
USA 1985 SPRING

PROCEEDINGS OF THE DIGITAL EQUIPMENT USERS SOCIETY

l l

____, D

____, E

____, c
___, u t--t-

fl -1\ s - t---1
I

\j J/
'

[Ql
DEC US

PROCEEDINGS
OF THE

DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY

Presentation and Reports
USA Spring 1985

New Orleans, Louisiana
May27-31,1985

"The Following are trademarks of Digital Equipment Corporation"

ALL-IN-1 Digital logo RSTS
DEC EduSystem RSX
DECnet IAS RT
DECmate MASS BUS UNIBUS
DECsystem-10 PDP VAX
DECSYSTEM-20 PDT VMS
DECUS P/OS VT
DECwriter Professional Work Processor
DIBOL Rainbow

Copyright ®DECUS and Digital Equipment Corporation 1985
All Rights Reserved

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DECUS
PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DA TA/IN FORMATION
THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (/TAR)."

DECUS and Digital Equipment Corporation make no representation that
in the interconnection of products in the manner described herein will
not infringe on any existing or future patent rights nor do the de
scriptions contained herein imply the granting of licenses to utilize any
software so described or to make, use or sell equipment constructed in
accordance with these descriptions.

The articles are the responsibility of the authors and therefore, DECUS
and Digital Equipment Corporations, assume no responsibility or
liability for articles or information appearing in the document.

The views herein expressed are those of the authors and do not
necessarily express the views of DECUS or Digital Equipment Corporation.

Ada is a trademark of the U.S. Government, XEROX is a trademark of Xerox Corporation, IBM. PROFFS are

trademarks of International Business Machines Corporation, UNIX is a trademark of AT&T Bell Laboratories. CP/M.

PL/I are trademarks of Digital Research, Inc., MSDOS is a trademark of Microsoft Corporation, TSX-PLUS is a

trademark of S&H Computer Systems Inc.

FOR EWARD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide
society of users of computers, computer peripheral equipment and software manufactured by Digital
Equipment Corporation. The U.S. Chapter of DEC US has approximately 51,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local,
national and international levels to fulfill its primary functions of advancing the art of computation and
providing a means of interchange of information and ideas among members. Two major technical
symposia are held annually in the United States.

For information on theavailabilityof back issues of Proceedings as well as forthcoming DEC US symposia,
contact the following:

DECUS U.S. Chapter
Digital Equipment Corporation
219 Boston Post Road, BP02
Marlboro, MA 01752

All issues of past Proceedings are available on microfilm from:

University Microfilms International
300 North Zeeb Road
Ann Arbor, Ml 48106

This volume of the Proceedings contains papers
which were presented atthe Spring 1985 Symposium of
the Digital Equipment Computer Users Society.

The Spring 1985 Symposium was held at the
Convention Center and Riverside Hilton in New Orleans,
Louisiana. Five thousand two hundred and eighty seven
members of DECUS (out of a membership of approxi
matly 51,000) attended over the week of May 27 to
May 31, 1985. One thousand two hundred fifty also
attended48 Pre-Symposium Seminars on Sunday, May
26. They attended 71 birds-of-a-feather sessions, and
over 915 regularly scheduled presentations. Add all of
that to thousands upon thousands of hours of dis
cussions in seminar rooms, hotel rooms, corridors, on
the Mississippi and in the French Quarter to approxi
mate the magnitude of the input source for this output
document.

Avis, the car rental company, has a rather famous
slogan - "We're Number Two. We Try Harder." They
recently updated it slightly. "We Try Harder, Faster."
Digital Equipment Corporation might well be following
Avis closely, for they too are number two, and they too
are trying harder faster, with the introduction of the new
8600 processor, the fastest Digital computer yet. And at
DECUS, we follow Digital quite closely, trying harder to
be faster, making use of new computer technology,
decision support systems, and office automation to
reduce costs and increase productivity of volunteers
and staff alike. But there is one area where we're trying
especially hard to be extremely fast, publications.

You will notice as you peruse this Proceedings
that the papers are reprinted as received from their
authors in camera-ready form. Why are not the Pro
ceedings, and the Special Interest Group newsletters,
entered into a Digital computer and typeset? The answer
to this hearkens directly back to Avis' new slogan.
Faster. It is the goal of each editor of each publication to
get information out to the reader as quickly as possible.
Data entry and typesetting would add days and weeks
to the time between submission and printing. Certainly,
these delays could be reduced, but at a very high price,
and low cost is one of the major goals of the DECUS
Communications Committee in disseminating inform
ation to the DEC US membership.

At this point, the time between an author's submit
tal of a paper for consideration, acceptance, delivering
of the paper at symposium, and receipt of the Proce
edings by attendees is about nine months. Compare

Ill

PREFACE

that to some ACM and IEEE journals, which can take 3
years between acceptance and publication. Thus, we
sacrifice cosmetics in favor of speedy delivery of in
formation in an environment where information is the
most valuable commodity.

The Special Interest Group newsletters are also
reorganizing themselves, partly to increase the time
liness of the information they distribute. Now, the worst
case between submission and printing will be about
sixty days, where before four months could pass. As a
society devoted to disseminating knowledge and in
formation, DECUS is getting better and better, and faster
and faster.

One obvious problem is that papers accepted and
published as quickly cannot go through a lengthy
review and editing process. This reduces our credibility
in the eyes of some observers, but the timeliness of
DEC US publications simply does not allow a thirty-six
month turnaround time. Digital has released and ob
soleted entire operating systems in less time. As DECUS
members, we simply cannot wait.

Even though the computer and information in
dustries are now going through a highly publicized
slump, the cost of equipment continues to drop, and as
computerized typesetting equipment, optical character

• readers, and laser printers fall, you, the user, can expect
to see the quality of the cosmetics of DECUS
publications rise.

The symposium which produced this document
was put together by hundreds of volunteers - the
Symposium Committee, the DEC US staff, and all of the
Special Interest and Local User Groups. But especially
hard-working and visible are Jeff Jalbert and Dorothy
Geiger. My thanks on behalf of all 5,300 attendees to
both of them. The work of the meeting administrators in
Marlboro, led by Nancy Wilga, is unparalleled in the
world of user groups. Our appreciation for their time and
energy is sincere. In communications, led by DECUS
staff member Judy Arsenault and volunteer Mark
Grundler, my greatest thanks must go to Cheryl Smith,
my colleague, who publishes the Proceedings, for her

effocts and assistance. ~ ~ f,i.
Proceedings Editor J.,. -·
DECUS U. S. Chapter Publications Committee

Table of Contents

Page
BUSINESS APPLICATIONS SIG

Project Management in the New Mini/Micro World
Raymond J. Doubleday . 3

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

Using the DRE-11 to Solve Real Time Data Acquisition
Problems on a VAX
Mark Silverstein . 13
Developing a Multiprocessing Construct with a Structured
Language
Stevan Leonard . 1 7
Cephalometric Analysis of Facial Growth using the
PDP-11 /23 and VAX
Mary Lou Naegele, Herbert J. Gould 27
Investigation of Interrupt Response Times of PDP-11/
44 and PDP-11 /23 Computers Programming in FORTH
for CAMAC Interfaces
J. R. Birkelund, J. A Abate, T. S. Lund 33
Laboratory Information Management System for Lubricant
Analysis
Andrew M. Wims, Ching Po Wang,
Bernard E. Nagel . 39
Enhancing the DTC11-EM Through Software
Communication
Jean M. Lareau . 45
BARS - A Behavioral Acquisition and Research System
B. Johnson, M. Yochmowitz, G. Brown 49

DATA MANAGEMENT SIG

Artificial Intelligence: What It Is, Where It Has Been, and
Where It Is Going
Terry C. Shannon . 55
Data Management for High Energy Laser Systems
Ramon A Tenorio, David Dayton 65
Encryption for Beginners
Bart Z. Lederman . 71
A Radiation Therapy Patient Information Management
System
Theodore J. Smith, Jill M. Baren,
Robert F. Curley . 83
Criteria for Selecting Your Relational Database
Jeffrey S. Jalbert, Keith W. Hare 97
Bar Coding for Inventory Control
Larry R. Creel 1 05
Creating Menu-Driven Systems Using FMS and VAX
DCL
Brian D. Lockrey 111

v

Page
DATATRIEVE SIG

Use of Domain Tables to Connect Interactive and
Batch DATATRIEVE
Elliot F. Jaquith, Jr. 121
DATATRIEVE Record Definition Workshop
Bart Z. Lederman 1 27

EDUSIG

Developing an Applications Library on the VAX-- Some
Observations
John M. Anderson 145
Introduction to Microcomputers for Adults
Richard L Kopec 149

GRAPHICS APPLICATIONS SIG

Low Cost Terminal Options for Digital Equipment
Users
Charles S. Janik 155
Use of an Interactive Videodiso-based Retrieval System
for Archival Managemen~ Computer-Based Instruction,
and Public Information
Patricia K. Mansfield, Michael K. Mansfield 169

HARDWARE AND MICRO SIG

The LA-100 as a Shared Resource
Richard G. Fulton 175

LANGUAGES AND TOOLS SIG

A Microprocessor Cross Development Environment
Clifford J. Schornak, II 185

LARGE SYSTEMS SIG

TOPS-20 Question and Answer
Besty Ramsey 201
VMS for TOPS Users-- Program Development
Jack Stevens 205
TOPS-20 System Directions
Don DenTandt 211
TOPS-10 Novice Question and Answer
Jack Stevens 213
TOPS-10 Monitor Directions
Susan M. Lamaestra 21 5
Reading Foreign Tapes on a DECSYSTEM-20
Besty Ramsey 21 7
TOPS-20 Utility Closet
Steve Attaya 219

Page
MCT1 O/M H-10 Memory Upgrade and Multiport Internal
MOS Memory
Donald A. Kassebaum 221
TOPS-20 Versions 6.1 User's Panel
Peter B. Galvin 223
Managing a Large Multisystem Site--A Case Study
Michael D. Joy 225
TOPS-10/TOPS-20 and Integration Documentation
Status
Susan Porada 247
TOPS/VMS Performance Comparisons
Thomas P. Blinn 249
TOPS-20 V5.1 to V6.1 Technical Comparison
Peter B. Galvin 267

OFFICE AUTOMATION SIG

ALL-I N-1 /WPS-PLUS Documentation
Directions
Sue Ellen Franklin 271
Office Automation - - Beyond the Information Spectrum
Myron K. Hayashida 277
Development of an In-House Training
Program for ALL-IN-1
Nancy R. Pflanz 287

MUMPS SIG

A Walk Through the Forest- How to Fix Your MUMPS
Trees
Denise Simon 297
MUMPS Programming Standards or How I Stopped
Worrying and Learned to Love MUMPS
Robert C. Richardson 313

NETWORKS SIG

Data Interchange Between An IBM
Mainframe and Digital Minicomputers
Leonard J. Moriarty 323
A CAMAC-LSI Network
R. Friesen, A. Simmons, J. Helton,
R. Schell 329
Techniques for Protocol Validation
William T. Kramer 331

PERSONAL COMPUTERS SIG

The Professional-350 as an Intelligent Color Graphics
Engine
Arthur E. Downey 349

SITE MANAGEMENT AND TRAINING SIG

Don't Get Burned! Computer Room Fire Protection
Terry Shannon 361

VI

Page
Writing User-Friendly Documentation
Terry Shannon 367

RT-11 SIG

Multiprocessing and High Speed Data Communication
Harry Haenen 375
The Disk Data Cache under RT-11
Harry Haenen 379
Real Time Temperature Graphics Data Acquisition
System Using DEC RT-11
Donald J. Mandley 385
Experiences with Style in FORTRAN
Robert Walraven, Ralston Bernard 393
Using an LSl-11/23 and RT-11 to Digitize Analog Tapes
John N. Stewart 397

RSX-11 SIG

Loadable Device Driver Data Bases in RSX-11M
SYSGEN
Carl T. Mickelson 405
RSX-11 M Hexadecimal Command Line Numerics
Carl T. Mickelson 411
A Real Time Multiprocessor Data Acquisition Network
Mark Podany 419
Programming with Indirect Command Files
Sharon Linnea Johnson 427

VAX SYSTEMS SIG

TAE: Transportable Applications Executive, NASA's
Front-end for Scientific/Engineering Programs
Martha R. Szczur, Dorothy C. Perkins,
David R. Howell 433
Mini-disaster Prevention Planning for the VMS System
Manager
Marisa Riviere 441
Advanced DCL Programming
Richard H. Warner 445
Recovery of Lost Files from VAX/VMS Disk Structures: A
Case Study
Larry W. Ebinger 459
Tuning RMS Files - - A Case Study on VMS Indexed
Files
John W. Beyer 4 71
Results and Comparisons in Multiprocessing using
VMS 4.0 and MA780
Nancy E. Werner 487
Microcomputer Emulation on the VAX- - Implementation
and Management of a Virtual Microcomputer System
John J. Vasconcelos, Ali T. Diba 497
RMS Indexed File Performance
HaroldT. Glaser, Philip A. Naecker, Pamela A. Valentine,
Gary Friedman 509

Page
MACVAX Connection
Bob Wilson 523
VAX/VMS Security Considerations
Robert Wells 527
The Instruction Unit of the VAX 8600- -A Pipeline
Implementation of the VAX Architecture
F. Osorio, S. Ching, M. Troiani, J. Bloem,
N. Quaynor 535
In Search of the VAXINTOSH-- Customizing VMS V4.0
for DCL Windows
James G. Downward 549
Designing Reliability into the VAX 8600 System
William Bruckert, Ron Josephson 557

POSTER PAPER

Implementation of a Local Area Network at Los Alamos
Meson Physics Facility
Anthony M. Gonzales 565

VII

PROJECT MANAGEMENT IN THE NEW MICRO/MINI WORLD

Raymond J. Doubleday
Advanced Technology, Inc.
2 Union Plaza Suite 103

New London, Connecticut 06320

1.0 INTRODUCTION

There are over 40 Project Management software
packages currently available on the market. These
packages range from the very simple and i nexpen
s i ve, capable of handling only 50 events at a cost
of $80, to the sophisticated, capable of planning
the construction of a space shuttle at a cost of
more than $100,000. With this wide variety of
features, functions, and capabilities, selecting
the appropriate system for your needs would appear
to be an overwhelming task.

The purpose of this paper is to focus on what these
automated tools can do for you, the project man
ager; what to look for; how to define your require
ments; and how to evaluate packages that might
fulfill those requirements. I also hope to point
out some of the gains you should expect from an
automated project management system. Specifically,
what I hope you get from this paper is:

o An understanding of what you should 1 ook
for in Project Management tools.

o An understanding of whether or not you
require automated project management
tools.

o An understanding of what features and
tools you need to fill your specific
requirements.

What you won't get from this paper is:

o A tutorial on project management and
project management techniques.

o A recommendation of the "right" package
for you.

2.0 BACKGROUND

2.1 Hi story

Before beginning the main part of this paper, I
would like to discuss how Project Management soft
ware has changed over the past years and what has
happened in the marketplace to warrant a discussion
such as presented in this paper.

We have been part of a revolution in computing
power. We have gone from large mainframe computers
to microcomputers and now, to what I would call
super-micro or small mini-computers. Originally,
Project Management software was developed on main
frame computers. These Project Management systems
had enormous capacity for project management data
and literally unlimited capacity for handling that
information. These systems typically ran in a
batch mode, which made them extremely slow in terms
of user response. They required a "guru" to care
and feed the system and to analyze the data that
came out of it. The graphics capabilities of these
early machines were limited, if available at all.

Proceedings of the Digital Equipment Computer Users Society 3

However, there was no meaningful limit to what
these machines could do. ARTEMIS is an example of
a typical project management system with this
legacy, as is PSD from Cambridge, Massachusetts
(see Figure 1).

LARGE MAIN FRAME

BATCH ORIENTED
-- LARGE CAPACITY SUPER-MICRO/MI NI

USER-FR I ENDL Y
LARGE CAPACITY

-- INTERACTIVE

MICRO COMPUTER

USER-FR I ENDL Y
SMALL CAPACITY

-- INTERACT I VE

TIME

Figure 1. Automated Project Management
Capabilities

However, with the advent of the microcomputer
revolution (typified by machines such as the DEC
Rainbow, Apple II, IBM PC, and others), we found a
new kind of Project Management software. The
capacity and capabi 1 it i es of this software were
limited; however, the packages were very friendly,
easy to use, and provided immediate response for
the project manager. There was no expert required
to input data or interpret results; hence, the
manager found a real-time decision support tool for
his desktop. Typically, the graphics provided by
these micros were of very poor quality (graphics
were produced using either a dot-matrix or a line
printer) but were sufficient to get the job done.

But, now, what do we have today? We have the
super-micro, typified by machines such as the DEC
Professional 350, the IBM PC XT/AT, and the
MicroVAX I and II. Typically, these are the fast,
powerful, single or few user machines with a large
storage capacity bui 1t in. What has happened is
that we have regained the data storage and speed of
the mainframe computer.

Fortunately, current software has been able to
maintain the user-friendliness of the micro
machine. We now have real-time decision support
software that is easy to use and has no realistic
limitations to the quantity and complexity of data
that can be handled.

The current systems are also able to generate
high-quality graphics. Now we have the best of
both worlds: we have a machine at the project
manager's desk with the capacity of a mainframe and

New Orleans LA - 1985

can provide him with real-time, real world answers
to his project management needs.

2.2 New Ideas

I would like to propose two themes for the evalua
tion of all tools and controls to be dicussed in
the remainder of the paper. These themes are
abstraction and communication.

In everything that you do in a project, a software
development program, or real life, it is important
to be able to break the project into manageable,
definable, understandable tasks (i.e., abstrac
tion). Then, it is equally important to be able to
meaningfully communicate that information.

There are three major features that should be part
of the fundamental design of any Project Management
package. These three features carry through the
fundamental theme of abstraction and communication.

2.2.1. Abstraction. A package should support the
concept of abstraction. By being able to abstract
a project, you are able to take multiple-level
views of your program (i.e., decomposition). Then,
you can deal with it from the beginning (the Con
cept stage), through other successive levels of
detail, down to the last possible level of detail
(such as fabrication and assembly of a product).

2. 2. 2. Rep resent at ion/ commu ni cation. The choice
of activities and milestones must be such that
their representation on paper can be used as a
means of communication. This is important because
unless you can communicate the needs of the project
to your staff, nothing can get done. Communication
must be clear and unequivocal.

2.2.3. Manipulation. The automated tools must
act on these representations of activities and
milestones to ensure consistency, feasibility, and,
most of all, achievability.

When looking at Project Management tools, you
should look at the tools in the light of these
themes as stated above.

3.0 PROJECT MANAGEMENT

This paper is not meant to be a tutorial on project
management, but I would like to briefly go over
what project management is to establish a common
framework. The point of this paper is to highlight
the benefits of automated project management and
the gains that are achievable through the use of
project management.

A project can be broken down into five major
phases: Conception, Planning, Scheduling, Monitor
ing, and Action. Very often action involves the
replanning and rescheduling of activities, as shown
in Figure 2. We will look at each phase in detail
from the point of view of Project Management sys
tems.

4

CONCEIVE

SCHEDULE

MONITOR

ACT

Figure 2. Project Phases

Project Management systems have two major func
tions. They can be used either as tools or as
controls. As tools, they help you to organize,
plan, and schedule; as controls, they monitor
progress of the program (in terms of time and
money). Tools help you to plan; controls tell you
if your plan is working. If you are evaluating a
feature of a Project Management system to be used
as a tool, you should ask yourself how it will help
you to plan your project; if you are evaluating a
feature to be used as a control, you should ask
yourself how it will help you to monitor your job.

3.1 Concept

The first phase of the project is the Conception
phase. This is the definition of the program or
the project and, in fact, becomes its charter.
There are certainly no computers here; this is
where insight, intuition, and depth of human under
standing play a part in defining the project, its
goals, and its requirements. This is where the
goals of the project are established and the tempo
of the program set.

3.2 Planning

3.2.1 Work Breakdown Structure. The planning
stage is the decomposition of the project as con
ceived into its logical structure. In the initial
planning stage, no schedule or resources have been
assigned yet.

Top view planning. This is the first a computer
Project Management package should be able to do
something for you. First of all, it should support
multiple views of the project and secondly, have
the capacity to move down the project in detail.
This is analogous to a top-down step wise refine
ment of the project. This is a place where the
concept of being able to abstract a project or to
push down the details of the project becomes very
important because what you want as a project man
ager is to deal with a larger picture first and
then to fill in the details of each phase. In
essence, you are creating a management outline for
your project managers to complete; and they in turn
may pro vi de the same sort of out 1 i ne to their
subordinates.

Let's 1 ook at what a typi ca 1 software deve 1 opment
project might look like as shown in Figure 3.

ASTROLOGICAL

024-00

024-01 024-02 024-03 024-04 024-05

SPECIFICATION DESIGN CODE TEST DOCUMENTATION
DEPARTMENT A DEPARTMENT B DEPARTMENT C DEPARTMENT D DEPARTMENT E

PPS
... 024-02-01

TEST PLAN ... 024-02-02

Figure 3. Astrological Organization

This is the development of a program called Astro
logical to analyze digitized images of the night
sky. The product breaks down into typical software
development components. The specification, design,
coding, testing, and documentation. The package is
meant for in-house use; therefore, the manufactur
ing and marketing functions are not included on
this particular product. After the concept devel
opment, the next thing that the senior manager must
do is to assign responsibility for each of these
major phases to a person or department and then
produce a rough schedule or goals for the project
completion. Once this preliminary schedule and
assignment have been achieved, the senior manager
wi 11 ask the department managers to produce their
own schedules, budgets, and resource requirements
within the limits of their schedule.

How do you do this? You do this by having a proj
ect management package that supports various levels
of hierarchy. One way to do this is through the
use of work breakdown structure numbers, although
there are a number of other schemes that may work
equally well. Briefly, work breakdown structure is
a hierarchical numbering system similar to the
concept of a work out 1 i ne where the order and the
number that each work assignment has has meaning.
Typically, a work breakdown structure number is
associated with the concept of a work package,
which is the smallest measurable unit of work. In
our example, Figure 3, the Astrological analyzer is
given the number 024. This code indicates that
this particular software product is one of at least
24 different jobs that are taking p 1 ace or have
taken place within the organization. Looking
underneath that, we see that the number 024-02 is
the design function for Job 024. Looking at the
design function in more detail, we see that the
preparation of the program performance specifi
cation is given the number 024-02-01. Development
of the test plan is given the number 024-02-02. It
is possible, of course, for this numbering scheme
to continue down in more detail as required within
each function and, of course, to go across to
support more than the five functions shown here.

Why is this work breakdown structure important? It
is important for two reasons. First of al 1, it

5

allows you to assign responsibility and a budget
for a category of work such as the specifications
024-01 to Department A for completion. Secondly,
it allows you to isolate your view of the project
to the higher level. From now on, you as senior
manager, will only be looking at things down to the
second level; that is, you will be looking at tasks
024-01, 024-02, etc., leaving the specific details
of the project to the managers of each of those
particular departments. Your management, in turn,
may look at Jobs 022, 023, and 024 to supervise the
overall performance of the departments.

The next thing you should look for in a Project
Management package is the ability to support vari
ous levels of hierarchy through the use of work
breakdown number structuring or other means.

3.2.2 PERT/CPM. Now that we have established the
major phases of the program, we need to go into
more detail on how the Astrologicial program can be
realized. The major tool you have available for
this is network analysis. Network analysis is also
known as either PERT (Program Evaluation and Review
Technique) or CPM (Critical Path Method).

PERT/CPM are synonymous today; we will use the term
network analysis to stand for a combination of PERT
and CPM. The idea behind network analysis is to
represent a complex project as a series of inter
connected activities that must be performed. The
description of the project is then used to analyze
the project and answer the following questions.

o How long will the project take?
o Which jobs are most critical to the proj

ect?
o How should the project be scheduled?

An activity is a time/resource consuming event in
the project. I will use the arc in my discussion
to represent an activity. A point in time corre
sponding to the start or completion of an activity
is a milestone; they are represented by a triangle
on the schedule. On a network drawing, they are
represented as nodes or circles (note, however,
that all nodes are not necessarily milestones).

Now, let's look at the network for our Astrological
package as shown in Figure 4.

Ast"rolo~al De•olel
p
H
0
E
N

~
N
E

jC.:!·.!"~~i;-~~~~ -os·-"'~ ------"i•·- - - - - - - -oz~~ .. ;-;.Q T

M

l~·
~~N R

K
p
L
0
T

el ?l Ml Jl J l A :J s J. 8 J ~I J. r ::J JI Fl
1985 ::::r 1986

Figure 4. Astrological Development

What is wrong with this figure? Well, fundamental
ly, it is too simple; however, to introduce the
detail necessary to understand the project from
beginning to end would be too hard; the graph would
be too hard to read, the program would be too hard
to manage and control.

Again, we must be able to do a top-down refinement
of the tasks. Tasks at a higher level can be
broken down and should be broken down in order to
understand the problem. Figure 5 shows an example
of the proper kind of decomposition when applied to
writing a book. As you can see from the figure,
the book has been divided into a number of chap
ters, each chapter into a number of sections, each
section into a number of paragraphs, and each
paragraph into a number of sentences. This, of
course, is a very manageable approach with the
appropriate work breakdown structure numbers being
shown in the right part of the picture.

ANALYSIS
LEVEL

I

ANALYSIS
LEY EL
2

ANALYSIS
LEVEL
3

Returning to our example, Figure 6 shows the code
portion of our task broken down into more detail
beginning with the review of the performance speci
fication and ending with the final integration of
the package.

Code Generation Tasks

Figure 6. Network Plot

What have we done? We have been ab 1 e to i so 1 ate
our tasks into the correct areas of responsibility
and we have been able to decompose the coding job
to manageable units. If you were the head of the
programming department, you might want to have even
more detail for a particular task such as the
coding of the input handlers and you could, in
fact, do that for yourself. The output for this
section, the overall time from the beginning to the
end, can now be passed back up the management chain
and the time put in for coding on the network
drawing as shown previously in Figure 4.

In examining Figure 6, our tool has answered the
first two questions: how long will it take and
which jobs are critical to the project.

WBS LEVEL I

DESCRIPTION WBS NO.

Chapter 1 001-00-00-00-00
Chapter 2 002-00-00-00-00
Chapter 3 003-00-00-00-00
Chapter 4 004-00-00-00-00
Chapter 5 005-00-00-00-00
Chapter 6 006-00- 00-00-00

WBS LEVEL 2

DESCRIPTION WBS NO.

Section 1 003-01-00-00-00
Section 2 003-02-00-00-00
Section 3 003-03-00-00-00
Section 4 003-04-00-00-00
Section 5 003-05-00-00-00
Section 6 003-06-00-00-00

WBS LEVEL 3

DESCRIPTION VBS NO.

Paragraph 1 003-06-01-00-00
Paragraph 2 003-06-02-00-00
Paragraph 3 003-06-03-00-00

ANALYSIS
LEVEL

4

aa11T•==11c•a ~
llBS LEVEL 4

DESCRIPTION llBS NO.

Sentence I
Sentence 2
Sentence 3

003-06-02-01-00
003-06-02-02-00
003-06-02-03-00

Figure 5. Network Decomposition

6

Now that we have our network drawing, what other
kinds of planning tools are available? Next is a
Gantt chart, shown in Figure 7.

I N~.

i 1C•C•
2~0

i 300
4)0

I G{•C
i::;,,'.

re< ..
10({•

£'0C
800

110(.

I:!;~
1300

Code Generation Tasks

DE:.(RIFTI~tl

j FPS Pev1ew
! Output Design

File [les1gn
EL:.f'fer t•esign
GraFhlC:S

Report Gen
DI
Irrput Hr,dlr

r·r1ver
D2
File Ma.in~

uo
~
Integ.,..at1on

DLu:;Ar:u1,

r1j:.Y~

'~ ,-
3: ..
~

'-

--
(

•:

..

c::::::::::J

= FLOAi

~
~

c::::r::::::::::::::::i

Figure 7. Gantt Plot

The Gantt chart is the first depiction of a sched
ule. The critical activities are shown in red on
the Gantt chart as they were shown in red on the
network drawing. Additionally, there should be a
number of tabular reports provided with the network
analysis to bring out the necessary detail in order
to properly analyze the schedule. The kind of
reports that you should expect to see again support
the ideas of abstraction and decomposition, and are
listed in Figure 8. There should be an executive
summary, something that provides an overview of the
time and resources consumed for the project, and a
variety of reports getting down to a final detailed
report showing for each of the activities the time
estimates, the scheduled early start and late
start, the early finish and 1 ate finish dates, as
well as the float, the slack time, and the identi
fication of the activities and resources that are
critical to the time of completion of your task.

o DATA SUMMARY

o EXECUTIVE SUMMARY

o DETAIL REPORTS

o CRITICAL PATH REPORT

Figure 8. Network Analysis Management Reports

This in essence becomes the plan for your project.
However, it is necessary now to generate a firm,
fixed schedule or baseline.

3.3 Schedule

The Gantt plot is a candidate schedule. What you
must do is use it to develop a firm, fixed schedule
or baseline. The final schedule represents the
plan of the Gantt Plot, with real-world constraints
applied to the plan. This schedule is one that you
will manage to and report on. All your progress
will be measured against this baseline schedule.
The schedule for the coding effort is shown in
Figure 9.

7

Figure 9. Schedule Plot

3. 4 Monitor

3.4.1 Controls. You have passed the planning
stage. Now that you have established a schedule,
you need to have a number of automated project
controls that will let you examine the schedule and
examine the financials for your project to make
sure you are both within budget and on schedule.
Before we begin discussion of some controls you
should look for in a project management package,
let's take a look at our project.

First of all, the job spans five departments. The
initial time estimates were that the job would take
two years to complete, cost $1.5 million dollars,
and would be composed of approximately 5,000 separ
able and discrete activities. Given this size, how
are you going to control it? Well, taking a step
back, you have to 1 ook at why you are a project
manager. Most likely, it is because of your
ability to thoroughly understand your job and to
almost be intuitive about the nature of the work
you do. A project of the magnitude of Astrological
would require a database so 1 arge it would negate
your ability to be intuitive. What you need from a
project management package is the ability to be
dynamic in monitoring your project to be able to
develop various views downward into the database
until you can focus on the issues that are pert i -
nent to the project. You need to be able to select
or segment the database so that you can get an
accurate, concise view of a 1 i mi ted segment of the
database.

Again, this supports the concept of abstraction.
You want to be able to look at the data in varying
degrees of detai 1; only the detai 1 necessary to
give you the insights that you need to do your job.
Your Project Management controls should provide
unlimited query capability on the database.

3.4.1 Schedule Status. The first thing you should
look at is the schedule. This is shown in
Figure 10, which is a schedule with milestones for
monitoring the progress of each task.

In this particular example we are showing a graphic
depiction, one that is very important and gives a
quick indication of how we are doing and where we
should be today for the project. As you can see,
immediately below the baseline schedule is the
actual start and completion of each of the activi
ties in the project as well as percentage complete.
The percentage complete for each task is indicated
by how much of the lower bar is filled in.

Code Generation Status

.& =
.... =

1
.::'.·,;.~1·,...;_

•C.Tl\llIT.,...: !::::::! ~Iii~ C:::: ,..:-

Figure 10. Schedule Status Plot

3.4.2 Completion Status. The second chart,
Figure 11, is a Completion Status Plot which gives
us another view of the data. It indicates which
events are early, which events are late, percentage
complete, and how many days remain until the com
pletion of the job.

EVENT
NO.
100
300
200
400
GOO
500

1000
900

1100
1300

Code Generation Status
i:tcn· ... :~1 1 SiMRT i Pt:~:~N1 ~UHFi..c:TE. I tr~!~ i r, .. 1 ~ • ~

DESCFIFT1:0'; : D~TE , 2,t· , 4,0 6G , 8~ , D~TE 5Ft~~-:-' t_::~'.·. : f :
PPS Review
F1le De.s1gr,
Output Desi;,..
Buffer I•es1~"'I
Gr~hic.~

ReFOrt Ceri
Input Hndlr
Ur1v1r
File Ha1nt

1 ::JJ.2: 26ue~ I 2E o · f< I
, <oJucs: . . •. .. ·= 25Afkse 30 o I t I
! 20JU1..C5 ' ' '' ' 22AUGB5 -:.i::: 1 ! ,
I. FAuGe5 ~ _ _ _ _ _ _ _ _ _ 24SEPe5 e '' \ ~ I
: 2•:·~UGa5 LI.. 25NOV85 5 9-3 M
: ".:, ... ~85 [12:NOV85 0 E3 ; L
; ·'.J.ISEPS"'· L 03NOV95 0 61 I E
/£4SEP8!5 I 160CT85 c £31 T. I
i 1€J.:T~ 2:5N!)'-.'85 4! e
I "SNOv85 i 1or•EC85 1€ / ; I
I ' ~ I

l' I~ I
J_ ' o I

c::L_ """"" ~ •<""""-" c.._"" .. "<Ouc• ~ '""''·' •<•«--; !

Figure 11. C011pletion Status Plot

3.4.3 Cost Status. Figure 12 shows a Cost Plot,
which is a measure of the budget, the dollars
spent, and the work achieved for those dollars
spent.

I I $ I I i p .

I
~ I
E
N

I
... I . . x . .

& I

~
- s - T -. -. p

L
0 ·- T

I
~1~iEi™imi•I~I~IuiaiuI~ I FISCAL YEAR XXXX

Figure 12. Cost Plot

This plot gives you a feel for the rate at which
the funds of the project are being used and the
amount of work that is actually being performed for
your project. This brings up a number of ideas,
such as the budgeted cost of the work scheduled,
the budgeted cost of the work performed, and the
actual cost of the work performed.

8

3.4.4 Cost Variance. Figure 13 shows a Cost
Variance Plot. It is the difference plot of the
data that was previously shown in Figure 12 and
gives us a measure of how we 11 we are progressing
against the schedule. The closer these curves are
to zero, the more accurate were our project predic
tions and the better our project performance •

~1-i~I•ImI-I~ 1 -1~1n GJ•
FISCAL YE.:.R :o_»:_x

Figure 13. Cost Variance Plot

3.4.5 Communication. What is significant is that
the previous four figures provide accurate and
timely information that may be communicated easily.
Large stacks of computer runs are not required, and
it is not necessary to connect dots and asterisks
because the plot was prepared on a printer. The
control reports provided are presentation-quality
graphics.

The monitoring tools that you should select should
be suitable for all levels of management. In
management reporting, you certainly don't want to
have separate tools for different levels of manage
ment. What you should expect from your project
management tools is that for high level meetings,
briefings, and presentations, they should support
full-color graphics with figures that are easy to
read and understand. They should be crisp and to
the point. For reports, figures should be done in
black and white so they can be clearly reproduced
by either printing or copying.

Your project controls should also support graphics
with tabular reports which contain all necessary
back-up data.

3.5 Act

Management must manage. Now that you have read the
reports, reviewed the project data from your sub
ordinates, you must identify the causes of any
problems and act on them. Therefore, it is very
important that the project management system you
select be able to perform what-if analyses to aid
in replanning and redefining the project as it
progresses.

At this point, the idea of representation of the
ideas and their automated manipulation becomes very
important. You must be able to easily manipulate
the parameters of your program and perform rapid
what-if analyses until you have developed an ade
quate approach to your problem. You must then be
able to modify schedules to accommodate this
replanning just as easily. With replanning, the
cycle begins again.

4.0 CONCLUSIONS

The lat est generation of Project Management soft
ware has the power and capacity of main-frame type
packages and the ease of use of micro-computer
software.

Any Project Management system you select should:

o Be easy to use.
o Support multiple views of the database

(abstraction).
o Provide presentation-quality graphics

(conmunication).
o Provide real-time analysis (monitor).
o Support rapid what-ff analyses (plan and

repl an).

9

USING THE DRE-11 TO SOLVE REAL TIME
DATA ACQUISITION PROBLEMS ON A VAX

Hark Silverstein
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT
When the rate of inpu~ data exceeds the worst possible
interrupt latency_ time!~ a data acqisition system loses
dependability. The D.iu.-11 alternate- buffered DHA
interface can remove this difficulty. This paper
enumerates the capabilities of the DRE-11, explains any
difficulties in installinJt the driver, demonstrates a QIO
instruction to utilize the aevice, and explains how the
DRE-11 solved real time data problems in Goddard Space
Flight Center's Laboratory for Extraterrestrial Physics.

TIIE ORIGINAL SYSTEM

I serve in the Laboratory for Extraterrestrial
Physics's Information Analysis and Display Office.
We provide computer support to the various groups
in the lab. One such group is the Planetary
Astrophysics Section which, among other thi~s
works on a project called SIRIS. Tlie
Stratospheric Infr8Red Interferometer Spectrometer
is a balloon experiment that is launched into the
middle atmosphere to study the ozone layer and
that which tends to decay ozone. The experiment
needs real time computer support. Our processor
serviced all the experiment's interrupts in a
timely fashion. The displays flashed on the
screen while the bytes traveled through the data
line to deliver the next scan. Our Test and
Formatting System served us well. The scientists
smiled, and I knew peace.

This Test and Formatting System consisted of a
MODCOMP II with a Diablo disk drive, an AMPEX tape
drive, and a Teletype machine as its console
terminal. After ten years of noble service, the
system became unreliable and the scien~ists
frowned. The company that made the Test and
Formatting System no longer existed. When the
tape drive went bad, we called AMPEX. They
assured us the drive was fine and we had a MODCOMP
problem. When we called MODCOMP, they assured us
we had an AMPEX problem. We coula not keep the
system in working condition. I soulbt a
replacement system.

We needed a system to which we could make an easy
transition. Users would have to get on the
machine without a great deal of retraining.
Software, for the most part should not involve
rewriting. Finally the system had to be
portable. After ail, we needed the ability to
test our experiment in the lab and in a high bay
area while it sat in a gondola during flight
preparation. We also had to be able to ship the
machine easily to the balloon facility across the
country where the system would be used to receive
and analyze data during flight.

As so much of the lab's exoerience and software
were VAX oriented, •. we decided the replacement

system should be a VE>A. We had a great aeal of
existing software we could use, and we would be
familiar with the new system to which we would
convert the Test and Formatting System's data
acqisition and analysis programs. The VAX-11/730
fulfilled our requirement for portability, and
with the floating point accelerator, comparea well
with our MODCOMP II.

REAL TIME PROBLEMS

Then the bubble burst. Rumors flew. A 730 can't
handle multiple processes in a real time
environment. The interrupt latency time on a 730
is too great for your neeas. It wlll never work.

The last objection I discounted. PeQple were
doing real time work on a 730. The first
objection I decided to worry about later. I
didn't have multiple processes on the Test and
Formattirut System. I wanted them on the 730, but
If I coulan't get them, I would lose nothing. The

Proceedings of the Digital Equipment Computer Users Society 13

middle objection stumped me. A ord came from the
experiment's output line every 800 microseconds.
That word had to be examined ana needed to have
its bits juggled before the next word came. I had
heard results of tests that showed rare, worst
case latency times of hardware interrupts to the
VAX-11/730 that were greater than my 800
microseconds. Even though such a thing would
rarely occur!_, once would be enough to cause me to
lose aata. ~ne latency time was unacceptable.

I talked over my problem with a fellow in another
lab. His haraware people were putting the
finishing touches on a buffer the~ haa built to
help their VAX-11/750 keep up with data that was
co~·1ing too fast for it. I did not want our
hardware people to have to design and build a
special buffer for this application. In the
course of discussion the fellow mentioned to me
that someone had told him of a new product Digital
Equipment Co~oration had come out with that was
featured in that month's INSIGHT magazine. It was
a double buffered direct memory access high speed
interface that sounded as if it would get around
my latency time problem. I read the article.

THE DRE-11

The article made the DRE-11 sound as if it were
the solution to my problem. It was alternate
buffered. I wouldn't even have to tell it when I
was done with one buffer to start filling the
next. It would do it automatically. This device
would put my incoming data into memory at high
speeds. It would take my data in 16 bit parallel
form. WW1derful! I immediately sent in the card
to receive more information (see fig. 1).

When I believed the DRE-11 was what I wanted I
contacted our DEC sales representative for price,
ordering information, driver information, etc.
Her response was simply that she didn't know what
I was talking about. She'd never heard of a
DRE-11. It was such a new device that the sales
representatives had no information on it. Our
sales rep was able to research it and came up with
enough information for us to order the device,
except for one minor detail. INSIGHT claimed the
driver would be found in VMS. Not so. Mere weeks
before I was due to begin testin2 the exoeriment
on the new system, I found myself with an
interface device I couldn't talk to. An emergency
procurement brought me the driver quicker than I'a
thought possible.

At the time I was a very novice system manager.
My sole experience consisted of 1 week of system
manager class and 2 months as substitute system
manager on a VAX-11/780 while the real system
ma~ager designed a major software project. Thus,
I shuddered at the thought of installing a device
driver. It must have taken me all of 20 minutes.
The installation instructions were crystal clear.
I had the driver installed and tested. This gave
me the ability to code several functions of the
DRE-11 (see fig 2) with simple QIOs.

THE FLOW OF DATA

The READ VIRTUAL BLOCK function IO$_READVBLK
fulfilled mv requirements. If it worked as

New Orleans LA - 1985

0 RE -1 1 SPECIF IC RT I 0 NS

ORTR TRRNSFER

1 6 BIT PRRRLLEL WORDS

OMR BLOCK OR BURST MOOE

128 K WORD RDDRESS I NG
64K WORD MRH BLOCK SIZE

MAHI MUM TRANSFER RATE

600K WORDS PER SECOND

700K WORDS PER SECOND
BURST MOOE

4 ADDRESS REGISTERS
(Fl 6 1)

FUNCTIONS

CRNCEL I /O REQUEST

WRITE BLOCK

READ BLOCK

SET 0 I RECT ORTR PATH
SET BUFFERED DATA PATH

HERD WORD

WRITE WORD

SET FUN CTI ON BITS

HERO STRTUS BITS

CONNECT TO UNSOLICITED

INTERRUPT
(Fl 6 2)

14

advertised, it would fill a buffer in memory with
incoming data and immediately begin to fill
another buffer while my software could play with
the data :l.n the first buffer. Best of all was
that it claimed to do this with little more than
one QIO instruction. Let me show you (see fig.
3) what goes on when you execute this Q!O. The
driver begins the DRE-ll's data transfer by
ordering the DRE-11 to fill my !BUFFA, where
!BUFFA is my first buffer in memory. My next
instruction after the QIO is a wait for event flag
(see fig 4). I know real time programmers hate
waiting for anything, but while you are waiting,
the VAX's memory is actually acguiring the data
you want. When the DRE-11 has filled IBUFFA it
automatically begins to fill IBUFFB (my second
buffer in memory) and issues an interrupt to

:::·:::::::::::::::::::::::::::::::: .. ·.

: : : : DRE-I I : :

DRE-I I

FILLS IBUFFR
SWITCHES

RUTOMRTICRLL Y
TO IBUFFB

RERCTIURTES
DRIUER WITH

INTERRUPT
FILLS IBUHB
SWITCHES

RUTOMRTI CRLL Y

TO IBUFFR

DRIUER

STARTS HRRDWRRE
DRTR TRANSFER
WITH IBUFFR

WRITES BLOCK COUNT
TO IBUFFR HERDER

WRITES I TO BUFFER
POINTER BLOCK
OF IOSB

SET EUENT FLAG

(FIG 3)

MAIN PROGRAM
QIU
SH EUENT FLAG
EHEC:UTES DECODE
CLEAR BUFFER

HERDER
reac~1va~e the driver. Now that I am dealing with
time to spare on the order of 6 and a half seconds
instead of 800 microseconds, I don't care if I
have a little latency time here in reactivating
the driver. The ariver puts the current block
count) (how many blocks or buffers I've filled - 1
in tnis case) in the buffer's header, writes a 1
into the buffer pointer part of the IOSB
(indicatin~ which of the 2 buffers I've most
recently filled and sets the event flag. I've
been waiting for that event fla~. It tells me
that I have a buffer full of data 1n !BUFFA. I
clear the event flag, and go off in my program
(see fig. 5.) to decode the data and store it
on disk so it can be analyzed and displayed by
another process. When I've decoded every byte

that was in IBUFFAA I clear the buffer header, as
a signal that IBUFF may be filled a2ain. After
doing that, I again wait for the event flag.
Meanwhile, the DRE-11~ has been busy filling
IBUFFB. When IBUFFtl is filled, the DRE-11
immediately begins to fill !BUFFA again. The
DRE-11 once more reactivates the driver with an
interrupt. The driver writes the current block
count (2) into IBUFFB's header (I've filled 2
buffers)~ it sticks a 2 in the buffer pointer part
of the luSB (I've just filled buffer number 2) and
sets the event flag I've been waiting for. I
clear the event flag, and proceed to decode the
contents of IBUFFB. On returning from my
subroutine I clear the header of IBUFFB to allow
it to be filled again, and once more wait for
event flag. The scheme repeats from the point
!BUFFA was filled to this point until an error
occurs or until the program is terminated.

SOFTWARE COMMAND THROUGH DRIVER

One QIO commanded the DRE-11 to do all of the
above. Let's take a look at it.

I=SYS~QIO(%VAL(l)~%VAL(CHAN),
1 %VAL(IO$ REAuVBLK~,IOSB ,
2 IBUFFA,%VAL(l6384 ,IBUFFB,
3 %VAL(l6384){%VAL(O ,
4 %VAL(6.536)J

where:

first argument, %VAL(l), indicates the number
of an event flag to be set when either buffer
is filled.

second argu~ent, CHAN, is the number of the
I/O channel assi2ned to the DRE-11.

third argument, IO$_READVBLK, is the function
code to transfer blocks of data from my
external experiment to the VAX" s memory.

fourth argument, IOSB, is the address of a
quadword I/O status block that receives the
retur:i status, an indicator telling which
buffer was most recently filled, and the byte
count of the buffer being transferred up to
the point of termination.

first function parameter is IBUFFA, the
address of my first buffer.

second function parameter is the length of
that buffer in bytes, excluding a 4 byte
header which is used to synchronize th~
program with the alternate buffering.

third function parameter is the address of
the second buffer.

fourth function parameter is
that second buffer, again
header.

the length of
less the 4 byte

fifth function parameter is the number of
blocks of data to be transferred. Note that
I have this as a zero. A zero indicates that
I want to keep on sending data until an error
occurs or until the program terminates.

sixth function parameter is the maximum time
allowed for each buffer to be filled. Here I
told it that it should end with a timeout if
it ever takes the buffer longer than 6.536
seconds to fill.

This is really a much simpler QIO to set up than
those I remember being taught in system services
class, and it gives you tremendous power.

WHAT DID THIS GET ME?

I be~an with a situation in which my VAX was
choking with data, and ended up in a situation

lf(,NOT,ll.CALL LlBSSTOPIXVALllll
I•SYSSASSiGNIUUNAH,CHAN,,l
lFl.NOT.IlCALL LIBSSTOPIXVALIIll
I •SYSS"QIO< XVAL (l). XVAL (CHoi\N l. XVAL (·Jos_REAOVBL K) •

* IOSB,,, IBUFFA,SVAL < 16(Uli I BUFf.B ,XNAL·(I 63~4 l,
"XVAL<.6·1 ,XVAL (6. 536 I l

IFl.NOT.IICALL LIBSSTOPCXVALl!ll
l•SYSSVAlTFRIXVALllll"
I •SYSS:C:LRE.F < XVJ ~ < : l l

(FIG 4)

15

DECODE

• REMOUE HALF WORD OF
ORTA FROM EACH WORD
OF INPUT

• PUT HALF WORDS TOGETHER

• COLLECT WORDS TO FORM
BLOCKS OF 64 WORDS

• PERFORM SYNC CHECK

• IF BLOCK CONTAINS
HOUSEKEEP I NG - MAKE
RURILRBLE TO DISPLAY

• COLLECT RECORD OF 64
BLOCKS

• STORE RECORD ON TAPE AND
DISK

(Fl G 5)

during which I have plenty of time. Earlier; I
st~ted that people tolo us you couldn't nave
muLtiple processes in a real time environment on
the VAX-11/730. We're doing it. While the
program I've just described is acquiring data,
decoding it and storin~ it in a disk file, (and on
tape), a scientist is sitting at a terminal
running an analysis and display program, while a
third process is displaying pressures and
temperatures from the input stream on another
terminal. For our next flight we plan to increase
the amount of data being transferred, and also
increase the capabilities of our displays. With
the DRE-11, I" rn betting our 730 can handle it.

DEVELOPING A MULTIPROCESSING CONSTRUCT
WITH A STRUCTURED LANGUAGE

Stevan Leonard
Exel Microelectronics
San Jose, California

ABSTRACT

Executing and controlling several overlapping pro
cesses is a challenge even with the aid of a multi
tasking operating system. Attacking this problem
from within a program is straightforward with the
use of the case statement construct. A simple
example using PASCAL will illustrate the means of
process initiation and control, and how to code
processes.

What do you do when yoo have a single-job q;>erating
system to solve a nultiprocessing problem? Wishing
and hq;>ing offers only tenporary relief. The
application of a polling method to check on varioos
processes in a round robin fashion brings sate
relief. Then adding in interrupt processing to
form a hybrid approach adds sate flexibility and
lessens system overhead. One critical element is
still missing ~ a general structure applicable to
any nultiprocessing problem. The construct
described in this paper is one method of defining a
general nultiprocessing structure within a program.
Fran there, the programoor is concerned only that
the functions such as reading fran the user console
or printing text are performed with no-wait inp.it
ootp.it system calls. So wish no longer and read
on.

nlE KJLTIPROCESSI~ APPRCW:H

Execution of nultiple processes by a CPU is a
function usually attributed by programners to an
q;>erating system. In nost cases nultiprocessing
Ci.e. nultitasking> ooght to be delegated to the
q;>erating system. But for certain applications it
nay be desirable to naintain control of overlapping
processes fran within a single program unit. This
is a necessity in the case of a single-job
q;>erating system, where overlapping system
resoorces nust be haniled by the program.

A nultiprocessing inplementation is a
straightforward approach to haniling the
asynchroBJUs activities of several devices. If a
separate process controls each device, a process
needs to respond only when the device it is tied to
requires service. Any process can use infornation
aboot the status of other active processes for
decision naking independently of the processing
flow of other devices, as well as of any global
processes controlling nultiprocessing activities.

EMBEDDED IN '!HE APPLICATION

Developing the control of nultiple processes within
an application program provides a direct means to
access and update process information, and to
tailor process control to the application rather
than be constrained to the general fornat provided

Proceedings of the Digital Equipment Computer Users Society 17

by an q;>erating system. Even so, on a system that
supports nul tiprocessing, ent>edded nul tiprocessing
in the application program would usually be
unnecessary withoot special requirements.

