USA||||| 1985 SPRING

PROCEEDINGS OF THE DIGITAL EQUIPMENT USERS SOCIETY

|
O

l

I

|
i | O m

N
—
il

PROCEEDINGS

OF THE

DIGITAL EQUIPMENT
COMPUTER USERS
SOCIETY

Presentation and Reports
USA Spring 1985

New Orleans, Louisiana
May 27 - 31, 1985

“The Following are trademarks of Digital Equipment Corporation”

ALL-IN-1 Digital logo RSTS

DEC EduSystem RSX

DECnet IAS RT

DECmate MASSBUS UNIBUS
DECsystem-10 PDP VAX
DECSYSTEM-20 PDT VMS

DECUS P/0S vT

DECwriter Professional Work Processor
DIBOL Rainbow

Copyright ® DECUS and Digital Equipment Corporation 1985
All Rights Reserved

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS “DECUS
PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION
THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (ITAR).”

DECUS and Digital Equipment Corporation make no representation that
in the interconnection of products in the manner described herein will
not infringe on any existing or future patent rights nor do the de-
scriptions contained herein imply the granting of licenses to utilize any
software so described or to make, use or sell equipment constructed in
accordance with these descriptions.

The articles are the responsibility of the authors and therefore, DECUS
and Digital Equipment Corporations, assume no responsibility or
liability for articles or information appearing in the document.

The views herein expressed are those of the authors and do not
necessarily express the views of DECUS or Digital Equipment Corporation.

Ada is a trademark of the U.S. Government, XEROX is a trademark of Xerox Corporation, IBM, PROFFS are
trademarks of International Business Machines Corporation, UNIX is a trademark of AT&T Bell Laboratories, CP/M,
PL/I are trademarks of Digital Research, Inc., MSDOS is a trademark of Microsoft Corporation, TSX-PLUS is a
trademark of S&H Computer Systems Inc.

FOREWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DECUS has approximately 51,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels to fulfill its primary functions of advancing the art of computation and
providing a means of interchange of information and ideas among members. Two major technical
symposia are held annually in the United States.

Forinformation onthe availability of back issues of Proceedings as well as forthcoming DECUS symposia,
contact the following:

DECUS U.S. Chapter

Digital Equipment Corporation
219 Boston Post Road, BP02
Marlboro, MA 01752

All issues of past Proceedings are available on microfilm from:

University Microfilms International
300 North Zeeb Road
Ann Arbor, M| 48106

PREFACE

This volume of the Proceedings contains papers
which were presented atthe Spring 1985 Symposium of
the Digital Equipment Computer Users Society.

The Spring 1985 Symposium was held at the
Convention Center and Riverside Hilton in New Orleans,
Louisiana. Five thousandtwo hundred and eighty seven
members of DECUS (out of a membership of approxi-
matly 51,000) attended over the week of May 27 to
May 31, 1985. One thousand two hundred fifty also
attended 48 Pre-Symposium Seminars on Sunday, May
26. They attended 71 birds—of-a-feather sessions, and
over 915 regularly scheduled presentations. Add all of
that to thousands upon thousands of hours of dis-
cussions in seminar rooms, hotel rooms, corridors, on
the Mississippi and in the French Quarter to approxi-
mate the magnitude of the input source for this output
document.

Avis, the car rental company, has a rather famous
slogan — “We're Number Two. We Try Harder.” They
recently updated it slightly. “We Try Harder, Faster.”
Digital Equipment Corporation might well be foliowing
Avis closely, for they too are number two, and they too
are trying harder faster, with the introduction of the new
8600 processor, the fastest Digital computer yet. And at
DECUS, we follow Digital quite closely, trying harder to
be faster, making use of new computer technology,
decision support systems, and office automation to
reduce costs and increase productivity of volunteers
and staff alike. But there is one area where we're trying
especially hard to be extremely fast, publications.

You will notice as you peruse this Proceedings
that the papers are reprinted as received from their
authors in camera-ready form. Why are not the Pro-
ceedings, and the Special Interest Group newsletters,
entered into a Digital computer and typeset? The answer
to this hearkens directly back to Avis' new slogan.
Faster. Itis the goal of each editor of each publication to
getinformation outto the reader as quickly as possible.
Data entry and typesetting would add days and weeks
to the time between submission and printing. Certainly,
these delays could be reduced, but ata very high price,
and low cost is one of the major goals of the DECUS
Communications Committee in disseminating inform-
ation to the DECUS membership.

At this point, the time between an author's submit-
tal of a paper for consideration, acceptance, delivering
of the paper at symposium, and receipt of the Proce-
edings by attendees is about nine months. Compare

thatto some ACM and |EEE journals, which can take 3
years between acceptance and publication. Thus, we
sacrifice cosmetics in favor of speedy delivery of in-
formation in an environment where information is the
most valuable commodity.

The Special Interest Group newsletters are also
reorganizing themselves, partly to increase the time-
liness of the information they distribute. Now, the worst
case between submission and printing will be about
sixty days, where before four months could pass. As a
society devoted to disseminating knowledge and in-
formation, DECUS is getting betterand better, and faster
and faster.

Oneobvious problemis that papers accepted and
published as quickly cannot go through a lengthy
review and editing process. This reduces our credibility
in the eyes of some observers, but the timeliness of
DECUS publications simply does not allow a thirty-six
month turnaround time. Digital has released and ob-
soleted entire operating systems in less time. As DECUS
members, we simply cannot wait.

Even though the computer and information in-
dustries are now going through a highly publicized
slump, the cost of equipment continues to drop, and as
computerized typesetting equipment, optical character
readers, and laser printers fall, you, the user, can expect
to see the quality of the cosmetics of DECUS
publications rise.

The symposium which produced this document
was put together by hundreds of volunteers — the
Symposium Committee, the DECUS staff, and all of the
Special Interestand Local User Groups. But especially
hard-working and visible are Jeff Jalbert and Dorothy
Geiger. My thanks on behalf of all 5,300 attendees to
both of them. The work of the meeting administrators in
Marlboro, led by Nancy Wilga, is unparalleled in the
world of user groups. Ourappreciationfortheirtime and
energy is sincere. In communications, led by DECUS
staff member Judy Arsenault and volunteer Mark
Grundler, my greatest thanks must go to Cheryl Smith,
my colleague, who publishes the Proceedings, for her
efforts and assistance. ﬁ g
Proceedings Editor W

DECUS U. S. Chapter Publications Committee

Table of Contents

Page
BUSINESS APPLICATIONS SIG

Project Management in the New Mini/Micro World
Raymond J. Doubleday 3

DATAACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

Using the DRE-11 to Solve Real Time Data Acquisition
Problems on a VAX

Mark Silverstein 13
Developing a Multiprocessing Construct with a Structured
Language

StevanlLeonard 17

Cephalometric Analysis of Facial Growth using the
PDP-11/23 and VAX

Mary Lou Naegele, HerbertJ. Gould 27
Investigation of Interrupt Response Times of PDP-11/
44 and PDP-11/23 Computers Programming in FORTH
for CAMAC Interfaces

J. R. Birkelund, J. A. Abate, T.S. Lund 33
Laboratory Information Management System for Lubricant
Analysis

Andrew M. Wims, Ching Po Wang,

Bernard E.Nagel 39

Enhancing the DTC11-EM Through Software
Communication

JeanM.Lareaul 45
BARS - A Behavioral Acquisition and Research System
B. Johnson, M. Yochmowitz, G. Brown 49
DATA MANAGEMENT SIG

Artificial Intelligence: What It Is, Where ItHas Been, and
Where It Is Going

TerryC.Shannoncciiiiiaaa., 55
Data Management for High Energy Laser Systems
Ramon A. Tenorio, David Dayton 65
Encryption for Beginners

BartZ. Lederman 71
A Radiation Therapy Patient Information Management
System

Theodore J. Smith, Jill M. Baren,

RobertF.Curley ...ttt 83
Criteria for Selecting Your Relational Database
Jeffrey S. Jalbert, KeithW.Hare 97
Bar Coding for Inventory Control

Larry R.Creel, 105

Creating Menu-Driven Systems Using FMS and VAX
DCL
Brian D. Lockrey 111

Page
DATATRIEVE SIG

Use of Domain Tables to Connect Interactive and
Batch DATATRIEVE

Elliot F. Jaquith,Jr. 121
DATATRIEVE Record Definition Workshop

BartZ. Lederman, 127
EDUSIG

Developingan Applications Libraryonthe VAX--Some
Observations

John M. Anderson 145
Introduction to Microcomputers for Adults
RichardL.Kopec 149

GRAPHICS APPLICATIONS SIG

Low Cost Terminal Options for Digital Equipment
Users

CharlesS.danik 155
Use of an Interactive Videodisc-based Retrieval System
for Archival Management, Computer-Based Instruction,
and Public Information

Patricia K. Mansfield, Michael K. Mansfield 169
HARDWARE AND MICRO SIG

The LA-100 as a Shared Resource

Richard G. Fulton 175
LANGUAGES AND TOOLS SIG

A Microprocessor Cross Development Environment
Clifford J. Schornak, Il 185
LARGE SYSTEMS SIG

TOPS-20 Question and Answer

BestyRamsey i 201
VMS for TOPS Users — - Program Development
JackStevens 205
TOPS-20 System Directions

DonDenTandt i .. 211
TOPS-10 Novice Question and Answer

JackStevens 213
TOPS-10 Monitor Directions

Susan M. Lamaestra 215
Reading Foreign Tapes on a DECSYSTEM-20
BestyRamsey 217

TOPS-20 Utility Closet
Steve Attaya 219

Page
MG-10/MH-10 Memory Upgrade and Multiport Internal
MOS Memory

Donald A. Kassebaum 221
TOPS-20 Versions 6.1 Users Panel
PeterB.Galvin 223

Managing a Large Multisystem Site—— A Case Study
Michael D.Joyo 225
TOPS-10/TOPS-20 and Integration Documentation
Status

Susan Porada
TOPS/VMS Performance Comparisons
Thomas P. Blinn
TOPS-20 V5.1 to V6.1 Technical Comparison
Peter B. Galvin

OFFICE AUTOMATION SIG

ALL-IN-1/WPS-PLUS Documentation
Directions

Sue Ellen Franklin
Office Automation —- Beyond the Information Spectrum

Myron K. Hayashida 277
Development of an In-House Training

Program for ALL-IN-1

NancyR.Pflanz 287

MUMPS SIG

A Walk Through the Forest— How to Fix Your MUMPS
Trees

Denise Simon
MUMPS Programming Standards or How | Stopped
Worrying and Learned to Love MUMPS

Robert C. Richardson

NETWORKS SIG

Data Interchange Between An IBM
Mainframe and Digital Minicomputers
Leonard J. Moriarty
A CAMAC-LSI Network

R. Friesen, A. Simmons, J. Helton,
R. Schell
Techniques for Protocol Validation
William T. Kramer

PERSONAL COMPUTERS SIG

The Professionak-350 as an Intelligent Color Graphics
Engine
Arthur E. Downey

SITE MANAGEMENT AND TRAINING SIG

Don’'t Get Burned! Computer Room Fire Protection
TerryShannonciiiiiienneinin. 361

Vi

Writing User-Friendly Documentation
Terry Shannon

RT-11 SIG

Multiprocessing and High Speed Data Communication

Harry Haenen 375
The Disk Data Cache under RT-11
Harry Haenen 379

Real Time Temperature Graphics Data Acquisition
System Using DEC RT-11

DonaldJ.Mandley 385
Experiences with Style in FORTRAN
Robert Walraven, Ralston Bernard 393

Using an LSH11/23 and RT-11 to Digitize Analog Tapes

John N.Stewart 397
RSX-11 SIG

Loadable Device Driver Data Bases in RSX-11M
SYSGEN

Carl T.Mickelson ... 405

RSX-11M Hexadecimal Command Line Numerics
Carl T. Mickelson
A Real Time Multiprocessor Data Acquisition Network

Mark Podany 419
Programming with Indirect Command Files
Sharon LinneaJohnson 427

VAX SYSTEMS SIG

TAE: Transportable Applications Executive, NASA's
Front-end for Scientific/Engineering Programs
Martha R. Szczur, Dorothy C. Perkins,

David R.Howello, 433
Mini-disaster Prevention Planning for the VMS System
Manager

Marisa Rivierei il 441
Advanced DCL Programming

Richard H.Warner 445

Recovery of Lost Files from VAX/VMS Disk Structures: A
Case Study
Larry W. Ebinger
Tuning RMS Files — - A Case Study on VMS Indexed
Files

John W. Beyer
Results and Comparisons in Multiprocessing using
VMS 4.0 and MA780

Nancy E. Werner
Microcomputer Emulation on the VAX — - Implementation
and Management of a Virtual Microcomputer System
John J. Vasconcelos, AliT.Diba 497
RMS Indexed File Performance

Harold T. Glaser, Philip A. Naecker, Pamela A. Valentine,
Gary Friedmano oL 509

MACVAX Connection

BobWilson ... 523
VAX/VMS Security Considerations
RobertWells i 527

The Instruction Unit of the VAX 8600 — - A Pipeline
Implementation of the VAX Architecture

F. Osorio, S. Ching, M. Troiani, J. Bloem,

N.QUAYNOr ... 535
In Search of the VAXINTOSH -- Customizing VMS V4.0
for DCL Windows

James G.Downward 549
Designing Reliability into the VAX 8600 System
William Bruckert, Ron Josephson 557

POSTER PAPER

Implementation of a Local Area Network at Los Alamos
Meson Physics Facility
Anthony M. Gonzales 565

\1

PROJECT MANAGEMENT IN THE NEW MICRO/MINI WORLD

Raymond J. Doubleday
Advanced Technology, Inc.
2 Union Plaza Suite 103
New London, Connecticut 06320

1.0 INTRODUCTION

There are over 40 Project Management software
packages currently available on the market. These
packages range from the very simple and inexpen-
sive, capable of handling only 50 events at a cost
of $80, to the sophisticated, capable of planning
the construction of a space shuttle at a cost of
more than $100,000. With this wide variety of
features, functions, and capabilities, selecting
the appropriate system for your needs would appear
to be an overwhelming task.

The purpose of this paper is to focus on what these
automated tools can do for you, the project man-
ager; what to look for; how to define your require-
ments; and how to evaluate packages that might
fulfill those requirements. I also hope to point
out some of the gains you should expect from an
automated project management system. Specifically,
what I hope you get from this paper is:

0 An understanding of what you should 1look
for in Project Management tools.

0 An understanding of whether or not you
require automated project management
tools.

0 An understanding of what features and
tools you need to fill your specific
requirements.

What you won't get from this paper is:

o A tutorial on project management and
project management techniques.

o A recommendation of the "right" package
for you.

2.0 BACKGROUND

2.1 History

Before beginning the main part of this paper, I
would like to discuss how Project Management soft-
ware has changed over the past years and what has
happened in the marketplace to warrant a discussion
such as presented in this paper.

We have been part of a revolution in computing
power. We have gone from large mainframe computers
to microcomputers and now, to what I would call
super-micro or small mini-computers. Originally,
Project Management software was developed on main-
frame computers. These Project Management systems
had enormous capacity for project management data
and literally unlimited capacity for handling that
information. These systems typically ran in a
batch mode, which made them extremely slow in terms
of user response. They required a "guru" to care
and feed the system and to analyze the data that
came out of it. The graphics capabilities of these
early machines were limited, if available at all.

Proceedings of the Digital Equipment Computer Users Society

However, there was no meaningful limit to what
these machines could do. ARTEMIS is an example of
a typical project management system with this
legacy, as 1is PSD from Cambridge, Massachusetts
(see Figure 1).

A

LARGE MAIN FRAME

-- BATCH ORIENTED

-- LARGE CAPACITY SUPER -MICRO/MINI

= -- USER-FRIENDLY
i -- LARGE CAPACITY
@ -- INTERACTIVE
<
a.
<
S
MICRO COMPUTER

-~ USER-FRIENDLY

-- SMALL CAPACITY

-- INTERACTIVE

TIME

Figure 1. Automated Project Management
Capabilities

However, with the advent of the microcomputer
revolution (typified by machines such as the DEC
Rainbow, Apple II, IBM PC, and others), we found a
new kind of Project Management software. The
capacity and capabilities of this software were
limited; however, the packages were very friendly,
easy to use, and provided immediate response for
the project manager. There was no expert required
to input data or interpret results; hence, the
manager found a real-time decision support tool for
his desktop. Typically, the graphics provided by
these micros were of very poor quality (graphics
were produced using either a dot-matrix or a line
printer) but were sufficient to get the job done.

But, now, what do we have today? We have the
super-micro, typified by machines such as the DEC
Professional 350, the IBM PC XT/AT, and the
MicroVAX I and II. Typically, these are the fast,
powerful, single or few user machines with a large
storage capacity built in. What has happened is
that we have regained the data storage and speed of
the mainframe computer.

Fortunately, current software has been able to
maintain the wuser-friendliness of the micro
machine. We now have real-time decision support
software that is easy to use and has no realistic
limitations to the quantity and complexity of data
that can be handled.

The current systems are also able to generate
high-quality graphics. Now we have the best of
both worlds: we have a machine at the project
manager's desk with the capacity of a mainframe and

New Orleans LA - 1985

can provide him with real-time, real world answers
to his project management needs.

2.2 New Ideas

I would Tike to propose two themes for the evalua-
tion of all tools and controls to be dicussed in
the remainder of the paper. These themes are
abstraction and communication.

In everything that you do in a project, a software
development program, or real life, it is important
to be able to break the project into manageable,
definable, understandable tasks (i.e., abstrac-
tion). Then, it is equally important to be able to
meaningfully communicate that information.

There are three major features that should be part
of the fundamental design of any Project Management
package. These three features carry through the
fundamental theme of abstraction and communication.

2.2.1. Abstraction. A package should support the
concept of abstraction. By being able to abstract
a project, you are able to take multiple-level
views of your program (i.e., decomposition). Then,
you can deal with it from the beginning (the Con-
cept stage), through other successive levels of
detail, down to the last possible level of detail
(such as fabrication and assembly of a product).

2.2.2. Representation/communication. The choice
of activities and milestones must be such that
their representation on paper can be used as a
" means of communication. This is important because
unless you can communicate the needs of the project
to your staff, nothing can get done. Communication
must be clear and unequivocal.

2.2.3. Manipulation. The automated tools must
act on these representations of activities and
milestones to ensure consistency, feasibility, and,
most of all, achievability.

When 1looking at Project Management tools, you
should look at the tools in the 1light of these
themes as stated above.

3.0 PROJECT MANAGEMENT

This paper is not meant to be a tutorial on project
management, but I would 1like to briefly go over
what project management is to establish a common
framework. The point of this paper is to highlight
the benefits of automated project management and
the gains that are achievable through the use of
project management.

A project can be broken down into five major
phases: Conception, Planning, Scheduling, Monitor-
ing, and Action. Very often action involves the
replanning and rescheduling of activities, as shown
in Figure 2. We will look at each phase in detail
from the point of view of Project Management sys-
tems.

CONCEIVE

PLAN

SCHEDULE

MONITOR

ACT

Figure 2. Project Phases

Project Management systems have two major func-
tions. They can be used either as tools or as
controls. As tools, they help you to organize,
plan, and schedule; as controls, they monitor
progress of the program (in terms of time and
money). Tools help you to plan; controls tell you
if your plan is working. If you are evaluating a
feature of a Project Management system to be used
as a tool, you should ask yourself how it will help
you to plan your project; if you are evaluating a
feature to be used as a control, you should ask
yourself how it will help you to monitor your job.

3.1 Concept

The first phase of the project is the Conception
phase. This is the definition of the program or
the project and, in fact, becomes its charter.
There are certainly no computers here; this is
where insight, intuition, and depth of human under-
standing play a part in defining the project, its
goals, and its requirements. This is where the
goals of the project are established and the tempo
of the program set.

3.2 Planning

3.2.1 Work Breakdown Structure. The planning
stage is the decomposition of the project as con-
ceived into its logical structure. In the initial
planning stage, no schedule or resources have been
assigned yet.

Top view planning. This is the first a computer
Project Management package should be able to do
something for you. First of all, it should support
multiple views of the project and secondly, have
the capacity to move down the project in detail.
This 1is analogous to a top-down step wise refine-
ment of the project. This is a place where the
concept of being able to abstract a project or to
push down the details of the project becomes very
important because what you want as a project man-
ager is to deal with a larger picture first and
then to fill in the details of each phase. In
essence, you are creating a management outline for
your project managers to complete; and they in turn
may provide the same sort of outline to their
subordinates.

Let's look at what a typical software development
project might look like as shown in Figure 3.

ASTROLOGICAL

024-00

024-01 024-02

024-03

024-04

024-05

DEPARTMENT A DEPARTMENT B

SPECIFICATION DESIGN CODE
DEPARTMENT C

TEST DOCUMENTATION
DEPARTMENT D DEPARTMENT E

PPS
024-02-01

TEST PLAN
024-02-02

Figure 3. Astrological Organization

This is the development of a program called Astro-
logical to analyze digitized images of the night
sky. The product breaks down into typical software
development components. The specification, design,
coding, testing, and documentation. The package is
meant for in-house use; therefore, the manufactur-
ing and marketing functions are not included on
this particular product. After the concept devel-
opment, the next thing that the senior manager must
do is to assign responsibility for each of these
major phases to a person or department and then
produce a rough schedule or goals for the project
completion. Once this preliminary schedule and
assignment have been achieved, the senior manager
will ask the department managers to produce their
own schedules, budgets, and resource requirements
within the Timits of their schedule.

How do you do this? You do this by having a proj-
ect management package that supports various levels
of hierarchy. One way to do this is through the
use of work breakdown structure numbers, although
there are a number of other schemes that may work
equally well. Briefly, work breakdown structure is
a hierarchical numbering system similar to the
concept of a work outline where the order and the
number that each work assignment has has meaning.
Typically, a work breakdown structure number is
associated with the concept of a work package,
which is the smallest measurable unit of work. In
our example, Figure 3, the Astrological analyzer is
given the number 024. This code indicates that
this particular software product is one of at least
24 different jobs that are taking place or have
taken place within the organization. Looking
underneath that, we see that the number 024-02 is
the design function for Job 024. Looking at the
design function in more detail, we see that the
preparation of the program performance specifi-
cation is given the number 024-02-01. Development
of the test plan is given the number 024-02-02. It
is possible, of course, for this numbering scheme
to continue down in more detail as required within
each function and, of course, to go across to
support more than the five functions shown here.

Why is this work breakdown structure important? It
is important for two reasons. First of all, it

allows you to assign responsibility and a budget
for a category of work such as the specifications
024-01 to Department A for completion. Secondly,
it allows you to isolate your view of the project
to the higher level. From now on, you as senior
manager, will only be looking at things down to the
second level; that is, you will be looking at tasks
024-01, 024-02, etc., leaving the specific details
of the project to the managers of each of those
particular departments. Your management, in turn,
may look at Jobs 022, 023, and 024 to supervise the
overall performance of the departments.

The next thing you should look for in a Project
Management package is the ability to support vari-
ous levels of hierarchy through the use of work
breakdown number structuring or other means.

3.2.2 PERT/CPM. Now that we have established the
major phases of the program, we need to go into
more detail on how the Astrologicial program can be
realized. The major tool you have available for
this is network analysis. Network analysis is also
known as either PERT (Program Evaluation and Review
Technique) or CPM (Critical Path Method).

PERT/CPM are synonymous today; we will use the term
network analysis to stand for a combination of PERT
and CPM. The idea behind network analysis is to
represent a complex project as a series of inter-
connected activities that must be performed. The
description of the project is then used to analyze
the project and answer the following questions.

o How long will the project take?

0o Which jobs are most critical to the proj-
ect?

o How should the project be scheduled?

An activity is a time/resource consuming event in
the project. I will use the arc in my discussion
to represent an activity. A point in time corre-
sponding to the start or completion of an activity
is a milestone; they are represented by a triangle
on the schedule. On a network drawing, they are
represented as nodes or circles (note, however,
that all nodes are not necessarily milestones).

Now, let's look at the network for our Astrological
package as shown in Figure 4.

Astrolodical Devel

P
]
:
N
i
O e - O YR O - mm - m g - - - Q=520 8
-:-’: as R
ae w0 K
!
T
s e v T o T 0T el s T e T v T 3T F1
1985 | 198¢

Figure 4. Astrological Development

What is wrong with this figure? Well, fundamental-
ly, it 1is too simple; however, to introduce the
detail necessary to understand the project from
beginning to end would be too hard; the graph would
be too hard to read, the program would be too hard
to manage and control.

Again, we must be able to do a top-down refinement
of the tasks. Tasks at a higher level can be
broken down and should be broken down in order to
understand the problem. Figure 5 shows an example
of the proper kind of decomposition when applied to
writing a book. As you can see from the figure,
the book has been divided into a number of chap-
ters, each chapter into a number of sections, each
section into a number of paragraphs, and each
paragraph into a number of sentences. This, of
course, is a very manageable approach with the
appropriate work breakdown structure numbers being
shown in the right part of the picture.

Returning to our example, Figure 6 shows the code
portion of our task broken down into more detail
beginning with the review of the performance speci-
fication and ending with the final integration of
the package.

-1

Code Generation Tasks

()Eezaz ver

T

—OrT D RDOLAMZ >OIMOT D

K
s \
°
"/ \
BP0 Ra _N\Eils Dest Brive A Etla waint In
ico C\ 366 O Boc NS 1100 0'; 'oo
“
o1 G 1o
dui - o
or - l ° / &y
e °
oy le
o ' °
- | o
- { 0y
N /4
e o /
Y
-1 o/
S /
N irfas rranr ~
L I -/
N [— 1 = |

Figure 6. Network Plot

What have we done? We have been able to isolate
our tasks into the correct areas of responsibility
and we have been able to decompose the coding job
to manageable units. If you were the head of the
programming department, you might want to have even
more detail for a particular task such as the
coding of the input handlers and you could, in
fact, do that for yourself. The output for this
section, the overall time from the beginning to the
end, can now be passed back up the management chain
and the time put in for coding on the network
drawing as shown previously in Figure 4.

In examining Figure 6, our tool has answered the
first two questions: how long will it take and
which jobs are critical to the project.

WBS LEVEL 1
ANALYSIS DESCRIPTION | WBS NO.
LEVEL
1 Chapter 1 | 001-00-00-00-00
Chapter 2 | 002-00-00-00-00
CHAPTER 2 (M)CMAPTER § Chapter 3 | 003-00-00-00-00
Chapter 4 | 004-00-00-00-00
CHAPTER 3 Chapter 5 | 005-00-00-00-00
Chapter 6 | 006-00-00-00-00
WBS LEVEL 2
ANALYSIS DESCRIPTION | MBS NO.
LEVEL
2 Section 1 | 003-01-00-00-00
Section 2 | 003-02-00-00-00
Section 3 | 003-03-00-00-00
Section 4 | 003-04-00-00-00
Section 5 | 003-05-00-00-00
Section 6 | 003-06-00-00-00
‘\\\\ WBS LEVEL 3
AMALYSIS DESCRIPTION |WBS NO.
LEVEL
3 Paragraph 1 [003-06-01-00-00
Paragraph 2 |003-06-02-00-00
Paragraph 3 |003-06-03-00-00
PARAGRAPH 2
J/ WBS LEVEL 4
Al:vlls.lsls senTENCE 1 DESCRIPTION |WBS NO.
4 Sentence 1 |003-06-02-01-00
Sentence 2 |003-06-02-02-00
SENTENCE 2 SEnTENCE 3 Sentence 3 |003-06-02-03-00

Figure 5. Network Decomposition

Now that we have our network drawing, what other
kinds of planning tools are available? Next is a
Gantt chart, shown in Figure 7.

Code Generation Tasks Fr oo
CEENDAF 3ES RS
TESCRIFTION pee | oo | &3 | ¢] Gor [hy [o] -
o0 | PPS Feview [o] d
0 | Output Design ‘ " IR £
| File Design | 3 TN N
i Buffer Lesign ' 47 " —: H
| Grapracs & .
srort Gen | = . S] g
P a— &
I'Irput Hrale € [o cowwammsoxd I
Lriver S o e T
! —zn e
i Fiie Maint S s ae &
! s N — 0
i ! vo i | RSy H
[440C | D4 [==
IlSOC' ! Integration [XXy
! !
L i
o DUATION = _FLOAT om CRITiZh.

Figure 7. Gantt Plot

The Gantt chart is the first depiction of a sched-
ule. The critical activities are shown in red on
the Gantt chart as they were shown in red on the
network drawing. Additionally, there should be a
number of tabular reports provided with the network
analysis to bring out the necessary detail in order
to properly analyze the schedule. The kind of
reports that you should expect to see again support
the ideas of abstraction and decomposition, and are
listed in Figure 8. There should be an executive
summary, something that provides an overview of the
time and resources consumed for the project, and a
variety of reports getting down to a final detailed
report showing for each of the activities the time
estimates, the scheduled early start and 1late
start, the early finish and late finish dates, as
well as the float, the slack time, and the identi-
fication of the activities and resources that are
critical to the time of completion of your task.

o DATA SUMMARY

0o EXECUTIVE SUMMARY

o DETAIL REPORTS

o CRITICAL PATH REPORT

Figure 8. Network Analysis Management Reports

This in essence becomes the plan for your project.
However, it is necessary now to generate a firm,
fixed schedule or baseline.

3.3 Schedule

The Gantt plot is a candidate schedule. What you
must do is use it to develop a firm, fixed schedule
or baseline. The final schedule represents the
plan of the Gantt Plot, with real-world constraints
applied to the plan. This schedule is one that you
will manage to and report on. All your progress
will be measured against this baseline schedule.
The schedule for the coding effort is shown in
Figure 9.

Code_Generation Schedule PAGE 1 | p
EVENT CALENDAR YEAR 198% H
NO. DESCRIPTION [7comP] J0e | AGS | SEP.] oo [mov. [mec| ¢
100 | PPS Review : N
300 | File Design s o ,I(
200 | Output Design e
400 | Euffer lesign e 8
T Ty
€00 | Graehics : H
£2% | Report Gen B e 5
100G | Input Hndlr ' A U
401 | Design Compl ' L E
oo | Driver ' =
F : O ?
& !
. G 8
) y
! <
.
'
PI_EETONG: £e gaT. £aact A comee. SEZiuiev. oo gav e omer 1

Figure 9. Schedule Plot
3.4 Monitor

3.4.1 Controls. You have passed the planning
stage. Now that you have established a schedule,
you need to have a number of automated project
controls that will let you examine the schedule and
examine the financials for your project to make
sure you are both within budget and on schedule.
Before we begin discussion of some controls you
should look for in a project management package,
let's take a look at our project.

First of all, the job spans five departments. The
initial time estimates were that the job would take
two years to complete, cost $1.5 million dollars,
and would be composed of approximately 5,000 separ-
able and discrete activities. Given this size, how
are you going to control it? Well, taking a step
back, you have to look at why you are a project
manager. Most Tikely, it is because of your
ability to thoroughly understand your job and to
almost be intuitive about the nature of the work
you do. A project of the magnitude of Astrological
would require a database so large it would negate
your ability to be intuitive. What you need from a
project management package is the ability to be
dynamic in monitoring your project to be able to
develop various views downward into the database
until you can focus on the issues that are perti-
nent to the project. You need to be able to select
or segment the database so that you can get an
accurate, concise view of a limited segment of the
database.

Again, this supports the concept of abstraction.
You want to be able to look at the data in varying
degrees of detail; only the detail necessary to
give you the insights that you need to do your job.
Your Project Management controls should provide
unlimited query capability on the database.

3.4.1 Schedule Status. The first thing you should
look at 1is the schedule. This 1is shown in
Figure 10, which is a schedule with milestones for
monitoring the progress of each task.

In this particular example we are showing a graphic
depiction, one that is very important and gives a
quick indication of how we are doing and where we
should be today for the project. As you can see,
immediately below the baseline schedule is the
actual start and completion of each of the activi-
ties in the project as well as percentage complete.
The percentage complete for each task is indicated
by how much of the lower bar is filled in.

Code Generation Status E 4|

EVENT CAENISE B : 1985 H

ND. LESCRIPTIZ. IF Jh [wor [sep | oot T oter [rec | B

|| 1w P = X i

b ac0 8| s !
200 or %

400 € | [——r-=] H

€00 £ e n

5\.."} FEPGY". Geﬂ ;m F

l 1000 | Input Hndle l ' I

401 ! Des:gn Cowp! N & g

900 | Driver i ' = =

1100 | File Haint | . e s

1101 | Modules Come. i . & ;

1300 | Integration | = 7

i Y

I -)

MILESTONS: & B57. & oC7. M CIaEL . “"""“E:Efxvuv: = sar T4 oac-

Figure 10. Schedule Status Plot

3.4,2 Completion Status. The second chart,
Figure 11, is a Completion Status Plot which gives
us another view of the data. It indicates which
events are early, which events are late, percentage
complete, and how many days remain until the com-
pletion of the job.

EVENT

100 | PPS Review
300 | File Design
200 | Output Desisr
400 | Buffer [lesign
800 | Graphics

500 | Report Gen

12NOV3E

1000 | Input Hndlr iodsepE L 103NOVeS
900G | Draver :2455?85 —— 160CT85
1100 | File Maint 1183CT8E 25N0VES

TOHAME VIO SOZINOI N

1300 | Integration i ZTNDVEE 10DECES

i

NIC 4D =N

Figure 11. Completion Status Plot

3.4,3 Cost Status. Figure 12 shows a Cost Plot,
which is a measure of the budget, the dollars
spent, and the work achieved for those dollars
spent.

£OAUGSE sl AnEAD C€ SCRETUE Lot N SCHEDULE AV T T

$ |
[
H
0
£
N
1
X
[
b
OCT | NOV | DEC | JAN | FEB [MAR | APR | MaY | JWN | JW | AUG | SEP
FISCAL YEAR XXXX —

Figure 12. Cost Plot

This plot gives you a feel for the rate at which
the funds of the project are being used and the
amount of work that is actually being performed for
your project. This brings up a number of ideas,
such as the budgeted cost of the work scheduled,
the budgeted cost of the work performed, and the
actual cost of the work performed.

3.4.4 Cost Variance. Figure 13 shows a Cost
Variance Plot. It is the difference plot of the
data that was previously shown in Figure 12 and
gives us a measure of how well we are progressing
against the schedule. The closer these curves are
to zero, the more accurate were our project predic-
tions and the better our project performance.

¢
g
N
H
3
N
‘ o2 ?
3
¢
TiT Twov | [EC | JAN | FEB | wam | AP@ T hAY T Jov [JOC [A0 T 56°
FISTAL VERR 03X

Figure 13. Cost Variance Plot

3.4,5 Communication. What is significant is that
the previous four figures provide accurate and
timely information that may be communicated easily.
Large stacks of computer runs are not required, and
it is not necessary to connect dots and asterisks
because the plot was prepared on a printer. The
control reports provided are presentation-quality
graphics.

