but the coax is readily accessible in
the wiring trough in the office partitions. Based
on our experience over the past five years the
failure rate is very low and once a problem is
reported the failing part can usually be located
within 15 minutes. By including short serial
segments in an overall point-to-point scheme
we have found the best compromise between
the economy of serial wiring and the
convenience of point-to-point.

Wiring aoset Localion ____ _

Multi-Port Repe- ID ____ _

obstacles such as fire walls, air conditioner
ducts, etc. At the conclusion of the installation
the design drawing and the as built drawing
should be compared so that an accurate
record is produced and filed for future
reference. We would also suggest that a form
such as the one in Figure 8 be used to build a
data base on each segment that is installed.
The information on this form will be invaluable
to the person who may one day want to
expand the network or who just wants to locate
a problem with one of the workstations. As
your network grows to the point where you
want to use network management tools such
as a LAN Analyzer or DEC's EtherNIM, then
this table will allow you to easily find and
identify nodes on the Ethernet cable. ·

Sheet __ of

Dale ____ _

17'71t/1/1/ I 7111//t/ / 7'· v ~~
~~

f / 7 ~ " ~ .. 0 / J ,f f ff ff§

Keeping good records of the physical
layout of your network cannot be over
emphasized. There are three phases to this
process. First, as you do your network design,
estimates of cable lengths and placements
must be made and recorded on the wiring plan
drawing. Then as the cable is pulled the
installer should record any modifications that
have to be made because of unexpected

Figure 8

206

This brings us to the subject of network
trouble shooting. What if it doesn't work? We
believe that the best approach is to be positive,
assume that it will work, and try to load your
networking software. Nine times out of ten
everything will be fine. But if the network does
not come up, pay attention to any error
messages you get on your terminal for
possible software configuration errors.

Although programmers may wish to disagree,
we have found that it is usually a software
problem. If you happen to experience one of
the rare occasions where the hardware does
fail then it is time to take a look at the
hardware. Fortunately, the engineers that
designed a lot of the networking hardware on
the market were very generous with LED's.
Just about every active network device that I
have used has had it share of status indicators.
We recommend reading the instruction manual
that comes with your particular set of
equipment to see just what kind of information
can be determined by observing the LED's.

NODE1

The "process of elimination" is a
technique that will work in cases where there is
a hard failure. By this we mean that nothing is
going across the segment and a SEGMENT
LED status indicator is probably lit on a
DEM PR. Refer to Figure 9 to follow along with
this process. The first step is to disconnect
segment B from NODE 1 and replace it with a
50 ohm terminator. Then reset the SEGMENT
LED by depressing the SELF TEST
PUSHBUTTON and then letting it go. If the
SEGMENT LED is on then segment A must be
the problem. On the other hand if the
SEGMENT LED remains off then that segment
is working and you did not locate the problem.
Then you must reconnect segment B and
repeat this procedure on Node B and so on
down the line until you locate the problem.

These simple techniques to trouble shooting
will resolve most hard failures. If you are
experiencing intermittent or network
performance types of problems, then you will
probably need to use a device called a LAN
Network Protocol Analyzer. For example, if it
takes a lot longer to transfer files than you
think it should at 1 OMB/sec then a LAN
Analyzer can help by showing you statistics on
network traffic. For example a good analyzer
will allow you to determine the number of
collisions per second, lost packets, jabber
nodes, average packet sizes, etc.

NODE2

Figure 9

207

Although it is difficult if not impossible to
record on paper everything that we have
learned about networking in the last five years,
we hope that by pointing out a few areas
where there is potential for confusion,
newcomers to networking will feel comfortable
with Ethernet wiring in an office environment.

Office Automation Security:
Closing the Doors to Your Computer System

Robert A. Clyde
Clyde Digital Systems

Orem, Utah
January 6, 1988

Abstract

Since today's organizations store information assets on computer systems, it is
essential that an organization safeguard its computer systems. Eighty-seven per
cent of security problems comes from current or former employees, while only
13% comes from outsiders. This implies that an effective security system must
solve the problem for insiders as well as outsiders. There are numerous common
oversights that leave open doors to a computer system. The ways to correct
these oversights include having sufficient physical and media security, properly
managing passwords, controlling unattended logged-in terminals, using sufficient
access controls, immediately applying software updates, defending against Tro
jan horse attacks, and continually monitoring the system for security problems.

Introduction

Information is an asset. The destruction, alteration, or
disclosure of information can be very damaging to an or
ganization. In the last twenty years, offices have become
much more automated, and as a result most information
is now stored on computer systems. Without the proper
safeguards for these systems, an organization places its in
formation asset at risk.

Interestingly, most security breaches do not come
from outside of an organization; they come from inside
the organization. A recent survey [1] indicated that 81 %
of the security problems comes from employees and 6%
comes from former employees. Only 13% comes from non
employees. This is particularly important because many
sites have the mistaken impression that if they can just

·protect the system from outsiders they will have solved
the security problem. In reality such a single-minded ap
proach to security ignores the largest part of the problem.

Many problems are honest mistakes on the part of
users. Other problems represent overt abuse. Both mis
takes and abuse can be security problems and represent
substantial damage. The various types of security prob
lems that can occur fall into the following categories (2]:

• Denial of Service-The computer system becomes in
operative or no longer responds in a normal fashion.

• Information Loss-Information is lost.

• Integrity Loss-Information or programs are modified
or corrupted.

Proceedings of the Digital Equipment Computer Users Society 209

• Information Compromise-Sensitive data or pro
grams are stolen or improperly disclosed.

• Resource Exploitation-The computer system is used
to achieve objectives outside the authorized purpose
for the system. For example, an employee without au
thorization uses an organization's system to perform
computations for outside consulting.

The Open Doors

Most computer systems come with some security built in.
Adding additional security hardware and software can of
ten increase this security. However, in many cases security
problems occur because of common oversights which leave
open doors to the computer system. Therefore, adding
additional security capability to a system must be compli
mented with a knowledge of what to do with the increased
capability. The purpose of this paper is to describe some of
the common open doors, listed below, and then to explain
how to close these doors.

• Insufficient physical and media security

• Improper password management and control

• Unattended logged-in terminals

• Insufficient access controls

• Failure to immediately apply updates

• Vulnerability to a Trojan horse attack

• Lack of security monitoring

Anaheim, CA - 1987

Insufficient Physical and Media Security

The first place to start with security is to look at the phys
ical security of the system and media (e.g., magnetic tapes
and disks). If the physical security is inadequate, then un
less the data is encrypted, it is probably at risk. Doing
the following things will help close this open door:

• Close and lock the real doors to your computer. With
certain office computers (e.g., PCs and work stations)
this can be difficult. In these cases it would not be
wise to keep sensitive or vital data on such systems
unless it is encrypted.

• Keep a written log of people entering the computer
room. This log will be essential in the event of a
security problem.

• Insure that the console is secured. If the console is
located outside of the computer room, be sure that
it is secured. For example, on a VAX this would in
volve setting the console disable switch. Otherwise,
someone could interrupt the system and insert harm
ful logic into the running operating system.

• Store disks and tapes securely. Since off-line media
contain information assets, the storage of such data
should be secure. This may involve locking media in
a safe or vault room (preferably fire-proof).

Improper Password Management and Control

One of the most common open doors is improper pass
word management and control. In fact some systems do
not require passwords at all. On other systems the pass
words are particularly easy to guess or derive. Also, many
users are never trained in password control. As a result
they write passwords down, rarely change passwords, or
choose obvious passwords. This section describes methods
for proper password management and control.

Change the default passwords

Once a new system is installed, it often has a number of
default accounts and passwords. For example, versions of
VMS prior to 4.6 had default passwords for three system
accounts. The first thing a system manager should do
is disable these accounts or change the passwords. If a
system is a turn-key system, it may very likely contain
default passwords for other accounts. On a VMS system
these accounts can be found by running A UTH 0 RIZ E and
executing the SHOW */BRIEF command [3].

Make the initial password pre-expired

Whenever a new user account is added, the system man
ager should make the initial password pre-expired. This
forces the user to choose a new password. Then the sys
tem manager should tell the new user the initial password.
This password should not be written down or mailed via

210

electronic mail. If it is, others may see the password. Also,
the initial password should not be predictable. In other
words, it should not be the same or follow the same pat
tern for all new users. As soon as the user logs in, the user
will have to change the password since it is pre-expired

Require users to change passwords periodically

The system should require users to change their passwords
periodically. On a VAX/VMS system this can be done
via the AUTHORIZE program [3]. The site is able to se
lect the period of time between forced changes. However,
VAX/VMS does not prevent a user from changing a pass
word to something new and then changing it back to the
old password. Nevertheless, programs can be written to
check for such an occurrence.

Choose secure passwords

Many users make poor password choices. The ideal pass
word should be easy to remember and impossible to guess.
Users can follow the simple guidelines below to select good
passwords.

• Never use names for passwords.

• Never use single words.

• Random strings of characters are secure but hard to
remember.

• Nonsense words are secure and easier to remember.
This is the type of password that VMS's password
generator makes [3].

• Multiple words are relatively secure, and they are easy
to remember. However, be careful not to choose com
mon phrases.

Explain password management to users

As part of new user orientation, the system manager or
system security administrator should explain password
management. This explanation should include the follow
ing guidelines:

• Change passwords periodically.

• Choose secure passwords.

• Do not use the same password on multiple systems.
Otherwise, if someone cracks your password on one
system, your password is compromised for other sys
tems.

• Do not write a password down.

• Do not tell others your password.

• Do not store a password in a terminal's answerback
or in a PC's terminal emulation program.

Unattended Logged-in Terminals

One of the easiest ways to break in to a system is simply
to take a stroll around the office and find an unattended
terminal which has been left logged in. Now the intruder
does not even have to know the password in order to ac
cess files. This is particularly dangerous if the unattended
terminal is logged in to a privileged account.

Users are normally instructed to log out when a ter
minal is not in use. However, often a user must leave a
terminal while a program or application is running. Since
it may be very difficult and wasteful for the user to exit
the program or application, the user leaves the terminal
logged in. For example, a user who is executing a report
program that has been running for a half an hour and still
has 10 minutes to run before completion, will probably
not abort the program and then log out before leaving the
terminal.

A terminal locking mechanism

A site needs controls to handle users who leave terminals
logged in. One method is to have a program or device
which detects idle terminals and stops the user's process
(i.e., logs the user out). This works, but it tends to up
set users, particularly those who are in the middle of a
program or application. A better solution is to have a
program or device which can lock the terminal even if it
is currently running an application [4]. Such software or
hardware should be able to provide the following features:

• The user can initiate the lock with just one or two
keystrokes. If more keystrokes are necessary, many
users will not take the time to lock the terminal.

• Once locked, the only way to unlock the terminal is
to enter a valid password.

• No terminal input or output can occur while the ter
minal is locked.

• Terminal output can be buffered in memory and dis
played on the terminal when the terminal is unlocked.
If this is not done, users will be reluctant to invoke
the lock for fear of missing an important message from
the computer.

• The unlock password is encrypted using a one-way
encryption algorithm.

• The unlock password can be the user's original log-in
password, provided that it is properly encrypted.

• The same locking technique works for all terminals.

Automatic idle terminal locking

Once a locking mechanism is available, a program to de
tect idle terminals can lock those terminals rather than
log them out. This pleases users since the worst thing
that can happen to them is that they may have to enter

211

the unlock password before continuing on. Also, since idle
terminals are locked rather than logged out, the time be
tween execution cycles for the program can be decreased
substantially.

Insufficient Access Controls

Many sites fail to use access controls sufficiently. Often
access controls are available, but are improperly used or
not used at all. This leaves a door wide-open, since users
or would-be users can access information for which they
were not authorized.

File protection

The first thing to do is to properly protect the files, mem
ory structures, and devices on the system. On VAX/VMS
this is done through file protections and access control
lists [3]. A system manager or system security adminis
trator needs to set up the default protections and access
control lists so that the system will tend to stay in a secure
state as new files are created.

Dial-in and network access controls

One of the ways that an outsider or ex-employee can access
a system is through dial-in lines. Although VAX/VMS
does provide an additional dial-in password, it is often
useful to place additional access controls on dial-in lines
so that such individuals do not even get an opportunity to
log in. For example, using dial-back hardware or software
can be helpful in assuring that a user is dialing in from
a known location. It can also be effective in maintaining
an audit trail of telephone numbers and users that have
dialed in to the system.

Another troublesome area is controlling network ac
cess. In some environments there may even be systems on
the network which are not under the direct control of the
site. It is particularly important that the DECnet proxy
logins be properly set up [3]. Otherwise, it may be possi
ble for a user on one system to gain unauthorized access
to another system.

Access control by function

On VAX/VMS, it is possible to control access by func
tion rather than simply through file protections, access
control lists and privileges. This is done by using captive
accounts and other software. For example, an operator
needs READ ALL privilege to backup all of the files on the
system. However, most sites would prefer that the oper
ator not be able to use this privilege to print any file on
the system. In order to restrict the operator to just the
backup function, a captive account must be used.

A key principle in controlling access to the system is
to have one user per account. If multiple users are allowed
to use the same account, then the site loses accountability
for each of those users. There is no way for the site to tell
which user is actually logged in to the account. Moreover,

password control on such an account is usually very poor
since the multiple users continually share the password
amongst themselves.

Failure to Immediately Apply Updates

Often software (particularly operating system software)
updates correct security problems. If an update does cor
rect a security problem, the site should apply it imme
diately. If the site fails to do so, it runs a significantly
higher security risk. This results from the fact that once
the update becomes public, everyone knows that there is
a security problem with a particular program and some
enterprising individual could use the update to find the
security hole and exploit it.

Vulnerability to a Trojan Horse Attack

A Trojan horse is a seemingly innocent program which
contains covert logic to perform some damaging action.
An example of a Trojan horse is an enticing game pro
gram which also attempts to copy the salary file to an
unsecured location. A Trojan horse can be particularly
difficult to defend against and is an open door at most
sites. Nevertheless, some methods that can be used to
defend against such an attack are listed below [4]:

• Be cautious of free software-it may contain a Trojan
horse.

• Acquire software from reputable sources.

• Use mandatory access controls [5,6].

• Check integrity of programs and files periodically [7].

• Use security monitoring to detect abnormal behavior.

Lack of Security Monitoring

Many systems lack any type of monitoring for security
purposes. This means that if a security problem occurs on
such a system, there will be no record of the fact nor any
evidence of who did it and how it was done. This leaves the
door wide open for system abuse to occur, especially from
the inside. On the other hand, when a system contains
proper security monitoring it can provide the site with the
following benefits:

• Deterrence-users are deterred from performing
unauthorized activities.

• Evidence-information is collected which can be used
as a basis for discipline or prosecution.

• Recovery-enough information is available to enable
the site to recover from both accidental and deliberate
damage or loss.

212

• Assurance-sufficient information is available to pro
vide the assurance that a system is being used appro
priately.

• Accountability-every user is accountable for his ac
tions on the system.

The VMS audit trails and accounting logs [2] pro
vide an excellent starting point for security monitoring.
In addition, it is necessary to monitor terminal interac
tion in order to collect sufficient information to achieve
the benefits listed above. Also, since a large amount of
information is being collected, it certainly helps to have a
facility which performs automated analysis and reporting
from this data [8-13]. Such a facility can assist the site in
pinpointing potential security problems without having to
manually scan all of the monitored data.

Conclusion

Since a company's information assets are generally stored
on computer systems, it is essential that these systems be
protected. In many cases security problems occur because
of common oversights that leave doors open to the com
puter system. By following the guidelines in this paper, it
is possible to close many of these doors.

References

[1] Straub, Detmar. "Computer Abuse and Computer
Security: Statistics from a Recent Empirical Study."
The 4th Insider Threat Identification Systems Semi
nar. Bethesda, MD: August 25, 1987.

[2] Clyde, Robert. "Investigative Techniques." The
5th Insider Threat Identification Systems Seminar.
Bethesda, MD: November 24, 1987.

[3] Digital Equipment Corporation. Guide to VAX/VMS
System Security. Maynard, Massachusetts: July
1985.

[4] Clyde, Robert. "Defending Against Trojan Horses,
Viruses, and Worms." Proceedings of Digital Equip
ment Computer Users Society. Nashville, TN: Spring
1987, pp. 381-386.

[5] U.S. Department of Defense. DoD Computer Security
Center. Department of Defense Trusted Computer
System Evaluation Criteria, CSC-STD-001-83 (Aug.
15, 1983).

[6] Blotcky, S., Lynch, K. and Lipner, S. "SE/VMS:
Implementing Security in VAX/VMS." Proceedings
of the 9th National Computer Security Conference.
Gaithersburg, MD: September 1986, pp. 47-54.

(7] Young, C. "Taxonomy of Computer Virus Defense
Mechanisms." Proceedings of the 10th National Com
puter Security Conference. Baltimore, MD: Septem
ber 1987, pp. 220-225.

[8] Clyde, Allan. "Insider Threat Identification Sys
tems." Proceedings of the 10th National Computer
Security Conference. Baltimore, MD: September
1987: pp. 343-356

[9] Denning, Dorothy. "An Intrusion-Detection Model."
Proceedings of the 1986 IEEE Symposium on Security
and Privacy. April 1986, pp. 118-31.

[10] Peters, Bernard. "Automated Audit Trail Analysis."
The 4th Insider Threat Identification Systems Semi
nar. Bethesda, MD: August 25, 1987.

[11] Peters, Bernard. "The Audit Trail Analysis Pro
gram." The 5th Insider Threat Identification Systems
Seminar. Bethesda, MD: November 24, 1987.

[12] Gates, James. "Tools for Identifying the Source of
Security Breaches." The 3rd Insider Threat Identi
fication Systems Seminar. Bethesda, MD: April 2,
1987.

[13] Clyde, Robert. "Suspicious Event Testing and
Weighted Scoring for the Analysis of a Surveillance
Data Set." The 3rd Insider Threat Identification Sys
tems Seminar. Bethesda, MD: April 2, 1987.

213

Writers as User Interface
Designers

Proceedings of the Digital Equipment Computer Users Society

Peter Donahue

Digital Equipment Corporation

Nashua, New Hampshire

215 Anaheim, CA - 1987

What This Paper is About
The importance of the software user interface is
growing as less technical people use computer
systems. To use these systems productively, the
user interface must be thoughtfully designed.
Writers, with their strong interpersonal skills and
user knowledge, are in an excellent position to
both help define the interface and facilitate the
design process. This paper will discuss these
points within the framework of GOLD, an actual
DEC project.

By effective user interface design, I mean more
that just coding for the terminal screen. Design is
the long, arduous journey of bringing an idea
through a large corporation. The user interface is
everything a user sees.

This paper will discuss the writer's role in the de
sign of an effective user interface. It's strictly from
a writer's point of view and, like they say in the
movies, any resemblance to real people is strictly
coincidental!

It's exciting work for me and others in my group.
Better user interfaces mean better products be
cause they are perceived to be easier to use and
they require less documentation. I hope to show
that writers' work In user interface design will pro
duce these results.

This paper will cover these main points:

Brief description of my group, Office Systems
Documentation, to set the context of our pre
sent user interface work

Description of GOLD, a project where most of
our ideas about windowed user interface de
sign came from.

What we as writers discovered about ourselves
and our craft and how that knowledge is being
used on our current projects.

A look at how this has influenced what we 're
doing now.

There is a great deal of interest in user interface
issues in DEC these days. I will talk about the
GOLD project, one of the first to break ground in
this area. Along the way, we discovered some
things about how writers could use their skills to
help the project along.

216

A New View of Human Engineering
This quote by Ben Schneiderman sums up how
we feel about the Importance of user interface
design.

Human engineering, which was seen as the paint
put on at the end of a project is now understood
to be the steel frame on which the structure is
built.

User interface design was usually a last minute
thing. In the past, this was acceptable. A good
programmer could figure out the system on her
own without relying on the user interface or docu
mentation. But this has changed. Computers are
no longer a way of life for most people, but a tool
to get their work done.

Office Systems Documentation (OSD)
Our user interface design work did not come out
of the blue. The OSD group has always been
concerned with user needs. Members of the
group have worked on core documentation, on
line help, CBls, and on-line documentation. From
these ideas, the next logical step was for writers
to get involved in the design of the user interface
itself.

What Was GOLD?
GOLD started in response to competition. Several
competitors were selling compound document edi
tors. GOLD was to be a compound document pro
cessing system that allowed a user to create
documents with text in multiple fonts and point
sizes, tables, and graphics. The types of graphics
included charts, drawings, and scanned images.

It was designed to run on Digital's VAXmate and
IBM AT bit-mapped workstations under MS
Windows, an object-oriented interface that used a
mouse. With the bit-mapped screen, you could
see the document as it would appear in final form
- proportionally spaced text in multiple fonts and
page breaks. Its sophisticated formatter prepared
the document for a variety of printers.

As you might assume, GOLD was a large project,
requiring several large engineering groups to work
together towards a common goal. The difficulties
inherent in this arrangement were greatly under
estimated and caused problems later on.

To provide a context for the rest of the discus
sion, here are GOLD's significant milestone dates:

December 85 - The functional spec committee
formed. Its goal was to draw up the plans for
what was to be built. Our writing supervisor got
himself invited to join this committee.

January 86 - According to the old model
(Schneiderman's "paint") the user interface
was treated as a component (and a small one
at that). Documentation, however, recognizing
the Importance and opportunity of doing pri
mary user interface work, eagerly took respon
sibility for the user interface section.

February - The first draft of the function spec
is published. Only the User Interface section
has anything to do with MSwindows.

March - User Interface Design Group formed.

April/May - Second draft of the functional spec
published with a very complicated User
Interface section.

May/June - Formal, officially sanctioned User
Interface Design Group falls into disarray. The
writers begin meeting informally with key
developers.

July - "Skunk works" begins.

October - Third draft of the functional spec.
Contains a User Interface section produced
and written by writers. This section becomes
the first draft of a separate document.

January, 87 - Second draft of the writer's User
Interface document. Project canceled due to a
variety of reasons - chief of which was that re
sources were taken for the DECwindows
project.

I'd like to focus on the March and July dates be
cause they represent the most contrasting styles.

March - User Interface Design Group
formed

The User interface Design Group, with represen
tatives from documentation, engineering, software
architecture, human factors, and international
groups, met three times a week for three hours in
what quickly became a "black hole" of productiv
ity. Very little was accomplished in a group that

217

was too big and unfocused. Several times two
people would argue a technical point by writing at
different ends of a white board at the same time.
The group talked at length about how the soft
ware should handle technical details like a chap
ter in a bulleted list while primary user interface
questions went unanswered.

Were the right questions being asked by this
group? Was it important in a user interface de
sign meeting to discuss how that software would
handle putting a chapter into a list? Writers felt
the question should be "Does the user need it at
all?" A user shouldn't have to worry about what
the software does.

The problem of trying to merge large, separate
development groups started to become evident.
The graphics, text, and tables groups all had sep
arate visions and ways of looking at a problem.

July - The Skunk Works starts

The documentation 'skunk works' started In July.
Skunk works Is a term coined by Tom Peters, au
thor of In Search of Excellence, to denote a small
group of people left on their own to work on a
project with little management influence.

To begin the process, writers began meeting in
formally with key engineers to talk about the user
interface. They gathered additional information by
getting the principal players into a room and fa
cilitating discussion. Next, a writer wrote a de
scription of one section of the user Interface,
meeting with an engineer to review the design
and make adjustments If needed. The finished
section of the user interface was included in the
functional spec. The process worked well and it
was formalized for other user interface sections.

What Happened in the Skunk Works?

Some interesting things came out of the skunk
works:

Power vs usability - writers tried to focus the
design on the 20/80 rule which states that us
ers use 20% of the product 80% of the time.
Engineers wanted features, no matter how
elaborate or how infrequently the user might
need them.

Engineers are highly trained and technical peo
ple building a product for novice or intermittent
users. Writers were invaluable here In repre
senting the user and keeping the design on
track.

An event near the end of the project brought our
entire skunk works process into focus. I was in a
conference room with another writer and a few
engineers talking about how the user should cre
ate tables, a difficult problem. We discussed and
rejected several designs, until it looked like there
might be no solution. Finally one engineer turned
to us and said, "Well, how do you want it to
look? Tell us and we'll code it that way." This re
presented the perfect meshing of writer and
engineer.

What Was Our Goal?
Our ultimate aim was to:

Develop a basic design

Prototype it

Let people use the product

Use their feedback and comments as strate
gies for the next design cycle

Refine the design and sent it back into the
loop

Writers did some prototyping by getting software
tools from enthusiastic engineers through non
official channels.

What Worked in GOLD?
Clearly, we made the most progress in the skunk
works. With documentation producing sections of
the user interface, we provided a focus for design
and discussion. The user interface design was of
ten the only representation of the product. Many
people said they could only understand the prod
uct after reading our User Interface sections.

What Didn't Work?
Time was the big enemy of this project in two ma
jor ways. First, a great deal of time was spent in
the large User Interface Group that could not be
made up at the end of the cycle. Second, the de
sign of a user interface is an iterative process -

218

you can't build a user interface right the first
time. More time should have been spent in this
step.

Writers are not user interface experts. We have
good instincts, and provided good input, but user
interface design is a full time and expensive job
and needs to be handled by experts.

Resources were scarce. Even members of our
own group warned against taking on too much
and reminded us that writing manuals were our
primary responsibility.

Finally, and most importantly, the audience defini
tion kept changing from the casual user to the
desktop publisher to the casual desktop publisher.
(Writers kept to the managerial, intermittent user.)

Why Do Writers Make Good User
Interface Designers?

Writers intercommunicate. Often the only time dif
ferent groups got together was at a meeting we
called. We were the glue that held the project to
gether. We found that the arrangement of people
was the most important element.

Writers were facilitators. Once the groups were
brought together, we acted as the hub of a wheel
for the different groups and helped them talk to
gether. Writers come from diverse backgrounds -
teaching, school administration, journalism, social
work - and are trained to see things in a larger
perspective - globally rather than analytically. As
generalists, we complement the technical focus of
engineers. Strength of intellect alone does not
convince people of a point of view - communica
tion does.

Writers also keep up with what users want
through regular visits and phone conversations
and translate this knowledge into useful
information.

Writers don't suffer from the Not Invented Here
syndrome. The first thing we did on GOLD was to
go to tradeshows to see what competitors were
doing. We recognized good design and incorpo
rated the best into our own work. We also
adopted MSwindows and its Style Guide immedi
ately, a move that ran counter to accepted think
ing at the time.

Finally, writers use editors In our work. We know
what we need and like In these tools.

How Has This Influenced Current
Products?

There is now a corporate emphasis on windowed
user Interface design with the DECwlndows pro
ject. Human factors groups, who used to test de
signs written by others, now do primary design.
They are the experts the writers were not.

Writers now have clear roles in the user interface
design process In several ways: as expert users;
investigators of competitors designs; as watch
dogs of the design. Designing is a full-time job
and writers need primarily to write books. The
writer, engineer, and user interface designer
make the best team.

Writers have grown and now think visually as a
way to reduce documentation. Why describe a fill
pattern, for example, when a user can see It and
simply cllck on it?

We used to say that the books were big because
the software was complicated. Now that the user
Interface is better, we do not have this excuse.
We have to "put up or shut up" and reduce the
size of the documentation. A good user interface
design is inversely proportional to the size of the
documentation.

219

Conclusion
In this paper, I touched on four main points:

Office Systems Documentation has always
been concerned with user concerns and user
interface design was its next logical step.

GOLD gave us the chance to put our ideas
into action, and took us from the megacom
mittee to the skunk works.

Writers grew in understanding of their craft and
carried that understanding into new projects.

Current and future projects have been influ
enced by these ideas.

Why should you, as a user, care that writers help
design the user interface or that they have
grown? Because as a user you will be saying,
"This product Is great, It's so easy to use." And
you must also say, "These books are great, they
are easy to use and they're so short." If you
don't say this, we've failed as writers.

So, my message is not only to writers and engi
neers, but to anyone who can influence a user In
terface. Get involved. It's worth it.

Trojan Horse Software

Kenneth A. Stricker
Martin Marietta Electronic and Missile Group

Orlando, Florida

This paper addresses a serious problem encountered by users of public domain

software on personal computers. Although most public domain software is entertain

ing or useful, there exists a small group of programs (usually referred to as
Trojan Horse Programs, or Trojans since they get into a system under the guise of

useful software) that have been written specifically to either irritate the user,
or to physically destroy any data stored on the user's computer.

As the number of computer bulletin boards, (where most public domain software is
traded) increases, users must be aware of the potential dangers of Trojan Horse

Software. Users of PC programs brought into business locations, engineering
offices, or manufacturing plants may place local PC's at risk. In fact the use of

some Trojans could be construed as an act of sabotage which, when traced to the

perpetrators, could lead to legal action, and depending on the installation
affected, lead to a fine or imprisonment.

Why Public Domain Software ?

The main reason that public domain (PD) software is

widely used is that it is usually very inexpensive (NOT
free), it is easily and quickly obtainable through com
puter bulletin board systems, and public domain software

clearing houses, and it often is targeted toward more
specific applications than commercially available soft

ware. It is generally written by a computer user, or
group of users, to solve a specific problem, or to

satisfy a specific need.

The main method of distribution for PC based public
domain software is through computer bulletin boards. A
bulletin board system allows a PC user to dial in to a
"host" PC system via a modem, and leave electronic mail
for other users, participate in interactive conversations
with other users, post technical or special interest
questions to other users, and to upload and download
public domain software.

Most bulletin board systems (BBS's) have some form of

Proceedings of the Digital Equipment Computer Users Socie~v 223

security, ranging from simple fill in the blank logon

questions, to elaborate callback schemes. One such call
back scheme (used on at least one BBS that I know of in

Orlando.FL) requires a first time user to leave his or
her phone number and immediately hang up. The "Host"

computer then calls back the user, and produces three
sets of one to nine separated by a pause. The user must

count the number of tones in each group, and this becomes
his three digit logon code, which in conjunction with his
username and password allows him access to the BBS.

What is Trojan Horse Software

A broad definition for a Trojan horse software package
(Trojan) is any software program or utility that inten
tionally produces unwanted, unpleasant, or unexpected
results. The key word in this definition is inten-
tionally. Many programs, PD and commercial, will on
occasion produce unpleasant results, either due to a
"bug" in the code, or misuse by the user. Trojans, on the
other hand, are written specifically for this reason.

Anaheim. CA - 1987

The problem with Trojans is that they are easy to obtain,
and difficult to trace. Your friends can be your worst
enemy, as many people will upload a newly acquired soft

ware package to a BBS without first running the program.
Fortunately many (most?) BBS System Operators (SYSOPS)
test all uploaded programs before they are made available

for download, or at least tag newly uploaded and untested

programs as untested. Even so an occasional Trojan may

slip through undetected. especially difficult to detect

are Trojans of the mole, time-bomb or virus variety which

will be discussed later.

The consequences of a Trojan may vary from minor annoy
ance at the loss of some data, to the actual destruction

of property. If you consider what might happen if Trojan
were to "Crash" a hospital computer, or a railway control

system, the results could be fatal.

There are basically four types of Trojans: The type that
simply annoy the user, but do not directly produce any

irreversible side effects (Level 1 Annoy Trojans), those
that may or may not cause the loss of some data (Level 2

Annoy Trojans), those that are intended primarily to

destroy or corrupt data and storage, and those that
affect system user files. Each type will be discussed

separately.

Level 1 "Annoy" Trojans

The level 1 annoy Trojans are generally "prank" type
programs that are intended to be run on someone else's
system. These Trojans are for the most part harmless

(unless the person finds out that you did it), and
usually humorous. They can only marginally be referred to
as Trojans, and are only included in this paper since
they do fall under the broad definition since they
produce unexpected results for the PC user. These pro

grams may run in the background, or may present a "fake"

prompt screen that waits for input to "strike".

One of the best known programs of this type is DRAIN,

which initially presents the unsuspecting "victim" with

what appears to be a normal DOS prompt screen, however as
soon as he enters a command, he is presented with a
formidable looking error message that informs him that
his disk drive is full of water. The program then
proceeds to inform him that it is draining the drive
(accompanied by appropriate sound effects) and then
putting it through a "spin dry" cycle (also with sound
effects), and then returns the user to DOS.

Another level 1 program (and one of the author's
favorites I might add) is called DRIP. Drip runs in the

224

background (i.e. the user is free to run programs, issue
commands etc. as if it weren't there) and is inactive
until the "Scroll Lock" key is pressed. DRIP then ran
domly looks at locations on the screen, and if there is a

character in that location, it scrolls it down the screen
until it either hits another character below it, or

"drops off" of the bottom of the screen. this gives the
appearance that the characters are "Dripping" off of the

screen. This program does not seem to affect the oper

ation of t~e PC (Except in BASIC).

Level 2 "Annoy" Trojans

The chief difference between Level 2 Trojans and the

Malicious Destroy type Trojans is that level 2 Trojans do

not affect physical storage. This is not to say that no

data is lost from level 2 Trojans.

Level 2 Trojans may take several forms, and some may only

be considered Trojans under specific circumstances. One

such program is JULIAN, a program designed to allow a
user to "lock" the computer keyboard until he reenters a
password. This is a useful program, until someone comes

along and locks your keyboard for you.

Other level 2 programs may erase all or part of the
system memory, either immediately or from a "background"

mode. In background mode the program can be loaded into

memory, certain interrupt vectors changed to point at the

program (such as timer tick, or keyboard interrupts) and

a "Terminate but stay resident" command used to end the
program (this is the same method used in memory resident
utilities as Sidekick). At some occurrence of the speci-

fied interrupt, the program takes control of the system
and may either "Hang" the system, re-boot it, or "Crash"
it. This could be a disaster if you are in the middle of
creating a 200x400 cell spreadsheet. This type of

approach is often referred to as a "Time Bomb" program,

and may also be used by the next type of Trojan.

Malicious "Destroy" Trojans

Of all the types of Trojans, the Destroy Trojans are by
far the most dangerous, and are therefore the main focus
of this paper. These Trojans usually attack the PC's disk
storage system in one way or another. They may delete
individual files at random, or go for specific files such
as the DOS COMMAND.COM file, or they can reformat the
disk or render the data on it unrecoverable. If the
computer is has only floppy disks, this is a minor
problem as only one floppy is lost. However the loss of

the data on a 10-40 Megabyte hard disk could mean total
disaster.

Trojans that delete individual files are generally the

easiest to recover from if they are discovered in time.

Since deleting a file generally does not erase any file
data, deleted files may often be recovered using file

utilities such as "The Norton Utilities". However the
user may not immediately notice the loss of something

like a quarterly report file until after other files have

been stored over the data.

Reformatting destroy Trojans do exactly what the name
implies, they perform a total reformat of the disk. Once

reformatted, any data that was previously stored on the

disk is lost, as all sectors of the disk are written over
in the format process.

The previous 2 types of Trojans are relatively easy to
understand, since they basically emulate existing DOS
Functions. However in order to understand how the rest
(and majority) of the destroy Trojans work, I need to
explain some basics of the DOS disk filing system.

The first sector on any DOS disk, either floppy or fixed,

is referred to as the "Boot sector" e figure 1). This

sector contains data about the disk manufacturer, the
sector size, the number of sectors per block, the type of

disk, and a "bootstrap" routine.

Following this area is a structure known as the File

Allocation Table, or simply the FAT. This area is used
map directory entries to the corresponding area of stor

age on the disk (Figure 2). Each FAT entry corresponds to

one cluster (one or more sectors) so that the data for a
file directory entry that points to the 2nd FAT entry
would be in the 2nd cluster on the disk. Each FAT entry

in tum contains a 3 Byte value that indicates the next
FAT entry/cluster used by the file. In this manner, a

file may be allocated as many clusters as necessary with
the last FAT entry in this "Chain" containing the

hexadecimal value FFF. Unallocated clusters are repre
sented by a value of 000, which tells DOS that that clus

ter is available for use. (Please note that FAT entries 0
and 1 are always reserved by DOS.) Other reserved FAT

entry values include FFO-FF6 for a reserved cluster, and
FF7 for a bad cluster. There may be 1 or more copies of
the FAT stored on the disk (for backup purposes), as

defined in the Reserved Area.

Following the copies of the FAT is a f1Xed size area for
the Root directory entries, followed by the User files,
and sub-directories (Figure 3).

Many of the destroy type Trojans attack the FAT. This is
usually done by writing FFF's (end of chain), or OOO's

225

(cluster available) to all entries of the FAT. As you can

see, this no longer allows DOS to access all of your

data. Another popular tactic is to write over the
reserved area of the disk, which renders the entire disk
unusable. Still another tactic is to write Bad Clusters

(FF7) to the disk.

One of the hardest destroy type programs to detect is
referred to as either a Worm, or a Mole. These programs

do not attack whole files or disks, but instead are

content to destroy small parts of your file. The terms

Mole and Worm refer to the fact that these programs dig
their way through the data on the disk a little at a

time. They are not usually discovered until they have
destroyed major portions of many files, and often not
until after several backups have been made of the
affected data.
Another relatively new (and thankfully rare) problem is
referred to as a computer Virus. The virus program, much
as its name implies, attaches itself to a host computer,

and proceeds to replicate itself wherever possible (often
within other legitimate software). It can easily be

spread to other disks and computers in program or data

files. Usually a virus "attack" is triggered by some
external factor such as system date.

BBS User File Copiers

This type of Trojan should be of concern to any BBS
SYSOP. This program generally copies the contents of the

BBS user file, which contains all of the user names and

passwords, into a simple ASCII text file that the person

who planted the Trojan can then download. This allows the
perpetrator to log on to the BBS using any user name,
particularly the SYSOP's id. Once logged on with SYSOP

privilege, the user can manipulate many aspects of the
BBS, crash it, delete files, or give everyone SYSOP prior
ity.

What Can I Do?

There are several programs out in the public domain

designed to detect Trojans, and to prevent them from
doing any damage. Programs such as BOMBSQAD run in the
background and intercept all calls to the system for disk
access (read, write, format or verify), tell the user the

nature of the call, and ask the user if it should process
the call. Other programs such as CHK4BOMB call. Other
programs such as CHK4BOMB scan a suspect program's code
for all ASCII strings (strings such as "Got You", are
quite popular), and format or disk write commands without
running the suspect program.

Your best defense against Trojans is probably your local

BBS SYSOP. Most SYSOP's test any newly uploaded programs

before they are made available to download. If you sus-

pect that a program that you are running is a Trojan,

please notify the SYSOP of the BBS that you got it from.