~lications written for single-job q;>erating
systems might enploy a nultiprocessing construct to
provide a user sinultaneous access to system
resoorces. Printing documents and data capture
throogh a m::xiem can be time consuming. Overlapping
print and data capture functions coo.Id cut the real
time consumed up to 50%. But aside fran
efficiency, the greatest advantage to overlapped
processes is that the user can continue to interact
with the system to maintain control of the
processing.

f inMenuProcess

Step 1

Step 2

1_ Step N

COPROCESSOR

frocessone

Step 1

Step 2

i__ Step N

f ocessTwo

Step 2

Step 2

i__ Step N

Figure 1: Code Structure in Program MULTIPROCESS

KJLTIPROCESSI~ PROORAM SKELF:roN

At the em of this paper is a listing entitled
"Mtltiprocessing Program Skeleton" that includes
the essential elements of a program that haniles
nultiple processes. Pascal was used for this
exanple since the construct was originally
inplernented in it. Structured languages that
include a case staternent would be equally suitable
to code this construct. Though nost any language
can approximate the code in program KJLTIPROCESS,
the case staterrent is crucial to program legibility
and the generation of unconplicated code.

New Orleans LA· 1985

Figure l illustrates the code structure in program
KJLTIPROCESS. The coprocessor successively
transfers control to active processes. These
processes are defined as procedures, arrl broken up
into steps that are activated through a case
statenent. The effect is that of segnents of code
in separate processes executing on a time-sharing
basis.

ClJRCXJTINE IMPLEMENl'ATION

The concept of coroutines best fits this
inplementation of nultiprocessing. Two coroutines
operate by transferring control back and forth to
one another at planned intervals in their sequence
of code. Whenever one calls the other, processing
continues wherever the other was last called. In
contrast, subroutines are always entered at the
top.

Variables coprocessStatus and nextc.oprocess control
the action of the coprocessor. The case statement
selection via index nextc.oprocess is included to
show that processes don't necessarily have to be
executed successively. If processes have varying
irrportance, a main menu option might allow the user
to establish process priorities.

Variable coprocessStatus contains the current
status of each process. MainMenuProcess is always
active to ironitor input from the keyboard. Status
of other processes is controlled by the
application. The possible process statuses are
defined by coprocessStatuses. Only when a process
is "active" will it be entered. Process status can
be altered by MainMenuProcess or another active
process.

Step M-1restart in MainMenuProcess is of special
irrportance to the functioning of the construct. If
one or irore of the steps in Mai~uProcess is a
subprocess with its own case index, then upon
coopletion of the subprocess, the procedure
Reinitt-M can be used to reset each case index
associated with MainMenuProcess to its initial
entry value. The M-1restart step might also be set
after an error is processed. Another function of
Reinitlf.1 is to reinitialize global variables used
by rrain menu subprocesses and global variables that
depend upon calculations made in main menu
subprocesses, such as variables used for timing.

M)[)EM PROORAM EXAMPLE

On a system with two or irore rrodems, it would be
handy to be able to control sending and receiving
files on irore than one rrodem siltnlltaneously. The
rrodem program exanple at the errl of this paper is a
cooplete Pascal program that operates off the
following main menu:

Main Menu
l Connect/disconnect modem channel
2 Start/stop file receive
3 Start/stop file transmit
4 View a receive/transmit process
5 Dumb terminal mode
6 End

18

MainMenuProcess

MMdraw

MMprompt

MMgetChar

MMprocessCmd

COPROCESSOR

t rocessCmd

PCchannel Prompt

PCgetUserChar

MMdumbTerrninal EumbTerminal
DTinit

DTgetUserchar

DTgetModemChar

MMrestart
I

ReinitMM

todemProcesc:

MDreceive

MDtransmit

Figure 2: Code Structure in Program MODEM

The user is informed of active channels, then
proopted to enter an option nurrber. In order to
start a receive or transmit process, the rrodem to
be used ltnlst be connected. The view option causes
the characters being receive/transmitted to be
echoed on the user console. Dunb terminal m:rle can
be entered on a connected m:rlem, but not one that
is performing file receive/transmit.

The code structure in program M)[)EM is shown in
figure 2.

REl3ARDUG INDIVIDUAL RCXJTINES

In the coprocessor, the program nane is written to
the console, then a few global variables are
initialized. From there on, the coprocessor looks
very nuch like the one in the program skeleton.

MainMenuProcess has the same format as the program
skeleton, but now has two subprocesses
-- ProcessColllrand and DunbTerminal. Note that
while one of these subprocesses is running that the
main menu is inaccessible to the user. The Sllall
procedure Reinitlf.1 resets Mai~uProcess and
DunbTerminal to their initial steps.
ProcessCama.nd resets to its initial step
internally.

Processcarmand could have been inplemented as two
steps in MainMenuProcess, but was broken apart as a
subroutine 'WOUld be in a hierarchical program
structure. Making PCgetUserChar a separate step
was necessary to allow the coprocessor to continue
executing other processes while waiting for a
character from the terminal.

If irore than one character was expected, then the
format used in MainMenuProcess to execute
ProcessCamand would be used, but the characters
waild be buffered in PCgetUserChar until a
terminating character is received.

The DunbTerminal subprocess flips back and forth
between console input and rrodem input. Since the
user input character is written to the terminal,
this shows a half duplex configuration of the
m:rlem.

Other than the argunent processNunber, ~emProcess
is essentially the sane in forIIat as the processes
in the program skeleton. Use of processNunber as
an index into processStep.M) makes ~emProcess
into a nultiple process itself. To support three
IOOdem processes woold require changes to glcbal
variables to harrlle the third IOOdem arrl adding
another step to the coprocess loq;>, but woo.ld not
affect JlblemProcess. The process either receives
characters fran the IOOdem arrl writes them to
IOOdemFile, or reads characters fran IOOdemFile arrl
transmits them to the IOOdem, until an errl of file
oorrlition is encamtered. When the view option is
selected, each character being manipulated is
written to the user console.

MISSI~ ROOTINES

The following routines are missing fran the MDEM
program exanple because they are system deperrlent.
other than the IOOdem device handler, all of them
shoold be fairly easy to code.

AttachMcrlem
Performs the necessary functions to activate the
IOOdem channel, dial a nUITber arrl establish
connection. Note: This routine would have to be
written as a subprocess, similar to ProcessConmm:l,
in order to allow overlapping of waiting for user
input characters and other processes.

DetachMcrlem
Performs the necessary functions to deactivate the
IOOdem channel. See note for Attac~em if any
user interaction is required.

GetlbienChar
Returns the next character from the IOOdem input
buffer. Sets itself to true if a character was
available; otherwise, to false. Must be no-wait.

Modem Interrupt Routine/Device Harrller
An interrupt-driven rootine to get arrl put
characters to the IOOdem. Must buff er input
characters for GetlbienChar.

N'.Jtl THAT YCXJ'VE SEEN IT

Inplementation of this rrultiprocessing construct is
not sinple, yet the necessity to break down the
application into small steps has the benefit of
being self-docunenting, arrl the code being m:>re
likely to be functionally correct the first tine
arourrl. With a little practice, you'll be
developing rrultiprocessing applications where
rrultiprocessing never existed before.

19

"IUL TI PROCESS
01

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
ono
0021
0022
0023
0024
0025
1)0 26
0027
0028
0029
0030
1)031
0032
OB3
0034
0:>35
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057

Source Listing

Program MULTIPROCESS (input,output);

Type
coprocesses = (~ainMenu,processl 1 process2);

15-May-1985 16:43:09
15-May-1985 16:43:00

coprocessStatuses = Cinactive,active,hold,aborted 1 complete);
mainMenuSteps = (MMdraw,MMoromot 1 MMgetChar,MMcheckCmd,~MuserError,

MMrestart);
processlSteps = (Plsteol,Plstep2,Plstep3);
process2Steps = CP2steol,P2steo2,P2steo3);

Var
stopProcessing:
coprocessStatus:
nextCoprocess:
process Step:

procedure ~einitMM;
begin
with processSteo do

MM := MMdraw:
end; < ReinitMM }

boolean:
array CmainMenu •• process2J of coprocessStatuses;
coorocesses;
record

MM: ~ainMenuSteps;

Pl: processlSteps;
P2: orocess2Steps;

end;

procedure MainMenuProcess:
begin
case processStep.MM of

MMdraw:
MMprompt:
MMgetChar:
MMche:kC111d:
MMuserError:
"1Mrestart:
end: < case >

C display ~enu >
{ display prompt }
{ get character from console >
{ check for valid input }
C displ~y error message >

ReinitM~:

end; < MainMenuProcess }

procedure ProcessOne:
begin
case processStep.Pl of

Plstept:
Plstep2:
Plstep3:
end; < case }

end: < ProcessOne >

procedure ProcessT~o:
begin
case processStep.P2 of

P2stept:
P2steo2:
P2steo3:
end; { case }

end; { ProcessOne }

C code for step 1 >
< code for step 2 }
C code for step 3 >

< code for step 1 }
C code for step 2 }
C code for step 3 >

Multiprocessing Program Skeleton (1 of 2)

20

"IULTIPROCESS
01

0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0)74
0075
0076
OJ77
0078
0079
0080
0081
008 2
00~3

Source Listing
15-May-1985 16:43:09
15-May-1985 16:43:00

{

}

begin

+ + + COPROCESSOR + + +

stopProcessing := false:
coprocessStatus[mainMenuJ := active:
coprocessStatusCprocesslJ := inactive:
coprocessStatusCprocesslJ := inactive:
nextCoprocess := mainMenu:
repeat

beg in
case nextCoprocess of

mainMenu:

processl:

process2:

end: { case >

if

if

if

(coprocessStatus[mainMenuJ
MainMenuProcess:
(coprocessStatus[processlJ

Process::Jne:
(coprocessStatus[process2J

ProcessTwo;

if (nextCoprocess = process2) then
nextCoprocess := main"lenu

else
nextCoprocess := succ(nextCoprocess);

end { repeat }
until stop?rocessing;
end. { MULTIPROCESS >

Multiprocessing Program Skeleton (2 of 2)

21

= active) then

= :ictive) then

= active) then

"IDDEM
01

0001
0002
0003
0004
000 5
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
001 7
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
00 31
0032
003 3
0034
0035
0036
DO 37
00 3 8
0039
0040
0041
0042
004 3
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057

Source Listing
15-May-1985 13:38:45
15-May-1985 13:38:31

Program MODEM (input,output);

Const
EOFchar = 26; EDTchar = 4l

Type
coprocesses = (mainMenu,modeml,modem2)l
coprocessStatuses = (inactive,active,stopped,complete):
MainMenuSteps = (MMdraw,MMprompt,MMgetChar,MMcheckCmd,MMuserError,

MMrestart,MMdumbTerminal,MMprocessCmd);
dumbTerminalSteps = (OTinit,OTgetUserChar,OTgetModemChar)l
processCmdSteps = (PCchannelPrompt,PCgetUserChar);
modemSteps = (MOreceive,MOtransmit);
menuOptions = (connectORdisconnect,startORstopReceive,

startORstopTransmit,viewProcess,dumbTerminalMode);

boolean:
Var

stopProcessing:
coprocessStatus:
nextCoprocess:
processStep:

array CmainMenu •• modem2J of coprocessStatuses;
coprocesses;
record

MM: mainMenuSteps;
OT: dumbTerminalSteps;
MO: array Cmodeml •• modem2J of modemSteps;
PC: processCmdSteps;

end;
view:
connected:
modemFile:
menuOption:

array Cmodeml •• modem2J of boolean;
array Cmodeml •• modem2J of boolean:
array Cmodeml •• modem2J of text;
menuOptions;

DTmodemNumber: 111odeml •• modemZl

procedure Attach"lodem(
modemNumber: coprocesses)l EXTERNAL;

procedure DetachModem(
modemNumber: coprocesses)l EXTERNAL;

function GetModemChar(
modemNumber: coprocesses;

var MDchar: char): boolean: EXTERNAL;

procedure PutModemChar(
modemNumber: coprocesses:
MOchar: char); EXTERNAL;

function GetUserChar(
var userChar: char): boolean; EXTERNAL;

procedure ModemProcess(

Var
MOchar:

begin

processNumber: coprocesses)l

char:

case orocessStep.MOCprocessNumberJ of
MOreceive: if (Get~odemChar(processNu111ber,MDchar))

begin
if (view[processNumberJ) then

write(MDchar);

Modem Program Example (1 of 5)

22

then

A10DEA1
01

0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114

MOtransmit:

end; {case}

Source Listing
15-May-1985 13:39:45
15-May-1985 13:38:31

writeCmodemFileCprocessNumberJ,MOchar);
if CMOchar = chrCEOFchar)) then

coprocessStatusCprocessNumberJ := complete:
end:

if Ceof(modemFileCprocessNumberJ)) then
coprocessStatusCprocessNumberJ := complete

else
begin
read(modemFileCprocessNumberJ,MDchar);
if CviewCprocessNumberJ) then

writeCMOchar>:
PutModemChar(processNumber,MOchar>:

end; { ModemProcess }

procedure ReinitMM;
begin
with processStep do

begin
MM := "!Mdraw:
OT := OTinit:
end;

end: { Rein it MM }

procedure OumbTerminal:
Var

OTchar: char:
begin
case processStep.OT of

OTinit: begin
writeln;
processStep.DT := OTgetUserChar:
end;

DTgetUserChar:
begin
if CGetUserCharCOTchar)) then

if CDTchar = chrCEOTchar)) then
processStep.MM := MMrestart

else
begin
writeCOTchar);
PutModemCharCOTmodemNumber,OTchar);
end:

processStep.OT := OTgetModemChar:
end;

DTgetModemChar:

end; { case }

begin
if CGetModemCharCOTmodem~umber,OTchar)) then

writeCDTchar);
processStep.DT := DTgetUserChar:
end;

end; { DumbTerminal }

procedure ProcessCommand;
Var

Modem Program Example (2 of 5)

23

MODEM
01

0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
014 3
0144
0145
0146
0147
0148
0149
0150
0151
015 2
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171

Source Listing
15-May-1985 13:38:45
15-May-1985 13:38:31

modemNumber: coprocesses;
PCchar: char;

begin
case processStep.PC of

PCchannelPrompt:
begin

PCgetUserChar:

write('Enter modem channel (1 or 2): ');
processStep.PC := PCgetUserChar;
end;

if (GetUserChar(PCchar)) then
begin
processStep.PC := PCchannelPrompt;
if (PCchar = 'l') or (PCchar = '2') then

begin
processStep.MM := MMprompt;
case ord(PCchar)-ord('O') of

1: modemNumber := modemll
z: modem~umber := modem2;
end;

if (menuOption = connectORdisconnect) then
if (connected(modemNumberJ) then

begin
connecte1CmodemNumberJ := false;
OetachModem(modemNumber):
end

else
begin
connectedCmodemNumber] := true:
AttachModem(modemNumber);
end;

if (menuDption = startDRstopReceive) then
if (coprocessStatus[modemNumberJ = active)

coorocessStatus(modemNumberJ := stopped
else

begin
if (connected(modemNumberJ) then

begin
coprocessStatusCmodemNumberJ := active;
rewrite(modemFileCmodemNumberJ);
end

else

then

writeln('* * * Modem channel not connected');
end;

if (menuOption = startORstopTransmit) then
if (coprocessStatus(modemNumberJ = active) then

coprocessStatusCmodemNumber] := stopped
else

begin
if (connectedCmodemNumberJ) then

begin
coprocessStatusCmodemNumberJ := active;
reset(modemFileCmodemNumberJ);
end

else
writeln('* * * Modem chan~el not connected');

end;

Modem Program Example (3 of 5)

24

MODEM
01

0172
0173
0174
0175
0176
0177
0178
0179
0180
OllH
0182
0193
0184
0185
0196
0187
0188
0189
0190
OBl
0192
0193
OlH
0195
0196
0197
0198
019'7
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
J214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228

end: C case >

Source Listing
15-May-1985 13:3a:4s
15-May-1985 13:38:31

if CmenuOption = viewProcess) then
if CcoprocessStatusCmodemNumberl = activa) then

begin
viewCmodemNumber] := true;
processStep.MM := MMgetChar:
end

else
writelnC•* * * Process not active•);

if CmenuOption = dumbTerminalMode) t~en

if CcoprocessStatusCmodemNumberJ = active) then
writelnC•* * * Modem channel active•)

else
begin
if CconnectedCmodemNumberJ) then

begin
DTmodemNumber := modemNumber:
processStep.MM := MMdumbTerminal:
end

else
writelnC•* * * Modem channel not connected•);

end;
end

else
writeln(•* * * Modem channel out of range Cl-2)•);

end:

end; C ProcessCommand }

procedure MainMenu?rocess:
Var

MMchar: char:
begin
case processStep.MM of

MMdraw: begin

'4Mprompt:

MMgetChar:

writeln:
writelnc• Main Menu•);
writelnc•1 Connect/disconnect modem channel•>:
writelnc•2 Start/stop file receive•>:
writelnc•3 Start/stop file transmit•);
writelnc•4 View a receive/transmit process•>:
writelnC'5 Dumb terminal mode•);
writeln(•6 End');
processst,p.MM := MMcrompt;
end;
begin
writeln:
if (coprocessStatusCmodemlJ = active) then

writelnc·------ Channel l active ------·>:
if CcoprocessStatus(modem2J = active) then

writelnC'------ Channel 2 active------·>;
if CcoprocessStatusCmodemll <> active) and
CcoprocessStatusCmodem2J <> active) then

writelnc·------ No active processes ------');
writec•enter option number: •>:
processStep.MM := MMgetChar:
end;
if (GetUserChar(MMchar)) then

Modem Program Example (4 of 5)

25

MODEM
01

0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0 271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283

Source Listing
15-May-1985 13:38:45
15-May-1995 13:38:31

if (MMchar < 'l') or (MMchar > '6') then
begin
writeln('* * * Option number out of range (l-6)');
processStep.MM .- MMprompt;
end

else
begin
case ord(MMchar) - ord('O') - 1 of

o: menuOption .- connectORdisconnect;
1: menuOption := startORstopReceive;
2: menuOption := startDRstopTransmit;
3: menuDption .- viewProcess;
4: menuOption .- dumbTerminalMode:
5: stopProcessing := true;
end;

processStep.MM .- MMprocessCmd;
end:

MMprocessCmd: ProcessCommand;
MMdumbTerminal:

Du:nbTerminal;
MMrestart: ReinitMM;
end: {case}

end; { MainMenuProcess }
{

+ + + COPROCESSOR + + +
}

begin
writeln('MOOEM COMMUNICATION PROCESSOR');
stopProcessing := false;
coprocessStatus(mainMenu) := active;
coprocessStatus(modemlJ := inactive:
coprocessStatus(modem2J := inactive;
nextCoprocess := mainMenu;
processStep.MM := MMrestart;
view[modemlJ := false;
view(modem2J := false:
connected(modeml) := false;
connected(modem2J := f3lse:
repeat

begin
case nextCoprocess of

mainMenu: if (coprocessStatus[mainMenu) = active) then

modeml:

modem2:

end;

MainMenuProcess:
if (coprocessStatusCmodemlJ = active) then

ModemProcess(modeml);
if (coprocessStatusCmodem2J = active) then

ModemProcess(modem2):

if (nextCoprocess = modem2) then
nextCoprocess := mainMenu

else
nextCoprocess := succ(nextCoprocess);

end
until stopProcessing:
end.

Modem Program Example (5 of 5)

26

CEPHALOMETRIC ANALYSIS OF FACIAL GROWTH USING THE POP 11/23 ANO YAX.

M. L. Naegele and H. J. Gould, PhD
C9nter for Craniofacial Anomalies

University of Ilinois Medical Center
Chicago, Illinois

ABSTRACT
This paper presents a three step system designed to
input, measure and analyse cephalograms. The inputs to
the system are xrays digitized with a variable number
of points and instructions to perform measurements.
The output of the system provides hard copy plots
representing the digitized points. constructed points
from existing points such as the intersection of t•o
lines, magnification corrections between inconsistent
xrays, and measured variables in a format ready for
statistical anaylsis.

HISTORY

The Center for Craniofacial Anomalies,
University of Illinois, is a unique facility
•hich started in 1949. The Center has gro•n
into one of the largest multidisciplinary
centers in the •orld for treatment,
research, and education in the field of
congenital and acquired deformities of the
head and neck. A multidisciplinary staff of
more than SO members come to the Center fro•
the six Chicago metropolitan area hospitals
in addition to the University of Illinois.
The Center•s faculty is a group of
professionals whose training and expertise
cover all areas of dentistry and medicine
•hich find significance in craniofacial
biology. Meticulous records •hich document
findings and service from the multiple
specialists have been maintained in a
longitudinal manner. Most patients are
followed for a period of treatment and
active observation which emcompasses at
least 10 to 20 years. The Center is
automating procedures using a VAX 11/750
computer. Several studies have been
perfor•ed using the system described in this
paper for cephalometric analysis.

PROBLEM

Th• staff at the center analyse and measure
cephalogra•s (head xrays) of craniofacial
patients in order to aid in their diagnosis
and research. The measurement of
cephalograms is done by defining points,
constructing points on the intersection of
lines, ••asurino distances and angles on
each cephalogram with ru~ers and
protracters. These •easurements. •hich can

take approximately l.S hours per
cephalogram, have included up to 75 unique
variables and magnification corrections.
The measured variables are defined
distances, angles, or ratios of distances.
Magnification corrections are required
whenever a cephalogram•s magnification
varies fro• the reference magnification.
Statistical analysis of these results is
laboriously performed by using calculators.
The above lengthy and tedious process is a
perfect candidate for a computer solution.

SOFTWARE/HARDWARE SOLUTION

A three step system •as designed to improve
accuracy in the measurement and analys~s of
the cephalograms with the added benefit of
reducing anaylsis time. The system sho•n in
figure la demonstrates the three independent
areas of the program, which input data,
create and perform •easurement instructions,
and analyse results. This paper •ill
discuss these three areas independently.
Figure lb depicts the hardware used for the
analysis.

New Orleans LA - 1985
Proceedings of the Digital Equipment Computer Users Society 27

NO

INPUT CEPH DAT A
FOR NEW PROJECT

CREA TE/ APPEND
DATA FILES

NO

CREATE PCB

GET PCB

COMPUTE MEASUREMENTS

NO

SCALE RESULTS FILE

PERFORM STATISTICAL ANALYSIS

Fig. la. Flo~chart of cephalJmetric
cnalysis.

Step 1. Cepnalo,ram traces Csea Fig~r• 2)
are di~itized ~sing a ~ouston instrum•nts
digitizing pad on a POP 11123 MINC ststem
under KT-11. A variable number of points
can be digitized and storad for 9ach
project. The software protects a~ain~t file
overwritws u~ checkinJ the re~uested
fil3name against t~e current directory under
RT-11.

One~ tha f ilen~mws clnd the numbar of points
to oe digitized have been astablished

28

DISK
___ __.PDP 11123

MINC

VAX

VT100
W/TEKTRONIC

EMULATION

TERMINAL

PRINTER

DIGITIZER

PLOTTER

digitization begins. The digitization
routine displays all digitized points on a
~TlJO ~ith -010 emul~tion far immediate
point verification. If a digitizing error
is detectea tnen ona or ail point(s) can be
erased. Missing points on the cephalogram
for ~h~tever reason (hidden, unidanttfiable)
are markea missing oy insarting ~ negative
coordinata value. A safety a~ainst the
wrong number of points di9itized is built in
by not permitting stora~e cf data to di~k if

the point count is not the same as the one
d~finea earlier by the user.

Tha points sho~n in figure 2 were digitized
on each cephalo~r~m. These points are
stored in a sequential file. The file
contains a patiant identification header,
xray mawnif ication and in the case of the
lateral cephalograrn, 29 X and Y coordinates
are append~a. Note the two additional
points added to the 27 lateral data points
are used a~ registration points. This raw
data file has a .LAT file extension. Figure
3 dapicts pati~nt l044•s frontal digitized
points. Additional cephalograms are
appanded to the end of this fil9.

~7 14

Fig. Z. Lateral and frontal cephalogra• traces
•ith digitized point •arkings.

header ~ 1044
10.S6
18.12 r 6.60

S.66
3.17
4.47

14.97
15.91

frontal 13.83
digitzed 12.72
point 7.39
•arkings 8.87

28-43 L 6.07 8.99
10.79
13.62
10.81
12.10

8CH6 10.000
zo.s1 ~digitized
20.19 ~reference

2.76 points
4.86

13.05
11.64
11.,5
13.71

5.02
Z.66
5.10
6.15
a.zz
s.11
8.17
8.4,
5.91
s.z3

Fig. 3 Ra• data file containing
header and digitized points.

29

33
30

Hard copy plots sho•ing all digitized points
(see Figure 4) are •ade by accessing the raw
data files. The plots are overlayed on the
original cephalogra• trace to insure proper
digitization.

Step 2. Identify and coapute desired
variables to b• •easvred using VAX.

In order to analyse the input cephalo••tric
data •• create what •• t•r• a process
control block CPC8). Th• PCB defines the
••a•ure•ents wanted and gives instructions
for constructing data points. Creation of a
PCB can be perfor••d in an asynchronis •ode
with data input <••• Figure la). Variables

30 33

22 10 ")' '7" 37 42

14 13 36 43

28

LATERAL CEPH PLOT FRONT AL CEPH PLOT

Fi~. 4. Lat~ral znd frontal h3rd copy plots of
digitized cephalograms.

to be measured, constructea points and
identifying labels are defined through a
menu driven routine that provides the
following choices:

1. Undefined.
z. Point to point distance.
3. Point to line distance.
4. Angle between 3 points.
s. Conatructed point of intersection

between two lines.
6. Conatructea point parpendicular

to :i line.
1. Add two variables.
B. SJbtract two variables.
9. Multiply two v~riables.

10. Divide two variables.
11. End process control.

The PCB is created oy a menu driven routine.
Measurement instructions are created thru
the above routine which prompts for the type
of measurement to be made, the location in
the X and Y data structure for constructed
points or the MEASURED data structure <Each
data structure is a one dimensional array.),
the points to be operated on and a labal to
identify the constructed point or variable

30

created. To illustrate its funct~on assume
we ~ant to measure an angl~. function 4
above is selected which prompts for the 3
digitized points and a label to identify the
angle. There will be a separate PCS created
tor lateral and frontal points.

To measure tha distance betwe~n point 30 and
point 33 on the frontal cephalogram 9 the
menu driven routine would prompt as follows:

function ==>
variable ==>

point
point
label

==>
==>
==>

2
100

30
33
Eel-Eel

Comment.:;:
distance function
measur~d variable
stored at
location 100
in MEASURED array
digitized point 30
digitized point 33
ectocranium right
ectocranium left

To measure the perpendicular distance
between point 12 and the line connecting
points 18 and 8 on the lateral cephalogram 9

function ==>

varJ.able ==>

point ==>
endpointl==>
endpoint2==>
label ==>

3

101

12
18

a
Me-NS PL

distance to ~

line function
variable stored at
location. 101
in MEASURED array
digitized point 12
digitized point 18
digitized point a
menton to
sella-nasion plane

To measure tha angle between points ia.a,9
where point 8 is the vertex on the lateral
cephalo~ram.

function ==> 4 angle function
variable ==> 102 variable stored at

location lOZ
in MEASURE!> array

point ==> 18 di11itized point 18
vertex ==> d digitized po.int 8
point ==> 9 digitized point 9
label ==> S-N-Na sella-nasion-nasale

To construct a point of intersection between
two lines where the first line is from
points 8 to 12. and the second line from
points 10 to 22,

function ==> 5 intersection
function
variable ==> 45 point stored at

X,Y location 45
endpoint l of ll.ne 1 .:::) B
endpoint l of line l :.::) 12
endpoint l of line 2. ==> 10
endpoint 2. of line l ==> 22
label ==> intersection 8-12110-22

To construct a point perpendicular to a
lino, point 12 perpendicular to line B-18,

function ==> o point construction
function

variable =.::> 46 ; point stored at
x,Y location 46

point ==> l~ digitized point 12
endpointl==> B digitized pol.nt 8
endpoint2==> 18 digitized pol.nt 18
label ==> point 12 on a line

perpendicular to line 8-18

To operate on the MEASURED data structure
from the above menu we can addt subtract,
multiply and/or divide any two stored
measured variables. To find the ratio
between tne two measured distance variables
100 and 101,

function ==> 10

variable .:::) 103

numerator ==>

denominator ==>

label ==>

100

101

ratio

divide two
variables function
ratio stored at
location 103
in mea~ured array
will divide the
contents of
variable 100 by
the contents

; of variable 101.
Ecl-fcl/Me-NSPl.

31

This menu driven routine creates a process
control block Csee Figure 5) that is stored
in a file with a .PCS extension. This
control block stores the information
specifying each function selected and its
arguments. The process control blocks for
the examples given above is shown in figure
s.

function selected

~ argu11ents ~ arguments __.,._...
3 101 12. 18 a 0 2 10 () 30 ., .

_,3 0 0
4 l 02 18 8 " 0
5 45 8 12 10 22.
6 46 12. a ld 0

10 103 100 101 0 c

Lateral PCB Frontal PCB

Fii;;;. 5 Process control block (PCS) for
examples of variable computation.

This block can be as large as necessary.
Constructed points (functions 4 and 5) will
fill in after the existin; digitized points
in the X and Y arrays.

After all variables to be measured have been
defined in the process control bloc~ the
computation of measurements begins. These
varl.ables must be measured for N
cephalograms. The .PCB file is accessed and
the desired operation is performed on the
appropriate raw data file (digitized point~

and constructed ~oints) to create a results
file with extension .RES. When a
computation is perform~d on a ~l.ssing value
the variable is marked invalid to aid in
future analysl.s. The results file contains
N cephalograms wJ.th M measured variables (N
records with M*7 oytes per record).

Cephalograms have different magnification
factors associated with them causing
inconsistencies. for example, wnen trying
to observe growth on a patient the
magnification may vary from one cephalo~ram
~o another. Measured variables are
initially computed for each cephalogram
without any corrections for magnification.
However, correction must be made before any
measured variables can be properly analysed.
Magnification correction is made by scaling
to a desired magnification, which is usually
Ol. This scaling is done by operatin; on
the results file. All measured variables
can be scaled for magnification except for
angles.

In summarv the following files are created;

Step l

project.FRO ;frontal digitized points
project.LAT ;lateral digitized points

Step 2

projectf.PC8 ;process control
block (frontal)

projectl.PC& ;process control
block <lateral)

projectf.RES ;•easured results (frontal)
projectl.RES :•easured results (lateral>
projectf.SCA ;scaled results (frontal)
projectl.SCA ;scaled results (lateral)

Step 3. Perform analysis using VAX.

Th• scaled results file containing N
cephalogra•s •ith X measured variables may
be accessed by OATATRIEVE or SAS for 9asy
accurate statistical analysis. After
scaling the magnifications for frontal and
lateral cephalograms, the records can be
crossed on patient identification n~•b•r to
perfor• any ratios containing both frontal
and lateral points. Since each patient has
frontal and lateral variables associated
•ith hi•• •• use datatrieve to cross files
on patient identification number which gives
access to all frontal and lateral variables
for that patient. Ratios bet•een frontal
and lateral variables can then be found for
various groups of patients on several keys
such as sex, age, race, diagnosis, etc.
Means, standard deviations, confidence
intervals, ranges, T-tests, and/or
non-parametric statistics can be performed
on the resulting measured variables and
ratios of measured variables with OATATRIEVE
or SAS.

CONCLUSION

The calculation of variables was •ritten in
fortran. Some of the larger studies
required up to an hour of CPU ti•• to
perfor• all measurements. This time of
course is directly proportional to the
number of patients being analyzed and the
number of variables to be measured for each
patient. DATATRIEVE mas used to performed
the statisical portion and mas slo• due to
creating collections and crossing
collections. Most jobs were run overnight
to avoid slowing ~own the system. This
cephalometric system has saved many users
hundreds of hours of ti•• •hil• i•proving
all studi•s performed with it.

32

INVESTIGATION OF INTERRUPT RESPONSE TIMES OF PDPll/44 AND
PDPll/23 COMPUTERS PROGRAMMED IN FORTH FOR CAMAC INTERFACES

J. R. Birkelund, J. A. Abate, T. S. Lund
Kodak Research Laboratories

Eastman Kodak Company
Rochester, New York 14650

ABSTRACT

Comparison of interrupt response times for PDPll/44 and
PDPll/23+ machines, using the FORTH programming language, is
presented. The interrupt response of the machines with FORTH
implemented as a stand-alone operating system is compared with
an implementation of FORTH running under the RSXllM operating
system. The comparisons have been made on systems operating
CAMAC parallel interface buses, both as single bus controllers
(IEEE 583) and as parallel highways (IEEE 596), which require
a branch driver interface. The measurements show that time
overhead in response to interrupts is reduced by a factor of
about 2 when stand-alone FORTH is used compared to FORTH
implementations under the RSX operating system.

1. INTRODUCTION

Many factors are involved in the selection of an
operating system and programming language for real
time computer applications. Among the most impor
tant of these factors are the response of the
chosen system to interrupts and the ease of program
ming external hardware functions, especially
interrupts. The FORTH language has been developed
with real-time applications in mind and offers
several advantages to the programmer when access to
hardware external to the computer is called for.
FORTH may be implemented as a task running under
some operating system, such as RSX, or it may be
implemented as a stand-alone system. The operation
of FORTH under a standard operating system has
attractive features, since it permits both the ease
of access to hardware provided by FORTH and access
to the powerful multipurpose functions provided to
a user by other operating systems. This paper
considers the advantages and disadvantages of these
two types of implementation from the viewpoint of
interrupt response.

This paper addresses the issue of the interrupt
response time for several operating system and
hardware configurations that use the FORTH language,
in an attempt to quantify the advantages or disad
vantages here from the use of FORTH. The work
described applies to a particular application in
which the external hardware conforms to the CAMAC
interface standard, and the data described apply to
that system. However, the performance measurements
should give some guidance to users implementing
real-time systems with different configurations.

Section 2 describes salient features of the FORTH
language for real-time operations. Section 3
describes some features of the CAMAC interfaces.
Sections 4 and 5 describe the hardware and software
configurations used for the testing. Section 5
describes the test methods used to evaluate the
interrupt response of the systems described in
Section 3. Section 6 gives the results, and
Section 7 gives the conclusions.

33

2 • THE FORTH LANGUAGE

The FORTH language has been described elsewhere
(1, 2). FORTH is a threaded interpretive language
that may be run in a computer as a stand-alone
operating system or as a task running under some
standard operating systems such as RSX-11 or RT-11.
The operation of FORTH is in some respects similar
to the more familiar BASIC language, in that the
programmer may define new operations, called words
which become immediately available for execution, '
through a resident compiler, without the necessity
of a separate compile and link step required by
noninterpretive languages. The FORTH system
maintains a dictionary of defined words, and new
words can be constructed out of combinations of
already defined words. The FORTH dictionary
contains pointers to the code and necessary para
meters required to execute the functions required
by the word definition. By looking through the
dictionary for the code to execute as each word is
encountered, the machine performs the functions
required of it. Words exist that allow new defini
tions to be compiled into the dictionary as required.
In addition, FORTH allows the possibility of in
line code, called code words, constructed by a
FORTH assembler, which, once entered, are executed
in specified order as a set of machine instructions
without the necessity to look through the dictiona~
pointers. Use of these code definitions is equiv
alent to code built by a conventional assembler,
which provides the fastest possible execution, and
such code definitions are used in the FORTH inter
rupt service routines tested for this paper.

The operation of FORTH is controlled by a section
of FORTH code comprising an inner interpreter and
outer text interpreter. The text interpreter
parses the control input stream, which may come
either from the terminal or from other storage such
as a disk. The text interpreter places input
numbers on a first-in, last-out parameter stack and
looks through the dictionary for the definition of
words found in the input stream. If the words
are found, the code defined for them is executed

New Orleans LA· 1985

by using the parameters on the stack. A new dictio
nary-entry-defining word exists, usually ':',which
causes the text interpreter to pass control to the
inner interpreter if it is encountered in the input
stream. When the inner interpreter has control, it
compiles into the dictionary new code defined by the
words and parameters in the input stream. When the
inner interpreter encounters the compiler exit word,
usually';', control is returned to the text inter
preter, and the new dictionary entry is complete.
Note that the input stream is not retained, and
interpretation of the input stream is done by execu
tion in the order specified by the input stream, of
the code pointed to by the dictionary entries.
Thus, the only parsing step required to build execu
table code occurs when code is compiled into the
dictionary, and thereafter execution of the code is
very fast.

In its stand-alone form, FORTH allows the user
access to all addresses accessible to the computer,
including the I/O page in PDPll systems and the
memory management registers. With the FORTH equiva
lent of MOV instructions, the user may write direct
ly in these registers to control external devices
through the I/O page or rearrange the memory mapping.
No protections, checks, or controls are provided for
any of these addresses, and the programmer has
complete control of them. This is both a blessing
and a curse, but it is the source of the special
utility of FORTH in operations involving external
hardware. In addition, for interrupt programming,
the programmer may define a FORTH code word or a
high-level FORTH word to serve as the interrupt
service routine and place the entry address of this
ISR directly into the vector address of the external
device that will produce the interrupt requiring
service. When an interrupt occurs, since FORTH does
not make use of the various modes available in a
PDPll and remains always in kernel mode, the system
is simply interrupted and jumps directly to the
address given in the interrupt vector, returning by
execution of the machine instruction RTI.

When operated as a task under an operating system,
code to handle external devices with FORTH must
conform to the rules laid down by the operating
system for I/O page and interrupt access. With RSX-
11, the FORTH task must be privileged, must be
mapped to the I/O page through a previously built
operating system device common with the use of
active page register 7, and must have pr:O set at
task build time to allow the use of the CINT$ connect
to interrupt system service. When an interrupt
occurs, the action of the machine is somewhat more
complicated than in the stand-alone case, owing to
the necessity for RSX to take care of the multiple
tasks and the memory mapping. The interrupt puts
the machine into kernel mode, at processor priority
7, maps a designated region of the user's task
through PAR 5, and jumps to the address specified in
the CINT$ directive. The interrupt service routine
runs in kernel mode with PAR 5 mapping of its logical
address space and exits with the FORTH assembler
equivalent of the RTS PC instruction. This causes
some time overhead, which is discussed further
below.

This interpretive scheme is useful in interaction
with hardware, since it allows new control functions
to be easily defined and tested and is thus attrac
tive for development of hardware control systems.

34

The advantages claimed by proponents for the FORTH
language are that code in FORTH is fast in execu
tion, quickly developed and tested incrementally,
and compact and convenient when constant development
is required. The major disadvantages of FORTH as a
stand-alone system are its inability to run code
built in other languages, its lack of a convenient
file structure on external storage devices, and its
too simple multitasking and multiuser facilities.
In addition in the particular application of inter
est to us, a stand-alone FORTH machine could not
easily be incorporated into DECNET. The use of
FORTH under a standard operating system is an
attempt to gain the best of both worlds.

3. THE CAMAC INTERFACE

CAMAC is an acronym for Computer Automated Measure
ment and Control and is defined by IEEE standards
583, 595, 596, 675, and 683. The system consists
of a standard 86-line bus, housed in a mechanical
assembly called a crate, which usually contains 25
slots for the functional modules. The CAMAC bus,
referred to as the dataway, and the functional
modules are interfaced to the control computer via
a crate controller module inserted into the crate,
usually at station number 25. The CAMAC crate has
slots into which modular CAMAC units may be inser
ted, for various control and measurement functions
to be performed in the external world. The mechan
ical assembly is such that CAMAC modules may easily
be removed and inserted in the crate, and the
functions of the bus lines are so standardized that
control of the modules from the computer may be
obtained by software alone. Thus the system pro
vides a potentially flexible control and measurement
interface between the computer and the outside
world. The arrangement is shown schematically in
Figure 1. The arrangement of the dataway is such
that the controller station has two exclusive
connections to each slot, via lines known as N, the
slot address, and L, the attention line used by the
modules in each slot to get the attention of the
controller. If the L line is asserted by a module,
then the system may be configured to interrupt the
control computer. These CAMAC module requests are
called Look-At-Me or LAM requests.

CAMAC DATAWAY WITHIN CRATE

CAMAC DATAWAY
LINES

- STATION NUMBER -

31 Bus lines connecting each station

50 Bus lines for data between all stations except #25

L, N Two lines from control station to each normal station

23

3-Patch contacts {normal) 7-Patch contacts (control)

Figure 1.

24

CONTROL
STATION

25

Schematic of the CAMAC crate dataway lines.

There are two major configurations for CAMAC crate
connections to a computer: the dedicated-interface
configuration and the branch highway, shown sche
matically in Figures 2 and 3. The dedicated
interface configuration allows a computer to com
municate with one crate controller, for control of
the modules in a single crate, whereas the branch
highway configuration provides an interface between
the computer and a branch driver, which allows the
computer to conununicate with several crate control
lers via a highway, which may be either a parallel
or a serial bus link. For this paper only parallel
highway systems will be considered.

Computer

CAMAC CONFIGURATION

Dedicated interface

Interface Crate
controller Crate

Controller - Interface connection via a 52 line connection.

Figure 2.

Schematic of the connections in a dedicated CAMAC
computer interface connection.

CAMAC CONFIGURATION

Branch lll.ghwoy_

Computer Branch
driver

Branch driver control a 52
line bus to the CAMAC crates.

Crates selected for operations
by address.

Figure 3.

Crate
controller

Crate
controller

Crate
controller

Terminator

Crate"" I

Schematic of the CAMAC crate-computer connect~ons
for a branch-highway connection. The connections
between the branch driver interface and the crate
form a parallel bus.

Each module in the crate is controlled by the
computer according to a standardized protocol in
which the control word is divided into three sub
sections: N for the slot address, A for the sub
address in the module, and F for the function to be

35

performed by the module. These NAF codes may be
contained in a single word, thus making it possible
to perform an action of a single module with a
single computer instruction, moving the control
word to the interface control register. On some
systems a second instruction is also necessary to
set a 'Go' bit in the interface CSR.

4. HARDWARE CONFIGURATIONS

These are shown in Figures 4 and 5. The interrupt
performance of two computers and two CAMAC inter
faces has been tested. In addition, the perfor
mance of stand-alone FORTH is compared with FORTH
implemented as a task under RSX-11-M. The hardware
configurations are a PDPll/23 processor (KDllAA)
connected to a dedicated CAMAC interface (Kinetic
Systems 2920) on the Q-bus and a PDPll/44 with its
UNIBUS connected via a Qniverter (Able Computer) to
a Q-bus with the same dedicated interface and the
11/44 connected to a branch-highway interface
(Jorway 411) directly on the UNIBUS.

11144

411
branch dr.

Contra lier

Contra lier

11/44 CONFIGURATIONS TESTED

CAMAC
crate

CAM AC
crate

Unibus

Figure 4.

Qniverter

Q-bus

3920
dedicated
interface

Controller

CAM AC
crate

Diagram of the PDPll/44 system tested for in
terrupt response. Both the dedicated and branch
driver interfaces were tested on this machine.

The configuration for testing the interrupt response
is shown in Figure 6. The tests were performed
with a triggerable CAMAC analog-to-digital converter
(Standard Engineering 212) , which produces a LAM
request after a conversion initiated by the trigger.
The triggers were produced by a TTL pulser, and
these triggers were counted by a fast CAMAC scaler
(Kinetic Systems 3640) , which could be read from
the computer by CAMAC instructions. In addition,
the pulser trigger started the sweep on an oscillo
scope and was displayed on the scope to provide a
time reference. The action of the dataway could be
monitored by a dataway display control (Kinetic
System 3296) , which gave a gate pulse when NAF
codes selected by switches were detected on the

11/23 CONFIGURATION TESTED

11/23

l
J l Q-Bus

I
3920

dedicated
interface

l
Controller

l
CA MAC
crate

Figure 5.

. f the PDPll/23 system tested with a
Diagram o · 1 rate
dedicated CAMAC interface and a sing e c .

dataway. The output of the dataway display control
was counted in a second channel of the scaler and
also displayed on the oscilloscope. Thus time
measurements could be made on the oscilloscope, and
the scaler values could be used to check that the
number of triggers was the same as the number of
dataway operations, to ensure that no interrupts
were lost. A schematic view of the timing cycle is
shown in Figure 7.

TEST CIRCUIT

[Pulser l T_!L

J
Triooer

Trioo•i:... Std. eno.
212 ADC

CH 1 K.S.
up/dwn
scaler

CH2
Tri ooer

CH 1
K.S.

~

Oscilloscope 3296 CH2
~ dataway

display
control

Figure 6.

Testing circuit for the interrupt-response-time
measurements.

36

ADC
TRIGGER

!
f

FIRST
DATAWAY
CYCLE

TIMING DIAGRAM

1. Fast Loop Time:

NEXT
TRIGGER

!

- Time between triggers when first dataway cycle
pulse loses strict synchronism with trigger.

2. Fastest Time:
- Time between triggers with fast loop enabled

when lams begin to be lost.

Figure 7.

Schematic timing diagram for the display seen on
the oscilloscope during testing.

5. INTERRUPT SERVICE ROUTINES

The functions of the interrupt service routines
used in the tests are shown in Figure 8 for the
dedicated interface and in Figure 9 for the branch
highway. Some differences in the actual code were
necessary between the stand-alone and RSX implemen
tations, but these were minor and were mostly
concerned with which PAR mapped the code when the
ISR was running. The interrupt service routines
were coded in FORTH assembler and are machine
language routines directly programmed. Thus, apart
from inefficiencies that may be introduced by the
programmer, they run as fast as the computer hard
ware will allow. We believe that these are coded
as efficiently as possible, and therefore run-time
differences in the various configurations tested
represent overhead inherent in the different soft
ware implementations of the FORTH language.

Decrement
sample caunt

FUNCTIONS OF ISR

[3920)

Increment
Fast loop
caunter

Figure 8.

RTI

Yes

Logical functions of the interrupt service routine
tested for the dedicated CAMAC interface.

FUNCTIONS OF !SR

[411]

Figure 9.

Set
inhibit

Restore
RO

RT!

Enable
INT

Logical functions of the interrupt service
routine tested for the branch-driver interface
on the PDPll/44.

The interrupt service routines described in Figures
8 and 9 represent the minimum interrupt service
routine possible with the CAMAC interfaces used
here. Once the interrupt service routine is entered,
the routine saves a register for use within the
routine, disables interrupts from the CAMAC inter
face, reads and clears the ADC, transfers to memory
the data sent to an interface register by the ADC,
decrements the ISR cycle counter, and inhibits the
CAMAC crate if this counter is zero. If the counter
is not zero, the interfaces have a bit in their
CSR that indicates if another LAM request was made
during the run time of the ISR. This pending LAM
will not interrupt the computer, since interrupts
are disabled, but by checking the appropriate bit,
the pending request can be serviced in a 'fast
loop' without incurring the overhead required to
get into and out of the ISR. The number of fast
loops is counted by the ISR. Finally, the ISR
restores the register and returns.

6. RESULTS OF THE MEASUREMENT

The timing measurement results are shown in Table 1.
All times are measured with respect to the ADC
trigger pulse. The time to the first dataway cycle
in the CAMAC crate represents the sum of the ADC
conversion time, the interrupt latency of the
processor, the software overhead in transferring
control to the user's interrupt service routine,
and the run time of the instructions required to
set up and read the contents of the ADC output
register. Measurements show that the ADC conversion
time is 10 µ,s, and there is no appreciable delay in
transferring a LAM seen by the crate controller to
the computer bus interrupt lines.

The 'fast loop' times shown in Table 1 are the times
between sequential ADC triggers when the 'fast loop'
or overhead free interrupt service cycles begin.
This can be seen on the oscilloscope trace shown
schematically in Figure 7 by increasing the trigger
frequency until the exact time synchronism is lost
between the first dataway cycle and the trigger

37

POPI! INTERRUPT RESPONSE TIME (CAMAC)

TIMES IN µs AFTER ADC TRIGGER

DEDICATED INTERFACE (3920)

1st Dataway Cycle Fast Loop Fastest

11/23 S.A. 50 90 70

11/23 RSX 100 170 150

11/44 S.A. 35.2 48.2 39

11/44 RSX 63.6 102.0 102

BRANCH HIGHWAY (411)_

1st Dataway Cycle Fast Loop Fastest
11/44 S.A. 25.2 45.0 33

11/44 RSX 53.8 103.2 80

These times include 10 µ.s for the ADC conversion time.

Table 1.

Interrupt respons times for the various hardware
and software conf Jurations tested. Times are
recorded in microseconds from the trigger of the
ADC and measure the period to the first cycle seen
on the CAMAC dataway, the shortest time between
triggers before overhead-free interrupt service
occurs, and the shortest period between triggers
before interrupts are lost. Data are recorded for
both 11/23 and 11/44 computers, for both dedicated
and branch-highway CAMAC systems, and for RSX and
stand-alone FORTH.

pulse. This fast-loop time represents the run time
of the interrupt service process up to the test of
the 'LAM sum' bit on the dedicated interface or the
'BDDYN' bit on the branch-highway interface.
Except for the register restore, interrupt
enable (BIS), and return instructions, that is the
whole run time of the ISR.

The third column of Table 1 shows the fastest
interrupt frequency that can be obtained from the
system and is measured as the time between triggers
of the ADC at which interrupts begin to be missed
or not serviced at all. This represents a condition
when all interrupts are serviced in the 'fast loop'
mode.

Table 1 shows that there is a factor of almost 2
increase in speed upon going from the 11/23 to the
11/44 regardless of which operating system is used,
and stand-alone FORTH gives an increase of a factor
of about 2 in interrupt response speed over the RSX
implementation on both the 11/23 and the 11/44.
Since the interrupt service routines implemented
for this test do few useful operations, they repre
sent almost completely the overhead in processing
interrupts from the CAMAC crates.

Table 2 gives times from the processor manual for
the 11/23 for the instructions executed in the
interrupt service routine for the dedicated con
troller up to the point of initiation of the first

dataway cycle. These times add up to 26 µs. The
manual indicates that the interrupt latency should
be 9. 75 µ.s, and the ADC conversion time is 10 µs.
This gives a hardware theoretical time to the first
dataway operation of 46 µs, compared with the
measured value of 50 µs. This shows that FORTH
handles interrupts at the hardware speed of the
machine if implemented in the stand-alone con
figuration.

11/23 DEDICATED INTERFACE

Instruction Times at ISR Start

Mode Time (µS)
Instruction Source Dest. Basic Source Dest.