The monitoring tools that you should select should
be suitable for all levels of management. In
management reporting, you certainly don't want to
have separate tools for different levels of manage-
ment. What you should expect from your project
management tools is that for high level meetings,
briefings, and presentations, they should support
full-color graphics with figures that are easy to
read and understand. They should be crisp and to
the point. For reports, figures should be done in
black and white so they can be clearly reproduced
by either printing or copying.

Your project controls should also support graphics
with tabular reports which contain all necessary
back-up data.

3.5 Act

Management must manage. Now that you have read the
reports, reviewed the project data from your sub-
ordinates, you must identify the causes of any
problems and act on them. Therefore, it is very
important that the project management system you
select be able to perform what-if analyses to aid
in replanning and redefining the project as it
progresses.

At this point, the idea of representation of the
ideas and their automated manipulation becomes very
important. You must be able to easily manipulate
the parameters of your program and perform rapid
what-if analyses until you have developed an ade-
quate approach to your problem. You must then be
able to modify schedules to accommodate this
replanning just as easily. With replanning, the
cycle begins again.

4.0 CONCLUSIONS

The latest generation of Project Management soft-
ware has the power and capacity of main-frame type
packages and the ease of use of micro-computer

software.

Any Project Management system you select should:

0
0

0

Be easy to use.

Support multiple views of the database
(abstraction).

Provide presentation-quality graphics
(communication).

Provide real-time analysis (monitor).
Support rapid what-if analyses (plan and
replan).

s
e

R

Po

X

Bk 5 - ik 4 ?wﬁéé% - ..ra
. . ; : 5
% .mrm.. mf%ww.» et @

S TRE A
G

: L R

&5

F %wmmm. S

il

e
G

SRR .
TR SR

o

USING THE DRE-11 TO SOLVE REAL TIME
DATA ACQUISITION PROBLEMS ON A VAX
Mark Silverstein

Goddard Space Flight Center
Greengelt, Haggland

ABSTRACT

When the rate of input data exceeds the worst possible
interrupt latency times, a data acqisition system loses
de endagility. ¥he DRE-11 alternate- buffered DMA
interface can remove this difficulty. This paper
enumerates the capabilities of the DRE-11, explains ang
difficulties in installing the driver, demonstrates a QI
instruction to utilize the device, and explains how the
DRE-11 solved real time data problems in Goddard Space
Flight Center's Laboratory for Extraterrestrial Physics.

THE ORIGINAL SYSTEM

I serve in the Laboratory for Extraterrestrial
Physics's Information Anal¥sis and Display Office.
We provide computer support to the various groups

in the 1lab. One such group is the Planetary
Astrophysics Section which, among other things
works on a project called SIRIS. Tﬁe

Stratospheric InfraRed Interferometer Spectrometer
is a balloon experiment that is launched into the
middle atmosphere to study the ozone layer and
that which tends to decay ozone. The experiment
needs real time computer support. Our processor
serviced all the experiment's interrupts in a
timely fashion. The displays flashed on the
screen while the bytes traveled through the data
line to deliver the next scan. Our Test and
Formatting System served us well. The scientists
smiled, and I knew peace.

This Test and Formatting System consisted of a
MODCOMP II with a Diablo disk drive, an AMPEX tape
drive, and a Teletype machine as its console
terminal, After ten gears of noble service, the
system became unreliable and the scientists
frowned. The compan¥ that made the Test and
Formatting System no longer existed. When the
tape drive went bad, we called AMPEX. The

assured us the drive was fine and we had a MODCO|

problem. When we called MODCOMP, they assured us
we had an AMPEX problem. We could not keep the
system in working condition. I sought a

replacement system.

We needed a system to which we could make an easy
transition. Users would have to get on the
machine without a great deal of retraining.
Software, for the most part should not involve
rewriting. Finally, the system had to be
portable. After ail, we needed the ability to
test our experiment in the lab and in a high " bay
area while it sat in a gondola during flight
preparation. We also had to be able to ship the
machine easily to the balloon facility across the
country where the system would be used to receive
and analyze data during flight.

experience and software

were VAX oriented, we decided the replacement

system should be a VAX. We had a great deal of
existing software we could use, and we would be
familiar with the new system to which we would
convert the Test and Formatting System's data
acqisition and analysis programs. The VAX-11/730
fu?filled our requirement for portability, and
with the floating Yoint accelerator, compared well
with our MODCOMP II.

REAL TIME PROBLEMS

Then the bubble burst. Rumors flew. A 730 can't
handle multigﬁe processes in a real time
environment. e interrupt latency time on a 730
is too great for your needs. It will never work.

The last objection I discounted. Pe%ﬁle were
doing real time work on a 730. e first
objection I decided to worry about later.

dién't have multiple processes on the Test and
Formatting System. I wanted them on the 730, but
If I coulgn't get them, I would lose nothing. The

As so much of the lab's

Proceedings of the Digital Equipment Computer Users Society

13

middle objection stumped me. A ord came from the
experiment's outgut line every 800 microseconds.
That word had to be examined and needed to _have
its bits juggled before the next word came. I had
heard results of tests that showed rare, worst
case latency times of hardware interrupts to the
VAX-11/730 that were greater than my 800
microseconds. Even though such a thing would
rarely occurr, once would be enough to cause me to
lose data. The latency time was unacceptable.

I talked over my problem with a fellow in another
lab. His hardware people were putting the
finishing touches on _a buffer they had bui?t to
help their VAX-11/750 keep up with data that was
coning too fast for it. I did not want our
hardware people to have to design and build a
special buffer for this application. In the
course of discussion the fellow mentioned to me
that someone had told him of a new product Digital
Equipment Corporation had come out with that was
featured in that month's INSIGHT magazine. It was
a double buffered direct memory access high speed
interface that sounded as if it would get around
my latency time problem. I read the article.

THE DRE-11

The article made the DRE-11 sound as if it were
the solution to my problem. It was alternate
buffered. I wouldn't even have to tell it when I
was done with one buffer to start filling the
next. It would do it automatically. This device
would put my incoming data into memory at high
speeds. It would take my data in 16 bit "parallel
form. Wonderful! I immediately sent in the card
to receive more information (see fig.

When I believed the DRE-11 was what I wanted, I
contacted our DEC sales representative for price,
ordering information, driver information, etc.
Her response was simply that she didn't know what
I was talking about. She'd never heard of a
DRE-11. It was such a new device that the sales
regresentatives had no information on it. Qur
sales rep was able to research it and came up with
enough information for us to order the device,
except for one minor detail. INSIGHT claimed the
driver would be found in VMS. Not so. Mere weeks
before 1 was due to begin testing the experiment
on the new system, found myself with ‘an
interface device I couldn't talk to. An emergency
procurement brought me the driver quicker than I'd
thought possible.

At the time I was a very novice system manager.
My sole experience consisted of 1 week of system
manager class and 2 months as _substitute system
manager on a VAX-11/780 while the real system
manager designed a major software proiect. us,
I shuddered at the thought of installing a device
driver. It must have taken me all of 20 minutes.
The installation instructions were crystal clear.
I had the driver installed and tested. This gave
me the ability to code several functions of the
DRE-11 (see fig 2) with simple QIOs.

THE FLOW OF DATA

The READ VIRTUAL BLOCK function

I0$_READVBLK
fulfilled my requirements. If

it worked as

New Orleans LA - 1985

DRE-11 SPECIFICATIONS

DATA TRANSFER

16 BIT PARALLEL WORDS

DMA BLOCK OR BURST MODE
128 K WWORD ADDRESSING
64K WORD MAHX BLOCK SIZE

MAKIMUM TRANSFER RATE
600K WORDS PER SECOND

700K WWORDS PER SECOND
BURST MODE

4 ADDRESS BREGISTERS
(FIG 1)

FUNCTIONS
CANCEL 1/0 REQUEST

WRITE BLOCK

READ BLOCK

SET DIRECT DATA PATH
SET BUFFERED DATA PATH
READ WORD

IWWRITE WORD

SET FUNCTION BITS
READ STATUS BITS

CONNECT TO UNSOLICITED

INTERRUPT
(FIG 2)

14

advertised, it would fill a buffer in memory with

incoming data and immediately begin to fill
another buffer while my software could play with
the data in the first buffer. Best of all was

that it claimed to do this with little more than
one QIO instruction. Let me show you (see f%ﬁ'
3) what goes on when you execute this QIO. e
driver begins the "DRE-11's data transfer by
ordering the DRE-11 to fill my IBUFFA, where
IBUFFA 'is my first buffer in memory. My next
instruction after the QIO is a wait for event flag
(see fi§ 4 I know real time programmers hate
waiting for anything, but while you are waiting,
the VAX's memor is actually ac?uirin% the data
you want. When the DRE-11 has filled IBUFFA it
automatically begins to fill IBUFFB (my second
buffer in memory and issues an interrupt to

ORE-11 DRIVER
FILLS IBUFFA STARTS HARDWARE
SWITCHES DATA TRANSFER
AUTOMATICALLY WITH IBUFFA
T0 IBUFFB WRITES BLOCK COUNT
REACTIUATES T0 IBUFFA HEADER
DRIVER WITH WRITES 1 TO BUFFER
INTERRUPT POINTER BLOCK ROGRA
FILLS 1BUFFB SET ["J{:’ffms MAIN PROGRAM
SWITCHES io
AUTOMATICALLY SEE EUENT FLAG
10 I8UFFR EHECUTES DECODE

FIG 3 CLEAR BUFFER
¢) HERDER

reactivate the driver. Now that I am dealing with
time to spare on the order of 6 and a half seconds
instead of 800 microseconds, I don't care if I
have a little latency time here in reactivatin
the driver. The driver puts the current bloc
count .(how many blocks or buffers I've filled - 1
in this case) in the buffer's header, writes a 1
into the buffer pointer part of the I0SB
(indicatin which of the "2 buffers I've most
recently filled and sets the event flag. I've
been waiting for that event flag. It tells me
that I have a buffer full of data in IBUFFA, I
clear the event flag, and go off in my program
(see fiﬁ' 5.) to decode the data and store it
on dis So it can be_analyzed and displayed by

another process. When I've decoded every byte

that was in IBUFFA, I clear the buffer header, as
a signal that IBUFFA may be filled again. After

doing that, I again wait for the event flag.
Meanwhile, "the DRE-11 has been bus fillin

IBUFFB. When IBUFFB is filled, the DRE-1

immediately begins to £fill IBUFFA again. The
DRE-11 once more reactivates the driver with an
1nterru£t. The driver writes the current block
count 2) into IBUFFB's header (I've filled 2
buffers% it sticks a 2 in the buffer pointer part
of the I0SB (I've just filled buffer number 2) and
sets the event flag I've been waiting for. I
clear the event flag, and proceed to decode the
contents of IBUFFB. On returnin from my
subroutine I clear the header of IBﬁFFB to allow

it to be filled again, and once more wait for
event flag. ~The scheme repeats from the point
IBUFFA was filled to this point until an error
occurs or until the program is terminated.
SOFTWARE COMMAND THROUGH DRIVER

One QIO commanded the DRE-11 to do all of the
above. Let's take a look at it.

I=SYS$QIO(%VAL(1),%VAL(CHAN

1 %3ALEIO$_REA§VBLK ,IOS%’ ,

2 IBUFFA,%VAL(163849, TBUFFS,

3 %VALEl6384g %VAL(O),

4 %VAL(6.536))

where:

first argument, %VAL(1), indicates the number
of an event flag to be set when either buffer
is filled.

second argument, CHAN, is the number of the
I/0 channel assigned to the DRE-11.

third argument, IO$_READVBLK, is the function
code to transfer blocks of data from my
external experiment to the VAX's memory.

fourth argument, IOSB, is the address of a
quadword I/0 status block that receives the
return status, an indicator telling which
buffer was most recently filled, and the byte
count of the buffer being transferred up to
the point of termination.

first function parameter is IBUFFA, the
address of my first buffer.

second function parameter is the length of
that buffer in bytes, excluding a &4 byte
header which is used to synchronize the

program with the alternate buffering.

third function parameter is the address of
the second buffer.

fourth function parameter is the length of
Ehag second buffer, again less the 4 byte
eader.

fifth function parameter is the number of
blocks of data to be transferred. Note that
I have this as a zero. A zero indicates that
I want to keep on sending data until an error
occurs or until the program terminates.

sixth function parameter is the maximum time
allowed for each buffer to be filled. Here I
told it that it should end with a timeout if
it ever takes the buffer longer than 6.536
seconds to fill

This is really a much simpler QIO to set up than
those 1 remember being taught in system services
class, and it gives you tremendous power.

WHAT DID THIS GET ME?

I began with a situation in which my VAX was
choking with data, and ended up in a situation

IFC.NOT.I)CALL LIBSSTOP(XVAL(I))
I=SYSSASSIGN(UUNAM, CHAN, ,

IF(.NOT.I)CALL LIBSSTOP(XVAL(I))

1=SYSSQIO(XVAL (1) ,XVAL(CHAN) ,XVAL (-10S, READVBLK),
*10SB, ,. IBUFFA,XVAL (168842 IBUFF B, XVALT1 63p4) ,
*XVAL(8) ,XVAL (6.536))

1F(.NOT.I)CALL LIBSSTOP(XVAL(I))

1=SYSSWAITFR(XVAL(1))"

I=SYSSCLREF(XV2L(1))

(FIG 4)

15

DECODE

Bl REMOUE HALF WORD OF

DATA FROM EACH WORD
OF INPUT

PUT HALF WWORDS TOGETHER
COLLECT WJORDS TO FORM
BLOCKS OF 64 WWORDS
PERFORM S¥NC CHECK

IF BLOCK CONTAINS

HOUSEKEEPING - MAKE
AURILABLE TO DISPLAY

COLLECT RECORD OF 64
BLOCKS

STORE RECORD ON TRPE AND
DISK

(FIG 5)

during which I have plenty of time.
state that people told us you
mu.tiple processes in a real time environment on
the VAX-11/730. We're doing it. While the
program I've just described is acquiring data,
decoding it and storing it in a disk file, (and on
tape), a scientist is sitting at a terminal
running an analysis and display program, while a

Earlier I
couldn’' t have

third process is displaying pressures and
temperatures from the input stream on another
terminal. For our next flight we plan to increase

the amount of data being transferred, and also
increase the capabilities of our displays. With
the DRE-11, I'm betting our 730 can handle it.

DEVELOPING A MULTIPROCESSING CONSTRUCT
WITH A STRUCTURED LANGUAGE

Stevan Leonard
Exel Microelectronics

San Jose,

California

ABSTRACT

Executing and controlling several overlapping pro-
cesses is a challenge even with the aid of a multi-
tasking operating system.
from within a program is straightforward with the

use of the case statement construct.

Attacking this problem

A simple

example using PASCAL will illustrate the means of
process initiation and control, and how to code

processes.

What do you do when you have a single-job operating
system to solve a multiprocessing problem? Wishing
and hoping offers only temporary relief. The
application of a polling method to check on various
processes in a round robin fashion brings some
relief. Then adding in interrupt processing to
form a hybrid approach adds some flexibility and
lessens system overhead. One critical element is
still missing — a general structure applicable to
any multiprocessing problem. The construct
described in this paper is one method of defining a
general multiprocessing structure within a program.
From there, the programmer is concerned only that
the functions such as reading fram the user console
or printing text are performed with no-wait input-
output system calls. So wish no longer and read
on.

THE MULTIPROCESSING APPROACH

Execution of multiple processes by a CPU is a
function usually attributed by programmers to an
operating system. In most cases multiprocessing
(i.e. multitasking) ought to be delegated to the
operating system. But for certain applications it
may be desirable to maintain control of overlapping
processes from within a single program unit. This
is a necessity in the case of a single-job
operating system, where overlapping system
resources must be handled by the program.

A multiprocessing implementation is a
straightforward approach to handling the
asynchronous activities of several devices. If a
separate process controls each device, a process
needs to respond only when the device it is tied to
requires service. Any process can use information
about the status of other active processes for
decision making independently of the processing
flow of other devices, as well as of any global
processes controlling multiprocessing activities.

EMBEDDED IN THE APPLICATION

Developing the control of multiple processes within
an application program provides a direct means to
access and update process information, and to
tailor process control to the application rather
than be constrained to the general format provided

Proceedings of the Digital EQuipment Computer Users Society

17

by an operating system. Even so, on a system that
supports multiprocessing, embedded multiprocessing
in the application program would usually be
unnecessary without special requirements.

Applications written for single-job operating
systems might employ a multiprocessing construct to
provide a user simultaneous access to system
resources. Printing documents and data capture
through a modem can be time consuming. Overlapping
print and data capture functions could cut the real
time consumed up to 50%. But aside from
efficiency, the greatest advantage to overlapped
processes is that the user can continue to interact
with the system to maintain control of the
processing.

COPROCESSOR
MainMenuProcess ProcessOne ProcessTwo
Step 1 Step 1 Step 2
Step 2 Step 2 Step 2

/[;— Step N /[;— Step N /[;— Step N

Figure 1: Code Structure in Program MULTIPROCESS

MULTIPROCESSING PROGRAM SKELETON

At the end of this paper is a listing entitled
"Multiprocessing Program Skeleton" that includes
the essential elements of a program that handles
multiple processes. Pascal was used for this
example since the construct was originally
implemented in it. Structured languages that
include a case statement would be equally suitable
to code this construct. Though most any language
can approximate the code in program MULTIPROCESS,
the case statement is crucial to program legibility
and the generation of uncomplicated code.

New Orleans LA - 1985

Figure 1 illustrates the code structure in program
MULTIPROCESS. The coprocessor successively
transfers control to active processes. These
processes are defined as procedures, and broken up
into steps that are activated through a case
statement. The effect is that of segments of code
in separate processes executing on a time-sharing
basis.

COROUTINE IMPLEMENTATION

The concept of coroutines best fits this
implementation of multiprocessing. Two coroutines
operate by transferring control back and forth to
one another at planned intervals in their sequence
of code. Whenever one calls the other, processing
continues wherever the other was last called. 1In
contrast, subroutines are always entered at the

top.

Variables coprocessStatus and nextCoprocess control
the action of the coprocessor. The case statement
selection via index nextCoprocess is included to
show that processes don't necessarily have to be
executed successively. If processes have varying
importance, a main menu option might allow the user
to establish process priorities.

Variable coprocessStatus contains the current
status of each process. MainMenuProcess is always
active to monitor input from the keyboard. Status
of other processes is controlled by the
application. The possible process statuses are
defined by coprocessStatuses. Only when a process
is “"active" will it be entered. Process status can
be altered by MainMenuProcess or another active
process.

Step MMrestart in MainMenuProcess is of special
importance to the functioning of the construct. If
one or more of the steps in MainMenuProcess is a
subprocess with its own case index, then upon
completion of the subprocess, the procedure
ReinitMM can be used to reset each case index
associated with MainMenuProcess to its initial
entry value. The MMrestart step might also be set
after an error is processed. Another function of
ReinitMM is to reinitialize global variables used
by main menu subprocesses and global variables that
depend upon calculations made in main memu
subprocesses, such as variables used for timing.

MODEM PROGRAM EXAMPLE

On a system with two or more modems, it would be
handy to be able to control sending and receiving
files on more than one modem simultaneously. The
modem program example at the end of this paper is a
complete Pascal program that operates off the
following main menu:

Main Menu
Connect/disconnect modem channel
Start/stop file receive
Start/stop file transmit
View a receive/transmit process
Dumb terminal mode
End

AU WN

18

COPROCESSOR

MainMenluProcess Modemjroces=
L MMdraw t: MDreceive
— MMprompt MDtransmit
— MMgetChar
— MMprocessCmd —— ProcessCmd
t— PCchannel Prompt
L— PCgetUserChar

— MMdumbTerminal — DumbTerminal
t— DTinit
— DTgetUserChar
— DTgetModemChar

L— MMrestart

Reix|1itMM
Figure 2: Code Structure in Program MODEM

The user is informed of active channels, then
prompted to enter an option number. In order to
start a receive or transmit process, the modem to
be used must be connected. The view option causes
the characters being receive/transmitted to be
echoed on the user console. Dumb terminal mode can
be entered on a connected modem, but not one that
is performing file receive/transmit.

The code structure in program MODEM is shown in
figure 2.

REGARDING INDIVIDUAL ROUTINES

In the coprocessor, the program name is written to
the console, then a few global variables are
initialized. From there on, the coprocessor looks
very much like the one in the program skeleton.

MainMenuProcess has the same format as the program
skeleton, but now has two subprocesses

—— ProcessCommand and DumbTerminal. Note that
while one of these subprocesses is running that the
main menu is inaccessible to the user. The small
procedure ReinitMM resets MainMenuProcess and
DunbTerminal to their initial steps.

ProcessCommand resets to its initial step
internally.

ProcessCommand could have been implemented as two
steps in MainMenuProcess, but was broken apart as a
subroutine would be in a hierarchical program
structure. Making PCgetUserChar a separate step
was necessary to allow the coprocessor to continue
executing other processes while waiting for a
character from the terminal.

If more than one character was expected, then the
format used in MainMenuProcess to execute
ProcessCammand would be used, but the characters
would be buffered in PCgetUserChar until a
terminating character is received.

The DumbTerminal subprocess flips back and forth
between console input and modem input. Since the
user input character is written to the terminal,
this shows a half duplex configuration of the
modem.

Other than the argument processNumber, ModemProcess
is essentially the same in format as the processes
in the program skeleton. Use of processNumber as
an index into processStep.MD makes ModemProcess
into a multiple process itself. To support three
modem processes would require changes to global
variables to handle the third modem and adding
another step to the coprocess loop, but would not
affect ModemProcess. The process either receives
characters from the modem and writes them to
modemFile, or reads characters from modemFile and
transmits them to the modem, until an end of file
condition is encountered. When the view option is
selected, each character being manipulated is
written to the user console.

MISSING ROUTINES

The following routines are missing from the MODEM
program example because they are system dependent.
Other than the modem device handler, all of them
should be fairly easy to code.

AttachModem

Performs the necessary functions to activate the
modem channel, dial a number and establish
connection. Note: This routine would have to be
written as a subprocess, similar to ProcessCommand,
in order to allow overlapping of waiting for user
input characters and other processes.

DetachModem

Performs the necessary functions to deactivate the
modem channel. See note for AttachModem if any
user interaction is required.

GetModemChar

Returns the next character from the modem input
buffer. Sets itself to true if a character was
available; otherwise, to false. Must be no-wait.

Modem Interrupt Routine/Device Handler

aAn interrupt-driven routine to get and put
characters to the modem. Must buffer input
characters for GetModemChar.

NOW THAT YOU'VE SEEN IT

Implementation of this multiprocessing construct is
not simple, yet the necessity to break down the
application into small steps has the benefit of
being self-documenting, and the code being more
likely to be functionally correct the first time
around. With a little practice, you'll be
developing multiprocessing applications where
multiprocessing never existed before.

19

MULTIPRCCESS 15-May=1985 16:43:09

01 Source Listing 15-May-1985 146:43:00
0901 Program MULTIPRCCESS (inputyoutput):

0002

2003 Type

0004 coprocesses = (mainMenujyprocesslyprocess2);

0005 coprocessStatuses = (inactivejsactiveyholdyabortedycomplete);

0006 mainMenuSteps = (MMdraw,MMprompt,MMgetCharysMMcheckCmd,\MusereError,
0007 MMrestart);

0008 processlSteps (Plstepl,Plstep2yPlstep3);

0009 process2Steps (P2steplyP25tep2yP2sten3)s
0010 Var

0011 stopProcessing: boolean:

0012 coprocessStatus: array [mainMenu..process2] of coprocessStatuses;
0013 nextCoprocess: coprocesses;

0014 processStep: record

0015 MM2 mainMenuSteps;
0016 Pl processlSteps;
0017 P2: process2Steps:
0018 end;

3019

0920 procedure ReinitMM;

0021 begin

0022 with processStep do

0023 MM = MMdraw:

0024 end; { ReinitMM)

0025

1325 procedure MainMenuProcess:

0027 begin

0028 case processStep.MM of

0029 MMdraw: i (display menu)}
0030 MMprompt: H { display prompt)}
N031 MMgetChar: H { et character from console)
0032 MMchezkCmd: + { check for valid input }
0933 MMuserérror: v+ {(display error message)
0034 MMrestart: ReinitmM;

0235 end; { case)

0036 end; { MainMenuProcess }

0037

N038 procedure ProcessOne;

0039 begin

0340 case processStep.Pl of

0041 Plstepl: v { code for step 1 }
0042 Plstep2: 3 { code for step 2)
0043 Plstep3: s { code for step 3}
0044 end; { case)}

0045 end; { ProcessCne)}

0346

0047 procedure ProcessTuwo;

9048 beain

0049 case processStep.P2 of

0050 P2stepl: H { code for step 1)}
0051 P2step2: H { code for step 2)}
0052 P2step3: t+ { code for step 3)}
0053 end; { case)}

0054 ends { ProcessOne)}

2055

0056

0057

Multiprocessing Program Skeleton (1 of 2)

20

MULTIPROCESS
01

0053
0059
0060
0061
0052
0063
0064
0065
00656
0067
0058
0069
0070
0071
0072
0073
0374
0075
0076
0377
0078
0079
0080
0081
0082
09133

15-May-1985 16:43:09

Source Listing 15-May~-1385 16:43:00
{
+ + + COPROCESSOR + + +
)}
begin

stopProcessing := false;
coprocessStatusimainMenul (= active;
coprocessStatusCprocessl] := inactive:
coprocessStatuslprocess2] := inactives
nextCoprocess := mainMenu;

repeat
begin
case nextCoprocess of
mainMenu: if (coprocessStatusCmainMenul = active) then
MainMenuProcess;
processl: if (coprocessStatusCprocessl] = sctive) then
ProcessOne;
process2: i1f (coprocessStatuslprocess2] = active) then

ProcessTuwo}
end; { case }
if (nextCoprocess = process2) then
nextCoprocess != mainMenu
else
nextCoprocess := succ(nextCoprocess):
end {(repeat)}
until stopProcessing;
end. { MULTIPRQCESS)}

Multiprocessing Program Skeleton (2 of 2)

21

MJDEM 15-May=-1985 13:38:45

01 Source Listing 15-May-1985 13:38:31
0001 Program MODEM (inputsyoutput):

0002

0003 Const

0004 EQFchar = 2635 EOTchar = 43

0005 Type

0006 coprocesses = (mainMenuymodeml,modem2);

0007 coprocessStatuses = (inactivejactiveystoppedycomplete):
0008 MainMenuSteps = (MMdraw,MMpromptyMMgetChar,MMcheckCmdyMMuserError,
0003 MMrestarty,MMdumbTerminal,MMprocessCmd);

0010 dumbTerminalSteps = (DTinityDTgetUserChary,DTgetModemChar);
0011 processCmdSteps = (PCchannelPromptyPCgetUserChar);

0012 modemSteps = (MDreceiveyMDtransmit);

0013 menuOptions = (connectORdisconnectystartORstopReceive,
0014 startORstopTransmityviewProcessydumbTerminalMode)}

0015 Var

0016 stopProcessing: boolean;

0017 coprocessStatus: array (mainMenu..modem2] of copraocessStatuses;
0018 nextCoprocess: coprocesses;

0019 processStep: record

0020 MM mainMenuSteps:

0021 DT: dumbTerminalSteps;

0022 MD: array [(modeml..modem2] of modemSteps:
0023 PC: orocessCmdSteps;

0024 end;

0025 vieuw: array [(modeml..modem2] of boolean;
09026 connected: array {(modeml..modem2] of boolean;
0027 modemFile: array [(modeml..modem2] of text;

0028 menuOption: menuOptions3

0029 DTmodemNumber: modeml..modem2;

0030

0031 procedure AttachModem(

0032 modemNumber: coprocesses); EXTERNALS

0033

2034 procedure DetachModem(

0035 modemNumber: coprocesses); EXTERNALS

0036

0037 function GetModemChar(

0038 modemNumber? coprocesses;

3039 var MDchar: char): booleani EXTERNALS

0040

0041 procedure PutModemChar(

0042 modemNumber: coprocesses?

Nos43 MODchar: char); EXTERNAL:S

0044

0045 function GetUserChar(

0046 var userChar: char): boolean; EXTERNALS

0047

0048 procedure ModemProcess(

0049 processNumber: coprocesses):

0050 Var

0051 MODchar: char;

0052 begin

0053 case processStep.MDlprocessNumberl of

0054 MDreceive: if (GetModemChar(processNumberyMDchar)) then
0055 begin

0056 if (viewlprocessNumberl) then

2057 write(MDchar);

Modem Program Example (1 of 5)

22

MODEM 15-May-1985 13:38:45

01 Source Listing 15-May-1985 13:38:31
0058 write(modemFile(CprocessNumberlyMDchar);
0059 if (MDchar = chr(EQFchar)) then

0060 coprocessStatuslprocessNumberl] = complete;
0061 end;

0062 MDtransmit: if (eof(modemFilelprocessNumberl)) then
0063 coprocessStatusCprocessNumber] := complete
0064 alse

0065 begin

0066 read(modemFilelprocessNumberly,MDchar);
0067 if (viewlprocessNumberl) then

0068 write(MOchar);

0069 PutModemChar(processNumberyMDchar);
0070 end;

0071 end; { case }

0072 ends { ModemProcess)}

0073

0074 procedure ReinitMM;

0075 begin

0076 with processStep do

0077 begin

0078 MM = MMdraw;

0079 DT ¢= DTinit;

0080 end;

0081 end; { ReinitMM)

0082

0083 procedure DumbTerminal:

2084 Var

0085 DTchar: char;

0086 begin

0087 case processStep.DT of

0088 DTinit: begin

0089 writeln;

0090 processStep.0T := DTgetUserChar;

0091 end;

0092 DTgetUserChar:

2093 begin

0094 if (GetUserChar(DTchar)) then

0095 if (DTchar = chr(EOTchar)) then

0096 processStep.MM != MMrestart

0097 else

0098 begin

0299 write(DTchar);

0100 PutModemChar(DTmodemNumber,DTchar);
0101 end;

0102 processStep.DT := DTgetModemChar;

0103 end:

0104 DTgetModemChar:

0105 begin

0106 if (GetModemChar(0TmodemNumbery,0Tchar)) then
0107 write(DTchar):

0108 processStep.dT != DTgetUserChar:

0109 end;

0110 end;s { case }

0111 endy { DumbTerminal)}

0112

0113 procedure ProcessCommand;

0114 Var

Modem Program Example (2 of 5)

23

MODEM
01

0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
J149
0150
0151
0152
0153
0154
0155
0156
9157
0158
0159
0150
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171

15-May-1985 13:38245

Source Listing 15-May-1985 13:38:31
modemNumber: coprocesses;
PCchar: char;
begin

case processStep.PC of
PCchannelPrompt:
begin
write(“Enter modem channel (1 or 2): X
processStep.PC = PCjetUserChar:

end;
PCgetUserChar:
if (GetUserChar(PCchar)) then
begin
processStep.PC t= PCchannelPrompt;
if (PCchar = “1°) or (PCchar = “2°) then

begin
processStep.MM = MMprompt:
case ord(PCchar)-ord(°0°) of
1! modemNumber := modeml:
2: modemNumber := modeml;
end;
if (menulOption = connectORdisconnect) then
if (connectedlmodemNumberl) then
begin

connectedlmodemNumberl (= false;
DetachModem(modemNumber):
end
else
begin

connectedCmodemNumber] :
AttachModem(modemNumber)
end;
if (menuOption = startORstopReceive) then
if (coprocessStatusCmodemNumber] = active) then
coprocessStatusimodemNumberl (= stopped

= true;
H

else

begin

if (connectedCmodemNumberl) then
begin
coprocessStatusCmodemNumber] = active;
rewrite(modemFilelmodemNumberl);
end

else
writeln(’% 3 % Modem channel not connected’):

end}

if (menulption = startORstopTransmit) then

if (coprocessStatusimodemNumberl = active) then
coprocessStatusi{modemNumber] := stopped
else
begin
if (connectedimodemNumberl) then
begin
coprocessStatusimodemNumber] := active:
reset(modemFileCmodemNumberl);
end
else

writeln(“% % % Modem chanmnel not connected’):

end;

Modem Program Example (3 of 5)

24

MODEM 15-May-1985 13:33:45

01 Source Listing 15-May-1385 13:38:31
0172 if (menuflption = viewProcess) then

0173 if (coprocessStatusimodemNumberl = active) then
0174 beagin

0175 viewlCmodemNumberl = true;

0176 processStep.MM = MMgetChar:

0177 end

2178 else

0179 writeln(’% % % Process not active’);
0180 if (menulption = dumbTerminalMode) then
0181 if (coprocessStatusCmodemNumberl = active) then
0182 writeln(’% % % Modem channel active’)
0183 else

0184 begin

0185 if (connectedlmodemNumberl) then

0186 begin

0187 ODTmodemNumber = modemNumber:

0188 processStep.MM = MMdumbTerminal:
0189 end

0190 else

0131 writeln(’% *x % Modem channal not connected’);
0192 end;

0193 end

0134 else

0195 writeln(% == % Modem channel out of range (1-2)°)3%
0196 end;

0197 end; { case)}

0198 end; { ProcessCommand)}

0193

n200 procedure MainMaenuProcess:

0201 Var

0202 MMchar: char:

0203 begin

0204 case processStep.MM of

0205 MMdraw:? begin

0206 writeln:

0207 writeln(” Main Menu’)}

0208 writeln(“l Connect/disconnect modem channel’);
0209 writeln(’2 Start/stop file receive®):

0210 writeln(’3 Start/stop file transmit’);

0211 writeln(’4 View a receive/transmit process’);
nN212 writeln(’5 Dumb terminal mode’):

0213 writeln(’6 End’);

214 processStep.MM = MMprompt;

0215 ends

0216 MMprompt:? begin

2217 writeln;

0218 if (coprocessStatusimodeml] = active) then

n219 writeln(’=====-- Channel 1 active ====--)3
0220 if (coprocessStatusimodem2] = active) then

0221 writeln(’====== Channel 2 active ====-- P
0222 if (coprocessStatusimodeml] <> active) and

0223 (coprocessStatusCmodem2] <> active) then

0224 writeln(’====-- No active processes ==--=---)
0225 write(“Enter option number:)

0226 processStep.MM := MMgetChar;

0227 end;

0228 MMgetChar: if (GetuserChar(MMchar)) then

Modem Program Example (4 of 5)

25

MODEM
01

0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0243
0249
0250
3251
0252
0253
3254
0255
0256
0257
0258
2259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283

15-May-1985 13:38:45
Source Listing 15-May-1985 13:38:31

if (MMchar < “1°7) or (MMchar > “6°) then
begin

writeln(“* % x QJOption number out of range (1-6)7);

processStep.MM = MMprompt;
end
else

begin

case ord(MMchar)
0: menulption
1: menuOption
2: menuOption

- ord(°0°) - 1 of
3: menuldption @
i

connectdRdisconnect;
startORstopReceive:
startdRstopTransmit;
viewProcess:

4 menuOption dumbTerminalMode:

3 W W un

53 stopProcessing = true;
end;
processStep.MM = MMprocessCmd;
end;

MMprocessCmd: ProcessCommand:
MMdumbTerminal:
DumbTerminal;
MMrestart: ReinitMM;
end; { case }
end; {(MainMenuProcess }
{
+ + + COPROCESSOR + + +
)}
begin
writeln(“MODEM COMMUNICATION PROCESSOR)
stopProcessing := false;
coprocessStatusimainMenul
coprocessStatusimodeml] @
coprocessStatusimodem2] :
u
a

t= active;

inactive;

inactive;

nextCoprocess :!= mainMen

processStep.MM :
.