00

03

JMP Instruction

OEM Name & Version

OB ,__ ___ B'--'ytes Per Sector

Byte OD 1---=Sc.e~~c:..:.t~o.:..:rs=--=-P-'e'°'r_.:.:A:.:..:ll.:::o.:::c::::a""li.:::o~n....:U~n!!il_
(Hex) OE 1----'-'-"'-"=~""--'~~!.;?_ __ _

10

11

13 r-----'--'--'--'--cc.:._:...=-:.::..:..:.:=-._
15 Media Descri tor

16 Number of Sectors Per FAT
18 Sectors Per Track

1A Number of Heads

1 C Number of Hidden Sectors

1E
Bootstrap Routine

Directory Area

FILE 1 004

FILE 2 002

FILE 3 010

FILE 4 025

SUBDIR 1 007

FILE 5 028

EOF

--- -

---·-

t-----

1--

I-:

' I
-!- -,

I '
I
I
I
I
I
I
I ·---

FAT Entries

0 l FFD-
--1 --

1 FFF

2 005

3 FFF

5 030,

6 000

7 __ 1009_
8 000

9 FFF

I --,
I
I

__ I

Figure 1 - MS - DOS Disk Reserved Area Figure 2 - FAT Utili7ation

OEM ID, BIOS Parameter Table, Bootstrap

Reserved Area

File Allocation Table

Any additional Copies of FAT

Root Directory

User Files and Sub - Directories

Figure 3 - Typical MS - DOS Disk Configuration

226

PC Workstation to VAX Connections
for

Maximizing Resource Flexibility

Robert Gary Mauler
and

Valerie Cabral Mauler

Westinghouse Electric Corporation
Baltimore, Maryland

ABSTRACT

Enhancement of Productivity Is a major goal In connecting Personal
Computer Workstations to VAXs. This paper defines a solution for maximizing
resource avallabllity and flexibility In a large computer environment. Connecting
Personal Computer Workstations to VAXs makes available a wide variety of
network resources from specialized software and output devices to alternative
computers such as UNIVAC and CRAY. Issues addressed will Include high and
low end connectivity needs and software selection.

An observation was made in 1983 that
having personal computers can make
individuals in our organizations more
productive. Productive individuals, however,
don't solve most problems by working alone.
They consult with colleagues; they exchange
information; they build on one another's ideas.
Networking personal computers enables "PC"
users to share information, ideas, and
resources thereby working efficiently as a team
to solve problems. The goal of this paper is to
share lessons learned over the last five years
in connecting personal computers and their
peripherals over Ethernet to a large network of
DEC VAX mini-computers.

A book or even a volume of books could
be written about the process of connecting PC
workstations to a VAX network. The number of
possible and workable solutions is almost
endless. The trick is that some combinations
just happen to work better than others. The two
areas that this paper addresses are
connectivity and resource sharing.

Connectivity is the glue that is used to
link personal computers together to form a
network. We refer to networked personal

Proceedings of the Digital Equipment Computer Users Society 227

computers as workstations. The goal is for the
user to be able to access any and all of his
computing resources from one multi-function
workstation linked by one cable to the rest of
the world.

At the Westinghouse Defense Center in
Baltimore we chose a "DEC" based solution
mainly because our engineering departments
are largely VAX users. As one would expect,
other Westinghouse sites that are IBM based
naturally migrate to IBM type solutions. But
connectivity is not lost since we do provide for
gateways out of our local area network (LAN).
Industry standards and multi-vendor support
were also an important consideration since our
site tends to have "one of everything" and they
all need to talk together. Even though our MAC
users used to swear their Apples only needed
to talk to LaserWriters, it was not long before
they wanted to talk to a VAX, an IBM, or
whatever!

To meet our connectivity needs, Ethernet
was selected as the primary networking
scheme for our LAN. Digital's Network
Architecture (DNA) or DECnet was selected as
the network protocol to use over Ethernet.

Anaheim, CA - 1987

Even though DECnet is not an ISO standard,
the fact is that there are a whole lot of
machines out there today that know how to
speak DECnet, and more are coming as
DECnet is ported to various machines.
Technology Concepts Inc. in Massachusetts is
building a business around porting DECnet to
various vendors' machines that have "C"
compilers available. Westinghouse's R & D
Center in Pittsburgh has successfully
implemented its own version of DECnet on a
UNIVAC system.

In 1983 when we first started thinking
about workstations, DECnet was not available
for the IBM PC. So our first venture into
networking was with VIM from SYNTAX in
Seattle, Washington. The VIM product was
based on 3COM's EtherShare networking
software. This software worked very well and
still does today, but it really is its own little
network. The problem is that even though the
PC files were stored on a VAX, VMS did not
know what to do with them since they were not
RMS type files. DECnet routers had similar
types of problems since EtherShare talked
XEROX'S XNS and not the familiar DECnet
protocol. To solve these limitations we chose
to standardize on VMS Services for MS-DOS
from Digital. Even though this product will not
win a speed race with 3COM, NOVELL, or
VIM, the functionality "makes the wait
worthwhile". VMS Services was also attractive
to us because it embraces industry standards
such as MS-WINDOWS and MS-NET from
MICROSOFT. The icing on the cake is the fact
that VMS Services also includes the DEC
Local Area Transport (LAT) protocol thereby
giving workstations the ability to connect to
VAX's directly as VT type terminals and even
to non-DEC hosts by using DEC Terminal
Servers (DECserver200 for example). This
feature eliminated the need for us to expand
our data switch system.

Once you have connected the standalone
PC into a network environment, it is possible to
share the many resources available on any of
the servers and hosts connected. The
possibilities are almost endless but typically at
Westinghouse high performance and high
quality (and naturally high cost) peripherals are
connected to servers and distributed

228

conveniently around our offices. We feel that
this approach makes more sense than
purchasing noisy, low performance, low quality
peripherals and connecting them to each PC.
Another benefit is that maintenance, service
manpower, and cost for the shared peripherals
can be absorbed into the operation budgets of
the VAX and other Main-Frame servers.
Another benefit which is sometimes overlooked
on PC based networked systems such as
3COM and NOVELL is the ability to almost
transparently use any of the software tools
available on the network. For example, a
programmer could edit his source code on a
PC and then submit it for compilations on a
large VAX or even a CRAY. This approach
takes advantage of the fact that the PC does
very well with interactive jobs such as "mouse"
driven free hand graphics programs and other
highly interactive programs, while you get the
most "bang for the buck" when you let the VAX
CPU run compute intensive applications. The
key point here is to distribute your computing
load across many processors to maximize your
utilization of available resources.

For most sites a networking project starts
out very small, as maybe only a few
Workstations and one server as pictured in
Figure 1. But in most cases it grows very
quickly and usually larger and sooner than the
management ever dreamed it would. Our
choice for a network server was a DEC
MicroVAX II. The MicroVAX II was chosen for
several reasons. First, we expected a large
number of Workstations (40-60) on the network
and therefore needed a CPU that had enough
horsepower to handle not only the file and print
server functions but also to support network
functions such as multiple physical network
connections (Ethernet, X.25, Async, and
Sync), DECnet Routing, and Gateways to
other systems such as IBM/SNA, PROFS, and
EMAIL systems. Secondly, with 40 to 60
Workstations at about 3 to 4 users per
Workstation we wanted to have a large amount
of disk storage available. The microVAX II can
easily handle two RA81 disk drives which give
us about 900 megabytes of disk space.
Finally, faced with backing up 900 megabytes
of data, we definitely wanted to have a high
density and high speed tape drive. Our choice
for a tape drive was DEC's TU81 6250 drive.

Even though it is possible to use a
personal computer as a server, and in some
cases it is a good way to start, for us it just
would not "cut the cake," so to speak. There
are several drawbacks to a PC server which
must be considered. First, the standard out-of
the-box PC's tend to be shipped with slower
access time hard disks in order to keep the unit
cost down. That is something you definitely
don't want when you are trying to share a disk
with many workstations. Secondly, with the
current architecture of the AT class of PC's
you quickly run out of physical ports as well a~
software interrupts to which you can connect
your peripheral devices. If you need to
connect less than 4 peripherals, this won't be a
problem for you, but at our site we needed to
connect about 8 serial laser printers and 3
plotters to one server. A third serious limitation
with the PC class of server is the PC DOS
o~erating system itself (OS/2 may change
this). PC DOS works well as a single user
system, but falls short when compared to a
multi-user, multi-process operating system like
VAX/VMS. As an example, our Talaris TSOO
laser printers are controlled by a process
called a Font Manager. The Font Manager
manages the down-loading of character fonts
as well as forms overlays to the printer.

Figure 1

229

The whole process is totally transparent to the
workstation user. A similar type of software
also exists, courtesy of the DECUS SIG Tapes
for Postscript printers. In this case th~
Postscript symbiont translates ASCII text files
into Postscript programs and queues them for
printing on our Postscript printers. In both of
these examples the control software process
must run concurrently with users as well as the
server process. This works fine under a multi
tasking operating system like VAX/VMS but will
not work in a single tasking environment like
MS-DOS.

In Figure 2 the basic LAN configuration
that was presented in Figure 1 has been
expanded. The configuration shown is used in
a situation where the network server is either
too far for RS232 cables to reach your
peripherals or where the VAX server does not
have the physical room for an 8 to 16 line
asynchronous interface card and connectors in
its cabinet. Such could be the case if a
MicroVAX 2000 was used. Digital's DECserver
200 allows us to use the already installed
Ethernet backbone to connect 8 asynchronous
devices per DECserver 200 to a VAX. Another
benefit that the DECserver provides is that
modems or other non-DEC hosts can be

connected to it. As a result, the workstations
use a VT220 terminal emulation and Digital's
LAT protocol to connect to "services" on the
DECserver such as a modem bank. This
eliminates the need for modems and data lines
for each PC since now they can be shared
over the network.

For small companies with only one office
the basic LAN we described earlier is all that is
needed. But if your organization is of the
national or international class, Wide Area
Networking plans (see Figure 3) should be
incorporated into the Local Area Netw~rks
throughout the organization. A deta1le_d
discussion is well beyond the scope of this
paper so we will only point out the solutions_ we
are using now or planning to incorporate into
our network design. For the DECnet and
Ethernet/802 .3 worlds, devices such as
DECnet routers and LAN bridges are certainly
the first choices. The DECnet routing function
can either be handled by a standalone box
called a Router Server or it can be performed
on one of the VAX/VMS servers equipped with
full function DECnet routing software. The
trade-off here is in cost vs performance and in
network topology. For example, if there is a lot
of DECnet traffic to route, it probably

MODEM POOL

NON DEC HOSTS

Figure 2

230

makes more sense to purchase a DECnet
Router Server box than to load down an
already heavily loaded VAX CPU when it could
be doing useful things like compiling programs.
The drawback with routers is throughput.
There are basically two areas where problems
can arise. First, the CPU performing the
routing function just might run out of
horsepower. Secondly, the physical links tend
to be 56 Kbaud or less. If throughput might be
a problem in your system, you can replace the
router with a device called a bridge. The
bridge works at only level 2 of the network
model. Therefore it only needs to know about
Ethernet/802.3 packet source and destination
addresses. Since it looks only at packet
addresses and not at higher level protocols it
will not only forward DECnet packets but also
XNS, TCP/IP, and other protocols. This is a big
advantage in a mixed vendor environment
such as ours. Also, because of the reduced
processing load on the CPU due to only
processing level 2 protocol, bridges such as
DEC's LAN Bridge 100 can forward packets at
the full Ethernet bandwidth. The physical links
available for bridges range from RS-232 data
speeds up to 1 O MBits over fiber optic cable or
microwave.

MODEM POOL

A gateway for your WAN th~t is. wort.h
looking at, especially for large organizations, 1s
the X.25 packet switched network. More and
more large companies such as Westinghouse
are putting in their own private X.25 networks
with gateways into the public packet ne~works.
The X.25 network provides a cost effective way
to link local LAN's together to form a company
wide WAN. Although they are a far cry from
Ethernet in terms of speed, they are cost
effective if your data traffic is medium and not
of a highly interactive nature. For high speed
WAN's the choice should probably be bridges
linked with T1 (1.544 MBit line).

It almost goes without saying for large
corporations that there should be some type of
link to the IBM SNA world. Here again the
SNA gateway function can either be performed
in a dedicated SNA Gateway box or hosted on
a VAX/VMS system along with everything else.
Issues that need to be considered when
choosing an SNA gateway are: throug~put
(packets per second), number of user sessions
supported concurrently, compatibility with the
IBM application software of interest, and
naturally, cost.

DECnet ROUTER

SNA GATFY>/AY

LAN BRIDGE (LOCAL)

Figure 3

231

Networking your workstations together is
really only half the problem. The real
challenge lies in choosing application software
that works together with the network system to
give users a consistent view of computing tools
in a distributed processing environment.
Selecting a standard set of "core" software
applications that works for an organization is
essential to the support group's sanity as well
as the profitability and competitiveness of the
organization. For example, allowing ev~ry
employee to choose his own word processing
package might seem like a friendly thing to d.o
(We know of one engineer who even wrote his
own in BASIC so he did not have to buy one).
But think of the problems involved when a
team of people are given the task of writing a
document. Each one of them could be using a
different word processor or editor. When it
comes time to integrate individual sections to
form the final document it could turn into a
nightmare. Simply put, there must be a grand
plan for the way data and information flows
through an organization. Either you pay up
front for good consulting and design of a
system or you pay and keep paying all

of the companies out there selling those
translation programs and conversion services.
Our core software list includes only about 10
packages out of the tens of thousands
available for the PC Workstation. Those users
that have an application that is not already
covered by the "core list" are responsible for
their own integration with time available
consulting from our support group.

At Westinghouse we started the process
of integrating our computing environment
before too many bad habits were developed.
Anyone in the defense business is well aware
of the large amount of documentation required
on government contracts. Westinghouse's
Defense Center standardized on the WANG
OIS word processor for secretarial personnel,
MASS-11 on VAX's and PC's for engineering
professionals, and Multi-Mate on PC's for
management and business employees. A
newcomer to the scene is the lnterleaf TPS
technical publishing system which is used for
high quality reports and proposal generation.
The lnterleaf TPS package is hosted at
Westinghouse on both the VAX and SUN
platforms.

ASCII

OECdx

MASS-11 DRAW

MASS- 11

Word Processing

STANDALONE

PC APPLICATION

HP PCL

Our mixture of word processors provided
a real challenge for software application
integration. A diagram of our data flow is show
in Figure 4. Starting on the left, text enters the
system in one of three methods: (1) a
secretary types in text from hand written copy;
(2) an engineer composes text using MASS-11
on either a Workstation or terminal; or (3) other
professionals enter text using Multi-Mate on a
Workstation. In some cases text is also
entered directly into the lnterleaf system.
Memos and business letters are created for the
most part on WANG and Multi-Mate. Similarly,
internal engineering reports, presentations,
and some documentation are done totally in
MASS-11. In the case where the text needs to
be combined with scanned photographs and/or
scanned artwork, an lnterleaf Technical
Publishing System (TPS) is used to do the
page make-up. This process starts with text
keyed into either WANG, Multi-Mate, or MASS-
11, transferred through the appropriate
communication link, and translated into
lnterleaf's document format.

The big problem we ran into when we
wanted to integrate the WANG OIS system
was that it does not know what the words

EOE-WANG
File conversion

lnterleaf
t-D_ECd_x__ Technical Publishing

ASCII System

MASS-11 DRAW t-""'~~;,:;~;=cri~----+------------'
Free hand graphics OUIC (TALARIS)

Figure 4

232

"integration" and "networking" mean. Thanks
to a layered product from Digital called EDE-W
(Electronic Document Exchange - WANG),
documents created on our WANG OIS system
can be easily transferred to and from a VAX
while retaining document text format code
information intact. The whole process uses the
standard WANG telecommunication software.
This means that except for adding two lines to
the WANG document everything is "as usual"
for the WANG user. The advantage here is
that we did not have to add a new piece of
equipment such as a "disk/file conversion box"
which would have required training and
required the user to leave his workstation to
manually load and unload the floppy disks to
be converted. EDE-W works by receiving
WANG EBCDIC code over a 2780/3780
protocol communication link and then storing
the document in an intermediate form called
DECdx. Once the document is in DECdx form,
MASS-11 and lnterleaf can import the
document into their respective systems,
retaining the original text format. Although a
document can be transferred back to WANG
from MASS-11, this is not usually desirable
since MASS-11 can provide enhancements to
the document such as integration of graphics,
multiple fonts, and varying point sizes which
have no equivalent on the WANG system. The
same is true for lnterleaf, only more so, since
lnterleaf can include scanned photographs in a
document. In the future we see the possibility
of using the lnterleaf Editing Workstation
package and their ViewStation software which
runs on a PC based Workstation. These two
tools from lnterleaf will enable us to edit and
review text in lnterleaf's format on the PC
Workstation.

Since good old fashioned terminals are
more plentiful than PC Workstations, MASS-11
and MASS-11 DRAW are used to integrate text
and graphics from both the PC world and the
VAX terminal world. MASS-11 word
processing will run and, more importantly,
looks the same to the user on both a PC and a
VAX. With the addition of MASS-11 DRAW
executing on the PC Workstation and MASS-
11 Graphics Processor executing on a VAX, it
is possible to integrate graphics produced by
almost any application. The key to this is
Hewlett Packard's Graphics Language

233

(HPGL). There is hardly a package out there
that does not support HPGL (HP Plotters) as
standard output. The MASS-11 folks have a
filter that can translate HPGL into their DRAW
system where the drawing can be enhanced
and then integrated with text from MASS-11
word processing resulting in a composite
document output. MASS-11 DRAW also
accepts inputs directly form LOTUS PIC, MAC
PICT, and AutoCAD DXF, all of which are our
standard PC Workstation applications.

In summary I would like to emphasize the
importance of selecting a connectivity solution
based on industry standards, such as Ethernet.
Where there are standards there are multiple
vendors competing to lower the cost to you.
Easy expansion when new workstations need
to be added is an absolute must and the
network should not have to be taken down to
do it. You should be interested in a network
technology that will be around for more than a
few years, and network protocols that work
today and provide a committed
migration/growth path to future enhancements
and industry standards compliance. The
software vendors that are selected to provide
the core software applications should be
people you get to know and can work with on a
regular basis. Stay away from the traveling
salesman type. They won't be there when you
need a bug fixed or an improvement made to
their software. Software applications should
support your "standard" peripherals. You
definitely need your organization's support to
enforce the standards and policies on use and
procedures that you will be setting up. Having
networked our personal computers and
standardized on a software environment, we
have eliminated time wasted in moving and
adapting information to different systems
around our organization, giving individuals
more time to use that information productively.

MODIFYING FMS-11 TO PROVIDE READ-WITH-TIMEOUT
AND VIDEO ATTRIBUTE CONTROL

Joseph E. Kulaga
Argonne National Laboratory
Chemical Technology Division

Argonne, Illinois

Abstract

FMS-11/RSX V2.0 is a forms-oriented video 1/0 management system that is
well suited for use in traditional data entry applications. A recent attempt
to use FMS-11 in a real-time process control application exposed several defi
ciencies. This paper describes modifications and additions to FMS-11 required
by the application, such as video attribute control, "read-with-timeout," and
programmable default menu responses. Some discussion is presented on the
techniques used to approach this type of problem.

Backgrowid

The Fossil Energy Users Laboratory (FEUL) at Argonne
National Laboratory is a Department of Energy facility
constructed to accommodate a wide range of experiments
related to coal and oil combustion. The facility has been
used to acquire data for the design and operation of a
magneto-hydrodynamic power station, to study the con
trol of NO:c, SO:c, and particulate emissions, and to verify
instrumentation and heat transfer computer codes. The
oil combustor portion has been in operation since 1980,
and the coal combustor portion since 1985.

A decision was made recently to upgrade both the
hardware and software used in the facility's data acqui
sition system, replacing an LSI 11/23 running an RT-
11 based software system by a MicroPDP-11/73 running
RSX-llM+. The software system requirements included
the capability of periodic accumulation of data of from 100
to 300 sensors, periodic display of the data in real time,
logging of all data to disk, and printing subsets of the data
periodically. Most of the off-line data analysis was to be
accomplished on a VAX.

In designing the method by which a user interacts
with an on-line data acquisition system such as we are
discussing, one generally must decide between a command
language based system and a menu driven system. The
command language based system has the potential of sup
plying a wider range of interaction capabilities, but gen
erally requires a more sophisticated user, i.e., one more

1The submitted manuscript has been authored by a contractor of
the U.S. Govenunent under contract No. W-31-109-ENG-38. Ac
cordingly, the U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribu
tion, or allow others to do so, for U.S. Government purposes

Proceedings of the Di'gital Equipment Computer Users Socie~1' 237

aware of the computer environment and the details of the
software system and its components. The menu driven
approach, however, provides a much more easily mastered
interaction mechanism. With this in mind, FMS-11 was
chosen as the input/output mechanism for all normal user
interaction.

Hardware

Both coal and oil combustor systems accumulate data from
a range of sensor types: thermocouples, pressure transduc
ers, air flow transducers, weight scales, valve positioners,
and gas analytical instruments. These sensors are multi
plexed into an analog to digital converter and read by the
data acquisition task. The multiplexers and ADC are part
of a CAMAC-based1 data acquisition system interfaced to
the host MicroPDP-11/73 Q-bus by means of a CAMAC
crate controller. An RSX-llM/M+ driver is used to access
the CAMAC equipment via the standard QIO mechanism.

Software

Overview

Much of the user interaction is in the form of a typical
menu based system. The user selects options from a main
menu that in turn brings up various forms. One form is
used to supply sensor addressing information to the data
aquisition program's database. A second form is used to
supply data conversion / calibration coefficients for the
fifth order polynomial expression that is used to convert

1 CAMAC is an internationally accepted interface standard widely
used in data acquisition and process control environments. See the
IEEE-583 document.

Anaheim. CA - 1987

the raw data to engineering units. (The system supports
up to 64 different coefficient sets which may be assigned to
the various sensors.) The option to start data acquisition
brings up another form which defines run-time variables
for the system such as the length of the experiment, the
data logging rate, the data file name, the screen refresh
rate, and several others.

When data acquisition begins, a number of indepen
dent tasks begin to execute in traditional RSX fashion. An
acquisition task is begun which accumulates data, converts
the raw information into engineering units, checks for out
of-range conditions, and stores the results in a dynamic
region. A disk update task is initiated whose function is
to retrieve data from the dynamic region upon request of
the data acquisition task and write the data to a file. A
printing task is initiated whose function is to periodically
print results for selected sensors at a user defined interval.
A data display task is also invoked which periodically dis
plays selected groups of data on a terminal using the FMS
routines. Since the coal combustor data acquisition system
uses slightly more than 100 sensors and the oil combustor
data acquisition system uses slightly more than 300 sen
sors, it is obvious that only a small fraction of these may
be displayed at any given time.

It was decided that for each system it was necessary
to display a small subset of all data at all times in a pri
mary display window, with a secondary window reserved
for selected subsets of data. The users thus needed the
capability of selecting which subset should be displayed
in the secondary window. A problem arises, however, in
allowing a periodic screen refresh (on the order of once
every ten seconds) and simultaneously allowing user input
to select the secondary window contents.

Required features

A user option field is normally trivial to implement with
the FMS-11 FGET routine. The problem, however, is that
the read 1/0 request must be satisfied with user input.
In this particular case, however, the data display must be
periodically refreshed at a predetermined user rate without
user intervention, i.e., the user should not have to request a
screen update. The FGET routine (as well as other FMS
routines) does not feature a timeout option on the read
request. In order to provide the necessary functionality
it was decided to add a read-with-timeout option to the
DEC FMS-11 code.

A second feature not supplied by DEC was also
deemed necessary for this application, namely run-time
control of the video attributes of a particular field. The
user has the option of setting high and low alarm points
for all sensors, and the alarm flag sta.te for each sensor is
logged with the data when the data file is periodically up
dated. It was decided that the user should be given some
visual indication on the CRT if one or more sensors on
the current display exceeded either the high or low alarm
points. The obvious choice would be to have the video
attribute of the sensor data display set to "blink" for any

238

out-of-range sensor, a capability not supplied by FMS-11.

Implementation goals

The primary goal of this effort was to supply the needed
functionality but with the absolute minimum modification
of DEC code in the form driver package. In addition, any
modification was to be restricted to a single routine if pos
sible, and as much support code as possible was to be
contained in subroutines independent of the form driver
package.

Investigating FMS-11

The FMS-11 manual supplied by DEC does not reveal the
data structures used by the form driver. The source code
distributed by DEC with the FMS-11 package is, for the
most part, undocumented. Without documentation, one
must resort to a little detective work.

Researching terminal input

An initial attempt was made to trace the program flow
from a high level entry point, such as the FGET call, down
to the lowest level code which actually performed the QIO.
This proved difficult since the code consists of subroutines
which call subroutines which invoke macros which call sub
routines which invoke macros, ... , and so on! The source
code was searched with the EDT editor for any QIO's.
A single character QIOW call was found in the FDVTIO
subroutine. This QIOW performs a read with terminator
table and no echo, using event flag T$IEFN. The code ap
pears to read a single character into a buffer and pass it
along to the routine which verifies that the input character
is appropriate for the field that is being read. A legitimate
character is then echoed to the terminal screen and the in
put process continues for another character. This seemed
to be the appropriate point to add the timeout feature.

Researching video attribute control

Researching the method of video attribute control required
a bit more work. One can set any combination of four basic
video attributes for any field on a form, namely: underline,
bold, reverse video, and blinking. It was logical to assume
that these attributes must be defined in some fashion in
the impure area that must be reserved for each form that
is to be displayed on the screen. A special program was
written that displayed a trivial form on the screen, and
then wrote a file containing the contents of the impure
area after the form was displayed. Using the file dump
utility DMP to look for ASCII fields in the impure area
revealed that the field names are stored as six-byte ASCII
fields. A minor change was made to the video attributes
of a field on this test form and the contents of the impure
area was again dumped to a file. The two files were then
compared using the DMP and CMP utilities. After several
simple changes were made to the test form and the impure
areas compared as described above, a good deal of the data

structure maintained in the impure area was revealed. The
location of the video attribute byte was readily apparent,
as were several other control variables. The key item was
that the location of the video attribute byte was at a fixed
offset from the field name.

A segment of the basic data structure of a field entry
in the impure data region may be represented as follows:

Flag word

Field Name

(six characters)

(ASCII)

Clear Char Video Attr

#Field Char

#Def Char

Field type #Help Char

etc.

Though most of the entries of this structure have fixed
offsets (from the assumed beginning of the structure), sev
eral form options may produce a data structure that is
quite a bit longer than the segment pictured above. For
example, if one has defined a default field content, the
actual contents in ASCII follow the default field length
byte immediately, displacing all that follows. Likewise, if
help text is defined for a given field, it immediately fol
lows the help text length byte, displacing anything that
follows. The video attribute byte, however, is found at a
fixed offset from the field name.

Implementing the features

Read-with-Timeout

In keeping with the twin goals of modifying the DEC code
as little as possible and doing only what was necessary
to accomplish the project requirements, it was decided to
use the timeout feature for a single character option field
rather than a field of arbitrary length. A single character
field using decimal input allows up to ten user options,
numbered 0 - 9, more than sufficient for this application.
One could likewise support single character options con
taining alphanumerics and support many more options if
necessary, though if the application became that complex,

239

one should probably find a better way to implement it.
Adding the read-with-timeout for a single input char

acter feature was simply a matter of changing the QIOW
in subroutine FDVTIO to a QIO, adding a MRKT$ mark
time directive for the desired timeout period, and perform
ing a WTLO$ wait for logical OR of the event flags for the
QIO and the mark time. The handling of user input pro
ceeds as normal. In the case of a timeout, however, the
code must supply data as if the user had entered it, echo
it to the screen, and return it to the calling program.

Two global variables were introduced into the FD
VTIO source, called TMO and $DCHR$, the timeout
period in seconds, and the default input character, respec
tively. Two simple subroutines were written to set the
timeout period (subroutine FSTMO) and set the default
character (subroutine FSDEFC). At execution time, a test
is made on TMO and if no timeout period is specified,
the standard FDVTIO routine QIOW is processed nor
mally. If TMO is non-zero, the alternate QIO is exe
cuted and the mark time is issued. If the mark time event
flag is detected prior to I/O completion, an IO.KIL is is
sued for the terminal QIO and the default character sup
plied by the calling program is inserted into the terminal
buffer, simulating user input.

Video Attribute Control

Once the data structure maintained in the impure area
for a given field was understood, it was a simple matter
to write a routine to permit run-time manipulation of a
field's video attribute. Subroutine FMVID was written to
scan the impure area for the field name, which is stored
as a blank padded ASCII string. The video attribute byte
for the field in question can then easily be changed to any
legitimate value reflecting the desired combination of the
following four possible attributes:

bit 0 - underline
bit 1 - reverse video
bit 2 - bold
bit 3 - blink

For example, to set a field to blinking bold, call
FMVID with the video attribute byte argument set to 1210

or 14s. One assumption made in implementing the field
name scan routine was that the name starts on a word
boundary. It was also observed that the first field name
never began less than 4008 bytes from the beginning of the
impure area.

Software availability

All of the software discussed above has been submitted to
the Fall 1987 RSX SIG tape. The distribution consists
of four Macro-11 assembly language subroutines (FMVID,
FSTMO, FSDEFC, FRVID) and a SLP file to modify
the FDVTIO subroutine of the form driver library. The
SLP file may be applied to the FDVTIO.MAC subroutine
source of FMS-11 V2.0 or V2.1.

XL/XC/CL Programming for RT-11 / TSX-Plus

Ned W.Rhodes
Software Systems Group

2001 North Kenilworth Street
Arlington, VA 22205-3130

Abstract

Digital created a. standardized wa.y to interface with serial devices under RT-11
when they created the XL and XC handers. TSX-Plus adapted that standard
and implemented what they called the CL handler. Through the use of these
handlers and standard RT-11 programmed requests, user programs are able to
acquire data. and transmit and receive information from almost any serial device
attached to an RT-11 or TSX-Plus system.

Introduction

Users of RT-11 and TSX-Plus systems use RS-232 serial
lines to transmit and receive information from other com
puter systems. With the advent of the cheaper personal
computers, instrumentation manufacturers have started to
build instruments that communicate to host computers
over RS-232 serial lines. As a result, many RT-11 a.nd
TSX-Plus systems have the need to be able to communi
cate with a. variety of RS-232 devices for communications
and data acquisition.

There has been an evolution in the way that RT-11
and TSX-Plus users have approached serial communica
tions. Initially, users wrote special purpose communica
tions programs that implemented only ASCII character
send and receive modes. The problem with this type of a
solution was that each user wrote a different type of pro
gram that had a different user interface and "talked" to the
serial ports on the system in a. different way. Some of the
later programs attempted to standardize the way that the
programs "talked" to the serial ports by using a handler
rather than a.n inline interrupt service routine, but each
user-written handler used a. different set of standards and
protocols. Two examples of these early serial handlers are
KB and MO, which can be found on early RT-11 DECUS
swap tapes.

Digital utimately solved the problem of serial com
munications by writing a handler that could control serial
devices and as a result, a standard was set. These Digi
tal handlers were called XL on QBUS and UNIBUS ma
chines and XC on the PRO series of computers. Digital
started shipping these handlers with RT-11 Version 5. In
order to maintain compatibility with RT-11, version 5.1 of
TSX-Plus also supplied handlers that could control serial
devices using the standards set by Digital. The TSX-Plus
handler was called a CL handler or Communications Line
handler.

Proceedings of the Digital Equi'pment Computer Users Society 243

This paper will provide an overview of the XL, XC
a.nd CL handlers and then go on to discuss the ways to
interact with the handlers in order to transmit and receive
serial data. An example program will be discussed that
will demonstrate most of the communications features.

Handler Overview

The RT-11 handlers XL and XC a.re similar in concept
to the TSX-Plus CL handler, but all are implemented in
different ways. The three handlers have the following char
acteristics :

• All are communication port controllers, which means
that the handler is responsible for controlling a phys
ical port on the computer.

• All are internally queued, which means that the han
dler will support full duplex communications (i.e. si
multaneous transmit and receive).

• All use XON/XOFF flow control.

• All have internal buffers for the storage of characters
which means that the applications program can read
a few characters from the serial device, process those
characters and then go back to read more characters
without the fear of losing characters.

• All allow the application to control the DTR line.

Through the use of an applications program and the
XL, XC, or CL handler, a.II types of serial devices can be
controlled. In addition, programs can assume one stan
dard interface to these handlers and the devices that are
connected to an RT-11 or TSX-Plus system.

Anaheim, CA - 1987

RT-11 XL and XC handlers

The XL handler was originally included on the RT-11 dis
tribution kit to work with VTCOM and TRANSF virtual
terminal and file transfer utilities. Because of this, the XL
handler is designed to support only one port of a DL-type
serial interface. This means that a system will require four
XL handlers to support all four serial ports on a DLV-llJ
interface board.

The XC handler is conditionally assembled from the
XL handler sources for use on the PRO 350 or 380. In all
other respects, the XL and the XC handler can be consid
ered identical due to the fact that their both share a lot of
common code.

TSX-Plus CL Handler

The CL handler under TSX-Plus is compatible with pro
grams that use the XL handler, but the implementation of
the CL handler is very different. The CL handler is imple
mented as a system overlay instead of a handler, so that it
consumes very little out of low memory. Also, the CL han
dler is a more general solution to the control of serial lines
because it supports serial lines on DL, DZ or DH interface
boards. And finally, the CL handler will support up to
sixteen devices (CLO-CL 7 and ClO-Cl 7) for additional
flexibility.

XL, XC and CL Programming

Like all standard RT-11 and TSX-Plus handlers, the XL,
XC and CL handlers support .READx and .WRITx re
quests and their equivalent formats contained in SYSLIB.
The problem with the normal .READx and .WRITx re
quests is that only word oriented transfers are supported.
Normally, byte oriented transfers are what is required
when working with serial devices and the XL, XC and CL
handlers support byte oriented transfer through the use of
special function requests (.SPFUN).

The general use of the RT-11 programmed requests
will not be discussed in this paper as they are fully ex
plained in the RT-11 Programmer's Reference Manual. In
stead, this paper will show how to use these programmed
requests to communicate with the XL, XC and CL han
dlers.

Special Function Requests

Special function requests are used to interact with a device
in a device dependent manner. For example, RT-11 uses
the standard calls .READ and .WRITE, to read and write
data to a block oriented device in a device independent
manner. Any program using these calls can be assured
that data will be read or written to a disk without the
programmer having to know the low level interface to the
disk device. In other situations, the programmer needs
to interact with a device at a low level. To do this, most
RT-11 handlers have special function request codes so that
programmer and device can interact at this very low level.

244

Special function request codes and the format of the
special function request itself are documented in the RT-11
Programmer's Reference manual and will not be repeated
here. The use of the special function request and the var
ious codes will be shown in the example that will follow.

The following special function codes are useful in pro
gramming the XL, XC and CL handlers :

• #201 - This code will reset an XOFF condition. This
may be useful in situations where the attached device
sends an XOFF to the computer to signal the fact
that data should not be sent until an XON is sent.
If the device never sends the XON character, then
the handler will not transmit any data until either an
XON is received or the handler internal XOFF flag is
reset with this special function code.

• #202 - This code allows a program to send a BREAK.

• #203 - This is a special read request that will be ex
plained in the next section.

• #204 - This code will return the driver status to the
program.

• #205 - This code will disable the handler interrupts
with the net affect being that the handler will ignore
any incoming characters.

• #206 - This codes allows the program to set and clear
the DTR line.

Special Read Special Function Request

Special function code #203 is used to read in character
data from a serial device. This special function code is
byte oriented and will return control to the user after :

• The number of characters requested in the byte count
are available, or

• All available characters have been transferred, which
is less than the byte count, or

• When one character is available when none were avail
able when the special function read requested was
posted.

All characters are returned in the user supplied buffer
and the buffer is null-byte terminated due to the fact that
the program never knows how many characters might be
available when the read request is posted.

TSX-Plus Only Special Functions Codes

The TSX-Plus CL handler has an additional 13 special
function codes that are defined and documented in their
documentation set. Programs should use these TSX-Plus
specific special function codes only in cases where the pro
gram will only be used in the TSX-Plus environment.
These special functions codes are NOT compatible with
XL and XC handlers.

XL, XC and CL Limitations

The following limitations apply when the XL, XC or CL
handlers are used :

• The first call to the handler must use a block number
of zero in the .READ, .WRITE or .SPFUN request.
The zero in the block number signals to the handler
that this is the first request so that the handler will
initialize itself and enable the interrupts. All other
requests after the first should use a block number of
greater than zero.

• Null characters are ignored on both the transmit and
receive sides of the handlers.

• The 8th bit is not transmitted or received normally.
Under TSX-Plus, the eighth bit can be enabled with
a set option. To accomplish the same under RT-11,
the handler source code must be patched.

Example Use of XL, XC and CL

The following example program demonstrates the use of
RT-11 programmed requests to talk to a serial device using
XL, XC or CL. The program was developed under TSX
Plus, but is compatible with RT-11 due to the fact that
all the special function request codes that were used are
supported under both TSX-Plus and RT-11.

The example routine is a simple automated dialing
program that has four separate files associated with it.
The first is a command file that is used under TSX-Plus
to configure a particular CL port for dial out. The second
file is a script file that tells the program what character
sequences to send out and what character string to look
for coming back. The third program is a Pascal routine
that uses the functions and subroutines contained in the
fourth file to communicate with the handlers. This fourth
file contains code in the form or subroutines and functions
that allow programs to read and write character strings to
the handlers.

TSX-Plus Command File

The following command file is used to setup a TSX-Plus
line for use by the CL handler and the dialing program.

Script Language

The script language is read by the dialing program. The
script language contains a string to be sent out the CL
device and the string that is expected back from the at
tached device. If the expected string is not read, then the
dialing program will try again until the retry count has
gone to zero. In that case, the program will just abort.

The script file uses the ";; character to indicate that a
carriage return should sent. This special character is used
so that it is obvious in the script file where carriage returns
should be inserted.

245

Pascal Controlling Routine

The Pascal controlling routine appended to this paper
reads in the script file and attempts to dial and log into a
remote system. This controlling routine calls subroutines
that are contained in the XLSUBS file.

XL Subroutines

Subroutines and functions needed to control the XL, XC or
CL device are also appended to this paper. These routines
initialize the CL device and then hang a read of 10 char
acters to the handler. When the handler completes the
read, a completion routine is entered. In the completion
routine, the characters are stored into a large ring buffer
and then another read is hung to the CL device.

Using this type of design, the program will always
be collecting data from the CL device and storing it in
a local ring buffer. This also means that characters are
immediately removed from the ring buffer in the CL device
so that there is little chance that the CL handler will send
an XOFF character because there is little chance that the
handler ring buffer will ever become full.