MOV 10046 0 4 2.025 0 2.025

BIC 42737 2 3 2.025 1.425 4.275

MOV 12737 2 3 2.025 1.425 3.15

BIS 52737 2 3 2.025 1.425 4.275

TOTAL TIME

11/23 DEDICATED INTERFACE (cont'd.)

Thus,
Software overhead
Int. latency manual
ADC Conversion

26.08 µS

9.75 µs
10.0 µS

45.83 µS

Total

4.05

7.73

6.60

7.70

26.08

Stand alone measured
RSX Measured

50 µS

100 µs
1,gs Deficiency_

Thus, additional overhead added by RSX
operating system is 50 µson 11 /23.

For 11/44 this additional overhead is 28.4 µs
(Both 411 & 3920 give same value)

Table 2

Theoretical times for interrupt response for an
11/23 processor running stand-alone FORTH. The
times are taken from the DEC processor manual and
compared with the measured time between the ADC
trigger and the first dataway cycle.

7. CONCLUSIONS

The measurements described here show that FORTH,
implemented as a stand-alone system, gives the user
access to the hardware speed of the computer for
servicing interrupts when run on PDPll machines.
When speed of response is important, this is a
significant advantage of the stand-alone system
over the RSX implementation. Measurements of
interrupt latency made by Clark et al. (3) with the
RTll operating system suggest that the hardware
speed of the machine is available to the user for
interrupt service with RTll, but implementations of
FORTH under this system have not been tested here.

It is necessary to distinguish between interrupt
response and maximum possible interrupt frequency.
FORTH as a stand-alone system will always provide
better interrupt response than the RSX implemen-

38

tation, but although the stand-alone system has
roughly half the interrupt overhead of the RSX
implementation, when this overhead is a small
fraction of the run time of the interrupt service
routine, the stand-alone system will not run at a
much higher frequency than the RSX implementation.
This is because the fastest interrupt service
routines must be written in Assembler, and whether
this is done from FORTH or using a conventional
assembler, the same machine code will result.

It is possible, with CAMAC, to run a PDPll/23 at
an interrupt frequency of 14 kHz and a PDPll/44 at
30 kHz with the stand-alone FORTH and a minimal
interrupt service routine. The corresponding
figures for the RSX implementation of FORTH are
6.7 kHz for the 11/23 and 12.5 kHz for the 11/44.

REFERENCES

1. C. H. Moore, Astron. Astrophys. Suppl. 15
(1974) 497.

2. Starting FORTH. L. Brodie, Prentice-Hall
(1981).

3. D. L. Clark, T. S. Lund, J. M. Melvin, IEEE
Trans. Nuclear Sci. 30 (1983) 3804.

LUBRICANT LABORATORY INFORMATION
MANAGEMENT SYSTEM

Andrew M. Wims and Ching Po Wang
GM Research Laboratories

Warren, Michigan 48090-9055

ABSTRACT
Computer programs have been designed and successfully imple
mented on our departmental VAX-750 computer for management of
sample descriptive information, storage of analytical test
data, and preparation of analysis reports. Any of the pro
grams can be selected from a menu displayed on entry into the
lubricant directory. A special sample analysis request form
is displayed at the terminal which simplifies the task of
inputting the sample analysis request information.

INTRODUCTION

The applications for computers in analytical
laboratories are increasing at a rapid rate.
Because a modern laboratory contains instrumenta
tion which is automated for both data collection
and data reduction, the next logical step is the
development of a laboratory information management
system (LIMS) to further increase productivity.
LIMS is a comprehensive data base management sys
tem for the laboratory which usually runs on a
large computer. Numerous articles have appeared
in the literature in the past few years describing
the features of LIMS (1-10). Some of the typical
benefits of LIMS are shown in the sample and
information flow diagram in Fig. 1.

Five year ago a LIMS software package was success
fully developed on a Honeywell time share computer
for the Petroleum Products Testing group in the
Analytical Chemistry Department. That system was
designed to maintain files, store administrative
and analytical information, and provide computer
prepared reports for approximately 3000 lubricant
samples per year with up to 16 analytical requests
per sample. This original system demonstrated
that the managing, recording, and reporting on
samples could be handled effectively in our analy
tical laboratory using a computer.

Because of our initial success, we decided to
obtain a large 32-bit computer for implementation
of a complete LIMS package for the department. Two
factors played an important role in our selection
of the hardware and software: 1. the implementa
tion of an integr~ted laboratory wide office sys
tem capability (11) with several hundred profess
ional workstations (refer to Fig. 2) networked to
the mainframes, and 2. centralized support in the
Computer Science Department for other departments
that need their own computer for laboratory appli
cations.

The first phase of the laboratory-wide system has
included 240 workstations (- 1100 over five
years), laser printers, and a DEC VAX. The Com
puter Science Department also selected a DEC VAX
and is providing a range of consulting services,
training, system support, and a centralized VAX
facility. Currently, a broadband network connects

Proceedings of the Digital Equipment Computer Users Society
39

the workstations to the VAX, IBM, and CRAY com
puters. Ethernet (12) also is used to connect
many of the VAX's together. A network diagram is
shown in Fig. 3. With these developments occur
ring, we selected a VAX for our departmental
needs. Once that decision was made, selection of
the DEC LIMS software package naturally followed.

Although our VAX-750 and most of the software
products have been installed, the complete DEC
LIMS software package will not be available until
mid-year. Thus, in the interim, we converted the
Fortran code for our lubricant LIMS software to
VAX Fortran. (A block diagram of lubricant LIMS
is shown in Fig. 4.) In the conversion to the
VAX, we have made many improvements to the lubri
cant LIMS based in part on user suggestions and
special features available on the VAX. Any of the
programs in this new package can be selected from
a menu (Fig. 5) displayed on entry to the oil
directory. Many features of the Lubricant LIMS
will be used in the development of a complete LIMS
system later this year.

DESCRIPTION OF LUBRICANT LIMS PROGRAMS

Input of Analytical Requests

Sample and Report Form. A new form was developed
with a structured format that reduces any uncer
tainty in input requirements of the sample des
criptive and analysis request information (see
Fig. 6). For example, a secretary is no longer
required to count characters in a sample descrip
tion, identification, or any other sample input
information to ensure that computer limitations on
string length are met. In addition, multiple
lubricant samples (up to eight), all requiring the
same analyses, can now be reported on one report
form. The sample description must be the same (up
to 36 characters) for all the samples reported on
a single form.

The test method code which was initially entered
as a character string is now entered as a two
digit number. The test numbers, test symbols,
full name of the tests, and units are printed on
the reverse side of the form (see Fig. 7). A menu
option is available to list this test information
at the terminal, sorted by number or in alphabet
ical order. The two digit number facilitates

New Orleans LA - 1985

grouping test methods and assigning additional
numbers for new tests to the proper group. This
approach also makes possible the printing of test
methods in a specific sequence for data presenta
tion in a final report. On inputting the sample
descriptive information, the test numbers can be
entered in any order. The program sorts the test
numbers in increasing order.

Storage of Sample Information in Computer Files.
RESAMP is a computer program that allows the input
and storage of sample descriptive and analyses
request information into computer data files. The
original version of this program required an input
response to a query, one at a time. With this
approach, an input error can not be easily cor
rected after a response has been given. In the
present program, the DEC forms management system
software (FMS) was used to design a FMS screen
display (Fig 8) that simulates the actual sample
request form. The main advantage of FMS is that a
secretary can supply the requested information and
return, if necessary, to a screen location to
change a previous response. An additional advan
tage is that restrictions to any input field can
be imposed to minimize the chance for an improper
response. The sample submitter can also conven
iently respond to the questions on the FMS screen.

Two files, MASTER.DAT and ANFILE.DAT, are gener
ated during the execution of RESAMP. MASTER.DAT
contains all the sample descriptive information.
ANFILE.DAT contains all the test symbols and data.
Data values of zero are initially stored in the
file.

System Files. A feature of the original version
of the code was that the files MASTER.DAT and
ANFILE.DAT continually increased in size as new
sample analysis request information was added to
the system. Because these files are searched by
other programs, the search time was increasing to
perform a particular operation. In the current
version of the code, this is no longer a problem.
When the final report is generated (discussed in a
later section), the corresponding information in
MASTER.DAT and ANFILE.DAT is removed and archived
in two new files, MASTOT.DAT and ANATOT.DAT.
Thus, the original files contain only the informa
tion for the current samples being analyzed.

Input of Analytical Results

INDATAN is a program that is used by the analyst
to input analytical test data into ANFILE.DAT.
This program is designed primarily for the input
of data collected for one particular test type on
a number of samples. The analyst responds to
questions for analytical test symbol, number of
analytical results, and whether the samples have
consecutive identification (certificate) numbers.
If the user supplies an incorrect analytical
symbol that is not in the symbol dictionary, the
analyst is informed and again prompted for the
symbol. For the case of consecutive certificate
numbers, only the initial certificate number is
required. Otherwise, the certificate number and
the data point for each sample is entered. A very
convenient verification feature can be used to
view the input data and make corrections if
necessary before the data is sent to ANFILE.DAT
(refer to Fig. 9).

40

An experimental test result is a string of up to
eight characters. The data can include in the
string a less than or greater than character
(<,>), a plus or minus sign or NR for no result.
A menu option is also available for listing, by
analytical test symbol, the samples (certificate
numbers) that need to be analyzed.

JOHN1 is another program for inputting data into
ANFILE.DAT. This program is faster to use when
data has been collected on one sample for a number
of different analytical test, which is the case
with spectrographic results. The other features
of this program are similar to INDATAN.

Output of Analytical Reports

Final Reports. Two programs, OUTPR01 and REPCOL1,
are used to generate final reports. These programs
only need to be selected for execution from the
main menu; no other user input is required.
OUTPR01 searches the file ANAFIL.DAT to find every
analysis request for which all the work is com
pleted. For example, if six samples for 20 analy
tical tests were submitted, the data for all six
samples would have to be in the file before
OUTPR01 would select that request for a final
report. After searching the entire file, OUTPR01
generates a file called OUTFIL.DAT that contains
the test data for each analysis request ready for
a fin al report.

The program REPCOL1 selects the administrative
data from MASTFIL.DAT and the test data from
OUTFIL.DAT and generates a final report for each
completed request. This new program, REPCOL1, can
generate a one page report in column and row
format for up to eight samples as specified on the
input sample request form. An example of a final
report is shown in Fig. 10.

Status Reports. An important feature of the VAX
version is that the sample submitter can conven
iently obtain a status report from a remote term
inal location. This feature is implemented using
a captive account on the VAX which limits access
to the OIL directory. On logging into the VAX,
the sample submitter's name is asked, and a table
of descriptive information, including certificate
numbers, is displayed (refer to Fig. 11) for all
matches to the name. A certificate identification
number can then be selected to obtain a status
report. At this point in the program, a status
report can not be obtained if the results have
already been made available in a final report.

Archival Reports. Once a final report has been
obtained, the status report option can not be used
to review that information. However, an archival
report can be obtained using a procedure similar
to the one described above.

Summary

A special sample analysi~ request form simplifies
the task for a requester to describe the samples
and to select the specific analytical tests need
ed. In addition, a secretary can easily transfer
the information from the request form to the com
puter files using a program designed to minimize
the possibility of an incorrect reply. The other

important new capabilities provided on the VAX
computer version are:

1. The removal of information from the active
riles for storage in archival files when a final
report is printed. rhus, active files are kept
small, thereby reducing file access time.

2. A single page final report can be obtained for
up to eight samples and 24 analytical tests.

3. Sample submitters can obtain reports on current
status of analyses or archived data.

4. Two programs are available for input of analy
tical results grouped by test or by sample.

ACKNOWLEDGMENTS

The authors want to thank Professor Gerald G.
Johnson, Jr. of the Pennsylvania State University
for his contributions on the VAX version of the
programs. We also want to thank Messrs. Alex Peat
and Mike Klim for their assistance during the
evaluation phase of the new programs .

....... ···-··
~ •••11d1rd1rf11ed e

···-·· •e•••
]_ 1

Lellereterr •e•er•tle• el werlllllt
•••• •••e •e•nlle• •... , A1te••lle11,

..,_ •....... , Word ""ee1el111

LIM8 l
I ••••

rewlew, .. ~ ... ,.,. ~ rel•••e

''""" uolllwe . , '"'"'
fillr• 1. S..ple and Intoraat1on Flow 1n the Laboratory.

I I

Figure 2. Workatation System Applications.

41

UC/191 Lift

e
e
e

Figure 3. Network Canmunication Links to Caaputers.

Sample RaquHt
Information To

Data FllH

Main Menu
Pro ram lelectlon

Check For
Completed Work

Reeult• Grouped
B Analy1l1 Typ

Flnal Reports

Re•ult• Grouped
By Sample

RHulta To
Submitter

'Figure -· Block Dllram for Lubricant LIHS •

YOU 1W1E TIC FILLCIWING CHOICE11

1. l .. UT OIF -.YTICAL ltEQUEIT

a. 1 .. UT llEIUL Tl 1Y TEIT TYl"E

I. l .. UT UIUL Tl IY ~E

4. DUTl"UT OIF THE TEIT llESUL Tl

s. FINlloL llEl"OllT

•• 8'1CKLDG IY -. YT I CAL TEIT

7. ITATUI ~ ""1PLE

•• LllT OF TESTS

•• TElll'llNl'TE

Pl•••• enter vour CHOICE•

(llE-l

(1-T#O

C.lllH'f1l

COUTPR01l

CllEl"COL1l

(-STATA)

(ITATUSl

Figure 5. Henu tor Selection of Program Option

.... , OIL I.AMPLE ANALYSIS REQUEST
-.......i:--..~t _ 11-.....-

- ISCTIOll ~ ftlTI

...............
Cenifacate NO.(I) • Office UM only:

Charge Number· o:J-1 I 1-[[I]

ia.tion Cllept. Div .. Stiff): I I I I I II II
Dete Submitted (mo. • !Illy • yr.I: rn-m-m
Dnct1ption of S.~I) Far up IO I pef NJQM9S1

eH requmne 1M ume an11tyM1

II I II I I I
I I I I I I I I

Sample Numbert1): ._.MCI lti¥ the,.,.,., •net 1teo ,.__,on IN _,,... con1atner
"'9fa.,. .. ,,.._ ftWtNlilf Wftf'I me IUIMtMaef"• inibell

Anaty1i1 Request

111 [Il]-;:I ~~:::;
121 CIIJ-;:::I :;::::::~
C21 ITD-:::1 :::::::::::::::
t'l [[]]-... ! _..

lilllfltilied.,tllitl..S f•-Mtllld.)

1110] 1110] 1u1DJ
1210] ia1[IJ ''"OJ
131[0 111ITJ 11110]
1•1ITJ 11010] 11110J
111[1] 1111[0 11110]

11110]
12010]
(21tOJ

1221[1]
1231rn

1UT

.!!2.t.... 1UT lllTWlD

e&.\VlTT

01 IG lpecific Gradtf at U.6 C
02 APG Ul Gra•ity at 15.6 C
OJ DU Deulc1 ac U C la/ml.)

n.IJIDITT

°' '1. Yiacoeity at 40 c (ce)
06 ,. Yheoeity at 100 c (ce)
10 CCl Cold Creall: Vilcoaity at -11 C
u 1r1 lroo1Lfie14 Vile at O r (cP)
16 112 lrooll.field Vile ac -10 r CcP)
17 afl lroollfield Yi1c at •20 r (cP)
II 8'4 lrookfiel• Yiec at -JO r (cP)
19 1'5 lroollfield Vile at -40 f CcP) 22 •• hur Poiac C ... r•• C)

111tID£n011

24 tMI Toul Add ._.er 2S TU Total laH ._.er
26 HI Peauu luolublH CU
27 Tll Toluene luolublH (I)
21 UI leaio (%)

WOLATtLin

JO n.P Pla1h Poht Uearff• C)
31 PlP Pin Poiac (dearna C)
32 GC GC Siailated diatillatioa

<•au camp.)
36 Rl Paa lvaponCiOD It 177 C
37 ff2 Pan IHporacion at 204 C
:JI HJ Pan haporatioe ec 232 C
J9 ft4 Paa lvaporatioo at 2U C

1UT

.!!!!... 1UT llETllOD

DlUJTIOll ., l'D r.11 Dilution CU
46 llD 119ter Dilution (%}
47 CLY Gl7col 1,,.1 -
'' la lafnred 1,.ctnm C•1u camp.) ,. Ila Differeatial l& (.. te eOllp.)
57 ca Canoa1l 1 ti Caba.)
SI -looc, 11 n>
~AMI.YIU

" 1CA loot' TG.A cu

" DIC Diff. lean. Cal. cc, •i1')

~4L AMl-Ylll

70 -Mh (I)
11 ... Sulfated A•h Cll
12 C2. Qloriu (%) ,, • •itro1en (,,.> , . • Sulfur (%)
15 • Pboapharu• (I)
16 CA Calcita (%)

" lll Ziac (%)
II IA larim (%)

" .: •cnHiua CU

'° n Load (I)
91 cu Copper IZ>
92 • loron (%)

u n Iron CU
94 II Silicon CU

" 4L .t.luainta (%)

ff Cl Cln·•i• CU
97 11 licll.el CU

" u Sodium CU
99 ... Kaqaneu CU

111[1] 1121[0
Comments

11110J 12•1ITJ Figure 7. List of Test Methods (Printed on Reverse

Side of Analysis Request Form).

Figure 6. Analvsis Request Form.

OIL SAMPLE N-IALYSIS REQUEST

C•Tt1fic•t• Numb•T1 SS4677
R•qu••t•d by1 AB JONES
O•t• Submitt•d: 03/21/SS

Ch8T9• Number1 22-SD00-600
Loc•tion1 FUELS

Oe1cript1on of s-ple(s) 1 For up to B •-plea per T'equest
•11 T'equiT"in9 th• •-• •n•lys1•

OIL TEST SAMPLES FOR FLEET

SF•P l • Numb .. (s) :

AB,1-1234
AB,1-1239

An•lusi• R•qu•1t:
OS 06 23 24

As1i9n•d by the submitt•T' •nd pl•c•d on th• •-Pl• cont•in•r.
PT'•fix the •-Pl• numb•T with th• subm1tt•r's initi•ls.

ABJ-123S ABJ-1236 ABJ-1237

ld•ntifi•d by th• t••t numb•T' foT' ••ch method.
27 28 09

Cornrro•n a: SAMPLES WI LL BE AVAi LABLE TODAY'

Figure 8. Examples of FMS Screen Display.

42

111.N INDAT#I
'9109ll#I l TollN VlllSIC»-1 IWG I, 1114
Do!TEll,.LYTICAL ..,,..OL rE
Do!TEll NU19Ell ~ llESULTS C<101l 7
II ~TA TO IE Do!TEllEO rOll CONSECUTIVE CEllT NOS. (YE.IND>
INl'Ell INITIAL CEllT, NU'llER 99,719

INTER ~TA l'OINT-HIT llETUllN

""" 7.0 ,,,,,0 '·'
SSU'91 2.1
SH792 23.1 ,,,,,3 14., ,,,,,4 10.,
9Hl'99 9.9

***VElll'Y CEllT. NU18Ell ollNO DlllTA rOll r£
NU't CEllT DlllTA

1 SS'719 l'.O
2 SS,790 9.,
3 ''''91 •••
4 99'1'92 13.8
9 99'1'93 34.,
• 15'1'94 10.,
7 15'799 '·'

HOW ~ LINES NEED TO It COllllECTEO O
DD YOU -.rT TO INTEll OTHEll -LYTICAL ~TA (YE.IND) NO

YE

Figure 9. Example of Input of Analytical Results
into LIMS, Showing Verification Feature.

OIL IAllPLI llPOltT
MAL nJCAL CMlllUTH llPHTlllWT

llllEAICH LAIGHTOltUI
KlflHL llDTDRI CDltPOHTJGN

IMRHthllJCHUAN

Ch•••• Na 2:z .. ••••-100
... ueahd Iv 1. I
ht.• ••"•"t.•d OllOl/1'5
ht.e •ult•UUd 12/:!:1119

l••"l• hHPi-ti9f'I MDM FLIET
aHueete,. Cede Ill
LH•U•" fUILI

c. MOISJ 140IS4 l40UI l4HH S40IS7 140111 ltOISf 1409'0 , , Wiil llUO Rl41 "'" WllJ tllll 11110

I

• •• H
H .,
•• II ..
II
" "
••
"

., "" •t 40 c c ..) 14,1 u.J •.. , 11 •• 71.4
• , u.. •t. HO c CceJ '·" u.11 f,7J ,.,.1 •••• •••• • • 1.11 loll •••• ,.,., ,. 2 ••• "·' 11.1 ... , 1.n
Pet'lt.•n• Jnaoh11th• Cll ,17 1.02 ... ·'•
ruel D&lut.f,Oft Cl) loll 1.3'
It•'•" DHuUoft 11> ... • aa c.1 • ...
JftfPOP•tl l••C",PUO (dot.• CH••) 1-11 , ... , 1-11 J•H 1-as J•IS
It.ff. lco,.. Col. CC••Ut> .. I . II I •• .. I
'°hHPhOf'"e Cl> ·"
IC•lc.t.ue Cl>
ZiftC Ill • 11 ...
11••,.•..t.uo Cl) c.os ... c.01 c.os C.01 c.01 c.01
L•ed Cl)02 <.H .u • 11
C••••" Cl> c.001 • 102 c.001 C.001 c.001 c.001
1 (I) •••• .. ,, •••• • ou .on .ou ... ,
liUHft Cl) .00:1 .on C.001 .011 • 002 •• OJ
AhUftUO Cl} • oos002 .ou .001 .oos .010
IChPOOl"9 CIJ c.001 .101 c.001 .001 (.001 .002 c.001
loiUw• CU02 .OJ • ti

FillUl"e 10. Example or a Final Report.

e • ITATUI
Pl 1••• tfte NllfC H au•auM h tfte P••u••t c. k.

K1"""1S4 ,.
....... 144 ··-·· .. _,, ··-·· Kl-tllN
K""'111 ··-.. ••~1•1
....... S2 ··-SJ ··~199 ,,.
K1"""141

ao-n•-n

=~~=== IO-Fll-n,.
IO-f'El•n,,
IO-Fll-H
ao-n:1-11
IO-Fll-tl
IO-Fll•n
IO-FP·H
•-rE•-n ao_,.u-as
11-ra-11

ICllH FL.In
ICOH ru:n
ICllH •LEn
ICllH •LRT
ICOH run
teOH ru:n
ICllH rLln
tCllH ru:n
ICllH rLEn
ICllH •Lin
ICllH rLEn
ICllH rLEET
.. OH 'LEE'T
PCOH P'L£E'T
PCOtt P'U:ET

.,, 9Rt9P ,,_ CEllT • ,,.., r•u w•u: to .. _.,..
UL O. W 0. TM O. ,... O. PINO. - •. .. •. °' •. .. •. .. •.
11 o. o. Cll o. O.

!140551
FD O •
... o.

WD O.
cu o.

......
54094?
S4D941
94094f
140990
M0951
140902
140903
140994
140901
140111
140997
540511
540519
S40HO

•• o.
FE O.

Figure 11. Ex11111ple or a Request ror a Status Report.

IU46

•••• ao.2t
u.o
••••
1-11
n
.11
<.OJ
.02
.001
.ou
.001
.oos
.001 . ..

43

REFERENCES

1. G. A. Gibbon, "Trends in Laboratory Informa
tion Management Systems," Trends in Analytical
Chemistry, Vol. 3, No. 2, 1984, p. 36.

2. R. E. Dessey, "Laboratory Information Manage
ment Systems: Part I," Analy. Chem. 55, No.
1, 1983, p. 70A.

3. R. E. Dessey, "Laboratory Information Manage
ment Systems: Part I," Analy. Chem. 55, No.
2, 1983, p. 277A.

4. J. H. Golden, "Computerizing the Laboratory:
The Importance of System Specification," Amer.
~·~.No. 11, 1980, p. 111.

5. J. G. Liscouski, "Distributed Laboratory Data
Collection and Management, Amer. Lab., 15, No.
2· 1983, p. 127. -

6. M. Podany and J. Vezina, "Real Time Multi
Processor Data Acquisition Network," Proceed
ings of the Digital Equipment Computer Users
Society, Cincinnati, Ohio, June 1984, p. 147.

7. L. Mal kenson, "Use of Computers in a Labora
tory of Cardiovascular Medicine," Proceedings
of the Digital Equipment Computer Users
Society, Cincinnati, Ohio, June 1984, p. 153.

8. K. Lewis, F. Chow and E. Cassaro, "Interfacing
Laboratory Data Systems to a VAX," Proceedings
of the Digital Equipment Computer Users
Society, Las Vegas, Nevada, October 1983,
p. 247 •

9. S. E. Stern and G. G. Johnson, Jr., "A Gener
alized Laboratory Automation Scheme for a
Group of Different Analytical Instruments,"
Computer Automation of Materials Testing, ASTM
STP 710, editor B. C. Wonsiewicz, American
Society for Testing & Materials, Philadelphia,
PA., 1980, p. 59 •

10. R. J. Betsch and G. G. Johnson, Jr., "Bridging
the Hardware/Software Gap in Instrument Con
trol." Computer Automation of Materials Test
ing, ASTM STP 710, Editor B. C. Wonsiewicz,
American Society for Testing & Materials,
1980, p. 11.

11. C. Snyder, "Managing the Electronic Labora
tory: Part II," Anal. Chem, 56, No. 7, 1984,
p. 855A •

12. J. E. McNamara, Technical Aspects of Data
Communication, 2nd ed., Digital Press, Bedford
Mass., p. 230.

Enhancing the DCTll-EM through Software Communications

Jean M. Lareau
34 Windham Rd.

Willimantic, CT.
06226

ABSTRACT

The objective is to communicate in an asynchronous mode
between a RAINBOW 100 and the DCTll-EM EVALUATION BOARD.
The two computers will be interfaced through the RS-232
serial ports, The program segments can be used in general
communications such as RAINBOW to RAINBOW or RAINBOW to
PDPll and, of course, RAINBOW to DCTll-EM. I have already
written programs that do these communications so it can
be done with some effort but these programming segments
will give you almost everything you'll need to know. Segments
of the program will be illustrated to clarify the points
being made. Before entering the programming section, we
should discuss the cable that is needed to connect the two
computers together.

INTERFACE CABLE

The cable only needs six lines which are
the protective ground, transmit data, receive
data, data set ready, signal ground and
data terminal ready. They should be connected
in the following manner:

the pointer register you want to address next.
Bits DO - D2 of WRO are used as a pointer
to the next register. The second OUT statement
is used to set the pointer register selected
by bits DO - D2 of WRO. After the second
OUT statement, the control returns back to

Mnemonic Pin Number Pin Number Mnemonic WRO. After the two OUT statements have been
issued, the WRO and WR! are as follows:

PROT GND 1 ----------------- 1 PROT GND
REC DATA
XMIT DATA
DTR

XMIT DATA 2 ----------------- 3
REC DATA 3 ----------------- 2
DSR 6 ----------------- 20
GND 7 ----------------- 7 GND
DTR 20 ----------------- 6 DSR

CLEAR INTERRUPTS ON RAINBOW 100

Now we can consider the programming aspect
of the communication. The program segments
are written in basic and the numerical
values are in decimal. The first thing
that has to be done is to clear the interrupts,
The communications port is handled by the
NEC 7201 chip. THis is done by writing
a 16 to WRO and writing a 0 to WR! of the
communications control/status register
which is port 66 in decimal. The way this
is completed is by:

1000 OUT 66 , 1 7
1020 OUT 66,0

OUT sends a byte of information
to an output port

66 communications control/status
register

17 sets RESET EXT/STATUS INTERRUPTS
on and selects WR!

0 sets (WRl) register to 0

When using the NEC 7201 chip, two
OUT statements must be issued. The first
OUT statement is to set WRO and to set

Proceedings of the Digital Equipment Computer Users Society
45

D7 D6 DS D4 D3 D2 Dl DO

WRO I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I
D7 D6 DS D4 D3 D2 Dl DO

WR!

SET INTERRUPTS

After execution of the program, the
interrupts should be reset back to the original
state. This is done by the following two
lines.

1200 OUT 66,17
1220 OUT 66,24

66 communications control/status
register

17 sets RESTE EXT/STATUS INTERRUPTS
on and selects WR!

24 sets WR! to INTERRUPTS ON ALL
RECEIVE CHARACTERS

BUSY WAIT

One very important subroutine in asynchro
nous communications is the BUSY WAIT subroutine.
It is vital for detecting the status of the
other computer. Using this subroutine, you
can determine whether or not you have received
a character. THis is done by ANDing the

New Orleans LA - 1985

status/control's WRO with 1. If the result
is true, then there is a character there.

4240 IF ((INP(66) AND 1) = 0) THEN
GOTO 4240

The INP(66) simply means to·read port
66 (which is the communications status/control
register) then AND it with 1 and check
to see if the results are equal to 0. If
the results are equal to 0 then keep on
checking until the results change.

TERMINAL MODE SIMULATION

Terminal mode simulation is needed
for the ability to read from and write to
another computer. This subroutine will
allow for a bypass of your own computer's
operating system and allow you to run the
other computer under it's own operating
system. The subroutine is as follows:

1200 IF ((INP(66) AND 1) = O) THEN
GOTO 1240

1220 PRINT CHR$(127 AND INP(64))
1240 B$ = INKEY$
1260 IF B$ = "%" THEN GOTO 1400
1280 IF B$ = CHR$(24) THEN OUT 64,3
1300 IF B$ <= CHR$(7) THEN GOTO 1200
1320 OUT 64,ASC(B$)
1340 GOTO 1200
1400 END

Line 1200 checks to see if a character
has been sent by the other computer. If
there is a new character then it will be
printed. If no new character is found,
then print statement will be skipped.

Line 1220 will read the COMMUNICATIONS
DATA REGISTER and AND it with 127. This
is done to strip the incoming data of such
things as parity bits. The character value
will then be printed to the screen.

Line 1240 will read anything typed
on the keyboard and store it into the variable
B$.

Line 1260 will exit the program when
the "%" (percent sign) is typed on the keyboard.

Line 1280 will check if the character
type in is a CTRL/Z character. If it is,
a CTRL/c will be sent out to the other computer.

Line 1300 will check if the typed in
character is a printable character. If
the character is non-printable then the
program will jump back to the busy wait.

Line 1320 will send to the other computer
the character typed in.

READ A CHARACTER FROM DCT

Reading a character is accomplished
by performing two steps. The first step
is the busy wait. THe second step is read
the COMMUNICATIONS DATA REGISTER and store
the contents into the variable.

4320 IF ((INP(66) AND 1) = O) THEN
GOTO 4320

4340 A = INP(64)

46

READ AND STORE CHARACTERS FROM DCT

The following subroutin will read
characters from the DCT and also store
them into a string. The string will terminate
when a carriage return is received. A
carriage return being a 13 in ascii value,

4300 CC$ = " II

4320 IF ((INP(66) AND 1) 0) THEN
GOTO 4320

4340 A = INP(64)
4360 CC$ = CC$ + CHR$(A)
4370 IF CC$ + "HALT" THEN RESET: GOTO 5000
4380 IF A = 13 THEN PRINT #2, CC$:CC$=" "
4400 GOTO 4320
5000 END

Line 4300 will set string to null.
Line 4320 executes BUSY WAIT.
Line 4340 reads a character from the

COMMUNICATIONS DATA REGISTER and stores it
into the variable named A.

Line 4360 will incorporate the characters
being read in and store them into one large
string which will be delimited by a CR(carriage
return) in the following steps.

Line 4370 will check for the sentinal.
When the word "HALT" has been read in

as the very first four characters, then
all the opened files will be closed and
the program will end.

Line 4380 will check for a CR. If
a CR has been received, the string will
be printed to the exterior file and the
string will be set to null.

SENDING OUT A STRING TO THE DCT

When sending a string to the other
computer, the following steps must occur.
First, the length of the string must be

determined. THis is done with the LEN
function. Store the length of the string
into a variable. THe length of the string
will determine the number of iterations
that the FOR loop must complete.

The MID$ function is used to isolate
character/s from the string and store them
into a new string. In communications such
as this, we can only send out one character
at a time. The MID$ function will perform
in the following manner. It will look
at the original string (B$) and start at
the Ith character (I) and take the next
N characters. In our case, only one character
is desired.

The next step is to send out that
one character in ASCII form. It must be
sent in ASCII form or the receiving computer
won:'.t be able to read it. The next step
is to increment the I variable to get the
next character of the string. The last
step is to send out a CR to tell the other
computer that sentence has been completed.

3980 B$ = "PASS2"
4000 L = LEN(B$)
4020 FOR I = 1 TO L
4040 BBB$ = MID$(B$,I,l)
4060 OUT 64,ASC(BBB$)
4080 NEXT I
4100 OUT 64, 13

VIEW AN ASCII FILE

I Have included this subroutine as a method
by which you can view the program that your
computer has received and saved. It will
ask you which file do you wish to view.
It will then open that file. It will

then print to the screen, line by line,
the program until the END-OF-FILE has been
reached at which point the file would then
close.

9270 PRINT "PLEASE ENTER FILE NAME"
9280 INPUT T$
9300 OPEN "I", #2,T$
9320 IF EOF(2) THEN GOTO 9400
9340 LINE INPUT #2,K$
9360 PRINT K$
9380 GOTO 9320
9400 RESET

Line 9270 will print message
Line 9280 will read the file
Line 9300 will open the file

to screen
name

Line 9320 will do until end-of file
Line 9340 will read line
Line 9360 will print line to screen
Line 9380 will goto do loop
Line 9400 will close all opened files

DOWNLOAD A FILE FROM DCT ONTO DISK

The read a file and save it on a floppy
diskette subroutine will be needed for
just that. Almost everything in this sub
routine has been mentioned earlier. Some
of the lines are specific to the computer
that you will communicate with. For our
program, this subroutine should appear
as follows:

3920 PRINT "ENTER NAME OF FILE"
3940 INPUT Q$
3960 INPUT "ENTER BEGINNING ADDRESS",B$
3980 BB$*".="+ B$ +II 177776"
4000 L = LEN(BB$)
4020 FOR I = 1 ro L
4040 BBB$ = MID$(BB$,I,l)
4060 OUT 64,ASC(BBB$)
4080 GOSUB 3820 [READ A CHARACTER

FORM DCT SUBROUTINE)
4100 NEXT I
4120 OUT 64,13
4180 OPEN "O", #2, Q$
4200 C$=" ": CC$=" "
4220 OUT 64,13
4240 GOSUB 3820
4260 GOSUB 3820
4280 GOSUB 3820
4360 CC$ = CC$ + CHR$(A)
4380 C$ = RIGHT$(CC$,4)
4390 IF C$ = "HALT" THEN GOTO 4260
4400 IF A = 13 THEN PRINT #2, CC$:

C$=" ": CC$=" ": GOTO 4280
4420 IF C$ = "END II THEN GOTO 4445
4440 GOTO 4280
4445 RESET
4450 GOTO 1200 [TERMINAL MODE SIMULATION]

Line 3980 is specific to the DCT. This
string, after being sent, will tell the
DCT to send to the RAINBOW the contents
of whats in it's memory from the starting
address that you specified (BB$) and end
at address 177776. The program will end

47

upon reading a "END " symbol. For this reason
I always put a "END " symbol at the end
of each of the DCT programs.

Every time a new character is sent
to the RAINBOW, an INP statement must
be executed or the DATA REGISTER will
not be cleared and that character will
stay there until it is read creating a
queue of characters. This is the reason
for the three GOSUB 3820 statements.
After you have sent out the last character
of a line, you then send out a CR (carriage
return). The DCT will respond by sending
back the last character, a CR and a LF(line
feed).

WRITING A FILE FROM A FLOPPY TO THE DCT

Writing a file from either A drive
or B drive to the DCT is more difficult
then simply sending characters out and
sending a CR at the end of every string.

We must concern ourselves with such things
as at what address are we loading the
program, how does the DCT know that the
program has finished or has the DCT accepted
the program correctly.

When loading a program in this manner,
the DCT will act as an interpreter which
will not allow errors to be entered.
This program will check and correct these
mentioned problems as well as creating
a file with an error listing. The program
is as follows:

4460 PRINT "PLEASE ENTER BEGINNING ADDRESS
OF INSTRUCTIONS ONLY";
4480 PRINT "AN OCTAL ADDRESS BETWEEN 146
AND 177776"
4500 INPUT Z$
4520 Y$=".=" + Z$
4540 L=LEN(Y$)
4560 FOR I = 1 TO L
4580 X$= MID$(Y$,I,l)
4600 OUT 64,ASC(X$)
4620 GOSUB 3820
4640 NEXT I
4660 OUT 64,13
4680 GOSUB 3820
4700 GOSUB 3820
4720 REM
4740 PRINT "ENTER FILE • EXT ";
4760 INPUT F$
4780 LLL=O
4800 L=LEN(F$)
4820 FOR I=l TO L
4840 FFF$=MID$(F$,I,l)
4860 IF FFF$="." THEN LLL =(L-I)
4880 NEXT I
4900 PRINT CHR$(27);"2J"
4920 PRINT "PLEASE WAIT FOR THE 'TEM '
BEFORE YOU CONTINUE "
4940 IF LLL=O THEN FF$=F$+".LST" :GOTO 5020
4960 L = LEN(F$)
4980 LL=(L-LLL)
5000 FF$=LEFT$(F.$,LL) + "LST"
5020 OPEN "0",#2,FF$
5040 OPEN "I",#l,F$
5060 GOSUB 3820
5080 GOSUB 3820
5100 GOSUB 3820
5120 COUNT = 0
5140 IF EOF(l) THEN GOTO 5600
5160 LINE INPUT#l,V$

5180 L=LEN(V$)
5190 IF MID$(V$,l,1)=";" THEN PRINT #2,V$:
GOTO 5140
5200 FOR I = 1 TO L
5220 U$ = MID$(V$,I,1)
5240 OUT 64,ASC(U$)
5260 GOSUB 3820
5280 NEXT I
5300 OUT 64, 13
5320 FOR I = 1 TO 7
5340 GOSUB 3820
5360 UU$=UU$+CHR$(A)
5380 AA$=RIGHT$(UU$,5)
5400 NEXT I
5420 IF AA$="TEM "' THEN PRINT #2, V$: UU$=" ":
GOTO 5140
5430 IF V$="HALT" THEN V$=".EVEN" :GOTO 5180
5440 CC$=" "
5460 CC$=AA$
5480 CC$=CC$+CHR$(A)
5500 DD$=RIGHT$(CC$,4)
5520 IF DD$="TEM " THEN PRINT#2,V$,CC$,
"''**** ERROR *''*'H'":GOSUB 3820:V$="HALT":COUNT
• COUNT + l:GOTO 5180
5540 IF ((INP(66) AND 1) = O) THEN GOTO 5540
5560 A=INP(64)
5580 GOTO 5480
5600 REM
5620 REM CLOSE
5640 PRINT #2," "
5660 PRINT #2,, "*'H'****THERE WERE "COUNT"
ERRORS DETECTED ***1HHHf 11

5680 CLOSE #2,#1
5700 PRINT "FILE HAS BEEN LOADED INTO THE
DCTll-EM"
5720 PRINT
5740 PRINT
5760 PRINT "lHHflflHHfTHERE WERE "COUNT" ERRORS
DETECTED lHf*''***"
5780 OUT 64,3
5800 GOSUB 3820
5820 C$=" ":CC$=" II

5840 C$="PASS2"
5860 L=LEN(C$)
5880 FOR I=l TO L
5900 CC$=MID$(C$,I,1)
5920 OUT 64,ASC(CC$)
5940 GOSUB 3820
5960 NEXT I
5980 OUT 64,E
6000 GOSUB 3820
6020 GOSUB 3820
6040 GOTO 1180

Line 4460 - 4:ZOO sends out a string to the DCT.
Line 4720 - 4880 checks to see if you
entered an EXTe11tion with the filename.
Line 4940 will put a .LST extention on
the filename if no extention was entered.
Line 4960 - 5000 will delete the EXTention
and put a .LST extention in its place.
Line 5020 - 5040 opens the input file
and the new .LST file that will be created.
Line 5140 - 5300 will send out a string
to the DCT.
Line 5190 will check the string to see
if its a comment statement. If it is
a comment statement, it will not be sent
to the DCT for the purpose of saving time.
Line 5320 - 5400 will store the reply
of the DCT.
Line 5420 - 5520 will check if the DCT
accepted the string without error. If

48

no error is found, the next line will be sent.
If a error has been detected, the DCT will
not allow that line to be inputed. The
DCT will wait until a valid string is sent.

A dummy line should be sent in place of
the string with the error so that after
the program has been loaded into the DCT,
the dummy string/s can be replaced with
the proper syntax of the statement. If
the dummy line is not put in, you will
not be able to enter any statements at
that address because no space was set aside
for the error line.
Line 5540 - 5560 performs a BUSY WAIT
Line 5600 - 5760 prints messages to .LST
file and closes it.
Line 5780 sends the DCT a CTRL/C.
Line 5720 - 6040 sends a string to the
DCT.

** NOTE **
All numerical values are represented in
decimal.
The DCT uses OCTAL values only.

BARS - A BEHAVIORAL ACQUISITION AND RESEARCH SYSTEM

Beverly H. Johnson
OAO Corporation
1222 N. Main Ave. Suite 307
San Antonio, TX 78212

Michael G. Yochmowitz
Radiation Sciences Division
USAF School of Aerospace Medicine
Brooks AFB, TX 78235

G. Carroll Brown
Systems Research Laboratories
P.O. Box 35313
Brooks AFB, TX 78235

ABSTRACT

We describe a behavioral control and data acquisition system
developed under the RT-11 operating system on a PDP-11/34 and
MINC-11123. This system is used to train and test subjects
to perform in a specified manner. The computer turns stimuli
on and off, records all responses, and delivers appropriate
reinforcements. It can handle up to five subjects simultane
ously. At present, 30 discrete behavioral schedules have been
completed. The software was designed to be very flexible to
accommodate variations of these schedules. It is easy to use
and requires no programming background. Interface routines
have been written to allow commonly used statistical analysis
packages to be run on the data. The software design and
typical real-time problems of program size, execution speed,
scheduling events, minimizing data file size, and incorporat
ing multiple subjects under RT-11 are discussed.

INTRODUCTION

The Behavioral Acquisition and Research System
(BARS) was written for the United States Air Force
for use in behavioral experiments. It consists of
30 different tasks (called schedules) that are simi
lar in implementation yet appear different to the
user.

BARS was developed as a replacement for 1960-
vintage digital equipment used to control and col
lect data from behavioral experiments. The old
system was massive in size, collected data on
punched paper tape, needed to be hardwired for each
experiment, and took a considerable amount of time
to troubleshoot. Its replacement was required to

1. control up to 5 test stations,
2. be easy to use by technicians unfamiliar

with computers,
3. run a variety of behavioral schedules (now

30) that can be readily modified,
4. be very flexible to accommodate individual

experimenters' needs and preferences,
5. allow one schedule to execute immediately

after another without operator intervention,
6. provide quick response processing,
7. minimize dependence on one particular com

puter,
8. run on portable machines such as the MINC

(PDP-11/23),
9. provide real-time feedback to experimenters,

and
10. allow for data interface to major statisti

cal software packages.
A PDP-11/34 running the RT-11 Single Job (SJ)

monitor (version 5.1) was used. The computer is
configured with 128K words of memory, two RL01
disks, a KW11-K real-time clock, a DR11-K digital

Proceedings of the Digital Equipment Computer Users Society 49

I/O board, and two DL 11 serial lines. With only a
few minor modifications, BARS can also run on a
MINC. The behavioral testing apparatus is inter
faced through the digital I/O and/or serial I/O
boards. A variety of testing apparatus can be used,
depending on the schedule to be run. One benefit of
using the BARS software is that the testing appara
tus hardware is completely independent of the soft
ware.

All software was written in FORTRAN IV (version
2.5), with the exception of several small MACRO
subroutines. The software consists of three phases:
input programs, data collection programs, and analy
sis programs. Each of these phases will be de
scribed, followed by a discussion of the solutions
found for the problems encountered in the data col
lection phase.

INPUT PROGRAMS

The input programs were designed to be run by a
naive user. Experimental setup parameters are input
by means of a question and answer session. Most
questions include a default answer in brackets:
'HOW MANY STIMULI [1] ? ' The user types a carriage
return to use the default value, thereby speeding up
the input process.

On-line help is available for each question.
If the user types '?', a short paragraph is printed
describing the input being solicited, along with the
valid range for the input value. Then the question
is repeated.

Al 1 input data can be modified at the end of
the input session. This is an important feature,
because some of the schedules ask over 50 questions.

After input, all values are displayed with line
numbers. For example:

New Orleans LA - 1985

1) TYPE: SIDMAN AVOIDANCE
2) STUDY NUMBER: 21
3) DRUG NUMBER: 4
4) NO HOUSE LIGHTS

STIM. LEVEL CHAN. DESCRIPTION
5) 1 1 3 WHITE LIGHT
6) RESPONSE CHANNEL: 1
7) RS INTERVAL: 5.00 SECONDS
8) SS INTERVAL: 2.00 SECONDS
9) #LEVELS OF NEG. REINF. FOR NO RESP: 1

STIM. TYPE LEVEL CHAN DESCRIPTION PROB
1 0) 1 NEG-NO RESP 1 5 BUZZER 1 00
11) DURATION: 1.00 SECONDS
12) DATA DISPLAY INTERVAL: 3.0 MINS
13) HALT AFTER 0 HOURS, 30 MINS, 0.0 SECS

The lines are numbered consecutively. The pro
gram keeps track of which line number corresponds to
which entry. If changing a value requires subse
quent lines to be added to or deleted from the dis
play, the program automatically renumbers and prints
the updated display.

To change an input value, the user types the
number of the line containing that value. Then the
question is repeated using the user's previous re
sponse as a default value. This procedure makes it
quick and easy to change any input value.

All 30 schedules in this software system run
the SAME input programs. Defaults are set for each
variable according to the schedule type. An ASCII
file contains 125 indicators that identify the ques
tions to be asked for each schedule. Generally, a
'O' means that the question is to be omitted, and a
'1' means that the question is to be asked, although
'2' through '9' are occasionally used for other
purposes. This indicator file can be edited without
recompiling any programs, making it very easy to
change which questions are asked for each schedule.
This is a particularly valuable feature because, in
practice, behavioral schedules are not fixed but
instead have many possible variations for each
schedule. While most of the common variations have
been incorporated into this software, there will
always be an experimenter who wants a schedule set
up in a nonstandard manner. The ASCII indicator
file permits him to do this easily without revising
any of the program code.

DATA COLLECTION PROGRAMS

There are three data collection programs: one
to do the preliminary calculations, one to actually
run the experiment, and one to create separate data
files for each subject. These could run as one
program but are used separately because of memory
constraints.

The first data collection program uses the
information from the user to generate temporary
setup files. All of the decision making that can be
done before the experiment starts is done at this
time. The program generates lists of random numbers
and timing values to be used, as well as deciding
which stimuli to turn on. If multiple subjects are
to be run, the data for all of the subjects are in
corporated into the setup files.

The second data collection program reads the
setup files generated by the previous program and
runs the experiment. Basically, this program turns
stimuli on, receives and analyzes responses, deliv
ers appropriate reinforcements, and turns stimuli
off. A considerable number of computed decisions
are involved in this process. Since all 30 sched
ules use the same program, features for all of them

50

were included in this one program. Up to five sub
jects can be run simultaneously. This program is
also capable of chaining schedules; that is, running
one schedule after another without user interven
tion. Responses made by the subject interrupt the
system and are received by a MACRO interrupt service
routine. Timing is accomplished by the use of a
programmable clock running at 1 kHz and an interrupt
service routine that responds to 1-minute clock
counter overflows. This program also prints the
data in real time using a format appropriate to the
schedule being run, writes all the data to one com
posite data file, and performs other miscellaneous
"housekeeping" functions.

The third data collection program separates
the data in the composite data file into individual
data files for each subject. This facilitates data
management and statistical analysis.

ANALYSIS PROGRAMS

A variety of analyses can be performed on the
data.

Data files contain every event (such as "stim
ulus on," "reinforcement off," "response received,"
etc.) that occurred during the experiment and the
times at which they occurred. This allows the en
tire run to be recreated, millisecond by millisec
ond. Therefore, the experimenter can have no doubt
as to exactly what happened during the experiment.

Another advantage of storing every event is
that data have not been lost through compression.
Additional analysis routines can be written long
after all the data have been collected. This is
especially helpful for users who want additional
data after the initial analysis of the experiment is
finished.

For statistical analyses, programs have been
written to interface the data to commercial statis
tical packages. Also, a program is available to
plot the data in a wide variety of formats.

DATA COLLECTION PROGRAM PROBLEMS

The data collection program presented a variety
of problems, some of which are typical of real-time
data acquisition programs. These include: 1) pro
gram size, 2) execution speed, 3) incorporating
multiple subjects, 4) scheduling events, and 5)
minimizing data file size.

1. Program Size

Memory available never seems to be enough when
programming for the RT-11 operating system. In the
case of BARS, 122K words of code and data had to be
squeezed into 24K words of memory (RT-11 limit of
32K words less: RMON = 3555 words, I/O page = 4096
words, and DL handler= 486 words). All of the fol
lowing solutions to this problem were implemented.

1. Using the Single Job (SJ) version of the
RT-11 monitor. Version 5. 1 of the SJ monitor is
3.3K words smaller than the Foreground/Background
(FB) version, and 4.6K words smaller than the Ex
tended Memory (XM) version.

2. Sysgening only the features necessary for
the application.

3. Unloading unnecessary device handlers.
4. Compiling routines without line numbers.
5. Linking with $SHORT. Linking the program

with the global $SHORT saved 838 words by eliminat
ing long system error messages.

6. Developing over lays. The root was kept as

does not improve the problem.
4. RSX-11M tasks in wait state. Each subject

has its own task sitting idle waiting for a re
sponse. When a response is received, the appropri
ate task is awakened to service it. This is not
feasible for the schedules that receive many respon
ses at a fast rate.

5. RSX-11M one task. All response processing
routines can be placed into one task. Then the
response data can be sent to the individual tasks
after all the time-critical code has been executed.
This eliminates the need for tasks to be shuffled in
and out to service a response. This possibility
looked feasible until a close inspection revealed
that so much of the data collection program centers
around response processing that very little would be
left for the individual programs. So it might as
well be all one program.

6. RT-11 . Once the decision was made to in
clude all processing in one program, RT-11 was cho
sen over RSX-11 M because of its faster execution
speed. The final decision was to continue to use
the RT-11 operating system, requiring one program to
handle all five subjects.