H
MMrestart;
alse;

viewlmodeml] f
false;
p]
]

viewlCmodem2]
connectadimodeml
connectedlmodem2
repeat
begin
case nextCoprocess of
mainMenu: if (coprocessStatusimainMenul = active) then
MainMenuProcess:
modeml: if (coprocessStatusCmodeml] = active) then
ModemProcess(modeml);
modem2: if (coprocessStatusimodem2] = active) then
ModemProcess(modem2);

t= false;
i= false:

end;
if (nextCoprocess = modem2) then
nextCoprocess = mainMenu
else
nextCoprocess = succ(nextCoprocess);
end
until stopProcessing:
end.

Modem Program Example (5 of 5)

26

CEPHALOMETRIC ANALYSIS OF FACIAL GROWTH USING THE PDP 11/23 AND VAX.

M. L.

Naegele and H.

Je. Gould, PhD

Canter for Craniofacial Anomalies
University of Ilinois Medical Centar
Chicagoy,

Illinois

ABSTRACY
This paper presents a three

inputy, maasure and analyse cephalogramse.
the system are xrays digitized with a
instructions
system

of points and
The output of
represanting

the
the
lines, magnification

statistical anaylsis.

HISTORY

The Center for Craniofacial Anomalies,
University of Illinoisy is a unique facility
which started in 1949. The Center has grouwn

into one of the largest multidisciplinary
centers in the world for treatment,
resaarchy and education in the field of

congenital and acquired daformities of the
head and neck. A multidisciplinary staff of
more than 50 members come to the Center from

the six Chicago metropolitan area hospitals
in addition to the University of Illinois.
The Center”s faculty is a group of
professionals whose training and expertise

areas of dentistry and medicine

significance 1in craniofacial
biologye. Meticulous records which document
findings and service from the multiple
specialists hava been maintained in a
longitudinal manner. Most patients are
followed for a period of treatment and
active observation which emcompasses at
least 10 to 20 years. The Coenter is
automating procedures using a VAX 11/750
computer. Several studies have been
performed using the system described in this
paper for cephalometric analysise.

cover all
which find

PROBLEM

The staff at the center analyse and measure
cephalograms <(head xrays) of craniofacial
patients in order to aid in their diagnosis
and research. Tha measurement of
cephalograms is done by defining points,
constructing points on the intersection of
lines, measuring distances and angles on
each cephalogram with rulers and
protracters. These measurements, which can

Proceedings of the Digital Equipment Computer Users Society

27

provides
digitized points, constructed points
from existing points such as the

step designed to
The inputs to
variable number
to perform measuramants.

hard copy plots

system

intersection of tuo

corrections between inconsistent
xrayss and measured variables in

a format ready for

take approximately 1.5

cephalogram, have included up to
variables and wmagnification
The measured variables

distances, angles,
Magnification
whenever a

hours per
75 wunique
corrections.
are defined
or ratios of distancese.
corrections are required
cephalogram®s magnification
varies from the reference magnification.
Statistical analysis of these results is
laboriously performed by using calculators.
The above 1lengthy and tedious process is a
perfect candidate for a computer solution.

SOFTWARE/HARDWARE SOLUTION

A three step system was designed to improve
accuracy in the measurement and analysis of
the cephalograms with the added benefit of
reducing anaylsis time. The system shown in
figure la demonstrates the three independent

areas of the programy, which input data,
create and perform measurement instructions,
and analyse results. This paper will
discuss these three areas indepandently.
Figure 1b depicts the hardware used for the
analysise.

New Orleans LA - 1985

fey
>

NEW

INPUT CEPH DATA CROJECT?
FOR NEW PROJECT
I »1YES
CREATE/APPEND CREATE PCB
DATA FILES
GET PCB

COMPUTE MEASUREMENTS

SCALE RESULTS FILE

<

PERFORM STATISTICAL ANALYSIS

Flowchart of cephalomatric

fnalysise.

FlGe lae

Step l. Cepnalogram %tracaes (302
are Jdigitized wusing a Housion iInstruments
digitizing pad on a POP 11/23 WMINC system
under KT=-11l. A variable number of points
can be digitized and storad for gach
project. The softwara protects 2jainst file
overuwrites Dy checking the regquas tad
filanam2 against th2 current directory under
RT-11.

Figure 2)

tnca the filenames
to oe digitized

and the number of
have b2an

points
astadblished

28

DIGITIZER
DISK PDP 11/23
MINC
PLOTTER
|
|
|
| VvT100
: W/TEKTRONIC
| EMULATION
|
|
|
| TERMINAL
L——{ vax
PRINTER
Fige 1be Hkhardware used far analysis.

hbeginse. The digitization
all digitized points on a
emulation for immediate
point verification. If 2 digitizing error
15 detecte2a then ona or 2.1 point(s) can be
erasede Mi1ssing points on the cephalogram
for whatever reason (hidden, unidantifiable)
are markza missing oy inserting a nagative
coordinata valuee. A safety against the
wrong number of points digitized is buil?t in
by not permitting storage cf data to disk if

the point count 15 not tha same as the ons
dafinea earlier by the user.

digitization
routine dispiays
vVT130 with 4010

The points shown 1n figure 2 were digitized
on each cephalogram. These points are
stored 1in a sequential file. The file
contains a pationt identification heoader,
xray magnification and in the <case of tha
lateral cephalogram, 25 X and Y coordinates
are appendad. Note the tuwo additional
points added to the 27 laterai data points
are used as registration pointse. This raw
data file has a LAT file extansion. Figure
3 depicts patient 1044°s frontal digitized
pointse Additional caphalograms are
appended to the end of this filoe.

Fige. 2.

header » 1044 8CM6 10.000
10.56 20.57
18.12 20.19
660 2.76
5.66 4.86
3.17 13.05
4e47 11.64
14.97 11.95
15.91 13.71
frontal 13.83 5.02
digitzed 12.72 2.66
point 7«39 5.10
markings 8.87 6.15
28~-43 607 Ba22
8+99 B.11
10.79 8.17
13.62 849
10.87 5.91
12.10 5.23
Fige 3 Raw data file containing

Lateral and frontal cephalogram traces
with digitized point markingse.

digitized
reference
points

header and digitized points.

29

Hard copy plots showing all digitized points
(see Figure 4) are made by accessing the raw
data files. The plots are overlayed on the
original cephalogram trace to insure proper
digitization.

Step 2. Identify and compute
variables to be measured using VAX.

desired

In order to analyse the input
data we create wshat we <term a process
control block (PCB). The PCB defines the
measurements wanted and gives instructions
for constructing data points. Cresation of a
PCB can be performed in an asynchronis sode
with data input (see Figure 1a). Variables

cephalometric

LATERAL CEPH PLOT

12

30 33

31 32

38 39 40 41

37

29 36 43 34

28 35

FRONTAL CEPH PLOT

Fige %e Lataral and frontal hard copy plots of

digitized cephalograms.
to be measuredy, constructed points and created. To illustrate its function assume
identifying labels are defined through a we want to measure an angla, function 4
meny driven routine that provides the above 13 selected which prompts for the 3

following choices:

1.
Z.
3.
L3
5.

Undefined.

Point to point distance.

Point to line distance.

Angle between 3 points.
Constructed point of intersection
between two lines.

Constructea point parpendicular
to 3 line.

Add two variablas.

Subtract two variables.
Multiply two variables.

Divide two variables.

End process control.

Se

1.
Be
e
10.
1i.

The PCB is created by a menu driven routine.
Measurement instructions are creatad thru
the above routine which prompts for the type
of measurement to be made, the location in
the X and Y data structure for constructed
points or the MEASURED data structure (Each
data structure 13 2 one dimensional arraye.)s
the points to be operated or and a labesl to
identify the constructed point or wvariable

30

digitized points and a label to identify the
angle. There will be a separate PC3 created
for lateral and frontal points.

To measure thz distance between point 30 and
point 33 on the frontal cephalogram, the
menu driven routine would prompt a3as follouws:

Comments:

ectocranium left

function ==> 2 s distance function
variable ==> 100 s measura2d variable
i stored at
3 location 100
s in MEASURED array
point ==> 30 s digitized point 30
point ==> 33 v digitized point 33
label ==> Ecl-Ecl 1§ ectocranium right-
b

To measure the paerpendicular
between point 12 and
points 18 and 8 on the

distance
the line connecting
lateral cephalogram,

function ==> 3 s distance to a

7 line function
variable ==> 101 + variable stored at

¢+ location 101

s in MEASURED array
point ==> 12 7 digitized point 12
endpointl==> 18 digitized point 18
endpoint2==> 3 s digitized point 3
label ==> Me—-NSPL menton to

£]

sella-nasion plane

To measure tha angle between points 18,8,93

where point 8 is the vertex on the lateral
cephalogram,
function ==> 4 s angle function
variable ==> 102 ; variable stored at
s location 102
s 1n MEASURED array
point ==> 18 s digitized point 18
vertex ==) 3 s digitized point 8
point ==> 9 3 digitized point 9
label ==> S-=-N-Na s sella-nasion-nasale
To construct a point of intersection between
two lines where the first 1line is from
points 8 to 12 and the second 1line from
points 10 to 22,
function ==> 5 3 intersection
function
variable ==> 45 s pcint stored at
$ XsY location 45
endpoint 1 of line 1 ==> 8
endpoint 2 of lins 1 ==> 12
endpoint 1 of line 2 ==> 10
endpoint 2 of line 2 ==> 22
label ==> intersection 8-12/10-22
To construct & point perpendicular to a

line, point 12 perpendicular to line 85-18,
function ==> ¢ 3 point construction

; function
variable ==> 46 point stored at

s XsY location 49
point ==> 1z digitized point 12
endpointl==> 38 s digitized point 8
endpoint2==> 18 digitized point 13
label ==) point 12 on a line

perpandicular to line 8-18

To operate on the MEASUREC data structure
from the above menu we can adds subtract,
multiply and/or divide any two stored
measured variablese. To find the ratio

between tne two measured distance variables

100 and 101,

function ==> 10 ¢ divide two

s variables function
variable ==> 103 ; ratio stored at

;s location 103

+ in measurad array
numerator ==>» 100 3 will divide the

3 contents of
denominator ==> 101 s variable 100 by

s the contents

3 of variable 101.
label ==> ratio Ecl-Ecl/Me—-NSPL

31

This menu driven routine creates a
control

process
block (see Figure 5) that is stored

in a file with a L.PCB8 extension. This
control block stores the information
specifying each function selected and its
argumentse. The process control blocks for

the examples given above is shouwn in
5.

figure

function selectad

U arguments N

—/\—\

arguments

3 101 12 18 38 O 2 100 30 23 o0 0O
4 102 18 § S 0
5 45 8 12 10 22
6 46 12 8§ 18 ©
10 103 100 101 O ¢
Lateral PC3B Frontal PCB
Fige 5 Process control block (PC8) for

examples of variable computation.

This block can be as large as nacassary.
Constructed points (functions 4 and 5) will
fili in after the existain; digitized points
in the X and Y arrayse

After all variables to be me2asured have baen
defined in the process control block the
computation of measurements oveginse. These
variables must be measured for N
cephalograms. The .PCB file is accessed and
the desired ocperation 1is performad on the
appropriate raw data fiie (digitized points
and constructed points) to create a results
file with extension «RES. When a
computation 1is performad on a missing value
the variable is marked invalid to aid in
future analysis. The results file contains
N cephalograms with M measured variables (N
records with M%7 bytes per record)e.

Cephalograms have different
factors associated with
inconsistencies. For exampley
to observe growth on a
magnification may vary from one
0 another. Measured variables are
initially <computed for each cephalogram
without any corrections for magnification.
However, correction must be made before any
measured variables can be properly analysade.
Magnification correction is made by scaling
to a desired magnification, which is usually
0%. This scaling is done by operating on
the results file. All measured variables
can be scalad for magnification axcapt for
anglese.

magnification
them causing
wnen trying
patient the
cephalogram

In summary the following files are created;

Step 1

sfrontal digitized points
slateral digitized points

project.FRD
project.lLAT

Step 2

projectf.PC8 iprocess control

block (frontal)
projectl.PC3 ;iprocess control

block (lateral)
projectf.RES imeasured results (frontal)
projectl.RES imeasured results (lateral)
projectf.SCA 3scaled results (frontal)
projectl.SCA iscaled results (lateral)

Step 3. Perform analysis using VAX.

The scaled results file containing N
cephalograms with X measured variables may
be accessed by DATATRIEVE or SAS for =sasy
accurate statistical analysis. After
scaling the magnifications for frontal and
lateral cephalogramsy, the records can be
crossed on patient identification number ¢to
perform any ratios containing both frontal
and lateral points. 3Since each patient has
frontal and lateral variables associated
with him, we use datatrieve to cross files
on patient identification number which gives
access to all frontal and lateral variables
for that patient. Ratios betwaeen frontal
and lateral variables can then be found for
various groups of patients on several keys
such as sexy agey, races diagnosis, etc.
Means, standard deviations, confidence
intervals, rangess T-tests, and/or
non—-parametric statistics can be performed
on the resulting measured variables and
ratios of measured variables with DATATRIEVE
or SAS.

CONCLUSIDN

The calculation of variables was written in
fortran. Some of the 1larger studies
required up to an hour of CPU time to
perform all measurements. This time of
course 1is directly proportional to the
number of patients being analyzed and the
number of variables to be measured for each
patient. DATATRIEVE was used to performed
the statisical portion and was slow due +to
creating collections and crossing
collections. Most jobs were run overnight
to avoid slowing <own the system., This
cephalometric system has saved many users
hundreds of hours of time while improving
all studies performed with it.

32

INVESTIGATION OF INTERRUPT RESPONSE TIMES OF PDP11/44 AND

PDP11/23 COMPUTERS PROGRAMMED IN FORTH FOR CAMAC INTERFACES

J. R. Birkelund, J. A. Abate, T. S. Lund
Kodak Research Laboratories
Eastman Kodak Company
Rochester, New York 14650

ABSTRACT

Comparison of interrupt response times for PDP11/44 and
PDP11/23+ machines, using the FORTH programming language, is
presented. The interrupt response of the machines with FORTH
implemented as a stand-alone operating system is compared with
an implementation of FORTH running under the RSX11lM operating
system. The comparisons have been made on systems operating
CAMAC parallel interface buses, both as single bus controllers

(IEEE 583) and as parallel highways (IEEE 596), which require

a branch driver interface.

The measurements show that time

overhead in response to interrupts is reduced by a factor of
about 2 when stand-alone FORTH is used compared to FORTH
implementations under the RSX operating system.

1. INTRODUCTION

Many factors are involved in the selection of an
operating system and programming language for real-
time computer applications. Among the most impor-
tant of these factors are the response of the
chosen system to interrupts and the ease of program-
ming external hardware functions, especially
interrupts. The FORTH language has been developed
with real-time applications in mind and offers
several advantages to the programmer when access to
hardware external to the computer is called for.
FORTH may be implemented as a task running under
some operating system, such as RSX, or it may be
implemented as a stand-alone system. The operation
of FORTH under a standard operating system has
attractive features, since it permits both the ease
of access to hardware provided by FORTH and access
to the powerful multipurpose functions provided to
a user by other operating systems. This paper
considers the advantages and disadvantages of these
two types of implementation from the viewpoint of
interrupt response.

This paper addresses the issue of the interrupt
response time for several operating system and
hardware configurations that use the FORTH language,
in an attempt to quantify the advantages or disad-
vantages here from the use of FORTH. The work
described applies to a particular application in
which the external hardware conforms to the CAMAC
interface standard, and the data described apply to
that system. However, the performance measurements
should give some guidance to users implementing
real-time systems with different configurations.

Section 2 describes salient features of the FORTH
language for real-time operations. Section 3
describes some features of the CAMAC interfaces.
Sections 4 and 5 describe the hardware and software
configurations used for the testing. Section 5
describes the test methods used to evaluate the
interrupt response of the systems described in
Section 3. Section 6 gives the results, and
Section 7 gives the conclusions.

33

2. THE FORTH LANGUAGE

The FORTH language has been described elsewhere

(1, 2). FORTH is a threaded interpretive language
that may be run in a computer as a stand-alone
operating system or as a task running under some
standard operating systems such as RSX-11l or RT-11.
The operation of FORTH is in some respects similar
to the more familiar BASIC language, in that the
programmer may define new operations, called words,
which become immediately available for execution,
through a resident compiler, without the necessity
of a separate compile and link step required by
noninterpretive languages. The FORTH system
maintains a dictionary of defined words, and new
words can be constructed out of combinations of
already defined words. The FORTH dictionary
contains pointers to the code and necessary para-
meters required to execute the functions required
by the word definition. By looking through the
dictionary for the code to execute as each word is
encountered, the machine performs the functions
required of it. Words exist that allow new defini-
tions to be compiled into the dictionary as required.
In addition, FORTH allows the possibility of in-
line code, called code words, constructed by a
FORTH assembler, which, once entered, are executed
in specified order as a set of machine instructions,
without the necessity to look through the dictionary
pointers. Use of these code definitions is equiv-
alent to code built by a conventional assembler,
which provides the fastest possible execution, and
such code definitions are used in the FORTH inter-
rupt service routines tested for this paper.

The operation of FORTH is controlled by a section
of FORTH code comprising an inner interpreter and
outer text interpreter. The text interpreter
parses the control input stream, which may come
either from the terminal or from other storage such
as a disk. The text interpreter places input
numbers on a first-in, last-out parameter stack and
looks through the dictionary for the definition of
words found in the input stream. If the words

are found, the code defined for them is executed

New Orleans LA - 1985

by using the parameters on the stack. A new dictio-
nary-entry-defining word exists, usually ':', which
causes the text interpreter to pass control to the
inner interpreter if it is encountered in the input
stream. When the inner interpreter has control, it
compiles into the dictionary new code defined by the
words and parameters in the input stream. When the
inner interpreter encounters the compiler exit word,
usually ';', control is returned to the text inter-
preter, and the new dictionary entry is complete.
Note that the input stream is not retained, and
interpretation of the input stream is done by execu-
tion in the order specified by the input stream, of
the code pointed to by the dictionary entries.

Thus, the only parsing step required to build execu-
table code occurs when code is compiled into the
dictionary, and thereafter execution of the code is
very fast.

In its stand-alone form, FORTH allows the user
access to all addresses accessible to the computer,
including the I/O page in PDPll systems and the
memory management registers. With the FORTH equiva-
lent of MOV instructions, the user may write direct-
ly in these registers to control external devices
through the I/0 page or rearrange the memory mapping.
No protections, checks, or controls are provided for
any of these addresses, and the programmer has
complete control of them. This is both a blessing
and a curse, but it is the source of the special
utility of FORTH in operations involving external
hardware. In addition, for interrupt programming,
the programmer may define a FORTH code word or a
high-level FORTH word to serve as the interrupt
service routine and place the entry address of this
ISR directly into the vector address of the external
device that will produce the interrupt requiring
service. When an interrupt occurs, since FORTH does
not make use of the various modes available in a
PDP1l1 and remains always in kernel mode, the system
is simply interrupted and jumps directly to the
address given in the interrupt vector, returning by
execution of the machine instruction RTI.

When operated as a task under an operating system,
code to handle external devices with FORTH must
conform to the rules laid down by the operating
system for I/0 page and interrupt access. With RSX-
11, the FORTH task must be privileged, must be
mapped to the I/O page through a previously built
operating system device common with the use of
active page register 7, and must have pr:0 set at
task build time to allow the use of the CINTS$ connect
to interrupt system service. When an interrupt
occurs, the action of the machine is somewhat more
complicated than in the stand-alone case, owing to
the necessity for RSX to take care of the multiple
tasks and the memory mapping. The interrupt puts
the machine into kernel mode, at processor priority
7, maps a designated region of the user's task
through PAR 5, and jumps to the address specified in
the CINTS$ directive. The interrupt service routine
runs in kernel mode with PAR 5 mapping of its logical
address space and exits with the FORTH assembler
equivalent of the RTS PC instruction. This causes
some time overhead, which is discussed further
below.

This interpretive scheme is useful in interaction
with hardware, since it allows new control functions
to be easily defined and tested and is thus attrac-
tive for development of hardware control systems.

The advantages claimed by proponents for the FORTH
language are that code in FORTH is fast in execu-
tion, quickly developed and tested incrementally,
and compact and convenient when constant development
is required. The major disadvantages of FORTH as a
stand-alone system are its inability to run code
built in other languages, its lack of a convenient
file structure on external storage devices, and its
too simple multitasking and multiuser facilities.
In addition in the particular application of inter-
est to us, a stand-alone FORTH machine could not
easily be incorporated into DECNET. The use of
FORTH under a standard operating system is an
attempt to gain the best of both worlds.

3. THE CAMAC INTERFACE

CAMAC is an acronym for Computer Automated Measure-
ment and Control and is defined by IEEE standards
583, 595, 596, 675, and 683. The system consists
of a standard 86-line bus, housed in a mechanical
assembly called a crate, which usually contains 25
slots for the functional modules. The CAMAC bus,
referred to as the dataway, and the functional
modules are interfaced to the control computer via
a crate controller module inserted into the crate,
usually at station number 25. The CAMAC crate has
slots into which modular CAMAC units may be inser-
ted, for various control and measurement functions
to be performed in the external world. The mechan-
ical assembly is such that CAMAC modules may easily
be removed and inserted in the crate, and the
functions of the bus lines are so standardized that
control of the modules from the computer may be
obtained by software alone. Thus the system pro-
vides a potentially flexible control and measurement
interface between the computer and the outside
world. The arrangement is shown schematically in
Figure 1. The arrangement of the dataway is such
that the controller station has two exclusive
connections to each slot, via lines known as N, the
slot address, and L, the attention line used by the
modules in each slot to get the attention of the
controller. If the L line is asserted by a module,
then the system may be configured to interrupt the
control computer. These CAMAC module requests are
called Look-At-Me or LAM requests.

CAMAC DATAWAY WITHIN CRATE

CONTROL
STATION

N

E:;
N

— . . e e — N
— — —
— N

//ll
/1]

CAMAC DATAWAY
LINES

\\
N~
N
N~
™~

i
i

|

- STATION NUMBER —
31 Bus lines connecting each station
50 Bus lines for data between all stations except #25
L. N Two lines from control station to each normal station
3-Patch contacts (normal) 7-Patch contacts (control)

Figure 1.

Schematic of the CAMAC crate dataway lines.

There are two major configurations for CAMAC crate
connections to a computer: the dedicated-interface
configuration and the branch highway, shown sche-
matically in Figures 2 and 3. The dedicated-
interface configuration allows a computer to com-
municate with one crate controller, for control of
the modules in a single crate, whereas the branch-
highway configuration provides an interface between
the computer and a branch driver, which allows the
computer to communicate with several crate control-
lers via a highway, which may be either a parallel
or a serial bus link. For this paper only parallel
highway systems will be considered.

CAMAC CONFIGURATION
Dedicated interface

Crate
controller

Computer Interface Crate

Controller - Interface connection via G 52 line connection.

Figure 2.

Schematic of the connections in a dedicated CAMAC
computer interface connection.

CAMAC CONFIGURATION
Branch highway

Computer — %",g"‘s‘l{h
— Crate
— controller Crate|
Branch driver control a 52
line bus to the CAMAC crates.
Crates selected for operations | comeeier | Crate#2
by address.
T— Crate
controller Crate#n

Terminator

Figure 3.

Schematic of the CAMAC crate-computer connect%ons
for a branch-highway connection. The connections
between the branch driver interface and the crate
form a parallel bus.

Each module in the crate is controlled by the
computer according to a standardized protocol in
which the control word is divided into three sub-
sections: N for the slot address, A for the sub-
address in the module, and F for the function to be

35

performed by the module. These NAF codes may be
contained in a single word, thus making it possible
to perform an action of a single module with a
single computer instruction, moving the control
word to the interface control register. On some
systems a second instruction is also necessary to
set a 'Go' bit in the interface CSR.

4. HARDWARE CONFIGURATIONS

These are shown in Figures 4 and 5. The interrupt
performance of two computers and two CAMAC inter-
faces has been tested. 1In addition, the perfor-
mance of stand-alone FORTH is compared with FORTH
implemented as a task under RSX-11-M. The hardware
configurations are a PDP11/23 processor (KD11lAA)
connected to a dedicated CAMAC interface (Kinetic
Systems 2920) on the Q-bus and a PDP11/44 with its
UNIBUS connected via a Qniverter (Able Computer) to
a Q-bus with the same dedicated interface and the
11/44 connected to a branch-highway interface
(Jorway 411) directly on the UNIBUS.

11744 CONFIGURATIONS TESTED

11744

I Unibus I
[I
an Qniverter
branch dr. T
[Q-bus]
CAMAC I
Controller J 3920
crate dedicated
interface
CAMAC
Controlle P—{
mroTer crate J Controller
CAMAC
crate
Figure 4.

Diagram of the PDP11/44 system tested for in-
terrupt response. Both the dedicated and branch-
driver interfaces were tested on this machine.

The configuration for testing the interrupt response
is shown in Figure 6. The tests were performed
with a triggerable CAMAC analog-to-digital converter
(Standard Engineering 212), which produces a LAM
request after a conversion initiated by the trigger.
The triggers were produced by a TTL pulser, and
these triggers were counted by a fast CAMAC scaler
(Kinetic Systems 3640), which could be read from

the computer by CAMAC instructions. In addition,
the pulser trigger started the sweep on an oscillo-
scope and was displayed on the scope to provide a
time reference. The action of the dataway could be
monitored by a dataway display control (Kinetic
System 3296), which gave a gate pulse when NAF

codes selected by switches were detected on the

11/23 CONFIGURATION TESTED

/23

Q-Bus

3920
dedicated
interface

Controller

CAMAC
crate

Figure 5.

e PDP11/23 system tested with a

i am of th
Diagr le crate.

dedicated CAMAC interface and a sing

dataway. The output of the dataway display control
was counted in a second channel of the scaler and
also displayed on the oscilloscope. Thus time
measurements could be made on the oscilloscope, and
the scaler values could be used to check that the
number of triggers was the same as the number of
dataway operations, to ensure that no interrupts
were lost. A schematic view of the timing cycle is
shown in Figure 7.

TEST CIRCUIT
Puiser TI&
Trigger
Trigger Std. eng.
> 212 ADC
Y
K.S.
CH1_ up/dwn
3 scaler
CH2
Trigger
CH1 XS
Oscilloscope | cy2 3296
- - dataway
display
control

Figure 6.

Testing circuit for the interrupt-response-time
measurements.

TIMING DIAGRAM

ADC NEXT
TRIGGER TRIGGER

FIRST
DATAWAY
CYCLE

1. Fast Loop Time:
—Time between triggers when first dataway cycle
pulse loses strict synchronism with trigger.

2. Fastest Time:
—Time between triggers with fast loop enabled
when lams begin to be lost.

Figure 7.

Schematic timing diagram for the display seen on
the oscilloscope during testing.

5. INTERRUPT SERVICE ROUTINES

The functions of the interrupt service routines
used in the tests are shown in Figure 8 for the
dedicated interface and in Figure 9 for the branch
highway. Some differences in the actual code were
necessary between the stand-alone and RSX implemen-
tations, but these were minor and were mostly
concerned with which PAR mapped the code when the
ISR was running. The interrupt service routines
were coded in FORTH assembler and are machine-
language routines directly programmed. Thus, apart
from inefficiencies that may be introduced by the
programmer, they run as fast as the computer hard-
ware will allow. We believe that these are coded
as efficiently as possible, and therefore run-time
differences in the various configurations tested
represent overhead inherent in the different soft-
ware implementations of the FORTH language.

FUNCTIONS OF ISR
[3920]

Disable
interrupt

Increment

Ye: CAMAC
Fast | .
eoun?:rp inhibit
Wake
operator

Decrement
sample count

Figure 8.

Logical functions of the interrupt service routine
tested for the dedicated CAMAC interface.

FUNCTIONS OF ISR
[41])

Yes
No

9

Disable
interrupt

ADC LAM Set
check inhibit
' Restore
No RO
Yes
Yes Data to
el L
counter

Figure 9.

Logical functions of the interrupt service
routine tested for the branch-driver interface
on the PDP11/44.

The interrupt service routines described in Figures
8 and 9 represent the minimum interrupt service
routine possible with the CAMAC interfaces used
here. Once the interrupt service routine is entered,
the routine saves a register for use within the
routine, disables interrupts from the CAMAC inter-
face, reads and clears the ADC, transfers to memory
the data sent to an interface register by the ADC,
decrements the ISR cycle counter, and inhibits the
CAMAC crate if this counter is zero. If the counter
is not zero, the interfaces have a bit in their
CSR that indicates if another LAM request was made
during the run time of the ISR. This pending LAM
will not interrupt the computer, since interrupts
are disabled, but by checking the appropriate bit,
the pending request can be serviced in a 'fast
loop' without incurring the overhead required to
get into and out of the ISR. The number of fast
loops is counted by the ISR. Finally, the ISR
restores the register and returns.

6. RESULTS OF THE MEASUREMENT
The timing measurement results are shown in Table 1.
All times are measured with respect to the ADC
trigger pulse. The time to the first dataway cycle
in the CAMAC crate represents the sum of the ADC
conversion time, the interrupt latency of the
processor, the software overhead in transferring
control to the user's interrupt service routine,
and the run time of the instructions required to
set up and read the contents of the ADC output
register. Measurements show that the ADC conversion
time is 10 mus, and there is no appreciable delay in
transferring a LAM seen by the crate controller to
the computer bus interrupt lines.

The 'fast loop' times shown in Table 1 are the times
between sequential ADC triggers when the 'fast loop'
or overhead free interrupt service cycles begin.
This can be seen on the oscilloscope trace shown
schematically in Figure 7 by increasing the trigger
frequency until the exact time synchronism is lost
between the first dataway cycle and the trigger

37

PDPII INTERRUPT RESPONSE TIME (CAMAC)

TIMES IN us AFTER ADC TRIGGER
DEDICATED INTERFACE (3920)

1st Dataway Cycle Fast Loop Fastest
11/23 SA. 50 90 70
11/23 RSX 100 170 150
11/44 S.A. 35.2 48.2 39
11/44 RSX 63.6 102.0 102
BRANCH HIGHWAY (411)
1st Dataway Cycle Fast Loop Fastest
11/44 S.A. 252 45.0 33
11/44 RSX 53.8 103.2 80

These times include 10 us for the ADC conversion time.

Table 1.

Interrupt respons times for the various hardware
and software conf. jurations tested. Times are
recorded in microseconds from the trigger of the
ADC and measure the period to the first cycle seen
on the CAMAC dataway, the shortest time between
triggers before overhead-free interrupt service
occurs, and the shortest period between triggers
before interrupts are lost. Data are recorded for
both 11/23 and 11/44 computers, for both dedicated
and branch-highway CAMAC systems, and for RSX and
stand-alone FORTH.

pulse. This fast-loop time represents the run time
of the interrupt service process up to the test of
the 'LAM sum' bit on the dedicated interface or the
'BDDYN' bit on the branch-highway interface.

Except for the register restore, interrupt

enable (BIS), and return instructions, that is the
whole run time of the ISR.

The third column of Table 1 shows the fastest
interrupt frequency that can be obtained from the
system and is measured as the time between triggers
of the ADC at which interrupts begin to be missed

or not serviced at all. This represents a condition
when all interrupts are serviced in the 'fast loop'
mode.

Table 1 shows that there is a factor of almost 2
increase in speed upon going from the 11/23 to the
11/44 regardless of which operating system is used,
and stand-alone FORTH gives an increase of a factor
of about 2 in interrupt response speed over the RSX
implementation on both the 11/23 and the 11/44.
Since the interrupt service routines implemented
for this test do few useful operations, they repre-
sent almost completely the overhead in processing
interrupts from the CAMAC crates.

Table 2 gives times from the processor manual for
the 11/23 for the instructions executed in the
interrupt service routine for the dedicated con-
troller up to the point of initiation of the first

dataway cycle. These times add up to 26 us. The tation, but although the stand-alone system has

manual indicates that the interrupt latency should roughly half the interrupt overhead of the RSX

be 9.75 us, and the ADC conversion time is 10 us. implementation, when this overhead is a small .
This gives a hardware theoretical time to the first fraction of the run time of the interrupt service
dataway operation of 46 uUs, compared with the routine, the stand-alone system wil} not run aF a
measured value of 50 us. This shows that FORTH much higher frequency than the RSX implementation.
handles interrupts at the hardware speed of the This is because the fastest interrupt service
machine if implemented in the stand-alone con- routines must be written in Assembler, and whether
figuration. this is done from FORTH or using a conventional

assembler, the same machine code will result.

It is possible, with CAMAC, to run a PDP1ll/23 at
11/23 DEDICATED INTERFACE an interrupt frequency of 14 kHz and a PDP11/44 at
30 kHz with the stand-alone FORTH and a minimal

Instruction Times at ISR Start.

interrupt service routine. The corresponding

Mode Time (us) figures for the RSX implementation of FORTH are
Instruction Source Dest. Basic Source Dest. Total 6.7 kHz for the 11/23 and 12.5 kHz for the 11/44.
MOV 10046 0 4 2.025 0 2.025 4.05
BIC 42737 2 3 2025 1425 4275 773 REFERENCES
MOV 12737
2 8 2025 1425 315 6.60 1. C. H. Moore, Astron. Astrophys. Suppl. 15
BIS 52737 2 3 2.025 1.425 4.275 7.70 (1974) 497.
TOTAL TIME 26.08 2. Starting FORTH. L. Brodie, Prentice-Hall
(1981) .
11/23 DEDICATED INTERFACE (cont'd.)
3. D. L. Clark, T. S. Lund, J. M. Melvin, IEEE
Thus, Trans. Nuclear Sci. 30 (1983) 3804.
Software overhead 26.08 us
Int. latency manual 9.75 us
ADC Conversion 10.0 us
45.83 us
Stand alone measured 50 ws 4 us Deficiency
RSX Measured 100 ws

Thus, additional overhead added by RSX
operating system is 50 us on 11/23.