Two pointers are used to access data in the ring buffer.
One pointer is used to point to the next available location
in the ring buffer, while the second pointer is used to point
to the next character to be taken out of the ring buffer for
the user. If both pointers are the same, then all the data
has been taken out of the ring buffer. If both pointers are
different, then there is information in the buffer that the
user's program has not read yet.

Conclusions

The XL, XC and CL handlers are good general purpose
software tools that can be used to communicate with all
types of serial devices. The use of any of these handlers
allows an application to be easily moved from one machine
to another. Finally the handlers provide a program with
a flexible and standard environment for operation.

set
set

cl3
cl3

line=3 ! Use cl3 and attach it to TSX line 3
nolfout ! Don't send line feeds out

set cl3
set cl3
ass cl3
ass cl3

tab ! Pass tabs through
form ! Pass forms through
xl ! VTCOM likes to see either XL
xc ! or XC

set cl3 speed=2400 ! Speed of dial out line
allocate cl3: ! Allocate it to me
R DIAL ! Run the dial program
deas xl ! Deassign the logical names
deas xc ! Deassign the logical names
set cl3 line = 0 ! And return it to TSX-Plus

[Initially send a CIR]
1 2 Loop [Look one time, with a 2 second timeout]
II R- [Send this]
A [Look for this]
3 2 LOOP [Loop 3 times, with a 2 second timeout]
- [Send carriage return]
CDS > [Look for this modem prompt]
1 15 loop [Loop 1 time with a 15 second timeout]
D 340 0197- [Dial the number]
ARQ ACTIVE [Modem connected]
3 10 loop [Loop 3 times with a 10 second timeout]
<System Password>- [Send this system password]
Username: [Wait for this prompt]
4 10 LOOP [Loop 4 times with a 10 second timeout]
<Username>- [Send this username]
Password: [Wait for this prompt]
2 30 Loop [Look 2 times with a 30 second timeout]
<Password>- [Send this password]
$ [Wait for this prompt]
0 0 LOOP [Do nothing loop]
EXIT [And exit dial]

246

PROGRAM
{

}

TYPE

VAR

dial;
Program to automatically dial and log into
another computer system. Uses device CL:
and script file DIAL.DAT.

CONST
line limit = 80;
carriage return= 13;
line_feed = 10;

string= PACKED ARRAY [O •• line_limit] OF
CHAR;

inbuf,
outbuf
compare string
crlf -
seconds
times
iloop
time out
Got string
numb
ch
cmd file,
xlin,
xlout,
f out
inchan,
outchan

string;
string;
string;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
INTEGER;
char;

text;

INTEGER;

%include 'sy:stringas•; { Pascal string package }

247

function GetChannel (var n : text): integer;
{

This function gets the RT-11 channel number for a
file opened by the Pascal run-time system.

}
%include 1 SY:libdefas 1 ;

var
f user file variable; - -

begin
f := loophole(user file variable,n);
GetChannel := fA.channeI;

end;

PROCEDURE Setup (VAR inchn, outchn
nonpascal;

INTEGER);

PROCEDURE hang; nonpascal; { Hang a read to XL }

FUNCTION Getxl : char; nonpascal; { Get a character from XL }

PROCEDURE xlwrit (VAR number
buf : string) ; nonpascal;

PROCEDURE rtexit; nonpascal;

PROCEDURE togdtr; nonpascal;

INTEGER; VAR
{ Write a string out XL }

{ RT-11 .exit }

{ Toggle DTR }

PROCEDURE Substitute (VAR buffer : string) ;
{

}
VAR

BEGIN

This procedure substitutes a real carriage return for
a "-"

iloop : INTEGER;

FOR iloop := 1 to len(buffer) DO
BEGIN

IF buffer[iloop] = 1 - 1 THEN
buffer[iloop]:= chr(carriage return);

IF buffer[iloop] = 111 THEN -

END;
END;

buffer[iloop]:= chr(line_feed);

248

PROCEDURE init;
{

This is the initialization routine. It first opens two
channels to the XL device. One will be used for reading
the other will be used for writing. Next the routine
converts the Pascal run-time channel numbers into RT-11
channel numbers, calls the setup routine, toggles DTR
and then writes the initial string out the XL device.

}
BEGIN

Rewrite (xlout, 'XL:');
Reset (xl in, ' XL: ') ;
Reset (cmd file, 'Dial.dat');
inchan := GetChannel (xlin);
outchan := GetChannel (xlout) ;
Setup (inchan, outchan);
ReadString (cmd file, outbuf);{Get init string}
Trim(outbuf); - { Trim trailing blanks }
Substitute (outbuf) ;
togdtr;
numb:= len (outbuf);
xlwrit (numb, outbuf) ;
hang;

END;

249

FUNCTION readln xl (VAR buf : string;

{

VAR equal string : string;
wait_time : INTEGER) : BOOLEAN;

This function reads a string from the XL device and compares
it to another string. If the string returned from the XL device
is not equal to the expected string, then the process is
repeated. In addition, if the string is not received within
the timeout period, then function returns with a timeout error

}
VAR

end of line :
time out
ch string
start time
delta-time

BOOLEAN;
BOOLEAN;
string;
REAL;
REAL;

BEGIN
time out := FALSE;
end of line := FALSE;
Clear (buf) ;
start time := time;
Repeat

ch := Getxl; { Get a character from XL }
IF (ord(ch) <> 0) AND

(ord(ch) <> line feed) THEN
IF ord(ch) = carriage_return THEN
BEGIN

end of line := TRUE;
writeln;
Clear (buf);

END
ELSE BEGIN

Write(ch);
AssChar (ch_string, ch);
Concatenate (buf, ch string);

END; -
delta time := time;
time_out := (((delta_time-start time) * 3600.0)

> wait_time); -
UNTIL (time out) OR (equal (equal_string, buf));
IF time out-THEN BEGIN

readln xl := FALSE;
END -

ELSE readln xl := TRUE;
END;

250

BEGIN { main routine }
init;
readln (cmd file, times, seconds); {repeat count and timeout}
ReadString T cmd file, outbuf);
Trim (outbuf);-
Substitute (outbuf);
time out := FALSE;
WHILE (NOT equal (outbuf, 'EXIT')) DO
BEGIN

ReadString (cmd file, compare string) ;
Trim (compare string) ; -
iloop := O; -
time out := FALSE;
numb-:= len (outbuf);
REPEAT

xlwrit (numb, outbuf); {write this}
got string := readln xl (inbuf ,compare string,

- - seconds-);
iloop := succ(iloop);
IF NOT got string THEN writeln ('Timeout');

UNTIL (iloop >times) OR (got string);
IF got_string THEN -
BEGIN

readln (cmd file, times, seconds); {repeat loop and timeout}
ReadString T cmd file, outbuf);
Trim (outbuf);-
Substitute (outbuf);

END ELSE BEGIN

END;
rtexit;

END.

WRITELN ('Too many retries.',
Program terminated');

rtexit;
END;

251

. , . ,
; . ,
; . , . , . , . , . , . ,

;
; . , . , . ,
xloff::

.title XL/XC/CL communications subroutines

Subroutines to control the XL/XC/CL ports
under RT-11 or TSX-Plus •

Ned w. Rhodes
Software Systems Group
2001 North Kenilworth Street
Arlington, VA 22205-3130

.mcall

.mcall

.mcall

.mcall

.mcall

.mcall

.ident

.enabl

.nlist
buf siz

.ttyout

. readw, . wri tw

.exit,rint,.twait

.readc,.ttyout

.read,.wait,.qset

.spfun
/Vl. 0/
le
bex

= 1000 .

. sbttl SETUP

.psect code

Large ring buffer

Turn off the interrupt handler

.spfun #area,xlwrt,#205,#rbuf,#5.,blk
return

252

; . , . , RT-11 hard exit. Will exit even with files open . , . ,
rtexit::.exit
;
;
; Toggle the DTR line . , . ,
togdtr::

.spfun

.twait

.spfun
return

setup::

. , . ,

• qset
mov
mov

#area,xlwrt,#206,#rbuf,#O,blk
#area,#twosec
#area,xlwrt,#206,#rbuf,#1,blk

; lower it
; wait 2 seconds
; raise it

#queue,#10 •
@2(r5),xlread
@4(r5),xlwrt

;Add more queue elements
; Get the read channel
; Get the write channel

. zero out the ring buff er I .
I .
I

2$: mov #bufsiz,ro ; n words
mov #ring,rl ; the address of the buff er

3$: clrb (rl)+ ; clear a word
sob r0,3$. and loop I

mov #ring,cur . initialize pointer I

mov #ring,next . initialize pointer I

return ; and return

253

hang:: .
I .
I .
I .
I .
I

4$:

.
I

; .
I .
I .
I

xlcomp: .
I

5$:

Hang a read to xl

.spfun #area,xlread,#203,#rbuf,#lO.,blk,#xlcomp . hang a read I

bee 4$. no error I

mov #reader,ro ; get the message
jmp error ; and say the error
mov #1,blk . Set block number to 1 I

return . and return I

.sbttl XL read completion routine

Read characters and start a read for more

mov xloop: mo vb (rl)+,@next . save in ring buff er I

.ttyout @next . Debug print I

inc next . bump pointer I

cmp #rend,next . at the end? I

bne 5$; nope
mov #ring,next . reset address I

tstb (rl) . A null? I

bne xloop . Nope, transfer more I

.spfun #area,xlread,#203,#rbuf,#lO.,blk,#xlcomp . hang another read I

return . and return I

254

.
' .
' .
' .
' .
' getxl::

6$:

.
'
.
' .
I .
' .
I .
I .
I .
I .
I

;
; .
I

; .
I .
I

.sbttl GETXL

.page

Take a character out of the ring buffer

clr ro . start with a zero ' cmp cur,next . are pointers the same? ' beq 6$. yes, exit ' movb @cur,ro ; get the character
inc cur . bump pointer ' cmp #rend, cur . at the end ' bne 6$; nope
mov #ring,cur . reset address ' return . and return '

.sbttl XLWRIT

.page

Write characters to XL

Pascal strings start in the second byte of the
string. The length of the string is contained
in the first byte .

This routine uses the .writw programmed request to
write one word at a time to the CL device. In
reality only one byte at a time is sent as we are
forming a word that consist of the character to be
sent and a null. As we know, the handler will ignore
the null and so only one byte will be transmitted
at one time •

xlwrit: :mov @2(r5),r2 . Get the byte count I

mov 4(r5), rl . Get buff er address ' inc rl ; For strings
8$: movb (rl)+,baddr . Save in a word I

.writw #area,xlwrt,#baddr,#1,blk . write it up ' sob r2,8$
return . and return I

255

.sbttl Error exit
error: .print : say the error

queue:
area:
xlread:
xlwrt:
ring:
rend

cur:
next:
rbuf:
twosec:
blk:
went:
baddr:

.exit

.sbttl

.psect

.blkw

.blkw

.word

.word

.blkb
=
.even
.word
.word
.blkw
.word
.word
.word
.word

.psect
reader: .asciz
hit: .asciz

.end

Data and Storage
data
140.
10.
0
0
bufsiz

ring
ring
100.
0,60.*2
0
0
0

msgs

: additional queue elements
: emt area
: XL read channel
: XL write channel
: ring buff er
: end of buff er address

: current pointer
: next empty position
: Receive buffer
: 2 seconds
: Block counter
: Word count
: output Character

/?SETUP-F-Error posting a read to XL/
/?XLCOMP-I-Got a read from XL/

256

REAL WORLD DISK COMPARIS0NS

Robert c. Peckham
Computer Programming Services, Glendale, CA

&
Milton D. Campbell

Talisman Systems, Manhattan Beach, CA

ABSTRACT

Many computer users are interested in the actual data
transfer rates achieved when real controllers and disks
operate with a real operating system, doing real data
transfers, as compared with the data transfer rates claimed
in manufacturers' literature.

Test programs were written to exercise the various
operational parameters of a disk, while doing the type of
transfers that might be observed in real-world applications.
These test programs were run on a wide variety of disks by
approximately twenty DEC end-user sites.

The test programs were run on disks ranging from RX 01
through the more common cartridge disks, on to some
relatively large and exotic Winchester and memory disks, and
even on an Ethernet virtual disk.

The results are presented in tabular form so that direct
comparison is possible. The results of this project are very
interesting to those interested in real-world disk
performance.

INTRODUCTION

The authors and, we discovered, a significant number
of other people, were interested in the actual data
transfer rates achieved when real controllers and
disks operate through a real operating system, doing
real data transfers.

This paper presents the results of a group of test
programs which were run on numerous disk and
controller combinations.

In disk-based operating systems, which all PDP-11
and VAX systems are, the performance of the system
disk, and any auxiliary disks, has a major impact on
system performance. Most sites have no realistic way
to compare the price/ performance characteristics of
one disk against another, or the absolute perform
ance of any disk in their system, before purchase.

Many sites have had the disappointing experience of
purchasing a disk based on salesmens' claims, or
based on printed "performance specifications", and
subsequently discovering, to their chagrin, that
those specifications meant relatively little in a
"real world" environment.

The test sequence which produced the results
reported in this paper consisted of a group of
programs which created and manipulated files with a
variety of file layouts, with the primary
measurement being the elapsed time for the test.

The process of getting data to and from a disk
involves both hardware and software. When a user
program requests a disk operation, the operating
system fields the request and eventually issues the
necessary commands to the disk controller. The
controller translates these commands into hardware
instructions to the disk drive, which causes data to
be read from the disk, transferred back through the
controller, and eventually into memory, where it is
available to the user program.

The first step is for the operating system to handle
the request. The system may have to load the device
handler, do a context switch, swap jobs, or do other
housekeeping before it can actually start issuing
commands to the disk controller. The time consumed
in this process is called "system latency".

Once commands are issued to the controller, the
controller may have processing to do before it
starts sending instructions to the disk. This delay
is "controller latency".

Much of the time, a disk transfer will require that
the disk head be moved to a track other than the
current one. There is a significant delay involved
in this process, since the head positioning system
is an electro-mechanical device and responds
relatively slowly. This "seek delay" is usually
quite large and is often the overriding factor in
disk access time.

Proceedings of the Digital Equipment Computer Users Society 257 Anaheim, CA - 1987

Once the head has been moved to the pruper track, An RT-11 directory is kept in the low numbered
the system must wait until the desired
under the head. This "rotational
basically a function of the rotational
disk.

sector moves blocks of a disk, beginning in block 6. (Blocks 0
latency" is through 5 contain boot and identification

speed of the information.) The directory is allocated (at disk
initialization time) in two-block chunks, called
segments, up to a maximum of 31 (decimal) segments.

Finally, the disk subsystem is ready to transfer The number of directory segments is either
data into memory. The upper limit on this process, user-specified or is determined by the number of
or the "peak transfer rate", is the speed at which total blocks available on the device. Each directory
bit cells pass under the disk head. This maximum segment may contain up to seventy-two file entries.
rate may be degraded by delays caused by the buss
DMA transfer system (i.e., if the buss cannot keep RT-11 files are allocated as contiguous blocks from
up with data coming off the disk). It is common to the available "empty" space on a disk. Each file
use techniques such as interleaving to ensure that requires one directory entry. In addition, each
as few disk rotations as possible are required to "empty" area requires a directory entry so that at
read the data once the beginning of the desired data any time the full disk space is described in the
has been found. In most cases, the data transfer directory, either as allocated to files or as
rate is not a major contributor to the time it takes "empty".
to access the desired data.

There are other places where time can be lost in
this process, which might be categorized as
"overhead". Interrupts that interfere with the
system's disk-handling software may cause delays
that result in extra rotational latencies.
Interrupts and higher priority DMA devices may cause
the controller-to-memory data transfer to fall
behind the disk-to-controller transfer. If this
delay is large enough, further rotational latencies
may occur. Depending on the operating system file
structure, more than one seek and read may be
required to service a single user program data
request. Those systems that scatter portions of
files around the disk may need to "collect" the
scattered data needed by the user program, and they
will probably need to read and update the various
bookkeeping data areas to keep track of which disk
areas are in use and which are available.

Because we wanted "real world 11 results, all disk
activity in the test programs run by the various
sites occurred through the normal operating system
I/O system. Therefore, the various latencies
discussed above are included in the test program run
times.

The test programs were writ ten in FORTRAN. This
means that the FORTRAN run-time library overhead is
included, which would be typical of any system using
higher order languages.

RT-11 OPERATING SYSTEM

The host operating system for the study was RT-11,
single-job monitor, Version 5.0. RT-11 is
characterized by fairly low I/O system overhead;
however, most of the tests used named files on the
test device. This means that an RT-11 file system
was created on the disk being tested. The overhead
involved in opening and closing files is included in
the test results. Since directory processing is a
significant part of most disk activity, a brief
description of the RT-11 file system is in order.

The segments in the directory are connected together
in a forwardly linked list, with files that have
lower starting block numbers appearing in the
directory before files with higher block numbers.
Since the directory is organized by block number, a
directory search by file name (the usual opera ti on)
is performed sequentially from the front of the
directory until either the file or the end of the
directory is found.

The RT-11 directory processing time costs should be
affected primarily by two different hardware
factors. The location of the directory in the low
numbered blocks of the disk means that when a
directory operation is needed, a seek will usually
be required. In addition, since "new" files tend to
be at the opposite end (from the directory) of the
"used" portion of the disk, this seek will be longer
than the "average" based simply on the disk usage
pattern. The second component, once the directory
has been read, will be the CPU time involved in
searching through the directory.

In an attempt to make the effect of the directory
organization on the study as uniform as possible,
the tests were always run on an "empty" (i.e.,
freshly initialized) disk, with the file creation
and manipulation performed by the test programs and
distributed command files.

LIMITS ON THE APPLICABILITY

This study was aimed at attempting to measure disk
sub-system performance in the "real world". Since
the authors use RT-11, the "real world" in this case
was defined to be RT-11. In general, we were not
trying to measure the maximum speed a disk could
provide, nor were we trying to find optimum disk
access techniques. The objective in the design of
the test programs used in this study was to
reproduce many of the circumstances encountered in
the use of a disk in a normal interactive RT-11
environment. "Real Time" RT-11 is a good operating
system environment for doing disk benchmarking.

258

The way a system is used at a site will affect
hardware selection decisions. In particular, the
results of this study do not necessarily apply to
all RT-11 environments. The authors are primarily
interested in general purpose systems used for
program development, word processing, and business
support, with some multi-user activities. This type
of environment tends to have many fairly small
files, accessed in a more-or-less random fashion.
The test programs used were somewhat skewed to this
type of disk use and are not necessarily a good
guide to other environments.

FACTORS NOT CONSIDERED

Disk speed is, obviously, not the only consideration
when purchasing mass storage. Besides the major
factors of capacity needs and the pocketbook, other
items to consider are: maintenance (who, how, and at
what cost?); DEC compatibility (emulation?, special
drivers?); file backup (on what, how long it
takes?); reliability, and vendor "track record".

TEST PROGRAMS

This study used eleven programs that, combined with
several different arrangements of data files, were
designed to measure various aspects of disk
performance with the primary "result" measure being
the wall clock time required to complete the
test(s).

TEST1: Created, wrote, and closed 150 one-block
files.

Because the actual data
short, this test was
particularly between the
data area. Actual data

transfered to the files was
primarily a seek test,
disk directory area and the
written was 76,800 bytes.

TEST2: Created, wrote, and closed one 150-block
file.

This test was a measure of data transfer rate on a
medium size file. Actual data written was 76, 800
bytes.

TEST3: Created, wrote, and closed 300 one-block
files.

This test was similar to TEST1. TEST3 created data
files for use by later test programs. Actual data
written was 153,600 bytes.

TEST4: Using the 300 one-block files created by
TEST3, this program pseudo-randomly selected a file,
opened, read, and closed the file, modified one data
element of the file, then opened, wrote, and closed
the same file, until all 300 files had been
processed. Actual data read and written was 307,200
bytes.

259

This test primarily measured random block latency.
The large number of directory operations means that
the directory processing portion of the operating
system was exercised. An effective data and
directory caching scheme would speed up this process
considerably by reducing the many seeks involved.

(Tests 4, 4A, 4B, 5 and 5A were written anticipating
that any effective directory and/or data caching
scheme would significantly reduce run time.)

TEST4A: Performed the same operations as TEST4, but
the "write" sequence was performed on the null
device, NL:. Asymmetry in "read" and "write"
operations may be apparent when compared to TEST4.
Actual data read and written was 307,200 bytes.

TEST4B: This test was similar to TEST4, except that
the files were opened, read and closed only. Actual
data read was 153,600 bytes.

This test looked for symmetry in read and write
operations and was very seek-intensive. A large
directory caching system would help significantly
for this test.

TEST5: Using the 300 one-block files originally
created by TEST3, this test sequentially opened,
read and closed a file, then opened, wrote, and
closed the file on NL:. Actual data read and
"written" was 307,200 bytes.

This test was intended to look at the sequential
performance of the disk. The large number of
directory operations caused a large number of seeks
and exercised the directory processing software. It
was anticipated that a disk caching system would
excel on this test.

TEST5A:
opened,
files.

Similar to TEST5, this program sequentially
read, and closed each of the 300 one-block
Actual data read was 153, 600 bytes.

ALTERNATE TESTS 4, 4A, 4B, 5, 5A: Two command
files, SPACE2 and SPACES, were used to insert two
dummy files (2000-block and 8000-block, respec
tively) into the midst of the 300 data files in an
attempt to increase required seek distances.

Tests 4, 4A,
after this

4B, 5 and 5A were run both before and
spacing-out of the data files.

TEST6: Created, wrote (sequentially), and
one 300-block file. Actual data written was
bytes.

closed
153,600

The run time result is useful
purposes, and the 300 block data
needed for TEST?.

for comparison
file was also

TEST?: Read the 300-block file left by TEST6, then
wrote the file on NL:. Actual data read was
"written" was 307,200 bytes.

TESTS:
file.

Created, wrote, and closed
Actual data written was

one SOO-block
409, 600 bytes.

This test was to compare data rates, writing a large
formatted data file.

TEST 9: Opened, read, and closed the 800-block file
from TESTS. Acutal data read was 409, 600 bytes.

Compare TESTS and TEST9 results to look at read/
write symmetry.

TESTlO: Created, wrote, and closed 1000 five-block
files. Actual data written was 2, 560, 000 bytes.

This test stressed the disk subsystem's sequential
;:ind random access capability. The transfer speed of
the device should have been a relatively minor
~omponent.

rEST 11: Read either the whole disk, or 32000 blocks
(whichever was smaller), sequentially in 163S4 byte
"chunks". Compute byte transfer rate and report as
"Figure of Merit" (FOM).

This test was designed to get a good idea of the
disk's maximum effective read data transfer rate.
The large size of the data buffer minimized the
operating system/device handler overhead and allowed
the device to operate at high transfer rates
efficiently. Because the reads were performed at the
device level (i.e., little system interference),
there is no directory processing overhead. The
sequential nature of the reads reduced the latency
to single track seeks and the irreducible rotational
latency of the device. It turns out that the buffer
size used in this test has a measurable effect on
the result found. For most disks, the optimal buffer
size would be as large as possible, but one that is
an even multiple of the number of disk blocks per
disk track. The number used (32 512-byte blocks) is
non-optimal for many devices, but its large size
tends to reduce this effect.

The results gathered in this study are summarized in
Appendices A through I.

Appendix A is the manufacturers' specification and
rating for each of the various systems and disks
tested, if available. The study participants
supplied this data.

Appendix B is a summary of the
tested. Systems without a disk
RT-11's VM: memory disk.

various systems
indicated used

Appendix C is the VM: results which is useful for
normalizing memory, CPU, and buss speed.

Appendix D is the results of the programs run on
floppy disks. Note the almost total CPU
independence.

Appendix E is the results for the smaller cartridge
and Winchester disks.

Appendix F is the results for the larger cartridge
and Winchester disks.

Appendix G is
comparable

the results for disks not directly
due to CPU or buss type.

Appendix H is an operating system comparison. It
was put in because the authors found it very
interesting.

Appendix I is the results for "strange" pseudo
disks. Note the outstanding performance of Ethernet
and bulk semi "disks". Note that bulk semi
performance is very dependent on the type of buss.

DISCUSSION

Not surprisingly, the disks with the fastest seek
speed generally did the best in the tests. This
confirms "theoretical" expectations, and corresponds
to the authors' subjective experience.

An aspect of seek performance that can be important
is the way the blocks of a disk are organized. In
systems that emulate DEC controllers by partitioning
a large disk into several smaller drives, the
partitioning map can be important. For example, the
three system combinations labled I1, I2, and I3 (in
Appendix B) have essentially the same hardware
performance specifications, but the controller used
in I 1 partitions its disk's logical devices so that
each platter in the drive is a logical device, while
the controllers in I2 and I3 use groups of
contiguous cylinders for each logical device. The
effect of the second method is that the blocks of a
logical device are closer to each other than with
the first method, resulting in better performance.

For the larger disks, several of the tests (4 thru
5a) were run several times with a reorganization of
the disk between test series. The reorganization
placed two large files in the midst of the test data
files, which was intended to extend the seek travel
distance for many of the seeks. In terms of
measuring the difference between disk subsystems,
this did not produce very interesting results! The
relative performance of the various disks remained
essentially unchanged, which indicates that none of
the disks had a hardware caching system. These
'spaced-out' results were omitted except in the
operating system appendix (H) where the effect of
software caching was obvious.

While this "spacing-out" procedure produced no
meaningful comparison data, it did turn up a useful
anomaly that can be seen in Appendix H. In almost
all of the sub-systems the performance results after
the SPACE2 command file were better than the results
before SPACE2. The results after the SPACES command
file were slower than after the SPACE2 results, but
faster than initial ones. This is because the disk
directory was squeezed after the two large "spacer"
files were added. The reduction in directory
processing after adding the two 2000 block files
more than made up for the increased seek travel. The
increase in run time with two SOOO block space files
replacing the two 2000 block files is consistent
with increased seek travel and vividly demonstrates
the importance of apple to apple disk comparisons.

260

Another interesting observation is the performance
of the DEC RA-80 system on an 11/24 (system N1).
For TEST11, which is basically a maximum speed
sequential read, the RA-80 showed a remarkable
transfer speed, but on the other tests, involving
more random access, the results for the RA-80 were
more mundane and placed the system with the rest of
the "high end" pack.

The CPU• s used for the tests were 11 /2, 11 /03,
11/23, 11/23+, 11/24, 11/34, and 11/73. All but the
11/24 and the 11/34 were Q-bus systems.

CPU speed did make a difference, although there were
relatively few examples of the same disk sub-system
with different CPU and buss types. This does not
provide much opportunity for direct comparisons•
The two Unibus systems performed well, but since
there was no Q-bus system using the same disk it was
not possible to make any direct comparisons· The
exception to this was the Dataram bulk-semi which
gave outstanding performance on both the Q-bus and
U-bus. We note that it was three times as out
standing on the U-bus which does say something about
bus speed!

The TEST11 Figure of Merit (FOM) was actually a
somewhat idealized maximum data rate (bytes/sec)
obtained by bypassing the RT "High level I/O
facilities" and usinii: very larii:e buffers. In
general, however, the FOM was MUCH lower than
published disk performance specifications. Some of
the tests that manipulated numerous small formatted
files produced average data rates of less than 5000
bytes/sec, even with the fastest disks.

Appendix H shows the results of running the test
programs on various operating systems and C~U' s
while keeping the disk system the same. As one might
expect the more sophisticated systems tend to have
lower ~ransfer rates. There was not much difference
between the RT-11 Single-Job Monitor and the
Foreground/Background Monitor. The XM system and
TSX-Plus had significant overhead penalty. A very
interesting result is shown by the TSX-PLUS with
disk caching column. For most of the tests, caching
produces a significant improvement over TSX-PLUS
without caching. In most cases the caching system
allows TSX-PLUS to beat the Single Job system, but
in the raw throughput case of TEST11, the caching
system overhead dramatically impedes performance•

The results of these disk comparisons demonstrate
that the performance figures quoted by manufacturers
are not useable for calculating the actual
performance of a disk-based system which does disk
I/O. on the other hand, the test results do
correlate relatively well from a disk-to-disk
comparison standpoint. Al though cost was not
discussed in this paper, the authors think it is
worth noting that, to a large extent, the
performance observed in these disk comparisons
correlates relatively well with the cost of the
disks and disk controllers exercised during this
test program.

261

1984 CONCLUSIONS

1. We did not test a disk with a
hardware-caching sys tern. The TSX+ software caching
performance indicates that an effective hardware
caching system would be of significant value for
many I/O loads.

2. The CPU and operating system can be more
important than the disk sub-system. Depending on the
operating system, a faster disk system may provide
very little improvement.

3. The type of operating system affects the
apparent disk performance. The more complex and
capable operating systems provided lower data
transfer rates than the RT-SJ monitor in our tests.
DEC sells RT as a "fast" operating system with low
overhead compared to RSX and RSTS.

4. The variations we found suggest that disk
system selection on any basis but a "test drive 11 is
fairly risky. Vendor-published performance data is
not a good indicator of actual disk performance in
an operating computer system.

1987 CONCLUSIONS

1. Disk controllers with cache did produce very
significant improvements in system performance where
the disk subsystem was seek and/or rotational
latency bound.

2. A site 1 s unique hardware can have a
significant effect on performance.

3. A "test drive" is still recommended.

4. In many "real world" situations, a "memory"
disk is of little or no benefit over a disk with a
"caching" controller.

5.
cache.

Controller cache is better than system data

The authors wish to thank all of the DEC sites and
personnel who volunteered to run the_se test
programs. Running the programs req~i:e.d _the
exclusive use of the system, one or more initialized
volumes, and several hours of_ work on the part of
the participants. Thus, it represented a
considerable amount of time and troubl~, and the
authors could not have done this work without the
active and enthusiastic participation of the people
involved.

APPENDIX A

Description of computer systems.

A

A1

A2

CPU type: 11/23 Memory: DEC MSV11-LK

Controller and Disk: DEC RXV21/RX02
Rated "average" data trans fer rate: 62K bytes/ sec
Rated average seek time: 180 msec

Controller: EMULEX SC02/C, emulates RK06
Disk Brand: Fujitsu 2312
Rated "peak" data transfer rate: 1200K bytes/sec
Rated track-to-track seek time: 5 msec
Rated average seek time: 20 msec

B CPU type: 11/23

Memory: Motorola MMS1132 (1/4 MB); TI TMM10010 (1/4 MB)

C CPU type: 11/23 Memory: Chrislin CI-1123

Controller: Interlan NI2010 Ethernet interface 'Disk•
is Ethernet going to a VAX 11/750 and SI Eagle disk
connected through a Quniverter to a Q-bus Ethernet
interface. Special software. Caching provided by
VAX system.

Rated "peak" data transfer rate: 290K bytes/sec
Rated average seek time: '18msec

D1 CPU type: 11/23 Memory: DEC

Controller: Andromeda WDC11-A/B
Disk Brand: Andromeda CM 5616

(Computer Memories 12.6 MB formatted)

D2 Controller and Disk: DSD 440; emulates RX02
Rated "peak" data transfer rate: 20K bytes/sec
Rated track-to-track seek time: 8 msec
Rated average seek time: 296 msec

E

E2

E3

CPU type: 11/23 Memory: National Semi NS23M

Controller: Sigma SDC-RXV31; emulates RX02
Disk Brand: Mitsubishi M2696-63

Controller: Sigma SDC-RLV12; emulates RL02
Disk Brand: Rodime R204 with Xebec S1410 formatter

F1

F2

F3

CPU type: 11 /23 Memory: DEC MSV11-LK

Controller: DSD 880; emulates RX02
Disk Brand: DSD 880/20
Rated 11 peak" data transfer rate: 20K bytes/sec
Rated "average" data transfer rate: 18K bytes/sec
Rated track-to-track seek time: 18 msec
Rated "average" seek time: 174 msec

Controller: DSD 880; emulates RL02
Disk Brand: DSD 880/20 (special handler)
Rated "peak" data transfer rate: 204K bytes/sec
Rated "average" data transfer rate: 143.8K bytes/sec
Rated track-to-track seek time: 15 msec
Rated "average" seek time: 60 msec

Controller: Emulex SC03; emulates RM03
Disk Brand: Alpha Data - Atlas
Rated "peak" data transfer rate: 1200M bytes/sec
Rated "average" data transfer rate: 942K bytes/sec
Rated track-to-track seek time: 8 msec
Rated "average" seek time: 18 msec

262

G CPU type: 11/23 Memory: DEC MSV11-LK

G1 Controller and Disk: DEC RLV11/RL01
Rated "average" data transfer rate: 512K bytes/sec
Rated track-to-track seek time: 17 msec
Rated average seek time: 55 msec

H1 CPU type: 11/23

Controller:
Disk Brand:

H2 Controller:
Disk Brand:

Memory: Camm:inton

Emulex Sabre System; emulates RL02
Atasi drive

Plessey PM DCV 11A ; emulates RK05
Diablo Model 30 disk

I CPU TYPE: 11/23 Memory: Black Bear BBE-256

I1

I2

I3

I4

15

I6

I7

Controller: Dilog DQ200; emulates extended RK05
Disk Brand: Control Data 9448-96

(CMD, 14 inch cartridge, 16 removable, 80 fixed)
Rated "peak" data transfer rate: 1200K bytes/ sec
Rated track-to-track seek time: 7 msec
Rated average seek time: 30 msec

Controller: Dilog 202A; emulates RP02
Disk Brand: Control Data 9730-160

MMD - 160 MB winchester, 14 inch)
Rated "peak" data transfer rate: 1200K bytes/sec
Rated track-to-track seek time: 7 msec
Rated average seek time: 30 msec

Controller: Dilog DQ-215; emulates RK07
Disk Brand: Control Data 9715-160

(FSD 8 inch winchester)
Rated "peak" data transfer rate: 1200K bytes/sec
Rated track-to-track seek time: 7 msec
Rated average seek time: 30 msec

Controller and Disk: DEC RXV21/RX02

Controller and Disk: DEC RLV12/RL02
Rated "average" data transfer rate: 512K bytes/sec
Rated average seek time: 55 msec

11 /23 CPU with Peri tek boards that allow DMA
transfers from high memory to low. The function
is similar to VM:, but the actual transfer is
performed by DMA hardware rather than by CPU
instructions.