4. Scheduling Events

Events that occur in this software (such as
turning stimuli on and off) are not fixed at certain
times. They are scheduled according to what hap
pened during the execution of the schedule, espe
cially in regard to how the subject responded.
Therefore, a list of events and times cannot be set
up prior to running, and even the list itself is not
fixed once it has been set up - both the timing of
an event and even its presence on the list may need
to be changed after it has been scheduled. The fol
lowing methods of scheduling events with a way to
change the timing were considered.

1. RT-11 ISCHED. The RT-11 SYSLIB routine
ISCHED schedules a FORTRAN subroutine to be run at a
specified time. This method would not work because
a much greater timing precision is required than the
one clock-tick (16.7 ms) precision allowed by
ISCHED.

2. Foreground/Background programs. A fore-
ground program can be used to do nothing but watch
the events and execute them at the proper times; the
original data collection program runs in the back
ground. This alternative was discarded because it
uses lots of memory (already in extremely short
supply), and the only gain is in making the schedul
ing simpler.

3. Ordered list. A list of events and the
times at which they are to occur are listed in order
by time. The list is rearranged to accomodate chan
ges in the event timing. This was a feasible solu
tion. A test executed in 49 ms.

4. Linked list. A list of events and the times
at which they are to occur is made up in any order;
pointers indicate the order in which events are to
occur. The linked list approach was selected be
cause it executed the same test as the ordered list
in 42 ms - about 7 ms faster than the ordered list
approach.

5. Minimizing Data File Size

Every event that occurs and the time at which
it occurs is stored in the data file; thus a huge
data file could be created in a short period of
time. The data file had to be created in a very
compact manner. The solution was to store only two

51

words per event in a binary file.
1 . Event word. All information

event that occurred is stored in only
word, requiring very detailed coding of
bit by bit.

about the
one 16-bit
the event,

2. Time word. The time at which the event
occurred is stored in one word. This procedure is
complicated because timing must be stored to 1-ms
precision and experiments can run for 24 hours.
Storing the time at 1-ms precision in a 16-bit word
means that only 65.535 seconds can be accommodated,
which is obviously well under the 24 hours required.
The solution was to implement a "time mark" event.
Every minute, when the clock overflows, a "time
mark" event is written to the data file, indicating
that one more minute has elapsed. The time word
stored for each event is the number of seconds in
the current minute (multiplied by 1000 to make it an
integer).

3. Binary file. ASCII files are generally
preferred because they are easier to read. But
because every bit of every word is used for this
data, a '2I6' format would be required. So an ASCII
data file would consume three times as much disk
space as a binary file. Also, writing data to a
binary file is quicker. Binary files were therefore
chosen.

SUMMARY

BARS has been a challenging software system to
develop. The data input programs can be run by a
naive user, and the data entered can be easily modi
fied.

All 30 schedules were incorporated into the
same programs, which saved a tremendous amount of
time in writing and testing the software. This also
allowed much greater flexibility for each schedule,
because a feature generally found in one schedule
can be very easily added to another schedule.

The data collection program included some typi
cal real-time problems. The problem of excessive
program size was solved primarily by using overlays,
using virtual arrays, and partitioning the one data
collection program into three programs. The most
significant improvements in execution time were
achieved by using FORTRAN inline code, performing
calculations early, and streamlining the code. Mul
tiple subjects were incorporated into a single pro
gram under RT-11 . Event scheduling was achieved
with linked lists. And data file size was minimized
through detailed coding of events and times in bi
nary files.

Interfaces to standard analysis programs are
available, simplifying the subsequent statistical
treatment of the data. BARS has developed into an
easy-to-use, straightforward program. Its portabil
ity to a MINC system makes it an effective tool for
the nonprogramming investigator, both in the labora
tory and at remote field sites. Its ability to
handle many variations of 30 different schedules is
one of its greatest assets.

small as possible and three main overlay groups wer '
developed: one to read data from the setup file:3
and initialize, one to collect the data, and one to
close files and disable interrupts. This saved 12K
words. All routines that actually collect data have
to remain in memory simultaneously bP.cause overlays
from an RL01 disk are too slow for the real-time
work - 44 milliseconds (ms) average for this soft
ware. Virtual memory overlays that use memory from
32K to 128K words as if it were a disk (through the
VM handler) were tried. Overlays from virtual mem
ory averaged 10 ms for this software. But even this
was too slow, since several overlays would be re
quired. Therefore, all real-time routines have to
reside in memory simultaneously.

7. Virtual arrays. Virtual arrays are arrays
placed in memory above 32K words. Large virtual
arrays resulted in very substantial memory savings
(65K words) while adding very little to execution
time.

8. Writing custom MACRO subroutines. Standard
DEC subroutines are available for real-time work,
such as digital I/O. These routines work well, but
are so comprehensive that they are too large. For
example, a simple custom MACRO subroutine to place
one word in the digital output register only uses 52
words. DEC's 'IDOR' routine and the necessary re
lated routines use 3500 words. Thus, all real-time
routines were written from scratch.

9. Dividing program. The three data collection
programs were originally designed as a whole but
later divided to save 22K words. Everything that
could possibly be calculated before collecting the
data was put into a preliminary program, and every
thing that could wait until the data collection was
complete was put into a followup program. These
programs are chained to one another automatically in
order to be transparent to the user.

10. Adding variables. This apparent contradic
tion actually works rather well. When a number is
calculated more than once, it is generally cheaper -
both in terms of number of words and execution speed
- to assign it a variable name than to recalculate
it even once. Even neatly coded programs became
smaller by adding variables.

11 . Using only one data file. This software
can run up to five subjects simultaneously. The
most direct and logical approach would be to write
one data file for each subject. However, this re
quires a fair amount of memory. Using only one data
file saved 1000 words of FORTRAN buffer space.

l:__Execution Speed

As with many real-time applications, fast tim
ing is critical. The timing between a subject's
response and the delivery of reinforcement is the
most important - it must appear instantaneous to the
subject. A 200-ms delay can be seen easily, and
many subjects can detect a 100-ms delay; therefore,
a 50-ms delay was considered the maximum allowed,
and a 30-ms delay was preferred.

The computer must perform a lot of calculations
and make many decisions during that time. A few
milliseconds here and there can make a substantial
difference, so even minor changes that would save
only a few milliseconds were made. Using all of the
following techniques resulted in a response process
ing time of 28 ms.

1 • Inline code. FORTRAN inline code executed
about 15% faster than threaded code.

2. Common blocks. Passing data to subroutines
through FORTRAN common blocks is much more efficient

52

than using an argument list.
3, Delay in writing data to file. Finding time

to write the data to the data file was a real prob
lem. Writing data to RL01 disks is very slow (writ
ing two words of unformatted data took 11 ms).
Writing the data to a data file in virtual memory
using the VM handler improved the speed somewhat (7
ms), but still was not fast enough. The solution
used was to place data first in a virtual array,
which is done very quickly. Then when timing was
less critical, write it to the disk data file.

4. Double-buffer data file. This allows data
to be written to one portion of the data file while
another portion is being physically written to disk.
Timing is not affected until writing the last word
of the data buffer; then a difference is detectable.

5. Real-time printing. Data is printed during
less time-critical sections of the program. Print
ing on a VT52 terminal takes approximately 1 • 2 ms
per character, which adds up to 84 ms for a 70-char
acter line. This is obviously too slow for time
critical portions of code. The VT100 terminal, in
cidentally, was considerably slower.

6. Calculations done early. A preliminary
program performed all calculations that could be
made before the actual data collection started.

7. Floating point processor. A floating point
processor was purchased to improve execution speed.

8. Cache memory. Purchasing cache memory was
considered as a means of improving execution speed.
This software executed about 15% faster with cache
memory. While this is a significant amount, the im
provement in execution time did not warrant its
purchase.

9. Streamline code. There is often a more ef
ficient way of coding a program even when it was
done carefully in the first place. This becomes
more significant if many changes have been made to
the software since its origination. Taking the time
to rewrite sections of code were well worth the
effort. Many "trivial" changes resulted in greater
improvements in speed than anticipated.

3. Incorporating Multiple Subjects

A prototype of this software was written for
one subject, but expanded software to handle up to
five subjects running the same schedule simultane
ously was required. The following solutions were
considered.

1. One computer per subject. This is very de
sirable from the software standpoint, but too expen
sive.

2. DEC's Laboratory Peripheral Accelerator
(LPA). This device performs real-time I/O very
quickly when running RSX-11M. Unfortunately, it
does not hand the information back to the program
until its buffer is full. This was unacceptable,
because the program needs the response information
immediately to act upon it.

3. RSX-1 lM independent tasks. This provides
one program for each subject. The data collection
program is so large that there would be room for
only three or four subjects rather than the more de
sirable five. The main problem here is timing. The
RSX shuffler, at its fastest, swaps tasks out at
every clock tick (16.7 ms). Therefore, with three
tasks running, it could take 33.4 ms before the
required task was swapped in, 16. 7 ms to execute,
33.4 ms while the other two tasks execute, then 10
ms or so to finish processing. This total of 93. 5
ms is much longer than the 50 ms allowed to process
a response. Swapping at every 2 or 3 clock ticks

ARTIFICIAL INTELLIGENCE
What It Is, Where It Has Been, And Where It Is Going

By Terry C. Shannon
THE DEC* PROFESSIONAL Magazine

Springhouse, PA 19477

ABSTRACT
It seems as ((artificial intelligence, e:Ji.pert ~ystems and the Fifth
Generation hm•e replaced "user:friendly" as the computer buzzwords
of choice. Suddenzv. everyone knows that AI is becoming a reality,
expert systems are commercialZy viable and the Fifth Generation is
just around the corner. Articles touting various a,,pects and applica
tions C?f Al technology are appearing with increasing frequency in
mainstream and trade publications, but many ()(these article; are
()(little ualue to individuals who lack a background in Al. This paper
serves as a nouice leuel introduction to man's past, present and future
endeauors to make machines exhibit intelligent behavior.

A rtificial intelligence, the science of making machines mimic
intelligent human behavior, has been the subject of dreams,

speculation, and prophecy since ancient times. From the talking
statues of Greek mythology and the intricate clockwork automata
of the 18th century through today's chess-playing programs, ex
pert systems and supercomputers, man has utilized the resources
at his disposal in a continuing effort to create machines in his own
image.

It's unlikely that we will ever produce a machine that can
faithfully emulate every aspect of our humanity, much less pro
cess information as efficiently as our minds. However, develop
ments in the past several years bear testimony to the fact that we
arc on the verge of developing computers that are capable of
mimicking some of our higher thought processes. Artificial intel
ligence has become a reality, and machines designed to implement
it efficiently arc just over the horizon.

A BRIEF HISTORY OF AI
Increased research and development efforts have placed the

state of the art in Al technology in a constant state of flux. Perhaps
the best understanding of where AI is today and where it will be
in the future can be gained by first approaching the subject from
a historical perspective. Computer-based artificial intelligence has
been around for roughly 30 years. In this relatively short timespan
the subdisciplinc of computer science known as AI has had a career
fraught with claims, promises, and failures. However, the concept
of AI predates its implementation on the digital computer. As long
ago as the first century BC, Hero of Alexandria reputedly designed
birds that could fly and sing. The mythology of the Greeks and
their talking statues is legion, as arc the stories of the talking bronze
heads owned by medieval theologians and philosophers. Some of
these legends are obscure, others have been well documented.

A well known example of man's ageless effort to create ar
tifacts in his own image is the golem. The word "golem" is deriv
ed from Talmudic writings and refers to an unfonncd or incomplete
entity which can be brought to life through a solemn rite. The
most famous of the golems is attributable to Rabbi Loew, a fiftecnth
century theologian in Prague. Loew's golcm was an eight-foot-tall
automaton fashioned from clay taken from a nearby riverbank by
the rabbi and his assistants. After the rabbi affixed the Hebrew
Name of God to the golem's forehead and subjected it to the ap-

Proceedings of the Digital Equipment Computer Users Society 55

propriate incantations, the artificial man came to life and went
about such tasks as performing custodial duties in the temple,
patrolling the streets of Prague, and spying on potential evildoers
during this period of anti-Semitism. It's uncertain why, but Joseph
Golem's career was subsequently cut short by some creative de
programming on the part of Rabbi Loew.

Somewhat later, elaborate clockwork automata became the
rage in Europe. In the early 1700's, a craftsman named Vaucan
son fashioned an artificial duck which imitated many of the func
tions of a real waterfowl. These efforts were not limited to repro
ductions of lower animals, as evidenced by the watchmakers and
artisans who constructed human figures that could play musical
instruments, move in a fashion, and perform even more sophisti
cated functions. In 1805, a Frenchman named Henri Maillardet
built an automaton that could write and draw pictures. A series
of rods and cams served as the read-only memory that permitted
the machine's articulated arm to produce incredibly complex draw
ings. "The Draftsman," an automaton representative of this era,
is permanently displayed at Philadelphia's Franklin Institute. Beside
the figure is an example of its drawing prowess-a three-masted
sailing ship. Although this automaton can't mimic thought pro
cesses, it does exhibit an almost human degree of artistic skill.

Having embodied their creations with simulated motor skills,
cr.iftsmen next turned to fraudent emulations of human thought.
The best known of these creations was Baron von Kempelen's
chess-playing Turk, a robot decked out in robes and a turban which
sat behind a wooden cabinet and played world-class chess. Osten
sibly, the cabinet contained the clockwork mechanism which en
abled the mannequin to plan its strategy and move the appropriate
chess pieces. The fact of the matter is that a human accomplice
hid beneath the Turk's chess table and called the shots. The Turk
was celebrated throughout Europe, reputedly besting Napoleon
in an 1809 chess match-proving that a well-plannecl, elabor.ite
hoax can dupe just about anyone. The 'fork's career was brought
to an abrupt end when, in the middle of a world tour, it was
checkmated by a Philadelphia hotel fire. History does not record
whether the Turk's accomplice shared this untimely demise.

Finally, the early nineteenth century produced a classic novel,
written by a fourteen year old girl, that has a thread of AI woven
throughout its structure. The name Mary Shelley may not mean
anything to you, but chances are you've read her book, or at least
have seen the movie of the same name: Frankenstein. In this novel,

based on a story originally told around a campfire, Shelley recounts
scientist Victor Frankenstein's efforts to create a living "man," and
the irony of his success: Creating a being is one thing, controlling
it, quite another. Shelley obviously had read the golem legends,
for Frankenstein's creation was eight feet tall and subject to the
same intractability as the Talmudic automatons. Subsequent books,
plays and motion pictures bear proof that the creation of a human
like artifact is a recurring theme.

Modern Times: The Dartmouth Conference
From a twentieth century viewpoint, AI as we know it today

had its beginnings at the Dartmouth Conference in Hanover, New
Hampshire. Officially called the Dartmouth Summer Research Pro
ject on Artificial Intelligence, this 1956 conference brought together
a handful of research scientists who were exploring ways to make
computers behave intelligently. Included in this group of scien
tists were such AI notables as John NcCarthy, Marvin Minsky, and
IBM's Claude Shannon.

Among the research projects spawned at Dartmouth during
the summer of 1956 were efforts to constmct a system of artificial
neurons that would function like the human mind, build a robot
that could learn about its own environment, and build a working
model of the brain's visual cortex. These proposals certainly
sounded bizarre - after all, in 1956, machine intelligence was the
stuff of science fiction.

In the heady days subsequent to the conference, researchers
began to make even more impressive and exorbitant claims for
their new science. It was just a year later that conference partici
pants Allen Newell and Herbert Simon issued the prediction that,
within ten years, a computer would be the world's chess champ
ion, would be capable of composing aesthetically pleasing music,
and would derive the theorems of the Principia Mathematica.

Needless to say, history proved these prognostications to be
somewhat premature. AI became cloaked in a pall of skepticism
and its practitioners were referred to as hucksters, charlatans, and
worse. Interest in the field waned and was confined mainly to grad
uate students majoring in cognitive psychology, and to research
ers at institutions like Stanford, MIT, and Carnegie-Mellon
University.

This "Dark Ages" period of artificial intelligence elicited a
barrage of anti-AI journalism and oratory. Perhaps the most dis
tinguished opponent of AI is Hubert Dreyfus, who gained initial
prominence during this era of broken promises and unfulfilled
predictions. Author of such essays as "What Computers Can't Do",
Dreyfus appears to take great delight in exposing alleged AI fraud
and poking fun at the science in general. While Dreyfus evidently
enjoys subjecting AI to ridicule, and undoubtedly has gloated over
the less than meteoric rise in the science, it will be interesting to
see who laughs last.

Even though there was more style than substance to early
efforts efforts in Al, research in this "black art" led to some tech
nological spinoffs that are used in the computers available today,
dumb or otherwise. AI programmers were responsible for the first
timesharing systems, which they developed in 1960 or so on a
DEC PDP-1 for the admittedly self-serving purpose of obtaining
computer time, a precious commodity in those days before VAX.
Computer graphics also had its origin in AI research: AI program
mers wanted the ability to create pictorial representations of their
abstract concepts, so they invented the first crude graphics pack
ages. Later, screens with pull-down menus and other features used
today on several popular microcomputers were developed by AI
researchers.

Other AI developments took place during this timeframe as
well. John McCarthy's 1957-vintage LISP programming language
was improved and cloned in a variety of dialects. The efforts of
Simon and Newell to produce a general problem solver program
were not entirely unsuccessful. And ongoing efforts by numerous

56

researchers led to programs that were capable of playing checkers
and chess by mimicking the strategies that people use to play these
games. While these pioneers failed in their efforts to produce a
truly intelligent computer, they left an indelible imprint on com
puter technology.

AI Defined
As of yt:t, no concrete definition of machine or artificial in

telligence is gmerally accepted. There are probably as many defini
tions of artificial intelligence as there are AI researchers, including
tht: cynical exclusionary definition, "If it works, then it isn't AI."
And it's certain that AI gets redefined each time a new book on
the topic graces the shelves of your local bookstore. Considering
that we are still unable to precisely define human intelligence, being
unable to get a handle on AI should come as no surprise.

One of the better AI definitions is attributable to Nils J. Nilsson,
a prominent researcher at SRI International in Menlo Park, Cali
fornia. According to Nilsson:

1be field of Artificial Intelligence has as its main tenet that
there are indeed common processes that underlie thinking and
perceiving, and furthermore that these processes can be under
stood and studied scientificalzy In addition, it is complete
ly unimportant to the theory of Artificial Intelligence WHO is
doing the thinking or perceiving-man or computer. This is an
implementation detail.

This is an interesting, thought-provoking definition that ex
plains some of the philosophy behind AI. However, I find my own
definition to be equally useful and a bit more digestable:

Artificial Intelligence is the science of creating machines that
emulate the human mind.

Can A Machine Think?
Machine intelligence is hard to quantify. Just when does a

machine become "intelligent"? Back in the 1950's, a mathemati
cian named Alan Turing attempted just such a quantification by
developing the Turing Test. Turing postulated that a computer could
be deemed intelligent if it was capable of engaging in a logical,
coherent two-way conversation (albeit on a terminal) with a
human, providing the human was unaware that he or she was con
versing with a machine. Although the Turing Test is an interesting
concept that has prompted numerous philosophical debates, it is
not a valid benchmark for determining machine intelligence.

Many programs that pass the Turing Test are available today.
The most publicized example is ELIZA, a program that simulates
a Rogerian client-centered psychotherapist. This "silicon
psychiatrist" was developed in the late 1960's by Joseph Weizen
baum. ELIZA was appropriately named after Pygmalion's Eliza
Doolittle. Like the character in the play, ELIZA was taught to speak
what seemed to be fluent English. Though this program passes
the Turing Test, it is by no means intelligent. ELIZA works by
elementary pattern matching-it picks up keywords and parrots
stock answers to them. In fact, one of Weizenbaum's motives in
writing ELIZA was to prove that tme natural language understand
ing by a machine was out of the question. No doubt Weizenbaum
was disgusted when several psychologists proposed using ELIZA
as a screening mechanism for their own clients.

The ELIZA program reinforces the fact that a computer does
not and can not "think" in the same fashion that you and I do.
Computers are incapable of original thinking or emotion, and they
certainly don't possess human nature - there is no soul or sen
tience in silicon. For the time being at any rate, we don't have
to worry about the possibility of a silicon-based intelligence com
peting with our carbon-based minds. The concept of computers,
intelligent or otherwise, gaining control of mankind went out of
fashion long ago. None of the recent developments in AI lend

credence to the robotic revolt in Karel Capek's play, "R.U.R" or
to science fiction novels of the "computer takes over world" genre.

However, computer programs that draw on the collective
wisdom of numerous talented individuals are available and in use
now. Because such programs concentrate the expertise of many
talented people on the solution of a single problem, they can be
considered to be "smarter than a person." Appropriately enough,
these programs are called "expert systems". At the present time,
expert systems represent the most practical and profitable real
world application of AI technology, and therefore warrant a closer
look.

THE BWSSOMING OF EXPERT SYSTEMS
While journalists herald Japan's endeavors to give birth to the

so-called Fifth Generation of intelligent computers, we are put
ting artificial intelligence to work right now in real-world applica
tions. Today, there are a growing number of "expert systems''
intelligent assistants-working in concert with human experts on
such diverse tasks as VAX system tuning and configuration,
geological exploration, medical diagnosis and mass spectrographic
analysis. These expert systems bear names like XCON, DENDRAL,
PROSPECI'OR and CADUCEUS. Despite their unusual names, these
programs should not be taken lightly: They perform at the level
of human experts, drawing upon pools of knowledge painstak
ingly extracted from numerous VAX system specialists, chemists,
geologists and doctors.

The development of expert systems is a result of some of the
lessons learned by researchers during the period that AI was regard
ed as a hoax by mainstream computer scientists. Among the
discoveries made in the AI and cognitive psychology labs were
the facts that not only does intelligence require knowledge, but
that the acquisition and application of knowledge form the basis
of intelligent behavior.

This led to the realiZAtion that a general purpose problem solv
ing program would have to contain vast amounts of knowledge
about an incredible variety of topics. Because no existing com
puter could store, much less process, this volume of information,
the approach to artificial intelligence shifted from a quest for a
generic problem solver to efforts to develop specialized programs
capable of performing intelligently in specific domains. These pro
grams were the precursors of today's expert systems.

The Anatomy Of An Expert System
Also referred to as a knowledge based system, an expert

system is a computer program, usually written in an esoteric
language like LISP, OPS or PROLOG, that can perform at the level
of a human expert by mimicking the activities that a human ex
pert would undertake in the resolution of a problem. Expert
systems archive human knowledge and permit a collective pool
of wisdom and expertise to be applied to problems for which there
are no clear-cut yes-or-no answers.

Expert systems have two main components-a knowledge
base and an inference engine. The knowledge base is the pool of
information that the expert system can draw from. The inference
engine contains the heuristics, or rules of thumb, that help deter
mine which pieces of information the expert system will draw
from the knowledge base to resolve a problem. These components
are accessed through an 1/0 subsystem called a "front end" or "user
interface." The 1/0 subsystem generally has a natural language in
terpreter, allowing you to communicate with the expert system
on a conversational basis. This imparts an aura of intelligence or
friendliness to the expert system, but it isn't where the intellect
resides.

What makes an expert system possible, and makes it emulate
human thought processes, is the fact that knowledge can be ex-

57

pressed as rules. Although you may have never stopped to think
about it, we store knowledge as rules. Consider the weather-IF
it is raining, THEN put on a raincoat before you go out. An ex
pert system works the same way, using its inference engine to
evaluate the information that is stored as IF.:fHEN constructs in
its knowledge base.

The Knowledge Base: Codified Expertise
The knowledge base component of an expert system may be

likened to a data base that reflects the thoughts and procedures
of the best people in a given field. Because of the prodigious
storage capacity of modem computers, a given expert system can
embrace the decision making methods of hundreds of human ex
perts. This IF.:fHEN codification of expertise is analogous to the
experience base that we humans accumulate and store as
memories. Like memories, the elements or rules in a knowledge
base must be defined or "experienced," then recorded and catalog
ed. It is the job of computer scientists known as knowledge
engineers to coax this kind of information from human experts,
code the information into sophisticated expert systems, and put
the programs to work performing tasks that normally require
human expertise.

Building The Knowledge Base
Extracting human knowledge is not a simple undertaking

in many cases, we perform tasks intuitively or heuristically and
can't easily explain to someone else how we arrive at decisions.
You can prove this to yourself by attempting to describe your job
and the exact manner in which you carry it out in such detail
that your description could be converted into a computer program.

In addition to being adept at extracting knowledge from peo
ple, a knowledge engineer must also know what specific kernels
of information are germane to the expert system that he or she
is building. This isn't as easy as it might seem, because almost
everything we humans do involves a wealth of background infor
mation and presupposed knowledge. For instance, if you wanted
to build an expert system that could cook an omlette, you would
first have to teach it how to break eggs. Not only is breaking an
egg something that we take for granted, it isn't the sort of activity
that's conducive to being expressed as a series of rules.

This example underscores a statement by Arnold Kraft, an ar
tificial intelligence specialist with Digital Equipment Corporation.
According to Kraft, "one of the main obstacles to the implemen
tation of expert systems is putting knowledge into a box." The
egg-breaking problem is but a simplistic example of the challenge
faced by knowledge engineers.

Educated Guesswork
Expert systemS mimic humans in another regard: when con

fronted with a problem that contains ambiguities, an expert system
program uses heuristics, or rules of thumb, to attempt to resolve
the problem. We use this same form of judgment based on ex
perience to resolve problems for which we don't have stock,
predefined answers-only we refer to the process as making an
"educated guess." The outcome of heuristics is the same for both
man and machine: Such guesswork usually achieves the desired
results, but does not guarantee them.

Heuristics are applied to a knowledge base through the other
main component of an expert system, the inference engine. It is
the inference engine that's responsible for the actual problem solv
ing that takes place in an expert system. Using heuristics, it deter
mines which rules or IF-THEN constructs will be evaluated dur
ing problem resolution. Inference engines utilize one or both of
two general strategies to resolve a problem. These stra~e~, or
lines of reasoning, are called forward and backward chaining.

Forward chaining works on the principle of "given these facts,
what will happen?" Determining the outcome of a football game
based on the score late in the fourth quarter is a good example
of forward chaining, or working from facts to conclusions. A for
ward chaining inference engine rummages through the knowledge
base of the expert system, testing all of the available rules again
and again and adding new facts until no rule applies. In the case
of the football game, an inference engine would likely conclude
with a high degree of probability-that the team with the highest
score in the fourth quarter would ultimately win the game.

Backward chaining relys on an opposite principle_!'given this
fact, what events led up to it?" In this strategy, the inference engine
is confronted with an unsubstantiated theory which it must at
tempt to prove. This strategy is based on finding the rules within
the knowledge base which support the theory, and then verify
ing the facts which enable the rules to work.

CADUCEUS, a medical expert system, uses a backward chain
ing inference engine to diagnose illnesses. When CADUCEUS is
supplied with a set of symptoms, it will backchain and associate
these symptoms with what it knows about diseases. Ultimately,
the program will deliver its diagnosis of the disease in question
based on the symptoms it was supplied with. Thus, a backward
chaining inference strategy is diagnostic, while a forward chain
ing strategy is predictive.

Heuristic Search Limitation
The need for an inference engine or a specific problem solv

ing strategy is based on a phenomena known as the "combinatorial
explosion." This combinatorial explosion must be contained by
a search strategy that limits the expert system's evaluation of rules
to those rules which are appropriate for a given problem or
situation.

For example, there are expert systems that play champion
ship chess. In order to do so, these expert systems must limit their
search for moves-there are more possible moves in a chess game
than there are atoms in the universe. An example of a heuristic
used in chess by human chess masters and computer programs
alike is "try to control the center of the board." Through the use
of a forward chaining inference engine and heuristic search, an
expert chess system is able to limit its search to a small portion
of its knowledge base-those moves that would be considered
feasible at any given point of a chess game.

You can better understand the significance of a heuristic search
strategy if you consider the way people use heuristics to make
decisions every day. Life involves dealing with problems on a con
stant basis. Few of these problems are insoluble, and most are dealt
with on a subconscious level. However, all of these problems would
he insurmountable without heuristic sear<:h. A brute-force approach
to problem resolution would require you to examine all of the
information in your mind each time you had to make even the
most trivial decision. Considering the vast amount of data stored
in the human brain, one such brute-force solution would take an
eternity. Fortunately, through rules of thumb or heuristics, we can
limit our searches and arrive at optimal answers almost
instantaneously.

Supply And Demand
One of most significant problems with AI in general and ex

pert systems in particular is based on the law of supply and de
mand. The "Dark Ages" of AI caused a rapid decline of interest
in the field, and a consequently diminished AI research and de
velopment effort. Expert systems have proven that AI works and
have brought the discipline hack out of the closet and the cognitive
psychology labs. Now that AI has regained a mantle of respec
tability, just about everyone wants it. However, knowledge

58

engineers and people with doctorates in AI are scarce-and
expensive-commodities.

The expert system toolkit has been touted as a short term
solution to the paucity of experienced knowledge engineers.
Toolkits are software packages which allow average programmers
to develop limited expert systems without the assistance of AI
specialists. These application development tools are available for
a broad spectrum of computer hardware, from microcomputer to
mainframe. They are sometimes referred to as expert system
"shells", for they are essentially inference engines supplied with
a knowledge base framework that must be filled with data or rules
by the end user. Shells or toolkits cannot replace knowledge
engineers, but they do increase the availability of expert systems
and allow programmers without LISP, OPS or PROLOG experience
to use AI techniques.

The ES/P Advisor is a representative expert system shell.
Developed by Expert Systems International, a firm that specializes
in business applications of Al, this tool runs on a number of
popular microcomputers and is used primarily for "text anima
tion". In this scheme, a consultation shell is used to access and
interact with a user-definable knowledge base, which is typically
a complex document. The Advisor is presently used for such ap
plications as interpreting tax regulations and guiding clerical per
sonnel through activities like issuing mortgages. Both of these ap
plications normally require a deep familiarity with complex pro
cedures which have their basis in legal and financial documents.

General Research markets TIMM, The Intelligent Machine
Model, an expert system generator that has been used to build an
intelligent VAX tuner. While TIMM/Tuner it can't equal the per
formance of a VMS wizard equipped with VAX SPM and plenty
of time, it does a remarkably good job adjusting SYSGEN param
eters and offering advice-including the familiar DEC sales litany,
"buy more memory."

A number of other companies offer expert system toolkits,
and more are presently under development for micro, mini and
mainframe implementations. Representatives from DEC's Al
technology center in Hudson won't say much, but it's likelythat
DEC will offer an toolkit of its own in the near future.

To Err Isn't Just Human
Even though AI owes most of the credit for its resurgence

to the increasing viability of expert systems, these programs are
far from perfect. Today's expert systems function only in very nar
rowly defined problem contexts, or domains. Despite the inroads
being made in the microcomputer arena, expert systems are typi
cally large, memory-intensive programs that work best on a main
frame or supercomputer.

Creating a program that has the ability to solve problems and
combining this program with a knowledge base of accumulated
experience and data is an important achievement, but expert
systems are far from perfect. An expert system lacks the human
quality of spontaneous insight, and it can not acquire or create
new knowledge. You can't get more information out of an expert
system than you put in in the first place. Finally, expert systems
can and do make mistakes-just as human experts do.

NATURAL LANGUAGE UNDERSTANDING
Natural language understanding remains a thorny problem in

the domain of expert systems and AI. While great strides have been
made in voice recognition technology, true natural language
understanding remains an elusive goal. Many attempts have been
made towards natural language understanding with less than
satisfactory results. In fact, some of the earliest efforts in AI in
volved automatic language translation programs. These efforts were
doomed to failure because computers couldn't apply the correct

meaning of an ambiguous word within a given context. That is
to say, when confronted with a common nursery rhyme. the com
puter couldn't tell whether Mary gave birth to, owned, had sex
with, or ate the little lamb.

The stumbling blocks to natural language understanding are
related to the way we humans use and process language as op
posed to the way that computers communicate. All computer
languages ultimately boil down to binary machine code, while we
communicate with each other symbolically. This creates a signifi
cant communication gap between people and computers.

Computers can be programmed to understand or "parse"
sentences by analyzing nouns and verbs, but they have a difficult
time with adjectives, metaphors and commonly used expressions.
The development of parsers capable of dealing with slang and con
text will not be an easy undertaking. Consider the phrase "Bank
Failure Rocks Wall Street." A computer would likely interpret this
phrase as being indicative of an earthquake in Manhattan. Or the
often recounted English to Russian translation of "the spirit is will
ing but the flesh is weak." An early automatic language transla
tion program interpreted this phrase as "the vodka is good but
the meat is rotten."

We also have a unique ability to filter noise. How many times
have you been at a party with several do7..en other people, all of
whom are conducting conversations simultaneously, when you
suddenly hear someone mention your name? In this situation, you
can focus your attention on that specific conversation by filtering
out the "clutter" of the other, concurrent, conversations.

Another thing that we can do better than computers is fill
in the blanks. Many of our day-to-day conversations, particularly
with close friends, involve phrases and sentence fragments that
would appear cryptic and incomplete on paper, yet are perfectly
comprehensible when spoken. And we can often understand what
someone means to say even if we are listening to the other party
over a poor telephone connection. Finally, we are capable of
recognizing and processing continuous speech in real time-we
can instantaneously understand snetences we have never heard
before. As of now, no computer shares any of these capabilities
with us.

Progress is being made in the area of natural language
understanding, as evidenced by the availability of natural language
query programs which interface with database management
systems. INTELLECT, EASYD\LK and THEMIS are well known VAX
implementations, and there's even a natural language program
called Clout that runs on microcomputers. However, these pro
grams can perform only elementary parsing on a limited
vocabularv. Much work still needs to be done before true natur-.il
language "understanding, the gateway to more efficient man
machine interfaces, becomes an affordable commercial technique.

A MACHINE OF VISION
Significant advances in the the area of computer vision are

critical to the success of a number of AI application areas, including
robotics, CAD/CAM, autonomous vehicles, sensors, and knowledge
acquisition systems. At present, it can be stated that that computer
vision technology has a long way to go before machines can see
with any degree of clarity. A viable machine vision system awaits
developments in pattern recognition, edge detection, and scene
integration technology. These developments will be contingent on
the availability of advanced supercomputers, for an incredible
amount of processing power and speed is needed to implement
a vision system. Our own vision system requires a significant
percentage of our brain power, and when you consider that the
human mind has been described as being more powerful than a
network made up of all of the computers in the world, it's clear
that a reasonable emulation of human sight remains a distant goal.

59

Efforts at Stanford University have produced a model vision
system called ACRONYM. This system has proven adept at aircraft
identification through the analysis of aerial photographs of air
port runways. The ACRONYM system contains a knowledge base
of representative objects which it compares with photographic
images. An edge mapper extracts lines and curves from the photo
gr.iph while a stereo mapper obtains information on surfaces. This
information is integrated and interpreted by searching and mat
ching subsystems. Although intended to be a general purpose vi
sion system, ACRONYM does a less than satisfactory job of feature
extraction, and is incapable of analyzing scenes which contain
numerous discrete objects.

The magnitude of the machine vision task is underscored by
another Stanford project, the autonomous "golf cart" designed by
researcher Hans Moravec. This vehicle is capable of moving at three
to five meters per hour in one-meter increments through the use
of an on-board vision processing system. Each movement is the
result of a single image analysis conducted by a one MIP com
puter. To speed up Moravec's cart to even a slow walking pace
of one meter per second would require a processing speed of one
to 10 billion instmctions per second. These speeds are unattainable
today, but the next generation of computer hardware will make
projects far more ambitious than Moravec's vehicle technically
feasible.

THE FIFTH GENERATION
The first four generations of computer technology have lasted

roughly ten years apiece. The passing of each generation has been
marked by technological refinements to an existing concept. Com
puters have gotten smaller, cheaper and faster at a blinding pace
the word processor or personal computer we take for granted to
day would have been inconceivable little more than ten years ago.
Although the representatives of the fourth generation are no longer
icons of power and prestige, they remain a v.iriation on a familiar
theme.

The advent of the next generation of computing will involve
more than technological change. It will redefine the concept of
computing and of computers themselves, for the machines of the
Fifth Generation will be knowledge information processors
computers that will emulate human thought and cognition. Three
major criteria will distinguish the computers of the Fifth Genera
tion from the AI hardware and software in use today-Computer
architecture, processing speed and the ability to manipulate sym
bolic rather than numeric information.

Computer Architecture
Computers of the fourth generation, like the three preceding

hardware evolutions, are characterized by Von Neumann architec
ture. This architeL'l:ural concept has remained essentially unchanged
since the introduction of the fist digital computer. Machines of
this design are restricted by their inability to do more than one
thing at a time-data and instructions must be passed through a
single link or bus to the central memory. This so-called Von
Neumann bottleneck is the limiting factor in computer perfor
mance today.

Attempts to bypass the Von Neumann bottleneck through the
use of networking have been unsuccessful. While numerous pro
cessors can be linked together in a network, a single program can
not be effeL'l:ively broken down into subroutines which are assigned
to individual nodes. Each subroutine call, return or addressing
operation would of necessity require data transfer between nodes.
This approach to processing would be inefficient at best-more
time would be spent on internode communication than actual in
formation processing.

Pipelining
One technique employed by hardware designers to speed data

through the Von Neumann bottleneck is the pipeline. This method
is analogous to a factory assembly line in that a steady stream of
data is fed into a string of processor segments, each of which per
forms a specialized function. Each segment executes one portion
of an instruction and then passes the instruction along to the next
segment in the processor. While one segment is executing an in
struction, another can fetch a second instruction, a third segment
can obtain an operand address, and yet another segment can be
decoding a fourth instruction. Through the use of pipelined pro
cessing, a steady stream of data can be input to the computer as
if by conveyor belt, keeping each processor segment in almost con
stant use. Not only is this technique used in supercomputers like
the processors available from Cray and Hitachi, it's responsible for
a good deal of the increased speed of DEC's VAX 8600.

While pipelining yields impressive gains in processor perfor
mance, a computer employing this architecture is still a serial Von
Neumann machine. As such, it's still subject to the constraints of
the processor-memory link. At this point in time, we are nearing
the theoretical limits of Von Neumann processor performance. One
short term solution is the gallium arsenide VLSI chip, which is
significantly faster than today's silicon chips. However, the poten
tial speed advantage of a gallium arsenide chip might be in the
vicinity of ten to one, certainly not one or more orders of
magnitude. The Josephson junction and superconductivity are also
hailed as multipliers of processing power, but the most we can
reasonably expect to gain from this technology is a geometric in
crease in processing speed. To obtain the performance necessary
for Fifth Generation computers, we will have to develop and im
plement radically new machine architectures that yield exponen
tial increases in computing power and speed.

Towards A New Architecture
The most promising answer to the Von Neumann bottleneck

is embodied in dataflow and parallel processing technology. A
dataflow processor has multiple CPUs that are tightly coupled and
connected by circular pipelines through which data is transferred
at a high rate of speed. Where a network might allocate individual
programs or tasks to different nodes, a dataflow processor assigns
packets of machine language instructions that make up a given
program to individual CPUs.

Parallel processors take this concept a step further. The CPUs
of a dataflow processor are connected serially by a simple ring
topology. The CPUs of a parallel processor will not be constrained
by this simplistic networking scheme. Each CPU will be able to
communicate with a group of CPUs instead of just the processors
adjacent to it. Once a program is broken down into its smallest
discrete clements, this information will flow through the parallel
processor much in the fashion that water flows when poured over
the roots of a plant.

Each data element will be free to seek an available processor
by following the path of least resistance. If a specific processor
is already "busy," the data packet will seek out the nearest available
alternative CPU rather than wait for the attention of the processor
that's already occupied. This arrangement will permit each CPU
chip in a parallel processor to devote itself to a specific aspect of
a problem and work in concert, rather than in contention, with
all of the other chips. Conceptually, this is very similar to the way
work is done by colonies of social insects, the denizens of a beehive
or anthill, for instance. It is also similar to the way that we humans
think.

One of the obstacles to achieving processing simultaneity in
a parallel processing environment is our present inability to effi
ciently decompose a program into the discrete segments which
will be assigned to the individual CPUs in a parallel processor. Con-

60

tinuing research and development efforts in the area of relational
databases should resolve this problem. Once this database soft
ware is perfected. it should be possible to engineer and write a
parallel processing operating system that will regard a program as
a relational database. The operating system would decompose the
program into segments which would in turn be addressed and
manipulated as discrete members of the database.

True "Non-Von" dataflow and parallel processors are largely
experimental, but the concept of levering multiple CPUs against
a single problem is viable today. The incredible speed of the $17.6
million dollar Cray-2 supercomputer is attributable to its four
processor architecture, and Cray Research is already developing
a still faster and more powerful supercomputer, the 16-processor
Cray-3. And next-generation prototypes abound: The Lawrence
Livermore Laboratory has developed a 16-processor non-Von
Neumann computer and engineers in Manchester, England are
designing a dataflow computer with 256 processors. Columbia
University and MIT are developing parallel processors with as many
as one million individual CPU chips, and the Japanese have voiced
similar goals for their Fifth Generation project.

Processing Speed
Processing speed will make a quantum leap in Fifth Genera

tion computers. These machines will manipulate data at such
blistering speeds that the supercomputers of today, like the Cray
X-MP and the CDC CYBER, will be snail-like in comparison. Fourth
Generation supercomputers typically have processing speeds on
the order of 100 MIPS, or millions of instructions per second. It
is expected that the processing speed of Fifth Generation machines
will be measured in BIPS-billions of instructions per second. In
fact, Hitachi's latest supercomputer reportedly has attained speeds
in excess of one gigaflop, or one billion floating-point instructions
per second.

Symbolic Data Manipulation
Machine instructions per seconds will be replaced with a new unit
measure of speed-LIPS, or logical inferences per second. Crucial
to the LIPS concept is the manipulation of symbols instead of
numbers. Languages like LISP and OPS are designed to manipulate
symbols, often represented within IF.'.fHEN constructs, instead of
raw arithmetic data. Each execution of an IF.'.fHEN construct or
production represents one logical inference. Because both the IF
(left hand side) and the THEN (right hand side) of a production
can contain many elements, a logical inference requires more
machine power to execute than a machine language statement like
ADD A TO B. Each logical inference requires anywhere from 100
to 1000 traditional machine instructions. Therefore, processing
speed will have to make a quantum leap before we see a com
puter benchmarked as a one million LIPs machine. This is but one
of the objectives of the architects of the Fifth Generation both
here and abroad.

FIFTH GENERATION PROJECTS
The race to create superspeed computers and processors

which exhibit the humanlike qualities of inference and decision
making has come to be called the Fifth Generation. Efforts are
being made throughout the world to design and implement the
hardware, software and technology of a new class of machinery
that will represent the Knowledge Age. There is no doubt that
a de facto Fifth Generation standard will emerge at some point
in the near future. The question that still remains unanswered is
who will develop this standard and wield its inherent powers.
Although we invented and developed the digital computer and
artificial intelligence technology, a very determined Japan is poised

to become Number One in the knowledge business. The actions
we take or fail to take in the next few years are likely to be crucial
to the outcome of the race for computer supremacy.

The Japanese Effort
In April of 1982, the Japanese Ministry of International Trade

and Industry launched a IO-year er.ash progr-.am called Fifth Gener.i
tion Computer Systems. Implementation of the FGCS plan began
with the establishment of Institute for New Computer Generation
Technology (ICOT). ICOT is a collaborative effort involving eight
of Japan's major electronics manufacturers which encompasses
some 24 individual projects. These projects have as their com
mon goal the development of an intelli.gent Fifth Generation com
puter with a natural language interface.

The seeds of the FGCS program were planted in the late seven
ties when Japan's Ministry of International Trade and Industry
(MITI) organized a research team headed by computer scientist
Kazuhiro Fuchi to draw up a master plan for the development of
an entirely new class of data processing machinery. The result of
this effort was a preliminary plan to design, engineer and build
an ultrapowerful data processing machine that could reason like
a human being. It was only fitting that a computer of such revolu
tionary design be given a name to distinguish it from its lesser
cousins, so the Japanese decided to call their new machines
"knowledge information processors," or KIPs.

The design specifications for this new class of computer are
impressive. By the early 1990s, Fuchi's team expects to have an
operational KIP with the ability to process a 1,000-gigabyte
knowledge base at the speed of one billion LIPS. The user inter
face will consist of a natural language front end with a 10,000
word vocabulary, and a continuous speech recognition system that
can handle 50,000 words with 95 percent accuracy. Given the
complexity of the Japanese alphabet in comparison to our English
alphabet, developing the user interface alone will be an awesome
challenge. In addition to meeting the design criteria of speed and
"friendliness," the KIP will have to be adept at image analysis and
processing, logical inference and independent knowledge
acquisition.

The Japanese intend to develop their KIPs by concentrating
on three research areas: enhancing relational databases to better
support knowledge based systems; personal sequential inference
(PSI) machines; and par.illel inference systems. The PSI is crucial
to the two other research areas, for it is to he used as a develop
ment tool for advanced knowledge based systems and massively
parallel hardware and software. In its first iteration, the PSI will
be a PROLOG AI workstation similar to our LISP machines. De
signed to draw inferences from knowledge bases at 20,000 to
30,000 LIPS, the PSI will be enhanced to reach far greater speeds
as it plays the role of stepping stone in the quest for more power
ful AI engines, including parallel relational database machines. The
first PSI implementation should be forthcoming shortly, for it is
based on technology available right now (the soon to be announced
VAX PC and an experimental 60,000 UPS PROLOG board would
provide a satisfactory architectur.il environment for such a
machine.)

Japan is taking a dual-track approach to the Fifth Generation.
W1ille FGCS labors to develop a knowledge information processor,
a lesser known research and development program to enhance
"traditional" computing is being conducted. Called the National
Superspeed Computer Project, the program is aimed at produc
ing an ultrafast processor-a computer 1000 times faster than a
Cray-by 1988. Like the FGCS program, the NSCP involves multi
ple vendors and government seed money. Japan's six largest com
puter manufacturers are participating in the project, and their ini
tial efforts have been subsidized with 100 million dollars in startup
money. Spurring these efforts are the supercomputers recently

61

unveiled by two NSCP participants. While the Cray-like perfor
mance of the new processors from Fujitsu and Hitachi is far short
of the NSCP goal, these machines represent the first serious
Japanese for.iy into the commercial supercomputing marketplace.

Japan has established lofty goals for its FGCS program, and
it's unlikely that they will be fully realized by the early 1990s.
However, a careful analysis of the !COT program and its objec
tives does point out some significant, if not disquieting, facts. For
the first time, Japan is intent on creating a new technology, not
merely improving on existing concepts and methods. The research
ers at !COT and elsewhere plan to leapfrog the current state of
the art in hardware and software by adopting a strategy of inven
tion instead of imitation. As Feigenbaum and McCorduck point
out in The Fifth Generation, Japan no longer intends to be a
copycat nation. \X'hether or not the vaunted Fifth Generation pro
gr.im turns out to be a complete success, it doesn't pay to
underestimate the Japanese: Twenty years ago, the word "Honda"
was synonymous with "50-CC motorbike."

The American Response
The United States has not been oblivious to Japan's attempts

to forge the Fifth Gener.ition. Having seen the Japanese surpass
us in many aspects of computer hardware production, we are not
about to sit idly by while they achieve dominance in the software
industry as well. Our response includes an array of intensive Fifth
Generation research and development projects under the aegis of
the Federal governn1ent and the private sector.

The MCC
One element of our response is the Microelectronics and Com

puter Technology Corporation or MCC. Based in Austin, Texas,
the MCC is a nonprofit cooper.itive joint venture that was forged
between a dozen major U.S. computer and electronics firms. At
least count, the number of participating firms has almost doubled.
The MCC is headed by retired admiral Bobby Inman, former direc
tor of the supercomputer-intensive National Security Agency and
deputy director of the CIA. The consortium is staffed by staffed
by computer scientists, engineers and researchers "loaned" to the
corporation hy their parent firms. The list of MCC participants
reads like a "Who's Who" of American computer and electronics
manufacturers. CDC, NCR, Motorola, 3M, RCA and Sperry are in
volved, as is Digital Equipment Corpor.ition.

Two noticeably absent companies are Cray Research and IBM.
Cr.iy is apparently an independent-spirited company, and IBM is
evidently concerned over the potential of antitrust litigation.
However, no antitrust action has been instigated or threatened by
the Federal government. In December 1983, a Justice Department
ruling removed antitrust barriers to the MCC, indicating that it has
adopted a "wait and see" attitude about the consortium's unique
collective approach to research and development.

The MCC participants are united by the common desire to
produce a state of the art Fifth Generation knowledge informa
tion processor, an undertaking that would prohibitively expen
sive if attempted on a solo basis. To achieve its goals, the MCC
is concentrating on research in four general areas-Microelectronics
packaging, advanced software technology, CAD/CAM and computer
architecture. Seed money for the MCC was generated by its
participants-each member joined the project by purchasing a
$500,000 share of stock. Ongoing research in each of the four
major MCC programs is subsidized by each firm involved in that
application area.

The SRC
Another acronym in the growing list of American Fifth

Generation ventures is the SRC, or Semiconductor Research Cor
poration. The SRC is a cooperative effort launched by some 30
domestic semiconductor manufacturers and consumers as a hedge
against foreign competition. Among the participants in this ven
ture are Burroughs, Control Data, DEC, Intel and IBM. Like the
MCC, this cooperative effort is funded by its participants. Con
tributions are based on each firm's integr-.ited circuit revenues, and
range from a minimum of $60,000 to a maximum of 14 percent
of the SRC budget. Instead of conducting its own R&D progr.ims
like the MCC, the SRC funds research efforts at colleges and univer
sities, awarding grants much in the same fashion that the federal
government does.

Independent Efforts
While deeply involved in the collective efforts of the MCC,

many of America's major computer manufacturers have ongoing
proprietary AI research and development programs. Texas In
struments has an extensive internal program, as evidenced by its
Explorer AI work~tation. AT&T has implemented projects in several
AI application areas, and numerous other firms are conducting
vigorous programs as well. Of particular note are the efforts of
our two largest computer manufacturers, IBM and Digital Equip
ment Corpor.ition.

IBM And AI
The number one mainframe manufacturer has maintained a

relatively low profile with respect to AI. As an industrv leader.
what IBM fails to do is almost as important as what it ·does. In
fact, some experts say that government involvement in AI and new
machine architectures was spurred by IBM's apparent reluctance
to make such a commitment on a corporate level. The firm's only
announced commercial AI product to date is an expert system
called Epistle which reads your electronic mail and extracts and
summarizes the salient points of each message. An expert system
shell called PRISM is being readied for commercial introduction
at IBM's Silicon Valley research center. Other products, including
a continuous speech recognition system, are being developed at
IBM's Yorktown Heights research facility, but Big Blue is not
publicizing them.