For 11/44 this additional overhead is 28.4 us
(Both 411 & 3920 give same value)

Table 2

Theoretical times for interrupt response for an
11/23 processor running stand-alone FORTH. The
times are taken from the DEC processor manual and
compared with the measured time between the ADC
trigger and the first dataway cycle.

7. CONCLUSIONS

The measurements described here show that FORTH,
implemented as a stand-alone system, gives the user
access to the hardware speed of the computer for
servicing interrupts when run on PDPll machines.
When speed of response is important, this is a
significant advantage of the stand-alone system
over the RSX implementation. Measurements of
interrupt latency made by Clark et al. (3) with the
RT11 operating system suggest that the hardware
speed of the machine is available to the user for
interrupt service with RT1l, but implementations of
FORTH under this system have not been tested here.

It is necessary to distinguish between interrupt
response and maximum possible interrupt frequency.
FORTH as a stand-alone system will always provide
better interrupt response than the RSX implemen-

38

LUBRICANT LABORATORY INFORMATION
MANAGEMENT SYSTEM

Andrew M. Wims and Ching Po Wang
GM Research Laboratories

Warren, Michigan

48090-9055

ABSTRACT :
Computer programs have been designed and successfully imple-
mented on our departmental VAX-750 computer for management of
sample descriptive information, storage of analytical test
data, and preparation of analysis reports. Any of the pro-
grams can be selected from a menu displayed on entry into the
lubricant directory. A special sample analysis request form
is displayed at the terminal which simplifies the task of
inputting the sample analysis request information.

INTRODUCTION

The applications for computers in analytical
laboratories are increasing at a rapid rate.
Because a modern laboratory contains instrumenta-
tion which is automated for both data collection
and data reduction, the next logical step is the
development of a laboratory information management
system (LIMS) to further increase productivity.
LIMS is a comprehensive data base management sys-—
tem for the laboratory which usually runs on a
large computer. Numerous articles have appeared
in the literature in the past few years describing
the features of LIMS (1-10). Some of the typical
benefits of LIMS are shown in the sample and
information flow diagram in Fig. 1.

Five year ago a LIMS software package was success—
fully developed on a Honeywell time share computer
for the Petroleum Products Testing group in the
Analytical Chemistry Department. That system was
designed to maintain files, store administrative
and analytical information, and provide computer-—
prepared reports for approximately 3000 lubricant
samples per year with up to 16 analytical requests
per sample. This original system demonstrated
that the managing, recording, and reporting on
samples could be handled effectively in our analy-
tical laboratory using a computer.

Because of our initial success, we decided to
obtain a large 32-bit computer for implementation
of a complete LIMS package for the department. Two
factors played an important role in our selection
of the hardware and software: 1. the implementa-
tion of an integrated laboratory wide office sys-
tem capability (11) with several hundred profess-—
ional workstations (refer to Fig. 2) networked to
the mainframes, and 2. centralized support in the
Computer Science Department for other departments
that need their own computer for laboratory appli-
cations.

The first phase of the laboratory-wide system has
included 240 workstations (~ 1100 over five
years), laser printers, and a DEC VAX. The Com-
puter Science Department also selected a DEC VAX
and is providing a range of consulting services,
training, system support, and a centralized VAX
facility. Currently, a broadband network connects

Proceedings of the Digital Equipment Computer Users Society 3

the workstations to the VAX, IBM, and CRAY com-
puters. Ethernet (12) also is used to connect
many of the VAX's together. A network diagram is
shown in Fig. 3. With these developments occur-
ring, we selected a VAX for our departmental
needs. Once that decision was made, selection of
the DEC LIMS software package naturally followed.

Although our VAX-750 and most of the software
products have been installed, the complete DEC
LIMS software package will not be available until
mid-year. Thus, in the interim, we converted the
Fortran code for our lubricant LIMS software to
VAX Fortran. (A block diagram of lubricant LIMS
is shown in Fig. 4.) 1In the conversion to the
VAX, we have made many improvements to the lubri-
cant LIMS based in part on user suggestions and
special features available on the VAX. Any of the
programs in this new package can be selected from
a menu (Fig. 5) displayed on entry to the oil
directory. Many features of the Lubricant LIMS
will be used in the development of a complete LIMS
system later this year.

DESCRIPTION OF LUBRICANT LIMS PROGRAMS

Input of Analytical Requests

Sample and Report Form. A new form was developed
with a structured format that reduces any uncer-
tainty in input requirements of the sample des-
criptive and analysis request information (see
Fig. 6). For example, a secretary is no longer
required to count characters in a sample descrip-
tion, identification, or any other sample input
information to ensure that computer limitations on
string length are met. In addition, multiple
lubricant samples (up to eight), all requiring the
same analyses, can now be reported on one report
form. The sample description must be the same (up
to 36 characters) for all the samples reported on
a single form.

The test method code which was initially entered
as a character string is now entered as a two
digit number. The test numbers, test symbols,
full name of the tests, and units are printed on
the reverse side of the form (see Fig. 7). A menu
option is available to list this test information
at the terminal, sorted by number or in alphabet-
ical order. The two digit number facilitates

New Orleans LA - 1985

grouping test methods and assigning additional
numbers for new tests to the proper group. This
approach also makes possible the printing of test
methods in a specific sequence for data presenta-
tion in a final report. On inputting the sample
descriptive information, the test numbers can be
entered in any order. The program sorts the test
numbers in increasing order.

Storage of Sample Information in Computer Files.
RESAMP is a computer program that allows the input
and storage of sample descriptive and analyses
request information into computer data files. The
original version of this program required an input
response to a query, one at a time. With this
approach, an input error can not be easily cor-
rected after a response has been given. 1In the
present program, the DEC forms management system
software (FMS) was used to design a FMS screen
display (Fig 8) that simulates the actual sample
request form. The main advantage of FMS is that a
secretary can supply the requested information and
return, if necessary, to a screen location to
change a previous response. An additional advan-
tage is that restrictions to any input field can
be imposed to minimize the chance for an improper
response., The sample submitter can also conven-
iently respond to the questions on the FMS screen.

Two files, MASTER.DAT and ANFILE.DAT, are gener-—
ated during the execution of RESAMP. MASTER.DAT
contains all the sample descriptive information.
ANFILE.DAT contains all the test symbols and data.
Data values of zero are initially stored in the
file.

System Files. A feature of the original version
of the code was that the files MASTER.DAT and
ANFILE.DAT continually increased in size as new
sample analysis request information was added to
the system. Because these files are searched by
other programs, the search time was increasing to
perform a particular operation. In the current
version of the code, this is no longer a problem.
When the final report is generated (discussed in a
later section), the corresponding information in
MASTER.DAT and ANFILE.DAT is removed and archived
in two new files, MASTOT.DAT and ANATOT.DAT.

Thus, the original files contain only the informa-
tion for the current samples being analyzed.

Input of Analytical Results

INDATAN is a program that is used by the analyst
to input analytical test data into ANFILE.DAT.
This program is designed primarily for the input
of data collected for one particular test type on
a number of samples. The analyst responds to
questions for analytical test symbol, number of
analytical results, and whether the samples have
consecutive identification (certificate) numbers.
If the user supplies an incorrect analytical
symbol that is not in the symbol dictionary, the
analyst is informed and again prompted for the
symbol. For the case of consecutive certificate
numbers, only the initial certificate number is
required. Otherwise, the certificate number and
the data point for each sample is entered. A very
convenient verification feature can be used to
view the input data and make corrections if
necessary before the data is sent to ANFILE.DAT
(refer to Fig. 9).

40

Final Reports.

An experimental test result is a string of up to
eight characters. The data can include in the
string a less than or greater than character
(<,>), a plus or minus sign or NR for no result.
A menu option is also available for listing, by
analytical test symbol, the samples (certificate
numbers) that need to be analyzed.

JOHN1 is another program for inputting data into
ANFILE.DAT. This program is faster to use when
data has been collected on one sample for a number
of different analytical test, which is the case
with spectrographic results. The other features
of this program are similar to INDATAN.

OQutput of Analytical Reports

Two programs, OUTPRO1 and REPCOL1,
are used to generate final reports. These programs
only need to be selected for execution from the
main menu; no other user input is required.
OUTPRO1 searches the file ANAFIL.DAT to find every
analysis request for which all the work is com-
pleted. For example, if six samples for 20 analy-
tical tests were submitted, the data for all six
samples would have to be in the file before
OUTPRO1 would select that request for a final
report. After searching the entire file, OUTPRO1
generates a file called OUTFIL.DAT that contains
the test data for each analysis request ready for
a final report.

The program REPCOL1 selects the administrative
data from MASTFIL.DAT and the test data from
OUTFIL.DAT and generates a final report for each
completed request. This new program, REPCOL1, can
generate a one page report in column and row
format for up to eight samples as specified on the
input sample request form. An example of a final
report is shown in Fig. 10.

Status Reports. An important feature of the VAX
version is that the sample submitter can conven-
iently obtain a status report from a remote term-
inal location. This feature is implemented using
a captive account on the VAX which limits access
to the OIL directory. On logging into the VAX,
the sample submitter's name is asked, and a table
of descriptive information, including certificate
numbers, is displayed (refer to Fig. 11) for all
matches to the name. A certificate identification
number can then be selected to obtain a status
report. At this point in the program, a status
report can not be obtained if the results have
already been made available in a final report.

Archival Reports. Once a final report has been
obtained, the status report option can not be used
to review that information. However, an archival
report can be obtained using a procedure similar
to the one described above.

Summary

A special sample analysis request form simplifies
the task for a requester to describe the samples
and to select the specific analytical tests need-
ed. In addition, a secretary can easily transfer
the information from the request form to the com—
puter files using a program designed to minimize
the possibility of an incorrect reply. The other

important new capabilities provided on the VAX
computer version are:

1. The removal of information from the active
files for storage in archival files when a final
report is printed. Thus, active files are kept
small, thereby reducing file access time.

2. A single page final report can be obtained for
up to eight samples and 24 analytical tests.

3. Sample submitters can obtain reports on current
status of analyses or archived data.

4, Two programs are available for input of analy-
tical results grouped by test or by sample.

ACKNOWLEDGMENTS

The authors want to thank Professor Gerald G.
Johnson, Jr. of the Pennsylvania State University
for his contributions on the VAX version of the
programs. We also want to thank Messrs. Alex Peat
and Mike Klim for their assistance during the
evaluation phase of the new programs.

-l
Sample log=in Astematic labeling

Standardardized sample

T (]

Labderatory Qeneration of workiliot
Data base searches

Distridurion te Avtomation, Data analysls

fabe Word processing
LIMS ‘
L Date
review
Sample discard, releace
eterage reporte
or return archive
Figure 1. Sample and Information Flow in the Laboratory.
Modeting & 2:--
Manning
Glssvonis
]
[
[
werd
]
O Reserds
rossesing ooy Monsgoment
&S% =
Business &
Projoct
Monsgoment @rophics
Video Velse/ Audie
Menagoment Mensgement
Time
Mensgement
Figure 2. Workstation System Applications.

41

Betwork

VAX

OPPICE
SYSTEM
VAX

<
TERMINALS ’

, DEC/IBM LINK

IBM/CRAY
COMPUTERS

Figure 3. Network Communication Links to Computers.

Main Menu
Program Selection
[7 L
Sample Request Input Results Reports
Information To o Data Files
Data Files m

Check For
Completed Work
I Final Ropornl

Results Grouped
By Analysis Typ

Resuits To
Results Grouped Submitter
By Sample
Figure 4. Block Diagram for Lubricant LIMS.

YOU HWAVE THE FOLLOWING CHOICES!:

1. INPUT OF ANALYTICAL REQUEST C(RESAMP)
2. INPUT RESULTS BY TEST TYPE (INDATAN)
3. INPUT RESULTS BY SAMPLE (JOMN1)
4. OUTPUT OF THE TEST RESULTS (OUTPRO1)
S. FINAL REPORT (REPCOL1)
6. BACKLOG BY ANALYTICAL TEST (ANASTATA)
7. STATUS ON SAMPLE (STATUS)

8. LIST OF TESTS
9. TERMINATE

Please enter your CHOICE:

Figure 5. Menu for Selection of Program Option

amn.281 OIL SAMPLE ANALYSIS REQUEST PETROLETM SECTION LABORATORY TESTS
Motors R, rch Lad
Werven, M! 43080-9088

TEST TEST
o, JEST NETWOD 0. TEST METHOD
Certificate No.(s) - Office use only:
GRAVITY DILUTION
Charge Number: HEUEEEELEEE
ol 3G Specific Gravity at 15.6 C 45 D Puel Dilution ()
Requested by T 02 APG API Gravity st 15.6 C 46 WD Mater Dilution (2)
r I ‘LI] ‘ ‘] ' I] LJ 03 DEN Density at 15 C (g/mL) 47 GLY Glycol (ppm)
Location (Dept. Div., Statt). HENERERRREEREN F— S
Date Submitted (mo. - dey - yr.): D:I‘ED'D] 05 VL Viscosity at 40 C (g-)) $S IR lIafrared Spectrum (dete comp.)
. 06 VH Viscoeity at 100 C (co 36 DIR Differential IR (date comp.)
Description of Samplels) ‘:,:x"m:m':‘”": 10 CCl Cold Crank Viscosity st =18 C $7 CAR Carbomyl, IR (sbs.)
s, 1S BFl Brookfield Visc at O F (cP) S8 800 Soot, IR (1)
HEEEEEREEEREENEEEEE 16 BP2 Brookfield Visc at =10 ¥ (cP)
17 BF3 Brookfield Visc at =20 F (cP) TEEDMAL ANALYSIS
HEEERENEREEEEEEEEE 18 3ré Brooitield Vise ot -X0 7 (cP) . o
N 19 BFS Brookfield Viec at =40 F (cP) 3 Soot, TGA
Sample m;m:xn e on 1 sapla container. 22 PP Pour Point (degrees C) 6 DSC Diff. Scan. Cal. (C, min)
OXIDATION DLDENTAL AMALYSIS
o[TTI-(TT1T17] o [TT]-[TTT]
2 TAN Total Acid Mmber 70 ASN Ash (2)
@ EED-D::D P D:D_D::D 25 TN Total Base Mumber 71 S84 Sulfated Ash (1)
26 PIN Pentane Insoludbles (X) 72 CL Chlorine (2)
- - ki) TIN Toluene lmsolubles (2) N Ritrogen (ppm)
o[TT]-[TTT] o [TT-TTT] B e By e
s r Phosphorus (X)
w[TT-TT1T17 »[TT]-1T7717 voLTLITY 8 CA Caleiwm (D)
87 2™ Ziac (2)
30 FLP Flash Point (degrees C) 88 B4 Barium (2)
. . umber { hod. (Bee noe.) 3 FIP Pire Point (degrees C) 89 WC Magnesium (X)
Anatysis Request: Menutied by the test o coch et el 32 GC GC Simulated distillation 90 P Lead (D)
(date comp.) 91 CU Copper (2)
m m 1)) m 3 ED 19 Dj 36 PE] Pan Evaporastion at 177 C 92 B Boron (2)
» PE2 Pan Eveporation at 204 C 93 FT Iron (2)
38 PE3 Pan Eveporation st 232 C 9% 81 Silicon (1)
@) ED ®) m e m 20 m 39 PE4 Pan Evaporation at 288 C 95 AL Aluminus (2)
9% CR Chromium (2)
97 M1 Mickel (2)
o[1] o[J we[T] e[T] na e
99 MN Nanganese (2)
o] w[I] m[1] =[]
o[O o[@d o0 =0
..,D] ""[:D "“ED m,ED Figure 7. List of Test Methods (Printed on Reverse
¢ Side of Analysis Request Form).

Figure 6. Analvsis Request Form.

OIL SAMPLE ANALYSIS REQUEST
Certificate Number: 5354677 Charge Number: 22-5000-600
Requested by: A B JONES Location: FUELS
Date Submitted: 03/21/8%5
Description of Sample(s): For up to 8 samples per request
all requiring the same analys:s
OIL TEST SAMPLES FOR FLEET
Sample Number(s): Assigned by the submitter and placed on the sample container.
Prefix the sample number with the submitter’s initials.
ABJ-1234 ABJ-123% ABJ-123€ ABJ-1237
ABJ-1238 - - -
Aralysis Request: ldentified by the test number for each method.
0S5 06 23 24 27 28 09
Comments: SAMFLES WILL BE AVARILABLE TODAY

Is there arcother request to input? [Y/N) Y

Figure 8. Examples of FMS Screen Display.

42

RUN INDATAN
PROGRAM INDATAN VERSION AUG 8, 1904
ENTER ANALYTICAL SYMBOL FE
'D:TS:TMDT':ER OF RESULTS (<101) 7?7
A SBE ENTERED FOR CONSECUTIVE CERT .

ENTER INITIAL CERT. NUMBER $36789 EXT NOS. (YENO) e

ENTER DATA POINT=HIT RETURN

556789 2.0

936790 S.6
$36791 2.8
836792 23.8
856793 34.6
836794 10.6
936793 S.9

wrVERIFY CERT. NUMBER AND DATA FOR FE
NUM CERT baTaA

$%6789 7
8%€7% S
836791 2
836792 2
936793
856794
336795 8.9

HOW MANY LINES NEED TO BE CORRECTED 0

DO YOU WANT TO ENTER OTHER ANALYTICAL DATA (YE/NO) NO

NOBsWN-

Figure 9. Example of Input of Analytical Results

into LIMS, ShowingVerification Feature.

0IL SANPLE REPORT
AMALYTICAL CHENISTRY DEPARTNENT
RESEARCH LABORATORIES
GENERAL NOTORS CORPORATION
WARREN) RICHIGAN

22-4019-700
s. 8
03/08/83
02/21/8%

Charse No
Reovested Bv
Date Rerortied
Sate subeitted

Ssnrle Descrivtion WEOH FLEET
Rosuester Code sts
Lecation rucLs
Cort. No.! $40553 340354 540353 $4033¢ 540557 $40S36 540539 540340
Rosuester No.! ns: LIV I PE]) n1s2 n1S3 NISS M1SO Ni4é
$ Viscesitv at 40 C (es) 64.3 4.3 61.3 09.7 73.6 73.4 46.0 00.9
4 Viscosity st 100 C (es)) 9.08 9.9 311.17 9.30 9.73 9.5 10.2¢
24 Tetal Acid Nuaber 3.40 $.43 9,48 L1} 8.:10 1.83 6.30 11.0
23 Totel Base Nusber 4.70 2.41 10.9 19.4 23.3 4.97 3.13 8.48
36 Pentane Insolubles (X) 87 1.02 <38 74 33 1.98 .13 40
43 Puel Dalution (X) 1.18 1.36 <ol <ot <ol <ol <ol <ol
46 Weter Dilution (X) 1.8 .22 <1 <1 <.1 <1’ < <1
95 Infrered Srectrus (dote cosr.) 3-8 3-85 3-85 3-05 3-05 3-85 3-85 3-83
66 Difr. Bcon. Cal. (Crain) 16 3 - 28 0 3 3 13
03 Phesrhorus (X) .11 .12 .13 14 234 .14 .10 .13
06 Celciue () «20 «10 40 >3 >.8 >3 .30 >.8
97 ine (XD 32 «13 14 9 .13 18 13 18
89 MNemnesive (X) <.01 «0S €01 <€.01 <01 <01 <01 <0
90 Leed () <04 «02 <01 43 03 .04 * .02
91 Correr (X) <.001 4002 <€.001 .001 <.001 <,001 <.001 .00
3 Iren () 008 07y «000 014 «003 $012 067 +031
94 Silicon (X) +003 013 <.008 003 <002 +008 +003 4001
S Alusinue (X) 003 +008 «002 010 «001 «005 «010 «008
%6 Chrosius (X) <.003 4001 <.001 .001 <.001 4002 <.001 .001
78 Sodium (X) .10 02 02 «03 .03 02 .10 .02
Figure 10. Example of a Final Report.
o R STATUS
Plesse give the NAME as submitted in the request c. K.
SES-M154 20-FEB-0S MEOM FLEET 840346
SES-+138 3 MEOH FLEET 340547
SES-M144 MEOH FLEET 340548
SES-11S7 MEOM FLEET 940549
-1 MEOH FLEET 340350
OES-+143 MEOH FLEET 340931
S£3-0136 MEOH FLEET 3403952
SES-M131 MEOH FLEET 340333
SL8-1160 MEON FLEET 340554
SES-r148 MEOW FLEET 540893
S£8-M1352 MEOM FLEET 340336
sEs-+1133 MEOH FLEET 5403357
SCe-M1 83 MEOW FLEET 340338
9E$-M130 MEOH FLEET 340839
SES-M146 20-FE0-03 MEOH FLEET 340360
Do you want te view the status of the analysis ? (Y/N) Y
Plesse enter the CERT @ that you want te examine 3540538
w, . ww . T 0. TN O, PIN O. fO O. wWo o0 L)
osc 0. 0. cAa 0. N 0. " 0. P8 0. cu o FE ©
s 0. A 0. cr oo, NA 0.

Do you want te view anether sample ? (Y/N)

Figure 11, Example of a Request for a Status Report.

43

12.

REFERENCES

G. A. Gibbon, "Trends in Laboratory Informa-
tion Management Systems," Trends in Analytical
Chemistry, Vol. 3, No. 2, 1984, p. 36.

R. E. Dessey, "Laboratory Information Manage-
ment Systems: Part I," Analy. Chem. 55, No.
1, 1983, p. TOA.

R. E. Dessey, "Laboratory Information Manage-
ment Systems: Part I," Analy. Chem. 55, No.
2, 1983, p. 277A.

J. H. Golden, "Computerizing the Laboratory:
The Importance of System Specification," Amer.
Lab., 12, No. 11, 1980, p. 111.

J. G. Liscouski, "Distributed Laboratory Data
Collection and Management, Amer. Lab., 15, No.
9, 1983, p. 127.

M. Podany and J. Vezina, "Real Time Multi-
Processor Data Acquisition Network," Proceed-
ings of the Digital Equipment Computer Users
Society, Cincinnati, Ohio, June 1984, p. 147,

L. Malkenson, "Use of Computers in a Labora-
tory of Cardiovascular Medicine," Proceedings
of the Digital Equipment Computer Users

Society, Cincinnati, Ohio, June 1984, p. 153.

K. Lewis, F. Chow and E. Cassaro, "Interfacing
Laboratory Data Systems to a VAX," Proceedings
of the Digital Equipment Computer Users
Society, Las Vegas, Nevada, October 1983,

p. 247.

S. E. Stern and G. G. Johnson, Jr., "A Gener-
alized Laboratory Automation Scheme for a
Group of Different Analytical Instruments,"
Computer Automation of Materials Testing, ASTM
STP 710, editor B. C. Wonsiewicz, American
Society for Testing & Materials, Philadelphia,
PA., 1980, p. 59.

R. J. Betsch and G. G. Johnson, Jr., "Bridging
the Hardware/Software Gap in Instrument Con-
trol." Computer Automation of Materials Test-
ing, ASTM STP 710, Editor B. C. Wonsiewicz,
American Society for Testing & Materials,
1980, p. 11.

C. Snyder, "Managing the Electronic Labora-
tory: Part II," Anal. Chem, 56, No. 7, 1984,
p. 855A.

J. E. McNamara, Technical Aspects of Data

Communication, 2nd ed., Digital Press, Bedford

Mass., p. 230.

Enhancing the DCT11-EM through Software Communications

Jean M. Lareau
34 Windham Rd.
Willimantic, CT.

06226

ABSTRACT

The objective is to communicate in an asynchronous mode
between a RAINBOW 100 and the DCT11-EM EVALUATION BOARD.
The two computers will be interfaced through the RS-232
serial ports. The program segments can be used in general
communications such as RAINBOW to RAINBOW or RAINBOW to
PDP11 and, of course, RAINBOW to DCT11-EM. I have already
written programs that do these communications so it can
be done with some effort but these programming segments
will give you almost everything you'll need to know. Segments
of the program will be illustrated to clarify the points
being made. Before entering the programming section, we
should discuss the cable that is needed to connect the two
computers together.

INTERFACE CABLE

The cable only needs six lines which are
the protective ground, transmit data, receive
data, data set ready, signal ground and
data terminal ready. They should be connected
in the following manner:

Mnemonic Pin Number Pin Number Mnemonic
PROT GND 1 1 PROT GND
XMIT DATA 2 3 REC DATA
REC DATA 3 2 XMIT DATA
DSR 6 20 DTR
GND 7 7 GND
DTR 20 6 DSR

Proceedings of the Digital Equipment Computer Users Society

CLEAR INTERRUPTS ON RAINBOW 100

Now we can consider the programming aspect
of the communication. The program segments
are written in basic and the numerical
values are in decimal. The first thing
that has to be done is to clear the interrupts.
The communications port is handled by the
NEC 7201 chip. THis is done by writing
a 16 to WRO and writing a O to WR1 of the
communications control/status register
which is port 66 in decimal. The way this
is completed is by:

1000 OUT 66,17
1020 OUT 66,0

OUT = sends a byte of information
to an output port

66 = communications control/status
register

17 = sets RESET EXT/STATUS INTERRUPTS
on and selects WR1
0 = sets (WR1) register to O

When using the NEC 7201 chip, two
OUT statements must be issued. The first
OUT statement is to set WRO and to set

45

the pointer register you want to address next.
Bits DO - D2 of WRO are used as a pointer

to the next register. The second OUT statement
is used to set the pointer register selected

by bits DO - D2 of WRO. After the second

OUT statement, the control returns back to

WRO. After the two OUT statements have been
issued, the WRO and WR1 are as follows:

D7 D6 D5 D4 D3 D2 D1 DO

WRO 00 j0}1}10}0)]0]1

D7 D6 D5 D4 D3 D2 D1 DO

WR1 Oj0}J0}1O0OJO0O}J0}0]O0

SET INTERRUPTS

After execution of the program, the
interrupts should be reset back to the original
state. This is done by the following two
lines.

1200 OUT 66,17
1220 OUT 66,24

66 = communications control/status
register

17 = sets RESTE EXT/STATUS INTERRUPTS
on and selects WR1

24 = sets WR1 to INTERRUPTS ON ALL
RECEIVE CHARACTERS

BUSY WAIT

One very important subroutine in asynchro-
nous communications is the BUSY WAIT subroutine.
It is vital for detecting the status of the
other computer. Using this subroutine, you
can determine whether or not you have received
a character. THis is done by ANDing the

New Orleans LA - 1985

status/control's WRO with 1. If the result
is true, then there is a character there.

4240 IF ((INP(66) AND 1) = O) THEN
GOTO 4240

The INP(66) simply means to read port
66 (which is the communications status/control
register) then AND it with 1 and check
to see if the results are equal to 0. If
the results are equal to O then keep on
checking until the results change.

TERMINAL MODE SIMULATION

Terminal mode simulation is needed
for the ability to read from and write to
another computer. This subroutine will
allow for a bypass of your own computer's
operating system and allow you to run the
other computer under it's own operating
system. The subroutine is as follows:

1200 IF ((INP(66) AND 1) = 0) THEN
GOTO 1240

1220 PRINT CHR$(127 AND INP(64))

1240 B$ = INKEY$

1260 IF B$ = "%" THEN GOTO 1400

1280 IF B$ = CHR$(24) THEN OUT 64,3

1300 IF B$ <= CHR$(7) THEN GOTO 1200

1320 OUT 64,ASC(B$)

1340 GOTO 1200

1400 END

Line 1200 checks to see if a character
has been sent by the other computer. If
there is a new character then it will be
printed. If no new character is found,
then print statement will be skipped.
Line 1220 will read the COMMUNICATIONS
DATA REGISTER and AND it with 127. This
is done to strip the incoming data of such
things as parity bits. The character value
will then be printed to the screen.
Line 1240 will read anything typed
on the keyboard and store it into the variable
BS.
Line 1260 will exit the program when
the "%" (percent sign) is typed on the keyboard.
Line 1280 will check if the character
type in is a CTRL/Z character. If it is,
a CTRL/c will be sent out to the other computer.
Line 1300 will check if the typed in
character is a printable character. If
the character is non-printable then the
program will jump back to the busy wait.
Line 1320 will send to the other computer
the character typed in.

READ A CHARACTER FROM DCT

Reading a character is accomplished
by performing two steps. The first step
is the busy wait. THe second step is read
the COMMUNICATIONS DATA REGISTER and store
the contents into the variable.

4320 IF ((INP(66) AND 1) = O) THEN
GOTO 4320
4340 A = INP(64)

46

READ AND STORE CHARACTERS FROM DCT

The following subroutin will read
characters from the DCT and also store
them into a string. The string will terminate
when a carriage return is received. A
carriage return being a 13 in ascii value.

4300 CC$ =" "
4320 IF ((INP(66) AND 1) = 0) THEN
GOTO 4320

4340 A = INP(64)

4360 CC$ = CC$ + CHR$(A)

4370 IF CC$ + "HALT" THEN RESET: GOTO 5000
4380 IF A = 13 THEN PRINT #2, CC$:CC$="""
4400 GOTO 4320

5000 END

Line 4300 will set string to null.

Line 4320 executes BUSY WAIT.

Line 4340 reads a character from the
COMMUNICATIONS DATA REGISTER and stores it
into the variable named A.

Line 4360 will incorporate the characters
being read in and store them into one large
string which will be delimited by a CR(carriage
return) in the following steps.

Line 4370 will check for the sentinal.

When the word "HALT" has been read in
as the very first four characters, then
all the opened files will be closed and
the program will end.

Line 4380 will check for a CR. If
a CR has been received, the string will
be printed to the exterior file and the
string will be set to null.

SENDING OUT A STRING TO THE DCT

When sending a string to the other

computer, the following steps must occur.
First, the length of the string must be
determined. THis is done with the LEN
function. Store the length of the string
into a variable. THe length of the string
will determine the number of iterations
that the FOR loopr must complete.

The MID$ function is used to isolate
character/s from the string and store them
into a new string. In communications such
as this, we can only send out one character
at a time. The MID$ function will perform
in the following manner. It will look
at the original string (B$) and start at
the Ith character (I) and take the next
N characters. 1In our case, only one character
is desired.

The next step is to send out that
one character in ASCII form. It must be
sent in ASCII form or the receiving computer
won't be able to read it. The next step
is to increment the I variable to get the
next character of the string. THe last
step is to send out a CR to tell the other
computer that sentence has been completed.

3980 B$ = "PASS2"

4000 L = LEN(B$)

4020 FORI =1 TO L
4040 BBB$ = MID$(B$,I,1)
4060 OUT 64,ASC(BBB$)
4080 NEXT I

4100 OUT 64,13

VIEW AN ASCII FILE

I Have included this subroutine as a method

by which you can view the program that your
computer has received and saved. It will
ask you which file do you wish to view.

It will then open that file. It will

then print to the screen, line by line,

the program until the END-OF-FILE has been
reached at which point the file would then
close.

9270 PRINT "PLEASE ENTER FILE NAME"
9280 INPUT T$

9300 OPEN "I", #2,T$

9320 IF EOF(2) THEN GOTO 9400

9340 LINE INPUT #2,K$

9360 PRINT K$

9380 GOTO 9320

9400 RESET

Line 9270 will print message to screen
Line 9280 will read the file name

Line 9300 will open the file

Line 9320 will do until end-of file
Line 9340 will read line

Line 9360 will print line to screen
Line 9380 will goto do loop

Line 9400 will close all opened files

DOWNLOAD A FILE FROM DCT ONTO DISK

The read a file and save it on a floppy
diskette subroutine will be needed for
just that. Almost everything in this sub-
routine has been mentioned earlier. Some
of the lines are specific to the computer
that you will communicate with. For our
program, this subroutine should appear
as follows:

3920 PRINT "ENTER NAME OF FILE"

3940 INPUT Q$

3960 INPUT "ENTER BEGINNING ADDRESS",B$

3980 BB$ = ".=" + B$ + " 177776"

4000 L = LEN(BB$)

4020 FOR I =1 TO L

4040 BBB$ = MID$(BB$,I,1)

4060 OUT 64,ASC(BBB$)

4080 GOSUB 3820 [READ A CHARACTER
FORM DCT SUBROUTINE]

4100 NEXT I

4120 OUT 64,13

4180 OPEN "O", #2, Q$

4200 C$=" n: CC$=" n”

4220 OUT 64,13

4240 GOSUB 3820

4260 GOSUB 3820

4280 GOSUB 3820

4360 CC$ = CC$ + CHR$(A)

4380 C$ = RIGHT$(CC$,4)

4390 IF C$ = "HALT" THEN GOTO 4260

4400 IF A = 13 THEN PRINT #2, CC$:
C$=" ": CC$=" ": GOTO 4280

4420 IF C$ = "END " THEN GOTO 4445

4440 GOTO 4280

4445 RESET

4450 GOTO 1200 [TERMINAL MODE SIMULATION]

Line 3980 is specifi¢ to the DCT. This
string, after being sent, will tell the
DCT to send to the RAINBOW the contents
of whats in it's memory from the starting
address that you specified (BB$) and end
at address 177776. The program will end

47

upon reading a "END " symbol. For this reason

I always put a "END " symbol at the end
of each of the DCT programs.

Every time a new character is sent
to the RAINBOW, an INP statement must
be executed or the DATA REGISTER will
not be cleared and that character will
stay there until it is read creating a
queue of characters. This is the reason
for the three GOSUB 3820 statements,
After you have sent out the last character
of a line, you then send out a CR (carriage
return). The DCT will respond by sending
back the last character, a CR and a LF(line
feed).

WRITING A FILE FROM A FLOPPY TO THE DCT

Writing a file from either A drive
or B drive to the DCT is more difficult
then simply sending characters out and
sending a CR at the end of every string.

We must concern ourselves with such things
as at what address are we loading the
program, how does the DCT know that the
program has finished or has the DCT accepted
the program correctly.

When loading a program in this manner,
the DCT will act as an interpreter which
will not allow errors to be entered.