Controller and Disk: DEC RXV11/RX01
Rated "peak" data transfer rate:
Rated track-to-track seek time:

50K bytes/sec
6 msec/track

J1 CPU type: 11/23+ Memory: Chrislin

Controller: Dilog DQ 100; emulates RK05
Disk Brand: Diablo 31; 2.5 MB
Rated "average" data transfer rate: 180K bytes/sec
Rated track-to-track seek time: 15 msec
Rated average seek time: 70 msec

J2 Controller and Disk: DSD 440; emulates RX02
**
K1 CPU type: 11/2 Memory: Black Bear BBE 256

Controller and Disk: RXV21/RX02

K2 Controller and Disk: DEC RLV12/RL02

263

L1 CPU type: 11 /03

Controller:
Disk Brand:

Memory: DEC

DSD 880; emulates RL02
DSD 880

M CPU type: Prototype 11/73 with 10 MHZ clock

Memory: Black Bear BBE 256

M1 Controller and Disk: DEC RXV21/RX02

N

N1

CPU type: 11/24 Memory: DEC M7891

Controller: UDA 50
Disk Brand: DEC RA 80 winchester
Rated "peak" data transfer rate: 2200K bytes/sec
Rated track-to-track seek time: 6 msec
Rated average seek time: 28 msec

0 CPU type: 11 /34 Memory: DEC MS11-LD

01 Controller and Disk: RL11/RL01
Rated "average" data transfer rate: 512K bytes/sec
Rated track-to-track seek time: 12.5 msec
Rated average seek time: 55 msec

P CPU type: 11/23 Memory: Clearpoint 22B (1 Meg)

Ql CPU type: 11/23 Memory: Clearpoint 22B (1 Meg)

Controller: Dilog DQ-202A; emulates RP02/03
Disk brand: Fujitsu 2284, 160 Meg
Rated "peak" data transfer rate: 1000K bytes/sec
Rated track-to-track seek time: 6 msec
Rated average seek time: 27 msec

R1 CPU type: 11173 Memory: Clearpoint 22B (1 Meg)

Controller: Dilog DQ-202A; emulates RP02/03
Disk brand: Fujitsu 2284

Sl CPU type: 11173 Memory: Clearpoint 22B (1 Meg)

Controller: Dilog DQ-202A; emulates RP02/03
Disk brand: Fujitsu 2284
Disk caching: software data and directory caching

T1 CPU type: 11/23+ Memory: Dataram DR-223 Block mode NOT used

Disk brand: Dataram BS-202 (bulk semi) RF emulation
Rated "peak" data transfer rate: 500K bytes/sec
Rated track-to-track seek time: NA

U1 CPU type: 11/34 Memory: Dataram DR-244 Block mode NOT used

Disk brand: Dataram BS207/MC207 (bulk semi) RF emulation

Rated "peak" data transfer rate: 1460K bytes/sec
Rated track-to-track seek time: NA

V CPU type: 11/23+ Memory: MDB MLSI-MSV11LK

---V1 Controller: MDB MLSI-WFC11
Disk brand: TANDOM; emulates RX02

---V2 Controller: MBD MLSI-WFC11
Disk brand: TANDOM; emulates RL02

264

APPENDIX B

THIS APPENDIX CONTAINS A BRIEF DESCRIPTION OF THE SYSTEMS

SYS CPU MEMORY CONTROLLER DISK EMULATES

A 11/23 DEC
A1 11/23 DEC RXV21 RX02
A2 11/23 DEC EMULEX SC02/C FUJITSU 2312 RK06
B 11/23 MOTOROLA, TI
c 11/23 CHRISLIN INT NI2010 ETHERNET SPECIAL
D1 11 /23 DEC AND WDC11-A/B AND CM 5616 RK05
D2 11/23 DEC DSD440 DSD440 RX02
E 11 /23 NAT SEMI
E2 11/23 NAT SEMI SIGMA SDC-RXV31 MITSUBISHI

M2696-63 RX02
E3 11/23 NAT SEMI SIGMA SDC-RLV12 RODIME R204 RL02
F1 11/23 DEC DSD880 DSD880/20 RX02
F2 11 /23 DEC DSD880 DSD880/20 RL02
F3 11/23 DEC EMULEX SC03 ATLAS RM03
G 11/23 DEC
G1 11/23 DEC RLV11 RL01
H1 11 /23 CAMMINTON EMULEX SABRE ATASI RL02
H2 11/23 CAMMINTON PLESSEY DCV 11A DIABLO 30 RK05
I 11/23 BLACK BEAR
I1 11/23 BLACK BEAR DI LOG DQ200 CDC 9448-96 RK05
I2 11 /23 BLACK BEAR DI LOG DQ202A CDC 9730-160 RP02

I3 11 /23 BLACK BEAR DI LOG DQ215 CDC 9715-160 RK07
I4 11 /23 BLACK BEAR RXV21 RX02
I5 11 /23 BLACK BEAR RLV12 RL02

I6 11 /23 BLACK BEAR PERITEK SPECIAL

I7 11/23 BLACK BEAR RXV 11 RX01
J1 11 /23+ CH RI SL IN DI LOG DQ100 DIABLO 31 RK05

J2 11/23+ CHRISLIN DSD440 DSD440 RX01

K1 11 /2 BLACK BEAR RXV21 RX02
K2 11 /2 BLACK BEAR RLV12 RL02
L1 11 /03 DEC DSD880 DSD880 RL02

M 11173 BLACK BEAR
M1 11173 BLACK BEAR RXV21 RX02

N 11 /24 DEC
N1 11 /24 DEC UDA50 RA80

0 11 /34 DEC
01 11 /34 DEC RL 11 RLO 1
p 11/23 CLEA RPO INT
Q1 T+ 11/23 CLEARPOINT DI LOG DQ202A FUJITSU(14") RP02/03

R 11173 CLEARPOINT
R1 11173 CLEARPOINT DILOG DQ202A FUJITSU(14 11) RP02/03
S1 T+ 11173 CLEARPOINT DI LOG DQ202A FUJITSU (14 11) RP02/03

T1 11 /23+ DATARAM DATARAM bulk memory BS202 RF 11
U1 11 /34 DATARAM DATARAM bulk memory BS207 /MC207 RF 11
v 11 /23+ MDB
V1 11 /23+ MDB MDB TAN DOM RX02
V2 11 /23+ MDB MDB RL02

265

N

°' °'

APPENDIX C

System:

Test

2

3

4

4a

4b

5

5a

11

CPU

Memory
Brand

A

0:42

0:25

1 :22

2: 04

1: 56

1: 04

1: 56

1: 04

281K

23

DEC

B

0:35

0: 25

1: 20

2:03

1: 55

1: 03

1: 54

1: 04

281K

23

MOT
TI

E

0:35

0:25

1 :20

2:03

1: 55

1: 03

1: 55

1: 03

281K

23

NAT
SEMI

G

0:35

0:24

1:21

2: 04

1: 54

1: 04

1: 55

1: 03

281K

23

DEC

I

0:35

0:25

1: 22

2:05

1: 57

1: 04

1: 56

1: 04

274K

23

BLACK
BEAR

p

0:36

0:25

1 :22

2:05

1: 56

1: 04

1: 56

1: 04

281K

23

CLEAR
POINT

M

0:25

0: 17

0:59

1: 25

1 : 18

0:43

1 : 16

0:43

314K

73

BLACK
BEAR

R

0:23

0: 13

0:43

1 :02

0:56

0:30

0:56

0:30

399K

73

CLEAR
POINT

N 0 v

0:36 0:30 0:48

0: 25 0:21 0:28

1 :24 1 : 11 1: 33

2: 08 1: 49 2:23

1: 59 1: 42 2: 14

1: 06 0:55 1 : 14

2:00 1: 42 2: 14

1: 06 0:56 1 : 14

310K 407K 262K

24 34 23+

DEC DEC MDB

APPENDIX D

System: Al I4 E2 D2 Fl Ml Kl J2 I7 Vl

Test

3:26 3:26 3:00 2:57 2:58 2:57 3:59 4:03 4:32 3: 17

2 0: 37 0: 38 0: 37 0:53 0: 36 0:30 1 : 18 0:58 1: 01 0:53

3 11 :45 11: 44 9:20 9: 13 9: 15 9: 11 12:59 13:01 19:34 11:05

4 13:43 13:46 8:49 8: 18 8:23 7:40 15:34 13:20 17: 08 13:01

4a 7:54 7:56 5:23 5:07 5:16 4:32 9:44 7:42 9:32 7:40

4b 6:53 6:53 4: 32 4: 13 4: 15 3:53 7:51 6:45 8: 36 6: 32

5 7:54 7:56 5:25 5:08 5:16 4:31 9:43 7:42 9:32 7:41
N
C7I
-..! 5a 6:55 6:55 4:30 4: 10 4: 12 3:47 7:51 6:42 8: 36 6: 35

6 1: 14 1:15 1 : 14 1 :47 1 : 13 0:59 2:37 -- -- 1: 44

7 2:01 2:03 2:02 2:34 failed 1: 30 4: 13 -- -- 2:42

11 17 .6K 17. 7K 17. 5K 17 .8K 17. 7K 17. 7K 15. 6K 8. 9K 8. 9K 17.7K

CPU 23 23 23 23 23 73 11 /2 23+ 23 23+

CONT DEC DEC SIGMA DSD DSD DEC DEC DSD DEC MDB
DISK RX02 RX02 MIT SUB 440 880 RX02 RX02 440 RX01 TAN DOM

RXOl

APPENDIX E

System:

Test

2

3

4

4a

4b

5

5a

6

7

8

9

10

11

CPU

CONTROLLER
DISK

D1

1 :07

0: 26

2:41

4:00

2:55

2:04

2:56

2:00

0:52

1: 43

2: 19

2:25

81K

23

AND RO
AND RO
RK05

G1

0:53

0: 26

2:21

3:22

2:35

1: 43

2:35

1: 43

0:52

1 :42

2:20

2:26

29:08

197K

23

DEC
RL01

01

0:50

0:24

2: 12

3:13

2:25

1: 38

2:25

1: 37

0:48

1: 31

2:08

2:07

27:47

187K

34

DEC
RL01

268

F2

0:53

0:27

2: 18

3: 19

2:35

1: 43

2:35

1: 42

0:52

1: 46

2: 17

2: 33

27:39

*

23

DSD
880
RL02

H2

1: 13

0:33

3:27

4:44

3:25

2:24

3:24

2:24

1 :05

2:00

88K

23

PLES
DIAB LO
RK05

J1

0:56

0:29

2:21

3:30

2:47

1: 46

2:47

1: 47

NR

NR

88K

23+

DI LOG
DIABLO
RK05

V2

0:55

0:30

2:23

3:31

2:49

1: 48

2:49

1: 48

1 :00

2:00

2:38

2:50

29:37

96.7K

23+

MDB
TANDOM
RL02

APPENDIX F

System: A2

Test

0:44

2 0:27

3 1 :52

4 2:44

4a 2: 17

4b 1 :25

5 2:16

5a 1: 25

6 0:52

7 1: 41

8 2: 19

9 2:23

10 23:56

11 254K

CPU 23

CONTROLLER EMULEX
DISK FU2312

RK06

E3

0:56

0:27

2:30

3:29

2:38

1 :46

2:38

1: 47

0:53

1: 42

2:22

2:25

29:25

73K

23

SIGMA
RODI ME
RL02

F3

0:41

0:27

1 :46

2: 35

2: 12

1 :20

2: 11

1: 19

0:53

1 :42

2:21

2:24

23:21

•

23

EMULEX
ATLAS
RM03

H1

0:52

0:30

2:08

3: 08

2:35

1: 36

2:36

1: 36

0:59

1 :58

2:36

2: 48

26:30

211K

23

EMULEX
ATASI
RL02

269

I1

1 :09

0:21

2:42

3:43

3:08

1 :53

3:08

1 :53

0:41

1: 19

1 :48

1:51

24:44

220K

23

DILOG
CDC
RK05

I2

0:38

0:21

1: 39

2:24

1 :58

1: 13

1 :58

1: 14

0:42

1 :27

1: 51

2:03

21:20

254K

23

DI LOG
CDC
RP02

I3

0:44

0:21

1:39

2:25

1 :58

1: 13

1 :58

1: 14

0:42

1 :27

1: 52

2:04

21:11

252K

23

DI LOG
CDC
RK07

I5

0:54

0:28

2:20

3:20

2:36

1: 42

2:36

1: 43

0:56

1: 44

2:27

2:27

29:20

197K

23

DEC
RL02

APPENDIX G

System: K2 L1 N1 R1

Test

1: 24 1: 23 0:50 0:30

2 0:52 0:51 0:33 0: 13

3 3:23 3:20 1: 56 1: 29

4 5: 12 5:02 2: 48 1: 55

4a 4:25 4: 20 2:24 1: 24

4b 2:39 2: 35 1: 29 0:57

5 4:25 4: 19 2: 24 1: 24

5a 2: 39 2: 35 1 :29 1: 58

6 1: 43 1: 43 1: 00 0:26

7 3: 27 3:24 1: 55 0:44

8 4:34 4:31 2:27 1: 10

9 4:51 4:45 2:40 1: 09

10 NR 42: 07 23:28 18: 14

11 NR * 479K 224K

270

APPENDIX H

System: 11/23 11 /23 11/23 11/23 11173 11173 11173
RT-SJ RT-FB RT-MTXM TSX+ RT-SJ TSX+ TSX+

(Caching)
Test

0:44 0:43 0:54 0:53 0: 30 0: 35 0:27

2 0:27 0: 26 0:33 0:34 0: 13 0: 15 0: 15

3 1: 52 1: 52 2: 14 2:00 1: 29 1: 40 1: 02

4 2:44 2:46 3:20 2: 42 1: 55 2: 07 1: 07

4a 2: 17 2: 18 2:52 2:38 1: 24 1: 30 1: 02

4b 1: 25 1: 25 1: 43 1: 29 0:57 1: 03 0: 35

5 2: 16 2: 18 2:52 2:38 1: 24 1: 29 1 : 01

5a 1: 24 1: 25 1: 43 1: 29 1: 58 1: 03 O: 35

@SPACE2 x x x x x x x
4 2:23 2:25 3:01 2: 47 1: 33 1: 44 1: 10
4a 2:06 2:08 2:43 2:33 1 : 14 1 : 18 1: 00
4b 1 : 14 1 : 15 1: 33 1: 24 0: 47 0:52 0: 35
5 2 :07 2:05 2:42 2:33 1 : 13 1: 18 0:59
5a 1 : 14 1 : 15 1: 32 1: 24 0:48 0:52 0:33

@SPACES x x x x x x x
4 2:27 2:28 3:03 2: 47 1: 37 1: 48 1 : 10
4a 2: 08 2:09 2:43 2:33 1 : 16 1: 20 1: 00
4b 1 : 15 1 : 16 1: 35 1: 24 0: 48 0:53 0: 32
5 2:09 2:09 2:43 2: 33 1 : 15 1: 20 0:59
5a 1:16 1 : 16 1: 34 1: 24 0:48 0:53 0: 32

6 0:52 0:52 1: 05 1: 07 0:26 0:29 0:30

7 1:41 1: 42 2: 13 2: 10 0:44 O: 48 0:46

8 2: 19 2: 18 2:53 2:59 1: 10 1 : 18 1: 20

9 2:23 2:22 3: 08 3: 13 1: 09 1: 09 1 : 19

10 23:56 24:01 28: 13 25: 14 18: 14 19:55 11: 54

11 254K 253K 253K 219K 224K 219K 123K
(VBGEXE)

271

APPENDIX I

System: c

Test

1: 12

2 0:26

3 2:51

4 3:55

4a 3:20

4b 1 :58

5 3:20

5a 1 :57

6 0:53

7 1: 43

8

9

10

11 123K

CPU 23

HARDWARE INTERLAN
ETHERNET

HANDLER SPECIAL

I6

0:35

0: 21

1 :26

2:05

1: 47

1: 04

1 :48

1: 04

0:43

1: 27

251K

23

PERITEK
MEMORY

SPECIAL

272

T1

0:36

0: 26

1: 23

2: 08

2:01

1: 06

2:02

1: 06

0:51

1: 47

2: 17

2:27

18:29

360K

23+

DATARAM
BULK

RF11

U1

0:27

0:20

1: 01

1 :23

1 :20

0:49

1: 19

0:50

0:40

1: 22

1 :47

1 :52

13:50

1042K

34

DATARAM
BULK

RF11

APPENDIX L

Description of computer systems.

87A

87A1

87A2

CPU type: 11173 Memory: Camintonn (2 meg)

RT-11 operating system

Controller: EMULEX SC02/C, emulates RK07
Disk Brand: Fujitsu 2322
Rated "peak" data transfer rate: 1200K bytes/sec
Rated track-to-track seek time: 5 msec
Rated average seek time: 20 msec

TSX+ V6.1 operating system
1 meg data cache. Directory cache: 140 entries.
No other system users, but detached job WINPRT
(window print) running.
TSX+ started just before tests.

Controller: EMULEX SC02/C, emulates RK07
Disk Brand: Fujitsu 2322
Rated "peak" data transfer rate: 1200K bytes/sec
Rated track-to-track seek time: 5 msec
Rated average seek time: 20 msec

87B CPU type: 11/73 Memory: National 1 meg.

87B1

RT-11 operating system

Controller: Sigma RQD11/SCH
Disk Brand: CDC XMD 850
Rated "peak" data transfer rate: 3000K bytes/sec
Rated track-to-track seek time: 5 msec
Rated average seek time: 16 msec

TSX+ v6.01 operating system

Same as system 87B.

87C

87C1

87C2

CPU type: 11/23

Controller:
Disk Brand:

RQDX2
RD53

Controller: RLV12
Disk Brand: RL02

Memory: DEC MSV11-QA 1 meg.

Rated "average" data transfer rate: 512K bytes/sec
Rated average seek time: 55 msec

87D CPU type: 11/73 Memory: Camintonn (512K)

87D1

Controller: DILOG DQ696
Disk Brand: MAXSTOR 14380E
Rated "peak" data transfer rate: 1250K bytes/sec
Rated track-to-track aeek time: 3 msec
Rated average seek time: 16 msec

Controller: DILOG DQ;~46
Disk Brand: FUJITSU ;~333
Rated "peak" data transfer rate:
Rated track-to-track seek time:
Rated average seek time: 20 msec

273

246 OK bytes/sec
5 msec

87E CPU type: 11173 Memory: CHRISLIN

Controller: ETHERNET (IRANET SOFTWARE)

87F CPU type: 11/73

Controller: ANDROMEDA SMDC (caching disabled)

87F1 CPU type: 11173

Controller: ANDROMEDA SMDC (caching enabled)

87G

87G 1

87G2

87G3

CPU type: 11 /23+

CPU type: 11173

Controller: RQDX1
Disk Brand: RD51

CPU type: 11173

Disk Brand: RX50

CPU type: 11173

Controller:
Disk Brand:

RLV12
RL02

Memory: DEC

Memory: DEC

Memory: DEC

Memory: DEC

**

274

APPENDIX M (1987)

THIS APPENDIX CONTAINS A BRIEF DESCRIPTION OF THE SYSTEMS

SYS CPU MEMORY CONTROLLER DISK EMULATES

87A 11173 CAMINTONN VM
87A1 11173 CAMINTONN RT EMULEX SC02/C FUJITSU 2322 RK07
87A2 11173 CAMINTONN TSX EMULEX SC02/C FUJITSU 2322 RK07

87B 11173 NATIONAL RT SIGMA RQD 11 /SCH CDC XMD850 DU
87B1 11173 NATIONAL TSX SIGMA RQD11/SCH CDC XMD850 DU

87C 11/23 DEC VM
87C1 11/23 DEC RQDX2 RD53
87C2 11 /23 DEC DEC RLV12 RL02

87D 11173 CAMINTONN DILOG DQ696 MAXSTOR 4380E DU
87D1 11173 CAMINTONN DILOG DQ246 FUJITSU 2333 DU

87E 11173 CHRISLIN ETHERNET VIRTUAL DISK SPECIAL

87F 11173 ANDROMEDA SMDC DU
87F1 11173 ANDROMEDA SMDC CACHE ENABLED DU

87G 11 /23+ DEC VM
87G1 11 /23+ DEC RQDX1 RD51
87G2 11 /23+ DEC RX50
87G3 11 /23+ DEC RLV12 RL02

275

APPENDIX N (1987)

System: 87A 87C 87G

Test

O: 18 0:38

2 0: 12 0: 26

3 0:42 1: 27

4 1: 00 2: 14

4a 0:54 2:06

4b 0:30 1: 09

5 0:54 2:05

5a 0:30 1: 10

6 0:23 0:52

7 0:44 1: 48

11 406K 262K 278K

CPU 73 23 23+
MEMORY CA MIN DEC DEC

276

APPENDIX 0 (1987)

System: 87C1 87C2 87G1 87G2 87G3

Test

0:59 0:56
2 0: 36 0:28
3 2:20 2:27
4 3:12 3:31
4a 2:39 2:45
4b 1: 43 1: 48
5 2:39 2:45
5a 1: 43 1: 47

@SPACE2

4 2:50 3: 12
4a 2:29 2: 37
4b 1: 32 1: 39
5 2:29 2: 37
5a 1: 32 1: 38

@SPACES

4 2:56 3:33
4a 2:32 2: 48
4b 1: 34 1: 50
5 2: 32 2: 48
5a 1: 35 1: 48

6 1: 05 0:56
1 1: 58 1: 54
8 2:40 2:28
9 2:44 2:46
10 27:29 29:56
11 146K 184K 141K 11K 196K

CPU 23 23 23+ 23+ 23+

CONT RQDX2 RLV12 RQDX1 RLV12
DISK RD53 RL02 RD51 RX50 RL02

277

APPENDIX P (1987)

System: 87A1 87A2 87D 87D1 87E

Test

0:29 0:29 0:29 0:31 0:42
2 0: 13 0: 15 0: 14 0: 14 0: 13
3 1: 23 1: 06 1 : 19 1: 22 1:38
4 1: 49 1 : 11 1: 42 1: 46 2: 04
4a 1: 20 1: 05 1: 17 1: 19 1 :49
4b 0:55 0:38 0:51 0:53 1: 02
5 1:19 1: 04 1 : 16 1 : 18 1: 48
5a 0:54 0:38 0:51 0:54 1: 02

@SPACE2

4 1: 30 1 : 13 1: 24 1: 29
4a 1: 10 1: 02 1: 09 1: 12
4b 0:45 0:34 0:42 0:45
5 1: 09 1: 01 1: 08 1 : 11
5a 0:44 0:35 0:43 0:45

@SPACES

4 1: 33 1: 15 1 :26 1 : 31
4a 1: 13 1: 01 1: 09 1: 13
4b 0:47 0: 35 0:44 0:47
5 1 : 12 1: 01 1: 08 1: 12
5a 0:47 0:34 0:44 0:47

6 0:26 0:28 0:27 0:28 0: 26
7 0:47 0:48 0:50 0:50 0:46
8 1: 08 1 : 17 1: 12 1: 12
9 1: 07 1: 05 1 : 12 1 : 12
10 16: 58 12:44 16:06 16: 49
11 236K 120K 483K 632K 524K

CPU 73 73 73 73 73
TSX

CONT EMULEX SC02/C DQ696 DQ246 ETHERNET
DISK FUJITSU 2322 MAXSTOR FUJI VIRTUAL

4380E 2333 DISK

278

APPENDIX Q (1987)

System: 87B 87B1 87F 87F1

Test

1 0:28 0:26 0:35 0:26
2 0: 13 0: 14 0: 14 0: 14
3 0:54 1: 02 1: 27 0:56
4 1: 04 1 : 18 1: 49 1: 08
4a 0:54 1: 04 1 : 18 0:58
4b 0:30 0: 37 0:54 0: 35
5 0:54 1: 03 1: 17 0:57
5a 0:31 0:38 0:55 0:34

@SPACE2

4 1 : 01 1 : 13 1: 26 1: 06
4a 0:54 1: 02 1: 08 0:58
4b 0:29 0: 35 0:44 0:34
5 0:52 0: 59 1: 07 0:55
5a 0:28 0:34 0:43 0:32

@SPACES

4 1 :04 1 : 14 1: 27 1: 05
4a 0:55 1: 03 1: 07 0:57
4b 0:32 0:37 0:44 0:33
5 0:53 1 : 01 1: 07 0: 54
5a 0:29 0:35 0:44 0:31

6 0: 26 0:27 0:26 0: 26
7 0:43 0:47 0:47 0:46
8 1 : 10 1: 12 1: 08 1: 08
9 0:59 1: 04 1: 07 1: 03
10 10: 48 12:24 16: 10 10:33
11 569K 569K 574K 583K

CPU 73 73 73 73
C ON TSX C OFF C ON

CONT SIGMA RQD11 /SCH ANDROMEDA SMDC
DISK CDC XMD 850

279

Diary of a Novice System Manager

Mark Roark Chartier
Systems & Logistics Corporation

1887 Business Center Dr., Ste. lA
San Bernardino, CA 92408

Abstract

What are some of the tasks and challenges facing a person who is suddenly placed
in charge of setting up and operating a computer system? What knowledge must
he/she bring or strive to obtain quickly in order to successfully set-up, organize
and maintain the facility and to provide the users with fine, reliable service?
During his/her apprenticeship, formal or otherwise, what types of observations,
routines and thoughts might help to avoid disastrous mistakes and to conquer
the inevitable problems?

These themes are developed and explored through the experiences of Mr.
Chartier, a still-fledgling system manager who, in spite of having an educational
background and job experience in a field completely unrelated with computers,
was suddenly confronted with the opportunity to learn on an operating computer
system, with all its accompanying responsibilities.

Still profoundly awed by the computer, and without taking his developing
skills too much for granted, Mr. Chartier offers with enthusiasm the story of his
successes and failures to urge others on and give them confidence.

I have taken for a motto a phrase that I tell the people
at our site: "I'd do anything for a user."

This paper is intended for newly-crowned System
Managers who possibly have obtained their title through:

• company purchase of a new departmental computer

• vacancy of the previous system manager's post

• creation of a new post of system manager

• other vicissitudes of life.

I don't know how you obtained your job as system
manager, whether by some bold desire, by some sheepish
offering: "I'll try," or whether boss just pointed his finger
and said: "It's you!" I got my job via "Other vicissitudes
of life." I had absolutely no idea that I would be a system
manager. I had spent the last ten years of my life in Spain
restoring pipe organs. But my boss happened to know
me from my University days and he knew that the com
pany needed a system manager. He thought that I had a
good technical mind and that I would have the right atti
tude towards the job. So in spite of the fact that my only
previous computer experience was programming a small,
programmable calculator, (an experience that would be of
extreme use later in my job), he called me to see if I would
be interested in the job. He called several times to Spain
to explain what the job would entail. The initial descrip
tion of the job made me acutely aware of the importance

Proceedings of the Digital Equipment Computer Users Society 283

of the post to the company and with that, the accompa
nying responsibility. I was really nervous about taking on
such responsibility. I thought: "Can I do it? Can I give a
useful service? Can I learn to make responsible decisions
operating the computer in terms of efficiency and of not
making dreadful mistakes? Can I learn all that I will need
to know to do the job?" Well my boss had some encour
aging words: "Sure you can do it!" He said that the only
way to learn about computers was to work with them.

After several months on the job, I reflected upon my
special situation. Not everybody is going to be in as nice
of a spot as I was. My post was a full time job, not a little
hobby or extra duty I did only during off hours. My boss
was computer knowledgeable; he could serve as my guru.
Finally, the system was already running, so, although I did
not have the headaches of getting a system installed and
up, on the other hand, I did have the added responsibility:
users' files were already out there and I had to take care
of them.

Well, enough for this. I came to the door of the build
ing for the first day of work and I was scared! There
was no little-by-little build up to the job: I had just
opened the door when boss whisked me into the computer
room saying, "This is the computer ... Look at this! This
is the backplane ... This is a DZQ-11 ... This is a mo-
dem/multiplexer ... This is a DB-25 connector!" Ad in-
finitum!!! And there I was frantically taking notes. Boy,
all this stuff running through my head! It was an immedi-

Anaheim, CA - 1987

ate exposure to the vocabulary and to the physical aspects
and appearance of the equipment.

The day didn't end with that dizzying session: they
needed to make an account for me. So boss said to the
present system manager, "Make Mark an account." Reply:
"With what privilege?" "Well, full system privilege- after
all he's going to be the system manager." Then he turned
around to me and said, "Don't crash the system!!!" That
did wonders to calm my nerves! I had thought: "Maybe
there '11 be this little practice computer upon which I can
make all my mistakes in a special environment apart from
that of the users." Not so at all; all mistakes were paid
for. I learned to log on and to log off. Then I was intro
duced to this two meters or more stretch of shelves which
contained the formidable VAX/VMS Documentation Set.
Now the "easy" assignment was: "Learn it!" I ended the
day providing service by doing regular backups.

The next three weeks of the job were equally exciting.
I had to deal with an erroneous maintenance manual that
told one how not to load a ribbon into the printer. To
rectify this I had to write a procedure telling other people
how to change that ribbon, a fairly complicated task. In
order to write the procedure, I had to get into the editor
and learn how to create and save (or not save) my edits.
On the third week I went to the Spring 1987 DECUS sym
posium at Nash ville. I returned with such an exposure to
the computer that, driving down the street in the car, I
began seeing DCL commands in the license plates. When
that happens you know that your life will never be the
same-you are hooked!

Now some additional observations: I learned quickly
that there would be two qualities very important to the
job, 1) exquisite observations of events that I saw and 2)
very careful thinking. An example that illustrates this oc
curred to me when I tried to enroll a new user. I looked
with the AUTHORIZE command SHOW , and I got a User Au
thorization record on the screen. I saw that it had a field
labeled "DEFAULT" and I thought: "That must be the
default directory." Well, unknown to me, that field was to
be input as two separate parameters: device and directory.
So I typed /DEFAULT= thinking that I was going to spec
ify the user's login default directory in his UAF record.
But I observed that the field didn't. change. And when I
exited AUTHORIZE a message came up: Rights Database
Modified. That made me sort of nervous, so I logged
back on and saw that I had corrupted the DEFAULT record
thinking all the while that I was changing the default of
the user. Boy, was I embarrassed to explain that to my
boss. But it was the close observation of the message that
gave me a clue: Mark, you blew it!!

What is the System Manager's Job?

Now the system manager's job is very simple, at least to
explain. Only two words: provide service. There are two
general types of services: direct and indirect. The direct
services, examples of which might be the enrollment of
new users, the mounting of volumes for processing and

284

the modification of account parameters, are usually visi
ble to users. The indirect services, such as the installa
tion of operating system upgrades and new software, the
arrangement for and supervision of maintenance and the
performance of regular backups, are more transparent to
users. One might ask the perhaps unfortunate riddle: How
can one distinguish between direct and indirect service to
users? Well, one doesn't notice the results of indirect ser
vices ... until they're not there.

The correct employment of the two types of services
gives a great service to the company, giving a return on the
company's investment in the computer, aiding the produc
tivity of the computer's users and offering them a pleasant
working environment.

I learned quickly that the system manager has a va
riety of tasks, many of which are not done from the op
erator's console. In my job, for example, I have donned
overalls to climb over ceilings and crawl beneath furni
ture to install cabling; I've read schematics, soldered wires
and assembled connectors; taken apart and repaired floppy
drives and printers, devices which I had never seen before;
I've built bookcases, been a librarian; telephoned all over
the country trying to solve problems; written letters, some
of them complaints; organized and overseen maintenance;
read catalogues, ordered supplies; worked on fixing the
overheat alarm for the computer; I've been a draftsman;
re-inked ribbons, (a tremendously messy job); all these,
aside from the computer activities.

I was a greenhorn as a system manager and I re
ally didn't know too many of the acronyms. Our main
tenance company brochure said: "One individual at each
site should be designated as SM." I really didn't know what
SM meant and I immediately thought of sado-masochist.
But, reading along, something about the context showed
me that that was just not quite right. I said: "Oh no,
you fool! That means system manager." But on further
reflection maybe my first guess was not so far out of line.

See Figure 1 for a diagram of the Learning/Service
Process of a System Manager.

A system manager uses information obtained from a
great variety of sources, of which the most important are
Users and Failures. He takes this information, processes it,
using some of it directly, immediately, giving user benefit.
Some of the information goes first to make him a better
system manager, which in the end results in user benefit.

See Figure 2 for a diagram of the Responsibilities of
the System Manager.

Interest in the Users

The system manager has many responsibilities. One of the
more important ones is to have interest in the users. For
most users the computer is only a tool, it forms only part
of the process needed to get their job done. The system
manager should understand the users' needs and problems
in a greater context. This will allow him to make the cor
rect decision, sometimes by-passing computer difficulties
to get the greater job done and out the door.

Job Attitude

Ethics is an important responsibility. The system man-
ager, having the most privileged account, must use his
powers exclusively for service to the users, always respect·
ing the privacy of others' data. The system manager's
behavior can gently enforce among the employees a more
professional attitude towards the computer and its capa
bilities, not a sloppy "everybody knows everybody's pass
word" approach, not a naively trusting "we're all friends
here" attitude.

Curiosity, that perpetual "Why?" and "How?" is a
great asset, especially for troubleshooting.

What do you do when the buck stops at the desk
of the system manager? You get up and you have an "I
can do it!!!" attitude, which does not mean to proceed
blindly but it also means not to evade the challenge and
responsibility, responsibility which is part self-confidence
and part carefulness. I failed in this respect. One day we
were under pressure to meet a deadline for a report when
the system printer failed. We had a procedure known to
work for changing over a print queue to the operator's
console when the printer was broken. The procedure failed
for some unknown reason. Although my boss was out of
town and in spite of my limited experience with this type
of problem, I had indeed thought out the work-around. I
would have been able to implement it, moving the queue
to the second of two identical serial port boards that we
have, but having to move the cables in a manner that
was new to me, and possibly having a need to use a null
modem. I balked, in part because of the difference of the
cable maneuvers and doubts about the null modem, in part
by a desire to get to the cause. I made the diagnosis of
the cause far more important than getting my colleague's
reports out on time. That was a mistake. I had lacked self
confidence in my work-around and I had permitted myself
the luxury of "diddling around."

But I learned from that experience. The second time
a situation like that came up was similar to the first: boss
was out of town and I was all alone. My assignment was to
load some new software. Following the manufacturer's in
structions to the letter, the installation procedure failed.
I first thought it was my mistake, so I went over to my
account and made some experiments with symbols and
logicals. I realized by this experiment and by reading the
Error Messages and Recovery manual that I, not the man
ufacturer, knew the proper way to install the software.
I then had to trace down the manufacturer's error. (I
used the SET VERIFY command in his installation com
mand file). I was then able to install the software. I called
the firm and they acknowledged that yes, I was right and
that they weren't too accurate in the use of DCL. I suc
ceeded with the installation without having to have my
users wait around while I located and talked to the guru.
After all, I'm paid to know.

285

Acquisition of Knowledge

The knowledge needed for the job is not always acquired
in the "right" order. Sometimes you'll really be burning
hot learning something and the next thing you know a user
will carry you way off to another problem and you will be
frantically tearing the pages out of the documentation set
trying to find where the information is. The documenta
tion set is really not a book you can read from cover to
cover, but one should be acquainted with what's there.

Transmission of Knowledge

My boss kept putting me up to many tasks, one of which
was to organize users' meeting. I waited some time before
starting them, mostly because I considered myself too in
experienced to offer any pertinent information or advice.
At our site I decided to have a standard format of top
ics for these meetings: present status of the computer;
current changes; near future changes; status of previous
problems, if resolved or still in research; some type of pre
sentation; and new problems and requests. I've scheduled
these meetings every two weeks late Friday afternoon, so
that our employees talk about something useful instead
of their weekend outing plans. The result is turning out
to be very positive, but if you try this out at your site,
be sure to insist that the other computer users also make
presentations.

The transmission of knowledge via memos and manu
als brings back the story of the printer ribbon. I had writ
ten a procedure for changing the ribbon on the printer and
had tried it out with three people at our site. Each of the
three had a problem at a different place in the procedure.
From that I learned a very interesting lesson: even simple
English words that have nothing to do with the computer
are not always interpreted in the same way by all people.
It was a success though, as, months later, one of those em
ployees remembered, without looking at the procedure, all
of the details involved. In fact, she remembered it better
than I did.

User education can be misinformation. I had an em
barrassing experience when I, with great confidence, told a
user that he could not delete his own directories. This was
a very curious statement, but it stems from the fact that
with the privileges of system manager, I always deleted
my directories via the BYPASS privilege and I had com
pletely forgotten about the SET FILE/PROTECTION= (0: D)

command, whereby, of course, all users can delete their
own directories.

Tasks and Skills

In the next part of the paper are listings of topics, most
of which will be encountered by all system managers. I
cannot give the order in which one must learn things, as
this is dependent on the person and on site needs. But
these lists serve as starting points, checklists, overviews of
the realm of the system manager. As a background process

in thinking about these topics, the system manager must
keep system security always in his mind: if I do a certain
command, if I make a certain change, physical or logical to
the system, what changes might this bring to the security
of the files?

Software-related Tasks and Skills

Fluency with DCL is gained by experience. Not all of its
wondrous effects are documented. The previous system
manager had made some beautiful printouts of directory
files and I wanted to imitate these. So I went over to
the hard-copy terminal and I typed TYPE DIRNAME. DIR.
Suddenly, the printhead went jerking all over the page.
The paper just flew out of the machine, making a terri
ble racket. And there I was, helpless, as the paper tore
and the machine continued trying to print. Those great
interrupt commands CTRL-Y ... nothing! I finally found,
not the on/off switch, but the plug. I looked there sadly
at that thing and then at the other's beautiful printouts
and wondered what had I done? I thought "Oh Lord,
I've broken the printer." It was the most embarrassing
thing. Of course, you do not type or print .DIR or .EXE
files, among certain others. PRINT is a qualifier to the
DIRECTORY command, not .DIR a parameter of a PRINT
or TYPE command.

Much can be learned by just skimming through the
manuals, getting some idea of what's in them, what's avail
able. This saved my life one night when I was working
alone. We had changed the label on the second disk drive's
pack. I tried to reboot the system and when the site
specific startup procedure was executing, it stumbled when
it could not mount the second disk and it immediately ex
ited from the procedure. System messages showed me that
the installation was not complete; many commands did
not work correctly, some not at all. I needed to edit the
startup file, commenting out the second disk mount, in or
der to avoid a very lengthy process of taking the disk packs
out, putting new ones in, purging the drives and getting
the system back to the way it previously was. I gave the
EDIT command and I got a very strange prompt. I knew
from previous messages that the EDT editor had not been
installed. To make things difficult, the INSTALL utility
was one of those that did not work because of this false
boot. But, from having skimmed through the manuals, I
knew that there was something called nokeypad editing.
So I took out the manual, read some instructions, edited
the file and got home at a more decent hour.

I was very satisfied of my being able to quickly and ac
curately think this problem out. As one's computer knowl
edge matures, one's efforts are directed more rapidly to the
correct answer. One's thinking-computer thinking-gets
more refined. Now this does not mean that one under
stands everything, but it allows one to make intelligent
guesses and reasonable predictions before issuing com
mands.

The catalyst for learning is not always business. My
users had requested a more personalized login message and

286

this request suddenly put into focus all sorts of things I
had been reading about: lexical functions, symbols, sym
bol substitution, things like that. So I worked hard on
this DCL program to give everybody something other than
"Welcome to MicroVMS." (It was in the logic flow and
economy of code of this program, where the experience
with the small calculator was so useful). I learned so much
from writing that program that I could then write pro
grams really useful to the company. But the jokes contin
ued. In one of the cuter ones I wrote, there comes flashing
across the screen: "Two, four, six, eight, who do we appre
ciate???" Then in double height letters and in blinking,
reverse video, (by which I learned to send control sequences
to the terminal), appears: "SLC, SLC" (that's the name of
my company), "Rah!, Rah!, Rah!" Well, those things are
cute, but then you can really, really learn a lot by doing
them and the users love them.

Hardware-related and "Hands on" Tasks and Skills

The hardware-related and hands-on tasks are an area in
which previous mechanical and electrical knowledge can
be very useful. Be sure to observe your maintenance per
sonnel when they come to work. For one, you get a view
of your equipment on the inside and, two, you can help
them avoid making dreadful mistakes. Be sure to learn
the names of the parts so you can describe them when you
need maintenance.

Organizational Tasks

The organizational tasks can be much more important
than they may seem. Our ability to purchase new
equipment suddenly depended upon urgently producing
a "wishlist." We were able to sweat one out in just four
hours because I had all the advertisements filed in an or
derly fashion by topic and/ or device type.

The task itself of filing advertisements and organizing
literature gives one an exposure to products and helps keep
one up-to-date.

More important are the inventories of equipment,
wiring and cabling diagrams and Computer Room Request
forms, all of which might be included in a Computer Sys
tem Standard Practices and Procedures document. This
text should describe the facility and its operations to such
detail as is needed to be able to operate the computer in
the absence of the system manager. It might also include
sections on disaster recovery and system security practices.

Nice Luxuries

Many of the "nice luxuries" have to do with electricity.
Much of this, and indeed, most of the topics herein men
tioned, can be self-taught from numerous, readily-available
books. If you don't know something, learn it!

Whereas knowledge of electricity can help one save
time and money in trouble-shooting and in making cus
tom cables, for example, other knowledge is more asso
ciated with the particular applications being run at your

site. Some will want to learn about mathematics and logic,
others will need to understand spreadsheet software. Still
others might want to study graphic arts, with a view to
wards good page layout and lettering, an aspect which can
highly influence your customers.

Conclusion

The yardstick for measuring personal performance as sys
tem manager is the service rendered to a user: "Anything
for a user." And it's nice to know that one's knowledge
does not have to be complete nor exhaustive in order to
provide that good service. The variety of tasks, the chal
lenge, the possibility to help others and the measure of
personal growth make the job of system manager so much
fun.

And in spite of any fears or problems, maintain the
"I can do it!" spirit.

I did it, and so can you!!!

Acknowledgments

I would like to acknowledge the two people who have most
influenced the successful outcome of my venture into the
computer world: my boss, Ted A. Jenkins, whose patience
and wisdom have guided me through all my learning ex
periences, and my father, Ben F. Chartier, who, from my
earliest childhood, inspired me to always give my best to
the project.

287

Learning/Service Process of a System Manager

SYSTEM

w
MANAGER

USER BENEFIT

* User education

* User environment
tailored to meet
individual needs

* Help in solving
application/program

problems

Figure 1.

288

IMPROVED SYSTEM

MANAGEMENT SKILLS

I USER BENEFIT I
* More efficiency in

handling user requests

* Automation of certain tasks

* Easy work environment lessens
frustration and aids producti
vity

Responsibilities of a System Manager

Interest in the Users
- Understand the applications/programs which they are running.
- Understand the problems which they are facing.

Job Attitude
- Ethics
- Curiosity
- ul can do it!u spirit

Acquisition of Knowledge
- Keep abreast of new products and developments.
- Sharpen present skills.
- Better one's skills in weak areas.
- Learn completely new things.