Historically, IBM had an early start in AI. In the early Fifties.
certain of its employees began writing programs that play~d chess
and checkers. Ever concerned with its corpor.ite image, Big Blue
was aghast at the idea of machine thought and its Forbin Project
connotations, preferring to promote the computer as nothing more
than a dumb brute that would dutifully carry out repetitive in
structions. So much for gameplaying in Armonk.

Although IBM portrayed its hardware as dumb but fast
numbercrunchers, its second-generation 36-bit mainfr.imes, the 709
and 7090, were AI mainstays in the early 1960's. However, 1964
ushered in the er.i of the System/360 family. These third gener.i
tion processors featured 32-bit addressing, which didn't sit well
with AI researchers. Twenty years ago, AI people were used to
36-bit architecture, which allowed them to store two 18-bit ad
dresses in a single word. This characteristic wasn't of any particular
value to the business community, so IBM replaced it with the "less
is more" System/360 architecture.

Digital Equipment Corporation
At the request of MIT's Artificial Intelligence labor-.itory, DEC

came to the rescue with the PDP-6, a 36-bit "LISP engine". One
of the design goals inherent in the PDP-6 was fast, efficient exe
cution of LISP programs, and DEC succeeded admirably in this
regard. Shortly therafter, the firm expanded its niche in Al research

62

and development with the introduction of the DECsystem-IO,
which is still a popular AI system two decades later. And todav,
the \AX is the general-purpose AI machine of choice. ·

DECs internal involvement with AI was accelerated some six
years ago when Dennis O'Connor, a DEC group manager, hap
pened to meet Professor John McDermott, an AI researcher at
Carnegie-Mellon University. O'Connor was looking for a method
to increase the speed and accur.icy of VAX system configuration,
a task that was rapidly getting out of hand. McDermott, coauthor
of the LISP-based OPS production system language, was searching
for a problem that an expert system written in OPS could solve
to prove the viability of commercial expert systems. This chance
meeting resulted in a collaborative effort that culminated in the
development of RI, the VAX computer system configurer now
known as XCON. XCON proved to be so cost-effective that DEC
decided to become more deeply involved with Al, intending to
use the new technology to resolve other business problems
previously considered intractable by computers.
. The firm was in an ideal position to sponsor a large scale
mternal AI program because it already had the necessary hard
ware and human resources at its disposal. Because it was obvious
that Al applications could be designed and implemented most effi
ciently if the effort was conducted from a centralized location
~he ~I Technology Center was conceived and built. Since its open~
1.ng 111J~1~uary 1983, the Hudson facility has been the focal point
for DEC s AI research, development, and marketing.

The Hudson facility is home to three teams of employees,
~ach devo~ed to a different aspect of AI. The AI Marketing Group
is responsible for the promotion and distribution of DEC's com
mercial Al products. The AI Engineering Group develops and im
plements new Al applications for internal use as well as commer
cial distribut~on. Finally, th~ Intelligent Systems Technology Group
d~vot~s its efforts to manufacturing-oriented knowledge based ap
phcat10ns such as internal production management and material
requirement planning.

DEC also makes substantial contributions to academic AI ef
forts through. its twenty-year-old External Research Program. In
this cooper-.ittve program, DEC selects R&D projects that are of
particular interest and then farms them out to academic institu
tions rather than pursuing them in-house. To make the program
attractive to universities, DEC supplies at least half of the seed
money and expertise required to get each project off the ground.
Again, DEC remains somewhat coy about the depth and breadth
<!f th.is program, but it"s estimated that the company is currently
tundmg at least 100 external research ventures.

GOVERNMENT EFFORTS-AN INTELLIGENT DEFENSE
Not surprisingly, the Department of Defense is involved in

AI. expert systems and supercomputers in a very big way. Our social
structure and government philosophy does not pennit us to match
the Sm'.ict Union weapon for weapon or megaton for megaton.
Accordmgly, we are striving to maintain qualitative rather than
quantitative superiority over the Warsaw Pact. Implicit in our
defense strategy is the maintenance of a technological edge over
the Soviet Union through "smart" weapons and technical in
telligence resources complemented by sophisticated computer
hardware, software and architecture.

Back in the 1950's, it was the Pentagon that lobbied for in
telligent computers that could tr.inslate Russian into English. Later,
th~ DOD b~came interested in natural language recognition and
votee and signal processing techniques. These interests dovetailed
with an equal concern for electronic intelligence interception and
exploitation, pursuits requiring significant computational
horsepower. This concern has been reflected by the creation of
several government agencies, most notably the National Security
Agency and the Defense Advanced Research Projects Agency.

The NSA
In terms of sheer numbercrunching. our most powerful

Federal organi7..ation is the National Security Agency. One of the
nation's most obscure intelligence agencies, the NSA has an
awesome arr.iy of supercomputers at its disposal, and has been
a center of important breakthroughs in computer technology since
its secrecy-shrouded creation in 1952. The NSA's main computer
room. located beneath its Maryland headquarters, occupies over
twelve acres of floor space. It houses processors from DEC, IBM,
and Cray Research in addition to numerous custom-built special
purpose machines. NSA, which is often referred to as an acroymn
for "Never Say Anything". is mum about its hardware, software,
and related paraphanalia, but it's a sure bet that these resources
aren't devoted to checkers tournaments.

NSA has fr.tctionally lifted its veil of self-imposed anonyminity
by announcing its role as custodian of a new venture, the Super
computing Research Center. This facility. located at the Maryland
Science and Technology Center, is the br.iinchild of a federal think
tank called the Institute For Defense Analysis. It is expected to
draw at least 100 eminent computer scientists. AI researchers and
engineers. What is particularly noteworthy about this endeavor
is the fact that it represents NSA's first significant involvement in
a semi-public-domain research and development project.

DARPA
More commonly known is the Defense Advanced Research

Project Agency (DARPA), the agency that brought you ARPANET
and was instrumental in the development of the ADA program
ming language and the world's first supercomputer. the ILIAC IV.
DARPA's precursor. the Advance Research Projects Agency, was
formed in 1958 as part of our response to Soviet technological
efforts which culminated in the successful launch of Sputnik. Four
years later, the Information Processing Techniques Office was
formed to advance the development of interactive computing,
timesharing and networking for command and control functions.
During its tenure, DARPA has infused over half a billion dollars
(its current annual budget) into computer research. It is arguable
that DARPA-funded research has been critical to almost every aspect
of AI, including supercomputers, parallel processing and natural
language understanding. Many experts contend that it was DARPA
money which kept AI research afloat during the years of disillu
sionment and disrespect, and it's certain that the agency will con
tinue to play a pivotal role in AI-related endeavors.

DARPA is the parent agency for a progr.tm called Strategic
Computing and Survivability, also known as the Strategic Com
puting Initiative. The SCI has as one of its primary goals the
development of a new class of superintelligent machines which
can be industrially produced. In its efforts to bring forth an AI
"Model T," the SCI is funding research in expert systems develop
ment, microelectronic design, machine architecture. natur.tl
language processing and speech recognition. and machine vision.
Three application prototypes have already been selected and
funded as SCI projects. These are an autonomous land vehicle,
an intelligent pilot's associate and a battle management system.

The autonomous land vehicle, presently under development
by Martin Marietta. is to be a vehicle capable of steering, navigating,
avoiding obstacles and otherwise driving itself from Point A to
Point B at speeds up to 60 kilometers per hour. All this is to be
accomplished-without human intervention-by expert systems.
This is easier said than done. The navigational portion of the ex
pert system will require at least 6000 rules which must fire at a
rate of 7000 rules per second. Today's expert systems are con
siderably smaller and much slower-rarely are firing rates in ex
cess of JOO rules per second.

The vision system presents obstacles much more difficult to
surmount than the terrain features themselves. For example, the

63

system will have to be capable of distinguishing between a large
rock and a shadow and between a clump of trees it must avoid
and a patch of tall weeds it can drive right through. In order to
function in real time. this system will require a processor capable
of handling as many as 100 billion instructions per second. DARPA
expects the processor. as well as the vehicle, to fully operational
by 1994.

The second prototype is an intelligent pilot's associate. Unlike
the computers without which the new X-29 aircraft would remain
airworthy for less than a second. the processors in the pilot's
associate would be responsible for such "low level" chores as
navigation, dealing with enemy defenses and electronic
countermeasures. and identifying, analyzing and otherwise react
ing to other aircr..tft. By codifying the tactics and strategies of
veteran fighter pilots with actual combat experience, this expert
system would assist less experienced pilots during the critical first
few days of combat. Because the pilot's associate would be capable
of speech recognition, this system is essentially only one step
removed from the thought-controlled MIG in the movie "Firefox".

The final application prototype is a battle management system
designed to help the commander of an aircr.tft carrier during
hostilities. This is to be an intelligent, real-time expert system
capable of recognizing and analyzing a threat, synthesizing and
evaluating responses to the threat, resolving conflicting goals to
select the most viable response and then implementing that
response. 1h achieve its goals, the battle manager will have to react
with lightning speed to fluid conditions and circumstances, and
interact with a knowledge base of some 20,000 rules. The pro
cessor selected to run the multiple expert systems comprising the
battle manager will have to be at least as powerful as the hard
ware needed for the autonomous land vehicle. Although a pro
cessor of this capability is not yet available, a forerunner of the
computerized intelligence analyst is now being tested aboard the
aircraft carrier USS Carl Vinson.

Autonomous Systems
The concept of autonomy is essential to one DARPA's ultimate

objectives- the dewlopment of what it refers to as collaborative
and autonomous systems. A collaborative system would work
closely with human oper.ttors. providing advice and assistance
much in the same manner as present day expert systems. By con
trast. an autonomous system functions without human interven
tion. Indeed, one of the linchpins of the Strategic Defense Initiative,
or "Star Wars" program, is the development of hardware and soft
ware capable of analyzing torrents of data intercepted by
reconaissance satellites and remote sensors, then formulating and
implementing an appropriate response. The expert systems envi
sioned to provide the brains behind the Strategic Defensive Initi
ative will consist of millions of lines of code. Even if other expert
systems are used to help write this code, the task of ensuring that
the SDI programs are viable and bug-free is impossible with to
day's technology.

The Robotic Battlefield
Robotics, another facet of AI, figures very prominently among

some of the other objectives, both announced and implied, of
DARPA and other agencies within the Department of Defense.
Although the technology necessary to write and implement a Star
Wars expert system may be unattainable, the vision of warrior
robots advancing across a chemically contaminated battlefield of
the future may not be entirely far fetched: The Navy's Underwater
Research lab already has plans on the drawing board for robots
guided by expert systems that will roam the ocean floor, doing
classified things with and to submarines, mines and torpedoes.

Of course, not all of our government involvement in AI is
of a purely militaristic nature. The National Bureau of Standards
has under its stewardship a totally automated machine shop. The
NBS Center For Manufacturing Engineering features a 5000 square
foot factory floor which is the epitome of automation. The only
time a human worker ever enters this Maryland demonstration
facility is when a machine must be repaired. Robots guided by
expert systems are responsible for every phase of production that
takes place in this machine shop of the near future. Even so-called
"white collar" tasks like scheduling, resource allocation and pro
duction management are handled by expert systems. To paraphrase
author and poet Richard Brautigan, the NBS machine shop is truly
a facility "all watched over by machines of loving grace."

THE FUTURE
It's certain that we'll witness a proliferation of AI applications

software in the near future. Most of these packages will be of the
expert system genre, designed to maximi7.e productivity, and create
friendlier, more efficient user interfaces with conventional systems
and software. The following examples of hybrid software packages
are not mere speculation-each is already in the prototype or
development stage.

Perhaps a future release of VMS will have a smart DCL inter
preter that responds to user mistakes with questions and sug
gestions rather than SYNThX ERROR. Maybe a group of enterpris
ing knowledge engineers will take it upon themselves to reduce
the VAX document set to a knowledge base which new users and
system managers alike can query for specific information. And
possibly your 1990s word processor will be able to interactively
correct spelling and grammar, help you organize your thoughts,
and let you know when you inadvertantly contradict yourself.

The huge binders filled with circuit schematics that clutter
up your computer room could become a thing of the past. When
Digital Field Service dispatches an engineer to fix your ailing com
puter of the 1990s, he or she may uncoil a cable from a large brief
case and plug the leads into a socket on the back of the CPU. The
briefcase would contain its own supermicrocomputer which, in
conjunction with a expert system and a video display system

64

somewhat like today's IVIS, could diagnose the computer problem
and display the solution one step at a time in accurate, full-color
graphics.

Computer programming as we know it today will be sup
planted by mechanized expertise. Instead of coding an applica
tion program to meet the specifications of an end user, a program
mer may be able to give these specifications to an expert program
mer's assistant and let it attend to the task of developing an optimal
program. With a large enough knowledge base, an expert system
could likely respond to a request for a payroll program by building
the program itself. It would do so by taking into consideration
tax laws, company policies, company-specific financial and
accounting systems and dozens of other factors that eclipse the
traditional "HOURS TIMES RATE = GROSS" algorithm.

A multitude of things you do with computers will receive
an injection of artifical intelligence, even though it won't be called
AI. Instead, difficult, repetitious or monotonous tasks will be
simplified by concealed software which, if extracted from an
integrated application, would meet the definition (whatever it hap
pens to be at the time) of AI.

From this vantage point, it's obvious that artificial intelligence
has become a commercial reality. Expert systems are proving
themselves every day, and the technology needed to produce Fifth
Generation computers is being refined almost as rapidly. While
we don't have to worry about Kubrick's HAL, the truly intelligent
KIP is no longer a fantasy-it has evolved into a concept which
will be realized, at least in part, within a decade.

Japan, through its 1car consortium and ambitious Fifth
Generation crash program, has established some lofty goals to be
attained by 1990. How successful their efforts will be is still a mat
ter of conjecture, but it is reasonable to assume that they will not
meet with complete failure. Our equally significant research and
development campaign should reap at least as many benefits as
the Japanese program. With computer technology in a state of flux,
the future is difficult to predict with any degree of accuracy.
However, one concrete statement can be made today: you'll be
hearing a lot more about AI, expert systems and Fifth Generation
computer systems in the months and years ahead.

Data Management
for

High Energy Laser Systems

Ramon A. Tenorio, David Dayton
Applied Technology Associates

Albuquerque, New Mexico

ABSTRACT

The High Energy Laser Systems Test Facility (HELSTF) located
at White Sands Missile Range, New Mexico includes an auto
mated data acquisition and processing facility structured
around two VAX 11/780'S and two PDP 11/34's. The acquisi
tion and processing facility is charged with recording,
transcribing, decommutating, analyzing and reporting data
from a wide variety of time history and imaging sensors. To
manage post test data processing and analysis, a program,
High Energy Laser Processing and Control Environment
(HELPACE) has been developed. Designed around the VAX
DATATRIEVE Data Base Management System (DBMS), HELPACE as
sists the Data Base Manager, Analysts and Operators in the
following ways:

It helps the Data Base Manager Create the data base
It helps Operators populate the data base
It helps Operators extract pre-defined reports
It helps Analysts run and modify their own Algorithms
It helps the Data Base Manager back-up and restore the

data base
It helps the Data Base Manager control data base use

INTRODU~IOH

The High Energy Laser Data Acquisition and Proces
sing System (HELDAPS) located in the HELSTF at White
Sands Missile Range was designed to collect and ana
lyze data from multiple tests of diverse laser sys
tems. Via the High Energy Laser Executive Control
ler (HELEX), data is collected and stored on mag
netic tape. The problem that was addressed and led
to the development of HELPACE was how to manage the
data recorded by HELEX to produce reliable and veri
fiable data in a timely manner. To perform the
above tasks, detailed coordination must take place
between the analyst who is ultimately responsible
for the data, the Data Base Manager who is respon
sible for the data base, the Operators who run the
system and the software packages that do the compu
tations. HELPACE is the tool designed to coordinate
these activities.

EXISTING SOFrWARE

HELEX was operational on the VAX 11/780 at HELSTF
when our effort began. The parameters that drive
HELEX are stored on VAX based RMS files. These
parameters define the method of recording, storing
and displaying data during real-time testing. Prior
to a test, the parameters are down loaded to the PDP
11/34's. The PDP's drive the hardware that collects
the measured data. Pertinent parameters, needed to
unpack and scale the data, are written to tape along
with the measured data. After a test, the original
VAX based RMS files are saved with the DEC BACKUP
utility. In addition to HELEX, several other soft-

Proceedings of the Digital Equipment Computer Users Society 65

ware systems existed at HELSTF. These software sys
tems were used to transcribe, decommutate, plot and
generate statistics on one dimensional data.

Since the existing software at HELSTF did not con
tain a Data Base Management System (DBMS), it was
difficult to keep pace with the dynamic nature of
High Energy Laser Testing. Needed was a software
system that would integrate existing software, as
well as, provide a method to integrate new software
all within the framework of a DBMS. The goals es
tablished for HELPACE were as follows:

1)

2)

3)

4)

5)

Develop a data base schema that would be
flexible
Develop a method to interface existing
software
Develop software to process new sources of
data
Provide the capability for tracking mea
sured data and parameters used in gener
ating output products
Provide an environment in which simul
taneous support could be provided for a
system being tested as well as allow for
modifications to the software and data base
to support planned testing.

The HELPACE system consists of four classes of
software:

New Orleans LA- 1985

1) Executive---used to interface with the user
2) Functions---populate the data base with

pointers to measured data
3) Algorithms--manipulate data from the data

base
4) Utilities---create and manage the data base

HELPACE is a system of modular FORTRAN and DCL pro
grams that was designed to keep pace with a dynamic
testing environment. New Functions can be easily
integrated into the HELPACE system. New Algorithms
supporting new or modified analysis requirements are
easily added. These new features can be added with
out affecting existing capabilities. Most programs
and command procedures receive control information
from the HELPACE executive either through a co~nand
file or through DCL defined symbols. HELPACE ac
tivates external Algorithms and processes based on
user input commands.

The executive software is part of the HELP ACE ex
ecutable image. It makes extensive use of VAX VMS
utilities and system calls to translate user entered
commands into requests that control the sequence of
data processing. The executive supports password
protection to insure that only authorized users ex
ecute functions. User commands may be entered in
teractively or through command files similar to VMS
command files. In addition, a menu driven capabil
ity is provided in the executive to allow easy ex
ecution and modification of Algorithms.

The HELPACE executive controls the activation of a
number of Functions. Functions are executed as de
tached processes or as subroutines of HELPACE. The
HELPACE Functions execute a variety of tasks. These
include transcription and manipulation of measured
data, creation of references to data sets in the
data base, modification of processing parameters in
the data base, creation of the data base for a new
series of tests, archival of the data base at the
completion of a series of tests, or archival/
restoration of processed data sets. If a Function
uses parameters, the HELPACE executive accesses the
appropriate DATATRIEVE domains to obtain them. A
control file containing the parameters is then
created for the Function.

The HELPACE data base is implemented using DATA
TRIEVE. The software accesses the data base via the
FORTRAN call interface utilities. Users may also
access a DATATRIEVE domain interactively to modify
parameters.

Algorithms are DCL procedures used as tools to ex
tract information from the data base and manipulate
the data base and data sets. They may contain run
statements to activate FORTRAN programs. The devel
opment of new Algorithms is completely independent
of HELPACE. Analysts may develop tools to analyze
data in any fashion. Algorithms are integrated by
the Data Base Manager into HELPACE as Processes.
The advantage of running Algorithms through HELPACE
is to provide traceability, via the data base, of
output products and processing parameters. The
HELPACE menu system allows the Analyst to interac
tively examine the input values used by Algorithms
to produce output. If the Analyst desires, one or
more values can be changed and the Algorithm rerun.

66

The numbering scheme for Algorithms and Processes
was designed to correspond to four information
groups in the data base. By examining an Algorithm
number, the type of processing and the information
group containing the data can be identified. An
Algorithm number is a six character number defined
as follows:

XXYYYY,
xx

yyyy

where
Identifies the type of processing done
by the
Algorithm. Possible values of XX are:
OA - Extract data from the data base
IM - Generate inferred signals
DE - Generate performance assessment

data
UT - Perform utility Functions

- Identifies the data base information
group on which the Algorithm operates.
Possible values for YYYY are:
0000-9999 - Test Planning and conf igura
tion
1000-1999 - One dimensional data
2000-2999 - Two dimensional data
3000-3999 - Performance Assessment data
4000-4999 - Algorithm Process data
9900-9999 - Vt i 1 it y (used on 1 y for

XX=UT)

The Data Base Manager assigns Algorithm numbers
based on the above categories.

Every user may store in the data base his own set of
parameters for an Algorithm. To uniquely identify
his data, the users UIC is appended to the Algorithm
number. Thus, each user can run an Algorithm with a
particular set of parameters and track them in the
data base.

EXECUTIVE-DATATRIEVE INTERACTION

The HELPACE executive accesses DATATRIEVE via the
FORTRAN call interface utility. Most of the acces
ses are to obtain data that has been stored in the
data base. DATATRIEVE ports are used to pass the
information. Record definitions are stored as
character strings for each of the domains to be
accessed. When a new domain is to be opened, the
HELPACE executive runs a processor that reads the
record definition and issues the DATATRIEVE commands
required to create the port.

To pass data through a port, a collection must first
be defined. The DATATRIEVE commands that must be
executed to form this collection are stored in
character strings. Part of the HELPACE executive
contains a processor that reads these commands and
issues the calls to the call interface to form the
collection. The collection is then passed to the
predefined port. When data is brought through the
port, it is done as an entire record. The record is
passed as one long byte string. HELPACE extracts
the various pieces of information contained in the
string and stores that information in separate vari
ables.

To modify a DATATRIEVE record, the executive uses
the same processor used to form a collection. The
DATATRIEVE commands necessary to modify the record
are stored in character strings and passed to the
processor which executes them via the call interface
utility.

HELDAPS DATA BASE ----
The HELDAPS Data Base was designed to simultaneously
track the data from various tests of one or more
systems. The following four categories of informa
tion are tracked by the data base for each test:

1) Test Planning and Configuration
2) Measured Data
3) Performance Assessment
4) Data for Report Generation

The Test Planning and Configuration category con
tains information required by HELDAPS in order to
conduct a test. Currently, most of the information
in this category is supplied by the HELEX generated
configuration data base. After a test, the informa
tion in this category is used to unpack, scale and
store the measured data.

The Measured Data category contains information for
sensor data recorded via HELDAPS or that was brought
over to HELDAPS for processing. Pointers to the
data files are stored in the data base.

The Performance Assessment category stores informa
tion generated by a data processing Algorithm. For

example, very useful information can be gained by
looking at the mean or standard deviation of one or
several signals across a number of tests.

The domains in the Report Generation category are
used by Algorithms that extract data from the data
base. This allows for the semi-automatic generation
of output products. More importantly, it allows the
tracing of the parameters used from test configura
tion through the delivered final products.

The HELDAPS Data Base is maintained by the DATA
TRIEVE Data Base Management System. Two other VAX
utilities, VAX-11 FMS and the VAX COMMON DATA DIC
TIONARY (CDD) are used to provide a user friendly
environment in which to manage the data base.

The CDD contains the structure of the data base.
Objects maintained by the CDD include record defini
tions, domains, procedures, tables, dictionaries,
sub-dictionaries, access control lists, key and al
ternate key values. Figure 1 depicts the structure
that was developed to support the testing conducted
at HELSTF. In order to extract information from the
data base, the user must point to the correct dic
tionary. Objects shared by multiple systems and
multiple tests are stored at the HELDAPS level.
Record definitions, procedures and list procedures
(for most domains) are stored at this level. Ob
jects that can be shared by multiple tests are
stored at the SYSTEM level. Objects specific to a
test are stored at the CONFIGURATION level. The
higher in the hierarchy that objects are stored, the
easier it is to maintain data base integrity since
there is more sharing of schema information.

The data base files are kept separate from the dic
tionary structure information. This approach allows
the data files to be spread across several disks.
Figures 2 and 3 depict the current data directory
structure. Note that the measured data directory is
maintained on one disk while the remainder of the
data files reside on another.

The requirement to simultaneously track several
tests from one or more systems involves tracking a

67

tremendous amount of detail. The detail ensures
that the correct record definition is tied to the
correct domain, which in turn is tied to the correct
data file and display form.

l CDD$TOP

Other l HELDAPS l

l SYSTEM.A l l SYSTEMB l

l CONFIG1 l l CONFIG2 l

Figure 1
Dictionary Structure

DRA1

Other HDB

Other

l SYSTEMC l

l CONFIG3 l

Other

l sys·rEMA l l SYSTEMB l l SYSTEMC l

l CONFIG1 l l CONFIG2 l l CONFIG3 l

PA TPC AID

PA - Performance Assessment l
TPC - Test Planning and Configuration!
AID - Algorithm Input Data l

Figure 2
Data Directory Structure

(Disk D.RA1)

DRA2

Other HDB Other

J SYSTEMA J J SYSTEMB J J SYSTEl'1C J

J CONFIG1 J J CONFIG2 J J CONFIG3 J

MDI1 MDI2

MDix - Measured Data Intervals

Figure 3
Data Directory Structure

(Disk DRA2)

MDI3

When a new series of tests is initiated, a data base
is generated in several steps. Most of the con
figuration information is supplied by the HELEX gen
erated configuration data base. This information is
copied into the new data base when it is created.
Algorithm and Function pointers and parameters are
copied from the previous test data base into the new
data base. The remainder of the information is pop
ulated manually as the various HELPACE Functions and
Processes get executed. At the completion of a
series of tests, the data base is copied to tape and
archived. If reprocessing is required for a test,
the data base for that test can be selectively re
stored. Algorithm parameters can be inspected and
modified for reprocessing.

The files that collectively form HELPACE and the
HELDAPS Data BaE<e fall into one of the following
categories:

Source Code
- Algorithms
- DCL Command Procedures
- Include files
- Data Base files
- Object libraries
- Executable files
- Forms files
- Documentation files
- Historian files
- Scratch files

68

In a dynamic environment, such as the one that ex
ists at HELSTF, changes to one or more of the above
categories are constantly being made. The ideal
structure for these files is one that allows for the
processing of data by baselined software, as well as
for modifications to support new requirements. Fig
ures 4 and 5 reflect the directory structure in
place at HELSTF to support processing of data using
baselined software. The following is a brief
description of what each directory on DRA1 and DRA2
contains.

- HDB Data files at the HELDAf'S level
- ALGORITHM HELPACE Algorithms to support

prior and current analysis re-
quire1nents.

- DOCUMENTS All on-line documentation
All executable programs - BIN

- FORMS FMS forms to support DATATRIEVE
domains

- SYSTEM Data files at the SYSTEM level
Data files to TEST level - TEST

- AID
- TPC

- MDI

- PA

Data files to support Processes
Data files to support Test Plan
ning and
Configuration domains
Data files that track measured
data in data base
Data files to support performance
assessment domains

J -- i ALGORITHM i
I
I ------------1
I ------------
: -- : DOCUMENTS i
I
I ------------1
I -------------
: -- : BIN
I
I ------------

-------------i--i Other : -- : F'JRMS
I I
I ------------ I -------------I I

-------------- I ------------ I -----------
DRA 1 i--i--i HDB i---i--i SYSTEMA i-->

I I
-------------- I ------------ I -----------I I

I ------------ I ------------
: -- : Other : -- : SYSTEMx i-->

I
I -----------
' -------------: -- i SCRATCH
I
I -------------

Figure 4
Data Structure to Support

Production Processing
(Disk DRA1)

i -- i OTHER i- i SYSTEMA
I I
I ------------- I -------------1 I

------------- I ------------- I -------------

DRA2 1--i--i HDB 1-- i--1 SYSTEMX 1-->
I I

------------- I ------------ I ------------
I I
I ------------- I -------------
1--: OTHER 1--1 SCRATCH

Figure 5
Data Structure to Support

Production Processing
(Disk DRA2)

Storage of the measured data files requires large
amounts of disk space. In order to maintain the
Data Base on-line for ad hoc retrievals, these files
are stored on DRA2. The HDB, SYSTEM, CONFIG and MDI
(Figure 3) directories point to the location of
these data files. If the data files are taken off
line, their location is tracked in the Data Base.

SUMMARY AND CONCLUSIONS - -
HELP ACE is a dynamic data management facility that
provides the following features.

1. It is based on the DATATRIEVE DBMS utility using
the call FORTRAN interface utility.

2. It provides a user friendly executive to control
data processing and management functions.

3. The executive uses processor modules to execute
DATATRIEVE commands via calls to the call interface.
Data is passed to the executive through ports.

4, It is designed to track collected and processed
data sets, processing parameters, and provides a
degree of automated processing.

5, It tracks user written processing Algorithms.

6. It is modular and is easily modified.

In the course of our work, we encountered the fol
lowing shortcomings in using the DATATRIEVE call
interface utility:

1. When ports are used to access DATATRIEVE domains
from FORTRAN programs, the domain record definitions
must be coded into the program. If the record de
finition is later modified, program modifications
and recompilation are also required.

2. Accessing records through the call interface is
slow. This seems to be due to computational as well
as page fault overhead when making a DATATRIEV~
call.

3, The lock wait call interface option works only
one way. If a user locks a DATATRIEVE record, and
second user attempts to access it, the second user
will wait. On the other hand, if the first user
accesses a record but does not lock it and a second
user attempts to lock the record, the second user
will receive an error.

69

Encryption for Beginners

B. z. Lederman

2 5 7 2 E. 22nd St.
Brooklyn, N.Y. 11235

Abstract

The purpose of this paper is to make people aware
of what data encryption is, how it is used, who
needs it, and why it is needed. It is intended as
an introduction to the subject, so it will not go
deeply into the mathematical internals of ciphers

As is true for many subjects, what
something is and how it is used is often
interlinked, so that one needs to understand
one before the other can be explained; so
to begin with, some very simple definitions
will be given, and later they will be
expanded.

Cryptography covers the general field
of transmission of information which is
protected from unauthorized access, and
includes secret writing (concealing a
message by various means), codes, ciphers,
and their use and defeat. Lately,
encryption and decryption have come to be
used in place of encipher and decipher to
refer specifically to the use of ciphers to
protect data, and will generally be used as
such here.

Stated more simply, data encryption is
a method of protecting data so that it can
be accessed only by the people who are
supposed to be able to get to it. This
definition, while correct, is rather vague
(it could apply equally well to the physical
protection of data such as locking it up in
a safe, or translating it into an obscure
language): it does, however, explain the
purpose of encryption, which is to limit the
accessability of selected items of
information. This will be explained first,
as it is desirable to understand why access
should be limited to understand how it is to
be done.

Do You Need It?

If you are working on a computer system
which can be accessed by one or a very
limited number of users, and which has no
outside lines (no modems or dial-in lines),
and which stores all information on easily
removable media (floppy disks or tape
cartridges), and you always remove this
media and lock it in a safe when you are

Proceedings of the Digital Equipment Computer Users Society 71

not using it, then you may not need
encryption. If you can eliminate all access
to your data other than by having the key or
combination to the safe, and if no-one can
look over your shoulder or otherwise tap
into your computer or terminal lines while
you are examining your data, then access to
your information has been made about as
secure as possible through physical means,
and encryption is probably not necessary.
Unfortunately, this ideal state of affairs
does not often exist. Sometimes your
storage media cannot be kept in a safe, or
you must store your information on a fixed
disk which cannot be removed, or you must
share the system with many other users at
the same time, or you must have dial-in
lines so that people outside your physical
location can access the same machine, or you
must send information to other locations:
in any of these cases, you may need to limit
access to your information, and encryption
is one method of doing this.

The immediate reaction many people have
to this is:

"Our computer is used only by people within
our company. We don't have dial-in lines,
[or our dial-in lines are secured by other
methods, such as passwords or dialback],
and all of our terminals are within our
company area. Why do I have to protect my
data?"

Some Reasons.

Even in this situation, there may still
be good reasons for using encryption.
First, you may have information which you
are obliged to keep confidential. If you
use your system to administer company
medical benefits, for example, you may be
obliged to keep personnel medical records
confidential. Without some sort of
encryption or other protection scheme, it
may be possible for many people in your

New Orleans LA - 1985

company to peruse the medical records of
other employees at will. Even if you are
certain no-one will do this, increasing
demand for rights to privacy of personnel
records may set a legal requirement that you
protect information from indiscriminate
access. (Note that encryption will not
protect against the persons who must still
have access to the data: other checks are
needed to insure that persons who must have
the data will not misuse it.)

Next, there may be information you want
to keep confidential. If you use your
system to keep track of employee performance
records, or calculate salaries as part of
your budget planning, you might not want the
employees involved to read or modify that
data. It is all well and good to say you
trust your employees, and probably most
people can be trusted: but locks were
invented to keep out the small percentage of
society which cannot be trusted. I rather
imagine that most people reading this lock
their houses and cars before leaving them,
even if they trust most of their neighbors:
if you would do that, then you probably have
information which should also be "locked
up". Similarly, you might be preparing
information for contracts, order placements,
payroll records, competitive bids, and
similar information which could represent a
significant portion of your company's
assets, and might be several times the
annual salary of many of the people who have
access to it (and they are not always only
the people whom you think have access to
it). The more important an item of
information is, the more likely it is that
someone could benefit by getting it, and
therefore the need to protect it increases
directly with it's importance.

The case where a "hacker" or other
unauthorized person calls into a computer
system and proceeds to cause various type of
mischief and/or damage is one that probably
most people fear. You may have a system
where it is necessary to have dial-in access
for your own personnel, and it then becomes
necessary to guard the system as much as
possible. There are various methods of
limiting access to a system through
passwords, or through hardware, which are
outside the scope of this paper. Data
encryption can act as a second line of
defense, however, and should also be
considered. In many cases, "hackers" are
simply looking for files they can read, or
programs they can run: encryption can make
data unreadable and programs unrunnable, and
thus defeat two of the hackers main goals.
Encryption will not prevent the random
modification of data (where the modifier
doesn't care what the change actually does)
or deletion of files: other methods of
protection are required to guard against
that type of damage.

72

The situation may also be reversed, as
many computer users do not own their own
systems and have to use time-sharing or
other outside computer processing to store
data and provide other computer services.
In this case, you may have little control
over who in the world has access to your
data. An encryption scheme that can be
implemented on your own data on the outside
machine would be one way of protecting your
information. Similarly, many companies
store copies of their records in outside
warehouses or other storage facilities to
protect against fire or earthquake damage at
their main location, and while such
facilities usually offer guarantees against
unauthorized access, some extra protection
might be desirable.

One last situation which probably
occurs to most people is when data has to be
transmitted from one location to another,
usually over some public facility
(telephone, teletype/telex, leased
communication line, air freight, or mail).
It is actually more likely that the data
will be accessed from within your company
than from without (intercepting telephone
channels from microwave links is possible,
but rather difficult), but the more
important the information is, the more
likely it is that someone will try, and it
wouldn't hurt to take some reasonable
precautions. If you are engaged in any type
of electronic funds transfer, such as
depositing your employees payroll directly
to their bank accounts, or transfer of
company assets to your bank or to other
companies, the sums of money involved may be
so great that not encrypting the data in
some way is courting disaster. Consider
what would happen if someone were to change
the records just once: if that would
seriously hamper your business, or cost you
a significant amount of money (either by
direct loss or the effort to replace the
missing information, or loss of goodwill of
the person at the other end), then you
should consider encrypting your data.
Remember that the true cost of data might
not be just what it cost you to obtain it,
but also what it will cost if you lose it.

Other Types of Protection.

It can be seen, therefore, that many
users will have some use for a data
protection scheme of some kind, as nearly
everyone has some type of information which
is not to be accessed by everyone else.
This leads to the methods which can be used
to protect information. Various computer
operating systems are in use today, some of
which include access protection through
requiring users to log into accounts, or
various methods of verifying that persons
accessing dial-in lines are properly
authorized, or

through protection codes within the storage
system (such as the file protection codes
used in RSX-11, RSTS, and VMS). These are
outside the range of this paper, but it will
be mentioned that they don't always provide
the limit of protection needed, either
because there has to be at least one
privileged user of the system who can bypass
the checks, or because backup copies of the
data must be stored off of the machine, or
from other limitations of the system. Even
when such schemes work well, they may not be
enough, and they don't work at all if the
information has to be sent outside (by wire
or mail, etc.). This leads us back to data
encryption, which will allow the information
to be protected by a method which is
independent of any protection which may be
provided by the operating system. This does
not mean that other protection schemes
should not be used, or that encryption is
the answer to everything, either: different
protection schemes cover different areas,
and usually complement rather than
substitute for each other.

Once the need for some type of data
protection is recognized, a protection
scheme must be selected. As previously
mentioned, cryptography covers, in general,
secret writings, codes, and ciphers.

Secret Writing.

Secret writing covers such things as
invisible inks, and concealing messages
within other messages. This is a highly
specialized field, and one which is not
likely to have much general application: it
is usually too cumbersome for easy use, and
is not applicable to storage of large
amounts of information on computer media.
Just to show what it is like, consider the
message:

"Inspect details for Trigleth,
acknowledge the bonds from Fewell."

which doesn't seem to mean anything. If you
take the third letter of each word, however,
you get the message "Strike Now". This is
an example of secret writing, (a method
which follows a fixed formula like this may
also be called a concealment cipher), and it
can be easily seen that it would not be easy
to use: if it had no other faults, the
concealed message has become over 6 times
it's original length, and if you have to pay
for disk storage space or transmission
costs, you can see a big disadvantage to
this type of protection. Invisible inks can
be used on paper messages, but obviously
won't work at all on data stored on disk or
magnetic tape. (There was one fictional
story where

73

a message was written on a reel of tape with
a grease pencil, but this tends to gum up
the drive, and isn't very practical.) They
can be useful to authenticate documents, as
they cannot be duplicated by photocopying
machines, but again, this is a field where
expert assistance from a printing company or
ink manufacturer is required. We will not
give any more attention to this subject.

Codes.

A code is the arbitrary mapping of
symbols to other symbols. It is usually one
to one, but can be one to many or many to
one. One example of a code which is in very
common use every day is ASCII, the American
Standard Code for Information Interchange,
used by most computer terminals to map
binary signals to numbers, letters, and
other characters, a portion of which is
shown here.

040 SPA
041
042 "
043 #
044 $
045 %
046 &
047 I

050
051
052 *
053 +
054 ,
055 -
056
057 I

060 0
061 1
062 2
063 3
064 4
065 5
066 6
067 7
070 8
071 9
072. :
073
074 <
075
076 >
077 ?

100 @
101 A
102 B
103 c
104 D
105 E
106 F
107 G
110 H
111 I
112 J
113 K
114 L
115 M
116 N
117 0

120 p
121 Q
122 R
123 s
124 T
125 u
126 v
127 w
130 x
131 y
132 z
133 [
134 ®

135 J
136 ©
137

It isn't usually thought of as a code, and
it certainly isn't a secret, but it is a
code: it transforms one type of data into
another through an arbitrary mapping. Note
that the mapping is indeed arbitrary, even
though the letters do follow the alphabet
for convenience: there is no reason why
they would have to do so for the code to
work.

Another code which better fits the general
public's perception of a code is the type of
code which has been used for telegrams, a
portion of which is reproduced here:

MUWUB Improv~ng rapidly
MUXAW Improving slowly
MUXEX Is not improving as I/we

could wish
MUXIZ Is there any change
MUXNO Is there any improvement
MUXPU Progressing satisfactorily
MUXRY Sorry to year you are

(••••• is) ill

MYGEL How would
MYGIM HURRY (See Haste)
MYGON HYPOTHECATE-D
MYHAL IF
MYHCI And if
NYHDO And if not

and so on. It can be seen that the mapping
between the original phrase (the "clear"
text) on the right and the code word on the
left is completely arbitrary, and that the
book is the only way to go from one to the
other. This particular code had the
advantage that in most cases the coded text
was much shorter than the original message:
two groups of five letters could be pushed
together to make one 10 letter group, which
was counted as only one word in the cost of
sending the telegram. Since the mapping is
arbitrary, codes can be very secure.
Generally, you have to have the arbitrary
mapping in order to defeat (or "break") the
code, though if the code is re-used often
enough, the mapping can sometimes be
deduced. They are also vulnerable if one
can obtain a copy of the clear text and the
coded text which goes with it, and of course
are defeated if the wrong person obtains a
copy of the code book. Some authorities
consider book codes like this that are used
once only to be completely unbreakable, and
it would be easy to use a computer to
generate lists of arbitrary code words to
use.

Codes do have many disadvantages in the
computer environment, however. A computer
program to automatically code a message with
a scheme like the example would be very
complex, as the context of the angles
message is needed to search through the list
of phrases on the right and find the
appropriate code word: decoding the message
by looking up the letter group would be a
easier. Encoding large strings of numbers
is tedious and likely to increase the size
of the message, and there is always the
problem of what to do if you need a phrase
which is not pre-defined in the code book.
Binary data cannot be coded at all which
this particular scheme, and would be
difficult to encode with most coding
schemes. Since we would like a method which
would work on a computer, and accolfu~odate a
wide variety of data with a minimum of human
intervention, we will not consider codes
further.

74

Ciphers.

A cipher is a method of transforming
data from one form to another through a
logical process, usually with a geometric or
mathematical basis. Since a cipher is a
method or system rather than a group of
pre-defined mappings, it should be possible
to transform any "plain" or "clear" text,
regardless of length or content, into a
single enciphered message. This is more
easily understood with an example, such as a
simple geometrical cipher. I will take the
familiar phrase,

"THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK"

and write it out in a square in the usual
fashion, left to right, top to bottom.

T H E Q u I
c K B R 0 w
N F 0 x J
u M p s 0 v
E R T H E
L A z y D 0
G s B A c K

To encipher this message, I can take the
letters out by some sequence other than the
way they went in: for example, top to
bottom, right to left. (This is an example
of a transposition cipher, as it works by
transposing or changing the order of the
letters in the message, but not the letters
themselves.) This will give me:

"IWJV OKUO OEDCQRX H A BOSTYBE FP Z

HK MRASTCNUELG"

which doesn't look anything like the
original. The underlying principle here is
that there is a definite method of
transformation between the original text and
the enciphered text without considering the
actual content (even if it is not obvious on
a cursory inspection), whereas in a code the
transformation was completely arbitrary and
very sensitive to content. Because ciphers
work on a method of translating data from
one form to another, they are generally much
easier to implement on a computer, and they
are generally much less data sensitive than
codes would be. In this example, each
character could easily be a byte or word of
binary data, and the scheme would work just
as well.

There are a great many types of
ciphers, some more secure than others, and
some easier to use than others. One which
is very common, and even occurs in some
daily newspapers, is a simple letter
substitution, where one letter is replaced
by another. For example,

ABCDEFGHIJKLMNOPQRSTUVWXYZ

can be replaced with

EFGHIJKLMNOPQRSTUVWZYZABCD

This is a substitution cipher, which changes
the letters in the message, but not their
order in the message. This would make the
sample phrase "THE QUICK BROWN •.• "come out
to be:

"ZLI UYMGO FVSAR JSB NYQTW SZIV ZLI

PEDC HSKW FEGO"

Since this is a one to one mapping, I am
going to leave it to the purists to
determine if it is a code or a cipher,
though it is content insensitive (there is
obviously some overlap between some codes
and ciphers). The drawback to a simple
cipher like this is that it is too easy to
break with just a pencil and paper, and with
even the least expensive home computer it is
literally child's play. (You can read "The
Gold Bug" by Edgar Allan Poe or "The
Adventure of the Dancing Men" by Sir Arthur
Cannan Doyle to find out how.) There have
been many other, more sophisticated,
transposition and substitution ciphers than
the ones demonstrated here in use in the
past few centuries, but since they were all
implemented by hand, they are all too easy
to break by modern methods. You can simply
go out an buy a number of books that will
tell you exactly how to do it with just
pencil and paper, and the proliferation of
home computers makes most of them very
simple to break indeed. They may still be
adequate for some purposes however, but
considering how good a cipher needs to be
will be discussed later.

If existing ciphers are too easy to
defeat with computers, then what is left?
The answer is that most modern encryption
schemes are based on the same principles as
older ciphers, but use the power of the
computer to expand the magnitude of the
scheme. For example, in the transposition
cipher shown, the box was 7 letters on a
side: it could be made larger, but when
encryption is done by hand, a box much
larger than 15 or so on a side becomes too
cumbersome to use. With a computer,

75

however, there is no limit to the size of
the box: simply increasing the box to 100
per side makes it too large to "break" the
cipher by hand. This scheme of using the
computer to expand on a good encryption
method can be used to create ciphers that
are difficult to defeat, even with another
computer (the box cipher would still be too
easy to break by computer and is given only
to illustrate the idea). One which I have
used is a variation on the periodic number
substitution (also known as an addition or
Vigenere) cipher. In this scheme, a number
sequence is added to the text: a simple
example would be to add the sequence

1357135713571357135713571357135713 etc.

to the numeric value of the ASCII
characters in the message

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK"

to get this:

UKJ'RXNJL#GYPZS'GR) 'KXRWT#T)FU%[

IH%SB]© 1 ERLZ!EFJL

With a number sequence this short, the
cipher would not be too secure (you can see
even in this short message that a SPACE
becomes a ' four times, and the sequence
"SPACE-something-U" has twice been changed
to "'-something-X", for example) though it
is more secure than the simple substitution
cipher shown before. Various methods of
obtaining a less repetitive sequence have
been tried in the past, but usually produce
no real increase in security. Using the
computer, however, a number sequence can be
generated that appears to be random, and is
thousands of digits long. Most computer
languages have a random number generator (or
more accurately, a pseudo-random number
generator, as the sequence can be repeated
exactly when desired), such as:

LET A = RND(B) in BASIC, and

A = RAN(B) in Fortran,

and similarly for other languages. There
are theoretically an infinite number of such
pseudo-random sequences, and even for a
specific generator there are a very large
number of specific sequences: in DEC's
Fortran-77, the number that starts the
sequence (the variable B) can have at least
two billion possible values. This

particular cipher is sometimes called the
Fast "Infinite-Key" method, and has been
widely used with good results. We could
then repeat the above proceedure by
generating a pseudo-random number sequence
such as:

1986833925153857265815341697347183 etc.

and adding it to

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS BACK

to obtain

UQMYXLLM%CWR_S'HU] (KZPTT&X]HV'U

PH'UJ_a'JULZ)JHGM

At first glance, this doesn't appear
significantly different from the first
example, but if someone were to attempt to
defeat the cipher by the usual method of
looking for repetitive patterns and common
adjacent letters, they wouldn't find any,
and would not be able to defeat the cipher.
This cipher has the additional advantage
over the "box" cipher in that the characters
can be processed in the order they are read:
in the box cipher, a large portion of the
message has to be read in and stored before
any of it can be processed. In most
computer ciphers, it is an advantage to be
able to process the message serially, and to
not have the length of the message have any
effect on the encryption scheme itself,
especially then the messages being processed
are being transmitted from one place to
another (over a communications line, or to a
disk or tape drive are two examples).

It can be seen, therefore, that even
though the computer has made it easier to
defeat some encryption schemes, the power of
the computer can also be used to raise the
complexity of a cipher to the point where it
is very difficult to defeat, even with
another computer. This is the basic
principle behind most good modern computer
ciphers: the use of the computer to raise
the complexity of the cipher until it is
(hopefully) beyond the ability to defeat by
any practical means.

76

Data Compression?

It was mentioned that the telegraph
code example shown earlier also compressed
the information into a more compact form.
There are a number of data compression
schemes in use on computer systems to
minimize the amount of space data occupies
when stored, or to reduce the amount of time
needed to transmit information from one
location to another (and hence reduce the
cost of transmission). Some of these
compression schemes could also be thought of
as ciphers, as they transform data from one
form to another. While they have the
obvious advantage of compressing the data,
generally the compression algorithms are too
well known for this to act as a really
secure cipher. You can, of course, compress
your data before or after encrypting it as
long as the cipher is not data sensitive.

With some understanding
encryption is, we can perhaps
better definition. One such
could be:

of what
present a
definition

"Encryption is a method of transforming
data into a state where it is not easily
available to persons other than those for
whom it is intended (using ciphers)."

This is a very general definition, and it
does appear to be somewhat cumbersome, but
it is worded in this way deliberately. Note
especially the emphasis of the phrase, "not
easily available". Generally, no encryption
scheme is absolutely secure from ever being
defeated, and a decision has to be made as
to how good a scheme is needed. From a
practical standpoint, the real purpose of
encryption can be defined as this:

"To make obtaining the data more expensive
than the data itself is worth."

(Where expense is counted in time, effort
expended, cost of labor, cost of computer
services, etc.)

While this definition may not precisely
define a cipher, it does clearly define the
goal encryption should achieve.

To evaluate a potential encryption
scheme, one must consider from whom the data
is being protected. Some possibilities are:

1. Curious employees
2. "Hackers"
3. Outside visitors
4. Service personnel and/or vendors
5. Competitors
6. The Criminal Element (internal or

external)
7. The IRS
8. The "spooks" (CIA, NSA, KGB, MIS, etc.)

among others. The first four can probably
be discouraged with even a very simple
cipher: as mentioned before, most "hackers"
and other idle curious are simply looking
for files that can be read or run. If they
were to see a file such as this:

RTP $%& &.2H8I]).4HHQPPJ8IKNUIOQPP
RUP $%& &.3H8I] ,%.H342DH) .4H8III
RVP 2%-
SQP 02).4 B#/-054!4)/. /& -/2' !'% 0!9-%.4
SRP 0 2). 4
SUP 02).4 B0,%!3%).054 4(&% 02).#)0!, H7
SVP) .054 0
SWP 02).4 B).054 4(% ! •• 5!,).4%2%34 2!4% H
SXP) .054)
SYP 02).4 B).054 4(% 4%2- H). 9%!23IB[
TPP).054 4
TQP 02).4
TSP 4]4JQR
TUP l])
TVP)]) OQRPP
UPP -]&.2HOJ)OHQMQOHQK)I>4II
UTP 02).4 B02).#)0!,B[4!"HSUI[BDB[O
UUP 02).4 B).4%2%34 2!4%B[4!"HSTI[l[BEB
UVP 02).4 B4%2-B[4!"HSTI[4[4!"HTPI[B-/.4(3B
UWP 02).4 B-/.4(,9 0!9-%.4B[4!"HSUI[BDB[4!"

they might well pass it by, or maybe make a
few simple attempts to read the file as if
it was binary data. But if anyone should
happen to figure out or guess that it is
really a BASIC program, then it would not
take long to decipher it, as it happens to
be encrypted with a simple letter
substitution cipher. Since a computer is
going to do the work, it would be just as
easy to use a more secure cipher, and one
which will transform the data into something
which will not look like obviously encrypted
data when examined. For example, the
"Infinite-Key" method takes no more computer
time or disk space than simple substitution,
is very much more secure, and the resulting
data doesn't look at all like text, so there
is no reason to use the simple substitution
when such superior methods are easily
available.