This program will check and correct these
mentioned problems as well as creating

a file with an error listing. The program
is as follows:

4460 PRINT "PLEASE ENTER BEGINNING ADDRESS
OF INSTRUCTIONS ONLY";

4480 PRINT "AN OCTAL ADDRESS BETWEEN 146
AND 177776"

4500 INPUT Z$

4520 Y$=".=" + Z$

4540 L=LEN(Y$)

4560 FOR I = 1 TO L

4580 X$= MID$(Y$,I,1)

4600 OUT 64,ASC(X$)

4620 GOSUB 3820

4640 NEXT I

4660 OUT 64,13

4680 GOSUB 3820

4700 GOSUB 3820

4720 REM

4740 PRINT "ENTER FILE . EXT ";

4760 INPUT F$

4780 LLL=0

4800 L=LEN(F$)

4820 FOR I=1 TO L

4840 FFF$=MID$(F$,I,1)

4860 IF FFF$="." THEN LLL =(L-I)

4880 NEXT I

4900 PRINT CHR$(27);"2J"

4920 PRINT "PLEASE WAIT FOR THE 'TEM '
BEFORE YOU CONTINUE "

4940 IF LLL=0 THEN FF$=F$+".LST" :GOTO 5020
4960 L = LEN(F$)

4980 LL=(L-LLL)

5000 FF$=LEFT$(F$,LL) + "LST"

5020 OPEN "O",#2,FF$

5040 OPEN "I",#1,F$

5060 GOSUB 3820

5080 GOSUB 3820

5100 GOSUB 3820

5120 COUNT = 0

5140 IF EOF(1) THEN GOTO 5600

5160 LINE INPUT#1,V$

5180 L=LEN(V$)

5190 IF MID$(V$,1,1)=";" THEN PRINT #2,V$:
GOTO 5140

5200 FOR I =1 TO L

5220 U$ = MID$(¥$,I,1)

5240 OUT 64,ASC(U$)

5260 GOSUB 3820

5280 NEXT I

5300 OUT 64,13

5320 FOR I = 1 TO 7

5340 GOSUB 3820

5360 UU$=UU$+CHR$(A)

5380 AA$=RIGHT$(UUS$,5)

5400 NEXT I

5420 IF AA$="TEM " THEN PRINT #2,V$:UU$=" ":
GOTO 5140

5430 IF V$="HALT" THEN V$=",EVEN" :GOTO 5180
5440 CC$=" "

5460 CC$=AAS

5480 CC$=CC$+CHRS$(A)

5500 DD$=RIGHT$(CC$,4)

5520 IF DD$="TEM " THEN PRINT#2,V$,CC$,
"%k ERROR ¥*¥#¥%'":GOSUB 3820:V$=""HALT" :COUNT
= COUNT + 1:GOTO 5180

5540 IF ((INP(66) AND 1) = 0) THEN GOTO 5540
5560 A=INP(64)

5580 GOTO 5480

5600 REM

5620 REM CLOSE

5640 PRINT #2," "

5660 PRINT #2,,"##¥*x%*THERE WERE "COUNT"
ERRORS DETECTED ##ititistit!

5680 CLOSE #2,#1

5700 PRINT "FILE HAS BEEN LOADED INTO THE
DCT11-EM"

5720 PRINT

5740 PRINT

5760 PRINT "#w#x#%*THERE WERE "COUNT" ERRORS
DETECTED 336363636331

5780 OUT 64,3

5800 GOSUB 3820

5820 C$=" ":CC$=" "

5840 C$="PASS2"

5860 L=LEN(C$)

5880 FOR I=1 TO L

5900 CC$=MID$(C$,I,1)

5920 OUT 64,ASC(CC$)

5940 GOSUB 3820

5960 NEXT I

5980 OUT 64,15

6000 GOSUB 3820

6020 GOSUB 3820

6040 GOTO 1180

Line 4460 - 4700 sends out a string to the DCT.
Line 4720 - 4880 checks to see if you
entered an EXTeution with the filename.
Line 4940 will put a .LST extention on

the filename if no extention was entered.
Line 4960 - 5000 will delete the EXTention
and put a .LST extention in its place.

Line 5020 - 5040 opens the input file

and the new .LST file that will be created.
Line 5140 - 5300 will send out a string

to the DCT.

Line 5190 will check the string to see

if its a comment statement. If it is

a comment statement, it will not be sent

to the DCT for the purpose of saving time.
Line 5320 - 5400 will store the reply

of the DCT.

Line 5420 - 5520 will check if the DCT
accepted the string without error. If

48

no error is found, the next line will be sent.
If a error has been detected, the DCT will
not allow that line to be inputed. The

DCT will wait until a valid string is sent.
A dummy line should be sent in place of
the string with the error so that after

the program has been loaded into the DCT,
the dummy string/s can be replaced with

the proper syntax of the statement. If

the dummy line is not put in, you will

not be able to enter any statements at

that address because no space was set aside
for the error line.

Line 5540 - 5560 performs a BUSY WAIT

Line 5600 - 5760 prints messages to ,LST
file and closes it.

Line 5780 sends the DCT a CTRL/C.

Line 5720 - 6040 sends a string to the

DCT.

% NOTE *3#*

All numerical values are represented in
decimal.

The DCT uses OCTAL values only.

BARS - A BEHAVIORAL ACQUISITION AND RESEARCH SYSTEM

Beverly H. Johnson

OAO Corporation

1222 N. Main Ave. Suite 307
San Antonio, TX 78212

Michael G. Yochmowitz

Radiation Sciences Division

USAF School of Aerospace Medicine
Brooks AFB, TX 78235

G. Carroll Brown

Systems Research Laboratories
P.0. Box 35313

Brooks AFB, TX 78235

ABSTRACT

We describe a behavioral control and data acquisition system
developed under the RT-11 operating system on a PDP-11/34 and
MINC-11/23. This system is used to train and test subjects
to perform in a specified manner. The computer turns stimuli
on and off, records all responses, and delivers appropriate
reinforcements. It can handle up to five subjects simultane-
ously. At present, 30 discrete behavioral schedules have been
completed. The software was designed to be very flexible to
accommodate variations of these schedules. It is easy to use
and requires no programming background. Interface routines
have been written to allow commonly used statistical analysis
packages to be run on the data. The software design and
typical real-time problems of program size, execution speed,
scheduling events, minimizing data file size, and incorporat-

ing multiple subjects under RT-11 are discussed.

INTRODUCTION

The Behavioral Acquisition and Research System
(BARS) was written for the United States Air Force
for use in behavioral experiments. It consists of
30 different tasks (called schedules) that are simi-
lar in implementation yet appear different to the
user.

BARS was developed as a replacement for 1960-
vintage digital equipment used to control and col-
lect data from behavioral experiments. The old
system was massive in size, collected data on
punched paper tape, needed to be hardwired for each
experiment, and took a considerable amount of time
to troubleshoot. Its replacement was required to

1. control up to 5 test stations,

2. be easy to use by technicians unfamiliar
with computers,

3. run a variety of behavioral schedules (now
30) that can be readily modified,

4. be very flexible to accommodate individual
experimenters' needs and preferences,

5. allow one schedule to execute immediately
after another without operator intervention,

6. provide quick response processing,

7. minimize dependence on one particular com-—
puter,

8. run on portable machines such as the MINC
(PDP-11/23),

9. provide real-time feedback to experimenters,
and

10. allow for data interface to major statisti-
cal software packages.

A PDP-11/34 running the RT-11 Single Job (SJ)
monitor (version 5.1) was used. The computer is
configured with 128K words of memory, two RLO1
disks, a KW11-K real-time clock, a DR11-K digital

Proceedings of the Digital Equipment Computer Users Society

I/0 board, and two DL11 serial lines. With only a
few minor modifications, BARS can also run on a
MINC. The behavioral testing apparatus is inter-
faced through the digital I/0 and/or serial 1I/0
boards. A variety of testing apparatus can be used,
depending on the schedule to be run. One benefit of
using the BARS software is that the testing appara-
tus hardware is completely independent of the soft-
ware.

All software was written in FORTRAN IV (version
2.5), with the exception of several small MACRO
subroutines. The software consists of three phases:
input programs, data collection programs, and analy-
sis programs. Each of these phases will be de-
scribed, followed by a discussion of the solutions
found for the problems encountered in the data col-
lection phase.

INPUT PROGRAMS

The input programs were designed to be run by a
naive user. Experimental setup parameters are input
by means of a question and answer session. Most
questions include a default answer in brackets:
'HOW MANY STIMULI [1] ?' The user types a carriage
return to use the default value, thereby speeding up
the input process.

On-line help is available for each question.
If the user types '?', a short paragraph is printed
describing the input being solicited, along with the
valid range for the input value. Then the question
is repeated.

All input data can be modified at the end of
the input session. This is an important feature,
because some of the schedules ask over 50 questions.

After input, all values are displayed with line
numbers. For example:

New Orleans LA - 1985

TYPE: SIDMAN AVOIDANCE
STUDY NUMBER: 21
DRUG NUMBER: i
NO HOUSE LIGHTS
STIM. LEVEL CHAN. DESCRIPTION
5) 1 1 3 WHITE LIGHT
6) RESPONSE CHANNEL: 1
7) RS INTERVAL: 5.00 SECONDS
8) SS INTERVAL: 2.00 SECONDS
9) #LEVELS OF NEG. REINF. FOR NO RESP: 1
STIM. TYPE LEVEL CHAN DESCRIPTION PROB
10) 1 NEG-NO RESP 1 5 BUZZER 100
1) DURATION: 1.00 SECONDS
12) DATA DISPLAY INTERVAL: 3.0 MINS
13) HALT AFTER O HOURS, 30 MINS, 0.0 SECS

1)
2)
3)
)

The lines are numbered consecutively. The pro-
gram keeps track of which line number corresponds to
which entry. If changing a value requires subse-
quent lines to be added to or deleted from the dis-
play, the program automatically renumbers and prints
the updated display.

To change an input value, the user types the
number of the line containing that value. Then the
question is repeated using the user's previous re-
sponse as a default value. This procedure makes it
quick and easy to change any input value.

All 30 schedules in this software system run
the SAME input programs. Defaults are set for each
variable according to the schedule type. An ASCII
file contains 125 indicators that identify the ques-
tions to be asked for each schedule. Generally, a
'0' means that the question is to be omitted, and a
'1' means that the question is to be asked, although
'2' through '9' are occasionally used for other
purposes. This indicator file can be edited without
recompiling any programs, making it very easy to
change which questions are asked for each schedule.
This is a particularly valuable feature because, in
practice, behavioral schedules are not fixed but
instead have many possible variations for each
schedule. While most of the common variations have
been incorporated into this software, there will
always be an experimenter who wants a schedule set
up in a nonstandard manner. The ASCII indicator
file permits him to do this easily without revising
any of the program code.

DATA COLLECTION PROGRAMS

There are three data collection programs: one
to do the preliminary calculations, one to actually
run the experiment, and one to create separate data
files for each subject. These could run as one
program but are used separately because of memory
constraints.

The first data collection program uses the
information from the user to generate temporary
setup files. All of the decision making that can be
done before the experiment starts is done at this
time. The program generates lists of random numbers
and timing values to be used, as well as deciding
which stimuli to turn on. If multiple subjects are
to be run, the data for all of the subjects are in-
corporated into the setup files.

The second data collection program reads the
setup files generated by the previous program and
runs the experiment. Basically, this program turns
stimuli on, receives and analyzes responses, deliv-
ers appropriate reinforcements, and turns stimuli
off. A considerable number of computed decisions
are involved in this process. Since all 30 sched-
ules use the same program, features for all of them

50

were included in this one program. Up to five sub-
jects can be run simultaneously. This program is
also capable of chaining schedules; that is, running
one schedule after another without user interven-
tion. Responses made by the subject interrupt the
system and are received by a MACRO interrupt service
routine. Timing is accomplished by the use of a
programmable clock running at 1 kHz and an interrupt
service routine that responds to 1-minute clock-
counter overflows. This program also prints the
data in real time using a format appropriate to the
schedule being run, writes all the data to one com-
posite data file, and performs other miscellaneous
"housekeeping" functions.

The third data collection program separates
the data in the composite data file into individual
data files for each subject. This facilitates data
management and statistical analysis.

ANALYSIS PROGRAMS

A variety of analyses can be performed on the
data.

Data files contain every event (such as '"stim-
ulus on," "reinforcement off," '"response received,"
etc.) that occurred during the experiment and the
times at which they occurred. This allows the en-
tire run to be recreated, millisecond by millisec-
ond. Therefore, the experimenter can have no doubt
as to exactly what happened during the experiment.

Another advantage of storing every event Iis
that data have not been lost through compression.
Additional analysis routines can be written 1long
after all the data have been collected. This 1is
especially helpful for users who want additional
data after the initial analysis of the experiment is
finished.

For statistical analyses, programs have been
written to interface the data to commercial statis-
tical packages. Also, a program is available to
plot the data in a wide variety of formats.

DATA COLLECTION PROGRAM PROBLEMS

The data collection program presented a variety
of problems, some of which are typical of real-time

data acquisition programs. These include: 1) pro-
gram size, 2) execution speed, 3) incorporating
multiple subjects, 4) scheduling events, and 5)

minimizing data file size.

1. Program Size

Memory available never seems to be enough when
programming for the RT-11 operating system. 1In the
case of BARS, 122K words of code and data had to be
squeezed into 24K words of memory (RT-11 limit of
32K words less: RMON = 3555 words, I/0 page = 4096
words, and DL handler = U486 words). All of the fol-
lowing solutions to this problem were implemented.

1. Using the Single Job (SJ) version of the
RT-11 monitor. Version 5.1 of the SJ monitor is
3.3K words smaller than the Foreground/Background
(FB) version, and 4.6K words smaller than the Ex-
tended Memory (XM) version.

2. Sysgening only the features necessary for
the application.

3. Unloading unnecessary device handlers.

4, Compiling routines without line numbers.

5. Linking with $SHORT. Linking the program
with the global $SHORT saved 838 words by eliminat-
ing long system error messages.

6. Developing overlays. The root was kept as

does not improve the problem.

4, RSX-11M tasks in wait state.
has its own task sitting idle waiting for a re-
sponse. When a response is received, the appropri-
ate task is awakened to service it. This is not
feasible for the schedules that receive many respon-
ses at a fast rate.

5. RSX-11M one task. All response processing
routines can be placed into one task. Then the
response data can be sent to the individual tasks
after all the time-critical code has been executed.
This eliminates the need for tasks to be shuffled in
and out to service a response. This possibility
looked feasible until a close inspection revealed
that so much of the data collection program centers
around response processing that very little would be
left for the individual programs. So it might as
well be all one program.

6. RT-11. Once the decision was made to in-
clude all processing in one program, RT-11 was cho-
sen over RSX-11M because of 1its faster execution
speed. The final decision was to continue to use
the RT-11 operating system, requiring one program to
handle all five subjects.

Each subject

4. Scheduling Events

Events that occur in this software (such as
turning stimuli on and off) are not fixed at certain
times. They are scheduled according to what hap-
pened during the execution of the schedule, espe-
cially in regard to how the subject responded.
Therefore, a list of events and times cannot be set
up prior to running, and even the list itself is not
fixed once it has been set up - both the timing of
an event and even its presence on the list may need
to be changed after it has been scheduled. The fol-
lowing methods of scheduling events with a way to
change the timing were considered.

1. RT-11 ISCHED. The RT-11 SYSLIB routine
ISCHED schedules a FORTRAN subroutine to be run at a
specified time. This method would not work because
a much greater timing precision is required than the

one clock-tick (16.7 ms) precision allowed by
ISCHED.
2. Foreground/Background programs. A fore-

ground program can be used to do nothing but watch
the events and execute them at the proper times; the
original data collection program runs in the back-
ground. This alternative was discarded because it
uses lots of memory (already in extremely short
supply), and the only gain is in making the schedul-
ing simpler.

3. Ordered 1list. A list of events and the
times at which they are to occur are listed in order
by time. The list is rearranged to accomodate chan-
ges in the event timing. This was a feasible solu-
tion. A test executed in 49 ms.

4, Linked list. A list of events and the times
at which they are to occur is made up in any order;
pointers indicate the order in which events are to
occur. The linked list approach was selected be-
cause it executed the same test as the ordered list
in 42 ms - about 7 ms faster than the ordered list
approach.

5. Minimizing Data File Size

Every event that occurs and the time at which
it occurs is stored in the data file; thus a huge
data file could be created in a short period of
time. The data file had to be created in a very
compact manner. The solution was to store only two

51

words per event in a binary file.

1. Event word. All information about the
event that occurred is stored in only one 16-bit
word, requiring very detailed coding of the event,
bit by bit.

2. Time word. The time at which the event
occurred is stored in one word. This procedure is
complicated because timing must be stored to 1-ms
precision and experiments can run for 24 hours.
Storing the time at 1-ms precision in a 16-bit word
means that only 65.535 seconds can be accommodated,
which is obviously well under the 24 hours required.
The solution was to implement a "time mark" event.
Every minute, when the clock overflows, a "time
mark" event is written to the data file, indicating
that one more minute has elapsed. The time word
stored for each event is the number of seconds in
the current minute (multiplied by 1000 to make it an
integer).

3. Binary file. ASCII files are generally
preferred because they are easier to read. But
because every bit of every word is used for this
data, a '2I6' format would be required. So an ASCII
data file would consume three times as much disk
space as a binary file. Also, writing data to a
binary file is quicker. Binary files were therefore
chosen.

SUMMARY

BARS has been a challenging software system to
develop. The data input programs can be run by a
naive user, and the data entered can be easily modi-
fied.

All 30 schedules were incorporated into the
same programs, which saved a tremendous amount of
time in writing and testing the software. This also
allowed much greater flexibility for each schedule,
because a feature generally found in one schedule
can be very easily added to another schedule.

The data collection program included some typi-
cal real-time problems. The problem of excessive
program size was solved primarily by using overlays,
using virtual arrays, and partitioning the one data

collection program into three programs. The most
significant improvements in execution time were
achieved by using FORTRAN inline code, performing

calculations early, and streamlining the code. Mul-
tiple subjects were incorporated into a single pro-
gram under RT-11. Event scheduling was achieved
with linked lists. And data file size was minimized
through detailed coding of events and times in bi-
nary files.

Interfaces to standard analysis programs are
available, simplifying the subsequent statistical
treatment of the data. BARS has developed into an
easy-to-use, straightforward program. Its portabil-
ity to a MINC system makes it an effective tool for
the nonprogramming investigator, both in the labora-
tory and at remote field sites. Its ability to
handle many variations of 30 different schedules is
one of its greatest assets.

small as possible and three main overlay groups wer:
developed: one to read data from the setup files
and initialize, one to collect the data, and one to
close files and disable interrupts. This saved 12K
words. All routines that actually collect data have
to remain in memory simultaneously because overlays
from an RLO1 disk are too slow for the real-time
work - 44 milliseconds (ms) average for this soft-
ware. Virtual memory overlays that use memory from
32K to 128K words as if it were a disk (through the
VM handler) were tried. Overlays from virtual mem-
ory averaged 10 ms for this software. But even this
was too slow, since several overlays would be re-
quired. Therefore, all real-time routines have to
reside in memory simultaneously.

7. Virtual arrays. Virtual arrays are arrays
placed in memory above 32K words. Large virtual
arrays resulted in very substantial memory savings
(65K words) while adding very little to execution
time.

8. Writing custom MACRO subroutines. Standard
DEC subroutines are available for real-time work,
such as digital I/0. These routines work well, but
are so comprehensive that they are too large. For
example, a simple custom MACRO subroutine to place
one word in the digital output register only uses 52
words. DEC's 'IDOR' routine and the necessary re-
lated routines use 3500 words. Thus, all real-time
routines were written from scratch.

9. Dividing program. The three data collection
programs were originally designed as a whole but
later divided to save 22K words. Everything that
could possibly be calculated before collecting the
data was put into a preliminary program, and every-
thing that could wait until the data collection was
complete was put into a followup program. These
programs are chained to one another automatically in
order to be transparent to the user.

10. Adding variables. This apparent contradic-
tion actually works rather well. When a number is
calculated more than once, it is generally cheaper -
both in terms of number of words and execution speed
- to assign it a variable name than to recalculate
it even once. Even neatly coded programs became
smaller by adding variables.

11. Using only one data file. This software
can run up to five subjects simultaneously. The
most direct and logical approach would be to write
one data file for each subject. However, this re-
quires a fair amount of memory. Using only one data
file saved 1000 words of FORTRAN buffer space.

2. Execution Speed

As with many real-time applications, fast tim-
ing is critical. The timing between a subject's
response and the delivery of reinforcement is the
most important - it must appear instantaneous to the
subject. A 200-ms delay can be seen easily, and
many subjects can detect a 100-ms delay; therefore,
a 50-ms delay was considered the maximum allowed,
and a 30-ms delay was preferred.

The computer must perform a lot of calculations
and make many decisions during that time. A few
milliseconds here and there can make a substantial
difference, so even minor changes that would save
only a few milliseconds were made. Using all of the
following techniques resulted in a response process-
ing time of 28 ms.

1. Inline code. FORTRAN inline code executed
about 15% faster than threaded code.

2. Common blocks. Passing data to subroutines
through FORTRAN common blocks is much more efficient

52

than using an argument list.

3. Delay in writing data to file. Finding time
to write the data to the data file was a real prob-
lem. Writing data to RLO1 disks is very slow (writ-
ing two words of unformatted data took 11 ms).
Writing the data to a data file in virtual memory
using the VM handler improved the speed somewhat (7
ms), but still was not fast enough. The solution
used was to place data first in a virtual array,
which is done very quickly. Then when timing was
less critical, write it to the disk data file.

4. Double-buffer data file. This allows
to be written to one portion of the data file while
another portion is being physically written to disk.
Timing is not affected until writing the last word
of the data buffer; then a difference is detectable.

5. Real-time printing. Data is printed during
less time-critical sections of the program. Print-
ing on a VI52 terminal takes approximately 1.2 ms
per character, which adds up to 84 ms for a 70-char-
acter line. This is obviously too slow for time-
critical portions of code. The VT100 terminal, in-
cidentally, was considerably slower.

6. Calculations done early. A preliminary
program performed all calculations that could be
made before the actual data collection started.

7. Floating point processor. A floating point
processor was purchased to improve execution speed.

8. Cache memory. Purchasing cache memory was
considered as a means of improving execution speed.
This software executed about 15% faster with cache

data

memory. While this is a significant amount, the im-
provement in execution time did not warrant its
purchase.

9. Streamline code. There is often a more ef-

ficient way of coding a program even when it was
done carefully in the first place. This becomes
more significant if many changes have been made to
the software since its origination. Taking the time
to rewrite sections of code were well worth the
effort. Many "trivial" changes resulted in greater
improvements in speed than anticipated.

3. Incorporating Multiple Subjects

A prototype of this software was written for
one subject, but expanded software to handle up to
five subjects running the same schedule simultane-
ously was required. The following solutions were
considered.

1. One computer per subject. This is very de-
sirable from the software standpoint, but too expen-
sive.

2. DEC's Laboratory Peripheral Accelerator
(LPA). This device performs real-time I/0 very
quickly when running RSX-11M. Unfortunately, it

does not hand the information back to the program
until its buffer is full. This was unacceptable,
because the program needs the response information
immediately to act upon it.

3. RSX-11M independent tasks. This provides
one program for each subject. The data collection
program is so large that there would be room for
only three or four subjects rather than the more de-
sirable five. The main problem here is timing. The
RSX shuffler, at its fastest, swaps tasks out at
every clock tick (16.7 ms). Therefore, with three
tasks running, it could take 33.4 ms before the
required task was swapped in, 16.7 ms to execute,
33.4 ms while the other two tasks execute, then 10
ms or so to finish processing. This total of 93.5
ms is much longer than the 50 ms allowed to process
a response. Swapping at every 2 or 3 clock ticks

St
i

s

i
i

L

o
o

Sl BEE

qi

il

e

otentas

ARTIFICIAL INTELLIGENCE

What It Is, Where It Has Been, And \Xhere It Is Going

By Terry C. Shannon
THE DEC* PROFESSIONAL Magazine
Springhouse, PA 19477

ABSTRACT

It seems as if artificial intelligence, expert systems and the Fifth
Generation bave replaced “user-friendly” as the computer buzzwords
of choice. Suddenly, everyone knows that Al is becoming a reality,
expert systems are commercially viable and the Fifth Generation is
Just around the corner. Articles touting various aspects and applica-
tions of Al technology are appearing with increasing frequency in
mainstream and trade publications, but many of these articles are
of little value to individuals who lack a background in Al This paper
serves as a novice level introduction to man’s past, present and futiure
endeavors to make machines exbibit intelligent bebavior:

Artificial intelligence, the science of making machines mimic
intelligent human behavior, has been the subject of dreams,
speculation, and prophecy since ancient times. From the talking
statues of Greek mythology and the intricate clockwork automata
of the 18th century through today’s chess-playing programs, ex-
pert systems and supercomputers, man has utilized the resources
at his disposal in a continuing effort to create machines in his own
image.

It's unlikely that we will ever produce a machine that can
faithfully emulate every aspect of our humanity, much less pro-
cess information as efficiently as our minds. However, develop-
ments in the past several years bear testimony to the fact that we
are on the verge of developing computers that are capable of
mimicking some of our higher thought processes. Artificial intel-
ligence has become a reality, and machines designed to implement
it efficiently are just over the horizon.

A BRIEF HISTORY OF Al

Increased research and development efforts have placed the
state of the art in Al technology in a constant state of flux. Perhaps
the best understanding of where Al is today and where it will be
in the future can be gained by first approaching the subject from
a historical perspective. Computer-based artificial intelligence has
been around for roughly 30 years. In this relatively short timespan
the subdiscipline of computer science known as Al has had a career
fraught with claims, promises, and failures. However, the concept
of Al predates its implementation on the digital computer. As long
ago as the first century BC, Hero of Alexandria reputedly designed
birds that could fly and sing. The mythology of the Greeks and
their talking statues is legion, as are the stories of the talking bronze
heads owned by medieval theologians and philosophers. Some of
these legends are obscure, others have been well documented.

A well known example of man’s ageless effort to create ar-
tifacts in his own image is the golem. The word “golem” is deriv-
ed from Talmudic writings and refers to an unformed or incomplete
entity which can be brought to life through a solemn rite. The
most famous of the golems is attributable to Rabbi Loew, a fifteenth-
century theologian in Prague. Loew’s golem was an eight-foot-tall
automaton fashioned from clay taken from a nearby riverbank by
the rabbi and his assistants. After the rabbi affixed the Hebrew
Name of God to the golem’s forehead and subjected it to the ap-

Proceedings of the Digital Equipment Computer Users Society

propriate incantations, the artificial man came to life and went
about such tasks as performing custodial duties in the temple,
patrolling the streets of Prague, and spying on potential evildoers
during this period of anti-Semitism. It’s uncertain why, but Joseph
Golem’s career was subsequently cut short by some creative de-
programming on the part of Rabbi Loew.

Somewhat later, elaborate clockwork automata became the
rage in Europe. In the early 1700’s, a craftsman named Vaucan-
son fashioned an artificial duck which imitated many of the func-
tions of a real waterfowl. These efforts were not limited to repro-
ductions of lower animals, as evidenced by the watchmakers and
artisans who constructed human figures that could play musical
instruments, move in a fashion, and perform even more sophisti-
cated functions. In 1805, a Frenchman named Henri Maillardet
built an automaton that could write and draw pictures. A series
of rods and cams served as the read-only memory that permitted
the machine’s articulated arm to produce incredibly complex draw-
ings. “The Draftsman,” an automaton representative of this era,
is permanently displayed at Philadelphia’s Franklin Institute. Beside
the figure is an example of its drawing prowess—a three-masted
sailing ship. Although this automaton can’'t mimic thought pro-
cesses, it does exhibit an almost human degree of artistic skill.

Having embodied their creations with simulated motor skills,
craftsmen next turned to fraudent emulations of human thought.
The best known of these creations was Baron von Kempelen's
chess-playing Turk, a robot decked out in robes and a turban which
sat behind a wooden cabinet and played world-class chess. Osten-
sibly, the cabinet contained the clockwork mechanism which en-
abled the mannequin to plan its strategy and move the appropriate
chess pieces. The fact of the matter is that 2 human accomplice
hid beneath the Turk’s chess table and called the shots. The Turk
was celebrated throughout Europe, reputedly besting Napoleon
in an 1809 chess match—proving that a well-planned, elaborate
hoax can dupe just about anyone. The Turk’s career was brought
to an abrupt end when, in the middle of a world tour, it was
checkmated by a Philadelphia hotel fire. History does not record
whether the Turk’s accomplice shared this untimely demise.

Finally, the carly nineteenth century produced a classic novel,
written by a fourteen year old girl, that has a thread of Al woven
throughout its structure. The name Mary Shelley may not mean
anything to you, but chances are you've read her book, or at least
have seen the movie of the same name: Frankenstein. In this novel,

based on a story originally told around a campfire, Shelley recounts
scientist Victor Frankenstein’s efforts to create a living “man,” and
the irony of his success: Creating a being is one thing, controlling
it, quite another. Shelley obviously had read the golem legends,
for Frankenstein’s creation was eight feet tall and subject to the
same intractability as the Talmudic automatons. Subsequent books,
plays and motion pictures bear proof that the creation of a human-
like artifact is a recurring theme.

Modern Times: The Dartmouth Conference

From a twentieth century viewpoint, Al as we know it today
had its beginnings at the Dartmouth Conference in Hanover, New
Hampshire. Officially called the Dartmouth Summer Research Pro-
ject on Artificial Intelligence, this 1956 conference brought together
a handful of research scientists who were exploring ways to make
computers behave intelligently. Included in this group of scien-
tists were such Al notables as John NcCarthy, Marvin Minsky, and
IBM’s Claude Shannon.

Among the research projects spawned at Dartmouth during
the summer of 1956 were efforts to construct a system of artificial
neurons that would function like the human mind, build a robot
that could learn about its own environment, and build a working
model of the brain’s visual cortex. These proposals certainly
sounded bizarre — after all, in 1956, machine intelligence was the
stuff of science fiction.

In the heady days subsequent to the conference, researchers
began to make even more impressive and exorbitant claims for
their new science. It was just a year later that conference partici-
pants Allen Newell and Herbert Simon issued the prediction that,
within ten years, a computer would be the world’s chess champ-
ion, would be capable of composing aesthetically pleasing music,
and would derive the theorems of the Principia Mathematica.

Needless to say, history proved these prognostications to be
somewhat premature. AI became cloaked in a pall of skepticism
and its practitioners were referred to as hucksters, charlatans, and
worse. Interest in the field waned and was confined mainly to grad-
uate students majoring in cognitive psychology, and to research-
ers at institutions like Stanford, MIT, and Carnegie-Mellon
University.

This “Dark Ages” period of artificial intelligence elicited a
barrage of anti-Al journalism and oratory. Perhaps the most dis-
tinguished opponent of Al is Hubert Dreyfus, who gained initial
prominence during this era of broken promises and unfulfilled
predictions. Author of such essays as “What Computers Can’t Do”,
Dreyfus appears to take great delight in exposing alleged Al fraud
and poking fun at the science in general. While Dreyfus evidently
enjoys subjecting Al to ridicule, and undoubtedly has gloated over
the less than meteoric rise in the science, it will be interesting to
see who laughs last.

Even though there was more style than substance to early
efforts efforts in Al research in this “black art” led to some tech-
nological spinoffs that are used in the computers available today,
dumb or otherwise. Al programmers were responsible for the first
timesharing systems, which they developed in 1960 or so on a
DEC PDP-1 for the admittedly self-serving purpose of obtaining
computer time, a precious commodity in those days before VAX.
Computer graphics also had its origin in Al research: Al program-
mers wanted the ability to create pictorial representations of their
abstract concepts, so they invented the first crude graphics pack-
ages. Later, screens with pull-down menus and other features used
today on several popular microcomputers were developed by Al
researchers.

Other Al developments took place during this timeframe as
well. John McCarthy’s 1957-vintage LISP programming language
was improved and cloned in a variety of dialects. The efforts of
Simon and Newell to produce a general problem solver program
were not entirely unsuccessful. And ongoing efforts by numerous

56

researchers led to programs that were capable of playing checkers
and chess by mimicking the strategies that people use to play these
games. While these pioneers failed in their efforts to produce a
truly intelligent computer, they left an indelible imprint on com-
puter technology.

Al Defined

As of yet, no concrete definition of machine or artificial in-
telligence is generally accepted. There are probably as many defini-
tions of artificial intelligence as there are Al researchers, including
the cynical exclusionary definition, “If it works, then it isn’t AL”
And it’s certain that Al gets redefined each time a new book on
the topic graces the shelves of your local bookstore. Considering
that we are still unable to precisely define human intelligence, being
unable to get a handle on Al should come as no surprise.

One of the better Al definitions is attributable to Nils J. Nilsson,
a prominent researcher at SRI International in Menlo Park, Cali-
fornia. According to Nilsson:

The field of Artificial Intelligence bas as its main tenet that
there are indeed common processes that underlie thinking and
perceiving, and furthermore that these processes can be under-
stood and studied scientifically. . . . In addition, it is complete-
ly unimportant to the theory of Artificial Intelligence WHO is
doing the thinking or perceiving—man or computer. This is an
implementation detail.

This is an interesting, thought-provoking definition that ex-
plains some of the philosophy behind AI. However, I find my own
definition to be equally useful and a bit more digestable:

Artificial Intelligence is the science of creating machines that
emulate the buman mind.

Can A Machine Think?

Machine intelligence is hard to quantify. Just when does a
machine become ”intelligent”’? Back in the 1950’s, a mathemati-
cian named Alan Turing attempted just such a quantification by
developing the Turing Test. Turing postulated that a computer could
be deemed intelligent if it was capable of engaging in a logical,
coherent two-way conversation (albeit on a terminal) with a
human, providing the human was unaware that he or she was con-
versing with a machine. Although the Turing Test is an interesting
concept that has prompted numerous philosophical debates, it is
not a valid benchmark for determining machine intelligence.

Many programs that pass the Turing Test are available today.
The most publicized example is ELIZA, a program that simulates
a Rogerian client-centered psychotherapist. This “silicon
psychiatrist” was developed in the late 1960’s by Joseph Weizen-
baum. ELIZA was appropriately named after Pygmalion’s Eliza
Doolittle. Like the character in the play, ELIZA was taught to speak
what seemed to be fluent English. Though this program passes
the Turing Test, it is by no means intelligent. ELIZA works by
elementary pattern matching—it picks up keywords and parrots
stock answers to them. In fact, one of Weizenbaum’s motives in
writing ELIZA was to prove that true natural language understand-
ing by a machine was out of the question. No doubt Weizenbaum
was disgusted when several psychologists proposed using ELIZA
as a screening mechanism for their own clients.

The ELIZA program reinforces the fact that a computer does
not and can not “think” in the same fashion that you and I do.
Computers are incapable of original thinking or emotion, and they
certainly don’t possess human nature - there is no soul or sen-
tience in silicon. For the time being at any rate, we don’t have
to worry about the possibility of a silicon-based intelligence com-
peting with our carbon-based minds. The concept of computers,
intelligent or otherwise, gaining control of mankind went out of
fashion long ago. None of the recent developments in Al lend

credence to the robotic revolt in Karel Capek’s play, “R.UR” or
to science fiction novels of the “computer takes over world” genre.

However, computer programs that draw on the collective
wisdom of numerous talented individuals are available and in use
now. Because such programs concentrate the expertise of many
talented people on the solution of a single problem, they can be
considered to be “smarter than a person.” Appropriately enough,
these programs are called “expert systems’. At the present time,
expert systems represent the most practical and profitable real
world application of Al technology, and therefore warrant a closer
look.