TranS11ission of Knowledge
- User's meetings
- Memos and manuals
- User education
- Correct use of computer facility

Application of Knowledge
- Direct intervention in computer facility operations
- Contacts with maintenance companies, s/w and h/w technical

support, supply houses, et al.
- Solutions to Users' problems

Figure 2.

289

Software-related Tasks and Skills

(The basic command name is printed in bold capital letters).
Fluency with DCL
- Vocabulary
- Syntax
- General overview of VMS operation
- General overview of file organization
- General overview of user environment: UIC, UAF, username
- System startup and shutdown
- Interrupts: CONTROL-Y. CONTROL-Z, et al.
- HELP
- SHOW
- Directory listing: DIRECTORY
- Moving about in directory hierarchy: SET DEFAULT
- Creating files and directories: CREATE
- Use of editor in both line and keypad mode
- File protection: SET FILE/PROTECTION
- TYPE and PRINT
- Careful use of DELETE and PURGE
- Thoughtful use of wildcards: "*", "%" and " •.• "
- Comnunicating with users: PHONE. MAIL. REPLY
- Authorizing new users: RUN AUTHORIZE
- MOUNT and BACKUP

Ability to Install New Software and Software Upgrades
- VMS INSTALL Utility
- Formatting media
- Mounting media
- Temporarily changing a system parameter for installation

procedure: editing file MODPARAMS.DAT then running AUTOGEN.

Figure 3.

290

Continued
Security
- UAF: RUN AUTHORIZE
- Privileges: RUN AUTHORIZE
- SET PASSWORD
- Removing users: RUN AUTHORIZE
- ACL: SET "Object"/ACL
- Audit trails: SET AUDIT/ENABLE

Device set-up
- SHOW 11device 11

- SET 11device 11

Establishing and Managing Print Queues
- In.order to obtain different output formats.
- To permit multiple printers and locations
- START/, STOP/, ABORT/

Development of DCL Coaaand Procedures
- Symbols and symbol substitution
- Lexical functions
- Logical tests
- Getting user input: INQUIRE
- Error handling
- How to call conmand procedures: 11 @11

System Tuning
- General: editing file MODPARAMS.DAT then running AUTOGEN
- User specific: modifications of user's UAF; RUN AUTHORIZE

Accounting
- Be able to generate accounting reports: ACCOUNTING/

Figure 3, cont.

291

Hardware-related and "Hands on" Tasks and Skills

Site installation
- Layout of computer room
- Environmental considerations: temperature and humidity

- Alarms
- Layout of work areas
- Power conditioning and power cable routing
- Conmunications cable assembly and/or routing
- Installation of computer and mass-storage devices
- Installation of terminals, printers and other peripherals.

Post-installation tasks
- Routine upkeep and cleaning of site, hardware and

peripherals
- Troubleshooting
- Hardware maintenance and repair
- Procurement, installation and storage of supplies:

magnetic media, paper goods, printer/plotter materials, etc.
- Storage of recorded backup and software media

Figure 4.

292

Organizational Tasks

- Documentation Library: organized and located for easy access
by users.

- Literature and Journal Library: organized and located for
easy access by users.

- Advertisement and Catalog File: organized by type of object
or service; each item dated!!

- Backup media: clearly labelled; chronologically ordered;
safely stored.

- Software media: clearly labelled; safely stored.
- Inventory of all hardware and software specifying their

location and ID numbers.
- Write a Computer System Standard Practices and Procedures

document.
- Write a Computer Center Request form.
- Maintain separate files for each device and software product.

These will contain purchase, warranty, maintenance, etc.
papers.

- Learn to type.

Figure 5.

293

Nice Luxuries

Knowledge of Electricity
- Understanding of schematic symbols and conventions.
- Reading schematic diagrams (at least for cable routing).
- Component identification: type, physical appearance, units of

measure, value/rating codes.
- Use of volt/ohm meter (for voltage and continuity checks).
- Cables and connectors: assembly and color-codes.
- Site power: breakers, phases and ground.
- Telephone/modem installations.
- Insulation and short-circuits.
- Basic understanding of semi-conductors.

Knowledge of Mathematics
- Binary notation and binary logic.
- Algorithms and formulae.

Knowledge of Higher-order Computer Languages

Knowledge of Application Software
- Word-processing
- Spreadsheet
- Desktop publishing
- Database management
- Graphics
- Accounting

Knowledge of the English Language
- Vocabulary and spelling
- Gramnar

Knowledge of Graphic Arts
- Formatting
- Font types
- Optical illusions and layout

Figure 6.

294

Viruses, Worms, and Trojan Horses-Part 111

Robert A. Clyde
Clyde Digital Systems

Orem, Utah

.Abstract

Trojan horses, viruses and worms make an effective attack upon a system's
security through the insertion of covert logic into otherwise innocent programs.
Mandatory access controls under VMS provide a partial defense against them.
However, mandatory access controls are not available on most VMS systems,
and even when they are, Trojan horses, viruses, and worms can still pose a
threat. Other defensive techniques are available which can combat Trojan horses,
viruses, and worms.

Increased security awareness on the part of users and system managers will
make users more cautious when loading and executing new software. The use of
read-only memory precludes the insertion of a virus or worm into a program that
is in read-only memory. Checking the integrity of programs on the system enables
a site to detect inserted covert logic. Surveillance of system use is essential if
a vigilant system manager or security administrator is to detect and possibly
prosecute intrusion into the system. Appropriate analysis and reporting of the
surveillance data greatly assists a site in detecting security problems.

The Enemy

This paper focuses on attacks on a computer system by
Trojan horses, viruses and worms. Viruses and worms are
extensions of the Trojan horse theme. These attacks center
around a seemingly innocent program that contains covert
logic. When this program is invoked by an unsuspecting
user, it tampers with objects that the user can access so
that the intruder can achieve some ultimate goal. A good
way to understand the relationship between Trojan horses,
viruses and worms is to view them in the context of a
concerted attack using all three.

A prospective intruder creates a Trojan horse-a pro
gram containing covert logic--and entices other people to
use it. The Trojan horse's covert logic also contains a
virus. When an unsuspecting user executes the Trojan
horse, the virus spreads itself to other programs to which
the user has write access [2,3]. Furthermore, each time
one of the infected programs runs it also spreads the virus.
Each virus also looks for an opportunity to insert a worm
into a particular system program. This worm contains the
necessary logic to allow the intruder to penetrate the sys
tem at will. For example, the worm might be placed in
the LOGINOUT program so that whenever the intruder
types a certain sequence for the password, he is logged in
with all privileges.

1This is an updated version of the paper published by the same
author in the 1987 Spring DECUS Proceedings [1].

Proceedings of the Digital Equipment Computer Users Society 297

In summary, the relationships between these three en
emies are as follows:

• Trojan Horse - Contains covert logic and can intro
duce a virus via unsuspecting users.

• Virus - Spreads the virus to other hosts (e.g., pro
grams), thereby breaking down the defenses of the
system so that eventually a worm will be inserted.
The worm will be inserted when someone with write
access to the targeted system program runs an in
fected program.

• Worm - Penetrates the security of the operating sys
tem.

Note the insidious nature of a Trojan horse attack on
your system. Removing the worm that allows penetration
will not provide a complete remedy since the virus will be
active and will eventually insert another worm. Complete
recovery from such an attack will require neutralizing the
virus. The purpose of this paper is to discuss measures
that could be taken in order to prevent and detect such
attacks.

It is possible to have a Trojan horse without a virus
and a virus without a worm. For example, if the goal of
the intruder is simply access to certain files rather than
penetration of the operating system, then a virus or Tro
jan horse alone will suffice. However, even though a virus
spreads itself, it is not an inherently stronger attack than

Anaheim. CA - 1987

a Trojan horse. This is because a Trojan horse can per
form the same covert action that a virus does. Therefore,
methods that will combat Trojan horses will be effective
in combatting viruses and worms as well [4].

Security Awareness

Increased security awareness on the part of system man
agers and users must be the initial focus for controlling
this and most security problems. In particular, users and
system managers should be properly suspicious when pre
sented with a gift horse program. If there are any questions
at all, the source code should be reviewed by a reliable ex
pert.

Users should periodically check the protection codes
and access control lists set on their files to see ifthere have
been any changes. Generally, executable programs should
be set so that there is no write access. This will help limit
the spread of a virus.

Terminals must be locked up or logged out when not
in use. If this is not done, an intruder can avoid the use
of a Trojan horse and directly insert a virus or a worm
via a terminal left logged in to someone else's account.
For example, if a user with SYSPRV leaves his terminal
logged in, an intruder could insert a worm directly into
the LOGINOUT program from that terminal. In reality
unattended logged in terminals probably account for more
security breaches than Trojan horses. A terminal should
be locked in cases where logging out would be difficult or
very inconvenient. Although Digital's terminal server has
a locking mechanism, VMS does not. Nevertheless, it is
possible to write a program to perform terminal locking at
the operating system level.

Discretionary Access Controls

The standard VMS operating system comes equipped with
discretionary access controls in the form of access control
lists and protection codes that can be set on most objects.
These access controls are known as discretionary since the
owner of the object is able, at his discretion, to modify the
access control lists and protection codes.

Because of this, discretionary access controls are not
an effective defense against Trojan horses, viruses and
worms. Consider the following Trojan horse scenario:

1. A user named JOHN writes a game called XTREK
and sets its protection so that anyone can execute it.

2. JOHN places covert logic in XTREK so that it sets
any files to which the user has access to world read
and write.

3. JOHN then sends a mail message to everyone on the
system proclaiming the wonders of his XTREK pro
gram and inviting all to try it.

4. SAM reads the message and decides to run XTREK.
The game runs fine, but also changes SAM's files so

298

that anyone can read or write to them. XTREK is
able to do this since VMS allows the owner of the
files to modify the access controls.

5. Now JOHN is able to read and write SAM's files.

Mandatory Access Controls

Historically, mandatory access controls have been touted
as the primary defense against Trojan horses, viruses and
worms[6]. In practice, mandatory access controls are set
in place by the system security officer-they cannot be
modified by non-privileged users. If SAM owns files which
have had mandatory access controls placed on them so that
only TOP SECRET users can read or write to them, then
SAM cannot lower the files' classification to allow users at
the SECRET level to access them. So if SAM runs the
XTREK program, it will be unable to lower the classifica
tion on TOP SECRET files. Thus, the mandatory access
controls have defeated the Trojan horse in this example.

VMS does have a latent capability for providing
mandatory access controls [5]. A separate product from
Digital, the VMS Security Enhancement System (VMS
SES), enables the mandatory access controls. This prod
uct is designed to raise the security of the system to the
Department of Defense's Bl level [6], although the product
has not yet been evaluated by the DoD's National Com
puter Security Center. Yet even with SES, mandatory
access controls are not a cure-all for two reasons.

First, VMS with mandatory access controls contains
numerous covert channels [6]. Covert channels are commu
nication channels inherent in the system which were not
originally designed as such. Covert channels are only sig
nificant on systems which have mandatory access controls
and which are running multiple security levels. There
fore, a Trojan horse in a program run by a TOP SECRET
user could use a covert channel to transmit TOP SECRET
information to an intruder at the SECRET level. For ex
ample, if VMS allowed the SHOW USER command to be
issued by users at any level, the process name field could be
used as a communication channel. Thus the Trojan horse
in the XTREK program could change its process name
to contain TOP SECRET data. JOHN at the SECRET
level could then read this data by issuing a SHOW USER
command.

The method for handling the covert channel threat is
as follows:

1. Identify as many of the covert channels as possible.

2. Remove as many covert channels as possible.

3. Monitor the remaining covert channels.

Second, mandatory access controls are not really
mandatory for all users. On a VMS system there are privi
leges (e.g., BYPASS and READALL) which are able to by
pass the mandatory access controls. When a program with
a Trojan horse is executed by a user with those privileges,

it can access protected information and make it available
to an intruder. Therefore, a complete penetration sce
nario involving viruses and worms, like the one described
earlier involving LOGINOUT, would give the intruder all
privileges-including the BYPASS and SECURITY privi
leges.

Use of Read-Only Memory

Using Read-Only Memory (ROM) can be very effective
in reducing the risk of a Trojan Horse attack [3], since
data stored in ROM cannot be overwritten. Examples of
possible ROM devices are

• ROM chips

• Optical disks (i.e., CD-ROM)

• Magnetic tape with the write ring or tab removed

ROM can be effective in the prevention and detection
of Trojan horses when used in one or more of the following
ways:

• Store executable programs

• Store data for comparison during integrity checking

• Store integrity checking routines for protection from
tampering

Executing programs from ROM prevents anyone from
inserting a Trojan horse into that program other than
when the program is first placed in ROM. However, devices
like optical disks can be much slower than more conven
tional media. When speed is important, it may be more
cost effective to use the ROM for storing comparison in
formation and integrity checking routines. This provides
an unmodifiable standard for use in detecting covert logic
that may have been placed in programs.

In order to truly use ROM to defend against a Trojan
horse attack, however, a site must carefully certify each
program before placing it into ROM. Otherwise, the site
incurs the added expense of ROM without actually mini
mizing the chance of a Trojan horse attack.

Controlled Program Creation

Another method for reducing a system's exposure to Tro
jan horses, viruses, and worms is to restrict the inser
tion and creation of programs on the system. This can
be partly accomplished by acquiring software only from
known, reliable sources. On particularly sensitive systems
it may be necessary to perform a source code review and
certification before placing an outside program on the sys
tem.

As an additional precaution, it may be necessary to
restrict the creation of executable programs. This can be
partially accomplished by controlling access to the various

299

compilers, assemblers and linkers on the system. How
ever, executable code could still be downloaded from a
PC or some other system. By monitoring terminal input,
it would be possible to detect downloading of executable
code and flag this as a potentially suspicious event.

Integrity Checking

Trojan horses, viruses and worms function by compromis
ing the integrity of programs and files on the system. Con
sequently, their presence may often be detected by check
ing to see if any programs have been changed or if any file
protections have been modified. Such an integrity check
could consist of the following:

1. Compare the protection codes and ACLs of system
files to a previously determined standard.

2. Check for viruses and worms by comparing system
programs and files to a previously determined stan
dard (i.e., perform a CRC).

3. Perform such a check upon each execution of a pro
gram image.

4. Store programs as encrypted images and then de
crypt upon execution. This approach requires that
the problems of encryption key storage and manage
ment be solved first.

While these procedures will detect that system in
tegrity has been compromised, they do not provide suffi
cient information for identifying the source and method of
the initial intrusion. Collecting such information requires
surveillance.

Surveillance of System Use

As indicated by the earlier sections, it may be difficult
to totally prevent the insertion of a Trojan horse onto a
system. Nevertheless, a vigilant system security officer
can employ surveillance in an effort to discover one of the
following conditions [7]:

• Original insertion of a Trojan horse, virus or worm.

• Abnormal use or access as a result of a Trojan horse,
virus or worm making certain files or services avail
able.

The following are potential sources of surveillance
data:

• VMS security alarms.

• VMS accounting log.

• Monitoring terminal I/O.

• Monitoring system service use.

Only the first two sources are inherently available with
VMS [6]. The other two would require additional system
level programming.

Once surveillance data has been collected, it must be
analyzed. This can either be done manually or automati
cally. Ifit is done manually, the volume of data would most
likely preclude any type of review other than spot check
ing. A computerized analysis, on the other hand, could
greatly reduce the burden on the system security officer.

Analysis of Surveillance Data

The purpose of collecting and analyzing surveillance data
is to detect any type of suspicious activity-not just Tro
jan horses, viruses, and worms. Nevertheless, this method
should also be effective against these particular intrusions
into the system. (Of course, the surveillance system must
have tamper resistant mechanisms of its own.)

For example, the VMS alarms could flag any use of
the AUTHORIZE program. A security officer, knowing
who is supposed to be able to run AUTHORIZE, could
check these alarms and recognize if AUTHORIZE had
been run by an intruder. (Note, however, that if the in
truder acquired the SECURITY privilege, he could disable
the alarms before running AUTHORIZE.)

Monitoring system service requests would make it
possible to detect such things as

• Increases in privilege level

• Use of executive and kernel mode

The analysis program could search through the moni
tored terminal I/O and perform pattern matching in order
to detect such things as follows:

• Browsing through directories

• Execution of AUTHORIZE, SYSGEN, INSTALL, etc.

• Displaying of sensitive information

• Downloading of executable code

Perhaps the most important benefit of monitoring ter
minal 1/0 is that it provides the system security officer
with a complete record of what a particular user did at a
terminal. Thus if a user entered a Trojan horse via the ter
minal, this action would be recorded. If a Trojan horse has
made certain sensitive data available, the terminal surveil
lance would contain a record of what the intruder did with
that data. Thus, the terminal surveillance data may con
stitute valuable evidence if disciplinary action or prosecu
tion becomes necessary.

Conclusion

Trojan horses, viruses and worms function by compromis
ing the integrity of programs and files on the system. A

300

concerted attack using all three can be particularly trou
blesome. Although mandatory access controls provide
some defense against Trojan horses, viruses and worms,
they may not provide a sufficient defense. Surveillance and
integrity checking may be implemented on a VMS system
with or without mandatory access controls. The use of
surveillance coupled with integrity checking can provide a
potent defense against Trojan horses, viruses and worms.

References

[l] Clyde, R. "Defending Against Trojan Horses, Viruses,
and Worms." Proceedings of Digital Equipment
Computer Users Society. Nashville, TN: Spring 1987,
pp. 381-386.

[2] Pozzo, M. and Gray, T. "Managing Exposure to Po
tentially Malicious Programs." Proceedings of the 9th
National Computer Security Conference.

[3] Young, C. "Taxonomy of Computer Virus Defense
Mechanisms." Proceedings of the 10th National Com
puter Security Conference. Baltimore, MD: Septem
ber 1987, pp. 220-225.

[4] Israel, H. "Computer Viruses: Myth or Reality?"
Proceedings of the 10th National Computer Security
Conference. Baltimore, MD: September 1987, pp.
226-230. Gaithersburg, MD: September 1986, pp. 75-
80.

[5] Blotcky, S., Lynch, K. and Lipner, S. "SE/VMS:
Implementing Security in VAX/VMS." Proceedings
of the 9th National Computer Security Conference.
Gaithersburg, MD: September 1986, pp. 47-54.

[6] U.S. Department of Defense. DoD Computer Security
Center. Department of Defense Trusted Computer
System Evaluation Criteria, CSC-STD-001-83 (Aug.
15, 1983).

[7] Stoll, C. "What do you Feed a Trojan Horse?" Pro
ceedings of the 10th National Computer Security Con
ference. Baltimore, MD: September 1987, pp. 231-
237.

[8] Digital Equipment Corporation. Guide to VAX/VMS
System Security. Maynard, Massachusetts: July
1985.

REMPRINT
Remote Printing for VAX/VMS

Marty Adkins
Westinghouse Electric Corporation

Baltimore, Maryland

ABSTRACT

Although DECnet-VAX provides a rich set of features, Digital
has yet to give the VAX user a simple way to print files on
another node, while retaining all print qualifiers. Over the
years, DECUS members have attempted elegant solutions in
the form of distributed print symbionts, each with significant
drawbacks. REMPRINT takes a simpler approach by
implementing this capability (mostly) in DCL as a DECnet
requester/ server object.

INTRODUCTION

As long as VMS and DECnet-VAX have
existed, users have asked for the ability to
print files to a printer on another DECnet
node, and with all the relevant qualifiers of
the PRINT command:

$ PRINT filelist /QUEUE=LASER -
/FORM=SPR /SETVP=module1
/NODE= node

VMS offers primitive remote printing m
several steps:

$ COPY filelist node::
$ PRINT /REMOTE node::/ilelist

Wait until printed ...
$ DELETE node::/ilelist

Besides being quite tedious, this method does
not permit any PRINT qualifiers to be
specified. Also, the print job is charged to
either the default account field of the proxy
username, or to the default DECNE:T
account, if no proxy exists. For sites with
resource chargeback, this is not acceptable.
An abbreviated form is easier,

$ COPY filelist node::device:jobname

but only works if the remote queue name is
the same as the remote printer device name
(LPAO => LPAO:).

Proceedings of the Digital Equipment Computer Users Society 301

Over the years, a number of custom and
modified print symbionts have attempted to
solve this deficiency. Although these have
been elegant solutions, they have had their
drawbacks. Symbionts contain sophisticated
code which may break with future VMS
releases. Moreover, if your printer already
uses a modified print symbiont supplied by
DEC or a third party, there is currently no
way to merge their functions. Examples
include LATSYM for terminal servers,
TFMSMB for Talaris laser printers, SPRINT
for classification markings, and several
Postscript conversion symbionts. Lastly,
these distributed symbionts require that every
queue be defined on every node, which is
impractical in a large network.

DEC RESPONDS

Digital has been listening, but with impaired
hearing. At first glance, the newly
announced Distributed Queue Service appears
to be what we have awaited for eight years.
All relevant print qualifiers are supported,
with automatic retry on the file transfer,
plus remote queue manipulation. However,
closer inspection shows that DQS also
requires a queue to be defined on both the
client and server nodes. Also, the remote
print job accounting record has the account
field set to the client node name, and the
node name field set to blank, thereby
defeating chargeback systems!

Anaheim, CA - 1987

Digital has also ignored the many requests
to bundle such a capability within DECnet
V AX. For this Vl.O release, DQS is a
layered product, requmng a license (plus
maintenance) on these nodes. Perhaps future
releases of DQS will address these
shortcomings, by using the Distributed Name
Service, plus possible changes to the job
controller.

POOR MAN'S SOLUTION

REMPRINT uses the "KISS"
achieve a reasonable compromise.
supports most print qualifiers,
exception being /NOTIFY:

$ REMPRINT node filelist -

method to
Its syntax

one notable

[/ ACCOUNT=account] [/NOW AIT] -
[/qualifiers ...]

Filespecs may include full wildcarding.
Remote queues need not be defined on the
client node, and REMPRINT does not
interfere with the symbiont of the remote
target device. The /NOWAIT qualifier
permits lengthy file transfers to be performed
in a subprocess. The /ACCOUNT qualifier
can be used to override the default of the
current account.

Remote queue operations include display:

$ REMPRINT node /SHOW _QUEUE

and job abortion:

$ REMPRINT node / ABORT=nnn queue

DCL TASK-TO-TASK

REMPRINT is implemented as a DCL
DECnet client/server. Before examining its
details, let's look at a simple example of
using DCL for DECnet task-to-task functions
(figure 1). The client expects to invoke a
DECnet object on the remote node called
SERVER, which is really just a command
procedure called SERVER.COM. The server
procedure opens the logical name SYS$NET
to complete the DECnet logical link with its
client.

Although this example employs two command
procedures, the client and server functions
could easily be combined into a single
procedure:

302

$ IF F$MODE() .EQS. "NETWORK" -

$!
$!
$!

THEN GOTO Be-server
Do Client part here

$Be-server:
$! Do Server
$!

part here

REMPRINT IN DEPTH

REMPRINT exploits this feature of DCL
and DECnet to accomplish its aim, but in a
more complex fashion. Figure 2 depicts the
simplified interaction between REMPRINT's
two personalities.

Note that REMPRINT is defined as a DCL
verb. ("What? You just said it was done
with DCL!" Well, that's almost true.) The
REMPRINT command has many qualifiers
plus three syntax variants - show_ queue,
abort, and regular printing. Although it's
possible to parse this in DCL, this author
would never attempt it, especially when the
CLI utility routines do it so nicely. The
same reasoning applies to parsing file lists
with wildcards. So REMPRINT.EXE parses
the command line, and verifies file existence.
It segregates the qualifiers into those that
determine file selection, and those related to
printing, and then builds COPY and PRINT
commands into DCL symbols. The
supported qualifiers are:

File selection:
/Since /Before /Created /Modified
/Backup /Expiration /Confirm
/By_ owner /Exclude

Print attributes:
/After /Lower_ case /Burst /Flag
/Trailer /Header /Space /Feed
/Form /Setup /Copies /Job_count
/Queue /Device /Passall /Note
/Characteristics /Parameters /Name

The /Delete qualifier is always appended so
that the temporary files are deleted on the
server node.

Now that all the preprocessing is done,
REMPRINT.EXE exits by chaining to
REMPRINT.COM. The first step is to open
the logical link to the server, and to tell it
which function we would like to perform - in
this case, printing. The client passes along
its username and account, and the server,

with the aid of a privileged image, validates
the account, and sets its username and
account to match. This will produce the
proper accounting record for the print job,
and cause the desired name to appear on the
flag page. The server now creates a unique
subdirectory to hold the files to be copied.
The name, generated by the client, is the
concatenation of the client's node name,
username, and time of day. The serVE!r
informs the client that it is ready to receive
the files.

The client uses the previously formed COPY
command to push the files to the remote
subdirectory. The PRINT command follows,
and is executed verbatim by the server.
The resulting status message is deflected and
displayed on the client's SYS$0UTPUT,
usually the user's terminal. The server now
restores its original username and account,
and both parties close their logical link.

At this point, the user is back to a "$"
prompt, and believes everything is finished.
However, on the server side, some house
keeping remains. Although the temporary
files will be deleted after printing, the
subdirectory will not. The server is unable
to delete it now because it contains files!
So we compromise - by deleting all files that
have resided here longer than 24 hours,
which means today's invocation cleans up
yesterday's litter. Other approaches were
considered, such as a batch job that runs
each night, but all had flaws.

RESOURCE CHARGEBACK

A bit more should be said about NETJOB
and our accounting system. At login tim•~,
a user must supply an account, or charge
number, which will pay for the session. Not
only must the account be valid, and open,
but that user must be authorized to charge
it. In VMS, print jobs inherit the account
field of the submitter, and so should remote
print jobs. Therefore, NETJOB modifies the
account field of the surrogate submitter to
produce the desired result. Before it does, it
still verifies that, on the server node, the
account is valid and open. Should the client
node not be running our accounting system,
or for some other reason, the client's account
is rejected by the server, the /ACCOUNT
qualifier may be used to specify a valid one.
For this case only, NETJOB also insists that
the user be authorized to charge the account

303

on the server node. An image that can
change one's username and account invites
abuse, so NETJOB has several security
checks. For example, it makes sure the job
mode is "network", and that the DECnet
object is REMPRINT.

ERROR HANDLING

When writing any task-to-task application,
the approach to error handling is simple -
leave nothing to chance and trap
everything! Use /TIME_OUT on READ
to avoid hangs. If one party detects an
error condition, it should inform its partner
to permit a graceful cleanup. And if the
connection to the server fails, check node
reachability. This last item is harder than
it sounds. A DCL OPEN statement that
takes a /ERROR branch gives no error
display, nor does it make the RMS status
codes available. There is no DCL lexical
function to test node reachability, so one's
first inclination might be to redirect SHOW
NET or NCP results to a scratch file. But
beware - both give erroneous answers! These
commands access the same NETACP volatile
database, which is as stale as the last
routing update. Moreover, if the remote
node is in another DECnet area, then a level
one router will always show it as reachable.
Frankly, the only way to know for sure if a
node is reachable at a given moment, is to
"touch it". REMPRINT does this with a
subroutine which is summarized below:

$ Assign scratch-file Sys$output, Sys$error
$ OPEN /Read Node"":: "O="
$ READ scratch-file looking for:

"NOSUCHOBJ" - success
"NOSUCHNODE" - typo
"UNREACHABLE" - bashful

$ DELETE scratch-file

PERFORMANCE FACTORS

To eliminate the large overhead of VMS
process creation, permanent NETSERVER
processes should be used. For the default
DECNET username, these are the same ones
used for Mail, Phone, etc. With that
assumption, REMPRINT's transfer delay
approximates the COPY time. Small files
will typically transfer in 3-5 seconds for
DECnet links of 56Kbps or greater. The
DCL COPY utility performs block-mode
transfers, so more elegant solutions should
attain minimal improvement.

INSTALLATION

REMPRINT's installation consists of two
steps. On the client node, REMPRINT.CLD
must be interpreted by SET COMMAND
and stored in DCLTABLES, with the image
specification pointing to the location of
REMPRINT .EXE. On the server node,
REMPRINT.COM must be defined as a
DECnet object:

NCP> Define Object REMPRINT -
Number 0 -
File Loc:REMPRINT -
Proxy Outgoing -
User user Password pass -
Account account

Lastly, NETJOB must be Installed with
CMKRNL privilege to modify the username
and account, and with SYSPRV to access
our accounting authorization files:

INSTALL> Loc:NETJOB /Open /Header
/Priv=(Sysprv ,Cmkrnl)

CAVEATS

Every poor man's solution has its limitations,
and REMPRINT is no exception:

1) The DCL READ /TIME_OUT qualifier
does not currently work for logical links
due to a deficiency in the VMS mailbox
driver. This has been SPR'd to Digital.

2) REMPRINT does not provide a way for
other applications to spool files to a
remote queue, since it creates no local
server queue.

3) REMPRINT does not currently support
Unix/Ultrix systems.

304

CLIENT

$ OPEN /Read /Write /Error=No-server -
DCLserver Node:: "Task=SERVER"

$ WRITE DCLserver /Error=Disappeared -
"SHOW USERS"

$! Result displayed on SYS$0UTPUT

$ CLOSE DCLserver /Error=Continue

SERVER

$ OPEN /Read /Write /Error=False-alarm -
DCLclient SYS$NET

$ DEFINE SYS$0UTPUT DCLclient
$ DEFINE SYS$ERROR DCLclient

$ READ DCLclient /Error=Goodbye -
/Time-out=30 COMMAND

$ 'COMMAND

$ CLOSE DCLclient /Error=Continue

Figure 1: DCL for DECnet Task-to-Task

CLIENT

REMPRINT.EXE - Parse command line,
verify file existence, and store COPY
and PRINT commands in DCL symbols

$ OPEN Server

$ WRITE "PRINT"

$ WRITE Id, Username, Account

$ READ State

$ COPY /ilelist node::[.PRINT.'ID'] -
/PROT=(S:RD,O:RD,G, W)

$ WRITE Print-command
"Job 99 started on queue LASER "

$ READ State
$ CLOSE Server

$ OPEN Client

$ READ Option

SERVER

$ READ Id, Username, Account
NETJOB.EXE - Set Username, Account

$ CREATE /DIRECTORY -
[.PRINT.'ID'] /PROT=O:RWED

$ WRITE "READY"

$ READ Print-command
$ 'Print command

NETJOB.EXE - Restore Username, Account

$ WRITE "DONE"
$ CLOSE Client

$ DELETE /MODIFY /BEFORE="-1-" -
[.PRINT ...]*.*;*

Figure 2: REMPRINT Client/Server Interaction

305

SOFTQUOTA
A Diskspace Management Utility

Shari Dishop
VAX Support Group

Westinghouse Electric Corporation
Baltimore, Maryland 21203

Abstract

Since the introduction of disk quotas in VMS 2.0, the VAX system manager has been
empowered to manage disk storage. Unfortunately, the implementation of "overdraft" is
inflexible, and does not track the typical development scenario. During the life of a
process (or login session), a user will likely create a number of sizable, temporary files
through the actions of editing, compiling, linking, and executing programs. At the end of
the session, most of these files are purged, printed and deleted, or rolled out to magnetic
tape. SOFTQUOTA adds a third threshold to the quota system, a "soft" quota. This
utility is invoked at login time to check a UIC's permanent disk usage against its soft
quota, while still permitting growth to the regular hard quota during the session.
Parameters for each UIC (or identifier) are maintained on a per-volume basis, and may be
displayed or modified with the SOFTDB utility. In a VAXcluster system, coordination
between nodes is done via the distributed lock manager.

Note: This is a repeat of a paper presented at the Spring 83 DECUS. It has been
updated to reflect changes since that time.

Introduction
In VMS release 2.0, Digital introduced

the disk quota mechanism and in VMS 4.0
they introduced ownership of files by
identifiers in addition to by UIC's. This
disk quota mechanism permits the system
manager to establish an absolute limit on
disk storage for each user (UIC or identifier)
on a per-volume basis. The quota for a
user is specified by two parameters:

PERMANENT quota
OVERDRAFT quota

ceiling on total usage
- margin above

PERMANENT quota
to extend an alrcia.dy
open file

The USAGE value for a user is
constantly updated at every file creation,
deletion, and extension. If the requested
allocation would increase USAGE above
quota, the operation is not performed, and
the user receives the familiar message:

%SYSTEM·F·EXDISKQUOTA, disk quota exceeded

Unfortunately, the implementation of
"overdraft" is inflexible, and does not t:rack
the typical software development scenario.

Proceedings of the Digital Equipment Computer Users Society 307

During the life of a process (or login
session), a user will likely create a number
of sizable, temporary files through the
actions of editing, compiling, linking, and
executing programs. At the end of the
session, most of these files are purged,
printed and deleted, or rolled out to
magnetic tape (or at least they should be!).
To augment the standard permanent or
"hard" quota, we established a "soft" quota
with the following relationship:

SOFT quota = static disk storage
PERMANENT quota = static disk storage

+ workspace area

So as not to interfere with Digital's
implementation, we created a separate
database to contain the additional
parameters, and a SOFTQUOTA utility
which is invoked for the user at login to:

1. Display current usage statistics
2. Optionally lower hard quota to equal

soft quota
3. Restore original hard quota if soft

quota no longer exceeded

A SOFTDB utility was also developed
for ease in maintenance and display of the

Anaheim, CA - 1987

database.

SOFTQUOTA UTILITY
The SOFTQUOTA utility is defined as

a verb with the following syntax:
$ SOFTQUOTA /MODIFY! I/QUIET]

/NOUNIQUE] /START]
dcnn,dcnn, ...]

dcnn

/MODIFY

/QUIET

- Volume to check (defaults
to SYS$DISK)

- Allows modification of
ha.rd quota

- Suppresses informational
messages (e.g., "quota file
not active")

/NOUNIQUE - Don't check for unique
UIC

/START

Examples are:
$ SOFTQUOTA

- Start the listener for
remote nodes on clusters

You have used 3488 blocks of 5000 block 11oftquota on
USER$DISK

$ SOFTQUOTA DBA1,DBA2
%SOFTQ-I-QFNOTACT, quota file not active on DBAl
You have overdrawn 224 blocks of 3000 block softquota

on DBA2

$ SOFTQUOTA /MODIFY /QUIET DBA1,DBA2
You have overdrawn 224 blocks of 3000 block softquota

on DBA2
You will not be able to create new files until you have

cleaned up.

... User cleans up on DBA2 ...
User must invoke softquota to reset quotas

$ SOFTQUOTA
You have used 2634 blocks of 3000 block softquota on

DBA2

When to run it
At our sites, SOFTQUOTA is invoked

at login time in the system-wide command
procedure SYS$SYLOG IN.

$ IF F$MODE() .NES. "INTERACTIVE" THEN -
$GOTO DONE
$ SOFTQUOTA /MODIFY/QUIET
$DONE:

We do not run it at logoff time because:
1. The user should never be inhibited

from logging off.
2. Logoff procedures are still easily

circumvented.
3. It interferes with processes of same

UIC.
The third item deserves more discussion.
Each interactive login permits SOFTQUOTA
to conditionally "lower the boom". If Userl
has a batch job running which has exceeded

308

the soft quota for that UIC, and Userl then
logs in, SOFTQUOTA will lower his hard
quota, which may cause problems for the
batch job. Similarly, if User2 with the same
UIC logs in, he will cause problems for
Userl. This is why checks are performed in
the program to determine if there is another
active process with the same UIC. As long
as NOUNIQUE is not specified,
SOFTQUOTA will detect possible interference
and will display a status message, but will
not modify the user's hard quota. The same
action is taken for batch logins; if the user
is not around to correct the problem, there
is little to be gained by impacting his batch
job.

SOFTQUOTA Databases
If quotas are enabled on a disk volume,

the parameters for each user are stored in
the file [000000] QUOTA.SYS, which is
managed by the ACP. To prevent
performance degradation, a portion of the
entries are cached in main memory. To
examine or modify an entry, SOFTQUOTA
issues ACP QIO requests specifying a
function code of 10$ ACPCONTROL and
parameter lists for the -File Information Block
(FIB), and the File Transfer Block (FTB).
The SOFTQUOTA data items are
maintained on a per-volume basis in the file
[OOOOOO]SOFTQUOTA.DAT, which is indexed
by UIC. The record definition is:

Softquota Record Structure
UIC I4 Primary Key 0

Group Key 2
Member Key 1

SOFTQUOTA I4 Amount of residual
space allowed

HARD-SAVE I4 Saved PERM quota
from QUOTA.SYS

MESSAGE-COUNT I4 Number of times user
has exceeded softquota

SOFTQUOTA General Algorithm
The following structured English

describes the SOFTQUOTA algorithm in a
slightly simplified form:

if USAGE .LE. SOFTQUOTA then
Display "usage" message
if HARD-SA VE .NE. 0 then {User cleaned up}

PERMQUOTA := HARD-SA VE
HARD-SA VE := 0

else if PERMQUOTA .LE. SOFTQUOTA then
Display "Still Overdrawn" message
MSG-COUNT := MSG-COUNT + 1

else
Display "Overdrawn" message

if "/MODIFY" specified AND "unique UIC" then
HARD-SA VE := PERMQUOTA
PERMQUOTA := SOFTQUOTA
MESSAGE-COUNT := MESSAGE-COUNT + 1
Display "Must Cleanup" message

Error Handling
SOFTQUOTA checks the status returns

from all system calls. Certain errors are
handled gracefully, and display a message to
the user. Other messages are displayed only
if the "/QUIET" qualifier is not specified.

Quotas not enabled •• if "/QUIET" not specified, display
%SOFTQ·I·QFNOTACT, quota file not acHve on

<volume>

No entry in QUOTA.SYS •• if "/QUIET" not specified,
di1play
·%SOFTQ-W-NODISKQUOTA, no HARD disk quota entry

on <volume>

No entry in SOFTQUOTA.DAT -- uee DISK DEFAULT
%SOFTQ-W-DEFSET, no SOFTQUOTA entry on

<volume>, u1ins default

Record locked in SOFTQUOTA.DAT -- retry 50 times

All other errors are fatal and a rather
noticeable error exit is taken:

211-Mar-1983 ll:Oli:llo&.10

IMPORTANT:

Please tell SYSMGR that the following error occurred in
SOFTQUOTA

Thank you.

%SOFTQ-F-QIOERR, initial QIOW failed
%SYSTEM-F-DEVOFFLINE, device i1 offline

Clusters: A Special Challenge
A problem was discovered with the

Softquota utility upon the introduction of
clustered machines in VMS 4.0. Although
the data.base files are shared among the
nodes of a cluster, each machine is only
aware of the processes local to it. The
check for a unique process no longer worked.
Users quickly complained about having a job
running on one node in a cluster, where it
had accumulated substantial amounts of CPU
time and temporary disk space, then logging
on to another node in the cluster and having
their first job killed. It was discovered that
when they logged on to the second node
they were informed by softquota that they
were over their quota and since they had a
unique process on that node their permanent
quota was lowered. This caused the process
on the first node to be killed for violating
their quota. Thus all of the time spent by
the first process was wasted.