If interception of data by a
competitor, or by a dishonest employee
(which is really the greatest threat) is a
serious consideration, then you will
probably want the most secure cipher that
can be reasonably implemented (one which
protects the data well, but will not use up
so great an amount of computer resource that
it becomes more expensive than the data it
is protecting).

77

If you intend to protect your data from
categories 2, 3 and 4, then other protection
schemes should be your first choice, such as
not allowing outside visitors to wander
un-escorted about your plant, removing your
data from the system before allowing it to
be serviced by outside personnel, and using
various protection schemes to prevent
un-authorized dial-in access. Encryption of
data can act as a second line of defense in
these cases, however, and should still be
considered: it must be stated again,
however, that encryption is not neccessarily
the best solution to every situation, and
that all methods of protecting data need to
be evaluated to determine what best suits a
given need.

Against the last two categories: you
have to be realistic, and understand that
any government agency that can put the gross
national product of a world power into it's
efforts is going to be able to break any
cipher you could use. That doesn't mean you
have to make things easy for them, and there
are ciphers available now which are very
difficult for anyone to defeat, but you must
remember that no cipher is absolutely
unbreakable.

How Good is "Good Enough"?

It was stated that a good encryption
scheme costs more to defeat than the
information is worth. This means that the
cost of the labor expended, and computer
resource dedicated to the task are more than
the ultimate value received from the
information which may be obtained. For
example, the only ways known to break the
Infinite-Key and DES ciphers is by brute
force: trying every possible key, and
looking at the result to see if it makes
sense. Even if someone is willing to
dedicate a computer to the task, it could
take months or even years of effort to break
one message, by which time the information
may be useless. In addition, the time a
computer spends on breaking the code cannot
be used for anything else, like doing
payroll, or inventory, or other normal
business functions. If you are preparing
bids on a contract which will yield, say,
$10,000 and a competitor tries to steal your
information and under-bid you, then your
encryption scheme is successful if it either
takes so long to break cipher that the
competitor can't meet the deadline for
submitting bids, or if it costs the
competitor more in computer resources than
the $10,000 or so that the contract would
yield: even though the cipher is broken,
the person who broke it comes out with a net
loss. Few "hackers" are going to have the
patience to let their

home computer run for several months or
years to decrypt one message and not use the
computer for anything else, and not much
information is so valuable that it would be
worth while renting a Cyber or Cray
super-computer for several months to break
the message relatively quickly (unless you
are a government agency, and can do whatever
you like).

It is possible that someone within a
company might use the company computer to
try to break a cipher by brute force,
reasoning that the computer time doesn't
cost them anything. Since defeating a good
encryption scheme would use up relatively
large amounts of computer time over an
extended period, it should be possible to
detect if anyone within a company is using
the computer system in this manner, and deal
with the problem directly.

What Else Must I Do?

A consideration which is equally
important as the selection of an encryption
scheme is keeping the keys themselves
secure. Just as it would do no good to buy
the most expensive lock and lock your house
and if you then put .the key under the door
mat, it does little good to encrypt your
data if anyone can get the key. In terms of
internal security, this often means correct
selection of a key to use: since most
modern ciphers use a number as the key,
there is a great temptation to use an easily
remembered number such as your telephone
number, birth date, social security number,
wedding anniversary, or some such number as
a key. Unfortunately, any number that you
can remember easily will also be easy for
anyone who knows you to guess. If you are
trying to protect data internally in your
company, using such a number would defeat
the best cipher: rather than having to try
several billion possible keys, the number of
attempts are reduced to a few dozen or so.
This leads to the paradox that you must
chose a number you can remember (or you may
never get your data back if you forget the
key), but one which no one else is likely to
guess; or else you have to write the number
down, but in a place where no one is likely
to get it. The latter scheme is probably
better than trusting to memory, but you
should not keep important numbers laying
about: keep them in your wallet (and keep
your wallet with you), or in some other
secure place. Similarly, don't put them in
the telephone directory or card file that
sits on top of your desk, or in other easily
accessed places. It is also a good idea to
change the keys periodically, especially if
it is being used for data transmitted
externally. (Internally, the threat is
greater that

78

someone will figure out your key, or may see
you type in the key, or be able to compare
the encrypted data with the "clear" data,
and deduce the key that way). Basically,
you must use at least as much caution in
dealing with cipher keys as you would use in
handing out door keys to your plant, or
electronic lock keys to your personnel:
they all protect your assets, and have to be
treated with the same respect. While you
can hire guards for physical security in a
plant, you cannot do the same for
information in a file or transmitted over a
wire, and information is easier to move than
equipment; so if anything, the cipher keys
must be kept even more secure than other
kinds of keys.

Public Key.

When data has to be transferred from
one location to another, then the risk is
doubled, as the key has to be kept in two
places. One absolute rule is that you
never, ever, transmit the key with the data
it protects (you might just as well not
bother encrypting at all). It is usually a
good idea to use an encrypted transmission
to send the next key to be used at one time,
and the data at some other time, and that
both parties must exercise the same caution
in protecting the keys. Otherwise, you must
use some secure method of transmitting the
keys to the locations where they will be
used (such as sending someone you can trust
to carry them by hand), and storing them in
a safe or other secure location. One
partial solution to the problem is the
Public Key method of selecting keys. This
is not an encryption scheme, but is a method
where two people can create a large numeric
key by each selecting a number which forms
half of the key, and were each party knows
only half of each key. The advantage of
this method is that one half of the key can
be made public, and anyone can use it to
encipher a message intended for you, but
only you can decipher the message using the
other half of the key which was kept secret.
This can also be used for source
verification if both halves are kept secret:
for you to be able to decipher the message,
it will have to have been enciphered using
the matching half of the key. The method is
based on the fact that it is difficult to
factor a very large number which is the
product of two very large prime numbers
(each party picks one of the large primes):
lately, there have been some announcements
that it might not be as difficult to break
as was formally thought, but it may still be
useful to many people. If you are
transferring data within an organization,
and can keep the key secret at both ends,
then Public Key isn't necessary: it's

primary use is where the security of the key
at one end isn't known, or must be made
public.

Encryption with Hardware

and the DES.

So far, we have considered encrypting
data while it is in the computer system, and
before it is stored or transmitted. This is
not the only way it can be done: it is also
possible to attatch a device to a
communications line so that information
passing through it is encrypted in one
direction and decrypted in the other
direction. For example, the device could be
attatched between your computer and a modem,
so that "clear" information being
transmitted from your computer will be
encrypted before it goes into the modem and
out into the world. Most of the special
hardware currently offered for sale for this
purpose use the Data Encryption Standard
(DES), also called the Data Encryption
Algorithm (DEA). This method of encryption
was developed by the National Bureau of
Standards to provide a standard, secure
encryption method, and it involves many
stages of transposition and substitution.
Furthermore, there are several modes for
data to pass through the encryption scheme:
the method any individual will use depends
upon the application. According to the
developers, the DEA is intended for use only
with hardware encryption schemes for several
reasons, two of which are security of
operation and verification of correctness.

The first reason includes protecting
the key and the encryption method: if it is
in special hardware, you have to enter the
key into that piece of hardware, and it
won't be "floating around" your computer
system as it might be if a software program
was used. Similarly, only the manager in
charge of the special hardware knows what
the key is: you don't have individual users
losing their keys (or giving them away). In
addition, there are often ways for one user
to monitor another user's program on the
same computer (for example, to watch someone
type in their key), and it was felt that it
would be more difficult to tap into a
separate piece of hardware. With the
protection in hardware there is the
additional advantage that no-one can forget
to encrypt data before sending it out:
anything which is transmitted on that line
is automatically encrypted. It was stated

79

before that encryption might not prevent
"hackers" or other un-authorized persons
from accessing a system, but the one
exception is if there is a hardware
encryption device placed between the system
and the modem which always encrypts the data
on that line. Encryption would then prevent
unauthorized access, as anyone who wishes to
dial in on that line must have an encryption
device which uses the same cipher and key.
In a similar manner, a hardware device can
be placed between a computer and a
peripheral device: for example, a disk. If
this is done, then all data on the disk is
automatically encrypted, and you don't have
to worry about users forgetting to encrypt
sensitive data, or service personnel reading
it during maintainance.

The second reason, that it would be
easier to test if the hardware is working
correctly than to test if a program is
working correctly, is a reason I do not
entirely agree with. It also means that the
use of DES would be limited to those
applications that can send the data through
a line to the special hardware, and that you
would have to buy the special hardware for
every location which wanted to encrypt data:
this meant that locations with personal or
small business computers had to buy an
encryption device that was as large and as
expensive as the computer itelf. This is
changing rapidly as more large scale
integrated circuits which implement the DES
are being placed on the market, so that the
cost of a peripheral device that does
encryption in hardware is decreasing, but it
still has many drawbacks for some users. As
a result, software houses are offering data
encryption programs that use the DES method
to encrypt data on the system itelf with no
special hardware.

Use of the DES is likely to increase in
the next several years, especially where
information has to be exchanged between
different companies, because it is a
standard and it is possible to obtain
different pieces of hardware or software
which implement it and will still be
compatible, as they have to meet the
standard to be able to say they use DES.

Like most modern ciphers, DES uses a
numeric key, and there has been some
arguments lately about how secure DES really
is, based on the length of the key, which is
56 bits (the scheme adds bits to make it 64
bits long). Some of the developers
suggested that the key should be 128 bits
long, but the National Security Agency
required the NBS shorten the key: some
critics have suggested that a key of this
length is such as to be virtually
unbreakable by anyone except the NSA

itself, which tries to stay about 10 years
ahead of everyone else in technology. Even
if this is true, DES will probably be secure
enough for most commercial users for the
forseeable future (remember what was said
earlier about determining from whom you wish
to protect your data).

Extra Precautions.

If you expect a real effort will be
made to defeat your encryption scheme, there
are a few extra precautions that can be
taken to reduce the risk. The easiest way
to break a code is if you have a copy of the
enciphered message and the clear text
together, and can compare the two to work
back to the cipher. This indicates that
access to important information should be
carefuly restricted: for example, if
encryption is used to protect data during
transmission, then when the data is
deciphered and safe, the enciphered copy
should be erased or destroyed. If it is
carelessly discarded, it might give someone
a chance to work on it at leisure,
especially if the threat is within the
company, where the clear text might also be
available. Some newspaper codes were broken
because the text of an article was
transmitted in cipher (by radio, where it
could be heard) and then printed word for
word the next day in the paper: sending the
contents of the article but re-wording it
before releasing it to the public solved
that problem. Similar precautions could be
taken if such things as financial reports
are to be transmitted: if possible, don't
transmit the data in exactly the same form
in which it will be published. In the case
of business letters and memos, most start
with a date and the person to whom it is
addressed, and someone could know (or guess)
how the message starts, and use that to cut
down the number of attempts needed to find
the key to the cipher: one way to stop that
is to arbitrarily cut the memo in the middle
somewhere, and put the last part before the
first. The recipient, after deciphering,
can easily see where the real beginning is,
and move it back where it belongs. In
short:

Don't be predictable.

There are
one can take if
really trying
scheme. If you
get your key
random garbage

also a few other
you feel that
to defeat your
think someone is
by brute force,

precautions
someone is
encryption
trying to

you can put

80

at the beginning and end of your data:
anyone who is trying a key and checking only
the beginning of the file to see if the data
makes sense will not realize it if they do
find the right key, as the decrypted data
still won't make sense. Of course, anyone
can simply check the entire contents of the
message for every key tried, but this is
much slower, and anything that slows the
process of defeating an encryption scheme
means the scheme is that much more secure.
If there is some reason to believe that
whole messages are being intercepted and
stored (with some ciphers, the more data you
have, the easier it is to find the key,
though it might not help much with
Infinite-Key, DES and some other modern
ciphers), then you should change the key
more often than you might otherwise do. In
any event, you should not use a given key
for too great a period of time, just in case
someone is collecting your messages. You
can also occasionally send out messages
which are the same length and otherwise look
like your real messages, but which contain
enciphered garbage. The contents (before
enciphering) should look as much like real
data as possible, without actually meaning
anything. This will add to the difficulty
of defeating the encryption scheme, but is
only worth while if there is a real
possibility that someone is making a
concerted effort to break the cipher.

Bibliography

There are a number of good descriptions
of cryptography in popular literature. In
addition to the two examples of the simple
substitution cipher given before ("The Gold
Bug" by Edgar Allan Poe and "The Adventure
of the Dancing Men" by Sir Arthur Cannan
Doyle), two books by Dorothy L. Sayers (in
addition to being entertaining in
themselves) are of interest. "Have His
Carcass" contains a good description of the
Playfair cipher (a good combination
transposition and substitution cipher which
is easily worked with only a pencil and
paper), and a good description on one way to
attempt to break it which also clearly shows
the hazard of sending messages in a form
which allows the content to be deduced.
"The Nine Tailors" contains an extremely
ingenious example of secret writing. Both
are currently published in paperback.

On a more formal basis, the following
will be useful:

"Cryptanalysis, a Study of Ciphers and their
Solutions", by Helen Fouche Gaines (Dover
Publications, Inc.)

though written before computers, contains
thorough descriptions of many ciphers, and
specifically the methods used to defeat
them, with worked examples and reference
tables. Dover has a mail order department.

"Security and Privacy in Computer Systems"
by Lance J. Hoffman (Melville Publishing
Co.)

treats a wide variety of computer security
subjects, one of which is the use of data
encryption. It includes a good description
of the "Infinite Key" cipher, with a
mathematical test of it's effectiveness. It
also covers operating security, physical
plant security, and other subjects.

"Cryptanalysis for Microcomputers" by Caxton
c. Foster (Hayden Book Co. Inc, Rochelle
Park, New Jersey)

Contains explanations of many ciphers, with
programs in BASIC to implement them or act
as aids in defeating them. The programs may
require some work to implement (you have to
search through the book to find the
subroutines, and sometimes the names of
variables change), but some good material is
included. The programs are in a simple
version of BASIC which most computers should
handle as is or with only minor changes.

"Securing Data Inexpensively via Public
Keys" by Brian Schanning (Computer Design,
April 5 1983, Vol 22 #4)

is an article which describes the
mathematics used to generate the two halves
of a Public Key.

"The Data Encryption Standard, Recent
Controversies" by John E. Hersey,
(Telecommunications, Sept. 1983, Vol 17 #9)

gives an encapsulated history of the
development of the DES, with some of the
arguments for and against it's method of
implementation and use.

I have not been able to review the following
sources myself, but they may be useful.

"The Codebreakers" by David Kahn (Macmillan)

gives a good history of ciphers and their
use, and a description of how some good
modern ciphers were broken. The paperback

81

version may be abridged. Considered one of
the classic works on the subject.

"RSA: A Public Key Cryptograph System" by
C. E. Burton, (Dr. Dobb's Journal, Mar
1984, 16-21)

"Mathematical Games" by M. Gardner,
(Scientific American, 237(2), August 1977,
120-124

The following government publications may
also be useful:

"Data Encryption Standard"
Federal Information Processing Standards
Publication 46

"DES Modes of Operation"
Federal Information Processing Standards
Publication 81

Standards Information Off ice
Institute for Computer Sciences

and Technology
National Bureau of Standards
Washington, D.C. 20234

The Smithsonian
devoted to cipher
following address
information on the

Institution has a section
machines, and give the

for inquiries for more
subject:

Division of Mathematics
The National Museum of American History
Smithsonian Institution
Washington, D.C. 20560

A Radiation Therapy Patient Information Management System
Theodore J, Smith

Department of Radiation Therapy
Hospital of the University of Pennsylvania

Philadelphia, Pennsylvania 19104

Jill M. Baren and Robert F. Curley
Department of Radiation Therapy

University of Pennsylvania
Philadelphia, Pennsylvania 19104

Abstract

The Department of Radiation Therapy at the Hospital
of the University of Pennsylvania sees and treats a
large number of patients each year. We have
implemented a system to manage the data relating to
these patients. We used DBMS-11 running IAS on a
PDP-11/70 with FORTRAN as the principal programming
language. This paper presents our design
philosophy, programming conventions and the
measured results of the operation of the data entry
and scheduling modules.

Introduction

The Radiation Therapy Department at
the Hospital of the University of
Pennsylvania sees approximately 120
patients per day. An enormous amount of
information concerning the treatment and
handling of these patients is necessary not
only for daily use by medical and office
personnel, but also to establish a
permanent record for long term research and
statistical functions performed by the
department. Our primary goal for a
computer based patient information system
is to provide quick, easy and
nondestructive access to accurate patient
demographic and treatment information. Our
system was planned to eliminate the
aggravation of locating a patient's chart
{1} 1 by displaying pertinent information at
terminals located throughout the department
when requested. Although we have reached
only an intermediate stage of this goal, we
have expanded the functions of the database
to include the automation of several
clerical tasks and are currently
incorporating a patient tracking system
into the scheme. The foundation of a
patient information management system
consisting of data on 15 1 700 patients has
been established in our department using
DBMS-11 version 2.1, a database management
system for the Digital Equipment
Corporation PDP-11/70 computer running IAS
{2}. DBMS-11 is a network structured
database which enables the design of a data
model that closely reflects the way
information is collected and used by the
Department. From this foundation, many
department functions have become automated
while others are currently being developed.

Proceedings of the Digital Equipment Computer Users Society 83

DBMS-11 Overview

DBMS-11 is a implementation of a CODASYL
{3} database stressing the logical
relationships among records and the ability
to access only related information using
sets. Our CODASYL database is a direct
access file divided into pages of 1024
bytes each. Information is organized into
records each having a unique address
(DBKEY). The DBKEY is the combination of
the page and line number of the page where
the record is stored. For example, the
fifth record on page 4321 has the DBKEY
4321:5. Sets are used to represent the
logical relationships between records. A
data dictionary is created to contain all
record and set definitions describing the
database, using a COBOL like data
definition language.

Example of a
discription:

Data Dictionary record

Records

Record Name is DEMO.
Record Id is 203.
Location mode is VIA IDSET SET.
Within HUPDRT Area.

05
05
05
05

10
10
10
10

05

SEX
RACE
BORN
ADORES.
STREET
CITY
STATE
ZIP
PHONE

PIC X.
PIC X.
PIC X(4).

PIC X(20).
PIC X(15).
PIC XX.
PIC X(lO).
PIC X(lO).

A record is a named group of data items

New Orleans LA - 1985

111.t

r--,- -
' 1e.., , L __ .J __

RECORD

home
addre••

telephone

. --
work referring

physician
••• etc

telephone

L_ ... f L _________ data items
__ f

•tor•d together, such a• DEMO (Figure 1)
which consists of sex, addre•s and phone
numb•r. telephone number, etc. Reference
to • record implies a reference to all the
data itMns in the record. Each DBMS-11
record also contains a prefix maintained by
the Database Manager (DBM) task. The
prefix contains one to three DBKEYs for
each •et in which the record participates.
Records are stored in the database in
either CALC or VIA location modes.

CALC location mode calculates (hashes) the
DBKEY of the record based on the contents
of a data item in the record. If two
records have the same calculated address,
an overflow algorithm is used by the DBM to
resolve the conflict. Storing records with
the CALC location mode will evenly
di•tribute the records throughout the
database in an ideal world. To locate the
CALC record, the user supplies the value of
the CALCed data item and the address is
calculated by the DBM. For example, Social
Security numbers are the CALCed data item
for the Social Security record SSNRCD. To

locate the patients with missing numbers,
the user enters "000-00-0000". The DBKEY
of the SSNRCD record is computed and the
record located. The patients in the Social
Security set are then listed.

VIA location mode stores the members of a
set physically close to the owner. This
has the effect of grouping the members of
the set onto a few pages. This reduces the
number of pages read and the time to access
members of the set. VIA is best used for
small records in sets in which many members
are accessed frequently.

Sets

A set is a named group of records with one
designated owner, having zero or more
members. Sets are stored as linked lists
of DBKEYs connecting the owner and member
records. A record may participate as
either owner or member of many sets,
however, a record cannot be both member and

fl9.2 SET

patient C

(member)

physician

(owner)

patient B

(member)

84

patient A
(member)

owner of one set. Sets provide fast access
to information related to the owner of the
set by using DBKEYs to point to the next
member of the set. Each record prefix
contains the DBKEY of the next record in
the set and may also have the DBKEYs for
the prior and owner records of the set,
The owner prefix contains the DBKEY of the
first member in the set while the last
member prefix contains the DBKEY of the
owner. For example, the patients (members)
treated by a certain physician (owner),
illustrate the retrieval speed provided by
the set structure (Figure 2).

Example of Set definition in Data
Dictionary:

Currency

Set name is STFSUM.
Set I D is 323.
Order i s Next .
Mode is Chain linked to Prior.
Owner is STFDOC

Next DBKEY position is 3
Prior DBKEY position is 4.

Member is DEMO
Optional Automatic
Next DBKEY position is 9
Prior DBKEY position is 10
Linked to Owner

Owner DBKEY position is 11.

Most database operations are relative to
the user's "current" location in a set.
Operations such as "find next" or "find
prior" member require knowing which member
of the set the user had last accessed in
the set. The DBM maintains a group of
currency indicators for each user accessing
the database. A currency indicator is the
DBKEY of the most recently accessed record
in the database. There is also a currency
indicator for each type of record and set
in the database. Currency indicators point
to the user's position in sets and the
database, and are updated only by the DBM.

Data Dictionary

The Data Dictionary contains all record and
set definitions for a CODASYL database. It
is a separate entity from the database. As
the English dictionary provides definitions
for the words of English, the data
dictionary provides definitions for the
records and sets of the database. This
eliminates the overhead and possible errors
caused by maintaining data definitions in
each program accessing the database.

Database Manager

No user has direct access to the database.
Instead, the Database Manager task is a
program which controls what information is

85

transferred between a user and the
database. The Database Manager handles
simultaneous requests based on two
principles, access modes and locking.
"Access modes" inform the DBM of the user's
intention to update information. Locking
limits concurrent access by other users.
Each database program declares itself to
require either Update or Retrieval modes.
Update mode access allows a user to change
information and Retrieval mode allows read
only access to the database. locking can
specify either Concurrent, Protected or
Exclusive access by other users.
Concurrent locking allows other users to
read or update the database while the
•concurrent" task is st i 11 connected.
Protected locking allows only one user to
update while all other users can read from
the database. Exclusive access locks out
all other users until the current user is
finished. For any task on the computer to
have access to the database through the
DBM, a separate "sub-schema" task is
required. This feature limits the data
that be read by a given user. Access to
sensitive information can be restricted in
this manner.

Communicating with DBMS-11

DBMS-11 establishes a User Work Area (UWA)
[1] in each database program. In FORTRAN,
the UWA is a COMMON block used to transfer
information between the database and
program. Only the data portion of each
databa<;;.e record is transferred into the UWA
by the DBM. This prevents corruption of
the record prefix by any program ensuring
the integrity of the set structure.
Database programs need not be connected to
the DBM when loading information into the
UWA. After all i nforrnat ion is collected
and placed into the UWA, the DBM is then
accessed in Update mode to store the
information. When modifying information,
the DBM is accessed in Retrieval mode to
fetch the information into the UWA. After
modification, the DBM is accessed in Update
mode to rewrite the modified information.
This method reduces the risk of corruption
from users aborts by minimizing the actual
connection time to the database.

Design Overview

Our database is designed to retrieve
information quickly, by using sets as fast
paths to locate related information (Figure
3). Currently, the design is comprised of
four regions each containing a different
type of patient information: Demographic,
Treatment Course, Provided Service and
Scheduling. Frequently used information
unique to the patient is placed in the
Demographic record. In addition, the
dernogr aphi c record contains pointers to
external storage files containing
information rarely accessed. Course

flg.3 OVERALL DESIGN SCHEME

HICOll>ES SND1 SND2

ID STAFF

SSN

DATE

-1 -----···------~-....,,

1-1
records contain information th.at remains
constant throu9hout a course of
radiotherapy. All information about a
service performed by the department is
placed in a service record. Schedulin9
records are used to schedule patients for
the services provided by the department.

Demo9raphic Information

Each patient stored in the database has
only one demo9raphic record. Sets for
medical history number or hospital ID
number {4}, Social Security number, surname
and patient's physician provide quick
access to the Demo9raphic record (Fi9ure
4). All Treatment Course and Schedulin9
information is owned by the patient's
Demo9raphic record. A user enters name
history number or Social Security number t~
locate a patient (make the pateint's record
"current"). If more than one patient is
found with the same surname, then the list
of matchin9 patients is displayed for
selection to the user. Upon selection, the
Demo9raphic record DBKEY is remembered so
that the application can directly access
the patient without further promptin9 the
user.

86

Data items in the
region:

o Social Security Number

Demo9raphic

o Medical History Number or ID

o Patient's surname

o Patient's given name

o Sex

o Race

o Status (Inpatient, Outpatient)

o Birthdate

o Address

o Home and Work telephone

o Referring physician

o Betabase access pointer

o Gammabase access pointer

Locatin9 a patient by name need not be
exact. There are two phonetic methods for
locating patients with surnames having

fig.4 DEMOGRAPHIC DESIGN

UR

ID

--.--=----...------E
I ssN J -----•~._D_E_M_o---'-----1-.ISCHDL I

lcou,
similar spelling or pronounciation.
Soundex [2] is a method of translating
similiar names into the same string value.
Using a set, all names (members) having the
same value (owner) can be quickly listed
for selection. The Soundex method which
produces a value based on similiar
spelling, emphasizing the first letter in
the surname is used first. This method
assumes the user correctly entered the
first character of the surname. The
Wallace method [3] of pronounciation is
used when Soundex fails to locate the
patient. The Wallace coding method
provides the mechanism to locate the
patient using only a vague or phonetic
spelling of the surname by encc•di ng the
entire surname.

The procedures used to locate a patient
until selection:

1. Location by patient name:

a. User enters best guess
patient name.

of

b. If only one patient is found
exactly matching user's guess,
then user is asked to confirm
selection.

c. All patients with the
which matches the
listed.

surname
guess are

87

d. Patients having the same
Soundex value are listed.

e. Patients having the same
Wallace value are listed.

f. If no patient is selected,
user is permitted to add the
patient.

g. The selection procedure will
only list patients once. If a
patient has the same Sour1dex
and Wallace value as the
user's guess, then the patient
will be listed with the
Soundex matches but not with
the Wallace matches.

2. Location by ID or Social Security
number:

a. User enters ID
Security number.

or Social

b. If only one patient is found,
then the patient is selected.

c. All matching
listed.

patients are

d. If no patient is selected,
user is asked for the name of
patient.

e. Location by name is attempted.

fig.5 COURSE DESIGN

DEMO

PR OTC

OURS

COD

B
Treatment Course

One Treatment Course record is stored for
each course of radiotherapy the patient
receives. Information that is constant
during the Treatment Course is stored here.
The Course record is found through the
Demographic, Primary Site, Treated Site,
Histology and Protocol sets (Figure 5).
The Primary, Treated and Histology sets are
coded according to the SNOMED {5} scheme.
For each service provided during a course
of radiotherapy, a service record is placed
in the Service set owned by the Course
record.

~

fig.6 SERVICE DESIGN

COURSE

~,

I • SERVICE •
88

rE1

CODE

Data items in the Treatment Course
region:

o Tumor Grade

o Recurrent Disease

o Tumor staging

o Treatment Plan

o Tumor Therapies

o Radiotherapies

I SERTYPI

flg.7 SCHEDULING

DATE

EJ--. SCHDL , _---4,__ _ _..

STAFF

Provided Services

A Service record is created for each
service the department provided to a
patient. The Service record can be found
by either the Course, Date or Service Type
sets (Figure 6). All information specific
to the service is stored in the record.

Data items in the Service region:

o Type of Service (ex. Treatment on
Linear Accelerator 1)

o Service Date

o Delivered Dose

o Ports

o Special Devices

Scheduling

Scheduling of services is a major function
of our system and is performed daily. A
schedule record containing the time and
appointment status is sorted by time in the
date set. Schedule entries can be
organized by date, patient name, physician,
and service type (Figure 7). A service
record is created after the service has
been scheduled and completed. No service
record is created for scheduled events that

fig.8 TRACKING

TREATMENT

MACHINES

11 SIMULATOR
NURSES MACHINES
STATION

~ ~ FRONT
DESK

89

did not occur. Examples would be patient
cancellation of an appointment or a missed
day of treatment. Many schedule .formats
are used throughout the department and are
designed according to the needs of
personnel. Printing the various of
schedule formats occurs by unloading the
schedule records into a file using SORT-11
to sort each schedule.

A system developed to track patients
through the department will soon be
installed (Figure 8). Each service station
and the receptionist will receive a VT220
terminal to interact with the tracking
system. The receptionist will inform the
system when the patient arrives in the
department. The system then displays the
patient's name on each of the scheduled
service station terminals. Assume a
patient arrives for both treatment and a
visit with a physician {two different
services). His name will appear on both
the treatment machine and nurse's station
terminals. If treatment is the first
available service, then the patient's name
will be marked unavailable at the nurse's
station. Completion of treatment is
indicated by the technician at the
treatment machine who describes the
treatment to the computer. Now the patient
is marked available at the nurse's station
to be selected for the physician's
examination. When the technician enters
information about the service provided, the
system creates a service record in the
database and generates a billing charge
based on the service information entered.
The clinic will at all times be aware of
the patient's location and progress in his
scheduled services. Tracking will account
for services provided to the patient both
financially and statistically. Additional
advantages of monitoring the patients'
movement through the department are the
reduction in patient waiting time between
multiple services and clinic personnel time
spent locating patients.

Bet abase

The "Betabase" is a resevoir for
infrequently used information. It is also
used to contain new data items until the
database can be upgraded. Quick access to
the Betabase is provided by storing the
starting Betabase record address (BBKEY) in
the patient's demographic record as the
Betabase access pointer. The Betabase is a
direct access file of 1024 byte fixed
length records. The first record in the
Betabase file (Betabase Control Record) is
reserved to contain the number of allocated
and used records in the file. Allocation
size is the number of records reserved for
the Betabase by the IAS operating system.
Used size is the number of records assigned
to contain patient information. Space
available for assignment is found by
subtracting the Used from Allocation sizes
in the Betabase Control Record. The
Control record enables automatic expansion
and valid BBKEY range checking. All other
records are divided into a 24 byte pref ix
and 1000 byte data area (Figure 9). The
prefix contains the patient's history
number, owner, and next BBKEY in the
patient's set. The data area contains
three part data items. A data item is
composed of a data type, data, and a end of
data marker. A null byte following the end
of data marker indicates the end of
Betabase information for the patient.

Data items that may appear in a
Betabase record:

o Mother's given name

o Father's given name

o Names and addresses of relatives

o Alternate referring physicians

o Occupation

o Insurance information

o Birthplace

fig.9 BETABASE RECORD

,------T- ---T---- - I : :! I
I ID : NEXT :OWNER i'•OTHER ---: -~- E . l I BBKEY t BBKEY NAME "".=-1 -= - • --L ~EFIX _J_ J --4---,1=----L-l)-~-T-A_l_T E_M_S ___ .._J~:---"

90

Adding to the Betabase

When adding information to the Betabase, a
record (1024 bytes) must be assigned to the
patient. Prior to assignment, the Betabase
control record is checked for the next
available record. If full, the Betabase
expands and initializes the expanded area.
If this is the patient's first Betabase
record, the address is written into the
Demographic record of the database. The
assigned record pref ix is updated to
contain the history number and the owner
BBKEY.

Each new data item is appended to the end
of the last data item stored in the record.
If a data item is too large to fit on the
Betabase record, then the record is filled
with the data item. Another record is
assigned to the patient and its BBKEY is
placed into the prefix of the filled record
before writing the filled back into the
Betabase. The data which did not fit onto
the filled record is written on the current
record. When addition is complete, the
current record is written back into the
Bet abase.

Modifying a Betabase record

The user selects which data item(s) to
modify and enters the modification.
Modification of the Betabase record is
based on the difference between the lengths
of the data item and modification:

a. If the modification is smaller
then the existing data item, the
modification overwrites the data
item. All data items following
the modification are compressed to
the end of the modification. A
record is deleted if empty after
modification.

b. If the modification is same length
as the existing data item, the
data item is overwritten by the
modification.

c. If the modification is larger then
the existing data item, the data
items following the selected data
item are moved to make room for
the larger modification.

Deleting a Betabase record

The Betabase is always compressed with all
assigned records at the begining of the
Betabase. When a record is deleted this
procedure is followed to ensure that empty
records are placed at the end of the
Betabase:

91

a. If the deleted record is the owner
BBKEY, then
pointer is
demographic
database.

the Betabase access
erased from the
record in the

b. The last record
Betabase is
deleted record.

assigned in
copied onto

the
the

c. The Used Indicator of the Betabase
Control record is decremented by
1.

d. If the moved record is not an
owner record, then the Betabase
Access pointer is updated to the
new BBKEY address.

e. If the transferred record is an
owner, then the owner is located
and the set is searched until the
record previous to the transferred
record is found. The next BBkey
is updated to the new address of
the transferred record.

Deletion of Betabase records rarely occurs
and no patients to date have more than one
Betabase record.

Gamm abase

The "Gammabase" is another non DBMS-11 file
structure that provides online storage and
retrieval of patient chart free text
documents. Thus, a physician can review a
patient's treatment history without
removing the chart from the fileroom. The
Gammabase is a direct access file of 1024
byte fixed length records. The first
record in the Gammabase is reserved as a
Control record indicating the allocation
and used size in the same matter as the
Betabase. The Gammabase contains two
groups of records: Index and Document.
Index records contain the starting record
address (GBKEY) of all the patient's
Gammabase documents. Document records
contain the actual document text. All
Gammabase records have a 32 byte prefix
containing Document record type, Medical
History Number and Social Security number.
Document record prefixes also contain prior
and next GBKEYs to the preceding and
following records of the document.

Chart Documents in the Gammabase:

o History &
information
consultation.

Physical:
about

Contains
initial

o On Treatment
of routine
treatment.

Visit: Impressions
examinations during

o Completion Summary:
at the end of the
radiotherapy.

Impressions
course of

fig.10 GAMMABASE INDEX RECORD

INDEXES

1

ti9 .11 GALMABA$E DOCUMENT RECORD

--.,. -T:' rp-f-; T - l I ~ I I I : I r I ~ t'~ no TEXT ... IPtDfNf7 It u
t_E_j_ J_ _j~~ - _____ __,

o Follow up: Impressions of post
treatment examinations.

o Reconsultation: Information about
a reconsultation examination.

o Correspondence: All
information such as
referring physicians.

Index records

other chart
letters to

Each patient with Gammabase documents has
only one Index record (Figure 10). The
Index record address is stored as the
GarM'labase access pointer with the patient's
demo9raphic information in the database
permitting direct access to the Gammabase.
The Index record contains nine byte index
pointers to all the patient's documents
stored in the Gammabase. This permits a
patient to have 110 documents in the
Gammabase. An index pointer contains the
document type, date and starting address
(GBKEY) for a document.

Document records

Document size is umlimited and blocked into
records of 990 bytes of text (Figure 11).
Documents are entered onto the Digital
Equipment Corporation WPS-200 word
processor. From here they are loaded into
the Gammabase. The Gammabase permits any

92

document format and only removes formfeeds
from a document for better video display.

Date Processing

as scheduling are
wished to design a

Major functions such
based on date. We
flexible date processor
common date formats.
of the week or tomorrow
current system date.
of three basic formats
number of tokens given

to parse the most
Forms such as a day
are relative to the
Most dates have one

dependent upon the
by the user:

1. Single token format:

a. A Numeric token is translated
as the day of the current
month.

b. An alphabetic token can be
either a day of the week or a
relative date such as
Yesterday, Today or Tomorrow.
Relative dates are based on
the current system date.

2. Two token format:

a. If both tokens are alphabetic,
then the first token must be
either Next or Last. The
second token is a day of the
week such as Next Monday, also
relative to the current system
date.

b. If both tokens are numeric,
then the first token is the
month of the current year and
then second token is the day
of month, such as 5/1.

c. Regardless of order, the
alphabetic token is always the
month and the numeric token is
the day of month such as May
15 or 5 December.

3. Three token format:

a. The third token is always the
year. If the year is less
than 100, then year is in the
current century. First and

second tokens
according to
format.

are processed
the Two token

The tokens can be separated by the
following characters: hyphen •-•, slash
"/",period•.•, comma • 1 • 1 asterisk"*" or
spaces. No multiple separators are
allowed, except spaces. A separator with
spaces can delimit tokens.

Once a date has been parsed, it is encoded
into a four byte code to save space. When
using a date interval, the end-dates of the
interval are converted into Julian numbers
[4). A simple loop can then be used to
span the interval.

Examples of valid dates:
(current date is Tuesday, 9 April 1985)

Privilege Masking:

Example

15
Yest er
Today
Tom
Thur
Next Fri
Last Sunday
4 May
March 15
6/5
4-30-85
3.11.1985
May 28, 1895
4 July 1776

Both IAS and DBMS-11 provide methods which
limit access to the database, particularly
important for maintaining the integrity of
sensitive information. IAS provides the
ability to grant read and write access to
the database directory. DBMS-11 maintains
a list of valid users and where to direct
them when accessing the database. This is
refered to as a Redirection Table. The XEQ
<6> facility, a program which envokes a
task outside the user's directory according
to a predefined path, is used to access the
database. Only valid users have an XEQ
path to the database. Finally, each user
has a 32 bit privilege mask. Each database
program is assigned a bit in the privilege

Performance
(Time is

Total Measured
• Under 2 sec.
Minimum
Maximum
Range
Median
Mean
Standard Dev.

Date

Monday, 15 April 1985
Monday, 8 April 1985
Tuesday, 9 April 1985
Wednesday, 10 April 1985
Thursday, 11 April 1985
Friday, 12 April 1985
Sunday, 7 April 1985
Saturday, 4 May 1985
Friday, 15 March 1985
Thursday, 5 June 1985
Tuesday, 30 April 1985
Monday, 11 March 1985
Tuesday, 28 May 1895
Thursday, 4 July 1776

of

mask. If the bit is not set, the user's
access is denied by the database program.

Performance Evaluation

Location of a patient in the database is
the most critical function. Therefore,
performance of the system can be measured
as the time used to accurately locate a
patient. During a period of six weeks,
location times were recorded using the
SECNDS <7> function. Location time was
measured from the entry of a name or ID
until a patient was selected by the
location procedures for name and ID.
Location time includes the time to display
lists of patients and waiting for the
user's response over 1200 BAUD lines.

Location Procedures:
measured in seconds)
Name ID

2704 9058
748 8138

0.62 0.49
467.30 307.07
466.68 306.58

8.83 0.92
19.41 1.37
34.13 4.06

93

The ID location procedure was found to be
the more frequently used method to locate a
patient by our users. Since each patient
is assigned a unique ID by the Medical
Records Department, the ID is the most
direct path to the patient. The mean and
median ID location times are under the two
second acceptable standard that was
established as a design goal three years
ago. If no patient is found by ID, the
name location procedure is invoked
automatically. Location time by name
reflects the time used to display lists of
patients having similiar names and waiting
for the user to select a patient. For this
reason, location times by name are very
skewed as indicated by the standard
deviation of location time. The median
time to locate a patient by name is
reasonable because of the tremendous
variation in spelling among users.

Constraints and Problems using DBMS-11

Like all other systems, DBMS-11 does have
constraints and problems arising from
either the design or support of the system.
We have highlighted some of the more
important ones below:

Constraints:

o Database programs cannot exceed
28K {8} words of memory. A 4K
word buffer is used by DBMS-11 to
communicate and transfer
information with the database.

o A CODASYL database maintains a
rigid design. As the Department
evolves, changes to the design of
the database are inevitable. When
the database design is upgraded,
all information in the database
must be unloaded and reloaded
after the upgrade. All database
programs must be rebuilt, although
no coding changes may be
necessary.

o DBMS-11 provides no mechanism to
unload information. You must
design a file structure to
preserve the logical relationships
among records and write a program
to unload and reload the database.

Problems:

o DBMS-11 is no longer supported by
Digital Equipment Corporation.

o The DBKEY computed for CALC
records is based on the number of
pages in the database. Hence,
when the database is full, you
must unload all information so
that the DBKEY can be recalculated
when reloading. Recently,

94

unloading and reloading our
database took 2 days.

Conclusion

Several areas of the department have been
significantly affected by the computerized
database system since its installation in
January 1983. Many more employees are now
able to obtain the data they need on an
individually determined time scale rather
than having to wait their turn for a
glimpse at the patient chart. In addition,
the automatic printing of off ice materials
containing patient information (index
cards, front sheets of charts, schedules)
has considerably lessened the amount of
repetitive typing of the same data.
Finally, the flexibility of the database
design has allowed practically any request
for a list or summary of data to be
tailored to the demands of the individual
employee. It is our intention that the
fut1.•re functions of the database system,
primarily the patient tracking and billing
systems, will continue in this vein by
contributing to the improvement of
Radiation Therapy operations.

Footnotes

<1> "The patient chart" is a paper
patient's history of encounters with
physicians notes, treatment prescription
place where all laboratory and Radiology

and cardboard record
our department. It

and records as well
reports are filed.

of the
contains
as the

<2> "IAS", Interactive Application System. An operating system for the
PDP-11/70.

<3> "CODASYL", Conference on Data Systems Languages.

<4> "ID", Patient identification assigned by the Department of Medical
Records to uniquely distinguish patients.

<5> "SNOMED", Systematized Nomenclature of Medicine [5]. A coding
scheme developed by the American College of Pathology and selected by
the Department to encode disease.

{6} "XEQ", William Wood, "Computer Program XEQ", The Best of ICR
Collection, Institute for Cancer Research, Philadelphia, PA, 1981.

<7> "SECNDS", A function supplied with Digital FORTRAN 77 which
computes elapsed time.

 "K", A constant equivalent to 1 1 024.

References

1. Digital Equipment Corporation, DBMS-11 Database Administrator's (DBA)
Guide, December 1981.

2. "SOUNDEX Foolproof Filing System for finding name in the File",
Remington Rand, Brochure LV8801.

3. Curley, Robert F. and Smith, Theodore J., "A
Computer Database", Proceedings of the Eighth
on the Use of Computers in Radiation Therapy,
501-505.

Radiotherapy Department
International Conference
July 9-12, 1984, pp.

4. "Algorithm 199" 1 Collected Algorithms from ACM, Vol 1 Algorithm 1-220 1

ACM Inc., 1980, p. 199-P-1.

5. Systematized Nomenclature of Medicine, American College of Pathology,
April 1979, 2nd Ed.

95

Criteria for Selecting Your Relational n..tal>Ase

Jeffrey S. Jalbert

and

Keith N. Hare

JCC
Bo1 381

Granville, Ohio 43023
(614) 587-01:57

Now that you have decided to use a relational database, how do
you decide which relational database to use?

This paper describes the features you should expect to find in
a fully functional relational database. These features are
divided into the following categories:

- General software features
- Security
- Database consistency
- Data integrity
- Performance
- Data dictionary
- AD-HOC query language
- Programming language interface
- Forms interface
- Miscellaneous considerations

Each of these major categories is defined and their important
sub-points are noted.

1 IITRODUC'l'IOll

The term database is one that is often mis-used. In
this document we will use the term in its true
technical meaning, as recognized in the computer
science community. The reasons for wanting a
database system are many and compelling. The
reasons for using the relational model are just as
compelling. Neither of these issues are addressed
here.

A relational database (as defined in C. J, Date) is
one that has the following characteristics:

1. Relations and associated data structures

2. Query language at least as powerful as
relational calculus (such as relational
algebra).

3. Does not use funny loops

4. Supports unique keys, foreign keys

The above criteria for being a relational database
do not address all of the issues that must be
addressed if a relational database is to be a useful
tool in a production environment.

In this presentation, we will outline
used to compare several commercial

the tool we
(VAX based)

Proceedings of the Digital Equipment Computer Users Society 97

relational database products. We will display a
description of the analysis process and an outline
and discussion of those features of a relational
database package that we think are useful/helpful/
required in a production environment.

2 ANALYSIS PROCESS

Judging software is just not a clean process.
Competing packages often have different
characteristics, ones that are valuable. One then
is often in the process of trading off one valuable
characteristic for another. In order to be
objective in ones choice, the following approach is
often used.

2.1 Scoring Method

First, one gathers together all the issues that one
can think of that one may want in a system. This
effort must take into account what is available from
different vendors, what i• desirable in the target
environment, what is practical, what is desired,
even if not immediately available, what is
strategically appropriate in ter11s of evolving
technology, and just about everything else including
the kitchen sink.

New Orleans LA- 1985

These points are then described in more-or-less
detail and also organized into sub-groups of issues
and items. Each sub-group is awarded a number of
points, the total for all sub-groups often being
100. This total really is arbitrary, but the issue
here is that the relative weight of each sub-group
must be assessed.

There may be some issues that are of over-riding
importance. These are go/no-go issues. Really,
these act almost as a veto. For instance, if two
packages are relatively equal otherwise, but one has
the potential to grow into something that is even
more desirable, we might not select that package
because its performance is just too poor. Certainly
performance is one of those go/no-go issues, but
only if performance is dramatically different. A
ten-percent performance difference in some test may
just be a fluke of the test and not to be valid
across all uses.

In any event, once the major categories have been
formed and their relative importance assessed,
specific sub-issues are then assigned to them.
These issues are also assigned points which should
total the points for the entire sub-group. Once
this is done one is ready to evaluate the competing
products.

A committee is formed which ranks each product in
each category of importance. Points are assigned to
the product from zero to the maximum for that
category depending on the quality with which the
product meets the requirements for that particular
category.

Analysis is then simple, total the points, address
go/no-go issues and the winner is often obvious. If
more than one product receives a similar score then
other tools should be brought to bear on the
analysis, such as past experience, hunches, "feel",
whatever. But, at least this method allows one to
more-or-less make the selection process more
rigorous.

z.z Garland's Method

In an article titled "Hiring your Database System•
in the Fall 1983 DECUS Proceedings, Andrew M.
Garland outlines an alternate to the above scoring
method.

After discussing the scoring system above, Garland
says:

"In this approach, the problem of satisfying all
interests is solved by buying the "best" system.
Everyone is consulted to approve the list of
features and the weightings. The approach is
scientific, fair, and no one can object to the
result. Essentially this replaces judgement by
methodology.

"The difficulty with this approach 'by list' is the
assumption that the complexity of a DBMS can be
captured on paper, and that the decision can then be
made by what is on paper. People are quite good at
sifting data and valuing options provided that they
use aids such as lists to help their memory. The
lists are also useful to others who wish to add to
the evaluation. However, the lists are only aids.

98

The paper cannot make a good decision; it can only
record some of the input to a good decision. If the
information is restricted from the start to fit onto
paper, a bad choice is more likely.

Garland then goes on to recommend the following
procedure:

1. Inform yourself about DBMS systems

z. Read the manuals for the candidate DBMS's

3. Get a presentation of the system

4. Try the systems, all of them, on real
projects

5. Talk to other users of candidate DBMSes

6. Remember that performance comparisons may
be highly mis-leading because of the
different ways DBMSes do their work

7. Remember to consider the expert vs. novice
user in your analysis.

Z.3 Our Analysis

We have applied a modified version of Garland's
analysis. Each of the products was investigated,
both by having local presentations and by talking
with other users of the products and by obtaining
"subjective• comments from the national VAX
community. He also itemized features that we feel
are important in a database and tallied which
features were present in each product. The table we
used for our analysis is included in this report.

We do not include the final results of our analysis.
It is not our intent to publicly rate database
management systems but rather to present
methodology.

3 MAJOR CATEGORIES

This section outlines those categories that are of
major importance in selecting a database system.
These are listed below and explained more fully in
separate paragraphs that more completely outline all
the finer points that we consider in our analysis.

The categories we determined were:

I. General Software Features

II. Security

III. Database Consistency

IV. Data Integrity

v. Performance

VI. Data Dictionary support (external to
Database)

VII. Quality of AD-HOC Query Language

VIII. Quality of programming language interface

IX. Forms interface

X. Miscellaneous considerations

The meaning of each of these categories is explained
below, together with the sub-points that are of
importance in each of these major categories.

3.1 General Software Features

1. Many users must be able to access any table
simultaneously (for update)

2. Datatypes should include, strings, dates,
text, fixed and floating point numerics,
Fixed and variable length strings should
have no "practical" size limits. Funny
datatypes such as segmented strings would
be useful.

3. Data format independence (can dynamically
change size/type of fields)

4. Ability to define tables on the fly (from a
program)

5. Ability to define indices on the fly (from
a program)

6. Ability to have multiple cursors into a
single database simultaneously

7. Ability to access multiple
simultaneously (single process)

databases

B. Ability to modify table definitions without
having to re-load database or table.

9. Unlimited number of columns in a relation

10. Unlimited number of relations in a database

11. Ability to define views

12. Ability to define views composed of both
views and relations

13. Concurrent Batch/on-line

14. Record sizes should be unlimited

15. Inner Join

16. Outer join

17. No limit to the number of tables that may
be joined at one time

18. Explicit control of start and end
transaction

19. Rollback and Commit

of

20. Aggregation functions including TOTAL,
COUNT, MAX, MIN, AVERAGE and PROJECTION to
unique values

99

21. DDL and DML that adheres, more or less, to
the standard relational database syntax (as
defined by relational calculus).
Consistency of syntax would be useful.

22. DML this is fully functional and accessible
from program environment.

3.2 Security

Security means the protection of resources (data,
software and hardware) from accidental or malicious
damage, from disclosure to unauthorized individuals,
from unauthorized modification and includes
preventing unauthorized users from denying access to
authorized users.

Features that we feel are important to have in a
database system to support security are:

1. Control access to relations/views on a per
user basis with some kind of pass-through
access on views of views

2. Control access to database on a per-user
basis

3. Data may not be modified (if desired)
external to the programming language
environment (where such modification is
under prescriptive control)

4. Audit trail facility that can be turned on
and off by data base administrator

3.3 Database Consistency

A database is in a correct state if it contains the
most recent entries and modifications made by any
user and it does not contain any information that
has been deleted by any user. A database is in a
valid state if its information is part of the
information in a correct state. This implies that
there are no spurious data, although some
information may have been lost. A database is in a
consistent state if it is in a valid state, and the
information it holds satisfies the users'
consistency constraints.