THE BLOSSOMING OF EXPERT SYSTEMS

While journalists herald Japan’s endeavors to give birth to the
so-called Fifth Generation of intelligent computers, we are put-
ting artificial intelligence to work right now in real-world applica-
tions. Today, there are a growing number of “expert systems’—
intelligent assistants—working in concert with human experts on
such diverse tasks as VAX system tuning and configuration,
geological exploration, medical diagnosis and mass spectrographic
analysis. These expert systems bear names like XCON, DENDRAL,
PROSPECTOR and CADUCEUS. Despite their unusual names, these
programs should not be taken lightly: They perform at the level
of human experts, drawing upon pools of knowledge painstak-
ingly extracted from numerous VAX system specialists, chemists,
geologists and doctors.

The development of expert systems is a result of some of the
lessons learned by researchers during the period that Al was regard-
ed as a hoax by mainstream computer scientists. Among the
discoveries made in the Al and cognitive psychology labs were
the facts that not only does intelligence require knowledge, but
that the acquisition and application of knowledge form the basis
of intelligent behavior.

This led to the realization that a general purpose problem solv-
ing program would have to contain vast amounts of knowledge
about an incredible variety of topics. Because no existing com-
puter could store, much less process, this volume of information,
the approach to artificial intelligence shifted from a quest for a
generic problem solver to efforts to develop specialized programs
capable of performing intelligently in specific domains. These pro-
grams were the precursors of today’s expert systems.

The Anatomy Of An Expert System

Also referred to as a knowledge based system, an expert
system is a computer program, usually written in an esoteric
language like LISP, OPS or PROLOG, that can perform at the level
of a human expert by mimicking the activities that 2 human ex-
pert would undertake in the resolution of a problem. Expert
systems archive human knowledge and permit a collective pool
of wisdom and expertise to be applied to problems for which there
are no clear-cut yes-or-no answers.

Expert systems have two main components—a knowledge
base and an inference engine. The knowledge base is the pool of
information that the expert system can draw from. The inference
engine contains the heuristics, or rules of thumb, that help deter-
mine which pieces of information the expert system will draw
from the knowledge base to resolve a problem. These components
are accessed through an I/O subsystem called a “front end” or “user
interface.”” The /O subsystem generally has a natural language in-
terpreter, allowing you to communicate with the expert system
on a conversational basis. This imparts an aura of intelligence or
friendliness to the expert system, but it isn’t where the intellect
resides.

What makes an expert system possible, and makes it emulate
human thought processes, is the fact that knowledge can be ex-

57

pressed as rules. Although you may have never stopped to think
about it, we store knowledge as rules. Consider the weather—IF
it is raining, THEN put on a raincoat before you go out. An ex-
pert system works the same way, using its inference engine to
evaluate the information that is stored as IFTHEN constructs in
its knowledge base.

The Knowledge Base: Codified Expertise

The knowledge base component of an expert system may be
likened to a data base that reflects the thoughts and procedures
of the best people in a given field. Because of the prodigious
storage capacity of modern computers, a given expert system can
embrace the decision making methods of hundreds of human ex-
perts. This IFFTHEN codification of expertise is analogous to the
experience base that we humans accumulate and store as
memories. Like memories, the elements or rules in a knowledge
base must be defined or “experienced,” then recorded and catalog-
ed. It is the job of computer scientists known as knowledge
engineers to coax this kind of information from human experts,
code the information into sophisticated expert systems, and put
the programs to work performing tasks that normally require
human expertise.

Building The Knowledge Base

Extracting human knowledge is not a simple undertaking—
in many cases, we perform tasks intuitively or heuristically and
can’t easily explain to someone else how we arrive at decisions.
You can prove this to yourself by attempting to describe your job
and the exact manner in which you carry it out in such detail
that your description could be converted into a computer program.

In addition to being adept at extracting knowledge from peo-
ple, a knowledge engineer must also know what specific kernels
of information are germane to the expert system that he or she
is building. This isn’'t as easy as it might seem, because almost
everything we humans do involves a wealth of background infor-
mation and presupposed knowledge. For instance, if you wanted
to build an expert system that could cook an omlette, you would
first have to teach it how to break eggs. Not only is breaking an
egg something that we take for granted, it isn’t the sort of activity
that’s conducive to being expressed as a series of rules.

This example underscores a statement by Arnold Kraft, an ar-
tificial intelligence specialist with Digital Equipment Corporation.
According to Kraft, “one of the main obstacles to the implemen-
tation of expert systems is putting knowledge into a box.” The
egg-breaking problem is but a simplistic example of the challenge
faced by knowledge engineers.

Educated Guesswork

Expert systems mimic humans in another regard: when con-
fronted with a problem that contains ambiguities, an expert system
program uses heuristics, or rules of thumb, to attempt to resolve
the problem. We use this same form of judgment based on ex-
perience to resolve problems for which we don't have stock,
predefined answers—only we refer to the process as making an
“educated guess.” The outcome of heuristics is the same for both
man and machine: Such guesswork usually achieves the desired
results, but does not guarantee them.

Heuristics are applied to a knowledge base through the other
main component of an expert system, the inference engine. It is
the inference engine that’s responsible for the actual problem solv-
ing that takes place in an expert system. Using heuristics, it deter-
mines which rules or IFTHEN constructs will be evaluated dur-
ing problem resolution. Inference engines utilize one or both of
two general strategies to resolve a problem. These strategies, or
lines of reasoning, are called forward and backward chaining.

Forward chaining works on the principle of “given these facts,
what will happen?” Determining the outcome of a football game
based on the score late in the fourth quarter is a good example
of forward chaining, or working from facts to conclusions. A for-
ward chaining inference engine rummages through the knowledge
base of the expert system, testing all of the available rules again
and again and adding new facts until no rule applies. In the case
of the football game, an inference engine would likely conclude—
with a high degree of probability—that the team with the highest
score in the fourth quarter would ultimately win the game.

Backward chaining relys on an opposite principle—‘given this
fact, what events led up to it?” In this strategy, the inference engine
is confronted with an unsubstantiated theory which it must at-
tempt to prove. This strategy is based on finding the rules within
the knowledge base which support the theory, and then verify-
ing the facts which enable the rules to work.

CADUCEUS, a medical expert system, uses a backward chain-
ing inference engine to diagnose illnesses. When CADUCEUS is
supplied with a set of symptoms, it will backchain and associate
these symptoms with what it knows about diseases. Ultimately,
the program will deliver its diagnosis of the disease in question
based on the symptoms it was supplied with. Thus, a backward
chaining inference strategy is diagnostic, while a forward chain-
ing strategy is predictive.

Heuristic Search Limitation

The need for an inference engine or a specific problem solv-
ing strategy is based on a phenomena known as the “combinatorial
explosion.”” This combinatorial explosion must be contained by
a search strategy that limits the expert system’s evaluation of rules
to those rules which are appropriate for a given problem or
situation.

For example, there are expert systems that play champion-
ship chess. In order to do so, these expert systems must limit their
search for moves—there are more possible moves in a chess game
than there are atoms in the universe. An example of a heuristic
used in chess by human chess masters and computer programs
alike is “‘try to control the center of the board.” Through the use
of a forward chaining inference engine and heuristic search, an
expert chess system is able to limit its search to a small portion
of its knowledge base—those moves that would be considered
feasible at any given point of a chess game.

You can better understand the significance of a heuristic search
strategy if you consider the way people use heuristics to make
decisions every day. Life involves dealing with problems on a con-
stant basis. Few of these problems are insoluble, and most are dealt
with on a subconscious level. However, all of these problems would
be insurmountable without heuristic search. A brute-force approach
to problem resolution would require you to examine all of the
information in your mind each time you had to make even the
most trivial decision. Considering the vast amount of data stored
in the human brain, one such brute-force solution would take an
eternity. Fortunately, through rules of thumb or heuristics, we can
limit our searches and arrive at optimal answers almost
instantaneously.

Supply And Demand

One of most significant problems with Al in general and ex-
pert systems in particular is based on the law of supply and de-
mand. The “Dark Ages” of Al caused a rapid decline of interest
in the field, and a consequently diminished Al research and de-
velopment effort. Expert systems have proven that Al works and
have brought the discipline back out of the closet and the cognitive
psychology labs. Now that Al has regained a mantle of respec-
tability, just about everyone wants it. However, knowledge

58

engineers and people with doctorates in Al are scarce—and
expensive—commodities.

The expert system toolkit has been touted as a short term
solution to the paucity of experienced knowledge engineers.
Toolkits are software packages which allow average programmers
to develop limited expert systems without the assistance of Al
specialists. These application development tools are available for
a broad spectrum of computer hardware, from microcomputer to
mainframe. They are sometimes referred to as expert system
“shells”, for they are essentially inference engines supplied with
a knowledge base framework that must be filled with data or rules
by the end user. Shells or toolkits cannot replace knowledge
engineers, but they do increase the availability of expert systems
and allow programmers without LISP, OPS or PROLOG experience
to use Al techniques.

The ES/P Advisor is a representative expert system shell.
Developed by Expert Systems International, a firm that specializes
in business applications of Al this tool runs on a number of
popular microcomputers and is used primarily for “text anima-
tion”. In this scheme, a consultation shell is used to access and
interact with a user-definable knowledge base, which is typically
a complex document. The Advisor is presently used for such ap-
plications as interpreting tax regulations and guiding clerical per-
sonnel through activities like issuing mortgages. Both of these ap-
plications normally require a deep familiarity with complex pro-
cedures which have their basis in legal and financial documents.

General Research markets TIMM, The Intelligent Machine
Model, an expert system generator that has been used to build an
intelligent VAX tuner. While TIMM/Tuner it can’t equal the per-
formance of a VMS wizard equipped with VAX SPM and plenty
of time, it does a remarkably good job adjusting SYSGEN param-
eters and offering advice—including the familiar DEC sales litany,
“buy more memory.”

A number of other companies offer expert system toolkits,
and more are presently under development for micro, mini and
mainframe implementations. Representatives from DEC’s Al
technology center in Hudson won't say much, but it’s likelythat
DEC will offer an toolkit of its own in the near future.

To Err Isn’t Just Human

Even though Al owes most of the credit for its resurgence
to the increasing viability of expert systems, these programs are
far from perfect. Today’s expert systems function only in very nar-
rowly defined problem contexts, or domains. Despite the inroads
being made in the microcomputer arena, expert systems are typi-
cally large, memory-intensive programs that work best on a main-
frame or supercomputer.

Creating a program that has the ability to solve problems and
combining this program with a knowledge base of accumulated
experience and data is an important achievement, but expert
systems are far from perfect. An expert system lacks the human
quality of spontaneous insight, and it can not acquire or create
new knowledge. You can’t get more information out of an expert
system than you put in in the first place. Finally, expert systems
can and do make mistakes—just as human experts do.

NATURAL LANGUAGE UNDERSTANDING

Natural language understanding remains a thorny problem in
the domain of expert systems and Al. While great strides have been
made in voice recognition technology, true natural language
understanding remains an elusive goal. Many attempts have been
made towards natural language understanding with less than
satisfactory results. In fact, some of the earliest efforts in Al in-
volved automatic language translation programs. These efforts were
doomed to failure because computers couldn’t apply the correct

meaning of an ambiguous word within a given context. That is
to say, when confronted with a common nursery rhyme, the com-
puter couldn’t tell whether Mary gave birth to, owned, had sex
with, or ate the little lamb.

The stumbling blocks to natural language understanding are
related to the way we humans use and process language as op-
posed to the way that computers communicate. All computer
languages ultimately boil down to binary machine code, while we
communicate with each other symbolically. This creates a signifi-
cant communication gap between people and computers.

Computers can be programmed to understand or “parse”
sentences by analyzing nouns and verbs, but they have a difficult
time with adjectives, metaphors and commonly used expressions.
The development of parsers capable of dealing with slang and con-
text will not be an easy undertaking. Consider the phrase “Bank
Failure Rocks Wall Street.” A computer would likely interpret this
phrase as being indicative of an earthquake in Manhattan. Or the
often recounted English to Russian translation of “the spirit is will-
ing but the flesh is weak.” An early automatic language transla-
tion program interpreted this phrase as “the vodka is good but
the meat is rotten.”

We also have a unique ability to filter noise. How many times
have you been at a party with several dozen other people, all of
whom are conducting conversations simultaneously, when you
suddenly hear someone mention your name? In this situation, you
can focus your attention on that specific conversation by filtering
out the “clutter” of the other, concurrent, conversations.

Another thing that we can do better than computers is fill
in the blanks. Many of our day-to-day conversations, particularly
with close friends, involve phrases and sentence fragments that
would appear cryptic and incomplete on paper, yet are perfectly
comprehensible when spoken. And we can often understand what
someone means to say even if we are listening to the other party
over a poor telephone connection. Finally, we are capable of
recognizing and processing continuous speech in real time—we
can instantaneously understand snetences we have never heard
before. As of now, no computer shares any of these capabilities
with us.

Progress is being made in the area of natural language
understanding, as evidenced by the availability of natural language
query programs which interface with database management
systems. INTELLECT, EASYTALK and THEMIS are well known VAX
implementations, and there’s even a natural language program
called Clout that runs on microcomputers. However, these pro-
grams can perform only elementary parsing on a limited
vocabulary. Much work still needs to be done before true natural
language understanding, the gateway to more efficient man-
machine interfaces, becomes an affordable commercial technique.

A MACHINE OF VISION

Significant advances in the the area of computer vision are
critical to the success of a number of Al application areas, including
robotics, CAD/CAM, autonomous vehicles, sensors, and knowledge
acquisition systems. At present, it can be stated that that computer
vision technology has a long way to go before machines can see
with any degree of clarity. A viable machine vision system awaits
developments in pattern recognition, edge detection, and scene
integration technology. These developments will be contingent on
the availability of advanced supercomputers, for an incredible
amount of processing power and speed is needed to implement
a vision system. Our own vision system requires a significant
percentage of our brain power, and when you consider that the
human mind has been described as being more powerful than a
network made up of all of the computers in the world, it’s clear
that a reasonable emulation of human sight remains a distant goal.

59

Efforts at Stanford University have produced a model vision
system called ACRONYM. This system has proven adept at aircraft
identification through the analysis of aerial photographs of air-
port runways. The ACRONYM system contains a2 knowledge base
of representative objects which it compares with photographic
images. An edge mapper extracts lines and curves from the photo-
graph while a stereo mapper obtains information on surfaces. This
information is integrated and interpreted by searching and mat-
ching subsystems. Although intended to be a general purpose vi-
sion system, ACRONYM does a less than satisfactory job of feature
extraction, and is incapable of analyzing scenes which contain
numerous discrete objects.

The magnitude of the machine vision task is underscored by
another Stanford project, the autonomous “golf cart” designed by
researcher Hans Moravec. This vehicle is capable of moving at three
to five meters per hour in one-meter increments through the use
of an on-board vision processing system. Each movement is the
result of a single image analysis conducted by a one MIP com-
puter. To speed up Moravec’s cart to even a slow walking pace
of one meter per second would require a processing speed of one
to 10 billion instructions per second. These speeds are unattainable
today, but the next generation of computer hardware will make
projects far more ambitious than Moravec’s vehicle technically
feasible.

THE FIFTH GENERATION

The first four generations of computer technology have lasted
roughly ten years apiece. The passing of each generation has been
marked by technological refinements to an existing concept. Com-
puters have gotten smaller, cheaper and faster at a blinding pace—
the word processor or personal computer we take for granted to-
day would have been inconceivable little more than ten years ago.
Although the representatives of the fourth generation are no longer
icons of power and prestige, they remain a variation on a familiar
theme.

The advent of the next generation of computing will involve
more than technological change. It will redefine the concept of
computing and of computers themselves, for the machines of the
Fifth Generation will be knowledge information processors—
computers that will emulate human thought and cognition. Three
major criteria will distinguish the computers of the Fifth Genera-
tion from the Al hardware and software in use today—Computer
architecture, processing speed and the ability to manipulate sym-
bolic rather than numeric information.

Computer Architecture

Computers of the fourth generation, like the three preceding
hardware evolutions, are characterized by Von Neumann architec-
ture. This architectural concept has remained essentially unchanged
since the introduction of the fist digital computer. Machines of
this design are restricted by their inability to do more than one
thing at a time—data and instructions must be passed through a
single link or bus to the central memory. This so-called Von
Neumann bottleneck is the limiting factor in computer perfor-
mance today.

Attempts to bypass the Von Neumann bottleneck through the
use of networking have been unsuccessful. While numerous pro-
cessors can be linked together in a network, a single program can-
not be effectively broken down into subroutines which are assigned
to individual nodes. Each subroutine call, return or addressing
operation would of necessity require data transfer between nodes.
This approach to processing would be inefficient at best—more
time would be spent on internode communication than actual in-
formation processing.

Pipelining

One technique employed by hardware designers to speed data
through the Von Neumann bottleneck is the pipeline. This method
is analogous to a factory assembly line in that a steady stream of
data is fed into a string of processor segments, each of which per-
forms a specialized function. Each segment executes one portion
of an instruction and then passes the instruction along to the next
segment in the processor. While one segment is executing an in-
struction, another can fetch a second instruction, a third segment
can obtain an operand address, and yet another segment can be
decoding a fourth instruction. Through the use of pipelined pro-
cessing, a steady stream of data can be input to the computer as
if by conveyor belt, keeping each processor segment in almost con-
stant use. Not only is this technique used in supercomputers like
the processors available from Cray and Hitachi, it’s responsible for
a good deal of the increased speed of DEC’s VAX 8600.

While pipelining yields impressive gains in processor perfor-
mance, a computer employing this architecture is still a serial Von
Neumann machine. As such, it’s still subject to the constraints of
the processor-memory link. At this point in time, we are nearing
the theoretical limits of Von Neumann processor performance. One
short term solution is the gallium arsenide VLSI chip, which is
significantly faster than today’s silicon chips. However, the poten-
tial speed advantage of a gallium arsenide chip might be in the
vicinity of ten to one, certainly not one or more orders of
magnitude. The Josephson junction and superconductivity are also
hailed as multipliers of processing power, but the most we can
reasonably expect to gain from this technology is a geometric in-
crease in processing speed. To obtain the performance necessary
for Fifth Generation computers, we will have to develop and im-
plement radically new machine architectures that yield exponen-
tial increases in computing power and speed.

Towards A New Architecture

The most promising answer to the Von Neumann bottleneck
is embodied in dataflow and parallel processing technology. A
dataflow processor has multiple CPUs that are tightly coupled and
connected by circular pipelines through which data is transferred
at a high rate of speed. Where a network might allocate individual
programs or tasks to different nodes, a dataflow processor assigns
packets of machine language instructions that make up a given
program to individual CPUs.

Parallel processors take this concept a step further. The CPUs
of a dataflow processor are connected serially by a simple ring
topology. The CPUs of a parallel processor will not be constrained
by this simplistic networking scheme. Each CPU will be able to
communicate with a group of CPUs instead of just the processors
adjacent to it. Once a program is broken down into its smallest
discrete elements, this information will flow through the parallel
processor much in the fashion that water flows when poured over
the roots of a plant.

Each data element will be free to seek an available processor
by following the path of least resistance. If a specific processor
is already “busy,” the data packet will seek out the nearest available
alternative CPU rather than wait for the attention of the processor
that’s already occupied. This arrangement will permit each CPU
chip in a parallel processor to devote itself to a specific aspect of
a problem and work in concert, rather than in contention, with
all of the other chips. Conceptually, this is very similar to the way
work is done by colonies of social insects, the denizens of a beehive
or anthill, for instance. It is also similar to the way that we humans
think.

One of the obstacles to achieving processing simultaneity in
a parallel processing environment is our present inability to effi-
ciently decompose a program into the discrete segments which
will be assigned to the individual CPUs in a parallel processor. Con-

60

tinuing research and development efforts in the area of relational
databases should resolve this problem. Once this database soft-
ware is perfected, it should be possible to engineer and write a
parallel processing operating system that will regard a program as
a relational database. The operating system would decompose the
program into segments which would in turn be addressed and
manipulated as discrete members of the database.

True “Non-Von” dataflow and parallel processors are largely
experimental, but the concept of levering multiple CPUs against
a single problem is viable today. The incredible speed of the $17.6
million dollar Cray-2 supercomputer is attributable to its four-
processor architecture, and Cray Research is already developing
a still faster and more powerful supercomputer, the 16-processor
Cray-3. And next-generation prototypes abound: The Lawrence
Livermore Laboratory has developed a 16-processor nonVon
Neumann computer and engineers in Manchester, England are
designing a dataflow computer with 256 processors. Columbia
University and MIT are developing parallel processors with as many
as one million individual CPU chips, and the Japanese have voiced
similar goals for their Fifth Generation project.

Processing Speed

Processing speed will make a quantum leap in Fifth Genera-
tion computers. These machines will manipulate data at such
blistering speeds that the supercomputers of today, like the Cray
X-MP and the CDC CYBER, will be snail-like in comparison. Fourth
Generation supercomputers typically have processing speeds on
the order of 100 MIPS, or millions of instructions per second. It
is expected that the processing speed of Fifth Generation machines
will be measured in BIPS—billions of instructions per second. In
fact, Hitachi’s latest supercomputer reportedly has attained speeds
in excess of one gigaflop, or one billion floating-point instructions
per second.

Symbolic Data Manipulation

Machine instructions per seconds will be replaced with a new unit
measure of speed—LIPS, or logical inferences per second. Crucial
to the LIPS concept is the manipulation of symbols instead of
numbers. Languages like LISP and OPS are designed to manipulate
symbols, often represented within IF-THEN constructs, instead of
raw arithmetic data. Each execution of an IFTHEN construct or
production represents one logical inference. Because both the IF
(left hand side) and the THEN (right hand side) of a production
can contain many elements, a logical inference requires more
machine power to execute than a machine language statement like
ADD A TO B. Each logical inference requires anywhere from 100
to 1000 traditional machine instructions. Therefore, processing
speed will have to make a quantum leap before we see a com-
puter benchmarked as a one million LIPs machine. This is but one
of the objectives of the architects of the Fifth Generation both
here and abroad.

FIFTH GENERATION PROJECTS

The race to create superspeed computers and processors
which exhibit the humanlike qualities of inference and decision-
making has come to be called the Fifth Generation. Efforts are
being made throughout the world to design and implement the
hardware, software and technology of a new class of machinery
that will represent the Knowledge Age. There is no doubt that
a de facto Fifth Generation standard will emerge at some point
in the near future. The question that still remains unanswered is
who will develop this standard and wield its inherent powers.
Although we invented and developed the digital computer and
artificial intelligence technology, a very determined Japan is poised

to become Number One in the knowledge business. The actions
we take or fail to take in the next few years are likely to be crucial
to the outcome of the race for computer supremacy.

The Japanese Effort

In April of 1982, the Japanese Ministry of International Trade
and Industry launched a 10-year crash program called Fifth Genera-
tion Computer Systems. Implementation of the FGCS plan began
with the establishment of Institute for New Computer Generation
Technology (ICOT). ICOT is a collaborative effort involving eight
of Japan’s major electronics manufacturers which encompasses
some 24 individual projects. These projects have as their com-
mon goal the development of an intelligent Fifth Generation com-
puter with a natural language interface.

The seeds of the FGCS program were planted in the late seven-
ties when Japan’s Ministry of International Trade and Industry
(MITT) organized a research team headed by computer scientist
Kazuhiro Fuchi to draw up a master plan for the development of
an entirely new class of data processing machinery. The result of
this effort was a preliminary plan to design, engineer and build
an ultrapowerful data processing machine that could reason like
a human being. It was only fitting that a computer of such revolu-
tionary design be given a name to distinguish it from its lesser
cousins, so the Japanese decided to call their new machines
“knowledge information processors,” or KIPs.

The design specifications for this new class of computer are
impressive. By the early 1990s, Fuchi’s team expects to have an
operational KIP with the ability to process a 1,000-gigabyte
knowledge base at the speed of one billion LIPS. The user inter-
face will consist of a natural language front end with a 10,000
word vocabulary, and a continuous speech recognition system that
can handle 50,000 words with 95 percent accuracy. Given the
complexity of the Japanese alphabet in comparison to our English
alphabet, developing the user interface alone will be an awesome
challenge. In addition to meeting the design criteria of speed and
“friendliness,” the KIP will have to be adept at image analysis and
processing, logical inference and independent knowledge
acquisition.

The Japanese intend to develop their KIPs by concentrating
on three research areas: enhancing relational databases to better
support knowledge based systems; personal sequential inference
(PSI) machines; and parallel inference systems. The PSI is crucial
to the two other research areas, for it is to be used as a develop-
ment tool for advanced knowledge based systems and massively
parallel hardware and software. In its first iteration, the PSI will
be a2 PROLOG Al workstation similar to our LISP machines. De-
signed to draw inferences from knowledge bases at 20,000 to
30,000 LIPS, the PSI will be enhanced to reach far greater speeds
as it plays the role of stepping stone in the quest for more power-
ful Al engines, including parallel relational database machines. The
first PSI implementation should be forthcoming shortly, for it is
based on technology available right now (the soon to be announced
VAX PC and an experimental 60,000 LIPS PROLOG board would
provide a satisfactory architectural environment for such a
machine.)

Japan is taking a dual-track approach to the Fifth Generation.
While FGCS labors to develop a knowledge information processor,
a lesser known research and development program to enhance
“traditional” computing is being conducted. Called the National
Superspeed Computer Project, the program is aimed at produc-
ing an ultrafast processor—a computer 1000 times faster than a
Cray—by 1988. Like the FGCS program, the NSCP involves multi-
ple vendors and government seed money. Japan’s six largest com-
puter manufacturers are participating in the project, and their ini-
tial efforts have been subsidized with 100 million dollars in startup
money. Spurring these efforts are the supercomputers recently

61

unveiled by two NSCP participants. While the Cray-like perfor-
mance of the new processors from Fujitsu and Hitachi is far short
of the NSCP goal, these machines represent the first serious
Japanese foray into the commercial supercomputing marketplace.

Japan has established lofty goals for its FGCS program, and
it’s unlikely that they will be fully realized by the early 1990s.
However, a careful analysis of the ICOT program and its objec-
tives does point out some significant, if not disquieting, facts. For
the first time, Japan is intent on creating a new technology, not
merely improving on existing concepts and methods. The research-
ers at ICOT and elsewhere plan to leapfrog the current state of
the art in hardware and software by adopting a strategy of inven-
tion instead of imitation. As Feigenbaum and McCorduck point
out in The Fifth Generation, Japan no longer intends to be a
copycat nation. Whether or not the vaunted Fifth Generation pro-
gram turns out to be a complete success, it doesn’t pay to
underestimate the Japanese: Twenty years ago, the word “Honda”
was synonymous with “50-CC motorbike.”

The American Response

The United States has not been oblivious to Japan’s attempts
to forge the Fifth Generation. Having seen the Japanese surpass
us in many aspects of computer hardware production, we are not
about to sit idly by while they achieve dominance in the software
industry as well. Our response includes an array of intensive Fifth
Generation research and development projects under the aegis of
the Federal government and the private sector.

The MCC

One element of our response is the Microelectronics and Com-
puter Technology Corporation or MCC. Based in Austin, Texas,
the MCC is a nonprofit cooperative joint venture that was forged
between a dozen major U.S. computer and electronics firms. At
least count, the number of participating firms has almost doubled.
The MCC is headed by retired admiral Bobby Inman, former direc-
tor of the supercomputer-intensive National Security Agency and
deputy director of the CIA. The consortium is staffed by staffed
by computer scientists, engineers and researchers “loaned” to the
corporation by their parent firms. The list of MCC participants
reads like a “Who's Who” of American computer and electronics
manufacturers. CDC, NCR, Motorola, 3M, RCA and Sperry are in-
volved, as is Digital Equipment Corporation.

Two noticeably absent companies are Cray Research and IBM.
Cray is apparently an independent-spirited company, and IBM is
evidently concerned over the potential of antitrust litigation.
However, no antitrust action has been instigated or threatened by
the Federal government. In December 1983, a Justice Department
ruling removed antitrust barriers to the MCC, indicating that it has
adopted a “wait and see” attitude about the consortium’s unique
collective approach to research and development.

The MCC participants are united by the common desire to
produce a state of the art Fifth Generation knowledge informa-
tion processor, an undertaking that would prohibitively expen-
sive if attempted on a solo basis. To achieve its goals, the MCC
is concentrating on research in four general areas—Microelectronics
packaging, advanced software technology, CAD/CAM and computer
architecture. Seed money for the MCC was generated by its
participants—each member joined the project by purchasing a
$500,000 share of stock. Ongoing research in each of the four
major MCC programs is subsidized by each firm involved in that
application area.

The SRC

Another acronym in the growing list of American Fifth
Generation ventures is the SRC, or Semiconductor Research Cor-
poration. The SRC is a cooperative effort launched by some 30
domestic semiconductor manufacturers and consumers as a hedge
against foreign competition. Among the participants in this ven-
ture are Burroughs, Control Data, DEC, Intel and IBM. Like the
MCC, this cooperative effort is funded by its participants. Con-
tributions are based on each firm’s integrated circuit revenues, and
range from a minimum of $60,000 to a2 maximum of 14 percent
of the SRC budget. Instead of conducting its own R&D programs
like the MCC, the SRC funds research efforts at colleges and univer-
sities, awarding grants much in the same fashion that the federal
government does.

Independent Efforts

While deeply involved in the collective efforts of the MCC,
many of America’s major computer manufacturers have ongoing
proprietary Al research and development programs. Texas In-
struments has an extensive internal program, as evidenced by its
Explorer Al workstation. AT&T has implemented projects in several
Al application areas, and numerous other firms are conducting
vigorous programs as well. Of particular note are the efforts of
our two largest computer manufacturers, IBM and Digital Equip-
ment Corporation.

IBM And AI

The number one mainframe manufacturer has maintained a
relatively low profile with respect to Al. As an industry leader,
what IBM fails to do is almost as important as what it does. In
fact, some experts say that government involvement in Al and new
machine architectures was spurred by IBM’s apparent reluctance
to make such a commitment on a corporate level. The firm’s only
announced commercial Al product to date is an expert system
called Epistle which reads your electronic mail and extracts and
summarizes the salient points of each message. An expert system
shell called PRISM is being readied for commercial introduction
at IBM’s Silicon Valley research center. Other products, including
a continuous speech recognition system, are being developed at
IBM’s Yorktown Heights research facility, but Big Blue is not
publicizing them.

Historically, IBM had an early start in Al In the early Fifties,
certain of its employees began writing programs that played chess
and checkers. Ever concerned with its corporate image, Big Blue
was aghast at the idea of machine thought and its Forbin Project
connotations, preferring to promote the computer as nothing more
than a dumb brute that would dutifully carry out repetitive in-
structions. So much for gameplaying in Armonk.

Although IBM portrayed its hardware as dumb but fast
numbercrunchers, its second-generation 36-bit mainframes, the 709
and 7090, were Al mainstays in the early 1960’s. However, 1964
ushered in the era of the System/360 family. These third genera-
tion processors featured 32-bit addressing, which didn’t sit well
with Al researchers. Twenty years ago, Al people were used to
36-bit architecture, which allowed them to store two 18-bit ad-
dresses in a single word. This characteristic wasn’t of any particular
value to the business community, so IBM replaced it with the “less
is more” System/360 architecture.

Digital Equipment Corporation

At the request of MIT’s Artificial Intelligence laboratory, DEC
came to the rescue with the PDP-6, a 36-bit “LISP engine”. One
of the design goals inherent in the PDP-6 was fast, efficient exe-
cution of LISP programs, and DEC succeeded admirably in this
regard. Shortly therafter, the firm expanded its niche in Al research

62

and development with the introduction of the DECsystem-10),
which is still a popular Al system two decades later. And today,
the VAX is the general-purpose Al machine of choice.

DEC’s internal involvement with Al was accelerated some six
years ago when Dennis O’Connor, a DEC group manager, hap-
pened to meet Professor John McDermott, an Al researcher at
Carnegie-Mellon University. O’Connor was looking for a method
to increase the speed and accuracy of VAX system configuration,
a task that was rapidly getting out of hand. McDermott, coauthor
of the LISP-based OPS production system language, was searching
for a problem that an expert system written in OPS could solve
to prove the viability of commercial expert systems. This chance
mecting resulted in a collaborative effort that culminated in the
development of R1, the VAX computer system configurer now
known as XCON. XCON proved to be so cost-effective that DEC
decided to become more deeply involved with Al, intending to
use the new technology to resolve other business problems
previously considered intractable by computers.

The firm was in an ideal position to sponsor a large scale
internal Al program because it already had the necessary hard-
ware and human resources at its disposal. Because it was obvious
that Al applications could be designed and implemented most effi-
ciently if the effort was conducted from a centralized location,
the Al Technology Center was conceived and built. Since its open-
ing in January 1983, the Hudson facility has been the focal point
for DEC’s Al research, development, and marketing.

The Hudson facility is home to three teams of employees,
each devoted to a different aspect of AL The Al Marketing Group
is responsible for the promotion and distribution of DEC’s com-
mercial Al products. The Al Engineering Group develops and im-
plements new Al applications for internal use as well as commer-
cial distribution. Finally, the Intelligent Systems ‘Technology Group
devotes its efforts to manufacturing-oriented knowledge based ap-
plications such as internal production management and material
requirement planning.

DEC also makes substantial contributions to academic Al ef-
forts through its twenty-year-old External Research Program. In
this cooperative program, DEC selects R&D projects that are of
particular interest and then farms them out to academic institu-
tions rather than pursuing them in-house. To make the program
attractive to universities, DEC supplies at least half of the seed
money and expertise required to get each project off the ground.
Again, DEC remains somewhat coy about the depth and breadth
of this program, but it’s estimated that the company is currently
funding at least 100 external research ventures.

GOVERNMENT EFFORTS—AN INTELLIGENT DEFENSE

Not surprisingly, the Department of Defense is involved in
Al expert systems and supercomputers in a very big way. Our social
structure and government philosophy does not permit us to match
the Soviet Union weapon for weapon or megaton for megaton.
Accordingly, we are striving to maintain qualitative rather than
quantitative superiority over the Warsaw Pact. Implicit in our
defense strategy is the maintenance of a technological edge over
the Soviet Union through “smart” weapons and technical in-
telligence resources complemented by sophisticated computer
hardware, software and architecture.

Back in the 1950, it was the Pentagon that lobbied for in-
telligent computers that could translate Russian into English. Later,
the DOD became interested in natural language recognition and
voice and signal processing techniques. These interests dovetailed
with an equal concern for electronic intelligence interception and
exploitation, pursuits requiring significant computational
horsepower. This concern has been reflected by the creation of
several government agencies, most notably the National Security
Agency and the Defense Advanced Research Projects Agency.

The NSA

In terms of sheer numbercrunching, our most powerful
Federal organization is the National Security Agency. One of the
nation’s most obscure intelligence agencies, the NSA has an
awesome array of supercomputers at its disposal, and has been
a center of important breakthroughs in computer technology since
its secrecy-shrouded creation in 1952. The NSA's main computer
room, located beneath its Maryland headquarters, occupies over
twelve acres of floor space. It houses processors from DEC, IBM,
and Cray Research in addition to numerous custom-built special
purpose machines. NSA, which is often referred to as an acroymn
for “Never Say Anything”, is mum about its hardware, software,
and related paraphanalia, but it’s a sure bet that these resources
aren’'t devoted to checkers tournaments.