A solution to this problem was needed
and it required very fast inter-processor

309

communication. It should not take longer to
log on to a cluster than to log on to a non
clustered machine. The solution also had to
have an extremely clean way to synchronize
the inter-processor communication. Timing
races between machines are no fun!

We chose to use the distributed lock
manager as a way to implement our
solution. It provides the fast inter-processor
communication desired and has a 16 byte
block (lock value block) for passing data
between processes. It also provides a
method of synchronization to avoid the
timing races.

A Look at the Distributed Lock Manager
The lock manager is a means of

controlling shared access to resources (files,
data structures, databases, executable
routines, etc.). A request to access a
resource is called a lock and has a level of
access and sharability or mode associated
with it. These modes are:

NL Null Mode
- grants no access, indicates interest
in the resource

CR Concurrent Read
- grants read access, allows others to
read or write

CW Concurrent Write
- grants write access, allows others
to read or write

PR Protected Read
- grants read access, allows others to
read but not to write

PW Protected Write
- grants write access, allows others
concurrent read access but no write
access

EX Exclusive
- grants write access, prevents others
from accessing the resource

The compatability of the lock modes is
summarized in the table following.

Compatability of Lock Modes
Requested Granted Locks

Locks NL CR CW PR PW EX
m Y Y Y Y Y Y
CR Y Y Y Y Y N
CW Y Y Y N N N
PR Y Y N Y N N
PW Y Y N N N N
B Y N N N N N

A lock can be in one of three states:
it can be in the granted state, it can be
waiting in the queue to be granted, or it
can be waiting in the queue to be converted
to a different mode. Lock conversion is used
to provide the synchronization of the inter
processor communications. Converting a lock
to a higher mode that is incompatible with
an existing lock will cause the first lock to
be placed on the conversion queue until the
second lock is dequeued or is converted to a
compatible mode. This can be used to cause
one process to wait for another process to
complete a desired task. Lock conversion
can also cause the contents of the lock value
block to be read from the master copy or to
be written to the master copy. The table
below summarizes this aspect.

Effect of Lock
Held

Conversion on Lock Value Block
Mode Converted to

m CR CW PR PW EX Mode
m
CR
cw
PR
PW
EX

R R R R R R
N R R R R R
N N R R R R
N N N R R R
W W W W W R
w w w w w w

Unique User Algorithm
The following is the algorithm used to

determine if a user has a process on another
node in the cluster.

Look in local process table for same UIC
H match found then

return non-unique user status
exit algorithm

Else
H member of a cluster then

For each node in the cluster loop
H not the local node then

Issue lock on resource to awaken remote node
Remote awakened by blocking AST on reaource
Remote reada U/C from lock fJalue block
Remote look& in ita proceaa table for match
Remote puta match tJalue in lock tJalue block
Remote contJerta lock to releaae reaource
Remote hibernate& till nezt requeat

H error occurs in communication then
Continue

310

Else
Read lock value block
H match found then

return non-unique user status
exit algorithm

New Version
Some advantages to this new version of

the softquota utility are that the same
software runs on a single node or on a
cluster and in a cluster environment it
dynamically adjust to nodes entering or
leaving the cluster. But one drawback is
that this current version of the utility
requires a continuously running batch job on
cluster nodes to provide fast execution time
for processing unique user check requests.

SOFTDB UTILITY
Just as the DISKQUOTA utility is used

to maintain the hard quota file, some
method is required to edit the SOFTQUOTA
indexed file. In the early days of
SOFTQUOT A, we utilized an existing in
house forms/update tool which supported
only character data fields; hence,
SOFTQUOTA.DAT was a formatted
character file. Within the past year, the file
has been converted to a binary format and
the SOFTDB utility has been enhanced and
expanded. The SOFTDB utility will now
report the information in the QUOTA.SYS
file, and will also handle adding and
modifying entries in the QUOTA.SYS file.
Its command set resembles the familiar
syntax of the AUTHORIZE utility.

SOFTDB Command Set:
USE
ADD

<volume> - Defaults to SYS$DISK
<UIC> /SOFTQUOTA=n]

/HARDSA VE=n]
/MESSAGE=n]
/PERMQUOTA=n]

MODIFY <UIC>

REMOVE <UIC>

/OVERDRAFT=n1
/SOFTQUOTA=n
/HARDSA VE=n]
MESSAGE=n]
PERMQUOTA=n]
/OVERDRAFT=n]

SHOW l/USEHARDl <UIC> -
LIST /USEHARD <UIC> -

Paginated display.
lists specified
record(s) on
FORS PRINT
(defaults to
SOFTQUOTA.LIS)

HELP <Keyword!> <Keyword2> etc.
@<filespec> - command file, default type is

".COM". If logical name
SOFTDBINI is defined, that file is
executed at startup.

EXIT

<UIC> - [g,mJ, [*,mJ, [g,*J, [*,*J, identifier,
USER, or DISK

/USEHARD uses the QUOTA.SYS file as the
reference file on wildcard operations.

CURRENT LIMITATIONS & PLANNED
ENHANCEMENTS

Currently the remote process for
clustered systems only runs from a batch
job. We are planning to make it run as a
detached process to remove it from the batch
queue. Currently the SOFTDB utility will
accept identifiers and add entries for them to
the database but the SOFTQUOTA utility
only checks a user's UIC when they log in.
We wish to also check the quotas of all of
the identifiers a user holds. In the SOFTDB
utility the REMOVE function does not
support access to the QUOTA.SYS file. We
have not determined whether to remove a
quota for a UIC that still owns files or not.

SUMMARY
No quota system ever won a popularity

contest with users, and SOFTQUOTA is no
exception. At our sites, it is accepted as
one of life's necessary evils, and is
considerably less offensive than ordinary hard
disk quotas. We have been using this tool
since 1981, and unless the cost of disk drives
plummets, or VMS provides an equivalent
capability, SOFTQUOTA should enjoy a long
life.

311

Keywords: VAX/VMS, DISK QUOTA,
SOFTQUOTA, SOFTDB

Acknowledgments: The author would like to
credit Martin J. Adkins for presenting the
original paper in 1983 and additional help in
designing the solution for the clusters. The
author would also like to credit Art
Moorshead for developing the SOFTDB
utility. SOFTQUOTA was a product of
design by committee, with the initial
implementation by Brad Schafer (now with
DEC). Robert A. Koppelman added support
for multiple volumes, and ancillary routines
and assistance were provided by Almon T.
Sorrell. This author implemented the cluster
support for checking for unique UIC's and
the latest enhancements to the SOFTDB
utility.

FAST RESPONSE ON OVERLOADED SYSTEMS
(or the alchemy of the VMS scheduler)

Silvano de Gennaro
European Organization for Particle Physics Research (CERN)

Geneva, Switzerland

Abstract

This report describes the features and the ... non-features (euphemism) of the
VMS scheduler, and presents the analysis work we have done at CERN, trying
to make scheduling more effective, particularly in situations of CPU saturation.
By modifying the logic of the scheduler we could obtain remarkable results in
interactive response time under conditions of computing overload.

The purpose of this presentation is to show you how we
managed to obtain a fast interactive response out of our
overloaded VAX computer systems.

By "Fast Interactive response", I mean the response
you typically get from an empty system, and by an
overloaded VAX I mean a well tuned and reasonably well
configured one, running at 100% of its CPU capacity.

A VAX is first of all an interactive machine, and
therefore it should guarantee a constant response time to
people who want to use it as such.

Users who are very interactive will use such a small
portion of the CPU, that it is logical on a timesharing
system to give them easier access to it.

Typically you may think of a full screen editor as a
very interactive application, where you spend most of your
time moving through the file with the cursor. It seems
unreasonable that a cursor movement or a page scroll
must wait for someone else to finish computing the 17th
root of 3454. But unfortunately this happens, because of
the way the scheduler works.

In fact the design of the VMS scheduler is full of good
intentions, and uses a mechanism of dynamic priorities
which tries to reward terminal bound people as opposed
to CPU bound ones.

The implementation was simple and proved sufficient
when VAX computers were minicomputers, but now it
can no longer cope with the complexity of the production
environment supported by the new large systems.

Our analysis led us to conclude that the problem
was in the handling of the dynamic priority, so finally we
developed, in our Alchemy lab, a witchcraft that turned a
saturated VAX into a responsive machine.

Before introducing you to the mysteries of our
alchemy and revealing the magic formula of instant
response time, I must initiate you to the infernal rites of
the VMS scheduler.

Proceedings of the Digital Equipment Computer Users Society 313

The unitary entity considered by the Scheduler is
a Process. The process parameters that influence the
Scheduler decisions are the Process state and priority.
Process state and priority change according to process
behavior and with the occurrence of System Events.

The process running in the CPU is called the Current
(CUR) process. There is at any one time only one
Current process per processor. To be eligible to become
Current, a process must be Computable (COM), which
means waiting for the CPU. If it is not Current, nor
Computable, a process can be in a wait state: Suspended
(SUSP), Hibernating (HIB), Local Event Flag wait (LEF),
Common Event Flag wait (CEF), or generic Resource
Wait (RWxxx).

A process in COM, LEF, HIB or SUSP may be
outswapped if the system is short of free memory, in
which case its state is changed to COMO, LEFO, HIBO,
SUSPO respectively.

Apart from being in COM state, to get the CPU a
process must also have the highest priority in the system.
In fact the VMS scheduler always picks up the first COM
process at the highest priority. If there are more processes
with the same priority, then they are queued together in
the priority ring relative to that priority. The scheduler
takes jobs from the top of their priority ring, and puts
them back at the bottom.

Normally a process executes at its base priority,
which is fixed and assigned at process creation.

On top of this Base priority, a process scores an extra
grant, called "Priority Boost", for every I/O operation
completion it experiences.

Once boosted up, the priority will start decaying
back to the Base amount via decrements that take place
at every CPU reassignment.

In standard VMS the values assigned to the priority
boosts are: 6 for terminal input, 4 for terminal output,
3 for resource available, and 2 for disk 1/0 completion.
These boosts are added to the base priority and are

Anaheim, CA - 1987

not cumulative. So, for instance, a process with a base
priority of 4 will be boosted to 10 after a Terminal Input
completion, but will be executing at 9 next time it gets
the CPU, because the Scheduler decrements by 1 at CPU
reassignment time.

When it gets the CPU, a process may keep it for the
duration of a QUANTUM, (SYSGEI parameter; by default
200ms on all machines!) unless it issues a resource request
or is pre-empted by another process which becomes
Computable at a higher priority.

The drawback of pre-emption is that the pre-empted
process not only loses the CPU, but it also loses priority, as
pre-emption causes a rescheduling, therefore the Scheduler
will subtract 1 next time it reassigns the CPU to the
pre-empted process, which also ends up at the tail of the
ring for this lower priority level.

So in a busy system, where the hammering of pre
emption is high, your priority boosts may vanish very
rapidly. And of course, the lower your priority gets,
the faster it decays towards your base priority. And
what is really dramatic here is that the speed of your
priority decay is independent from your sins or virtues,
and becomes basically random.

And what did you do to be punished so crudely?
Nothing. You were just unlucky to bump into

someone stronger than you. This fundamental law is
called "The law of the jungle", and the method is called
"Wild scheduling".

Apart from this basic mechanism of priority adjust
ment, the VMS scheduler has three joker cards, which
make it even more unpredictable.

The first important joker is what we call the
PIXSCAN boost.

What is given to common mortals to know is that
every second the system scans through the COMputable
processes and boosts one or more of those to the same
priority as the highest non-realtime computable process
in the system. The reason to do this is to prevent possible
deadlocks caused by processes at a low priority keeping
locks for a long time.

The parameter PIXSCAN defines the number of
Process blocks to scan. This parameter plays an important
role in system performance. In fact processes which are
most of their time COM are usually compute-bound low
priority ones (most likely batch). So, if PIXSCAN is too
high, you risk to give them too easy access to the CPU,
with bad results for interactive performance.

A typical side effect of this is that if you have privileges
and you need to raise your priority up for a legitimate
reason, like investigating a system problem, or getting a
decent response out of PACMAN or STARWARS, then be
aware that you will bring up together with you a bunch of
people at random, including batch jobs every second.

The second joker in the list is the special parameter
IOTA.

A process normally runs for a CPU QUANTUM. But
most 1/0 operations require so little CPU that an 1/0
bound process may take too long to reach its Quantum

End. So, because some important actions like Working
Set Adjustment happen at Quantum End, the parameter
IOTA was introduced to cut the quantum shorter for
1/0 bound processes. The value of IOTA (def. 20 ms)
is subtracted from the quantum time left for every 1/0
operation.

The third joker is the fact that all this nice setup
goes completely berserk if there is one or more processes
in COMO state. In this case everyone will be taken down
to his base priority at every Quantum End.

The reason for that much violence is to give a chance
to the COMO guy to get back in memory sometime. This
may be correct in a machine which is totally interactive,
but causes incredible degradation in a wide job mix which
includes batch. It is absolutely unreasonable to slow
down 100 people editing just to swap back in a 12 hours
computing batch elephant.

To resume what we said so far:
A priority boost is linked to events that depend on

process or system context (I/0 completion, PIXSCAN).
Priority decrement instead goes along with CPU assign
ment, which in busy systems becomes random due to a
high pre-emption rate. In these conditions, the priority
decay speed becomes uncontrollable. This narrows the
distance between CPU and 1/0 intensive jobs, lining them
all back to their base priority too soon.

So, to make scheduling more effective and controllable
by the system manager, we tried to remove some of these
random factors.

In fact, the major effort for us was not in modifying,
but in understanding the dynamics of things; what was
going on exactly. The documentation tells you almost
nothing about it, and there are no utilities in the sky or
on earth that can help you monitor the reactions of the
VMS scheduler to different environments and parameters
settings.

VMS performance manuals kindly suggest to "acquire
more CPU capacity" if the CPU becomes saturated. That
in reality would not be necessary with a better scheduler.

Other major operating systems, that we have expe
rience of, don't kill interactive performance so drastically
when the CPU is hogged, and the reason is that they have
a deterministic scheduler, not a random wild dog.

To understand and solve the problem we set up
a team composed essentially of wizards with a long
background of experience on different operating systems
for large scale production.

We started writing some simple utilities to analyze
priority changes and measure their effects.

We finally found the solution to the VMS scheduler
problem in an ancient book of black magic written by
Hermes Trismegistos, who was the father of modern
Alchemy. In fact although Alchemy and Black Magic
have nothing to do with each other, the amount of
fantasy and blind faith which existed in both does bear a
remarkable resemblance to the techniques commonly used

314

by computer manufacturers when producing operating
systems.

Therefore like all good alchemists we attacked the
problem using the method of syllogism.

Syllogism is a demonstration method invented by
Aristotle, by which you can prove that a predicate is true
if obtained by inference from two true hypothesis.

All animals are mortal
Man is an animal
Man is mortal.

The first two statements are true, so the resulting
one is true as well.

All stones are made of elements
Gold is an element
All stones are made of gold.

In fact, the problem of turning stones into gold,
and the one of getting a good response time out of an
overloaded VAX are very similar, with the difference that
stones to gold is easier to do.

So we needed a slightly more powerful syllogism, and
therefore we used this multi-threaded, para-inferential,
phylo-exoteric syllogism of the 3rd kind:

A decrement is a punishment.
A punishment is to a crime.
A crime is abuse of CPU.
CPU is given in quantums.
A crime is abuse of quantums.
A decrement is for a quantum.

In other words, the more quantums you use, the more
you are CPU intensive, therefore criminal, therefore the
scheduler must punish you by decreasing your priority.

It is not a crime to lose the CPU when you are
pre-empted, but it is a crime to ask for it again and again
at every end of quantum. So we took our magic wand and
turned the random frog into a deterministic prince, by
decreasing the process priority at Quantum End instead
of at CPU assignment.

This makes the priority decay much more controllable
through SYSGEN parameters, and makes it easy for the
system manager to enhance the difference in decay speed
between CPU and I/O bound processes, through the
length of Quantum and the setting of IOTA.

315

To measure the results of our transmutation we
performed a "margin conditions" benchmark.

Figure 1: Benchmark

PITAGORA 100% cpu
ARCHIMEDES 90% cpu + disk
EUCLID 90% cpu + t/out
HERACLIT 90% cpu + t/in
DIOGENES 50% cpu + disk
ARISTOTELES 50% cpu + t/out
PLATO 50% cpu + t/in
SOPHOCLES 10% cpu + disk
EURIPIDES 10% cpu + t/out
DEMOSTENES 10% cpu + t/in

We used 10 jobs executing concurrently, and requiring
a fixed percentage of CPU, plus some sort of I/O (Fig.
1). These jobs were run all at the same time, in an empty
VAX 780 with default SYSGEN settings, and observed
running for 5 minutes by an home-written monitoring
program which was able to compute the real percentage
of CPU obtained by each of the jobs in the lot, as well as
its average priority.

Figure 2: VMS Scheduler

User CPU% Priority
ARCHIMEDES 6.21 5.00
EUCLID 6.18 5.19
HERACLIT 4.99 6.00
DIOGENES 5.65 5.31
ARISTOTELES 6.74 5.88
PLATO 8.66 6.71
SOPHOCLES 5.75 5.19
EURIPIDES 7.15 6.88
DEMOSTENES 14.74 8.35

Figure 2 shows the results obtained running with the
standard VMS scheduler, and Figure 3 those obtained by
the CERN modified version.

You can see that in standard VMS the differences in
percentage of CPU obtained are minimal, even between
jobs that have totally different attitudes: PITAGORA
is 100% CPU bound and gets 6.18% of the VAX CPU,
while PLATO, who is 50% CPU and 50% Terminal Input
oriented, gets a mere 2% more. The only job that gets a
reasonable attention by standard VMS is DEMOSTENES,
which is in fact an endless loop on keyboard read, with a
1 byte buffer. Hopefully there is nothing like that in real
life.

Figure 2: CERN Scheduler

User CPU% Priority

PITAGORA 3.38 8.63
ARCHIMEDES 3.22 8.69
EUCLID 4.66 9.13
HERACLIT 11.28 9.25
DIOGENES 4.00 9.19
ARISTOTELES 5.24 10.13
PLATO 30.92 11.50
SOPHOCLES 3.19 9.38
EURIPIDES 5.47 10.63
DEMOSTENES 16.68 12.06

In the CERN version instead (Fig. 3), you can see
that the larger percentage of the CPU goes to Terminal
Input bound users. These are the most interactive ones,
because a terminal input normally requires human (or
generally a speaking animal) intervention by a finger (and
brain too sometimes).

jFigure 4: Relative speed

PITA GORA 0.54
ARCHIMEDES 0.51
EUCLID 0.75
HERACLIT 2.26
DIOGENES 0.70
ARISTOTELES 0.77
PLATO 3.57
SOPHOCLES 0.55
EURIPIDES 0.76
DEMOSTENES 1.13

Figure 4 shows the "relative speed" (i.e. fig. 3
divided by fig. 2). You see that all Terminal Input jobs
run up to 3.5 times faster. In particular, PLATO and
HERACLIT represent a closer approximation to a full
screen editor, or a data entry system.

As a consequence, all the other Greeks slow down by
half or one third on our scheduler. What this shows really
is the limit which Terminal Input oriented applications
can get if working at a Kalatchnikov typing speed, and
proves that our scheduler is more sensitive to interaction
than the standard one.

Please note, however, that this is a "margin condi
tions" benchmark, not done with real life applications,
but with impressionist programs that are very specialized
in only one kind of operations.

PITA GORA, who lives full time in the CPU, with no
1/0 whatsoever, exists only in a mathematician's mind,
and DEMOSTENES can only exist if someone falls asleep
in EDT, with his nose on the RETURN key.

A real life job consists in fact of a mixtures of these
types of 1/0 operations, so it will get different kind of

316

boosts, at varying intervals, therefore smoothing down the
difference in the size of the buildings.

Also note that this benchmark was done with a
quantum value of 200 ms. A lower value will give extra
control on the CPU re-partition.

Our mod to the scheduler consists of a binary patch
to VMS. Which is a terrible thing to do.

Don't forget that patching the system makes you
blind, or worse, you lose the DEC Software Warranty.

So by this mortal sin we sold our soul to buy user
satisfaction.

And now we are wandering restless in the Depths of
the Fiery Caverns for System Managers.

I thank Eric Mc Intosh and Les Robertson for their
contribution in work and ideas, Hermes Trismegistos
(currently reincarnated in the body of Mike Dawkes) for
the magic formulas, and Alan Silverman for letting us all
infest his machines.

Evaluation of Third Party
VAX/VMS Disk Compression Products

Marian K Iannuzzi
Westinghouse Electric Corporation

Baltimore, Maryland 21203

ABSTRACT

A number of third party vendors have introduced disk
compression utilities which promise to eliminate the use of
BACKUP /RESTORE for · disk optimization. This paper
presents a detailed evaluation of three products with
emphasis on disk integrity, algorithms used and degree of
optimization obtained. Description of evaluation methods used
and benchmarks are included.

INTRODUCTION

This evaluation began in November 1986 as
an attempt to obtain an apples-to-apples
comparison of third party disk optimization
products. Any product to be tested in-house
needed to meet the following requirements:

- Must permit other disk access
- Interactive and batch modes
- No file characteristics changed
- Data integrity preserved
- Runs quickly
- Concurrent processing of multiple disks
- Volume and shadow sets handled
- Likely to work with future VMS

updates
- Gracefully handles unexpected events
- Optimizes free space and files
- No spare disk required

In December 1986, three products met the
pretest criteria, Squeezpak, Diskeeper, and
Rabbit-7 (figure 1). Defrag V2.0 was no
longer considered because information from
H&E Concepts stated "All file characteristics
(except FILE ID) are unchanged for moved
files ... ". Diskit/VMS was not further
considered since it operated only in an offline
mode. Demonstration copies of the
remaining products were obtained for a two
part evaluation: initial test and stress test.

Proceedings of the Digital Equipment Computer Users Society 317

INITIAL TEST

The initial testing was designed to quickly
identify any problems in the following areas:

- Product installation
- Ability to handle unexpected events

(power outages, etc)
- File header modifications
- Data integrity
- File and free space optimization

The preliminary test environment consisted of
a standalone V AXstation 11/GPX with two
RD54s, one for all logging and the other as
the test disk. The author was the sole user
of the system. The initial test was
comprised of two portions:

1) A bit-by-bit comparison of the disk
before and after optimization

2) Recovery from unexpected events.

A command procedure initialized the test
disk with a cluster size of one, then created
31 files:

Twenty of various sizes placed by
specific logical block number (LBN)
Ten one-block files placed by VMS
One 101-block file split into nine
one-block chunks plus one 92-block
chunk.

Anaheim. CA - 1987

The resulting disk was less than 1 % full
with one non-contiguous file (NCF). A
DUMP of each file on the disk was recorded
and each product was allowed one pass or
run. DCL DIFFERENCES was used to
compare the before and after DUMP files.
Anything flagged in the file header area was
carefully examined. Changes in the map
area, for example, would be acceptable while
a new creation date would not.

One item worth mentioning is that
Squeezpak "tags" all files that it moves, as
the relocated files are moved by exact
placement. Squeezpak sets a file character
istic bit in the file header area to indicate
on successive passes that a file was placed
by Squeezpak and not by a user. VMS
sources indicate that this bit is user
definable.

For the second portion of the initial test,
each product was interrupted during the file
copy phase by pressing the halt button,
pulling the power plug, and typing control-Y
in successive trials. The vendor's specified
recovery procedure was performed and the
disk was scrutinized for any anomalies.

All three products were easy to install,
successfully handled unexpected events, did
not damage any data, and files were
manipulated to eliminate the non-contiguous
file and to consolidate the free space.

ALGORITHMS

In an attempt to better understand how each
product attacked the optimization problem,
the strategy utilized by each was inspected.

Sgueezpak

Squeezpak's simplified algorithm has a two
step approach - all the file fragments are
collected to make as many files contiguous
as possible, and then the free space is
consolidated (figure 2). In the first step, a
list of all the non-contiguous files is made,
ordered by block size from the largest to
smallest. Scanning begins with the largest
file and continues through the entire list.
The file is moved only if enough free space
is available to make the file contiguous
(figure 3). If more than one such free space
exists, the file is moved to the one closest
to logical block zero.

318

In the second step, free space collection
begins at logical block zero and the entire
disk is scanned, stopping at each free space
(figure 4). When a free space is located,
one of two things can occur:

A) A file which has the same number of
blocks as the free space is moved to
fill the free space

OR
B) The file immediately following the free

space is "slid" or relocated into the
free space. This sliding of files
continues until two free spaces are
joined.

The overall result is that contiguous files are
positioned near the front of the disk and free
space near the end.

Diskeeper

Diskeeper's simplified algorithm (figure 5)
moves through the disk by file id.
Contiguous files are not moved unless doing
so makes the free space more contiguous. If
more than one area of free space exists
where a file could be made contiguous, the
area closest to the end of the disk is chosen.
Files that are not able to be made
contiguous are only moved if doing so results
in less file fragments. The overall result is
that contiguous files are positioned near the
end of the disk and free space near the
beginning.

Rabbit-7

Rabbit-7's simplified algorithm (figure 6),
begins with LBN zero and scans to the
largest LBN. When a free space is located,
the largest file that fits is moved into the
free space and the scanning continues. If a
file to occupy all or a portion of the free
space does not exist, the file immediately
following the free space is moved,
contiguously if possible, toward the end of
the disk. A larger free space is created and
again an attempt is made to find and move
the largest file that fits into the space.

When a file is located, if it is contiguous,
the scanning continues. If the file is
non-contiguous, it is moved toward the end
of the disk, contiguously if possible. This
creates two or more free spaces. The free
space with the lowest logical block number is

treated as any other free space
processing continues. The overall
that contiguous files are positioned
end of the disk and free space
beginning.

STRESS TEST

and the
result i:s
near the
near the

The stress test was performed under
controlled conditions to provide a valid
comparison. This environment consisted of a.
VAX 86XX, part of a three node cluster,
two RA81s, and an HSC70. The disks,
when used for the test, were mounted
privately. Actual user disk snapshots were
copied from tape through the HSC70 so
each product could have the same starting
point. The test cases were:

Al Single RA81
B Shadowed RA81
C Two-RA81 volume set

AND
D) Different single RA81
E) Different two-RA81 volume set

Test A was performed on a VAX 8600, all
others on a VAX 8650. Tests A, B, and C
were concluded in June 1987, and test cases
A, B and C destroyed. Since these
snapshots were no longer available when
new versions of Squeezpak and Diskeeper
were released in November 1987, the three
products were again tested using D and E.

Command procedures were used to collect
data before, during and after every pass of
the compression product. All journal, log
and report files were not written to the~
disk(s) being optimized. No spare disk wa.'3
provided for optimization. Directory files
were allowed to be moved and none of the
test disks contained any open files.

The disk analysis utilities provided by
each product, as well as VAX SPM and
DCL commands, were used to colled
additional and duplicate information. Each
product was allowed six consecutive passes
on each test case. The batch jobs were
executed in a dedicated, interactive priority,
system queue during light load periods -
evenings, nights and weekends.

RESULTS

Using the mythical "perfect" disk compression
product as a standard, it was hoped that

319

the following could be obtained: on a disk at
least 85% full, in one pass, return zero
NCFs, one free space equal in size to the
total number of free blocks on the disk, in
minimal run-time without user disruption or
system manager interaction. Conversely, the
number of NCFs and free spaces should not
increase and the largest free space should
remain constant. That is, a product should
NOT make a bad situation worse.

Some trends to keep in mind while reviewing
the results (figures 7-10):

- Mean extents/file should approach 1.00.

- Number of free spaces should approach
1, except on the volume sets.

- Mean blocks/free space and largest free
space should approach the same number,
the total number of free blocks on the
disk.

- File transfers are an indicator of the
amount of "work" done to accomplish
the results.

- Wall clock time is included only as a
rough guideline of what to expect in
similar situations.

CONCLUSIONS

The test results for the earlier versions and
the most recent versions demonstrate rapid
product development. Diskeeper version 1.3,
instance, made the free space less optimized
(figures 7 and 8), but this trend was
improved in version 2.0 (figures 10 and 11).

The actual number of non-contiguous files on
a disk still remains a mystery. Although
discussion with each vendor revealed no
differences in the definition of a non
contiguous file, it is obvious that the
variance is non-trivial. These results should
be used to better understand each product's
strengths and weaknesses and how each
might be exploited in a particular
environment.

While perfection remains elusive, safe,
reasonable disk optimization is attainable,
and offers significant advantages over the
traditional method of BACKUP /RESTORE.

Product Vendor Tested

Squeezpak Vl.2 DEMAC Software Ltd. YES

Diskeeper Vl.2 Executive Software, Inc. YES

Rabbit-7 Vl.O RAX CO Rabbit Software YES

Defrag V2.0 H&E Concepts NO - changes FID

Diskit/VMS Software Techniques Inc. NO - offiine mode only

Figure 1: Products Considered - Dec 1986

320

' -c
CJJ

r.; ·--c.
E ·-en

"'z #

E
..c: Q UI ·-
~ ... u z Cl)

0 ~
UI UI UI

..J :I ..J

b.O
(/)

..J u ~ - a < u.

<(
u a:

u.

...
u UI
UI

UI u
UI Q

N

..J < a: C5 ..

..J a.. <lJ

u. l-1

a Cl)
;:l
t'

u
.,.,
µ.,

~
ro
c.
N
QJ
QJ

= C"
en

321

w
N
N

Squeezpak -- Collect Fragmented Files

START

1 LIST NCF BY SIZE
(LARGEST TO SMALLEST}

2 FINO FIRST NCF ON LIST

N
~ ")I DO NOT MOVE

MOVE FILE TO SPACE
NEAREST FRONT OF 0 ISK

Figure: 3

.....
N

Squeezpak -- Collect Free Space
A

START AT LBN 0

> .. I END

MOVE FILE

SLIDE NEXT FILE

y

Figure: 4

....
N

"""

Diskeeper Algorithm (Simplified)

--~--1 FIND FIRST FID

MOVE TO SPACE y
NEAREST I< <

END OF DISK

y

N

"') ")I DO NOT MOVE

Fi~ure '. .5

y
MOVE CONTIG FILE:
1 TO EXACT MATCH

") 4 I FREE SPACE
DR
2 CLOSEST TD END

OF DISK

(;J

N
\JI

Rabbit-7 Algorithm

START

BEGIN AT LBN g AND
SCAN TOWARD LARGEST LBN

(Simplified)

MOVE POINTER TO
END OF FILE

.,__ ______ ___..,._._,.._ __________ ---4 MOVE POINTER TO

MOVE FILE TOWARD
END OF DISK, CONTIG
IF POSSIBLE

LOOK AT lST (LOWEST LBN)
FREE SPACE GENERATED

N

Figure: 6

ENO OF FILE

~ ~ MOVE IT

MOVE FILE FOLLOWING
FREE SPACE TOWARD END
DISK, CONTIC IF POSSIBLE

PASSES
0 1 2 3 4 5 6

NCF 4,404 765 674 671 671 670 670
Mean Extents/File 2.21 1.75 1.70 1.69 1.69 1.69 1.69
Free Spaces 7,809 7,474 7,391 7,361 7,357 7,350 7,347
Mean blocks/Free Space 15 16 16 16 16 16 16
Largest Free Space 240 901 901 1026 1026 1026 1026
File Transfers --- 16,101 2,855 688 238 235 173
Elapsed CPU Time • --- 33:44 24:51 13:39 13:32 13:29 12:56
Elapsed Wall Clock • --- 6:00:43 6:30:39 3:33:18 3:20:38 2:20:24 1:43:52

Sgueezpak Results Version 2.0a - Single RA81

NCF 4,453 408 353 335 334 331 322
Mean Extents/File 2.21 1.57 1.53 1.52 1.52 1.52 1.51
Free Spaces 7,809 7,925 5,868 5,595 5,591 5,628 5,723
Mean blocks/Free Space 15 14 20 21 21 20 20
Largest Free Space 240 196 434 240 240 242 240
File Transfers --- 17,997 11,236 8,244 5,148 389 3,271
Elapsed CPU Time • --- 13:28 11:33 9:36 8:47 7:43 8:16
Elapsed Wall Clock • --- 3:51:22 2:19:04 1:41:13 1:03:32 13:09 43:34

"' Diskeeper Results Version 1.3 - Single RA81 N
C'I

-
NCF 4,405 1 1 1 1 1 1
Mean Extents/File 2.21 1.00 1.00 1.00 1.00 1.00 1.00
Free Spaces 7,809 17 17 17 17 17 17
Mean blocks/Free Space 15 6,929 6,9296 6,929 6,929 6,929 6,929
Largest Free Space 240 60,720 60,720 60,720 60,720 60,720 60,720
File Transfers --- 13,860 29 0 0 0 0
Elapsed CPU Time • --- 17:41 2:31 2:28 2:32 2:31 2:28
Elapsed Wall Clock • --- 3:31:50 13:48 13:14 13:14 13:16 13:14

Rabbit-7 Results Version 1.03{ - Single RA81

Environment: Run on VAX 8600 - system batch queue; disk 86. 7% full; cluster size=l;
analyze/ disk /repair performed before compression .

• rounded to the nearest second

Figure 7: TEST CASE A RESULTS

PASSES
0 1 2 3 4 5 6

NCF 290 4 2 2 2 2 2
Mean Extents/File 1.03 1.00 1.00 1.00 1.00 1.00 1.00
Free Spaces 175 44 37 38 33 32 38
Mean blocks/Free Space 219 869 1,034 1,007 1,159 1,195 1,007
Largest Free Space 8,240 8,819 8,502 7,111 7,046 9,072 14,662
File Transfers --- 2,576 424 148 130 136 140
Elapsed CPU Time • --- 5:37 3:43 3:31 3:33 3:31 3:28
Elapsed Wall Clock • --- 1:09:04 21:40 17:57 16:26 17:51 17:24

Sgueezpak Results Version 2.0a - Shadowed RA81

NCF 292 5 4 4 4 4 4
Mean Extents/File 1.03 1.00 1.00 1.00 1.00 1.00 1.00
Free Spaces 175 525 163 169 169 169 169
Mean blocks/Free Space 219 73 235 226 226 226 226
Largest Free Space 8,240 3,246 3,246 3,246 3,246 3,246 3,246
File Transfers --- 4,968 2,818 380 0 0 0
Elapsed CPU Time • --- 3:00 3:48 2:17 2:18 2:18 2:17
Elapsed Wall Clock • --- 1:11:38 34:04 6:25 2:42 2:40 2:40

w Diskeeper Results Version 1.3 - Shadowed RA81 N
-.J

NCF 291 3 3 3 3 3 3
Mean Extents/File 1.03 1.00 1.00 1.00 1.00 1.00 1.00
Free Spaces 176 3 2 2 2 2 2
Mean blocks/Free Space 217 12,750 19,124 19,124 19,124 19,124 19,124
Largest Free Space 8,240 35,855 35,854 35,854 35,854 35,854 35,854
File Transfers --- 2,330 2 0 0 0 0
Elapsed CPU Time • --- 3:37 2:06 2:04 2:06 2:08 2:05
Elapsed Wall Clock • --- 38:26 11:10 11:00 11:05 11:02 11:01

Rabbit-7 Results Version 1.03f - Shadowed RA81

Environment: Run on VAX 8650 - system batch queue; disk 95. 7% full; cluster size=l;
analyze/ disk/repair performed before compression.

* rounded to the nearest second

Figure 8: TEST CASE B RESULTS

PASSES
0 1 2 3 4 5 6

NCF 3,318 450 0 0 0 0 0
Mean Extents/File 1 1 1 1 1 1 1
Free Spaces 7,420 1,320 109 65 58 44 40
Mean blocks/Free Space 35 202 2,437 3,988 4,474 6,091 6,628
Largest Free Space 2,348 20,197 100,585 51,047 47,228 61,137 59,172
File Transfers --- 39,951 13,808 538 406 394 364
Elapsed CPU Time • --- 30:33 18:34 7:56 7:50 7:40 7:39
Elapsed Wall Clock • --- 6:17 3:26 46:39 42:09 40:42 39:30

Sgueezpak Results Version 2.0a - Vol Set

NCF 3,334 132 34 29 29 29 29
Mean Extents/File 1.21 1.04 1.02 1.02 1.02 1.02 1.02
Free Spaces 7,420 6,042 3,976 3,850 3,826 3,820 3,821
Mean blocks/Free Space 35 43 64 66 67 67 67
Largest Free Space 2,348 7,385 6,991 5,717 5,707 5,717 5,717
File Transfers --- 36,322 16,567 6,249 864 73 6
Elapsed CPU Time • --- 16:28 15:08 11:18 11:47 14:12 13:53
Elapsed Wall Clock • --- 3:38:58 1:36:38 42:46 29:35 59:38 34:44

~ Diskeeper Results Version 1.3 - Vol Set
N
00

NCF 3,328 11 10 10 10 10 10
Mean Extents/File 1.22 1.00 1.00 1.00 1.00 1.00 1.00
Free Spaces 7,420 5 2 2 2 2 2
Mean blocks/Free Space 35 129,589 129,589 129,589 129,589 129,589 129,589
Largest Free Space 2,348 123,239 129,589 129,589 129,589 129,589 129,589
File Transfers --- 21,069 3,016 0 0 0 0
Elapsed CPU Time • --- 23:34 10:01 7:44 7:43 7:45 7:51
Elapsed Wall Clock • --- 4:11:39 1:06:50 42:32 42:37 42:33 42:38

Rabbit-7 Results Version 2.0 - Vol Set

Environment: Run on VAX 8650 - system batch queue; volume 92.7% full; cluster size=l;
analyze/disk/repair performed before compression .