Features that we feel are important to have in a
database system to support consistency are:

1. Journaling that can be turned on and off by
the data base administrator

2. Roll-back incomplete transactions

3. Roll-forward from journal file

4. Automatic recovery in the case of failure

5. Utility to monitor the integrity of the
database

6. Quality of integrity of system both to
normal update procedures and when a
hardware failure(e.g. head-crash) occurs.

7. Deadlock detection, rollback of victim and
automatic restart of victim transaction

B. Two-phase locking (no lock may be requested
after unlock has taken place)

9. Two-phase commit

10. Database Backup (speedy and efficient) with
support for incremental backup/restore.

11. Maturity of software package (so that bugs
will have been eliminated)

3.4 Date Integrity

Data integrity as used here means that the data
stored in the database meets the standards necessary
to support the application. We include here such
things as having only correct values in data fields,
cross-checks of data between different records, and
in general, everything that one might require to
insure that the data actually stored in the records
meets the quality standards demanded by an
application.

Heretofore such checking has been performed by
programs. Fourth-generation software should have
such checking performed by the database itself, and
the required standards set by the database design.

Further we should include the notion of triggers in
our dialogue so that host-language programs do not
have to be written to support semantic knowledge of
the database.

Features that we feel are important to have in a
database system to support data integrity are:

1. Data verification/validity checks/edits

2. Constraints

3. Ability to check constraints on commit with
all updates simultaneously available.

4. Range of values

S. Set of values

6. Uniqueness constraints

7. Statistical constraints

B. Trigger fields (ones which when changed
cause some other actions to take place
also.)

3.5 Perforaaaae

Databases have a lot to do. Besides just storing
and retrieving data, they are checking the validity
etc. of that same data. Given all the
requirements, it is no wonder that a database system
often has a greater overhead than ordinary file
systems. In terms of performance, then, one ls

100

interested in a variety of issues, all of which make
the database system faster. The elements we
considered important in judging performance are:

1. Overall performance
competitors

2. Fast load of relation

3. Fast unload of database

4. Dynamic index definition

relatively

s. Query optimization heuristics

6. Dynamic index maintenance
7. Number of indices per relation

like

B. Indices may be comprised of many segments
in any order

9. Frequency of re-organization that would be
necessary to supporb continued quality
performance.

10. Utility to monitor the performance of the
database

11. Fast recovery/check-point restart
availability

12. Future ability to totally utilize VAX
cluster architecture

13. Re-entrant code - (memory efficiency) only
one database process for the entire system

14. Locking efficiency (the efficiency with
which the database uses its lock manager,
fine locks for small transactions and
coarse locks for large transactions.)

15. Storage (disk) efficiency

3.6 Data Dictionary Support (external To Database)

A data dictionary is almost a database that
describes the data that is going to be stored in the
database. If you wish, it is called meta-data. All
relational database products on VAX have a data
dictionary imbedded in them. Often, these
dictionaries are not available to other things like
compilers of forms systems.

We feel that a dictionary that is fully understood
by other software is very important. One should
have only one central record definition. If
something is changed, one wants to go only to one
place to effect that change throughout the entire
application. Experience tells us that such changes
will occur with absolute certainty. We must
minimize now the cost of such future changes. This
single issue could cost an organization more in
terms of additional time spent on problems than all
other costs in an applications. The Data Dictionary
is that important.

Features that we feel are important to have in •
database system to support a data dictionary are:

1. Dynamic

2. Data dictionary support external to
database

3. Security of data dictionary

4. Speed/performance of the data dictionary

3.7 Quality Of AD-HOC Qu•ry Languag•

We will not be able to pre-define all reports that
are desired from the database. In some application
areas, it has been shown that up to 75% of the total
number of reports are ad-hoc reports. The tools
that are available for making such ad-hoc reports,
and indeed the tools for making the planned reports
thus become extremely important.

Our model is that the end users themselves will be
generating most of their own reports, Given this,
we must be particularly concerned that such end
users are capable of using the tools provided.
Features that we feel are important to have in an
ad-hoc query language are:

1. Non-procedurality of the language (user
friendliness)

2.

3.

4.

5.

6.

7.

e.

Ability to include files
database in a report

outside of the

Ability to work in
environment

a distributed

Complexity of queries supported

Ability to utilize views effectively

Ability to utilize the standard forms
package

Can be restricted from updating data

Report interface

3.8 Quality Of Progr ... ing Languag• Interfac.

Even with the features of relational databases, one
will inevitably have to write some programs to
support an application. It is important that we
have the widest range of languages possible and that
all are supported by the database system. We feel
the following considerations are important when
considering programming language support:

1. Program Language interface for VAX-11 BASIC
because this was our current shop standard.

2. Program Language interface for VAX-11
PASCAL because we believed we should be
considering this language. We were tired
of being second guessed by the Computer
Scientists.

101

3. Program Language
FORTRAN because
Jeff learned.

interface for VAX-11
it was the first languag•

4. Program Language interface for VAX-11 COBOL
because our management believ•s COBOL is
right for data processing.

5. Full power of the DML available to host
language programs

6. Full power of the DDL available to host
language programs

7. Can the language(s) call the ad-hoc report
writer

8, All supported languages access record
definitions from Data Dictionary

Many new applications are supported ONLY on CRT
terminals. Up until now we had been requir•d to
support both hard-copy and CRT's. This has
naturally led to some backwardness in the look and
feel of all of our applications.

In a previous talk (last year in Las V•gas), we
outlined the features we thought were appropriate to
a forms manager. Without going into details, th•
products being evaluated all supported their own
forms editor. No package complet•ly fills th•
criteria we had outlined. Lacking perfection, w.
adopted the following generic forms crit•ria1

1. Forms available both to host-language and
to database utilities

2. Forms use standard data dictionary record
definitions

3. Ability to change forms without changing
the application programs or packaged
queries

4. Judgement of forms package relative to
requirements (this is another s•ssion)

3.10 Miscellan•ous Consi4•rations

Several things are not covered by the categories
above. These are all mixed together her• is a
single stew. The degree of importance each of these
collected issues is clearly variabl•.

1. Ability to keep track of 1>9rformanc.
statistics

2. Ability to store the queries that actually
were made to the databas• to enable future
optimization strategy definitions

3. Initial cost

t. Maintenance cost

5.

'·
7.

a.
9.

10.

h.

Generalized utility package

Vendor training

Documentation quality

Stability/reputation of vendor

User satisfaction

User support qroup(s)

Mill provide future upgrade to database
aachine or to be distributed in a network
or both.

102

12. Possibility of future natural-language
query system

13. Familiarity

14. Stability of product

15. License agreements that are favorable in a
VAX-Cluster environment

16. Ability to install a new
database system while
production with the old.

version of
continuing

the
in

CONPARISOll or DATABASE l'IATURIS
ACROSS ALL DATABASIS

l'IATUR!

General Software Features
Concurrency
Data types
Data format independence
Define tables on fly
Define indices on fly
Multiple database cursors
Multiple databases
Modify table definitions
Columns in a relation
Relations in a database
Define views
Define views of views
Concurrent Batch/on-line
Record sizes unlimited
Inner Join
Outer join
No. tables in a single join
Control trans start & end
Rollback and Commit
Aggregation functions
DDL and DML
Fully functional DML

Security
Access on per-user basis
Access to db on a per-user
Data modified only by prog (excl. DBA>
Audit trail

Database Consistency
Journaling
Roll-back incomplete
Roll-forward
Automatic recovery
Utility to monitor integrity
Quality of integrity
Deadlock detection
Two-phase locking
Two-phase commit
Database Backup
Maturity of software

Data Integrity
Verification/validity checks/edits
Constraints
Check constraints on commit
Range of values
Set of values
Uniqueness constraints
Statistical constraints
Triggers

Rdb/VNS Rdb/ILI

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Large
Large
Yes
Yes
Yes
64k
Yes
Awkward
32
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Semi

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

103

Xl xz

COMPARISON OF DATABASE FIATURIS
ACROSS ALL DATABASES (cont)

JIATURI

Perforaance
Performance like competitors
Fast load
Fast un-load
Dynamic index definition
Dynamic index maintenance
No. of indices per relation
Segmented indices
Query optimization heuristic
Infrequent re-organization
Monitor performance of DB
Fast recovery/check-point restart
Future ability for VAX cluster
Re-entrant code
Locking efficiency
Storage efficiency

Data Dictionary support
Dynamic
Data dictionary external
Security of data dictionary
Speed/performance of DD

Quality of AD-HOC Query Language
User friendliness
Include files external to DB
Work in distributed environment
Complexity
Utilize views
Utilize standard forms package
Restricted from updating data

Quality of prograaming language interface
VAX-11 BASIC
VAX-11 PASCAL
VAX-11 FORTRAN
VAX-11 COBOL
DML available to programs
DDL available to programs
Call ad-hoc report writer
Access record def from DD

Fora• interface
Available to programs and DB utilities
Use standard DD definitions
Change forms without changing program
Forms package meets DU requirements

Miscellaneous considerations
Keep track of performance stats
Store the queries
Initial cost
Maintenance cost
Generalized utility package
Vendor training
Documentation quality
Stability/reputation of vendor
User satisfaction
User support group(s)
Upgrade to DB machine
Natural-language query
Familiarity
Stability of product
Favorable License agreements
Test DB concurrent w/ Prod

Rdb/VMS Rdb/ILI Xl

Yes
Yes
Yes
Yes
Yes
Infinite
Infinite
Automatic
Yes
sort of
Yes
Yes
Yes
Good
Good

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
No

No
No
?
?
Semi
Yes
Good
Very
Yes
Yes
Yes
Future
Yes
Yes
Yes
Yes

104

xz

BAR CODING FOR INVENTORY CONTROL

Larry R. Creel
Science Applications International Corporation

(SAIC)
Los Alamos, New Mexico

ABSTRACT

This paper describes the implementation of a
bar-coded property inventory system at the Los
Alamos National Laboratory. It identifies
"lessons learned" due to problems encountered
during system development. Discussed are bar code
scanners, bar code labels, portable data
collection, data unloading, file transfer between
micro and mainframe, some applicable database
management techniques, software control, how much
computer proficiency is required of property
managers, and a method of assuring the integrity
of files that are updated independently from
multiple sources.

INTRODUCTION

Maintaining current inventory records on
over 100,000 items is a difficult task.
This paper describes how database
management techniques combined with bar
coding can be utilized to reduce errors
and increase productivity in the area of
property management.

In July, 1984, SAIC was contracted to
provide a software system to assist the
Property Representatives at the Los Alamos
National Laboratory (LANL) in automating
their inventory techniques. The fully
implemented system, simply put, operates
in the following way.

Inventory data is collected with a
portable bar code reader.

Collected data is processed
against a property database.

Feedback is given to property
representatives.

What has been found.

What has not been found.

What was invalid.

Notification of new record
arrivals.

Notification of record
deletions.

Proceedings of the Digital Equipment Computer Users Society 105

SAIC is completing the final stages of
that project at this time. It was found
to be a most interesting assignment.

DEFINITIONS

Some terms used in the system description
that are specific to the implementation at
Los Alamos are also relevant to a
"generic" implementation at another site
with similar operating requirements.

Lab Database

Property records are maintained in a large
database with strict updating controls.
Property representatives modify the
location fields in this database by
providing an input file containing the
data to a software program that does the
actual update. Because of its size, the
database runs on a large computer under
the control of a Database Management
System (DBMS). At Los Alamos, it is a
System 2000 database containing about 100
megabytes of data running on a CDC Cyber
825/NOS computer.

The Lab database represents LANL's
official property records and may be
updated only by their Administrative Data
Proces'sing group.

New Orleans LA - 1985

DEFINITIONS (CONTINUED)

Local Database

When a large amount of property is
involved, a number of people are assigned
responsibility for its whereabouts. Each
of these people may be responsible for
between three hundred and twelve thousand
items. In order for these property
representatives to maintain current
records on their assigned property, they
are provided with their own smaller
database extracted originally from the Lab
database.

The Local database provides the property
representative with a set of data to
process against that can be updated freely
with no possibility of corrupting the Lab
database.

Global files

Since the Lab database requires location
updates to come from a single input file,
and there are many property
representatives who must contribute to
this file, it is referred to as a global
file.

Global files serve as accumulators for
data from multiple sources.

Integrity protection for these global
files is provided by software procedures.
When one program is adding data, no other
program can access it.

PROBLEMS TO SOLVE

The method used by the property
representatives to provide location
information to the Lab database was to
complete a handwritten coding sheet
containing the property number and the
location. This data was keypunched, read
into a file on the host computer, and
processed against the Lab database.
Before any increase in productivity could
be realized, inventory data processing via
handwritten coding sheets had to be
eliminated.

If the coding sheets are eliminated, an
inventory data collection and processing
system must be developed to replace them.
For reasons of accuracy and efficiency,
bar coding technolgy and DBMS technolgy
offer the most attractive means of
providing the optimum system.

This system for inventory must also
interface with existing update methods of
the Lab database. Specifically, this
meant the program that modifies the
location fields in the Lab database would

106

not be changed and the new system had
responsibility for correctly generating a
single properly formatted and accurate
location update input file on disk for it
to read and process.

STEPS TAKEN BY LANL

The decision was made to have the property
representatives use portable bar code
readers to take inventory. Machine
readable CODE 39 bar code labels were
applied to newly arriving capital
equipment and property representatives
were given the task of labeling all
property that had the old non-machine
readable property number labels with CODE
39 labels.

SAIC was contracted to develop an
"inventory data system" for the property
representatives and to train them in its
use.

ACTION TAKEN BY SAIC TO PROVIDE "INVENTORY
DATA SYSTEM"

The approach taken was to provide a local
database to process against for each
group. This set of data would be managed
by a relational DBMS software package that
would provide the processing power to do
the data reduction. There are several
steps involved; some of which were done
concurrently to minimize the
implementation time.

1) Provide a Local database for each
property representative.

For the property representative to provide
inventory information to the Lab database,
a Local database containing data on
assigned property ~ust be available.

A Local database was created and loaded
from the Lab database for each property
representative. It is managed with the
FRAMIS DBMS software to provide the
representative with data independence.

FRAMIS is a fully relational DBMS
developed by Lawrence Livermore National
Laboratory. It is easy to learn and use
and runs on VAX/VMS, CRAY/CTSS, and CDC
7600/LTSS. The Local database puts
property representatives in direct contact
with their data allowing them the complete
update priviledges they need.

2) A portable bar code reader is
programmed to collect data.

A portable bar code reader is used by
property representative to inventory
assigned equipment. Bar code readers
be used as INPUT devices for reading
either the item's bar code number, its

the

can

location, or both. Two programs were
needed at LANL.

An "Assignment" program was written to
collect an old property number, a new bar
coda number, and location data. The term
"assignment" refers to collecting the CODE
39 bar code label applied to all equipment
not already having one. When the decision
was made to automate the inventory
process, LANL began applying bar code
labels to equipment as property numbers.
All equipment received prior to bar coding
had to have a label applied by the
property representative. The old property
number and new bar code label had to be
collected and stored in the Local database
and later provided to the Lab database.

If an item does not possess a CODE 39
label, the representative applies one and
records the value in the reader as the
"bar code number". If the item possesses
a CODE 39 label, the entry for the
"property number" and the "bar code
number" are the same.

An "Inventory" program was written to
collect a bar code number and location
data. It is the same as the "Assignment"
program except it does not request a value
for the old property number.

3) Data from the bar code reader is
unloaded into a microcomputer.

Development of communication software is
expensive and off-the-shelf software
should be used whenever possible. The
KERMIT software package developed at
Columbia University was found to be
satisfactory for the LANL inventory system
and was free of charge.

KERMIT is used to transfer data between
the portable bar code reader and the
microcomputer and between the
microcomputer and the host computer.
KERMIT can transmit data over telephone
lines or over direct RS-232 communication
lines.

The data collected in the portable bar
code readers are unloaded into a
microcomputer for reasons of data
integrity and convenience. Groups at LANL
are using the IBM PC, DEC Rainbow, or an
HP-150.

An editor (VEDIT) on the microcomputer is
used to format the data into eighty
character records.

After formatting and possibly editing, the
bar code reader data is shipped to a host
computer for processing against the Local
database. A qualified host computer is one
that can access the global location update

107

file and one that is capable of running
the FRAMIS DBMS software. At Los Alamos
those machines are CDC 7600/LTSS,
CRAY-1/CTSS, and VAX/VMS computers.

4) Merge procedures were developed to
incorporate the portable bar code reade.r
data into the Local database.

Once the information arrives at the host,
procedures process the data against the
Local database. The FRAMIS command
language is used to query data. To print
what was found, the representative may
enter

PRINT VIEW WHERE INVDTE<>" ":

To print what was not found, the
representative may enter

PRINT VIEW WHERE INVDTE=" 11 ;

(VIEW is the name of the table in the
Local database that contains the property
data and INVDTE is the field containing
the date of inventory.)

Listings are printed as a result merging
the data from the portable bar code reader
into the Local database. One report is a
listings of "What did not belong". An
item does not belong if no match was found
by property number. Such records are
posted to a global "no match" file that is
later checked against the Lab database to
see if the record belongs to another
group. This feature allows a property
representative to enter a room and
inventory every item of capital equipment
whether it is assigned to him or not.

5) Correlation procedures were developed
to automatically compare Local database
records with the Lab database records.

The Lab database is considered to be
correct in all respects except for
location information which will come from
the Local database. Based upon these
assumptions:

current Lab data is extracted from
the Lab database.

Records whose locations in the
Local database are different from
their location in the Lab database
will generate a "location update
transaction".

"Location update transactions" are
written to a "global location
update file" that is processed
against the Lab database.

Property representatives need to know when
new property is assigned to them. They

also need to know when property assigned
to them has been decontrolled. Records in
the Lab database that are not in the Local
database (new property) are automatically
added. Records in the Local database that
are not in the Lab database are considered
"decontrolled" and are transferred to a
HISTORY table.

The requirement to send location updates
from Local databases to the Lab database
had been satisified, but the problem of
associating new bar code numbers with old
property numbers still remained.

Procedures were developed to create an
update file for the Lab database that •
associates the new bar code number with
the old property number based upon
matchi~g the property number and group
identifier in the update file with the
property number and group identifier in
the Lab database. Procedures to process
that update file against the Lab database
are being completed at this time.

ERROR CHECKING PERFORMED ON THE LOCAL
DATABASE

A system is as good as the error
prevention it provides. When the Local
database is updated either by merging
inventory data from the bar code reader or
by comparison of the Local database with
the Lab database, extensive error checking
occurs. Among these safeguards are:

Property numbers are required to
be unique.

Bar code numbers are required to
be unique.

Bar code labels assigned to
property numbers in the Local
database must agree with those in
the Lab database.

No location update transactions
are generated for records with
incomplete locations.

Records in the Local database are
required to be contained in the
Lab database. Decontrolled items
automatically go into a HISTORY
table.

Hardcopy listings are automatically
printed informing the property
representative rejected records and the
reason for their rejection.

ASSURING THE INTEGRITY OF GLOBAL FILES

Global are files accumulator files that
become input files to the Lab database.
They require additions from all property

108

representatives. A scenario in which data
can be lost when two users are writing to
the same file is when one gets the file
and updates it while another is updating
it. Only those updates made by the last
person to replace the file will be kept.
The updates made by the first to replace
the file will be lost.

A method of locking the global files was
developed using passwords. A file with a
password cannot be accessed unless its
password is correctly given.

The global file is stored with a password
of "UNLOCKED". A Fortran program
retrieves it for updating and replaces it
when modifications are completed.

Before retrieving the global file, the
Fortran program changes its password from
"UNLOCKED" to "LOCKED". If the change is
successful, no one else was modifying the
file, and processing continues. If the
change was unsuccessful (i.e. the password
was something other than "UNLOCKED"),
someone else was modifying the file, and
processing stops and the representative is
requested to try again later.

If the password change went okay, the file
is modified, replaced, and the password is
changed from "LOCKED" to "UNLOCKED". The
file c~n now be updated by another
property representative.

DOCUMENTATION

Documentation is still being written and
revised. A "PROPERTY REPRESENTATIVE'S
HANDBOOK OF BAR CODED INVENTORY
PROCEDURES" provides a user's guide for
the property representative. A
programmer's reference manual is being
developed to provide system maintenance
information.

TRAINING

Formal classroom training and on-site
training immediately following
implementation is provided to the property
representatives. Telephone consulting is
also available.

WHAT WAS LEARNED

Many useful facts were discovered; a few
were already known and confirmed by this
project. Some of the most important are:

Bar code readers must be reliable,
reasonably priced, and able to be
programmed in a high level
language. Bar code readers that
can be used for other functions
when they are not needed for
inventory are an extra benefit.

Bar coding technology decreases
the time required for inventory
and reduces the number of errors
made.

Scanning a bar code label improves
the reliability of an inventory
because it requires the property
representative to physically come
in contact with the item.

computer inexperience by users can
be overcome by very detailed
instructions (both verbal and
written) and one-on-one training
using the system. This requires a
great deal of patience and
understanding from the instructor.

support for the system from the
property representative's
supervisor is very important
because:

Time and effort is
required from the property
representative.

A bar code reader,
microcomputer, and a
communications port must
be purchased.

The first inventory using bar code
labels may take the property
representative longer than using
coding sheets because:

He is unfamiliar with the
bar code reader.

He must also key in the
old property number.

He must make physical
contact with the item
being inventoried.

Scheduling groups for training and
implementation can be very time
consuming. People are often too
busy to be trained in the new
system.

109

Error checking, prevention and
recovery throughout the system is
essential.

The majority of property representatives
at LANL had very little computer
experience, yet most were eager to learn.
For a system to be successful, it must be
made as simple as possible. Programmers
must always be willing to work harder in
the software when it will make running and
using the product easier.

our documentation is strictly cookbook and
procedure files handle all of the data
processing. Time will tell how successful
we were at Los Alamos.

CREATING MENU-DRIVEN SYSTEMS
USING FMS AND VAX DCL

Brian D. Lockrey
ITT Telecom

P.O. Box 20345. NW Station
Columbus. Ohio 43220

Abstract

The VAX/VMS operating system from Digital
Equipment Corporation includes a command language
interpreter called DCL. An optional software
product is also available from DEC. called the
Forms Management System. VAX/VMS does not
currently provide a facility to use FMS forms
within a DCL command procedure. By writing a
generalized program. it is possible to create
menu-driven systems using FMS forms as menus and
the DCL command interpreter as a procedure
language to control the presentation of these
menus. The purpose of this paper is to describe
a prototype program that performs this function.

Introduction

To facilitate using FMS forms with a DCL
command procedure. a generalized program
has been written which binds FMS field
names to DCL symbols. By using this
convention. any DCL command procedure can
interact with an FMS form on a limited
basis without the use of a specialized
application program. While the capabilities
of such an interface do not provide for all
the functionality offered by FMS. the
interface provides enough flexibility to
create menu-driven systems.

Most menu-driven systems are controlled by
a main menu which offers various options to
the user. The option selected may invoke
another sub-menu or activate the execution
of an application program. For example.
one menu option may be a request to produce
a report on a 1 ine pr inter. This report
may actually be created by submitting a
batch job that runs Datatrieve. creates a
report, and spools the report to the line
printer.

Since menus may also be used to run
application programs and system utilities.
it appears that the logical place to
implement the menu driver is from the
command language interpreter. Since DCL
provides all the necessary functions
required to run programs and execute system
utilities. the only extension needed is a
facility to present the menu on the
terminal screen.

Proceedings of the Digital Equipment Computer Users Society 111

The PANEL Program

A program called PANEL was written which
can be used to display an FMS form. solicit
input from the terminal. and pass the data
to DCL. The DCL command procedure may then
use the data to make a determination as to
what the next action should be.

PANEL communicates with DCL through the DCL
symbol table. When the PANEL program
terminates. each field name on the form is
prefixed with 1 P$ 1 and a DCL symbol is
created. The value contained on the form
is assigned to the DCL symbol and stored in
the symbol table. These symbols may be
created either LOCAL or GLOBAL through the
use of a command qualifier passed to the
PANEL program.

Example l

The best way to describe the function of
the PANEL program is by examples. The
first example is a command procedure and
FMS form used to enter parameters for the
VAX SORT utility. The form allows entry of
an input file name. an output file name.
and up to five fields on which to sort.
This particular menu does not allow for all
of the available sorting options; however.
it is sufficient for many applications.

Assuming
predefined
as follows.

the ASORT command has
in the user's DCL symbol

$ASORT :== "@MENU:ASORT.COM"

been
table

New Orleans LA - 1985

the AS ORT command then causes the
ASORT.COM procedure to execute (see fiqure
l). This procedure then calls the PANEL
proqram to display ASORT.FRM (see fiqure
2) from the MENU.FLB library. After the
parameters have been entered into the
appropriate fields, the user presses the
RETURN key to terminate the PANEL
proqram. Prior to exitinq, PANEL creates
10 symbols in the user's DCL symbol table
from the correspondinq fields in the FMS
form. At this point the ASORT command
procedure builds a command line and
invokes the VAX SORT utility in line 12.

While this example is a simplified
application. it should help convey the
actual function performed by the PANEL
utility. By usinq a small DCL command
procedure and an FMS form, an interface
has been created for the VAX SORT utility
without writinq any additional software.

Example 2

The second example is called the Media
Control systems (MCS). This system was
desiqned to maintain a cataloq of video
and audio tapes. The cataloq is stored as
an indexed file that many be modified by
the user. Various reports may be produced
from the records within the file.

This system also uses only one menu
screen. From the menu, the user is able to
call a proqram to add, delete, and modify
records in the file and then produce
reports usinq the data stored in the
file. The entire system is driven by
MCS. COM, which uses the form MCSMENU as
the main menu (see fiqure 3). The reports
are created by submittinq batch files that
use the Datatrieve report writer. The
report procedures are not shown.

Referrinq to line 6 in fiqure 3, the
command procedure calls the PANEL proqram
which displays the MCSMENU form from the
MCS.FLB forms library. The menu shown in
fiqure 4 contains only one field named
OPTION. Upon termination of the PANEL
proqram, the DCL symbol P$OPTION will
contain the data corresponding to the
option specified by the user.

The PANEL command in line 10 is used to
display the main menu after a particular
option has been performed. The /REUSE
qualifier instructs PANEL to restore the
option field with the data contained in
the DCL symbol P$0PTION. By usinq this
qualifier, the menu is restored to exactly
the way it was when the PANEL command was
complete at line 10.

The /LAST qualifier is used to pass a
strinq that is displayed on the last line
of the form. In this case, a messaqe
indicatinq the action taken by the
procedure is displayed. This provides a
facility to display error messages or
other text to the user. The /BELL
qualifier causes the bell in the terminal
to ring when the menu is displayed.

112

Example 3

The third example is a menu system
developed to assist users wishinq to
perform various file conversions. The
main menu contains nine options. These
options include converting carriage
control, removing tabs, selecting records,
and converting a file between upper and
lower case. From the main menu the user
invokes one of five utility programs used
to perform the requested operation. The
utilities are invoked by the command
procedure FILECONV.COM shown in figure 5.

Each of these utility programs has
different switches and qualifiers which
must be known prior to their use. As is
often the case, the syntax of the commands
is different between each of the five
utilities. By using a main menu and a few
sub-menus, these differences may be hidden
from the user.

The FILECONV.COM procedure displays the
main menu, shown in Figure 6, where the
user enters the input and output file
names. Depending on the requested option,
the procedure may display a sub-menu on
the lower portion of the screen. The
sub-menu used with opt ion 1 of the
FILECONV procedure is shown in Figure 7.

These sub-menus enable the user to enter
parameters that are specific to the
current option. For instance, if the user
has selected option 6 to shift a file to
the right, the OPTION6 menu contains a
field asking the user to enter the number
of columns the file should be shifted to
the right. once the user has entered the
parameter. the procedure would then call
the REFORMAT program to perform the shift
operation.

Since the command procedure builds the
actual parameters passed to the REFORMAT
program, the user is not required to know
the syntax of the command string actually
passed to the target program. In many
cases, such as this one, the user may not
even be aware that another program is
called to reformat the file.

Conclusion

The PANEL program adds to DCL the
ca pa bi 1 i ty needed to display and interact
with menus. Since the menus can easily be
created using existing FMS utilities, the
programmer is not required to learn
additional system commands and editors in
order to use this facility. Al though the
PANEL program does not support all of the
features found on other systems. it
provides the framework that allows the
creation of workable menu-driven systems
in a VAX/VMS environment.

i: $ PANEL MENU.FLB A SORT
2: $ KEY1 "/KEY=<POS=" + P$POS1 + • rSIZE=" + f'$LEN1 + .) .
31 $ KEY2 = "/KEY=<f'OS=" + f'$f'OS2 + "rSIZE=" + f'$LEN2 + .) .
41 $ KEY3 = "/KEY=<POS=• + f'$f'OS3 + • rSIZE=" + f'$LEN3 + .) .
5: $ KEY4 = "/KEY=<POS=" + f'$f'OS4 + "rSIZE=" + f'$LEN4 + .) .
61 $ CMD = f'$0UTFILE+KEY1
7: $ IF KEY2 .NES. "/KEY=<PDS=rSIZE=>" THEN CMD CMD + KEY2
0: $ IF KEY3 .NES, "/KEY=<POS=rSIZE=>" THEN CMD CMD + KEY3
91 $ IF KEY4 .NES. "/KEY=<PDS=rSIZE=)" THEN CMD CMD + KEY4

10: $ MSG = •sortinSI File: . + PUNFILE
111 $ WRITE SYS$0UTPUT MSG
12: $ SORT I f'UNFILE I 'CMD'

FiS11Jre 1 •

Form: ASORT

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1
2
3
4
5 Ini•1Jt Filel
6
7 01JtP1Jt File:
8
9 Position:

10
11 Position:
12
13 Position:
14
15 Position:
16

ASORT

LenSlth:

LenSlth:

LenSlth:

Lensith:

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

FiS11Jre 2,

113

11
12
13
14
15
16
17
18
19
110
111
112
113
114
115
116

u $
2: $ I HCS. COH
3: $! MEDIA CONTROL SYSTEM - HAIN HENU
4: $!
5: $ START:
6: $ PANEL/GLOBAL HCS.FLB HCSHENU
7: $ GOTO SELECT
a: $ '
9l $ REDO:

10: $ PANEL/GLOBAL/REUSE/BELL/LAST=&HSG HCS,FLB HCSHENU
11: $
12: $ SELECT:
13: $ IF P$0PTION ,EQS, •1• THEN GOTO MCS_EDIT
14: $ IF P$0PTION ,EQS, •2• THEN GOTO HCS_REPORT_1
15: $ IF P$0PTION ,EQS, •3• THEN GOTO MCS_REPORT_2
16: $ IF P$0PTION ,EQS, •4• THEN GOTO MCS_EXIT
17: $ HSG = "Illesal menu oPtionr Please tr~ asain.,,•
18: $ GOTO REDO
19: $
20: $ MCS_EDIT:
21: $ IDE MCS
22: $ GOTO START
23: $
24: $ MCS_REPORT_1:
25: $ SUBMIT/NOPRINT REPORT1,COM
26: $MSG= "Report 1 has been submitted,,,•
27: $ P$0PTION :== • •
28: $ GOTO REDO
29: $!
30: $ MCS_REPORT-2:
31: $ SUBMIT/NOPRINT REPORT2,COM
32: $MSG= "RePort 2 has been submitted ••• •
33: $ P$0PTION l==
34: $ GOTO REDO
35: $
36: $ MCS_EXIT:
37: $ EXIT

Fisure 3.

Fon: MCSHENU

11
21
31
41
51
61
71
81
91

101
111
121
131
141

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

MEDIA CONTROL SYSTEH

Main Menu

0Ptions available are:

1 - Edit the HCS Database
2 - Print Media Catalos Report
3 - Print Media Cross Reference Report
4 - Exit from MCS

Select 0Ption: _

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

Fisure 4.

114

11
12
13
14
15
16
17
18
19
110
111
112
113
114

1: $
2: $ FILECONV.COH
3: $ FILE CONVERT UTILITIES - HAIN HENU
4: $ '
s: $ ON CONTROL-Y THEN GOTO INTERRUPT
6: $ START:
7: $ PANEL/CLEAR/GLOBAL CONVERT.FLB CONVERT
8: $ GOTO SELECT
9: $!

10: $ REDO:
11: $ PANEL/GLOBAL/REUSE/BELL/LAST=&HSG/CURSOR=OPTION -
12: CONUERT.FLB CONVERT
13: $ SELECT:
14: $ HSG = • •
15: $ IF P$0PTION .EQS. •1• THEN GOTO OPTION_!
16: $ IF PSOPTION .EQS. •2• THEN GOTO OPTION_2
17: $ IF PSOPTION .EQS. •3• THEN GOTO OPTION_3
18: $ IF P$0PTION .EQS. •4• THEN GOTO OPTION_4
19: $ IF PSOPTION .EQS. •s• THEN GOTO OPTION_S
20: $ IF PSOPTION .EQS. 0 6° THEN GOTO OPTION_6
21: $ IF P$0PTION .EQS. •7• THEN GOTO OPTION_7
22: $ IF P$0PTION .EQS. •9• THEN GOTO OPTION_8
23: $ IF P$0PTION .EQS. •9• THEN GOTO OPTION_9
24: $ IF PSOPTION .EQS. "E" THEN GOTO OPTION_E
25: $ HSG = "Illesal ~enu oPtion• Please tr~ asain ••• •
26: $ GOTO REDO
27: $
28: $ OPTION_l:
29: $ PANEL/LAST=&HSG CONVERT OPTION!
30: $ PARAH = '?"
31: $ IF PSCONTROL .EQS. "F' THEN PARAM = '/FORTRAN"
32: $ IF P$CONTROL .EQS. "L' THEN PARAM = "/LIST"
33: $ IF PSCONTROL .EQS. •p• THEN PARAH = "/PRINT"
34: $ IF PSCONTROL .EQS. "N" THEN PARAM = "/NONE"
35: $ IF PARAH .EQS. •1• THEN GOTO ERROR_l
36: $ TRANSFORH 'P$FILEIN' 'P$FILEOUT''PARAM'
37: $ HSG = "File has been converted."
38: $ GOTO REDO
39: $ '
40: $ ERROR_l:
41: $ HSG = "Invalid oPtion• Please tr~ asain.•
42: $ GOTO OPTION_!
43: $
44: $ OPTION_2:
45: $ DETAB 'P$FILEIN' 'P$FILEOUT'
46: $ P$FILEIN = P$FILEOUT
47: $ HSG = "File has been detabed."
48: $ GOTO REDO
49: $!
so: $ OPTION_3:
51: $ ENTAB 'P$FILEIN' 'P$FILEOUT'
52: $ PSFILEIN = PSFILEOUT
53: $ HSG = "File has been entabed."
54: $ GOTO REDO
ss: $!
56: $ OPTION_4:
57: $ PANEL CONVERT OPTION4

Fisure 5, Part 1.

115

58: $
59: $
60: $
61: $
62: $
63: $
64: $
65: $
66: $
67: $
68: $
69: $
70: $
71: $
7'"l. $
73: $
74: $
75: $
76: $
77: $
78: $
79: $
so: $
81: $
02: $
83: $
84: $
85: $
86: $
87: $
as: $
89: $
90: $
91: $
92: $
93: $
94: $
95: $
96: $
97: $
98: \U
99: $

100: $
101: $
102: $
103: $
104: $
105: $
106: \L
107: $
108: $
109: $
110: $
111: $
112: $
113: $
114: $
115: $
116: $

RED0_4:
IF P$LRECORD .NES. •• .AND, P$CRECORD .NES, •• THEN GOTO ERROR_4
PARAH= "<START:" + P$FRECORD + •,•
IF P$LRECORD .NES, •• THEN PARAM = PARAM + "END:• + PSLRECORD + ">"
IF P$CRECORD .NES ••• THEN PARAM = PARAM + ·cou:· + PSCRECORD + .,.
SCOPY 'P$FILEIN' 'P$FILEOUT/RECORDS='PARAM'
P$FILEIN = PSFILEOUT
MSG= "Records have been selected."
GOTO REDO

ERROR_4:
MSG= "Can not specify the last record and a count.•
PANEL/REUSE/LAST=&MSG CONVERT OPTION4
GOTO RED0-4

!
OPTION_5:

PANEL CONVERT OPTIONS
PARAM = "<" + P$FCOLUMN + •,• + PSLCOLUMN + ")"
REFORMAT 'P$FILEIN' 'PSFILEOUT'/COLUMNS='PARAM'
PSFILEIN = P$FILEOUT
MSG= "Columns have been selected."
GOTO REDO

OPTION_6:
PANEL CONVERT OPTION6
REFORMAT 'P$FILEIN' 'PSFILEOUT'/SHIFT='PSSHIFT'
PSFILEIN = PSFILEOUT
MSG= "File has been shifted ri~ht,•
GOTO REDO

!
OPTION_7:

PANEL CONVERT OPTION7
REFORMAT 'PSFILEIN' 'PSFILEOUT'/SHIFT=-'PSSHIFT'
P$FILEIN = PSFILEOUT
MSG= "File has been shifted left,•
GOTO REDO

OPTION_B:
TEXTPROC 'PSFILEIN' 'PSFILEOUT'

EDD
PSFILEIN = PSFILEOUT
MSG= "File has been converted to uppercase.•
GOTO REDO

!
OPTION_9:

TEXTPROC 'PSFILEIN' 'PSFILEOUT'

EOD
PSFILEIN = P$FILEOUT
MSG= "File has been converted to lowercase,•
GOTO REDO

!
OPTION_E:

EXIT
INTERRUPT:

MSG = "Operation aborted by Control-Y"
GOTO REDO

Fi~ure 5, Part 2.

116.

For11: CONVERT

1
2
3
4
5
6

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FILE CONVERSION

7 InPut File:
8
9 OutPut File:

10
11
12
13
14
15
16
17
18
19
20
21

1.
2.
3.
4.
5.
6.
7.
8.
9.
E.

Chanse file carriase control
De tab the inPut file
Entab the inPut file
Select ranse of records
Select ranse of columns
Shift the records to the risht
Shift the records to the left
Convert file to UPPercase
Convert file to lowercase
Exit this Pr0Sra11

22 0Ption: _
23

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

Fisure 6.

Form: OPTION1

10
11
12
13
14
15

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OPtion 1 - Chanse File Carriase Control

16 The inPut file should be converted to:
17
18
19
20
21
22

F - Fortran
L - List
p - Print
N - None

23 What twpe: _

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

Fisure 7.

117

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

10
11
12
13
14
15
16
17
18
19
20
21
22
23

USE OF DOMAIN TABLES TO CONNECT INTERACTIVE AND BATCH DATATRIEVE

ELLIOT F. JAQUITH,JR
E. I. du PONT DE NEMOURS & CO.(RETIRED)
QUALITY CONTROL - STATISTICS - SOFTWARE

CONSULTANT
335 OVERLOOK TERRACE

HENDERSONVILLE,NORTH CAROLINA 28739

ABSTRACT

This paper describes how to use a domain table as a bridge
between interactive and batch DATATRIEVE when requesting
queries on a very large file with variable search
parameters. Our very large files queries require at least
45 minutes search time. By using a domain table to hold the
variable information entered from the keyboard with
interactive DATATRIEVE via FMS screens, parameter entry is
reduced to 10 minutes while actual search time will take at
least 45 minutes, leaving the terminal free for other tasks.
This DOMAIN table is used to supply parameters to a batch
program that prepares a special report.

When large files ()100,000 records) are the source of your data and many boolean expressions are used in
the search code the time(l5 to 45 minutes) for the interactive searches is longer than most computer users
will accept. One alternative is the use of the BATCH processor. This means the terminal is available for
other tasks while the DATATRIEVE search is going on in the background. A simple DCL command language job
batch file works well if the boolean expressions to define the search criteria are the same for each
DATATRIEVE search or you are familiar with computer EDITORS and DATATRIEVE. However, most queries are for
new or different information. Many users who need this information have little experience or incentive to
program in DATATRIEVE. The techniques described will permit DATATRIEVE queries by entering interactively the
parameters list and using the batch processor to develop a collection, print, or prepare reports. There are
two ways to develop the RSE (Record Selection Expression). The first is where the selection list has a
variable number of entries. The second is where the selection list has a fixed number.

To illustrate how to develop the DATATRIEVE PROCEDURES and DCL command files, a simple personnel file will be
used. This type of data structure is used in the "DEC" manuals (CHAPTER 6 OF THE INTRODUCTION TO VAX-11
DATATRIEVE) and by other manufacturers of data storage systems to show how their data base systems operate.
In the examples the following record structure will be used:

DTR) SHOW FIELDS
PERSONNEL

PERSON
ID (Number, indexed key)
EMPLOYEE STATUS (STATUS) (Character string)
EMPLOYEE-NAME (NAME)

FIRST-NAME (F NAME) (Character string)
LAST NAME (L NAME) (Character string>

DEPT - (Character string>
START DATE (Date)
SALARY
SUP ID

(Number>
(Number>

The domain is "DEFINED DOMAIN PERSONNEL USING PERSONNEL REC ON PERSONNEL.DAT;".

The following will illustrate methods used to query the personnel data base. For a one time search
using interactive DATATRIEVE the following commands could be typed directly to select all personnel who work
for a supervisor with ID equal 12 and 891

DTR) READY PERSONNEL
DTR) FIND PERSONNEL WITH SUP-ID=l2,891
[10 records found]
DTR) PRINT ALL

Proceedings of the Digital Equipment Computer Users Society 121 New Orleans LA- 1985

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL Fll 9-Apr-1976 $59,594 00012
32432 TRAINEE THOMAS SCHWEIK Fll 7-Nov-1981 $26,723 00891
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
39485 EXPERIENCED DEE TERRI CK D98 2-May-1977 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
78923 EXPERIENCED LYDIA HARRISON Fll 19-Jun-1979 $40,747 00891
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012
87701 TRAINEE NATHANIEL CHONTZ Fll 28-Jan-1982 $24,502 00891

A similar DATATRIEVE search can be done in BATCH mode by creating a batch job file either with the
CREATE command or EDITOR. The following DCL file is developed to search for personnel as above with
supervisor's ID equal to 891 and 12. The batch job file is called "SUP.COM" with the following code:

$DTR
READY PERSONNEL
FIND PERSONNEL WITH SUP-ID=891,12
OPEN LIST.LOG
PRINT CURRENT SORTED BY LAST-NAME,SUP-ID
CLOSE
EXIT

Then using the batch processors as follows:

$ SUBMIT/NOLOG_FILE SUP

When the batch processor is finished a print file named "LIST.LOG" is created. This can be printed by
using DCL TYPE or PRINT command.

$TYPE LIST.LOG

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
87701 TRAINEE NATHANIEL CHONTZ Fll 28-Jan-1982 $24,502 00891
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
78923 EXPERIENCED LYDIA HARRISON Fll 19-Jun-1979 $40,747 00891
00891 EXPERIENCED FRED HOWL Fll 9-Apr-1976 $59,594 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012
32432 TRAINEE THOMAS SCHWEIK Fll 7-Nov-1981 $26,723 00891
00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
39485 EXPERIENCED DEE TERRI CK D98 2-May-1977 $55,829 00012

Another way to create the collection would be to replace the above RSE in SUP.COM with a reference to a
table. The use of tables in this way is somewhat
a list of items which he uses to pick the items to

like a shipping list in a warehouse, where an

DTR) SHOW DEPT-TBL
TABLE DEPT TBL

be shipped.

QUERY HEADER IS "SUPERVISOR" /"NAME ..
"891 "-: "John Smith"
"12" : "Ray Jones"
END TABLE

An example of a DICTIONARY table
operator has

Using the interactive command, the following RSE will find all the personnel with the selected
supervisor ID in the first position of the table. You note there is no boolean expression when a table does
the selecting. The key word in the RSE is "IN". It is this word which causes the search to select only
those supervisor's ID which are in the table.

DTR) FIND PERSONNEL WITH SUP-ID IN DEPT-TBL
(10 records found]

122

DTR> PRINT ALL

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL Fll 9-Apr-1976 $59,594 00012
32432 TRAINEE THOMAS SCHWEIK Fll 7-Nov-1981 $26,723 00891
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
39485 EXPERIENCED DEE TERRI CK D98 2-May-1977 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
78923 EXPERIENCED LYDIA HARRISON Fll 19-Jun-1979 $40,747 00891
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012
87701 TRAINEE NATHANIEL CHONTZ Fll 28-Jan-1982 $24,502 00891

Tables can also be used to form a relationship between one field and another. By using a VIA in the
RSE, you can obtain a list of personnel and their supervisor by name rather than number.

DTR) PRINT ALL FIRST-NAME,LAST-NAME,SUP-ID VIA DEPT-TBL

FIRST
NAME

CHARLOTTE
FRED
THOMAS
BILL
DEE
GAIL
LYDIA
LOUISE
ANTHONY
NATHANIEL

LAST
NAME

SPIVA
HOWL
SCHWEIK
SWAY
TERRI CK
CASSIDY
HARRISON
DEPALMA
IACOBONE
CHONTZ

SUPERVISOR
NAME

Ray Jones
Ray Jones
John Smith
Ray Jones
Ray Jones
Ray Jones
John Smith
Ray Jones
Ray Jones
John Smith

However, the DICTIONARY table can't be used to bridge between interactive and batch DATATRIEVE and is
only presented to illustrate how tables are used. There is another type of table called a DOMAIN. This is
the table type to use as the bridge between interactive and batch DATATRIEVE. The most important feature of
the DOMAIN table is it can be used with any DATATRIEVE file.This is the key to how to develop the bridge
system. However, it requires more DATATRIEVE code. To create a DOMAIN table in this example for SUP-ID, do
the following:

1. DEFINE A DOMAIN

DEFINE DOMAIN SEARCH USING SEARCH-REC
ON DEPT.DAT;

2. DEFINE A RECORD

DEFINE RECORD SEARCH-REC USING
01 SEARCH-REC.

3. DEFINE A TABLE

03 SUP-AREA PIC 9(5).
03 AREA PIC X(4).
03 SUP-NAME PIC X(l5).

DEFINE TABLE SEARCH-TABLE FROM DOMAIN SEARCH
SUP-AREA : AREA
ELSE ""
END-TABLE

123

4. DEVELOP A DATATRIEVE PROCEDURE FOR ENTERING THE
SEARCH LIST

DEFINE PROCEDURE DEMO
DEFINE FILE SEARCH SUPERSEDE
READY SEARCH WRITE
DECLARE NEW SUP PIC 9(5).
DECLARE NEW-AREA PIC X(4).
REPEAT 100 BEGIN
NEW SUP=*."supervisor's number"
NEW-AREA=l
IF NEW SUP EQ 0 THEN ABORT
IF NEW-SUP NE 0 THEN
BEGIN

END

STORE SEARCH USING
BEGIN

END

SUP AREA=NEW SUP
AREA=NEW AREA

END PROCEDURE

5. DEVELOP A DCL COMMAND FILE(ENTRY)

CREATE A FILE NAMED NEWSUP.COM

$ COPY SYS$INPUT SYS$COMMAND
THIS PROGRAM CREATES A LIST OF
PERSONNEL WHO WORK FOR A SELECTED
SUPERVISOR

$ASSIGN/USER MODE SYS$COMMAND SYS$INPUT
$DTR;EXECUTE-DEMO
$SUBMIT/NOLOG FILE SUP
$EXIT -

6. CREATE A DCL FILE (OUTPUT)

$DTR
READY PERSONNEL
FIND PERSONNEL WITH SUP-ID IN SEARCH-TABLE
OPEN LIST.LOG
PRINT ALL
CLOSE
EXIT

To illustrate how the file NEWSUP operates type the following command:

$@NEWS UP

The output is as follows:

THIS PROGRAM CREATES A LIST OF
PERSONNEL WHO WORK FOR A SELECTED SUPERVISOR

Enter supervisor's number: 87289
Enter supervisor's number: 39485
Enter supervisor's number: 0

JOB entered on queue SYS$BATCH
$

In step 4, there is a boolean test for zero. It is this zero which is used to exit the entry phase. An
output can be obtained by $T LIST.LOG

124

DTR) PRINT ALL
FIRST LAST START SUP

ID STATUS NAME NAME DEPT DATE SALARY ID

02943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
34456 TRAINEE HANK MORRISON T32 l-Mar-1982 $30,000 87289
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
49843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485
83764 EXPERIENCED JIM MEADER T32 4-Apr-1980 $41,029 87289
84375 EXPERIENCED MARY NALE VO D98 3-Jan-1976 $56,847 39485
88001 EXPERIENCED DAVID LITELLA G20 ll-Nov-1980 $34,933 87289
91023 TRAINEE STAN WITTGEN G20 23-Dec-1981 $25,023 87289

When running the example, it is possible to search the personnel data file for any employees who work
for a selected supervisor. The number of supervisors is a variable from l to 100. In a DOMAIN table the
number of fields is not restricted to two and the search field doesn't have to be the first field in the data
file, Thus in designing the search file structure, the file can be used with other defined tables for other
purposes as described in CHAPTER 9 OF THE DATATRIEVE USERS GUIDE.

There is another way to bridge between interactive and batch when a single value in the search field is
desired. As an example,in the personnel data base there is interest in STATUS field for a single selection
ie("TRAINEE" OR "EXPERIENCED"), The set up is as follows:

1. DEFINE A DOMAIN
DEFINE DOMAIN SINGLE-SEARCH USING ONE-REC
ON ONE.DAT;

2. DEFINE A RECORD
DEFINE RECORD ONE REC

01 ONE REC.
03 ONE STATUS PIG 9.

3. DEFINE A TABLE
DEFINE TABLE STATUS TABLE
"EXPERIENCED" : l
"TRAINEE" : 2
END TABLE

4. DEFINE DATATRIEVE PROCEDURE (ENTRY)
DEFINE PROCEDURE DEM02
FINISH
DEFINE FILE SINGLE SEARCH SUPERSEDE
READY SINGLE SEARCH WRITE
DECLARE SINGLE PIG X(ll).
SINGLE=*,"STATUS CATEGORY"
STORE SINGLE SEARCH USING

B~~IWTATus=sINGLE VIA sTATus TABLE
END

END-PROCEDURE
5. DEFINE DATATRIEVE PROCEDURE (OUTPUT)

DEFINE PROCEDURE DEM03
READY SINGLE SEARCH
FIND VALUE IN SINGLE SEARCH
READY PERSONNEL
SELECT VALUE
FIND PERSONNEL

WITH STATUS VIA STATUS TABLE=ONE STATUS
OPEN LIST.LOG
PRINT CURRENT SORTED LAST NAME
CLOSE
END-PROCEDURE

125

6. CREATE DCL ENTRY FILE
$COPY SYS$INPUT SYS$COMMAND

THIS DEMONSTRATES A SEARCH FOR A SINGLE
SEARCH PARAMETER

$ ASSIGN/USER MODE SYS$COMMAND SYS$INPUT
$ DTR;EXECUTE-DEM02
$ SUBMIT/NOLOG FILE DEMOS
$ EXIT -

7. CREATE A DCL RUNNING FILE
$ DTR;EXECUTE DEM03
$ EXIT

8, TO RUN THE SEARCH
$ @DEM04

Enter STATUS CATEGORY: TRAINEE

$ JOB entered on queue SYS$BATCH
9, TO PRINT THE OUTPUT

$ T LIST.LOG
FIRST LAST

ID STATUS NAME NAME DEPT
87701 TRAINEE NATHANIEL CHONTZ Fll
49843 TRAINEE BART HAMMER D98
48573 TRAINEE SY KELLER T32
34456 TRAINEE HANK MORRISON T32
32432 TRAINEE THOMAS SCHWEIK Fll
12643 TRAINEE JEFF TASHKENT C82
91023 TRAINEE STAN WITTGEN G20

START
DATE

28-Jan-1982
4-Aug-1981
2-Aug-1981
l-Mar-1982
7-Nov-1981
4-Apr-1981

23-Dec-1981

SUP
SALARY ID
$24,502 00891
$26,392 39485
$31,546 87289
$30,000 87289
$26,723 00891
$32,918 87465
$25,023 87289

This example presents some unique problems in developing the RSE because the status field is not numeric
and therefore a table transition is required to convert this field to a numerical value. If the search field
were numeric, the RSE in STEP 5 would be FIND PERSONNEL WITH STATUS=ONE-STATUS and the rest of the steps
would not have to reference a table. Another requirement is the SELECT VALUE statement in step 5. Without
this SELECT, an error occurs because there is no way to reference the field ONE-STATUS.