NSA has fractionally lifted its veil of self-imposed anonyminity
by announcing its role as custodian of a new venture, the Super-
computing Research Center. This facility, located at the Maryland
Science and Technology Center, is the brainchild of a federal think
tank called the Institute For Defense Analysis. It is expected to
draw at least 100 eminent computer scientists, Al researchers and
engineers. What is particularly noteworthy about this endeavor
is the fact that it represents NSA's first significant involvement in
a semi-public-domain research and development project.

DARPA

More commonly known is the Defense Advanced Research
Project Agency (DARPA), the agency that brought you ARPANET
and was instrumental in the development of the ADA program-
ming language and the world’s first supercomputer, the ILIAC IV.
DARPA's precursor, the Advance Research Projects Agency, was
formed in 1958 as part of our response to Soviet technological
cfforts which culminated in the successful launch of Sputnik. Four
years later, the Information Processing Techniques Office was
formed to advance the development of interactive computing,
timesharing and networking for command and control functions.
During its tenure, DARPA has infused over half a billion dollars
(its current annual budget) into computer research. It is arguable
that DARPA-funded research has been critical to almost every aspect
of Al, including supercomputers, parallel processing and natural
language understanding. Many experts contend that it was DARPA
money which kept Al research afloat during the years of disillu-
sionment and disrespect, and it’s certain that the agency will con-
tinue to play a pivotal role in Al-related endeavors.

DARPA is the parent agency for a program called Strategic
Computing and Survivability, also known as the Strategic Com-
puting Initiative. The SCI has as one of its primary goals the
development of a new class of superintelligent machines which
can be industrially produced. In its efforts to bring forth an Al
“Model T." the SCI is funding research in expert systems develop-
ment, microelectronic design, machine architecture, natural
language processing and speech recognition, and machine vision.
Three application prototypes have already been selected and
funded as SCI projects. These are an autonomous land vehicle,
an intelligent pilot’s associate and a battle management system.

The autonomous land vehicle, presently under development
by Martin Marietta, is to be a vehicle capable of steering, navigating,
avoiding obstacles and otherwise driving itself from Point A to
Point B at speeds up to 60 kilometers per hour. All this is to be
accomplished—without human intervention—Dby expert systems.
This is easier said than done. The navigational portion of the ex-
pert system will require at least 6000 rules which must fire at a
rate of 7000 rules per second. Today’s expert systems are con-
siderably smaller and much slower—rarely are firing rates in ex-
cess of 100 rules per second.

The vision system presents obstacles much more difficult to
surmount than the terrain features themselves. For example, the

63

system will have to be capable of distinguishing between a large
rock and a shadow and between a clump of trees it must avoid
and a patch of tall weeds it can drive right through. In order to
function in real time, this system will require a processor capable
of handling as many as 100 billion instructions per second. DARPA
expects the processor, as well as the vehicle, to fully operational
by 1994.

The second prototype is an intelligent pilot’s associate. Unlike
the computers without which the new X-29 aircraft would remain
airworthy for less than a second, the processors in the pilot’s
associate would be responsible for such “low level” chores as
navigation, dealing with enemy defenses and electronic
countermeasures, and identifying, analyzing and otherwise react-
ing to other aircraft. By codifying the tactics and strategies of
veteran fighter pilots with actual combat experience, this expert
system would assist less experienced pilots during the critical first
few days of combat. Because the pilot’s associate would be capable
of speech recognition, this system is essentially only one step
removed from the thought-controlled MIG in the movie *Firefox’

The final application prototype is a battle management system
designed to help the commander of an aircraft carrier during
hostilities. This is to be an intelligent, real-time expert system
capable of recognizing and analyzing a threat, synthesizing and
evaluating responses to the threat, resolving conflicting goals to
select the most viable response and then implementing that
response. To achieve its goals, the battle manager will have to react
with lightning speed to fluid conditions and circumstances, and
interact with a knowledge base of some 20,000 rules. The pro-
cessor selected to run the multiple expert systems comprising the
battle manager will have to be at least as powerful as the hard-
ware needed for the autonomous land vehicle. Although a pro-
cessor of this capability is not yet available, a forerunner of the
computerized intelligence analyst is now being tested aboard the
aircraft carrier USS Carl Vinson.

Autonomous Systems

The concept of autonomy is essential to one DARPA's ultimate
objectives— the development of what it refers to as collaborative
and autonomous systems. A collaborative system would work
closely with human operators, providing advice and assistance
much in the same manner as present day expert systems. By con-
trast. an autonomous system functions without human interven-
tion. Indeed, one of the linchpins of the Strategic Defense Initiative,
or “Star Wars” program, is the development of hardware and soft-
ware capable of analyzing torrents of data intercepted by
reconaissance satellites and remote sensors, then formulating and
implementing an appropriate response. The expert systems envi-
sioned to provide the brains behind the Strategic Defensive Initi-
ative will consist of millions of lines of code. Even if other expert
systems are used to help write this code, the task of ensuring that
the SDI programs are viable and bug-free is impossible with to-
day’s technology.

The Robotic Battlefield

Robotics, another facet of Al figures very prominently among
some of the other objectives, both announced and implied, of
DARPA and other agencies within the Department of Defense.
Although the technology necessary to write and implement a Star
Wars expert system may be unattainable, the vision of warrior
robots advancing across a chemically contaminated battlefield of
the future may not be entirely far fetched: The Navy’s Underwater
Research lab already has plans on the drawing board for robots
guided by expert systems that will roam the ocean floor, doing
classified things with and to submarines, mines and torpedoes.

Of course, not all of our government involvement in Al is
of a purely militaristic nature. The National Bureau of Standards
has under its stewardship a totally automated machine shop. The
NBS Center For Manufacturing Engineering features a 5000 square
foot factory floor which is the epitome of automation. The only
time a human worker ever enters this Maryland demonstration
facility is when a machine must be repaired. Robots guided by
expert systems are responsible for every phase of production that
takes place in this machine shop of the near future. Even so-called
“white collar” tasks like scheduling, resource allocation and pro-
duction management are handled by expert systems. To paraphrase
author and poet Richard Brautigan, the NBS machine shop is truly
a facility “all watched over by machines of loving grace”

THE FUTURE

It’s certain that we'll witness a proliferation of Al applications
software in the near future. Most of these packages will be of the
expert system genre, designed to maximize productivity, and create
friendlier, more efficient user interfaces with conventional systems
and software. The following examples of hybrid software packages
are not mere speculation—each is already in the prototype or
development stage.

Perhaps a future release of VMS will have a smart DCL inter-
preter that responds to user mistakes with questions and sug-
gestions rather than SYNTAX ERROR. Maybe a group of enterpris-
ing knowledge engineers will take it upon themselves to reduce
the VAX document set to a knowledge base which new users and
system managers alike can query for specific information. And
possibly your 1990s word processor will be able to interactively
correct spelling and grammar, help you organize your thoughts,
and let you know when you inadvertantly contradict yourself.

The huge binders filled with circuit schematics that clutter
up your computer room could become a thing of the past. When
Digital Field Service dispatches an engineer to fix your ailing com-
puter of the 1990s, he or she may uncoil a cable from a large brief-
case and plug the leads into a socket on the back of the CPU. The
briefcase would contain its own supermicrocomputer which, in
conjunction with a expert system and a video display system

64

somewhat like today’s IVIS, could diagnose the computer problem
and display the solution one step at a time in accurate, full-color
graphics.

Computer programming as we know it today will be sup-
planted by mechanized expertise. Instead of coding an applica-
tion program to meet the specifications of an end user, a program-
mer may be able to give these specifications to an expert program-
mer’s assistant and let it attend to the task of developing an optimal
program. With a large enough knowledge base, an expert system
could likely respond to a request for a payroll program by building
the program itself. It would do so by taking into consideration
tax laws, company policies, company-specific financial and
accounting systems and dozens of other factors that eclipse the
traditional “HOURS TIMES RATE = GROSS” algorithm.

A multitude of things you do with computers will receive
an injection of artifical intelligence, even though it won't be called
Al Instead, difficult, repetitious or monotonous tasks will be
simplified by concealed software which, if extracted from an
integrated application, would meet the definition (whatever it hap-
pens to be at the time) of AL

From this vantage point, it’s obvious that artificial intelligence
has become a commercial reality. Expert systems are proving
themselves every day, and the technology needed to produce Fifth
Generation computers is being refined almost as rapidly. While
we don't have to worry about Kubrick’s HAL, the truly intelligent
KIP is no longer a fantasy—it has evolved into a concept which
will be realized, at least in part, within a decade.

Japan, through its ICOT consortium and ambitious Fifth
Generation crash program, has established some lofty goals to be
attained by 1990. How successful their efforts will be is still a mat-
ter of conjecture, but it is reasonable to assume that they will not
meet with complete failure. Our equally significant research and
development campaign should reap at least as many benefits as
the Japanese program. With computer technology in a state of flux,
the future is difficult to predict with any degree of accuracy.
However, one concrete statement can be made today: you'll be
hearing a lot more about Al, expert systems and Fifth Generation
computer systems in the months and years ahead.

Data Management
for
High Energy Laser Systems

Ramon A. Tenorio, David Dayton
Applied Technology Associates
Albuquerque, New Mexico

ABSTRACT

The High Energy Laser Systems Test Facility (HELSTF) located
at White Sands Missile Range, New Mexico includes an auto-
mated data acquisition and processing facility structured
around two VAX 11/780'S and two PDP 11/34's. The acquisi-
tion and processing facility is charged with recording,
transcribing, decommutating, analyzing and reporting data
from a wide variety of time history and imaging sensors. To
manage post test data processing and analysis, a progranm,
High Energy Laser Processing and Control Environment
(HELPACE) has been developed. Designed around the VAX
DATATRIEVE Data Base Management System (DBMS), HELPACE as-
sists the Data Base Manager, Analysts and Operators in the
following ways:

It helps the Data Base Manager Create the data base

It helps Operators populate the data base

It helps Operators extract pre-defined reports

It helps Analysts run and modify their own Algorithms

It helps the Data Base Manager back-up and restore the
data base

It helps the Data Base Manager control data base use

ware systems existed at HELSTF.

These software sys-

INTRODUCTION

The High Energy Laser Data Acquisition and Proces-
sing System (HELDAPS) located in the HELSTF at White
Sands Missile Range was designed to collect and ana-
lyze data from multiple tests of diverse laser sys-
tems. Via the High Energy Laser Executive Control-
ler (HELEX), data is collected and stored on mag-
netic tape. The problem that was addressed and led
to the development of HELPACE was how to manage the
data recorded by HELEX to produce reliable and veri-
fiable data in a timely manner. To perform the
above tasks, detailed coordination must take place
between the analyst who is ultimately responsible
for the data, the Data Base Manager who is respon-
sible for the data base, the Operators who run the

tations.
these activities.

tems were used to transcribe, decommutate, plot and
generate statistics on one dimensional data.

DESIGN GOALS

Since the existing software at HELSTF did not con-
tain a Data Base Management System (DBMS), it was
difficult to keep pace with the dynamic nature of
High Energy Laser Testing. Needed was a software
system that would integrate existing software, as
well as, provide a method to integrate new software
all within the framework of a DBMS. The goals es-
tablished for HELPACE were as follows:

1) Develop a data base schema that would be

system and the software packages that do the compu- flexible .
HELPACE is the tool designed to coordinate 2) Develop a method to interface existiag
software
3) Develop software to process new sources of
data

EXISTING SOFTWARE

HELEX was operational on the VAX 11/780 at HELSTF
when our effort began. The parameters that drive
HELEX are stored on VAX based RMS files. These
parameters define the method of recording, storing
and displaying data during real-time testing. Prior
to a test, the parameters are down loaded to the PLP
11/34's. The PDP's drive the hardware that collects
the measured data. Pertinent parameters, needed to
unpack and scale the data, are written to tape along
with the measured data. After a test, the original
VAX based RMS files are saved with the DEC BACKUP
utility. In addition to HELEX, several other soft-

Proceedings of the Digital Equipment Computer Users Society

65

4) Provide the capability for tracking mea-
sured data and parameters used in gener-
ating output products

5) Provide an environment in which simul-
taneous support could be provided for a
system being tested as well as allow for
modifications to the software and data base
to support planned testing.

OVERVIEW OF HELPACE

The HELPACE system consists of four classes of
software:

New Orleans LA - 1985

1)

Executive---used to interface with the user

2) Functions---populate the data base with
pointers to measured data

3) Algorithms--manipulate data from the data
base

4) Utilities---create and manage the data base

HELPACE is a system of modular FORTRAN and DCL pro-
grams that was designed to keep pace with a dynamic
testing environment. New Functions can be easily
integrated into the HELPACE system. New Algorithms
supporting new or modified analysis requirements are
easily added. These new features can be added with-
out affecting existing capabilities. Most programs
and command procedures receive control information
from the HELPACE executive either through a command
file or through DCL defined symbols. HELPACE ac-
tivates external Algorithms and processes based on
user input commands.

The exacutive software is part of the HELPACE ex-
ecutable image. It makes extensive use of VAX VMS
utilities and system calls to translate user entered
commands into requests that control the sequence of
data processing. The executive supports password
protection to insure that only authorized users ex-
ecute functions. User commands may be entered in-
teractively or through command files similar to VMS
command files. In addition, a menu driven capabil-
ity is provided in the executive to allow easy ex-
ecution and modification of Algorithms.

The HELPACE executive controls the activation of a
number of Functions. Functions are executed as de-
tached processes or as subroutines of HELPACE. The
HELPACE Functions execute a variety of tasks. These
include transcription and manipulation of measured
data, creation of references to data sets in the
data base, modification of processing parameters in
the data base, creation of the data base for a new
series of tests, archival of the data base at the
completion of a series of tests, or archival/
restoration of processed data sets. If a Function
uses parameters, the HELPACE executive accesses the
appropriate DATATRIEVE domains to obtain them. A
control file containing the parameters is then
created for the Function.

The HELPACE data base is implemented using DATA-
TRIEVE. The software accesses the data base via the
FORTRAN call interface utilities. Users may also
access a DATATRIEVE domain interactively to modify
parameters.

Algorithms are DCL procedures used as tools to ex-
tract information from the data base and manipulate
the data base and data sets. They may contain run
statements to activate FORTRAN programs. The devel-
opment of new Algorithms is completely independent
of HELPACE. Analysts may develop tools to analyze
data in any fashion. Algorithms are integrated by
the Data Base Manager into HELPACE as Processes.

The advantage of running Algorithms through HELPACE
is to provide traceability, via the data base, of
output products and processing parameters. The
HELPACE menu system allows the Analyst to interac-
tively examine the input values used by Algorithms
to produce output. If the Analyst desires, one or
more values can be changed and the Algorithm rerun.

66

The numbering scheme for Algorithms and Processes
was designed to correspond to four information
groups in the data base. By examining an Algorithm
number, the type of processing and the information
group containing the data can be identified. An
Algorithm number is a six character number defined
as follows:

XXYYYY, where

XX - Identifies the type of processing done
by the
Algorithm. Possible values of XX are:
OA - Extract data from the data base
IM - Generate inferred signals
DE - Generate performance assessment
data

UT - Perform utility Functions

YYYY - Identifies the data base information

group on which the Algorithm operates.
Possible values for YYYY are:
0000-9999 - Test Planning and configura-

tion

1000-1999 - One dimensional data
2000-2999 - Two dimensional data
3000-3999 - Performance Assessment data
4000-4999 - Algorithm Process data
9900-9999 - Utility (used only for

XX=UT)

The Data Base Manager assigns Algorithm numbers
based on the above categories.

Every user may store in the data base his own set of
parameters for an Algorithm. To uniquely identify
his data, the users UIC is appended to the Algorithm
number. Thus, each user can run an Algorithm with a

particular set of parameters and track them in the
data base.

EXECUTIVE-DATATRIEVE INTERACTION

The HELPACE executive accesses DATATRIEVE via the
FORTRAN call interface utility. Most of the acces-
se3 are to obtain data that has been stored in the
data base. DATATRIEVE ports are used to pass the
information. Record definitions are stored as
character strings for each of the domains to be
accessed. When a new domain is to be opened, the
HELPACE executive runs a processor that reads the
record definition and issues the DATATRIEVE commands
required to create the port.

To pass data through a port, a collection must first
be defined. The DATATRIEVE commands that must be
executed to form this collection are stored in
character strings. Part of the HELPACE executive
contains a processor that reads these commands and
issues the calls to the call interface to form the
collection. The collection is then passed to the
predefined port. When data is brought through the
port, it is done as an entire record. The record is
passed as one long byte string. HELPACE extracts
the various pieces of information contained in the
string and stores that information in separate vari-
ables.

To modify a DATATRIEVE record, the executive uses
the same processor used to form a collection. The
DATATRIEVE commands necessary to modify the record
are stored in character strings and passed to the
processor which executes them via the call interface
utility.

HELDAPS DATA BASE

The HELDAPS Data Base was designed to simultaneously
track the data from various tests of one or more
systems. The following four categories of informa-
tion are tracked by the data base for each test:

1) Test Planning and Configuration
2) Measured Data

3) Performance Assessment

4) Data for Report Generation

The Test Planning and Configuration catzgory con-
tains information required by HELDAPS in order to
conduct a test. Currently, most of the information
in this category is supplied by the HELEX generatad
configuration data base. After a test, the informa-
tion in this category is used to unpack, scale and
store the measured data.

The Measured Data category contains information for
sensor data recorded via HELDAPS or that was brought
over to HELDAPS for processing. Pointers to the
data files are stored in the data base.

The Performance Assessment category stores informa-
tion generated by a data processing Algorithm. For

example, very useful information can be gained by
looking at the mean or standard deviation of one or
several signals across a anumber of tests.

The domains in the Report Generation category are
used by Algorithms that extract data from the data
base. This allows for the semi-automatic generation
of output products. More importantly, it allows the
traciag of the parameters used from test configura-
tion through the delivered final products.

The HELDAPS Data Base is maintained by the DATA-
TRIEVE Data Base Management System. Two other VAX
utilities, VAX-11 FMS and the VAX COMMON DATA DIC-
TIONARY (CDD) are used to provide a user friendly
environment in which to manage the data base.

The CDD contains the structure of the data base.
Objects maintained by the CDD include record defini-
tions, domains, procedures, tables, dictionaries,
sub-dictionaries, access control lists, key and al-
ternate key values. Figure 1 depicts the structure
that was developed to support the testing conducted
at HELSTF. In order to extract information from the
data base, the user must point to the correct dic-
tionary. Objects shared by multiple systems and
multiple tests are stored at the HELDAPS level.
Record definitions, procedures and list procedures
(for most domains) are stored at this level. Ob-
jects that can be shared by multiple tests are
stored at the SYSTEM level. Objects specific to a
test are stored at the CONFIGURATION level. The
higher in the hierarchy that objects are stored, the
easier it is to maintain data base integrity since
there is more sharing of schema information.

The data base files are kept separate from the dic-
tionary structure information. This approach allows
the data files to be spread across several disks.
Figures 2 and 3 depict the current data directory
structure. Note that the measured data directory is
maintained on one disk while the remainder of the
data files reside on another.

The requirement to simultaneously track several
tests from one or more systems involves tracking a

67

tremendous amount of detail. The detail ensures
that the correct record definition is tied to the
correct domain, which in turn is tied to the correct
data file and display form.

| CDD$TOP |
___-_I ______
| | i
|] I
| Other | | HELDAPS | | Other |
]
]]] o
) |]
| SYSTEMA | { SYSTEMB | | SYSTEMC |
- : -
i i i
| CONFIG1 | | CONFIG2 | { CONFIG3 |
Figure 1
Dictionary Structure
| DRA1 |
--____?---_
i i i
| Other | H HDB | | Other |
:-
: : |
| SYSTEMA | | SYSTEMB | | SYSTEMC |
- = -
] i]
]]]
{ CONFIG1 | | CONFIG2 | | CONFIG3 |
i
I i]
1] I
i PA | i TPC | i AID |

| PA - Performance Assessment !
| TPC - Test Planning and Configuration|
| AID - Algorithm Input Data !

Figure 2
Data Directory Structure
(Disk DRA1)

| DRA2 |
i
] T] T ‘—--_-T
I |]
| Other | | HDB | | Other |
e e
| T Y
] 1 1
| SYSTEMA | | SYSTEMB | | SYSTEMC |
: e
| -] |
1 1 [}
| CONFIG1 | i CONFIG2 | { CONFIG3 |
—_— - : e e
LTty
1 [}]
| MDI1 | | MpI2 | | MDI3 |

| MDIx - Measured Data Intervals H

Figure 3
Data Directory Structure
(Disk DRA2)

When a new series of tests is initiated, a data base
is generated in several steps. Most of the con-
figuration information is supplied by the HELEX gen-
erated configuration data base. This information is
copied into the new data base when it is created.
Algorithm and Function pointers and parameters are
copied from the previous test data base into the new
data base. The remainder of the information is pop-
ulated manually as the various HELPACE Functions and
Processes get executed. At the completion of a
series of tests, the data base is copied to tape and
archived. If reprocessing is required for a test,
the data base for that test can be selectively re-
stored. Algorithm parameters can be inspected and
modified for reprocessing.

PROGRAM FILE MANAGEMENT

The files that collectively form HELPACE and the

HELDAPS Data Base fall into one of the following
categories:

- Source Code

- Algorithms

- DCL Command Procedures
- Include files

- Data Base files

- Object libraries

- Executable files

- Forms files

- Documentation files
- Historian files

- Scratch files

In a dynamic environment, such as the one that ex-
ists at HELSTF, changes to one or more of the above
categories are constantly being made. The ideal
structure for these files is one that allows for the
processing of data by baselined software, as well as
for modifications to support new requirements. Fig-
ures 4 and 5 reflect the directory structure in
place at HELSTF to support processing of data using
baselined software. The following is a brief
description of what each directory on DRA1 and DRAZ
contains.

~ HDB Data files at the HELDAPS level

- ALGORITHM HELPACE Algorithms to support
prior and current analysis re-
quirements.

- DOCUMENTS All on-line documentation

- BIN All executable programs

- FORMS FMS forms to support DATATRIEVE
domains

- SYSTEM Data files at the SYSTEM level

- TEST Data files to TEST level

- AID Data files to support Processes

- TPC Data files to support Test Plan-
ning and
Configuration domains

- MDI Data files that track measured

data in data base
- PA Data files to support performance
assessment domains

--| DOCUMENTS |

|

!

|

!

[—— - -
! ———————
i

1

]

1

]

}--1 BIN !
R —
l--! Other ! i--! FORMS :
i i
| i
! DRA1 =t HDB f===]-=] SYSTEMA }-->
‘ i i
i |
{--1 Other | {==] SYSTEMx |-->
]
{=~! SCRATCH |
[——
Figure 4

Data Structure to Support
Production Processing

(Disk DRA1)
|-~} OTHER | |—| SYSTEMA |
i i
i]
| DRA2 j==t==1 HDB |--}--1 SYSTEMX {-->
[} |
g —
{--1 OTHER | }--1 SCRATCH |
Figure 5

Data Structure to Support
Production Processing
(Disk DRA2)

Storage of the measured data files requires large
amounts of disk space. In order to maintain the
Data Base on-line for ad hoc retrievals, these files
are stored on DRA2. The HDB, SYSTEM, CONFIG and MDI
(Figure 3) directories point to the location of
these data files. If the data files are taken off
line, their location is tracked in the Data Base.

SUMMARY AND CONCLUSIONS

HELPACE is a dynamic data management facility that
provides the following features.

1. It is based on the DATATRIEVE DBMS utility using
the call FORTRAN interface utility.

2. It provides a user friendly executive to control
data processing and management functions.

3. The executive uses processor modules to execute
DATATRIEVE commands via calls to the call interface.
Data is passed to the executive through ports.

4. It is designed to track collected and processed
data sets, processing parameters, and provides a
degree of automated processing.

5. It tracks user written processing Algorithms.

6. It is modular and is easily modified.

In the course of our work, we encountered the fol-
lowing shortcomings in using the DATATRIEVE call
interface utility:

1. When ports are used to access DATATRIEVE domains
from FORTRAN programs, the domain record definitions
must be coded into the program. If the record de-
finition is later modified, program modifications
and recompilation are also required.

2. Accessing records through the call interface is
slow. This seems to be due to computational as well
as page fault overhead when making a DATATRIEVE
call.

3. The lock wait call interface option works only
one way. If a user locks a DATATRIEVE record, and
second user attempts to access it, the second user
will wait. On the other hand, if the first user
accesses a record but does not lock it and a second
user attempts to lock the record, the second user
will receive an error.

69

Encryption for Beginners

B.

Z.

Lederman

2572 E.
Brooklyn,

22nd st.
N.Y.

11235

Abstract

The

needs it,

purpose of this paper is to make people aware
of what data encryption is, how it
and why it is needed.
an introduction to the subject, so it will not

is wused, who
It is intended as
go

deeply into the mathematical internals of ciphers

As 1is true for many subjects, what
something is and how it is wused 1is often
interlinked, so that one needs to understand
one before the other can be explained; so

to begin with, some very simple definitions
will be given, and later they will be
expanded.

Cryptography covers the general field
of transmission of information which 1is
protected from wunauthorized access, and
includes secret writing (concealing a
message by various means), codes, ciphers,
and their use and defeat. Lately,
encryption and decryption have come to be

used in place of encipher and decipher to
refer specifically to the use of ciphers to
protect data, and will generally be used as
such here.

Stated more simply, data encryption is
a method of protecting data so that it can
be accessed only by the people who are
supposed to be able to get to it. This
definition, while correct, is rather vague
(it could apply equally well to the physical
protection of data such as locking it up in
a safe, or translating it 1into an obscure
language): it does, however, explain the
purpose of encryption, which is to limit the
accessability of selected items of
information. This will be explained first,
as it is desirable to understand why access
should be limited to understand how it is to
be done.

Do You Need It?

If you are working on a computer system

which can be accessed by one or a very
limited number of wusers, and which has no
outside lines (no modems or dial-in 1lines),

and which stores all information on easily
removable media (floppy disks or tape
cartridges), and you always remove this

media and lock it in a safe when you are

Proceedings of the Digital Equipment Computer Users Society

71

not using it, then you may not need
encryption. If you can eliminate all access
to your data other than by having the key or
combination to the safe, and if no-one can
look over your shoulder or otherwise tap
into your computer or terminal 1lines while
you are examining your data, then access to
your information has been made about as
secure as possible through physical means,
and encryption is probably not necessary.
Unfortunately, this 1ideal state of affairs
does not often exist. Sometimes your
storage media cannot be kept in a safe, or
you must store your information on a fixed
disk which cannot be removed, or you must
share the system with many other users at
the same time, or you must have dial-in
lines so that people outside your physical
location can access the same machine, or you
must send information to other locations:
in any of these cases, you may need to limit
access to your information, and encryption
is one method of doing this.

The immediate reaction many people have
to this is:

"Our computer is used only by people within
our company. We don't have dial-in lines,
[or our dial-in lines are secured by other
methods, such as passwords or dialback],
and all of our terminals are within our
company area. Why do I have to protect my
data?"

Some Reasons.

Even in this situation, there may still
be good reasons for using encryption.
First, you may have information which you
are obliged to keep confidential. If you
use your system to administer company
medical benefits, for example, you may be
obliged to keep personnel medical records
confidential. Without some sort of
encryption or other protection scheme, it
may be possible for many people in your

New Orleans LA - 1985

medical records of
Even 1if you are

company to peruse the
other employees at will.
certain no-one will do this, increasing
demand for rights to privacy of personnel
records may set a legal requirement that you
protect information from indiscriminate
access. (Note that encryption will not
protect against the persons who must still
have access to the data: other checks are
needed to insure that persons who must have
the data will not misuse it.)

Next, there may be information you want
to keep confidential. If you wuse your
system to keep track of employee performance
records, or calculate salaries as part of
your budget planning, you might not want the
employees involved to read or modify that
data. It is all well and good to say you
trust your employees, and probably most
people can be trusted: but locks were
invented to keep out the small percentage of
society which cannot be trusted. I rather
imagine that most people reading this lock
their houses and cars before leaving them,
even if they trust most of their neighbors:
if you would do that, then you probably have
information which should also be "locked
up". Similarly, you might be preparing
information for contracts, order placements,
payroll records, competitive bids, and
similar information which could represent a
significant portion of your company's
assets, and might be several times the
annual salary of many of the people who have
access to it (and they are not always only
the people whom you think have access to
it). The more important an item of
information 1is, the more likely it is that
someone could benefit by getting it, and
therefore the need to protect it increases
directly with it's importance.

The case where a "hacker" or other
unauthorized person calls into a computer
system and proceeds to cause various type of
mischief and/or damage is one that probably
most people fear. You may have a system
where it is necessary to have dial-in access

for your own personnel, and it then becomes
necessary to guard the system as much as
possible. There are various methods of
limiting access to a system through
passwords, or through hardware, which are
outside the scope of this paper. Data
encryption can act as a second line of
defense, however, and should also be
considered. In many cases, "hackers" are
simply looking for files they can read, or

programs they can run: encryption can make
data unreadable and programs unrunnable, and

thus defeat two of the hackers main goals.
Encryption will not prevent the random
modification of data (where the modifier

doesn't care what the change actually does)
or deletion of files: other methods of
protection are required to guard against
that type of damage.

72

The situation may also be reversed, as

many computer users do not own their own
systems and have to wuse time-sharing or
other outside computer processing to store

data and provide other computer services.
In this case, you may have 1little control
over who 1in the world has access to your
data. An encryption scheme that can be
implemented on your own data on the outside

machine would be one way of protecting your

information. Similarly, many companies
store copies of their records in outside
warehouses or other storage facilities to

protect against fire or earthquake damage at
their main location, and while such
facilities usually offer guarantees against
unauthorized access, some extra protection
might be desirable.

One last situation which probably
occurs to most people is when data has to be

transmitted from one location to another,
usually over some public facility
(telephone, teletype/telex, leased
communication line, air freight, or mail).

It is actually more
will be accessed from within your company
than from without (intercepting telephone
channels from microwave links 1is possible,
but rather difficult), but the more
important the information is, the more
likely it 1is that someone will try, and it
wouldn't hurt to take some reasonable
precautions. If you are engaged in any type
of electronic funds transfer, such as
depositing your employees payroll directly
to their bank accounts, or transfer of
company assets to your bank or to other
companies, the sums of money involved may be
so great that not encrypting the data in
some way 1s «courting disaster. Consider
what would happen if someone were to change
the records just once: if that would
seriously hamper your business, or cost you
a significant amount of money (either by
direct 1loss or the effort to replace the
missing information, or loss of goodwill of
the person at the other end), then you
should consider encrypting your data.
Remember that the true cost of data might
not be just what it cost you to obtain it,
but also what it will cost if you lose it.

likely that the data

Other Types of Protection.

It can be seen, therefore, that many
users will have some use for a data
protection scheme of some kind, as nearly

everyone has some type of information which
is not to be accessed by everyone else.
This leads to the methods which can be wused
to protect information. Various computer
operating systems are in use today, some of
which include access protection through
requiring users to 1log into accounts, or
various methods of verifying that persons
accessing dial-in lines are properly
authorized, or

through protection codes within the storage
system (such as the file protection codes
used in RSX-11, RSTS, and VMS). These are
outside the range of this paper, but it will
be mentioned that they don't always provide
the 1limit of protection needed, either
because there has to be at 1least one
privileged user of the system who can bypass
the checks, or because backup copies of the
data must be stored off of the machine, or
from other limitations of the system. Even
when such schemes work well, they may not be
enough, and they don't work at all if the
information has to be sent outside (by wire
or mail, etc.). This leads us back to data
encryption, which will allow the information
to be protected by a method which is
independent of any protection which may be
provided by the operating system. This does
not mean that other protection schemes
should not be wused, or that encryption is
the answer to everything, either: different
protection schemes cover different areas,
and usually complement rather than
substitute for each other.

some type of data
protection
previously

general,

need for
protection is recognized, a
scheme must be selected. As
mentioned, cryptography covers, in
secret writings, codes, and ciphers.

Once the

Secret Writing.

such things as
messages

Secret writing
invisible inks, and
within other messages. This 1is a highly
specialized field, and one which 1is not
likely to have much general application: it
is usually too cumbersome for easy use, and
is not applicable to storage of large
amounts of information on computer media.
Just to show what it is like, consider the
message:

covers
concealing

for Trigleth,
bonds from Fewell."

"Inspect details
acknowledge the

which doesn't seem to mean anything. If you
take the third letter of each word, however,
you get the message "Strike Now". This is
an example of secret writing, (a method
which follows a fixed formula like this may
also be called a concealment cipher), and it
can be easily seen that it would not be easy
to use: if it had no other faults, the
concealed message has become over 6 times
it's original length, and if you have to pay
for disk storage space or transmission
costs, you can see a big disadvantage to
this type of protection. Invisible inks can

be used on paper messages, but obviously
won't work at all on data stored on disk or
magnetic tape. (There was one fictional

story where

73

A message was written on a reel of tape with
a grease pencil, but this tends to gum up
the drive, and isn't very practical.) They
can be useful to authenticate documents, as
they cannot be duplicated by photocopying
machines, but again, this is a field where
expert assistance from a printing company or
ink manufacturer is required. We will not
give any more attention to this subject.

Codes.

A code 1is the arbitrary mapping of
symbols to other symbols. It is usually one
to one, but can be one to many or many to
one. One example of a code which is in very
common use every day is ASCII, the American
Standard Code for Information Interchange,
used by most computer terminals to map
binary signals to numbers, letters, and
other characters, a portion of which is
shown here.

040 SPA 060 O 100 @ 120 P
041 ! 061 1 101 A 121 O
042 " 062 2 102 B 122 R
043 # 063 3 103 C 123 s
044 s 064 4 104 D 124 T
045 % 065 5 105 E 125 U
046 & 066 6 106 F 126 v
047 ° 067 7 107 G 127 W
050 (070 8 110 H 130 X
051) 071 9 111 1 131 Y
052 * 072.: 112 J 132 2
053 + 073 ; 113 K 133 [
054 , 074 < 114 L 134 ©
055 - 075 = 115 M 135]
056 . 076 > 116 N 136 ©
057 / 077 ? 117 o 137 _
It isn't wusually thought of as a code, and

it certainly isn't a secret, but it is a
code: it transforms one type of data into
another through an arbitrary mapping. Note
that the mapping is indeed arbitrary, even
though the letters do follow the alphabet
for convenience: there is no reason why
they would have to do so for the code to
work.