• rounded to the nearest second

this data represents 2 RA81s, therefore perfection in free spaces = 2

Figure 9: TEST CASE C RESULTS

PASSES
0 1 2 3 4 5 6

NCF 5,896 387 161 128 122 117 117
Mean Extents/File 3.02 1.96 1.60 1.54 1.54 1.50 1.49
Free Spaces 12,198 10,369 8,295 7,919 7,861 7,478 7,399
Mean blocks/Free Space 17 19 24 25 25 27 27
Largest Free Space 690 2,371 6,215 1,802 2,228 1,012 1,183
File Transfers --- 18,692 1,989 323 26 438 12
Elapsed CPU Time • --- 42:10 19:58 13:33 12:41 14:12 12:28
Elapsed Wall Clock • --- 5:49:47 3:11:56 1:59:59 1:54:02 3:43:52 2:17:40

Sgueez2ak Results Version 2.ly - Single RA81

NCF 6,029 666 162 30 2 1 1
Mean Extents/File 3.02 1.24 1.01 1.01 1.00 1.00 1.00
Free Spaces 12,198 5,487 1,047 261 96 36 19
Mean blocks/Free Space 17 37 194 781 2,123 5,662 10,729
Largest Free Space 690 392 1,832 3,632 12,077 24,677 34,798
File Transfers --- 10,452 4,276 1,934 694 1,544 302
Elapsed CPU Time • --- 38:01 8:55 3:00 00:48 1:44 00:22
Elapsed Wall Clock • --- 3:19:25 1:09:06 32:13 13:48 16:30 4:50

"' Diskeep~r Results V:ersion 2.0 - Single RA81 N

"°
NCF 5,902 34 20 20 20 20 20
Mean Extents/File 3.02 1.19 1.19 1.19 1.19 1.19 1.19
Free Spaces 12,198 1,098 1,042 1,014 1,040 1,039 1,038
Mean blocks/Free Space 17 186 196 196 196 196 196
Largest Free Space 690 13,489 13,489 13,489 13,489 13,489 13,489
File Transfers --- 15,860 103 70 15 15 15
Elapsed CPU Time • --- 15:56 2:40 2:40 2:39 2:37 2:38
Elapsed Wall Clock • --- 3:05:36 14:28 14:02 13:36 13:37 13:42

Rabbit-7 Results Version 2..:,Qg - Single RA81

Environment: Run on VAX 8650 - system batch queue; disk 77% full; cluster size=l;
analyze/disk/repair performed before compression.
* rounded to the nearest second

Figure 10: TEST CASE D RESULTS

PASSES
0 1 2 3 4 5 6

NCF 12,095 1,178 687 632 507 506 463
Mean Extents/File 2.04 1.55 1.42 1.37 1.36 1.35 1.35
Free Spaces 17,879 14,172 14,046 12,975 12,665 12,400 12,303
Mean blocks/Free Space 10 13 13 14 15 15 15
Largest Free Space 966 5,729 3,749 1,782 1,000 1,406 1,298
File Transfers --- 33,138 24,970 16,147 12,788 9,498 7,583
Elapsed CPU Time * --- 78:12 43:02 30:57 26:40 25:54 25:29
Elapsed Wall Clock * --- 11:50:58 11:03:36 5:23:08 4:31:42 4:48:18 7:22:00

Sgueez12ak Results Version 2.ly - Vol Set

NCF 12,183 1,613 1,182 941 794 697 614
Mean Extents/File 2.04 1.6 1.15 1.06 1.04 1.03 1.03
Free Spaces 17,879 9,430 3,804 1,890 1,320 1,145 706
Mean blocks/Free Space 10 19 47 96 138 192 258
Largest Free Space 966 1,001 504 573 1,013 962 1,805
File Transfers --- 122,158 8,397 5,702 4,582 4,170 3,724
Elapsed CPU Time * --- 1:09:34 29:26 18:30 11:11 8:12 6:17
Elapsed Wall Clock * --- 1:09:34 29:25 18:30 11:11 8:12 6:17

w Diskeeper Results Version 2.0 - Vol Set w
0

-
NCF 12,129 27 17 17 17 17 17
Mean Extents/File 2.04 1.04 1.04 1.04 1.04 1.04 1.04
Free Spaces 17 ,879 564 339 340 340 340 340
Mean blocks/Free Space 10 343 3,356 3,355 3,355 3,355 3,355
Largest Free Space 966 46,102 99,837 99,837 99,837 99,837 99,837
File Transfers --- 31,906 3,094 1 0 0 0
Elapsed CPU Time * --- 41:47 8:59 6:45 6:40 6:43 6:46
Elapsed Wall Clock * --- 7:54:27 1:08:49 35:38 35:35 35:35 35:35

Rabbit-7 Results Version 2.Qg - Vol Set

-
Environment: Run on VAX 8650 - system batch queue~ volume 89. 7% full; cluster size=l~

analyze/disk/repair performed before compression.

* - rounded to the nearest second

this data represents 2 RA81s, therefore perfection in free spaces = 2

Figure 11: TEST CASE E RESULTS

VMS DISK PERFORMANCE
WcfFleisclunan

UIS/Software Techniques, Inc.
DECUS Anaheim, Fall 1987

ABSTRACT

Disk performance wider VMS is determined by many factors. This article surveys the most important factors
wider the system manager's control. The efficiency of the VMS file caching system also contributes to file
throughput and so this topic is covered in some detail. By understanding the basis of disk performance you can make
the most intelligent tuning decisions about managing your VAX system. The following text is a transcript of a
DECUS presentation given at the Anaheim, Fall 1987 symposium.

INTRODUCTION

It seems that no mattcl' how many advances arc made in computer
technology one thing always surfaces as a top wish-list item: make the
system run/aster.

Today, I would like to talk about several aspects of VMS disks that
probably interest you. At every DECUS, for the past several years, fvc
talked about different aspects of disk optimization, none quite the same. I
don't like to repeat material because it gets tiring to both you and me.
Therefore, those of you who may have attended my sessions before arc in
luck because I plan to address some topics that have not been discussed in
detail before. These arc areas that will become commonly debated in the
future.

Figure 1 summarizes the basic areas of my talk today.

TOPICS

• Disk performance factors

• Cache performance

• Evolution of structuring software

• Some internals

Figunl

As compared to a few years ago, when there was very little concern
about disk performance, today we've grown up and realized that disk
performance problems arise on au systems, from time to time, and good
system managers must maintain a constant vigil. The hope is that by
learning to recognize the tell-talc signs of disk performance problems, we
will be prepared to deal with the problems effectively.

Why has disk performance become such a hot topic? Part of the
reason is that VAXes arc being used in increasingly demanding
environments, more challenging than even two years ago. And as we
become more demanding, the more performance becomes a decisive factor.
With these increasing needs, system managers have become more skillful
and creative in finding techniques to squeeze out more throughput.

My first objective today is to review five basic disk performance
factors that you may or may not have already heard something about.
Second, most of you, if not all, are aware that there arc third-party tools
available to help optimize disks in various ways. But you need answers to
the questions of: "Which tool is best for me?" and ''What features will
make the job of system management easier?"

As one of the veterans who's studied disk performance for many years,
I hope to be able to share some of the history and evolution of disk
structuring software with you now. I think it's interesting to sec how far
we've come in this technology, and how the most recent techniques in-use
are becoming inaeasingly important.

The technology that is just breaking today is what you and I have
come to DECUS to hear about. It is my hope that you will come away
from this session with a good working knowledge of the technical issues
involved in disk performance managemenL

Proceedings of the Digital Equipment Computer Users Society 331

FILE PLACEMENT

The location of active files has an important effect on disk
performance. Disks arc mechanical devices, so it takes time to move the
heads to the correct cylinder and to wait for the desired sector to rotate into
position for reading or writing.

If two files, that arc often used (such as those shown in Figure 2), arc
located right next to each other, the throughput of the disk is the best
possible. Consequently, all users of the disk benefit.

However, if these same two files arc located many cylinders apart, the
disk makes the user wait for the heads to seek from one position to
another, lowering the disk's throughput and tying it up from performing
other user's requests.

9)

Figure2

I would like to share a benchmark which I performed to quantify the
effect of file placement on disk throughput.

A small test program repetitively read one block from the disk at one
location, and then a block from another location on the disk. This
simulated the disk operations that occur when accessing two files located at
different places on the disk. After 1000 iterations, the elapsed time was
recorded for each of three different disks on a Miao VAX.

The first disk tested was a Fujitsu 2242 disk, 61 megabytes in size.
Note in Figure 3 that when the two files were close to each other it took
around 30 seconds to complete 1000 iterations. As the separation distance
was increased, this elapsed time increased to about 8 times this amount.
The time increased roughly proportional to the seek distance between the
files.

I also wanted to demonstrate the effect on a Digital disk, so I then
benchmarked a 71 megabyte RD53 drive. Again, very similar results were
observed, as shown in Figure 4.

Lastly, I performed the identical benclunark on a very high
performance drive, a CDC 9772 XMD. This drive is very large (858
megabytes) and known to be quite fast. This disk showed basically the
same characteristics as in the previous two examples. When the separation
of the data was minimal, it still required about 30 seconds to complete the
benchmark. When widely separated, it took longer.

It's worth noting that in the last test, the worst separation was faster
than that for the other disks, despite the fact that the CDC 9772 XMD disk
is over 800 megabytes while the other disks were both less than 100
megabytes.

Anaheim, CA~ 1987

VMS Disk Performance

180

140

120

Time 100

(sec)
80

80

40

20

180

120

Time 100

(sec) 80

180

140

120

Time 100

(sec) 80

80

40

20

Throughput vs.
Adjacency

·=·:·:-··.··:
:::::::

Fujitsu 2242 I 61 MB
23,000 blocks I division

Figure3

Throughput vs.
Adjacency

RD53 71 MB
27,600 blocks I division

Figure4

Throughput vs.
Adjacency

CDC 9772 XMD 410 MB
170,000 blocks I division

Figure5

The moral to be learned here is: faster dis/cs can better hide the effects
of randomly separated files. Faster disks can be left with more scattered
data and the performance impact will be less painful. The converse is also
true: the slower a disk is, the more important it is to worry about file
placement.

Now that we have established the importance of file placement, the
next task in rum is to identify the files that are being accessed the mosL
This allows you to concentrate your efforts on their placement. You
should, of course, first use your own knowledge about your particular
applications and how users run them on your system. This will probably
lead you to the conclusion that certain key files are accessed regularly;

Page 2

write these files down as deserving special attention. 'Then consider a
second category of files: those that the VMS operating system accesses
often. These files also benefit from being placed optimally. The files to
consider are summarized in Figure 6.

HEAVILY ACCESSED

SYSTEM FILES

• Pageflles, awapfllea

INDEXF.SYS, BITMAP.SYS

Directory files

• Shareable Images

SYSUAF.DAT, VMSMAIL.DAT

Figure6

'The single most-used files on a VMS system are the pagefiles. If
your system lacks bountiful memory resources, the swapfiles may be
utilized often as well. The volume directory structure, stored in .DIR files
are also often referenced. Those files common to many users (such as
system directories like SYSEXE) may be re-read many times. Note that
directory files are accessed so often that the Files-11 Extended QIO
Processor (the XQP) stores as much of them as possible in the directory
cache. The cache is not large enough to store all directories, however, and
so placement of the directory files should not be overlooked. I

As shown, other files that tend to be accessed regularly are the system
and network authorization files, the proxy database and VMSMAIL.DAT.

When yo~ have identified t?e files to be placed for optimum accessing,
the next question you must ask 1s: "WhereT' 'The center (see Figure 7) of
the disk is the most optimal file placement. This is because it takes the
least amount of time and distance, on average, to reach the center of the
disk. In addition, when a heavily accessed file is located centrally it takes
less time to make excursions to other files. '

WHERE IS THE "MIDDLE"

OF THE DISK?

Figure7.

~-· ''Uo'' 'Uoo
Cylinder #

Once you have determined the important files and you've decided on
the best location for them, how do you get them there? VMS is,
unfortunately, somewhat incomplete in its ability to allow you to
accomplish this.

Creation of template files using File Definition Language (FDL) can
be used. The POSITION keyword allows you to declare where on the disk
to locate your file. Figure 8 below shows a minimal FDL file that could
locate a specific file precisely at block 25000 of a disk. But FDL cannot
help you if some file is already located at the desired location. It also is
unable to defme and move directory files, so their placement cannot be
accomplished at all using this method.

1 For more on directory cache performance sec below.

332

VMS Disk Performance

FILE

AREA 0

PLACING A FILE USING
CREATE/FOL

NAME

ALLOCATION
EXACT POSITIONING
POSITION LOGICAL

Figure8

"NAME"

cSIZ8>

YES
25000

The lack of standard VMS tools was one of the prime motivations for
the development of third-party software to perform such functions.

FILE FRAGMENTATION

The next performance factor I would like to discuss is the level of file
fragmentation: i.e., the breakup of single files into many smaller pieces
that are distributed across the disk. This is a normal outcome during
normal VMS operation for disks that undergo file creations, deletions,
extends and b'Uncates (which includes just about every disk ever attached to
a VMS system). All of these operations are carried out by the XQP, so as
to be completed as quickly as possible, rather than spend undue time and
overhead finding the best available location. Tilis is necessary because it
can sometimes take a considerable amount of extra time to determine the
best place to locate a new file. Generally, the user wants a file allocated as
fast as possible. An undesirable side effect, however, is that individual
files become scattered across the entire surface of the disk. Believe it or
not, a new file will be broken into multiple fragments in many cases even
if there's room available to allocate it contiguously.2

Fragmented files slow disk performance due to two effects: split 1/0
and window turns. Each is discussed briefly below, along with the best
method to measure each.

Split 1/0 occurs when a portion of a file that you wish to read or write
is not located on the disk adjacmtly. Tilis is not apparent to the
application program because VMS supports the notion of virtual disk
storage. The thinking that the blocks of data files are located together is
only an illusion, however. File segments that a user thinks are contiguous
are sometimes split across the disk in a thousand pieces. To support the
illusion, VMS performs multiple 1/0 operations behind the scenes to
satisfy what the user thinks of as a single operation.

How much does split 1/0 affect your system? It depends on your
system, but it is not unusual for split 1/0 to lengthen processing by 300%
on a badly fragmented file or more.

Unfortunately there is no convenient utility in VMS to measure the
number of split I/Os. You can, however, measure the total number of
split I/Os that have been processed by your entire system since it was
booted and thus collect at least a coarse measure. This procedure simply
involves using ANALYZE/SYSTEM and examining a special statistics
cell maintained by VMS. The procedure for this is shown below:

$ SET PROCESS/PRIVILEGE=CMKRNL
$ANAL 'YZE/SYSTEM
SDA> EXAMINE PMS$GL_SPLIT
PMS$GL_SPLIT: 00005243 "8 ... "

This example shows that 5243 hex (or21,059 decimal) split I/Os have
occurred on this system since it was booted. By observing this statistic
over time, and subtracting the difference in the PMS$GL_SPLIT value,
you can begin to know if split I/O is a problem on your system and further
understand what particular user operations might be leading to it.

File fragmentation also leads to a second form of avoidable overhead:
window turning. This is an operation the XQP performs when it does not
already know the whereabouts of a requested file block. When this happens
VMS stalls the user temporarily and reads the volume index file for the
necessary relrieval information.

In practice, high window tum rates are unusual but can be measured
with the command:

2nus is largely the result of the operation of the extent cache, discussed
in more detail in a later section.

Page 3

$MONITOR PCP

By the time the system window tum rate exceeds five per second,
though, disk files are probably so highly fragmented that the split 1/0 rate
has soared, too. In such a case, severe performance degradation is almost
always observed.

A specific file's level of fragmentation can be ascertained with the
DUMP/HEADER command. Tilis utility produces a list of each fragment
and shows where each is stored on the disk.

In addition, we have written a utility we call PRAG that produces a
report of the fragmented files on a given disk, sorted so that the worst
fragmented files (the ones we're most concerned about), appear f1rst. (See
Figure 9.) Notice that for the worst fragmented files, a number is shown
inside parentheses after the number of fragments: this designates the
number of additional file headers (known as extension headers) needed by
the XQP to store all the retrieval information for the file. These extension
headers are generally required when a file has a hundred or more fragments. 3
The presence of extension headers is also a strong indication that moderate
to severe file fragmentation is present.

FRAG Displays the

Worst Fragmented Files

Fragmant
count (ext) Wor11t 100 Fragmented Flies:

252(2) (00,001]BCKMGR.LOQ ;348
101(1) [SYSTEM)SWAPFILE.SYS;1
27 [001,001)BCKMGR.LOG;347
22 [001,001)BCKDUB1 .LOG;3
22 [SYSTEM]ERRLOG.SYS;1
21 [WEF)DISKIT _DSU.EXE;10
18 [DMP[TESTO.PHYS;2

Figure9

A number of remedies can be used to correct file fragmentation. One
simple way is to use the COPY command. In the process of copying a
file from one location to another, the file may become less fragmented-
depending on the nature of the free space available on the volume at the
time. CREA'IE/FDL allows much more control in allocating files as
contiguous (as well as placing a file at a particular location on the disk, as
mentioned before). But CREA'IE/FDL is still not very convenient for use
on regular basis for all the files that need to be defragmented. Again, this
formed the motivation to develop special software specifically designed to
perform file defragmentation.

FREE SPACE COMPACTION

The organization of a disk's free space can be important, as well, for
two main reasons: First, when a new file is created, VMS has no choice
but to allocate whatever space is left on the volume for the file. If the free
space is fragmented at the time that the allocation request is received, VMS
has no choice but to fragment the file from its very first allocation.

Second, some application programs require contiguous free space for

operation, and lack of contiguous free space is a constant nemesis.4 On
such systems, the free space must be carefully managed to allow the
application software to do its job.

The traditional technique for dealing with free space fragmentation is
to take the disk out of service and use the BACKUP utility to perform a
time consuming backup and restore operation, yielding yet another
explanation for the development third-party software to ease this
inconvenient management chore.

DISK CHARACTERISTICS

Last, but not least, the performance characteristics of the disks you

3Extension headers can also appear if you use ACLs or RMS journaling
extensively on your system.

4The most notable example of this is Intergraph VAX systems which
require contiguous free space for hardware-mapped graphic design files.

333

VMS Disk Performance

have on the system, and those that you are considering purchasing foc your
system in the future, have significant bearing on disk throughpuL 'There
are a vast array of features and capabilities (see Figure 10). offering
performance that can range within an entire order of magnitude. The most
important perfocmance parameter is average access time.

DISK CHARACTERISTICS

Access time

Seek optimizations (MSCP)

Special features

Figure 10

Some disks offer special performance-related features as well. Digital
disks that use the MSCP protocol incocporate a feature known as "elevator
seek optimization." This feature comes into play on disks that handle a
continuous and heavy load of I/O (e.g., a minimum of three pending
requests at all times). Some moce exotic disks offer integral RAM caches
for speeding access to disk blocks that are used often and repeatedly.

Most disks, nowadays, also incaporate error correction features. This
is a big advantage in making drives more reliable, but something you may
not have thought about is that error correction can slow throughput. This
sense of security can lull the unsuspecting system manager into believing
that all is well with the disk when, in fact, it is progressively nearing a day
of disaster. If you've ever grappled with an apparent perfocmance loss on a
disk and a user innocuously asked you why there's a five digit number in
the error count field of a$ SHOW DEVICE display, you may have just
solved your performance problem.

CACHE TUNING

The last area of disk performance optimization I'd like to talk about is
the tuning of the file system cache. This is a subject that deserves your
attention, especially if the system you manage is not typical, because this
is the only (and rare) case for which VMS comes already optimized. As
you will see, VMS does not make all-knowing adjustments to cache sizes
for youS -- you must incorpocate your knowledge of how your system is
configured, and applied by your users, to effectively maximize your system
efficiency.

If you call Digital and ask their advice on cache adjustments they're
very likely to recommend that you just run AUTOGEN and accept its sole
advice. Many software support specialists consider it absolute heresy to
try to improve on these calculations. However, in reality, AUTOGEN is
quite primitive, and works best if it works along with you.

AUTOGEN bases all of its decisions concerning cache on two factocs,
and is oblivious to other important information: 1) the BALSETCNT
parameter (the maximum number of processes concurrently kept in
memory), and 2) the number of disks on the system. Both of these are a
good starting point-- after all, the higher your balance set, the greater your
probable need for cache space to accommodate the buffers for file system
requests. Likewise, the greater the number of disks, the greater the
probable need for cache space for processing each. But this is fallible and
simplistic.

The need for cache space is not simply based on the number of users
on the system-- it depends, more accurately, on the number of file requests
the system must process. ~user who repetitively opens & closes files
represents a far greater load to the system than ten who stay logged in to
the same application program all day. Also, counting the number of disks
does not necessarily reflect the correct amount of cache space needed. The
number of disks that are actually mounJed is important. What happens if
you have only one disk and it is heavily used? What happens if you forget
to run AUTOGEN after you've added disks? AUTOGEN doesn't take into

5Digital has confirmed that in the next major future version of the VMS
(VS.0) AUTOGEN will adjust cache sizes somewhat, based on actual
user activity. However, this will be done in a conservative fashion,
and will preferentially reduce cache sizes rather than expand them.

334

Page 4

account MSCP-served disks on other nodes of a cluster, yet they occupy
cache space just as do local disks. It is quite possible for your cache space
to be underestimated foc a number of such reasons.

So, if your users submit a higher than average number of file system
requests (e.g., a typical educational site with many interactive student
accounts), or if you are in a cluster, you may benefit significantly from
inaeasing the size of your caches. Even if you consider your system to be
nocmal, you may be able to achieve noticeable improvement through cache
enlargemenL

Why not increase the cache sizes infinitely? If your system is low on
memory (i.e. page faults heavily) then cached data ties-up paged pool.
This may lead to heavier system working set paging or user process
paging. On a typica111nso with 3 RMOS's and a balance set of 30,
AUTOGEN selects a cache of 512 pages, or about a 1/4 of a megabyte. If
the 780 has less than 4MB of total memory-- its probably best to stick
with AUTOGEN's computation. If you have 6MB or moce, though, you
can probably increase perfocmance by increasing the cache size.

The best way to determine if you have enough free memory to
consider dedicating some to additional cache is to monitor the size of the
free page list. If substantial numbers of free pages exist in excess of the
SYSGEN parameter FREELIM, then you probably should be considering
an increase to the size of cache.

Inaeased cache size can also be detrimental due to another effect:
greater numbers of cache buffers imply increased searching, and higher
demands on the CPU. This is generally not an observed problem,
however, since most machines have an ample surplus of CPU time
(usually several percent) to use for cache management. This may become
even less of a concern in the future as moce and moce VMS systems
operate in the multi-processing environment. On such systems, surplus
CPU time should be even more available.

In summary, with additional unused memory on the FREELIST,6 and
several percent extra CPU resources, there is no detriment to doubling or
quadrupling the cache sizes computed by AUTOGEN.

Note that if you increase the demand on paged pool by inaeased the
cache sizes, you may be defeating yourself unless you also adjust the
system wocking set size. It would be ironic to create a larger cache only to
have most of it paged out when most needed! This is AUTOGEN's main
function in life: to ensure that the SYSGEN parameters are consistent
with one another. The proper procedure to ensure this is always to make
your trial adjustments in MODPARAMS.DAT, and then run AUTOGEN
to allow it to adjust any other affected parameters and so be consistent with
your changes. In this way, you and AUTOGEN can work together to
achieve better performance.

I will be the first one to admit that fm far from knowing everything
about VMS's caching system, but I think that by sharing some of my
experiences with you I can demystify the various file system caches so you
can better understand their functions. This can help you predict the
changes in performance that should result from tuning.

I should mention how the following benchmark numbers were
collected. First, the benchmarks were taken with everyone off the system.
This made it possible, in some cases, to use elapsed time as the
performance indicatoc. Second, in order to control the caching parameters,
I mounted the test disks test with the /PROCESSOR=UNIQUE qualifier.
This sets up a private cache just for the disk under tesL (Normally, the
XQP shares the cache area across all disks mounted on the system for
easier management of cache memory.)

One last note: if you run the SYSGEN utility and use the
SHOW/ACP command, you receive a tidy list of all of the cache control
parameters. In addition, note that most of these are "dynamic" parameters.
This means that they can be adjusted while the system is up and running.
This is true in one sense and false in another. True, the XQP will honor
changes you make to the caching parameters the next time it builds a new
cache, but this is false in the sense that it will not effect any caches that
are already builL This means that, in general, the parameters are not really
dynamic because the single central cache is built one time only-- when the
system is booted. (Which was fine for my purposes because I wanted to
rebuild the cache every time I mounted a new test disk anyway.)

THE BITMAP CACHE

There are actually two "caches" associated with the volume allocation
bibnap, BITMAP.SYS (see Figure 11). A BITMAP.SYS file on every
disk denotes the blocks are currently free or in use. The BITMAP is the
on-disk record of what is and is not currently in use on the disk.

6see $MONITOR MEMORY for this statistic.

VMS Disk Performance

BITMAP.SYS CACHES

allocate

EXTENT
CACHE

BITMAP
CACHE

1-F~~-r'""I!:!:
deallocate

64
up to 10%

2 * disks
(8 min)

Figure 11

The file system keeps blocks of the bitmap in memory (in the
BITMAP cache) to speed new file allocation and file extension. When an
allocation request is received, the system must scan this bitmap, looking
for enough free bits to satisfy the request. If the block of the BITMAP
that is contained in cache doesn't have sufficient space, other blocks of the
BITMAP file are read and scanned until the request can be satisfied.

Because this scanning process itself can require significant time, the
XQP keep~ a list of recently deallocated space. It uses this list first, if it
can, to satisfy new allocation requests. Tills list is called the extent
cache, although this term is somewhat of a misnomer because it's not a
cache in the traditional sense at all. More aptly, it might be described as a
"look-aside" list.

EXTENT

expedites allocation &
deallocation requests

+

CACHING

tends to lead to
fragmentation

Figure12

An interesting property of the extent cache is that it tends to create file
fragmentation. Since the extent cache is checked firs/ for space to allocate
to new files, the space allocated may not be the best suited for that file. It
is not uncommon to see the XQP allocate several non-contiguous pieces of
free space from the extent cache for a new file, even when enough space
would have been available for a contiguous allocation, if the XQP had
bothered to check the bitmap file.

I performed a benchmark to see the effect that the size of the bitmap
cache (controlled by the ACP _MAPCACHE SYSGEN parameter) had on
allocation and deallocation requests. I chose a disk that would not be
accessed by other users during the benchmark. The disk had about 15,000
free blocks that were known to be dispersed over the entire disk. I then
allocated and deallocated a 15,000 block file 30 times and measured the
total time required. The results of this benchmark are presented in Figure
13.

335

Page 5

Allocation of
Remaining Free Space

Time
(sec.)

7:40

7:20

7:00

6:40

6:20

T 'r=1 ~

1,1 .. ··' =1_ ... =1_ ... =1 ~ii ... =~_ ... =~ ... =~ ~~~

BITMAP size
(31 blocks)

j;JHr;mJj]
6:00 1 10 20 30 40 50

ACP_MAPCACHE

Figure 13

As can be seen from Figure 13, the time deaeased as more and more
blocks of the BITMAP file were allowed to become resident in the cache.
For some unexplained reason, however, the performance continued to
improve even past the point where the entire bitmap file should have
become resident (this disk's BITMAP file was 31 blocks in size).

AUTOGEN does not adjust the extent cache size and limiL These
usually set at 64 extents and 10% of the disk size simply because these are
the default values that come with all VMS and Micro VMS systems.
AUTOGEN allocates 2 blocks pee disk it sees attached to the system for
ACP _MAPCACHE.

My general recommendation is to allow a larger ACP _MAPCACHE
value than the one that AUTOGEN computes. It is highly likely that the
system will need more than two blocks of each bitmap file, especially if
space on the disk is nearly exhausted (which also induces more frequent and
more extensive bitmap file searches).

When free space becomes scarce, allocation requests become more
difficult to satisfy because the XQP must check all blocks of the bitmap
file to find a sufficient amount of space. This is another reason why the
extent cache has become an integral part of the bitmap caching system.
The extent cache alleviates the need for the system to scan the bitmap file
for space, especially if the same size allocations and deallocations are
routinely requested.

THE HEADER CACHE

There are two caches for file headecs from the INDEXF.SYS file (see
Figure 14) that are similar to the BITMAP caches. These caches are
referenced for many system operations, including file creation, deletion,
extension, truncation, access, deaccess, and modify. The header cache
contains copies of recently read file headers (including extension headers).
The number of headers, for all disks that will fit, is controlled by the
SYSGEN parameter ACP _IIDRCACHE.

INDEXF.SYS

create
delete
extend

truncate

access
deaccessi--~~~~~

modify

Figure 14

CACHES

VMS Disk Performance

By defauh, AUTOGEN sets the size of header cache to 2 headers per
process in the balance seL This implies that each user will place a demand
on only 2 file headers. This default is probably too small in most cases
and could be doubled without any troublesome side effects.

Just as the extent cache is really a list of recently deallocated storage in
the bitmap file, the file-id, or "FID" cache is a list of recently deleted
headers that are available for reuse. The FlD cache enables VMS to
quickly assign a new header when one is needed without having to scan lhe
index file's header bitmap. As with the ACP _EXTCACHE, AUTOGEN
does not adjust Aa> .YJDCACHE, which controls the number of headers
that are listed in lhe FlD cache. Instead, this parameter is generally set to
64-- lhe default value that is shipped wilh all VMS distributions.

I performed two benchmarks to confam the effect that the F1D cache
and header cache sizes should have on file processing performance. Figures
15 and 16 summarize these results.

To test the FID cache, 30 files were created and lhen deleted. The time
required to complete this was measured and plotted for various sizes of
ACP _FIDCACHE. Approximately a 10% improvement in create/delete
performance resulted from the availability of enough FIDs to accommodate
all files to be created. A significant benefit was seen by allocating just a
few FIDs to the FID cache. Then, a tapering but increasing amount of
further improvement was seen as more FIDs were added. The conclusion I
have drawn here is that a relatively small FID cache will deliver a
significant level of optimization. The default ACP YIDCACHE value of
64 is quite generous, however, and probably quite adequate for most
systems. It needs to be increased only for large systems with a great deal
of expected file aeation and deletion.

II

..
Time ..
(sec.)

II

..;

..;

CREATE I DELETE
Performance (30 files)

i l':!l

::::
~== ~:;: ·=·

111:
1111

r
:1111

r
·::=

·::: ~~~~ \ t

1-·i

l1j j~j~ l~i
~1[~ :::~

:i::

:·:· ::::

·11~~
::; :::: .;.

m ·=·

1111

::

I :1.1

·:::· :::: f : : :::
:,::

1111

.~': ~~ii t
::;

'·I ··:I
r

:_1·:

(

!1!' ·::. :::· ~jij ~t f ~~;~
1m ==~= :;: : :: ::;.

0 10 20 30 40 50 60

ACP _FIDCACHE

Figure 15

The size of the header cache, on lhe olher hand, should affect lhe
performance of many file operations. This is due to lhe near universal need
for file headers to complete file system operations. The SYSGEN
parameter Aa> JIDRCACHE controls lhe size of this cache.

The header cache size was tested by opening and closing 18 pre
existing files, measuring the time required to complete this task for various
header cache sizes. Note that the smallest possible header cache size is 3
headers-- this is a minimum value imposed by VMS. The size of lhe FID
cache was held at zero during this benchmark to remove any effect it might
have had on lhe results. As expected, the performance improved markedly
at the point where all of the required headers could be expected to be loaded
in cache, rather than VMS having to read these from the volume index file.

••
Time 50

(sec.) 40

••
20

10.

0

OPEN/CLOSE
Performance (18 files)

llllnnnnnl
3 10 20 30 40 50 60

ACP_HDRCACHE

Figurel6

336

Page 6

An unexpected result was observed as the size of the header cache was
increased to even greater sizes, however. At about 60, nearly all of lhe
performance benefit of having any header cache at all seemed to disappear.
Not shown on lhe graph, this degradation continues to be observed till
about a size of 80 when the performance again improved as if all headers
were installed in cache. 7

DIRECTORY CACHE

The directory cache is constructed slightly differently than either lhe
bitmap or header caches. The main directory cache contains acblal blocks
of directory files. These are referenced by VMS as it performs file name
lookups.

It is important to note lhat when a file is opened, such as lhe file
[SYSO.SYSEXE]SYSUAF.DAT, VMS must not only find the
SYSUAF.DAT file name in lhe [SYSEXE] directory, but must also fmd
the SYSEXE.DIR directory name in [SYSO], and the SYSO.DIR directory
in [000000]. Therefore, quite a significant amount of directory processing
is implicitly required owing to each subdirectory level used.

The directory cache is used for all operations that locate files by the
file names: this includes file creation, deletion, renaming, access and
lookup. The directory file itself is organized as an alphabetically sorted list
of all file names stored in the directory with the file-ID of each file stmed
in iL

In order to speed directory processing, a directory index (DINDX)
cache is used. Like the FID cache and the extent cache, the DINDX cache
is not a true cache, nor is it like a "look-aside" list. Instead, it contains a
small portion of data from each block of the pertinent directory file. A
separate DINDX cache is built from each directory file as the file is used.
Its function is to speed up certain aspects of directory processing. Figure
17 depicts the directory and DINDX cache structure.

DIRECTORY CACHES
DIRECTORY
and DINDX

CACHE

(min 28)

Figurel7

The use of lhe directory and DINDX caches are best illustrated by an
example:

A telephone book is similar to a directory file in that bolh are
alphabetically, sorted lists of names. Generally, when searching for a
particular name in a telephone book, you use the index printed at the top of
the page, which contains the first and last entry for that page. You can
then scan lhe phone book fairly quickly without searching lhe entire page.
Once the correct page is determined, you can then search the page in detail.

The DINDX cache is analogous to the index printed at lhe top of each
page in the telephone book. It contains a copy of the last file cataloged by
each block of its directory file. This list allows the XQP to determine
quickly which block of a directory file contains a particular file name
without having to go to the trouble of reading other blocks of the directory
file. The DINDX cache for a particular directory is built on-the{ly lhe fll'st
time a directory is scanned for use. Any time the directory changes, such
as by the addition of a new file entry, the DINDX cache is discarded and
rebuilt on the next use.

7 A representative from the VMS Development Group confirmed that some
aberrations in lhe cache performance are currently under investigation.
I hope to present a better explanation of this phenomenon at the
Cincinnati DECUS symposium in May 1988.

VMS Disk Performance

For instance, assume there is a four block directory that C8181ogs 26
'.lies with the names "A" through "Z." If you ask VMS to locate file "Z,"
1t first reads block one of the directory file. It then examines the last entry
and notice that the file ''F' is the last file cataloged in that block. Before
moving on, however, the XQP stores the fact that the last file name in
block one is "F' in the DINDX cache. 'The search then continues. Block
two, three and four are read in search of file "Z." Each time the last file
name of each block is inserted in the DINDX cache for fulllre reference-.
Finally, file "Z" is located and VMS returns to the user.

Next, assume that we ask VMS to look up file "Q." This time the
XQP notices that file "Q," if cataloged at all, is in the DINDX cache and
should be located in block three of the directory. So VMS goes directly to
block three without re>-scanning blocks one and two.

AUTOGEN sets the si7.e of the directory cache (parameter
ACP _DIRCACHE) to at twice the balance set count or 28, whichever is
greater. It sets the DINDX cache (parameter ACP ..DINDXCACHE) to be
25% of this si7.e (in addition to the directory cache). These values are
likely to be too small for many systems, especially those that have a large
number of directory and subdirectory files, or have very large directory
files.8

Figures 18 and 19 demonstrate the effect of directory and DINDX c:ache
size on directory processing. For the benclmark, a direclory was created
with 3 subdirectories. Each of the subdirectories contained 3 subdirectories
of their own, and each of these contained 3 subdirectories of their own.
This created a total of 40 directory files. (Note that all directory files were
one block in length.)

Finally, a file was created in each of the bottom level directories to
create a structure four levels deep. 'The time taken to complete a full scan
of the entire subdirectory 1ree was measured under varying cache sizes.

40

H

30

Time 21

(sec.) 20

11

DIRECTORY LOOKUP Performance
(40 directories I 4 levels deep)

r.;.

r ~=
=::

~: :.; , l illl
r.:'l : : ~.

1
:: :::: : :

::,,
::: ~~~ ·:::

!i~1 ~~~j r,"::

l r [~~~ :::

.',:

·:::
·=·

~~i jj~~
::::

~
·: : : : : r :::- : : : : : : ::

1\\~ :1:!
~;~i

: : :::: : ·=· : :

l r : :-: } :i~i m ::: ::::

111!

'.l~l r ~!); ·:·: ::: =~~
:::: i~1i r

::::
1111:

.;:: ::: :·

~~l~ :·:
~iii ~~~

::"

~=~: ~~~
.; :::

~~~~ :: : .... 
r ;: f ·:· 

m 
:;:; 

j~~~ r =~=~ j~ 
f ~~li ~~~~ ilt ~1~i r :;: =~=~ :::: r :!:~ ... t 

il11i 1!~ 
·:- :;:· :::: ;m: :· : : :;: ~f :::: ... 

!!!~ :::: :;:: t :·· f ·:·: 
~~~~ 

:·:· f : : : : ~:: :::= : ' : ' }

2 10 20 30 40 50

ACP DIRCACHE

Figure18

For the first benclmark, the size of the directory cache was varied but
the size of DINDX cache was held at a minimum constant size.
Performance improved in two stages until the point at which all 40 blocks
of all of the directory files should have been resident in cache. After about
10 blocks of cache were available, a noticeable performance improvement
of 8-10% resulted. When the cache reached a size where all directory
blocks were resident, another 5% improvement was observed. The reason

for the two-stage nature of the observed data is presently unknown.9
Next, the same directory seaming benclmark procedure was applfod

while holding the directory cache size constant at a small, intermediate and
large values of 2, 27, and 4 7. For each size of directory cache, the size of
the DINDX cache was varied and performance differences noted. (Note that
the smallest value for directory and DINDX cache tested was 2 blocks-.. the
minimum value allowed by VMS for these parameters.)

8Directory files greater than 127 blocks in length are to be avoided. Aside
from general slowness resulting from scanning directories of this size,
certain optimizations that RMS normally provides are precluded in
this instance.

9 Again, a topic to hopefully be explained in Cincinnati.

337

4D

H

31

Time 21
(sec.) II

11 ,.

Page 7

DIRECTORY LOOKUP Performance
(40 directories I 4 levels deep)

In
ln ·:· ,.