Another code which better fits the general
public's perception of a code is the type of
code which has been used for telegrams, a
portion of which is reproduced here:

MUWUB
MUXAW
MUXEX

Improving rapidly
Improving slowly

Is not improving as I/we
could wish

Is there any change

Is there any improvement
Progressing satisfactorily

MUXIZ
MUXNO
MUXPU

MUXRY Sorry to year you are
(eeees is) ill

MYGEL How would

MYGIM HURRY (See Haste)

MYGON HYPOTHECATE-D

MYHAL IF

MYHCI And if

NYHDO And if not

and so on. It can be seen that the mapping
between the original phrase (the "clear"
text) on the right and the code word on the
left is completely arbitrary, and that the
book is the only way to go from one to the
other. This particular code had the
advantage that in most cases the coded text
was much shorter than the original message:
two groups of five letters could be pushed
together to make one 10 letter group, which
was counted as only one word in the cost of
sending the telegram. Since the mapping is
arbitrary, codes can be very secure.
Generally, you have to have the arbitrary
mapping in order to defeat (or "break") the
code, though if the code 1is re-used often
enough, the mapping can sometimes be
deduced. They are also vulnerable if one
can obtain a copy of the clear text and the
coded text which goes with it, and of course
are defeated 1if the wrong person obtains a
copy of the code book. Some authorities
consider book codes like this that are used
once only to be completely unbreakable, and
it would be easy to use a computer to
generate lists of arbitrary code words to
use.

Codes do have many disadvantages in the
computer environment, however. A computer
program to automatically code a message with
a scheme like the example would be very
complex, as the context of the angles
message is needed to search through the list
of phrases on the right and find the
appropriate code word: decoding the message
by looking wup the letter group would be a
easier. Encoding large strings of numbers
is tedious and likely to increase the size
of the message, and there 1is always the
problem of what to do if you need a phrase
which is not pre-defined in the code book.
Binary data cannot be coded at all which
this particular scheme, and would be
difficult to encode with most coding
schemes. Since we would like a method which
would work on a computer, and accommodate a
wide variety of data with a minimum of human
intervention, we will not consider codes
further.

74

Ciphers.

A cipher 1is a method of transforming
data from one form to another through a
logical process, usually with a geometric or
mathematical basis. Since a cipher 1is a
method or system rather than a group of
pre-defined mappings, it should be possible
to transform any "plain" or "clear" text,
regardless of 1length or content, 1into a
single enciphered message. This 1is more
easily understood with an example, such as a
simple geometrical cipher. I will take the
familiar phrase,

"THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK"

and
fashion,

write it out in a square in the usual
left to right, top to bottom.

Qrmaczo049
R T

T X o
NOomo oc
RO <4u=H

0o
N av]
T<H3nNnOoOw

To encipher this message, I can take the
letters out by some sequence other than the
way they went in: for example, top to
bottom, right to left. (This is an example
of a transposition cipher, as it works by
transposing or changing the order of the
letters in the message, but not the letters
themselves.) This will give me:

"IWJV OKUO OEDCQRX H A BOSTYBE FP 2

HK MRASTCNUELG"

which doesn't look anything 1like the
original. The underlying principle here is
that there is a definite method of

transformation between the original text and
the enciphered text without considering the
actual content (even if it is not obvious on
a cursory inspection), whereas in a code the
transformation was completely arbitrary and
very sensitive to content. Because ciphers
work on a method of translating data from
one form to another, they are generally much
easier to implement on a computer, and they
are dgenerally much less data sensitive than
codes would be. In this example, each
character could easily be a byte or word of
binary data, and the scheme would work just
as well.

There are a great many
ciphers, some more secure than others, and
some easier to use than others. One which
is very common, and even occurs in some
daily newspapers, is a simple letter
substitution, where one letter is replaced
by another. For example,

types of

ABCDEFGHIJKLMNOPQRSTUVWXYZ

can be replaced with

EFGHIJKLMNOPQORSTUVWZ YZABCD

This is a substitution cipher, which changes
the letters in the message, but not their
order in the message. This would make the
sample phrase "THE QUICK BROWN ..." come out
to be:

"ZLI UYMGO FVSAR JSB NYQTW SZIV ZLI
PEDC HSKW FEGO"

one to one mapping, I am
going to leave it to the purists to
determine if it 1is a code or a cipher,
though it is content insensitive (there is
obviously some overlap between some codes
and ciphers). The drawback to a simple
cipher 1like this is that it is too easy to
break with just a pencil and paper, and with
even the least expensive home computer it is

Since this 1is a

literally child's play. (You can read "The
Gold Bug" by Edgar Allan Poe or "The
Adventure of the Dancing Men" by Sir Arthur

Connan Doyle to find out how.) There have
been many other, more sophisticated,
transposition and substitution ciphers than

the ones demonstrated here 1in wuse in the
past few centuries, but since they were all
implemented by hand, they are all too easy
to break by modern methods. You can simply
go out an buy a number of books that will
tell you exactly how do it with just
pencil and paper, and the proliferation of
home computers makes most of them very
simple to break indeed. They may still be
adequate for some purposes however, but
considering how good a cipher needs to be
will be discussed later.

to

If existing ciphers are too easy to
defeat with computers, then what 1is 1left?
The answer is that most modern encryption

schemes are based on the same principles as
older ciphers, but use the power of the
computer to expand the magnitude of the
scheme. For example, in the transposition
cipher shown, the box was 7 letters on a
side: it could be made larger, but when
encryption is done by hand, a box much
larger than 15 or so on a side becomes too
cumbersome to use. With a computer,

75

is no limit to the size of
increasing the box to 100
it too large to "break" the
cipher by hand. This scheme of using the
computer to expand on a good encryption
method can be used to create ciphers that
are difficult to defeat, even with another
computer (the box cipher would still be too
easy to break by computer and is given only
to illustrate the idea). One which I have
used 1is a variation on the periodic number
substitution (also known as an addition or
Vigenere) cipher. 1In this scheme, a number
sequence is added to the text: a simple
example would be to add the sequence

however, there
the box: simply

per side makes

1357135713571357135713571357135713 etc.

to the numeric value of the ASCII
characters in the message

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK"

to get this:

UKJ 'RXNJL#GYPZS 'GR] '"KXRWT#T]FU% [

IH$SB]©'ERLZ!EFJL

With a number sequence this short, the
cipher would not be too secure (you can see
even 1in this short message that a SPACE
becomes a ' four times, and the sequence
"SPACE-something-U" has twice been changed
to "'-something-X", for example) though it
is more secure than the simple substitution
cipher shown before. Various methods of
obtaining a 1less repetitive sequence have
been tried in the past, but usually produce
no real 1increase in security. Using the
computer, however, a number sequence can be
generated that appears to be random, and is
thousands of digits 1long. Most computer
languages have a random number generator (or
more accurately, a pseudo-random number
generator, as the sequence can be repeated

exactly when desired), such as:

LET A = RND(B) in BASIC, and

A = RAN(B) in Fortran,
and similarly for other languages. There
are theoretically an infinite number of such
pseudo-random sequences, and even for a
specific generator there are a very large
number of specific sequences: in DEC's
Fortran-77, the number that starts the
sequence (the variable B) can have at least
two billion possible values. This

particular cipher is sometimes called the
Fast "Infinite-Key" method, and has been
widely used with good results. We could
then repeat the above proceedure by
generating a pseudo-random number sequence
such as:

1986833925153857265815341697347183 etc.

and adding it to

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK

to obtain

UQOMYXLLM$CWR_S'HU] (KZPTT&X]HV'U

PH'UJ_a'JULZ)JHGM

At first glance, this doesn't appear
significantly different from the first
example, but if someone were to attempt to
defeat the cipher by the usual method of
looking for repetitive patterns and common
adjacent letters, they wouldn't find any,
and would not be able to defeat the cipher.
This cipher has the additional advantage
over the "box" cipher in that the characters
can be processed in the order they are read:
in the box cipher, a large portion of the
message has to be read in and stored before
any of it <can be processed. In most
computer ciphers, it is an advantage to be
able to process the message serially, and to
not have the length of the message have any
effect on the encryption scheme itself,
especially then the messages being processed
are being transmitted from one place to
another (over a communications line, or to a
disk or tape drive are two examples).

that even
easier to

It can be seen, therefore,
though the computer has made it
defeat some encryption schemes, the power of
the computer can also be used to raise the
complexity of a cipher to the point where it
is wvery difficult to defeat, even with
another computer. This is the Dbasic
principle behind most good modern computer
ciphers: the wuse of the computer to raise
the complexity of the cipher until it is
(hopefully) beyond the ability to defeat by
any practical means.

76

Data Compression?

It was mentioned that the telegraph
code example shown earlier also compressed
the information into a more compact form.
There are a number of data compression
schemes in use on computer systems to
minimize the amount of space data occupies
when stored, or to reduce the amount of time

needed to transmit information from one
location to another (and hence reduce the
cost of transmission). Some of these

compression schemes could also be thought of
as ciphers, as they transform data from one
form to another. While they have the
obvious advantage of compressing the data,
generally the compression algorithms are too

well known for this to act as a really
secure cipher. You can, of course, compress
your data before or after encrypting it as

long as the cipher is not data sensitive.

With some understanding of what
encryption is, we can perhaps present a
better definition. One such definition
could be:

"Encryption is a method of transforming

data into a state where it is not easily
available to persons other than those for
whom it is intended (using ciphers)."

and it
but
Note

This is a very general definition,
does appear to be somewhat cumbersome,
it is worded in this way deliberately.

especially the emphasis of the phrase, "not
easily available". Generally, no encryption
scheme is absolutely secure from ever being
defeated, and a decision has to be made as
to how good a scheme 1is needed. From a
practical standpoint, the real purpose of
encryption can be defined as this:

"To make obtaining the data more expensive
than the data itself is worth."

(Where expense is counted in time, effort
expended, cost of labor, cost of computer

services, etc.)
While this definition may not precisely
define a cipher, it does clearly define the
goal encryption should achieve.
To evaluate a potential encryption
scheme, one must consider from whom the data

is being protected. Some possibilities are:

1. Curious employees

2. "Hackers"

3. Outside visitors

4. Service personnel and/or vendors

5. Competitors

6. The Criminal Element (internal or
external)

7. The IRS

8. The "spooks" (CIA, NSA, KGB, MI5, etc.)

among others. The first four can probably

be discouraged with even a very simple
cipher: as mentioned before, most "hackers"
and other idle curious are simply 1looking
for files that can be read or run. If they
were to see a file such as this:

RTP $%& &.2H8I]).4HHQPPJS8IKNUIOQPP

RUP $%& &.3H8I],%.H342DH).4H8III

RVP 2%-

SQP 02).4 B#/-054!4)/. /& -/2'1'% 0!9-%.4
SRP 02).4

SUP 02).4 BO,%!3%).054 4(&% 02).#)0!, H7
SVP).054 0

SWP 02).4 B).054 4(% !..5!,).4%2%34 2!4% H
SXP).054)

SYP 02).4 B).054 4(% 4%2- H). 9%!23IB|[

TPP).054 4

TQP 02).4

TSP 4]4J0R

TUP 11)

TVP)])OQRPP

UPP -]&.2H0J)OHQMQOHQK)I>4II

UTP 02).4 B02).#)0!,B[4!"HSUI[BDB[O0

UUP 02).4 B).4%2%34 2!4%B[4!"HSTI[1[BEB

UVP 02).4 B4%2-B[4!"HSTI[4[4!"HTPI[B~-/.4(3B
UWP 02).4 B-/.4(,9 0!9-%.4B[4!"HSUI[BDB[4!"
they might well pass it by, or maybe make a
few simple attempts to read the file as if
it was binary data. But if anyone should
happen to figure out or guess that it is
really a BASIC program, then it would not
take long to decipher it, as it happens to
be encrypted with a simple letter
substitution cipher. Since a computer is
going to do the work, it would be just as
easy to use a more secure cipher, and one

which will transform the data into something
which will not look like obviously encrypted
data when examined. For example, the
"Infinite-Key" method takes no more computer
time or disk space than simple substitution,
is very much more secure, and the resulting
data doesn't look at all like text, so there
is no reason to use the simple substitution
when such superior methods are easily
available.

If
competitor,
(which is

by a
employee

interception of data

or by a dishonest
really the greatest threat) is a
serious consideration, then you will
probably want the most secure cipher that
can be reasonably implemented (one which
protects the data well, but will not use up
so great an amount of computer resource that
it becomes more expensive than the data it
is protecting).

77

If you intend to protect your data from
categories 2, 3 and 4, then other protection
schemes should be your first choice, such as
not allowing outside visitors to wander
un-escorted about your plant, removing your
data from the system before allowing it to
be serviced by outside personnel, and using
various protection schemes to prevent
un-authorized dial-in access. Encryption of
data can act as a second line of defense in
these cases, however, and should still be
considered: it must be stated again,
however, that encryption is not neccessarily
the best solution to every situation, and
that all methods of protecting data need to
be evaluated to determine what best suits a
given need.

Against the last two categories: you
have to be realistic, and understand that
any government agency that can put the gross
national product of a world power into it's
efforts is going to be able to break any
cipher you could use. That doesn't mean you
have to make things easy for them, and there
are ciphers available now which are very
difficult for anyone to defeat, but you must
remember that no cipher is absolutely
unbreakable.

How Good is "Good Enough"?

It was
scheme costs

stated that a good encryption
more to defeat than the
information is worth. This means that the
cost of the labor expended, and computer
resource dedicated to the task are more than

the wultimate value received from the
information which may be obtained. For
example, the only ways known to break the
Infinite-Key and DES ciphers 1is by brute
force: trying every possible key, and
looking at the result to see if it makes
sense. Even if someone 1is willing to
dedicate a computer to the task, it could

take months or even years of effort to break

one message, by which time the information
may be useless. In addition, the time a
computer spends on breaking the code cannot
be wused for anything else, like doing
payroll, or inventory, or other normal
business functions. If you are preparing
bids on a contract which will yield, say,

$10,000 and a competitor tries to steal your
information and under-bid you, then your
encryption scheme is successful if it either
takes so 1long to break cipher that the
competitor can't meet the deadline for
submitting bids, or if it costs the
competitor more in computer resources than
the $10,000 or so that the contract would
yield: even though the cipher 1is broken,
the person who broke it comes out with a net
loss. Few "hackers" are going to have the
patience to let their

home computer run for several months or
years to decrypt one message and not use the
computer for anything else, and not much
information is so valuable that it would be
worth while renting a Cyber or Cray
super-computer for several months to break
the message relatively quickly (unless you
are a government agency, and can do whatever
you like).

that someone within a
company computer to
cipher by brute force,
reasoning that the computer time doesn't
cost them anything. Since defeating a good
encryption scheme would use up relatively
large amounts of computer time over an
extended period, it should be possible to
detect if anyone within a company is using
the computer system in this manner, and deal
with the problem directly.

It 1is possible
company might use the
try to break a

What Else Must I Do?

A consideration which is equally
important as the selection of an encryption
scheme is keeping the keys themselves
secure., Just as it would do no good to buy

the most expensive lock and lock your house
and if you then put the key under the door
mat, it does 1little good to encrypt your
data if anyone can get the key. 1In terms of
internal security, this often means correct
selection of a key to use: since most
modern ciphers wuse a number as the key,
there is a great temptation to use an easily
remembered number such as your telephone
number, birth date, social security number,
wedding anniversary, or some such number as
a key. Unfortunately, any number that you
can remember easily will also be easy for
anyone who knows you to guess. If you are
trying to protect data internally in your
company, using such a number would defeat
the best cipher: rather than having to try
several billion possible keys, the number of

attempts are reduced to a few dozen or so.
This leads to the paradox that you must
chose a number you can remember (or you may

never get your data back if you forget the
key), but one which no one else is likely to
guess; or else you have to write the number
down, but in a place where no one is likely
to get it. The latter scheme is probably
better than trusting to memory, but you
should not keep important numbers laying
about: keep them in your wallet (and keep
your wallet with you), or 1in some other
secure place. Similarly, don't put them in
the telephone directory or card file that
sits on top of your desk, or in other easily
accessed places. It is also a good idea to

change the keys periodically, especially if
it 1is being used for data transmitted
externally. (Internally, the threat is

greater that

78

someone will figure out your key, or may see

you type in the key, or be able to compare
the encrypted data with the "clear" data,
and deduce the key that way). Basically,

you must use at least as much caution in
dealing with cipher keys as you would use in
handing out door keys to your plant, or
electronic 1lock keys to your personnel:
they all protect your assets, and have to be
treated with the same respect. While you
can hire guards for physical security in a
plant, you cannot do the same for
information in a file or transmitted over a
wire, and information is easier to move than
equipment; so if anything, the cipher keys
must be kept even more secure than other
kinds of keys.

Public Key.

When data has to be transferred from
one location to another, then the risk is
doubled, as the key has to be kept in two
places. One absolute rule 1is that you
never, ever, transmit the key with the data
it protects (you might just as well not
bother encrypting at all). It is usually a

good idea to use an encrypted transmission
to send the next key to be used at one time,
and the data at some other time, and that
both parties must exercise the same caution
in protecting the keys. Otherwise, you must
use some secure method of transmitting the
keys to the locations where they will be
used (such as sending someone you can trust
to carry them by hand), and storing them in
a safe or other secure location. One
partial solution to the problem 1is the
Public Key method of selecting keys. This
is not an encryption scheme, but is a method
where two people can create a large numeric
key by each selecting a number which forms
half of the key, and were each party knows
only half of each key. The advantage of
this method is that one half of the key can
be made public, and anyone can use it to
encipher a message intended for you, but
only you can decipher the message using the
other half of the key which was kept secret.
This can also be used for source
verification if both halves are kept secret:
for you to be able to decipher the message,
it will have to have been enciphered using
the matching half of the key. The method is
based on the fact that it is difficult to
factor a very large number which 1is the
product of two very large prime numbers
(each party picks one of the large primes):
lately, there have been some announcements
that it might not be as difficult to break
as was formally thought, but it may still be
useful to many people. If you are
transferring data within an organization,
and can keep the key secret at both ends,
then Public Key isn't necessary: it's

primary use is where the security of the key

at one end isn't known, or must be made
public.
Encryption with Hardware
and the DES.
So far, we have considered encrypting

data while it is in the computer system, and
before it is stored or transmitted. This is
not the only way it can be done: it is also
possible to attatch a device to a
communications 1line so that information
passing through it is encrypted in one
direction and decrypted in the other
direction. For example, the device could be
attatched between your computer and a modem,

so that "clear" information being
transmitted from your computer will be
encrypted before it goes into the modem and

out into the world. Most of the special
hardware currently offered for sale for this
purpose use the Data Encryption Standard
(DES), also called the Data Encryption
Algorithm (DEA). This method of encryption
was developed by the National Bureau of
Standards to provide a standard, secure
encryption method, and it involves many
stages of transposition and substitution.
Furthermore, there are several modes for
data to pass through the encryption scheme:
the method any individual will use depends
upon the application. According to the
developers, the DEA is intended for use only
with hardware encryption schemes for several
reasons, two of which are security of
operation and verification of correctness.

The first reason includes protecting
the key and the encryption method: if it is

in special hardware, you have to enter the
key into that piece of hardware, and it
won't be "floating around" your computer

system as it might be if a software program

was used. Similarly, only the manager in
charge of the special hardware knows what
the key is: you don't have individual users

losing their keys (or giving them away). 1In
addition, there are often ways for one user

to monitor another user's program on the
same computer (for example, to watch someone
type in their key), and it was felt that it
would be more difficult to tap 1into a
separate piece of hardware. With the
protection in hardware there is the
additional advantage that no-one can forget
to encrypt data before sending it out:
anything which is transmitted on that 1line

is automatically encrypted. It was stated

79

before that encryption might not prevent
"hackers" or other wun-authorized persons
from accessing a system, but the one
exception 1is if there is a hardware
encryption device placed between the system
and the modem which always encrypts the data
on that line. Encryption would then prevent
unauthorized access, as anyone who wishes to
dial in on that line must have an encryption
device which uses the same cipher and key.
In a similar manner, a hardware device can
be placed between a computer and a
peripheral device: for example, a disk. If
this is done, then all data on the disk is
automatically encrypted, and you don't have
to worry about users forgetting to encrypt
sensitive data, or service personnel reading
it during maintainance.

it would be
is working

The second reason, that
easier to test if the hardware
correctly than to test if a program is
working correctly, is a reason I do not
entirely agree with. It also means that the
use of DES would be 1limited to those
applications that can send the data through
a line to the special hardware, and that you
would have to buy the special hardware for
every location which wanted to encrypt data:
this meant that locations with personal or
small business computers had to buy an
encryption device that was as large and as
expensive as the computer itelf. This is
changing rapidly as more large scale
integrated circuits which implement the DES
are being placed on the market, so that the
cost of a peripheral device that does
encryption in hardware is decreasing, but it
still has many drawbacks for some users. As
a result, software houses are offering data
encryption programs that use the DES method
to encrypt data on the system itelf with no
special hardware.

Use of the DES is likely to increase in

the next several years, especially where
information has to be exchanged between
different companies, because it is a
standard and it 1is possible to obtain
different pieces of hardware or software
which implement it and will still Dbe
compatible, as they have to meet the

standard to be able to say they use DES.

Like most modern ciphers, DES uses a
numeric key, and there has been some
arguments lately about how secure DES really
is, based on the length of the key, which is
56 bits (the scheme adds bits to make it 64
bits 1long). Some of the developers
suggested that the key should be 128 bits
long, but the National Security Agency
required the NBS shorten the key: some
critics have suggested that a key of this
length is such as to be virtually
unbreakable by anyone except the NSA

itself, which tries to stay about 10 years
ahead of everyone else in technology. Even
if this is true, DES will probably be secure
enough for most commercial users for the
forseeable future (remember what was said
earlier about determining from whom you wish
to protect your data).

Extra Precautions.

If you expect a real effort will be
made to defeat your encryption scheme, there
are a few extra precautions that can be
taken to reduce the risk. The easiest way
to break a code is if you have a copy of the

enciphered message and the clear text
together, and can compare the two to work
back to the cipher. This indicates that
access to important information should be
carefuly restricted: for example, if
encryption is wused to protect data during
transmission, then when the data is
deciphered and safe, the enciphered copy
should be erased or destroyed. If it is
carelessly discarded, it might give someone
a chance to work on it at leisure,
especially if the threat 1is within the

be
Some newspaper codes were broken
because the text of an article was
transmitted in cipher (by radio, where it
could be heard) and then printed word for
word the next day in the paper: sending the
contents of the article but re-wording it
before releasing it to the public solved
that problem. Similar precautions could be
taken if such things as financial reports
are to be transmitted: if possible, don't
transmit the data in exactly the same form
in which it will be published. 1In the case
of business letters and memos, most start
with a date and the person to whom it is
addressed, and someone could know (or guess)
how the message starts, and use that to cut
down the number of attempts needed to find
the key to the cipher: one way to stop that
is to arbitrarily cut the memo in the middle
somewhere, and put the last part before the
first. The recipient, after deciphering,
can easily see where the real beginning is,
and move it back where it belongs. 1In
short:

company, where the clear text might also
available.

Don't be predictable.

There are
one can take if
really trying
scheme. If you
get your Kkey
random garbage

also a few other precautions
you feel that someone is
to defeat your encryption
think someone is trying to
by brute force, you can put

80

at the beginning and end of your data:
anyone who is trying a key and checking only
the beginning of the file to see if the data
makes sense will not realize it if they do
find the right key, as the decrypted data
still won't make sense. Of course, anyone
can simply check the entire contents of the
message for every key tried, but this is
much slower, and anything that slows the
process of defeating an encryption scheme
means the scheme is that much more secure.
If there is some reason to believe that
whole messages are being intercepted and
stored (with some ciphers, the more data you

have, the easier it 1is to find the key,
though it might not help much with
Infinite-Key, DES and some other modern
ciphers), then you should change the Kkey
more often than you might otherwise do. 1In
any event, you should not use a given key

for too great a period of time, just in case
someone is collecting your messages. You
can also occasionally send out messages
which are the same length and otherwise look

like your real messages, but which contain
enciphered garbage. The contents (before
enciphering) should 1look as much like real

data as possible, without
anything. This will add to the difficulty
of defeating the encryption scheme, but is
only worth while if there 1is a real
possibility that someone is making a
concerted effort to break the cipher.

actually meaning

Bibliography

There are a number of good descriptions
of cryptography in popular literature. In
addition to the two examples of the simple
substitution cipher given before ("The Gold
Bug" by Edgar Allan Poe and "The Adventure
of the Dancing Men" by Sir Arthur Connan
Doyle), two books by Dorothy L. Sayers (in
addition to being entertaining in
themselves) are of interest. "Have His
Carcass" contains a good description of the
Playfair cipher (a good combination
transposition and substitution cipher which
is easily worked with only a pencil and
paper), and a good description on one way to
attempt to break it which also clearly shows

the hazard of sending messages in a form
which allows the content to be deduced.
"The Nine Tailors" contains an extremely
ingenious example of secret writing. Both

are currently published in paperback.

On a more formal basis,
will be useful:

the following

"Cryptanalysis, a Study of Ciphers and their
Solutions", by Helen Fouche Gaines (Dover
Publications, Inc.)

computers, contains
ciphers, and

though written before
thorough descriptions of many
specifically the methods used to defeat
them, with worked examples and reference
tables. Dover has a mail order department.

"Security and Privacy in Computer Systems"
by Lance J. Hoffman (Melville Publishing
Co.)

wide variety of computer security
one of which is the use of data
It includes a good description

treats a
subjects,
encryption.

of the "Infinite Key" cipher, with a
mathematical test of it's effectiveness. It
also covers operating security, physical

plant security, and other subjects.

"Cryptanalysis for Microcomputers" by Caxton
C. Foster (Hayden Book Co. Inc, Rochelle
Park, New Jersey)

Contains explanations of many ciphers, with
programs in BASIC to implement them or act
as aids in defeating them. The programs may
require some work to implement (you have to
search through the book to find the
subroutines, and sometimes the names of
variables change), but some good material is
included. The programs are in a simple
version of BASIC which most computers should
handle as is or with only minor changes.

"Securing Data Inexpensively via Public
Keys" by Brian Schanning (Computer Design,
April 5 1983, Vol 22 #4)

is an article which describes the
mathematics used to generate the two halves
of a Public Key.

"The Data Encryption Standard, Recent
Controversies" by John E. Hersey,
(Telecommunications, Sept. 1983, Vol 17 #9)
gives an encapsulated history of the
development of the DES, with some of the
arguments for and against it's method of

implementation and use.

I have not been able to review the following
sources myself, but they may be useful.

"The Codebreakers" by David Kahn (Macmillan)
gives a good history of ciphers and their
use, and a description of how some good
modern ciphers were broken. The paperback

81

version may be abridged. Considered one of
the classic works on the subject.

"RSA: A Public Key Cryptograph System" by
C. E. Burton, (Dr. Dobb's Journal, Mar
1984, 16-21)

"Mathematical Games" by M. Gardner,

(Scientific American, 237(2), August 1977,
120-124
The following government publications may

also be useful:

"Data Encryption Standard"
Federal Information Processing Standards
Publication 46

"DES Modes of Operation"
Federal Information Processing Standards
Publication 81

Standards Information Office

Institute for Computer Sciences
and Technology

National Bureau of Standards

Washington, D.C. 20234

The Smithsonian Institution has a section
devoteq to cipher machines, and give the
following address for inquiries for more

information on the subject:

Division of Mathematics

The National Museum of American History
Smithsonian Institution

Washington, D.C. 20560

A Radiation Therapy Patient Information Management System
Theodore J. Smith
Depar tment of Radiation Therapy
Hospital of the University of Pennsylvania

Philadelphia, Pennsylvania

19104

Jill M. Baren and Robert F. Curley
Department of Radiation Therapy
University of Pennsylvania

Philadelphia, Pennsylvania

19104

Abstract

The Department of Radiation Therapy at the Hospital
of the University of Pennsylvania sees and treats a

large number of

patients

each vyear. We have

implemented a system to manage the data relating to

these patients.

We used DBMS-11 running IAS on &

PDP-11/70 with FORTRAN as the principal programming

language. This

philosophy,

paper
programming

presents
conventions

our
and

de<sign
the

measured results of the operation of the data entry

and scheduling modules.

Introduction

The Radiation Therapy Department at

the Hospital of the University of
Pennsylvanisa sees approximately 120
patients per day. An enormous amount of

information concerning the treatment and
handling of these patients is necessary not
only for daily use by medical and office
personnel, but also to establish a
permanent record for long term research and
statistical functions performed by the
department. Qur primary qoal for a
computer based patient information system
is to provide quick, easy and
nondestructive access to accurate patient
demographic and treatment information. Our
system was planned to eliminate the
aggravation of locating a patient’s chart
{1}, by displaying pertinent information at
terminals located throughout the department
when requested. Al though we have reached
only an intermediate stage of this gecal, we
have expanded the functions of the database
to include the automation of several
clerical tasks and are currently
incorporating & patient tracking system
into the scheme. The foundation of a
patient information management system
consisting of data on 15,700 patients has
been established in our department using

DBMS-11 wversion 2.1, a database management
system for the Digital Equipment
Corporation PDP-11/70 computer running IAS
{2*. DBMS-11 is a network structured
database which enables the design of a data
model that closely reflects the way
information is collected and used by the
Depar tment. From this foundation, many

department functions have become automated
while otheres are currently being developed.

Proceedings of the Digital Equipment Computer Users Society

83

DBMS-11 QOverview

DBMS-11 is a implementation of & CODASYL
{3> database stressing the logical
relationships among records and the ability
to access only related information using
sets. Our CODASYL database is a direct
access file divided into pages of 1024
bytes each. Information is organized inte
records each having a unique address
(DBKEY). The DBKEY is the combination of
the page and line number of the page where
the record is stored. For example, the
fifth record on page 4321 has the DBKEY
4321:5. Sets are used to represent the
logical relationships between records. A
data dictionary is created to contain 3all

record and set definitions describing the
database, using a coBoOL like data
definition language.
Example of a Data Dictionary record
discription:
Record Name is DEMO.
Record Id is 203.
Location mode is VIA IDSET SET.
Wi thin HUPDRT Area.
05 SEX PIC X.
05 RACE PIC X.
05 BORN PIC X(4).
05 ADDRES.
io STREET PIC X(20).
10 CITy PIC X(15).
10 STATE PIC XX.
10 ZlpP PIC X(10).
(135) PHONE PIC X(103.
Records
A record is a named group of data items

New Orleans LA - 1985

tig.1 ECORD
r -— aa> 1 -— m— - ——
lob ke |“ ke od home work referring otc
Yy | aaaress L. “ e
v j telephone | telephone | physician
prefix data items
stored together, such as DEMO (Figure 1) locate the patients with missing numbers,
which consists of sex, address and phone the user enters "000-00-0000". The DBKEY

number. telephone number, etc. Reference
to a record implies a reference to all the
data items in the record. Each DBMS-11
record also contains a prefix maintained by
the Database Manager (DBM) task. The
prefix contains one to three DBKEYs for
each set in which the record participates.
Records are stored in the database in
either CALC or VIA location modes.

CALC location mode calculates (hashes) the
DBKEY of the record based on the contents
of a data item in the record. If two
records have the same calculated address,
an overflow algorithm is used by the DBM to
resolve the conflict. Storing records with
the CALC location mode will evenly
distribute the recorde throughout the
database in an ideal world. To locate the
CALC record, the user supplies the value of
the CALCed data item and the address is
calculated by the DBM. For example, Social
Security numbers are the CALCed data item
for the Social Security record SSNRCD. To

of the SSNRCD record is computed and the
record located. The patiente in the Sccial
Security set are then listed.

VIA location mode stores the members of a
set physically close to the owner. This
has the effect of grouping the members of
the set onto a few pages. This reduces the
number of pages read and the time to access
members of the set. VIA is best used for
small records in sets in which many members
are accessed frequently.

Sets

A set is a named group of records with one
designated owner, having zero or more
members. Sets are stored as linked lists
of DBKEYs connecting the owner and member
records. A rvecord may participate as
ei ther owner or member of many sets,
however, a3 record cannot be both member and

tig.2 SET
physician
> (owner) _1__}
patient C patient A
(member) (member)

[}

" Z____| patient B -

(member)

owner of one set. Sets provide fast access
to information related to the owner of the
set by using DBKEYs to point to the next
member of the set. Each record prefix
contains the DBKEY of the next vrecord in
the set and may also have the DBKEYs for
the prior and owner vrecords of the set.
The owner prefix contains the DBKEY of the
first member in the set while the last
member prefix contains the DBKEY of the
owner. For example, the patients (members)
treated by a certain physician (owner),
illustrate the retrieval speed provided by
the set structure (Figure 2).

Example of Set definition in Data
Dictionary:

Set name is STFSUM.

Set ID is 323.

Order is Next.

Mode is Chain linked to Prior.
Owner is STFDOC

Next DBKEY position is 3

Prior DBKEY position ics 4.
Member is DEMO
Optional Automatic

is 9
i 10

Next DBKEY position
Prior DBKEY position
Linked to Owner

Owner DBKEY position is 11.

Currency

Most database operations are vrelative to
the user’s "current" location in a set.
Operations such as “find next" or “find
prior" member require knowing which member

of the set the user had last accessed in

the set. The DBM maintains a group of
currency indicators for each user accessing
the database. A currency indicator is the

DBKEY of the most recently accessed vrecord
in the database. There is also a currency
indicator for each type of record and set
in the database. Currency indicators point
to the user‘s position in <sets and the
database, and are updated only by the DBM.

Data Dictionary

The Data Dictionary contains all record and
set definitions for a CODASYL database. It
is a separate entity from the database. As
the English dictionary provides definitions

for the words of English, the data
dictionary provides definitions for the
records and sets of the database. This

eliminates the overhead and possible errors

caused by maintaining data definitions in
each program accessing the database.
Database Manager

No ucer has direct access to the database.
Instead, the Database Manager task is a
program which controle what information is

85

transferred between a user and the
database. The Database Manager handles
simul taneous requests based on two
principles, access modes and locking.

"Access modes" inform the DBM of the user’s
intention to update information. Locking
limits concurrent access by other users.
Each database program declares itself to
require either Update or Retrieval modes.
Update mode access allows a user to change
information and Retrieval mode allows read
only access to the database. Locking can
specify either Concurrent, Protected or
Exclusive access by other users.
Concurrent locking allows other users to
read or update the database while the
“concurrent" task is still connected.
Protected locking allows only one user to
update while all other users can read from
the database. Exclusive access locks out
all other users until the current wuser is
finished. For any task on the computer to

have access to the database through the
DBM, a separate "sub-schema" task is
required. This feature 1limits the data
that be vread by a given user. Access to

cencsitive information can be restricted in

this manner.

Communicating with DBMS-11

DBMS-11 establishes a User Work Area (UWA)
[1) 1in each database program. In FORTRAN,
the UWA is a COMMON block used to transfer
information between the database and
program. Only the data portion of each
database record is transferred into the UWA
by the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>