~1~

1~1 I
I

~~~ I ::: 

2 12 22 32 42 
ACP _DINDXCACHE 

Figure19 

~s ~ark showed the marked performance advantage provided by 
the avallab1lity of DINDX cache when the directory cache is constrained. 
Contrarily, ~ advantage gained by an ample DINDX cache was negligent 
when the enure direclory tree was resident in directory cache. 

'The role of DINDX cache then can be seen to be quite important in the 
case that not all of the directory file is resident in directory cache. This is 
an important conclusion because it most closely describes most VMS 
systems. In the normal case, there are far more directory blocks competing 
for residency in the directory cache than can be accommodated. This is 
because users generally access a large number of directories, but also 
because directories are relatively large files, sometimes containing hundreds 
of blocks. 'The DINDX cache reduces greatly the performance degradation 
that otherwise would be felt if only directory cache were available and thus 
is an important tool. ' 

THE EVOLUTION OF STRUCTURING TOOLS 

As a last topic, I would like to survey the evolution of disk 
struclllring software. It is interesting to review how software of this type 
originated, and what fealllres evolved later. In the process, I want to share 
with you some of the more advanced techniques that have been developed 
recently. 

THE lST GENERATION 

The first efforts at disk structuring were accomplished with no more 
than glorified COPY programs. 'The utilities of this type, by-and-large, 
never saw widespread distribution and were mostly only an experimental 
auempt to understand the problem better and achieve at least some 
improvement. 

'The primary aim of such 1st Generation software was to make 
fragmented files contiguous. Unforlllnately, however, they gave up rather 
easily if free space was unavailable-- a case that is quite common in the 
real world. Other subtle problems also needed to be conquered. In the 
worse attempts, the files were processed without considering that users 
might be in the middle of processing, causing various undesired conflicts. 
In the better attempts, the files were locked during processing, but that 
carried some undesirable behavior too, as users unaware of the restructuring 
software were locked-out from their files for periods of time. 

One other underestimated pitfall was the fact that restruclllred files 
received new filt>ID numbers during defragmentation. This caused 
incompatibilities with system utilities that tracked files by file-ID number 
instead of by name (such as the batch and print symbionts). 

Free space tended to become more and more fragmented as old 
fragmented files were copied to contiguous free space over and over again. 
Eventually, unless the disk had substantial amounts of free space, 
insufficient contiguous space prevented full defragmentation. 

Other problems included excessive use of system resources while 
running, poor (nonexistent) reports of what had been done, and very limited 
(or nonexistent) error recovery. 



VMS Disk Performance 

1st GENERATION TOOLS 
benefits drawbacks 

• defragmented files • gave up easily 

• Ille locked 

• FID'a not preserved 

• heavy ayatem load 

• poor reporting 

• Incompatible access 

• free apace frag'd 

• err recovery limited 

Figure20 

THE 2ND GENERATION 

Next came what I categorize as the 2nd Generation utilities (Figure 
21). Software in this category is characterized by its greater sophistication. 
Many of the currently marlceted disk structuring software belongs to this 
classification. 

The benefits of the 2nd Generation tools arc manifold. They 
accomplish the goal of defragmenting files, but they also address the need 
to consolidat.e fragmented free space. Tilis is done by packing files 
together to creat.e a (usually one) large area of free space. In addition, most 
utilities solve the problem of preserving file-ID numbers. To be easier for 
the already harried system manager to use, they arc equipped to be 
scheduled and run in BATCH when users are likely to be less active. 
Lastly, they provide better reports about their activities for audit purposes. 

Some drawbacks still remain, however. Most importantly, these 
utilities lock the files they are working on for at least a short period during 
processing. This is a disadvantage because it can cause an unsuspecting 
user to receive a file access conflict error that the user would not otherwise 
expect. This can be a big problem for lat.e night users who attempt to 
work during the time scheduled, by the system manager, for running a disk 
structuring operation in batch. And no system manager needs this sort of 
frustration cropping up on his desk in the morning. 

A second unsolved problem for 2nd Generation utilities is that 
scheduling the execution of such a utility in the BATCH stream is 
somewhat simplistic, and the utility may not be able to handle situations 
that are incompatible with its operation without an operator's assistance. 
These utilities also generally impose a heavy load on the syst.em while 
running. This defeats, to some ext.ent, the whole purpose of enhancing 
syst.em performance through optimizing the disk. And so the cure is 
almost as painful as the affliction. Error recovery in some still leaves 
something to be desired, depending on the thoroughness and testing of the 
particular implementation. 

2nd GENERATION TOOLS 
benefits drawbacks 

• defragmented files • file locked 

••• also free space • Incompatible access 

• more lntelllgent • heavy system load 

• FID's preserved • err recovery limited 

• can run In BATCH 

• operation reports 

Figure21 

Page 8 

THE 3RD GENERATION 

The most recent arrival on the scene is disk structuring that has 
improved significantly enough to be considered the 3rd Generation tools. 
The hallmarlc of this software is its full transparency. 

This type of utility has the advantage of scheduling flexible and 
appropriate times for disk structuring operations. The system manager 
should be able to say, "I want the disk to be restructured only between the 
hours of midnight and 2:00 AM on Salllrday nights only." 

Flexible Scheduling 

Figun22 

In addition, the system manager should be able to place constraints on 
the operating schedule to preclude activity during periods when the syst.em 
is being used by others, even if that is known in advance. Thus, not only 
should it run during specified time intervals, it should also monitor syst.em 
resources and scale-back or suspend operations if a preset amount of a>U 
or IJ0 is observed. 

Dynamic Load Sensing 

CPU 

P AGEFAULTS 

DIRECT 10 

COMPUTE QUEUE -

Figure23 

LIMIT 

In the 2nd Generation tools, locking files for exclusive access was the 
common method of det.ermining if a file was open by any other user or 
application on the system. Tilis is not a sufficient technique, however, due 
to a seldom 10 but sometimes used file access option called "NOLOCK" 
access. With this style of VMS file processing (and suitable privileges), 
the syst.em grants access to a file, despit.e any other users that have 
request.ed their own exclusive access to the file. Worse yet, with the 
NOLOCK option, no other access att.empts are reject.ed. Thus, a 
restructuring utility that expects to det.ermine if a file is open by requesting 
exclusive access to a file, does not properly detect the operation of 
applications that can use this option. The incompatibility of most 2nd 
Generation tools with NOLOCK files is a common oversight. 

lOJNGRES file access, for example, is incompatible with this technique 
and can lead to database file corruption because the structuring tool 
cannot det.ermine that INGRES has the file open. 

338 



VMS Disk Performance 

The 3rd Generation tools provide a solution for this problem by using 
the VMS distributed lock manager to determine conclusively all types of 
file access, even instances of hidden NOLOCK file access. 

Another significant problem to be solved was how to be sure that the 
restructuring tool could safely update a file's retrieval information after 
moving a file. This had to be done without allowing a user to come along 
and attempt a file access. 2nd Generation tools (see Figure 24) prevented 
this possibility by Jocking up the file with exclusive access. But again, 
this is a faulty technique if users implement NOLOCK access files: the 
tool would first satisfy itself that no user presently had access to the file in 
question, and then request exclusive access from the VMS and, when this 
was granted, the structuring tool would perform its processing, conclude, 
and then release its exclusive access. 

THE TRANSPARENCY 
PROBLEM 

"'l"'"•··••"'••••••"")"'"'s"'·····.,,,~a""•.·•·"'"••···,,,······,,,····••""I x 0 P ~""r"" ... f""r~ ... ~""'•.•'fu""°b""'"9""µ~'"'"~N""G"'"m,,._I 

request access 

CONFLICT 
ERROR 

OK 

REJECT 

Figure24 

.._request access 

GRANTED 

I 
deaccess 

This mode of operation could cause file access conflicts, however, for 
users whose applications might attempt to access a file while the 
structuring tool had data in transition. This occurrence was statistically 
rare, so most users have not experienced or even realized the potential for a 
problem. The 3rd Generation tools offer an elegant fix for this problem, 
without any possibility of conflict with a user. 

In the 3rd Generation tools, the VMS lock manager is used in 
conjunction with the XQP to create a file access notification AST. This 
technique uses existing VMS capabilities that have never before been used 
in this fashion. In this design, the structuring tool first ensures that a file 
to be restructured is not open anywhere on the local system (or on the 
V AXcluster, if appropriate). An exclusive mode access is then requested 
from the XQP and a special option is set-up via the distributed lock 
manager. A notification AST routine is defined to be called by the lock 
manager in case any user or XQP activity should attempt to access the 
specific file. 

If a user should attempt access, the 3rd Generation structuring utility 
is notified immediately. In almost all cases, the utility can immediately 
relinquish its access to the file and the user is granted their access with 
complete transparency. Then, the structuring tool can abandon any 
intermediate processing that was interrupted and try again at a later time 
when the file is inactive. 

In the rare case, when a user is attempting to access a file at the most 
critical phase of processing (when the structuring utility has initiated the 
update of the file's retrieval information), the utility simply continues 
processing until all critical processing is complete and then relinquishes its 
lock on the file. The user simply waits a few extra milliseconds to gain 

Page 9 

access to their file; they receive no access conflict errors. The benefit of 
this type of file locking is that users can transparently run their 
applications and never receive an unexpected error message due to the 
structuring tool. This improved technique is a major development in the 
evolution of the disk structuring tools. 

THE TRANSPARENCY 

SOLUTION 
... ! ... ••••••"""••••••"""•• ••"""u-~.-~.-ij-·••••"""•••••• ... ••••••-1 xaP [-s-r-...• ~-.•.. ~-l-·l_o_A_t-1 f-a-g·· 

...._request access 
OK .... 

GRANTED 

request acces~ s 
NOTIFY ~ 

AST deaccess 
(1-100 ms) ..... ..... OK 
GRANTED 

Figure 25 

To summarize, the 3rd Generation tools offer all the benefits of 2nd 
Generation tools but are even more intelligent and sophisticated in their 
features. They support a greater breadth of controls to allow the system 
manager a great deal of flexibility in adapting the tool to his specific 
environment, and they are completely transparent to users. 

Some of the areas not addressed by the 3rd Generation tool are the 
defragmentation of files that are open during processing. Also, no current 
structuring tools address the need to internally restructure RMS indexed 
files. Both of these areas may be addressed by future software offerings. 

3rd GENERATION TOOLS 
benefits 

defragmented files 

... also free space 

still more Intelligent 

FID's preserved 

flexible scheduling 

load sensing 

• cluster disk support 

fully transparent 

Figure26 

drawbacks 
can't defragment 

open flies 

can't defragment 

INDEXF.SVS 

SUMMARY 

We began by talking about five basic factors that affect disk performance: file placement, file 
fragmentation, free space fragmentation, inherent di.sk characteristics and the tuning of the cache system. In 
understanding the way VMS organizes the disk. you can come closer to diagnosing where your system is 
experiencing bottlenecks and make the most appropriate adjustments. 

Third-party disk structuring utilities have evolved to help with these management tasks, all the way from 
methods of using standard system utilities solely to having sophisticated utilities that take into consideration 
the need for full user transparency and system load management. 

The author, WefReischman, can be contacted at: 
UIS/Software Techniques, Inc. - 6600 Katella Avenue, Cypress, CA 90630 

714/895-1633 

339 





COPING WITH FULL DISKS 
Malcolm DUIUl 

UIS/Software Techniques, Inc. 
DECUS Anaheim, Fall 1987 

ABSTRACT 

The management of disk (online) storage can affect the performance of any VAX/VMS system, while offline 
storage presents its own set of organization and security problems. This article discusses the problems of full disks 
on the typical VMS system, and some of the possible solutions to cope wilh the situation. An attempt is also made 
to clarify the different methods for insuring data integrity: i.e., the differences between Backup procedures, tape 
management and file archiving, and the applications of each. The following text is a transcript of a DECUS 
presentation given at the Anaheim, Fall 1987 symposium. 

INTRODUCTION 

Before my intra-company transfer to the United States, I worked wilh 
the DP division of lhe company, which has been in lhe DP business for 
over 20 years. We had a traditional timeshare bureau service with a 
communications network connecting users to DEC 10 and Xerox Sigma 9 
mainframes. So we were concerned about data management for our clients 
and internal users. We supported our user community =ing a great 
variety of programs under several different operating systems, as shown in 
Figure 1. 

llAINFRAllE 

DEC 10 

UBER 

TERMINAL 

j 

MAINFRAME 

SIGMA I 

Figurel 

We faced lhe same problem that seems to be universal across virtually 
!he whole computing community-- the headache of diminishing disk space. 
Every time we added more disk drives to our hardware an unwritten law 
would mysteriously come into play: lhe extra space was rapidly absorbed 
to the point where we were back where we started. This even seemed to 
happen on a system that gave no indication to the users what disk space 
was available to them. We wanted to avoid U1U1CCCSsary disk hardware 
purchases. But we couldn't simply ignore the problem of full disks, and 
hope it would go away because experience showed that it would not. U sen 
were understandably upset when they ran totally out of disk space. 

One of the most effective solutions implemented was a file archive 
management system that ran on each of our computers. These systems 
gave us a fairly tidy way of migrating data between on and offline storage. 
The archiving software was tied to using tape as the offiine storage 
medium. 

When the hardware on-site started becoming a little long in the tOOlh, 
to say the least, we had to consider our next major hardware purchase. 1be 
decision was made to go for DEC VAX, and we purchased our first 11n80. 
1bis was great-- all these wonderful tools and facilities that our other 
systems did not have; a program developer's dream compared to lhem. 

However, we soon realized that we were back to our old problem. 
How should we cope wilh ever increasing disk usage on lhe VAX? 1bere 
appeared to be no convenient software available for purchase that would 
adequately sort this out. Would we have to lhrow more disk hardware into 
the system? 

Proceedings of the Digital Equipment Computer Users Society 341 

HOW DO WE COPE WITH FULL DISKS ON THE VAX? 

? 
I 

ULJ 
VAX 

Figure2 

VMS' idea of multiple versions of files was terrific, but made it easy 
for users' disk usage to grow at an unexpectedly fast rate. Imposing strict 
disk quotas helped us keep users in check for a while. However, we had to 
fmd out what to do when those users genuinely needed to keep files that 
were presently inactive but were required at a later date. 

We looked at the various ways we could control disk space on our 
VAX: through BACKUP, through a tape management system, and file 
archiving, as shown by Figure 3. 

TAPE MANAGEMENT DISK BACKUP 

VAX 

DISK 
OPTIMIZATION 

ARCHIVE MANAGEMENT 

Figure3 

These were the choices we faced. rn discuss what these choices really 
arc, and what we actually found we needed for our users. Let's take each 
one in turn and explore what they will do for you. 

Anaheim, CA - 1987 



Coping With Full Disks 

SYSTEM BACKUP 

The regular system backup, that you carry out wilh the VMS 
BACKUP utility, comes as part of your VMS license, and it is therefore 
worth exploring what data management can be achieved with this utility. 

First of all, when you use the BACKUP utility for regular file saves, 
you usually make your file saves on a disk-by-disk basis. You are also 
likely to save either all the files on each disk (the full backup), or only 
those files that have been modified since a given time, such as the last full 
save (the incremental backup). 

The system manager usually coordinates BACKUP activity. He 
decides what to backup and how to arrange the backup schedules and tape 
cycles. The end users are not really involved, at least not until they lose 
data and come running to their system manager or operations deparlJllent 
fill" help. 

The backup tape cycles are just that- cycles. You don't want to keep 
them indefinitely or you could end up with vast numbers of tapes over a 
period of years. So you perllaps have daily incremental cycles whose life 
span might be a week; weekly backups, each kept foc 4 weeks; and 
monthly backups might be kept foc 6 months DI" a year. A tape 
management utility helps you track both the tapes available foc backup, 
and track the data that has been saved to tape. 

However, although you have the data on tape (and even a tape 
management utility to help locate files), you may still have a major 
headache-- the problem of responding right away to user restores. 

You know the situation: a user loses a file for whatever reason. He 
asks foc help, but he may be unsure exactly when the file was last in good 
shape. He probably doesn't know what backup cycle the file is on because 
that is not his concern. So he pesters the operations department to restore 
his file, providing only vague infonnation. The operators then typically 
have a manual task of looking up various listings for the file, checking 
which tape to mount, and finally running a job to restore the file. And if 
you site is security conscious, as most are these days, you'll probably want 
a manager's signature to authorize the restore. 

Finally, BACKUP's main strength is in dealing with disaster 
situations such as a head crash. To wind-in one tape after another from an 
image save set is really not too difficult. It may be time consuming, but 
this is simpler than restOl"ing individual files tucked away in the middle of 
a tape. BACKUP is better suited to recover from total disaster, such as the 
loss of a disk, than from specific accidents, such as a user deleting his own 
file or his own directlll"y. 

SYSTEM BACKUP 

DISK AND TIME BASED 

SYSTEM MANAGER DRIVEN 

LIMITED LIFE SPAN 

DIFFICULT TO SEARCH 

DESIGNED FOR DISASTER RECOVERY 

Figure4 

To summarize BACKUP, as shown in Figure 4, regular save 
operations are carried out on a disk-by-disk basis, with files selected for 
saves by data and time criteria. The system manager is responsible for 
pc:rflll"ming BACKUP procedures. lnfOl"Mation saved to a BACKUP tape 
usually has a limited life span, due to the nature of tape cycles. BACKUP 
tapes are difficult to search, unless you have a good tape management 
utility. And BACKUP is designed foc disaster recovery mainly, rather than 
to create an ocganized "archive" for impoctant data that must be kept. 

So what else can you use? 

TAPE MANAGEMENT 

Let's turn our attention to tape management systems. This type of 
system is not so much concerned with the software to read and write tapes 
as maintaining the tapes themselves. So a tape management system will 

342 

Page 2 
have tapes as the basic units of interest. A tape management system is 
really an outer shell around the tape read and write software to control the 
environment. Let's now examine some of the features, benefits and 
drawbacks of these systems, as shown in Figure S. 

TAPE MANAGEMENT SYSTEMS 

TAPE BASED 

AUTHORIZATION OFT APES 

REEL SECURITY 

CHECKING OF MOUNT REQUESTS 

TAPE DRIVE SCHEDULING 

Figures 

One of the features to look for in a tape management utility is tape 
authorization. You want simple procedures thai let you put tapes into the 
system for use by whoever you wish. 

A decent tape management system is concerned about tape security. 
When Joe Blow asks foc tape XYZ123, you don't want to just mount the 
tape and hope that the tape truly does belong to Joe. The alternative to 
this is to manually look-up a file to see whether a request is legitimate. 
Your management software should actually make these checks, and blow 
old Joe away if he's trying to break security, without your involvemenL 
That's real (and reel) security. 

Once Joe gets past the first security check, the tape management 
utility also needs to ensure that the correct tape is mounted. Anybody 
could make a mistake and select the wrong tape from the shelf. So, these 
systems handle tape label checking once the tape is on the drive. 

Another good feature you may find useful is scheduling of tape drives. 
A system that knows what devices are available, what devices are already in 
use, which tapes are already mounted and what drives can handle the density 
you rc:'luire makes your life a lot easier, and your time moce productive, 
especially where you have heavy tape usage. 

A good tape management utility can help you automate a lot of the 
wock done by BACKUP, and can give you a better method of taking files 
offline. However, what if you have several hundred users? Or have ten 
very demanding users? Or have users who cannot give you sufficient 
infonnation about files so that you can use a tape management utility and 
restore the lost data? In any of those situations, which covers almost every 
type of site, you'll need something in addition to the tape management 
utility. 

FILE ARCHIVING 

An archive system has some features in common with BACKUP and 
tape management systems, but archiving specifically addresses important 
issues. These issues are summarized in Figure 6. 

ARCHIVE MANAGEMENT SYSTEMS 

FILE BASED 

USER SAVES AND RESTORES 

LONG TERM STORAGE 

ONLINE DIRECTORY 

A VIRTUAL FILESTORE 

Figure6 



Coping With Full Disks 

An archive management system focuses the interest on the user. It is 
a system that allows files to migrate between disk and an offline medium, 
such as tape. So it is user and file based, rather than disk based. 

1bc end user, not the system manager, can be given responsiblity for 
deciding which files to save (or take offline) and which to restore (or pul. 
online again). He does so on whichever aiteria he wishes. However, a 
good archiving utility allows the system manager to control exactly how 
much or little access is given to different users. 

Providing safe and C001pact long term storage is the heart of the 
purpose of data archiving systems. Because such a system can save 
specific files as requested, rather than all files on a disk, it is more practical 
for selecting data that requires long term storage. Critical infonnation-
statistics on chemical experiments, conlractor' s building plans, safety 
records, company information- can be kept in one compact, easily accessed 
location. 

A good archive management system allows you to see what is located 
on the offiine media. You don't want the same frustrations of ploughing 
through listings in order to check what files you have and which tape they 
happen to be on. 

In all, a decent archive management system can be summed up as 
being a virtual file store. BACKUP and tape management systems provide 
important features, but they are not adequate to meet the needs of larger 
sites, sites that depend on vital data, or sites with heavy user activity that 
require offiine file management. 1bis is why we selected archiving as the 
best solution to crowded disks: it gave us the means to clear-up the 
excessive online disk storage that we could not afford to erase. And gave 
our system managers more time for their work by automating this 
management. 

But let's go a little further into the situation in England. 

DESIGN GOALS 

As we wheeled in our first VAX, we knew that we needed an archive 
management system. The problem was how to design a solid, effective 
utility. A product that would really meet the needs we anticipated. So, 
when we got down to the actual design goals, we took into careful 
consideration the point of view of the end users, the system manager and 
the operators, as shown in Figure 7. We did not want anything which 
worked great for one group but at the expense of the others. 

END SYSTEM 
MANAGER 

ARCHIVE MANAGEMENT DESIGN GOALS 

Figure7 

First, we evaluated the needs of the end users, and came up with lhe 
list of needs shown in Figure 8. 

END USER 

• EASE OF USE 

CONTROLLED ACCESS 

• FLEXIBILITY 

Figure8 

343 

Page 3 

For the end users, we knew we had to aeate something that was easy 
to use. It's great to have bells and whistles for the guys who are able to 
make use of them, but !here was no way we wanted to have our users 
complaining that they would like to co-operate but it was just too 
complicated to be worth the effort. 

It was also our intention to give the users enough control to create and 
access offline directory slrUctures that would suite their needs. But we had 
to give users assurance of sufficient controls that they would feel confident 
that, once offline, their data was just as safe and intact as if it were still 
online. 

We also wanted a flexible utility. Haven't you experienced lhe 
situation where you put a lot of effort into some software project and 
within days of you handing over your precious baby, people C001e back to 
you complaining "I don't want it if it can't do such-and-such!" 

The needs of lhe operator, shown in Figure 9, proved to be similar to 
those of the users. 

OPERATOR 

• EASE OF USE 

• EFFICIENCY 

• SECURITY 

Figure9 

From the operator's point of view, we didn't want to build a system 
that put him at the mercy of the user. The system had to be easy and 
friendly and clear for operators as well as users. 

Another important goal was to avoid inflicting upon operators yet 
another system that required them to run around looking up listings and 
looking for tapes every hour of lhe day. We wanted a system which was 
efficient in time and effort, letting the operator's schedule lheir day to work 
with the archiving system, not against it. 

And security was again a big issue. The system needed to be solid 
enough to avoid mistakes as much as possible. A system that lets an 
operator mount the wrong tape and overwrite archived data is NOT designed 
to win friends and influence users. 

But what could we put in such a system for lhe system manager? 

SYSTEM MANAGER 

• OPERATIONAL SAVINGS 

ADAPTABLE AND CONFIGURABLE 

• CONTROL OF ACCESS 

Figure JO 

As Figure 10 shows, the system manager had different needs from lhe 
users and operators. All system managers are, or should be concerned wilh 
cutting costs, so the product had to produce demonslrable operational 
savings. At our site, lhe system manger wanted this tool to help him 
avoid unnecessary hardware purchase or laboc intensive procedures • 

We were not quite sure exactly what sort of operational parameters we 
would want to run under. This was our first VAX, so many details about 
actual usage were unknown to us. Avoiding assumptions helped us avoid 
making decisions about the archival software that could reslrict us 
unnecessarily. So we decided we should build into it as many choices 
about lhe archival environment as we were ever likely to want. 

And our own system manager, irue to his kind, was concerned wilh 
security issues, at different levels. For a start, he didn't want people 



Coping With Full Disks 

getting hold of data which they should not be allowed to access; but also 
he didn't necessarily want to let everybody use the software. He anticipated 
that he might need to restrict usage to certain authorized people. So we had 
to build in that ability, too. 

IMPLEMENTING THE GOALS 

After evaluating the goals, we came up with the main archiving 
program. As shown in Figure 11, the archiving program allowed a 2-way 
flow between that program and the user at his terminal. 

USER 
ARCHIVING 
PROGRAM 

Figure 11 

ONLINE 
DIRECTORY 

'Ibis flow allows the user to send requests to the program, which can 
then send back information. The program then accesses user files. For 
instance, if the user wants to archive a file, the program checks that the file 
exists and that the user has access to it. There's no point in delaying those 
checks. 

The next major component in our diagram is the central online 
directory. The archive program reads and writes the master directory file so 
that it contains up-to-date information about all files which have been 
archived or are in the process of being archived. User archive directory 
commands cause the program to read the directory and pass information to 
the user. 

What happens when files are to be transferred from disk to some 
offiine medium, or vice-versa? We handled this situation by creating a 
separate VMS process to perform the data transfer, as shown in Figure 12. 

DISK-TAPE 
TRANSFER 
PROGRAM 

ARCHIVING 

PROGRAM 

Figure 12 

TAPE 

ARCHIVES 

ONLINE 
DIRECTORY 

The archiving program hands the transfer program a list of commands 
to be carried out. One or more requests can be processed for files to be 
saved offiine (transferred from disk to tape or some other medium), or 
restored to online media. The commands include all the details of the disk 
file specification, the archive file specification and the tape to be used. The 
online directory keeps the information about which tape holds which file, 
and this is used for any restore request. 

Finally, we built a request queue system for our operators. We didn't 
want the operators having to run around the instant anybody entered a 
request for a file to be saved or restored. So requests usually enter a queue, 

344 

Page 4 

as shown in Figure 13, which is simply a file managed by the archiving 
system rather than a VMS queue. 

USER 

TO BE SAVED 

QUEUE 

QUEUE 

DISK· TAPE 

TRANSFER 

PROGRAM 

ARCHIVING 
PROGRAM 

Figure 13 

TAPE 

ARCHIVES 

ONLINE 
DIRECTORY 

Separate queues are maintained for files to be saved and files to be 
restored. When the operator wishes to process the queues, the queue entries 
are processed one by one and the tapes read or written as required. We felt 
that the queue system was convenient for holding requests together from 
any number of users until they were to be processed at some agreed time. 

RESULTS ACHIEVED 

The acid test was: did our design tum into the features that our 
various categories of users wanted, to make this whole thing work? fll 
outline a few of the features that we implemented so you can judge for 
yourself whether we achieved those design goals. 

14. 
Again, let's evaluate the results for the end user, as shown in Figure 

VMS STYLE COMMANDS & HELP 

VMS STYLE DIRECTORY 

SIMPLE SAVE & RESTORE 

FLEXIBILITY 

NO REFERENCE TO TAPES 

COMMENTS ON FILES & DIRECTORIES 

Figure14 

Any self-respecting designer or programmer on VMS is going to want 
to use the VMS parsing, command syntax and help features. It's one of 
the aims you tend to have-- to make your software look as if it came 
straight from DEC. The benefit then to the end user is that the software is 
easier to use. 

Our central directory for the archiving software lets users duplicate 
standard VMS directory structures. This means that users can save and 
maintain whole directory tree structures onto archive storage. That also 
means that the online directory information is displayed in a form very 
similar to that produced by the standard VMS directory command. 

You may recall that simplicity was a goal. We achieved it by 
allowing users to enter save or restore requests. They can use all sorts of 
fancy qualifiers as well, but a basic save or restore request applies sensible 
defaults in much the same way that VMS copy would. 

We also felt that there was really no need for users ever to be aware of 
which files were on which tape. There was no need for any concern about 
the physical media. The operators could manage thaL So the end users are 
not given the unnecessary information about tape names. 

A common problem with long-term storage is that users forget the 
directory for a particular file, and can forget a whole directory structure. 



Coping With Full Disks 

The names of files and directories can give you a good idea, but we decided 
to allow comments that can be held in the online directory. Users can put 
comments on individual files or on the archive directories and 
subdirectories. For instan<:e, some of our departments were concerned with 
software developmenL They needed to freeze a software release and archive 
it. A comment on the top level directory of the software tree structure was 
useful as a reminder of exactly which revision level had been archived. 

To make life easy for the operators, we had to fit in with their style of 
working, which was mainly working to schedules, and so we provided the 
abilities shown in Figure 15. 

OPERATOR 

SCHEDULED OPERATIONS 

SECURITY CHECKING 

• CLEAR INSTRUCTIONS 

RESTART AFTER FAILURE 

Figure 15 

We didn't want to introduce unnecessary ad-hoc work for them to do. 
So our queue-based request system allows them to schedule archiving 
activity. We agreed that regular archive save and restore requests would be 
handled after 6 PM, making the normal service effectively an overnight 
one. (Other agreed times can also be added, if wished, such as midday.) 

It's not that we don't trust our operators, but, like other sites, we 
cannot afford the risk of accidentally trashing a tape that is in use for long 
term archiving. So we made sure that our software makes careful checks 
on every tape that is mounted. The tape has to be recognized as a valid 
archive tape and have the c01Tect label before it is read or written. 

Whenever our operators perform the archival save or restore 
operations, the program knows exactly which tape to use. For saves it 
requests the current archival tape and appends to it, continuing where it left 
off the previous run. The next tape in sequence is requested when a tape' is 
full. For restore operations, the software knows which tape each file is 
held on. In all cases, the operators just need to follow the instructions and, 
as we have seen, if they make a mistake, the system protects them from 
the unpardonable sin of data trashing. 

Tape, of course, is not known as the world's most reliable medium. 
You can get tape read or write errors when archiving or restoring files; or 
the archiving job may be interrupted accidentally with a CONTROL Y key 
command, and so on. The software needed to be able to pick up where it 
left off. This means, for instance, putting unprocessed requests back into 
the queue to be dealt with next time. We certainly didn't want operators to 
manually re-insert requests. 

How did all this fit in for our system manager? 

SYSTEM MANAGER 

FULLY ITILIZED TAPES 

MULTIPLE ARCHIVES 

UP TO 4 COPIES 

USAGE CONTROL 

EXPRESS SERVICE 

Figure 16 

Figure 16 shows the abilities we put in the product for the system 
manager. 

Using the full capacity of a tape allows us to cut our magnetic tape 
bills, and reduced the system manager's problems of managing tape 

345 

Page S 

storage. In a study of our tape usage on our timeshare services, we 
estimated that the average amount of tape in use on a user tape was less 
than 10%. That turns into a lot of tape wastage. Our archiving always 
appends to tapes until the end of tape marker so we use far fewer tapes than 
we would with user tape cycles. 

Our business was also expanding. This meant that the requirements 
for archiving would be many and varied. We needed a flexible system that 
could cope. An "archive" is a whole group of tapes that, together, forms 
an offline archival set . By allowing multiple archives, we could 
accommodate different needs: for instance, we have set-up a general archive 
for long term file storage, and one that automatically sets the files to 
expire after 6 months. Hospitals in England have to keep archival records 
for a fixed number of years even if they are not likely to be required. A 
computerized archival system with automatic expiration of files can satisfy 
such a law. 

A further refinement of archive configuration lets us specify that an 
archive should have from 1 to 4 tape copies. (We typically make 2 copies, 
but with growing importance of data, we saw the need to be flexible and 
create more copies. For example, sites may want 3 copies of every file 
archived: one in the computer room as the first choice for file restores, 
another in the basement in case the first cannot be read, and a third offsite 
in a secure vault.) The archiving system should let you define the number 
of copies when you first set up the archive, and then sort everything out 
from there. 

Realizing that we may need multiple archives, one for general use by 
anybody, another for some special purpose restricted to a certain group of 
users, we allowed an archive to be configured with different authorizations. 
Users could simply start archiving files, or the system manager or other 
privileged user could explicitly authorize each user before he could begin to 
use the archive facility. 

We had a slightly uneasy feeling about one aspect of our request queue 
system: agreeing with the users that we would process the save and restore 
requests at a certain time each day would probably be fine most of the 
time, but there is always the guy jumping up and down telling you that he 
absolutely MUST have his file restored by yesterday. So we allow an 
express service or a fast queue system. This means that whenever 
somebody puts a restore request in the fast queue, the operators repeatedly 
see messages telling them there is urgent work to be done. But you have 
to make sure your users don't abuse this privilege, or your operators may 
be overworked. 

DESIGN INTERNALS 

We've gone over why you might select an archiving system to help 
take data offline, and both the goals and appearance of such a system. 
Now, I'd like to focus on a few of the practical design aspects of our 
archiving system, or the internals as identified in Figure 17. 

.. :·-.ONLINE•'' 
.,,,.,,b1kecib~v•••''·-

:-: REQUEST .. 

·''•\•ciuEue~-···,,,,,. 

Figure 17 

The topics shown above emphasize the ways in which the software 
should be designed to be self-maintaining, modular and efficient while 
serving the needs of the user, operator and system manager groups. As I 
go through each distinct area, I'll bring out some of the reasons why we 
designed the software the way we did and mention changes we may be 
making in the future. 



Coping With Full Disks 

Each separate archive needs its own onlinc directory in a cenlral file for 
all the users of that archive. H individual directories for evecy user resided 
in the user's VMS area, a user could damage his archive directory or even 
deleted it, deslroying access to his archive files. A ccnlralized directory 
also makes it easier to secure data from non-privileged users. For the 
directory SlrUCtUl'C, we used an indexed sequential file whose keys arc based 
on the directory and file specification. This provides an eniry for every file 
archived or put in the archive save queue, and keeps plenty of information 
about the file, such as name, size, dates, etc. (It's important to keep this 
data in a compact form or you defeat the object of saving disk space.) 

1bc request queue system uses an RMS sequential file that contains 
the details of users' save or restore requests. This method suits both the 
users and the operators. Separate queues arc used for saves, restores, fast 
saves, and fast restores. Each different archive has its own set of queues. 
When a restore queue is processed, all the requests arc sorted into tape 
order. The online directory enrries shown which tapes hold which files. 
By sorting restore cnlries, the system doesn't need to ask for the same tape 
twice. 

We also provided a modular media handler-- which is the process that 
handles all the data lranSfer between disk and tape for save or restore 
opaations. This is run as a separate subprocess for several reasons. First, 
there is no need for our users to have that data lransfer code brought in 
when they run normal archiving operations. 1bat code is only needed by 
the opaators. 

Second, by making the code modular, we can configure an archive to 
use different media handlers. Our normal handler is a process that 1ransfen 
files between disk and tape. However, we also aeated a disk handler to 
1ransfer from disk to disk, with the archival disk acting as a pseudo-tape. 
(1bc main benefit of this was for debugging purposes in the development 
phase.) There was another interesting fact to take into account: a high 
proportion of file restores take place in the first few days after the file has 
been saved. This meant that it would be a good idea to allow the option of 
a disk cache. We allow our system manager to define an area on any 
mounted disk of any size that he chooses. He can also define the 
maximum size of any individual file that may be saved into this disk 
cache. Whenever a user enters an archive save request, the system checks 
whether a cache is enabled, whether there is enough room in it, and 
whether the file to be saved is at or below the maximum size allowed. H 
these parameters arc met, the file is saved immediately and no queue eniry 
is made. Hnot, a regular queue enlry is made. Eventually, files in the 
cache migrate to the normal archival tapes, either because their life span in 
the cache has reached some pre-defined limit, such as a week, or because 
the cache is getting full. 

A question that may have occurred to you is that after we write files to 
tape, what happens if users wish to delete these files? Well, a deletion of 
an archived file causes the directory eniry to disappear. 'That means that 
thecc will be files on tape that arc no longec active. Tape compression 
allows us to take archival tapes which arc no longer very full, say Jess than 
60%, and compress them. 1bc active files are restored from the tape into 
the disk cache and then re-saved, using the current tapes. 1bcn , of course, 
the original tape can be re-used as needed. 

1bc file protection scheme we chose at fll'st was fairly simple: all 
protection, including any ACI., was held with the data on tape so it could 
be faithfully restored; we also had access protection in the online directory 
enlry for every file to indicate who could restore the file. This protection 
specified group and world uscr access. Owner and system were assumed to 
have access. Later, we decided that we could do better. The full system, 
owner, group and world protection fields arc now enteced directly into the 
directory. We also keep ACI.s there, but it is possible to configure an 
archive so that the ACI.s arc only kept on tape, just in case we end up 
with excessive space taken up in the online directory. 

Finally, we decided that we should have a notification procedure. If 
archival saves or restores were not happening immediately, via a disk 
cache, then our users needed some way of knowing when their request had 

Page 6 

been processed and what the result was. So we send notification of ecrors 
through VMS mail-- for example, a file that is to be saved may no longer 
exist on disk at the time of the disk-to-tape lransfer. W c also allow the 
user to specify if he wants a mail message even if the save or restore is 
successful. Mail seemed the obvious mechanism because VMS already 
docs the work of alerting the user to new messages, and VMS Mail lets 
him read them. 

So, in summary, as shown in Figure 18, we have ended up with a 
system that has evolved to a state where all our main file archiving needs 
arc being met. Our tape library is greatly reduced in size as a result, and 
our operational procedures arc simpler and more efficient 

PHYSICAL DESIGN 

SECURE ONLINE DIRECTORY 

REQUEST QUEUES GOOD FOR EVERYONE 

MODULAR MEDIA HANDLER 

DISK CACHE FOR IMMEDIATE TRANSFERS 

TAPE COMPRESSION RECLAIMS TAPES 

VMS STYLE PROTECTION WITH ACLS 

RES UL TS REPORTED THROUGH VMS MAIL 

Figure 18 

THE FUTURE 

As far as our archiving software goes, we do not intend to put the 
brakes on our development We've developed an interface to All-In-I for 
document archiving, and we already handle a variety of media such as 
standard half inch tape and TKSO and removable disks, as shown in Figure 
19. However, we have also put together a prototype for optical disk- the 
write-once-read-many mass storage medium fits nicely into the concept of 
file archiving. 

It doesn't matter whether the archiving medium is fast or slow, is 
mounted ready for use or needs to be manually placed on a drive, such as 
tape-- these arc just variations on the basic theme. We will probably be 
looking into an interface to the 'juke box' packaging of optical disks as 
well. And as othec storage technologies emerge we can develop intecfaces 
for them too and plug them in, so who knows what the future may hold? 

Figure 19 

SUMMARY 

We have defined different solutions to coping with full disks, evaluating BACKUP procedures, tape management 
and archiving to see what each offers. Archiving systems, as was demonstrated, meet the needs of larger sites, or 
sites with heavy user activity. 1bc design goals of a good archiving system were discussed. With the resources now 
available, there is no longer any need to allow the situation to develop where those bulging disk drives and huge 
volumes of tapes threaten to engulf system manager, operators and usec with an unmanageable amount of data. 

The author, Malcolm Dunn, can be contacted at: 
UIS/Software Techniques, Inc. - 6600 Katella Avenue, Cypress, CA 90630 

(714) 895-1633 

346 