There is another technique which is used to help reduce the search time with interactive DATATRIEVE.
This is to create a sub-file (small) of the large file, The creation of the small file is done in Batch mode
using one or both of the techniques previously illustrated. An example of the code is as follows:

ID

DTR) DEFINE DOMAIN NEW USING PERSONNEL-REC ON
DFN) NEW.DAT;
DTR) DEFINE FILE NEW SUPERSEDE
DTR) READY NEW WRITE
DTR) READY PERSONNEL
DTR) FIND PERSONNEL WITH DEPT="E46"
[2 records found]
DTR) NEW=CURRENT
DTR) FIND NEW
[2 records found]
DTR) PRINT ALL

STATUS
FIRST
NAME

LAST
NAME DEPT

START
DATE SALARY

SUP
ID

38465 EXPERIENCED JOANNE
48475 EXPERIENCED GAIL

FREIBURG E46 20-Feb-1980 $23,908 48475
CASSIDY E46 2-May-1978 $55,407 00012

A new domain called NEW is created with the same record definition as the main (large) file,
selection is complete and a collection generated, the collection is stored in the domain NEW.
NEW can then be used either interactively or in batch mode to develop reports.

When the
This domain

With all the techniques presented it is now possible
DATATRIEVE with very large files. All or part of
procedures.

to shorten your actual terminal time to use
the examples can be used when you develop your own

126

Record Definition Tutorial

B. z. Lederman

2572 E. 22nd St.
Brooklyn, N.Y. 11235

Abstract

This session will supply examples and suggestions
which go beyond the material in the Datatrieve
manuals, and show how various types of problems
may be solved using the options available within
the record definition. The material will include
some comparisons between different approaches to
the same problem, the use of VIEWS (which are
created from record definitions), and methods of
transferring data from one domain to another,
which also depends in part upon record
definitions.

It is not unreasonable to state that
the record definition is the foundation of
any Datatrieve application, as it is the
reference by which all data is stored and
retrieved. Therefore, the first rule for
any application is:

KNOW YOUR APPLICATION

from which immediatly follows:

KNOW YOUR DATA

I find that the best way to work out record
definitions is with two very simple pieces
of equipment: a pencil, and a piece of
paper marked off in squares such as graph
paper, or a printer form layout sheet, or
CRT display form, or an old coding sheet.
By marking off the fields, using one square
per byte, the number of data items, the
length of each field, and it's alignment and
relationship to other fields are easily
determined. This is especially important
with the REDEFINES clause, which will be
shown later.

Often, an unsuspected benefit of taking
an existing manual operation and
implementing it on Datatrieve is that the
people involved must sit down and figure out
exactly what pieces of data they are dealing
with, and in what manner: this is often the
first time anyone actually does this, and
they are often supprised by the amount of
data involved.

Some applications move onto Datatrieve
almost automatically. If you are using a
pre-printed form (and almost every company
has some sort of printed form for orders,
absence reports, pencil requisitions, etc.)
then one can simply copy the fields into the
record definition: there are cases of new
users moving applications like this in one
day. If your records are not as well
organized, then you must analyze them

127

yourself. If you are using Datatrieve to
read an existing file created by some other
program, then it is necessary to obtain the
file record layout and follow it.

Keep in mind that, while it is nice to
get a good record definition at the
beginning, it is always possible to define a
new domain and record and read the data from
the old domain to a new one, so if you have
10,000 records stored, and find you need to
add a field, don't panic. Examples of this
will be given.

While one could use ADT or follow the
simple examples in the manuals and develop
many useful applications with Datatrieve,
there is a much wider range of applications
which may be addressed with a few simple
techniques. For example, suppose the YACHTS
domain was being used in a show room, where
the customers are allowed to look up data at
a terminal, but the seller doesn't want the
price to appear. Using the simplified
record definition for YACHTS, here are two
possible solutions.

Original
Definition

Second
Definition

View

01 BOAT. 01 BOAT.
DEFINE DOMAIN LOOK OF YACHTS USING

01 LOOK OCCURS FOR YACHTS.
06 BUILDER PIC X(lO).
06 MODEL PIC X(lO).

03 SPEC.
06 RIG PIC X(6).
06 LOA PIC XXX.
06 DISP PIC 9(5).
06 BEAM PIC 99.
06 PRICE PIC 99.

06 BUILDER PIC X(lO).
06 MODEL PIC X(lO).

03 SPEC.
06 RIG PIC X(6).
06 LOA PIC XXX.
06 DISP PIC 9(5).
06 BEAM PIC 99.
06 FILLER PIC XX.

The definition on the left is for the whole
domain which the showroom owner will use,
and is the short definition given in the
manual in the optimization chapter. PDP-11
users who are short of pool space should
look at this chapter, and compare the short
definition, which uses much less pool space
by having fewer clauses, with the definition
created by the installation package. The
customers could use the view on the right,
which does not have the price, or a second
domain using the record definition in the
center could be used to access the SAME FILE
as is used for YACHTS. This shows two
useful features. First, it is possible to
have more than one domain access the data in
a single file: this makes it possible to
look at the data in more than one way, with
more than one record definition. The only
restriction is that the user must document
the domains accessing each file so that, if
it is ever neccesary to change a file, the
domains to be affected will be known. There
is also an important difference between the
domains and the view: you cannot store or
erase records in a view, but you can do all
operations on the second domain. The
limitation on views can be bad or good,
depending upon the application: in this
example, you probably would not want
customers to add or erase records, so using
a VIEW would be one way of preventing this.

The second domain shows the use of the
special field type FILLER to "skip" over
data in a record. The data is still there,
and may be accessed by the original domain,
but not by the second domain: if you also
protect the record definition itself to be
execute but not read, the user will never
see the filler field (it doesn't appear in
SHOW FIELDS), and will not know there is
data there. This may be extended for use in
'hiding' fields.

128

03 BUILDER FROM YACHTS.
03 MODEL FROM YACHTS.

03 RIG FROM YACHTS.
03 LOA FROM YACHTS.
03 DISP FROM YACHTS.
03 BEAM FROM YACHTS.

01 CUSTOMER.
03 ADDRESS.

06 STREET PIC X(lO).
06 CITY PIC X(lO).
06 STATE PIC X(2).
06 ZIP PIC 9(5).

03 FILL-ENG.
06 FILLER PIC X(lO).

03 ENG REDEFINES FILL-ENG.
06 ENGINEER PIC X(lO).

If you normal command PRINT you get:

STREET CITY STATE ZIP

130 LIBERTY NEW YORK NY 10006

but if you say PRINT ADDRESS, ENG the result
is:

STREET CITY STATE ZIP ENGINEER

130 LIBERTY NEW YORK NY 10006 LEDERMAN

Thus the ENGINEER field is always available,
but will not print out unless specifically
asked for. This can also be a pool saving
technique for very large records, or may be
used to control access to information where
several users must access the same file by
doing something like this:

01 ALL-DEPT-REC.
03 DEPT-A.

01 DEPT-A-REC.
03 DEPT-A.

06 BUDGET PIC 999.
06 MANAGER PIC XX.

03 DEPT-B.

06 BUDGET PIC 999.
06 MANAGER PIC XX.

03 FILLER PIC X(lO).
06 BUDGET PIC 999.
06 MANAGER PIC XX.

03 DEPT-C.
06 BUDGET PIC 999.
06 MANAGER PIC XX.

This is a very small example, but it shows
how a single file may be accessed by one
domain having access to all fields, and by
several other domains, accessing only some
of the data. Each of the smaller domains
can read and write only their own data, and
the big domain could be used for report
giving all of the data. This is an
alternative to having seperate domains for
each department, and using a view to tie
them together for reports. (For PDP-11 and
PRO users, each of the smaller record
definitions uses less pool than the big
definition, allowing more complicated
procedures to be used (or more sort space,
etc.). If a record definition is very large
(hundreds of bytes), then the only way to
access it usefully in Datatrieve-11 may be
to have more than one domain each access a
portion of the record.

129

02 DEPT-B-REC.
03 FILLER PIC X(S).

03 DEPT-B.
06 BUDGET PIC 999.
06 MANAGER PIC XX.

03 FILLER PIC X(S).

Another approach to the same problem
would be to use a VIEW. First, a definition
may be given for the domain which holds data
for all departments.

01 BUDGET-REC.
10 DEPARTMENT PIC XX.
10 PROJECT PIC X(lO).
10 AMOUNT PIC 9(6)V99

EDIT-STRING $$$$,$$$.00.
10 MANAGER PIC X(lO).

The person in charge of budgets would have
full access to this domain, and so could
access all of the data.

Each individual department would have their
own VIEW defined like this:

DEFINE DOMAIN AA-BUDGET OF BUDGET USING
01 AA-BUDGET OCCURS FOR BUDGET WITH

DEPARTMENT= "AA".
10 PROJECT FROM BUDGET.
10 AMOUNT FROM BUDGET.
10 MANAGER FROM BUDGET.

This definition should be protected so that
the department can execute it, but not read
or modify it, otherwise they might want to
change the definition to allow access to
other departments. Because the selection
criteria is fixed, they will see only their
own department's data. This configuration
would be of greatest use when the different
departments must read the information, but
only the central controller will enter or
erase it.

Another very useful feature of the
REDEFINES clause is that it allows one to
look at the data in a domain in more than
one way within a single domain. An
application for this could be a file which
has more than one record type in a single
file. The author does not reccomend this
for new applications, but there may be
existing files set up like this (COBOL and
RPG are often the source) which one would
like to access with Datatrieve. Consider a
file with data that looks like this:

Key Type

0001 N
0001 A
0001 p
0001 T

Lederman Bart Z
2572 E 22nd New York NY 11235
38 DPG 2222 Distributed Proc
212-250-2300 718-555-5555

A possible record definition is:

DEFINE RECORD MULTI-REC
01 MULTI-REC.

03 KEY PIC 9999 EDIT-STRING ZZZ9.
03 TYPE PIC X.
03 NAME-PAGE.

06 LAST PIC X(l4).
06 FIRST PIC X(l2).
06 M PIC X.
06 N PIC X.

03 ADDRESS-PAGE REDEFINES NAME-PAGE.
06 STREET PIC X(ll).
06 CITY PIC X(lO).
06 STATE PIC XX.
06 ZIP PIC 99999.

03 PERSONNEL-PAGE REDEFINES NAME-PAGE.
06 FLOOR PIC 99 EDIT-STRING Z9.
06 SECTION PIC XXX.
06 CLOCK PIC 9999.
06 DEPARTMENT PIC X(l9).

03 TELEPHONE-PAGE REDEFINES NAME-PAGE.
06 BUSINESS PIC X(lO)

EDIT-STRING XXX-XXX-XXXX.
06 HOME PIC X(lO)

EDIT-STRING XXX-XXX-XXXX.
06 FILLER PIC X(8).

130

The first part of the definition is for the
fields which do not change (the key and the
type, which are common to all records). The
next part is the definition for the first
record, the name fields. Because this is
the first definition (highest in the
hirarchy), it is used by default wher
accessing the data. If the data is printed,
the result is

KEY TYPE LAST FIRST M N

1 N Lederman Bart z
1 A 2572 E 22ndNew York NY112 3 5
1 p 38DPG2222Distr ributed Pr o c c
1 T 21225023002125 555555

Notice how all records have been printed as
if they were NAME-PAGE as this is the first
group in the hirarchy, but because I have
the redefined fields, I can also access the
data in different ways. Each redefines has
it's own group name, which makes access much
easier as I can specify a group name for one
whole page, and note that a redefines must
never be longer than the original field
and/or group. In other applications, you
should be certain the longest group comes
first, or that you fill the first group to
be as long as the longest group. It is
acceptable for the redefines to be shorter
than the original field, but I prefer to
fill all groups in for my own reference. In
this case, the telephone data is shorter,
and the additional length is made up with
FILLER. With the redefines, a simple
procedure will access the data correctly.

DEFINE PROCEDURE PRINT-MULTI
READY MULTI
FOR MULTI BEGIN

IF TYPE EQ
IF TYPE
IF TYPE
IF TYPE

END
END-PROCEDURE

EQ
EQ
EQ

"N" PRINT NAME-PAGE
"A" PRINT ADDRESS-PAGE
"P" PRINT PERSONNEL-PAGE
"T" PRINT TELEPHONE-PAGE

When this procedure is invoked, the data
prints like this:

LAST FIRST M N

Lederman Bart z

STREET CITY STATE ZIP

2572 E 22nd New York NY 11235

FLOOR SECTION CLOCK DEPARTMENT

38 DPG 2222 Distributed Proc

BUSINESS HOME

212-250-2300 718-555-5555

If you have more than one set of records,
the following sets will not have headers
when they print out (this is the normal way
the Datatrieve PRINT command behaves) but
the data will print out using the correct
field definitions. The same technique may
be used to select the proper page for
storing, and so on. Individual fields of
each page may be accessed simply by using
the name of the field, at any time:
Datatrieve will go through the record
hirarchy, as it would for any other domain,
to resolve the field references.

An alternative to the procedure is to
define two seperate domains for the data.

DEFINE RECORD BASE-REC
01 BASE.

03 KEY PIC 9999 EDIT-STRING ZZZ9.
03 TYPE PIC X.
03 LAST PIC X(l4).
03 FIRST PIC X(l2).
03 M PIC X.
03 N PIC X.

DEFINE DOMAIN BASE USING BASE-REC
ON MULTI.SEQ;

DEFINE RECORD OTHER-REC
01 OTHER.

03 KEY PIC 9999 EDIT-STRING ZZZ9.
03 TYPE PIC X.
03 ADDRESS-PAGE.

06 STREET PIC X(ll).
06 CITY PIC X(lO).
06 STATE PIC XX.
06 ZIP PIC 99999.

03 PERSONNEL-PAGE REDEFINES
ADDRESS-PAGE.

06 FLOOR PIC 99 EDIT-STRING Z9.
06 SECTION PIC XXX.
06 CLOCK PIC 9999.
06 DEPARTMENT PIC X(l9).

03 TELEPHONE-PAGE REDEFINES
ADDRESS-PAGE.

06 BUSINESS PIC X(lO)
EDIT-STRING XXX-XXX-XXXX.

06 HOME PIC X(lO)
EDIT-STRING XXX-XXX-XXXX.

DEFINE DOMAIN OTHER USING OTHER-REC
ON MULTI.SEQ;

Now, I can define a
domains to bring all of
together into what will
record:

view of these two
the seperate records
look like one single

131

DEFINE DOMAIN MUL OF BASE, OTHER USING
01 MOLT OCCURS FOR BASE WITH TYPE EO "N".

06 LAST FROM BASE.
06 FIRST FROM BASE.
06 M FROM BASE.
06 N FROM BASE.

03 ADDRESS-PAGE OCCURS FOR OTHER WITH
TYPE EQ "A" AND OTHER.KEY=BASE.KEY.

06 STREET FROM OTHER.
06 CITY FROM OTHER.
06 STATE FROM OTHER.
06 ZIP FROM OTHER.

03 PERSONNEL-PAGE OCCURS FOR OTHER WITH
TYPE EQ "P" AND OTHER.KEY=BASE.KEY.

06 FLOOR FROM OTHER.
06 SECTION FROM OTHER.
06 CLOCK FROM OTHER.
06 DEPARTMENT FROM OTHER.

03 TELEPHONE-PAGE OCCURS FOR OTHER WITH
TYPE EQ "T" AND OTHER.KEY=BASE.KEY.

06 BUSINESS FROM OTHER.
06 HOME FROM OTHER.

The reason for the two domains is to be able
to use the key field to tie together the
appropriate seperate records. The BASE
domain will occur once for each group of
associated records, and the KEY field will
be used to retrieve the other records of the
same group. When this view is readied and
printed, it looks like this (I have added a
second set of data records to show that the
view works properly):

LAST FIRST M N STREET

Lederman Bart Z 2572 E 22nd
New York NY 11235 38 DPG 2222
Distributed Proc
212-555-5555

212-250-2300

Hackinbush Hugo Z 11 Julius
Hialeah FL
Sales & Promotion
305-555-1476

33999 13 MRX 1313
305-555-3131

It appears wrapped around here as there are
only 44 columns on this page, but on 132
column paper, all fields print out with
their headers. This view would be very
useful in "flattening" the data record so it
could be processed as other domains are.

Another use of the redefines can be for
break fields.

DEFINE RECORD TTN-REC
01 TTN.

03 PORT PIC 999.
03 BREAK REDEFINES PORT.

06 Bl PIC 99.
06 FILLER PIC X.

03 GROUP PIC 999.
03 SWITCH PIC 9.
03 TRUNK PIC 9999.
03 COMMENTS PIC X(21).

Although PORT is an integer number, I am
using the DISPLAY data type so I can
redefine it as a two digit field. The
reason can be seen when reporting the data.

DEFINE PROCEDURE RPT-TTN
READY TTN
REPORT TTN ON TTN.RPT
SET REPORT-NAME="Show Breaks with Redefines"
SET COLUMNS-PAGE=50
PRINT COL 1, PORT, COL 8, GROUP, COL 20,

SWITCH, COL 24, TRUNK, COL 40, COMMENTS
AT BOTTOM OF Bl PRINT COL 1,
"---"
END-REPORT
END-PROCEDURE

When this procedure
resulting report is:

is invoked, the

Show Breaks with Redefines

PORT

D40
041
042
043
D44
D45
046
D47

05D
D52
D53
054
D55
D56
D57

D6D
D61
D62

GROUP

347
347
347
347
347
347
347
347

347
131
131
131
131
131
131

131
131
131

SWITCH

4 1154
4 1155
4 1156
4 1157
4 1417
4 1440
5 4521
5 4522

5 4523
7 5311
7 5312
7 5313
7 5314
7 5315
7 5316

7 5317
7 532D
7 5321

Page 1

COMMENTS

88/89
88/89
88/89
88/89
88/89
88/89
88/89
88/89

88/89
TYPED
TYPEO
TYPED
TYPEO
TYPEO
TYPEO

TYPEO
TYPED
TYPEO

As may be seen, by having a field which acts
on the first two digits of PORT, it is
possible to put in a break line every 'n'
entries, something which would be difficult
otherwise. (Incedentally, the ports are
numbered in octal, which is why there is no
port D48 or D49, but the system works just
as well in decimal.) Not shown is a
LINES-PAGE command: if you want groups of
records to print out on successive pages
with the breaks aligned, you will have to
set the number of lines per page to match
the group breaks. It may be noted that
there is no SORTED BY clause in the report
statement: it is not neccessary to sort the
data if it is already in the proper order,
as it will be if a sequential file is
reported in it's present sequence, or if an
indexed file is reported in the order of
it's primary key. (One of the uses for
indexed files can be to keep data ordered.)
If there is no SORTED BY clause, Datatrieve
will issue a warning that unsorted records

132

are being reported, but will then report and
allow a break on any field: if there is a
SORTED BY clause, then only fields which
were sorted can have breaks, and in this
case I want the report in the order of PORT,
not the order of Bl. Reports also come out
faster if you don't have to sort the domain
first, and exhaustion of sort pool space is
avoided.

A commonly used feature is variable
length records, as in the FAMILIES domain.
While certainly useful, variable length
records have some draw backs, including more
difficult access to the fields in the
variable length portion, and having to know
the maximum number of variable occurences
when defining the domain. There is an
alternative approach using two files and a
view. First, for comparison, is a shortened
record definition for the FAMILY domain.

DEFINE RECORD SHORT-FAMILY-REC
Dl FAMILY.

D3 FATHER PIC X(lO).
03 MOTHER PIC X(lD).
03 NUMBER-KIDS PIC 99 EDIT-STRING Z9.
D3 KIDS OCCURS D TO 10 TIMES

DEPENDING ON NUMBER-KIDS.
D6 KID PIC X(lD).
D6 AGE PIC 99 EDIT-STRING Z9.

DEFINE DOMAIN FAMILY USING
SHORT-FAMILY-REC ON FAMILY.DAT;

The alternative uses one domain for the
fixed data, and one for the variable
occurence data, with one field in common to
tie the two together.

DEFINE RECORD PARENT-REC
01 PARENT.

03 KEY PIC 999 EDIT-STRING ZZ9.
03 FATHER PIC X(lO).
D3 MOTHER PIC X(lO).

DEFINE RECORD OFFSPRING-REC
Dl OFFSPRING.

03 KEY PIC 999 EDIT-STRING ZZ9.
D3 KID PIC X(lO).
03 AGE PIC 99 EDIT-STRING Z9.

DEFINE DOMAIN PARENT USING
PARENT-REC ON PARENT.DOM;

DEFINE FILE FOR PARENT KEY=KEY(NO DUP);

DEFINE DOMAIN OFFSPRING USING
OFFSPRING-REC ON OFFSPRING.DOM;

DEFINE FILE FOR OFFSPRING KEY=KEY(DUP);

The two domains are then connected with a
view:

DEFINE DOMAIN HOUSEHOLD OF PARENT,
OFFSPRING USING

01 HOUSEHOLD OCCURS FOR PARENT.
03 FATHER FROM PARENT.
03 MOTHER FROM PARENT.
03 KIDS OCCURS FOR OFFSPRING WITH

OFFSPRING.KEY EQ PARENT.KEY.
06 KID FROM OFFSPRING.
06 AGE FROM OFFSPRING.

When printed, the HOUSEHOLD
just like the FAMILY domain,
NUMBER-KIDS field.

domain looks
without the

FATHER

JIM

JIM

JOHN

JOHN
ARNIE

SHEARMAN
TOM

BASIL

ROB
JEROME

TOM

GEORGE

HAROLD

EDWIN

MOTHER

ANN

LOUISE

JULIE

ELLEN
A.NNE

SARAH
ANNE

MERIDETH

DIDI
RUTH

BETTY

LOIS

SARAH

TRINITA

KID AGE

URSULA 7
RALPH 3
ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16
ANN 29
JEAN 26
CHRISTOPHR 0
SCOTT 2
BRIAN 0
DAVID 0
SUZIE 6
PATRICK 4
BEAU 28
BROOKS 26
ROBIN 24
JAY 22
JILL 20
WREN 1 7

ERIC 32
CISSY 24
NANCY 22
MICHAEL 20
MARTHA 30
TOM 27
FRED 26
JEFF 23
LAURA 21
HAROLD 35
CHARLIE 31
SARAH 27
ERIC 16
SCOTT 11

This view can be readied, printed, reported,
examined, etc. just like the FAMILY domain,
but there are several important differences.
First, because they are two seperate
domains, it is not neccessary to know how
many occurences there are for the variable
portion, and there is no limit to the number
of variable records. Also, because there
are two seperate domains, it is possible to
work on each portion seperatly, and protect
each portion seperatly. We had an
application where the fixed portion was the
basic information on a communications
circuit (the customer name, location, date
due, and so on), and the variable portion

133

was a record entered each tim~ a workman
attended to the circuit: the domains were
protected so the workmen could read the
fixed portion but never had write or modify
access to it, but could write to the
variable domain. This mixed protection
cannot be done on a single domain with
variable occurs. Another benefit is in
Datatrieve-11, where pool space may be saved
by readying only the portion required for a
given application, rather than always having
to use the larger single domain.

One drawback
to a view, but a
this:

is that one cannot STORE
simple procedure solves

DEFINE PROCEDURE STORE-FAMILY
DECLARE PROMPT PIC X.
DECLARE KEY-FIELD PIC 9999.
READY PARENT WRITE
READY OFFSPRING WRITE
KEY-FIELD = MAX KEY OF PARENT
KEY-FIELD = KEY-FIELD + l
WHILE *."Y to store a family" CONT "Y" BEGIN

STORE PARENT USING BEGIN
KEY = KEY-FIELD
FATHER *.FATHER
MOTHER= *.MOTHER

END
PROMPT= *."Y if there are any kids"
WHILE PROMPT CONT "Y" BEGIN

END
END
FINISH

STORE OFFSPRING USING BEGIN
KEY KEY-FIELD

END

KID *."Kid's name"
AGE *.AGE

PROMPT = *."Y for another kid"

RELEASE KEY-FIELD
RELEASE PROMPT
END-PROCEDURE

Note that a temporary field KEY-FIELD is
used to obtain the key (either by prompting
or as is done here, by obtaining the last
key previously used), and this field is used
to store the same value in both domains,
thus insuring the fields will match. The
prompting for repeats could easily be made
more sophisticated than this simple example

The field KEY is used to tie the two
domains together, but need not appear in the
final view. I have used the name KEY for
this field to emphasize the fact that this
is a good application for a keyed field in
an indexed file. Note the condition on
matching KIDS, where the two KEY fields are
matched: if KEY were not a keyed field in
domain OFFSPRING, then for every record in
PARENTS, EVERY RECORD IN OFFSPRING WOULD
HAVE TO BE SEARCHED FOR A MATCHING FIELD.
While it is possible for the variable length
portion domain to be a sequential file,
don't complain when it takes several hours
to print out a few records. In the fixed

length portion domain, it is not absolutly
neccessary for the KEY field to actually be
a key, but making it so takes advantage of
another aspect of keyed fields, that of
preventing duplicates. If there were
duplicates in PARENTS, than one set of KIDS
would be assigned to more than one set of
PARENTS, a confusing situation to say the
least. In most applications, it is
desireable for each set of variable records
to be assigned to one fixed record, though
the use of a VIEW will allow you to have
multiple associations, one more possible
advantage of the VIEW over the variable
occurs for some applications A similar use
of key fields not shown here is the
NO CHANGE attribute, which can prevent a
field from being modified, regardless of
what access or priviledges a user has to
that domain. This can be very useful in
protecting data from accidental or
deliberate modification.

The technique of tying two domains
together with a matching field can be
extended to do something else the occurs
clause can not do: a domain (view) with
more than one variable portion. To the
previous definition, I will now add:

DEFINE RECORD ANIMAL-REC
01 PETS.

03 KEY PIC 999 EDIT-STRING ZZ9.
03 NAME PIC X(lO).
03 SPECIES PIC X(lO).

DEFINE DOMAIN ANIMALS USING
ANIMAL-REC ON ANIMAL.DOM;

DEFINE FILE FOR ANIMALS KEY=KEY(DUP);

DEFINE DOMAIN HOUSEHOLD OF PARENT,
OFFSPRING, ANIMALS USING

01 HOUSEHOLD OCCURS FOR PARENT.
03 FATHER FROM PARENT.
03 MOTHER FROM PARENT.
03 KIDS OCCURS FOR OFFSPRING WITH

OFFSPRING.KEY EQ PARENT.KEY.
06 KID FROM OFFSPRING.
06 AGE FROM OFFSPRING.

03 PETS OCCURS FOR ANIMALS WITH
ANIMALS.KEY EQ PARENT.KEY.

06 NAME FROM ANIMALS.
06 SPECIES FROM ANIMALS.

The same rules about keys, etc. apply to
this view. I have chosen to match the PETS
with the PARENTS, but I could have added an
additional field to the OFFSPRING domain if
I had wanted PETS to be matched to
OFFSPRING. When printed, the first few
entries look like this:

134

FATHER MOTHER KID AGE NAME SPECIES

JIM ANN URSULA
RALPH

JIM LOUISE ANNE
JIM
ELLEN
DAVID
ROBERT

JOHN JULIE ANN
JEAN

7
3 GAYLORD

FREDDY
31
29
26
24
16 RAGMOMMA
29
26

CAT
BIRD

DOG

It is not neccessary for every entry in the
PARENTS portion to have either OFFSPRING, or
ANIMALS, or both, and neither OFFSPRING nor
ANIMALS require the presence of the other.
However, because of the way HOUSEHOLDS was
defined, there must be a PARENT record if an
OFFSPRING or ANIMAL record with the same key
is to appear in the view. If PETS had been
matched to OFFSPRING, then an OFFSPRING
would have to be present for PETS to appear

An alternative method of combining data
from two domains in VAX-Datatrieve (and
DTR-20) is to use the CROSS statement.
Instead of the VIEW joining PARENT and
OFFSPRING, I could use something like this:

PRINT PARENT CROSS OFFSPRING OVER KEY

This would give me:

KEY FATHER

1 JIM
1 JIM
2 JIM
2 JIM
2 JIM
2 JIM
2 JIM
3 JOHN
3 JOHN
4 JOHN
5 ARNIE
5 ARNIE
6 SHEARMAN
7 TOM
7 TOM
8 BASIL
8 BASIL
8 BASIL
8 BASIL
8 BASIL
8 BASIL

10 JEROME
10 JEROME
10 JEROME
10 JEROME
11 TOM
11 TOM
12 GEORGE
12 GEORGE
12 GEORGE
13 HAROLD
13 HAROLD
13 HAROLD
14 EDWIN
14 EDWIN

MOTHER

ANN
ANN
LOUISE
LOUISE
LOUISE
LOUISE
LOUISE
JULIE
JULIE
ELLEN
ANNE
ANNE
SARAH
ANNE
ANNE
MERIDETH
MERIDETH
MERIDETH
MERIDETH
MERIDETH
MERIDETH
RUTH
RUTH
RUTH
RUTH
BETTY
BETTY
LOIS
LOIS
LOIS
SARAH
SARAH
SARAH
TR IN I TA
TRINITA

KEY KID AGE

l URSULA 7
1 RALPH 3
2 ANNE 31
2 JIM 29
2 ELLEN 26
2 DAVID 24
2 ROBERT 16
3 ANN 29
3 JEAN 26
4 CHRISTOPHR 0
5 SCOTT 2
5 BRIAN 0
6 DAVID 0
7 PATRICK 4
7 SUZIE 6
8 BEAU 28
8 BROOKS 26
8 ROBIN 24
8 JAY 22
8 WREN 17
8 JILL 20

10 ERIC 32
10 CISSY 24
10 NANCY 22
10 MICHAEL 20
11 MARTHA 30
11 TOM 27
12 JEFF 23
12 FRED 26
12 LAURA 21
13 CHARLIE 31
13 HAROLD 35
13 SARAH 27
14 ERIC 16
14 SCOTT 11

By specifying the fields I want to print in
the CROSS statement I could suppress the KEY
fields, but I let them print out this time
to show what is happening. Note that the
way this particular CROSS statement was
entered results in picking up only those
parents who have at least one offspring.
The CROSS statement can of ten be thought of
as a short way to do a VIEW, and regarding
it as such may help you see what it is
doing. Note particularly what was said
before about OFFSPRING having to be keyed
for fast retrieval: you can see here that
the second domain listed in the CROSS
statement is taking the same place as the
second domain in our VIEW example;
therefore, it should also be keyed if the
CROSS statement is to execute quickly. Just
as with the view, if both domains are keyed
it doesn't matter which comes first, but if
only one is keyed it should given last in a
CROSS statement for best results. Because
the CROSS can be implemented in a single
statement, it is easier to use during
interactive sessions, and when you are
investigating relationships between various
domains and groups of data. If you find a
particular relationship which you expect
will be used many times, you may want to
convert your CROSS into a VIEW, as this will
fix the relationship and you will be able to
ready the domain and print records without
having to remember what the joining
conditions are.

Lest it be thought that I am completly
against the use of the OCCURS clause, I will
now show a good use for it: de-blocking
records. With some other languages, a
person will sometimes write more than one
logical record or associated group of data
into what the operating system and
Datatrieve consider to be a single record.
An example file containing some names, looks
like this:

Dump of DB2: [300,3]DEBLOCK.SEQ;l
Record number 01. - Size 512. bytes

000 w 0 1 f J F
020 w h e e 1
040 M a h a t m a K J
060 v e s
100 H u g 0 z H
120 k i n b u s h
140 0 t i s c
160 b b 1 e c 0 b 1 i s
200 s Q Q
220 1 e
240 s a m G
260 n i 0 n
300
320
340
360
400
420
440
460
500

1 y

e e

a c

r i

u a

r u

135

This data is all one
there is no seperation
records (each name),
"de-blocked" with the
definition.

physical record as
between logical
but it can be
proper record

DEFINE RECORD DEBLOCK-REC
01 DEBLOCK-REC.

03 FIELDS OCCURS 16 TIMES.
06 FIRST PIC X(l2).
06 MI PIC X.
06 LAST PIC X(l4).
06 FILLER PIC X(5).

Note that there is no "fixed" portion to
this definition: everything is in the
"variable" portion (inner list) of the
record definition. When a domain with this
record definition is readied and printed, it
looks like this:

FIRST MI LAST

Wolf J Flywheel
Mahatma K Jeeves
Hugo z Hackinbush
Otis Cribblecoblis
s Q Quale
Sam Grunion

The blank lines at the bottom are due to the
fact that the entire inner list is printed
by default, and the unused entries are
filled with blanks. This record definition
can be made to print better looking data
with the redefines and computed by
expressions.

DEFINE RECORD DEBLOCK-TWO
01 DEBLOCK-TWO.

08 FIELDS OCCURS 16 TIMES.
16 DUMMY.

24 FILLER PIC X(32).
16 N REDEFINES DUMMY.

24 FIRST PIC X(l2).
24 MI PIC X.
24 LAST PIC X(l4).

16 NAME PIC X(29)
COMPUTED BY FIRSTJI" "IMI(J" 11 ILAST.

Once again, space is allocated with filler,
then redefined with the real fields to
"hide" them. The COMPUTED BY may supprise
persons who expect that only math functions
can be used with this clause, but it works
just as well with character strings. The
effect of this is to squeeze down the three
fields to a single field with blank spaces
removed.

136

NAME

Wolf J Flywheel
Mahatma K Jeeves
Hugo Z Hackinbush
Otis Cribblecoblis
S Q Quale
Sam Grunion

Processing the name in this way removes one
of the objections many people have to
computer output; that it looks too
"regimented" or too ridgedly organized.
Removing the blanks makes the names look
more as they would when written or typed by
a person: simple little things like this
can significantly improve the appearance of
a report. The use of the COMPUTED BY in the
record definition allows us still to enter
the first and last names seperately so we
can, for example, sort the data by last name
or otherwise access the inidividual fields,
and then use the concatenated name where
desired.

It was stated that if a record
definition is found not to meet the
requirements of an application, it can be
changed. The rules for changing an existing
record definition (without having to change
the domain or file used by the domain)
reduce to a simple requirement: the length
of the record cannot change. This condition
results in the following rules:

Field names, group names, query headers,
query names, and edit strings may always be
changed, as they do not affect the length of
the record, but watch out for any views
which access that record definition: if you
change a field or group name, any views
which use that field must be changed so that
their corrisponding group and field names
match.

Query headers, query names, and edit strings
may be added or deleted.

Group names may be added
provided they do not cause
OCCURS boundries to be crossed.

or deleted,
REDEFINES or

REDEFINES fields or groups may be added or
deleted.

As a general rule, PICTURE cannot be
changed, and elementary fields cannot be
added or deleted. There are a few cases
where a change can be made, very, VERY, VERY
carefully, when the length of a field will
not change. For example:

03 A PIC 999. can be changed to
03 A PIC XXX.

but the can no longer be used as a
number, nor can leading zeroes be
suppressed. Going the other way, from
PIC XXX to PIC 999 may cause very strange

data

numbers to appear.

03 A PIC 99 USAGE IS INTEGER.

can change to

03 A PIC 999 USAGE IS INTEGER.

but not to

03 A PIC 9999 USAGE IS INTEGER.

because the first two are 2 bytes in length
and the last is 4 bytes in length.

Fields can be combined if the total length
is the same:

03 CITY PIC X(lO).
03 STATE PIC X(2).

can both be replaced with

03 CITY-STATE PIC X(l2).

There is one change which is always allowed,
and that is to replace any field or
combination of adjacent fields with FILLER
of the same length.

A VALID IF statement can also be added,
deleted, or modified. It should be noted
that VALID IF applies only when storing or
modifying data with Datatrieve: it does not
check data which is already in the domain.
Thus it is entirely possible to store data
in a field, then add a VALID IF clause which
makes that data invalid: no more data of
that kind may be added, but the existing
data will be unchanged. This is similar to
the condition stated above where PIC XXX
could be changed to PIC 999: if the data in
the field happens to all be numeric digits,
the data will be correct, but if there is
anything else (including leading blanks),
Datatrieve will assume they are supposed to
be numeric digits, and this will result in
some strange numbers being printed out.
Datatrieve will not check the existing data,
but will not allow you to modify or store a
new field with non-numeric data.

If all of this scares you, it should be
noted that the worst that can happen is that
if you do change the length of the record
definition, when you READY the domain you
will get an error message telling you that
the record lengths don't match, or you will
read the data and get strange results. As
long as you extract a copy of your
definition before you start, and ready the
domain for read only the first time after
you change the definition and look at the
data, it is very unlikely that you can
damage your data, and the worst that can
happen is you will have to make additional
corrections to your record definition, or go
back to the old one.

When changes are required which will
not fit the above rules, such as adding an
additional elementary field, then a new file

137

will be needed to hold the new length
record. One way to transfer information is
shown under "Creating New Domains from Old"
in the Datatrieve manual. This basically
depends on the FOR statement, which reads
the old domain one record at a time.
Suppose I defined an address file like this:

DEFINE RECORD OLD-ADDR-REC
01 OLD-ADDR-REC.

03 NAME PIC X(20),
03 STREET PIC X(20).
03 CITY PIC X(lO).
03 STATE PIC X(2).

and I have stored some data,

NAME STREET CITY

B. z. Lederman
Hugo z. Hackinbush

2572 E. 22nd St.
11 Julius Ct.

Brooklyn
Hialeah

and then I realize I forgot the Zip code. I
can define a new record and corrisponding
domain:

DEFINE RECORD NEW-ADDR-REC
01 NEW-ADDR-REC.

03 NAME PIC X(20),
03 STREET PIC X(20).
03 CITY PIC X(l2).
03 STATE PIC X(2).
03 ZIP PIC 99999.

with an additional field and an increased
field size for CITY, and move the data.

READY OLD-ADDR
READY NEW-ADDR WRITE
FOR OLD-ADDR STORE NEW-ADDR USING

NEW-ADDR-REC=OLD-ADDR-REC

and the data will now be

NAME STREET CITY

B. z. Lederman
Hugo z. Hackinbush

2572 E. 22nd St.
11 Julius Ct.

Brooklyn
Hialeah

Note that ZIP was filled with default
characters, which in the case of numeric
fields is zero, and that the city field has
been moved. When one says USING new=old,
Datatrieve will match up fields with the
same name in moving data: any new fields
get zeroes or blanks. If the new fields are
at the end of the record, it would be faster
to move the data outside of Datatrieve using
one of the RMS utilities (CNV or IFL on the
11, CONVERT on the VAX), or SORT, any of
which can pad the new records and will
transfer data between files faster than
Datatrieve. If you are removing a field
from the end of the definition, the same
rule applies, as the utilities will truncate
long records. If you are changing fields in
the middle as was done here when the size of
CITY was increased, then the SORT utility
can be used, but if it is a one time only

138

STATE

NY
FL

STATE ZIP

NY 00000
FL 00000

change, it will be easier (if slower) to use
Datatrieve than to set up the sort commands.
For example, suppose I decided I needed a
second address line.

DEFINE RECORD NEW-ADDR-REC
01 NEW-ADDR-REC.

03 NAME PIC X(20).
03 STREET PIC X(20).
03 SECOND-LINE PIC X(20).
03 CITY PIC X(l2).
03 STATE PIC X(2).
03 ZIP PIC 99999.

Using the same statement as before for
conversion yields:

NAME

B. Z. Lederman
Hugo z. Hackinbush

STREET

2572 E. 22nd St.
11 Julius Ct.

LINE

with the new line filled with blanks. One
can do more than take the defaults, however

DEFINE RECORD NEW-ADDR-REC
01 NEW-ADDR-REC.

03 ENTRY PIC 99.
03 NAME PIC X(20).
03 STREET PIC X(20).
03 CITY PIC X(l2).
03 STATE PIC X(2).
03 ZIP PIC 99999.
03 ENTRY-DATE USAGE IS DATE.

This time I want to add an entry number, and
a date, so I have to give Datatrieve a few
more commands.

DEFINE PROCEDURE CONVERT-ADDR
READY OLD-ADDR
READY NEW-ADDR WRITE
DECLARE COUNTER PIC 99.
COUNTER=O
FOR OLD-ADDR BEGIN

COUNTER=COUNTER + 1
STORE NEW-ADDR USING BEGIN

ENTRY=COUNTER
NAME=NAME
STREET=STREET
CITY=CITY
STATE=STATE
ENTRY-DATE="TODAY"
END

END
RELEASE COUNTER
FINISH
END-PROCEDURE

Here I have a temporary variable which will
automatically count up the number of entries
and store it in the new domain: also, the
ENTRY-DATE will automatically be time
stamped (on the PDP-11, it will have only
the date, not the time) as entered. Note
there is still no ZIP= ••• command: as I
have no ZIP data in the old domain, I will
let the new domain be filled with the

139

CITY

Brooklyn
Hialeah

STATE ZIP

NY
FL

00000
00000

default value of zero. I could also put in
a prompt here and have someone enter the zip
code during conversion, but on a long domain
this would be very tedious, so it is better
to convert automatically and modify the
individual zip codes later. The new data is

ENTRY NAME STREET

01 B. z. Lederman
02 Hugo z. Hackinbush

2572 E. 22nd St.
11 Julius Ct.

One can go on from here to make more
elaborate changes if desired: the basic
idea is that Datatrieve can be made to
convert data from one domain to another if
it should happen that a record definition
needs to be changed, and this can be
simplified though a careful choice of field
names. As another example, suppose I had to
change 5 digit zip codes to 9 digit.

DEFINE RECORD OLD-ADDR-REC
01 OLD-ADDR-REC.

03 NAME PIC X(20).
03 ZIP PIC 9(5).

DEFINE RECORD NEW-ADDR-REC
01 NEW-ADDR-REC.

03 NAME PIC X(20).
03 ZIP-CODE.

06 ZIP PIC 9(5).
06 PLUS4 PIC 9(4).

Because I have defined the field ZIP in both
domains, the data can be directly
transferred.

FOR OLD-ADDR STORE NEW-ADDR USING
NEW-ADDR-REC=OLD-ADDR-REC

NAME

B. Z. Lederman
Hugo z. Hackinbush

ZIP PLUS4

11235 0000
33999 0000

It would probably be better if PLUS4 had an
edit string to suppress zeroes, and there
was a way to print out the dash that joins
the two parts of the ZIP code.

DEFINE RECORD NEW-ADDR-REC
01 NEW-ADDR-REC.

03 NAME PIC X(20).
03 ZIP PIC 9(5).
03 DASH PIC XXX COMPUTED BY " -

QUERY-HEADER ""
03 PLUS4 PIC 9(4) EDIT-STRING Z(4).

NAME

B. z. Lederman
Hugo z. Hackinbush

ZIP

11235 -
33999 -

PLUS4

CITY

Brooklyn
Hialeah

140

STATE ZIP
ENTRY
DATE

NY
FL

00000 ll-Mar-83
00000 ll-Mar-83

The "DASH" field was needed because ZIP and
PLUS4 are numeric, and the hyphen would be
treated as a minus sign: since ZIP codes
are usually positive numbers, the hyphen
would not print out. (I havn't tried making
the PLUS4 field a negative number: if
you're curious, you might try it.) The zip
suffix doesn't print because of the zero
suppression, but the data in the domain
looks like this:

B. z. Lederman
Hugo z. Hackinbush

112350000
339990000

Just to give one last example, I will
show how to get the data from FAMILIES to
the two domains PARENT and OFFSPRING shown
earlier.

DEFINE PROCEDURE CHANGE-FAMILY
DECLARE COUNTER PIC 999.
COUNTER=O
READY FAMILY
READY PARENT WRITE
READY OFFSPRING WRITE
FOR FAMILY BEGIN

COUNTER = COUNTER + 1
STORE PARENT USING BEGIN

KEY = COUNTER
FATHER FATHER
MOTHER = MOTHER

END
FOR KIDS STORE OFFSPRING USING BEGIN

KEY COUNTER

END
END
FINISH

KID KID
AGE AGE

RELEASE COUNTER
END-PROCEDURE

As may be seen, there is a "loop within a
loop". The FOR FAMILY moves through the
domain and picks up each set of parents, and
whithin this the FOR KIDS moves through the
inner list to pick up each kid within a
family. The use of the declared variable
COUNTER insures that each offspring has the
same key as the corrisponding parent.

A final note: the length of each field
is important when using the REDEFINES
clause, when the data must be read by other
programs, or when data is to be transferred
between different systems (for example, from
a VAX to a PDP-11 or PRO). There is a
hidden "gotcha" that should be kept in mind:

DEFINE RECORD GOTCHA
01 GOTCHA.

03 A PIC X.
03 B PIC 99 USAGE IS INTEGER.

It might be thought that this record is 3
bytes long, and on a VAX it is, but on a
PDP-11 it isn't: it is 4 bytes long,

141

because of something called word alignment.
INTEGER, REAL, DOUBLE and DATE must start on
a word boundry, which is an even number of
bytes: if they don't, Datatrieve inserts a
hidden byte to align the data; in this
case, between fields A and B. This byte
takes up space in the record but can never
be accessed, unless you change the
definition. As a general principle, space
should not be wasted, and if the application
must be transported between a PDP-11 and a
VAX the records must match, so in this
instance, it would be better to reverse the
order of the fields, so the INTEGER WOULD BE
ON AN EVEN BOUNDRY, AND THE RECORD WOULD
THEN BE 3 BYTES LONG; OR PUT AN EXTRA ONE
BYTE FIELD BETWEEN A and B and use the space
to store some other data field; or use the
ALIGNMENT clause, which will make the VAX
force word alignments in the same manner as
the PDP-11, which will insure compatibility.

DEVELOPING AN APPLICATIONS LIBRARY
ON THE VAX -- SOME OBSERVATIONS

John M. Anderson
University of North Carolina at Wilmington

Wilmington, North Carolina

ABSTRACT

Moving from a remote-batch processing computing environment to
an on-campus interactive computing environment at a rapidly
growing state university has its problems. From an instructional
point of view, one of the most significant problems is providing
easy access to a library of useful and reliable programs. With the
arrival of a new VAX came the problems associated with
developing such a library.

THE PROBLEM

It took five years for the University of North Carolina at
Wilmington to complete the first phase of its process to
upgrade computing on its campus. The process, begun in
1980, led to the acquisition of two VAX ll/780's to
replace the remote batch connection which had served as
the primary source of computer support since 1969.

In June 1984, along with the new VAX hardware came the
demand for software to support instruction and research
activities. During the painfully long process to acquire the
VAX, academic departments had turned to microcomputers
for help with immediate computing needs. By the time the
VAX arrived, the microcomputer had gained an
enthusiastic following. Easy-to-use software and relatively
low cost were strong selling points and had convinced
many new users that microcomputers were the best
alternative. Where once there had been agreement on the
direction for improving computing on the campus, there is
now uncertainty and a new group of users competing for
scarce com put er funds.

From my point of view as an instructor, the problem was
one of choosing a direction that would meet the computing
needs of my students. Given the limited funds for
computer equipment in the School of Business
Administration, the choice was simple: since there
wouldn't be a significant number of microcomputers
available for student use any time soon, the VAX would
have to do.

THE VAX CONFIGURATION

The academic VAX has six megabytes of main memory,
two RABl disk drives, an RA60 disk drive, and a TU80
tape drive. Forty-eight DZll and DMF32 ports are
available for terminal and printer hookups. Each building
on the campus has at least one multiplexer which is
connected by telephone cable to switching multiplexers
located in the computer center.

Three public terminal rooms are staffed and maintained by
the campus computer center and provide access to the
system sixteen hours per day, seven days a week. In addi
tion, several departments have terminals and microcom
puters in laboratories which are tied into the campus
network through the multiplexers in their buildings.

Proceedings of the Digital Equipment Computer Users Society
145

A number of dial-in lines are supported for off-campus
use of the VAX. The old remote-batch-IBM link can be
accessed through HASP+ on the VAX.

Running under VMS, the system supports FORTRAN,
BA.SIC, PASCAL, COBOL, and PL/l compilers in
addition to DATATRIEVE, CAS, SAS, SPSS, and
SIM SCRIPT. Access Technology's 20/20 spreadsheet is
under evaluation and will probably be available on the
system by July.

THE NEED FOR APPLICATIONS SOFTWARE

In spite of the array of general-purpose software
purchased with the VAX, there was a need for more
specific applications software to support classroom
instruction in the School of Business Administration.
Four categories of need were identified: (1)
computer-aided instructional packages; (2) drill
packages; (3) problem-solving packages; and (4)
classroom demonstration packages.

Prior to the VAX, categories (1), (2), and (4) were not
adequately addressed because of lack of hardware. A
few terminals tied to a remote HP2000 allowed some
problem solving along with some BASIC programming
instruction. But, most of the University's computer funds
were devoted to maintaining a batch system with all of
its paraphernalia. With the VAX, however, came the
potential for providing ample support in many more
areas. All that was needed was the software.

THE BUSINESS LIBRARY CONCEPT

Since all of our computing had been done on someone
else's computer until the VAX arrived, we had the
advantage in not having a commitment to a base of
applications software. Energy that would otherwise have
been devoted to converting old software could be
devoted to the selection and development of new
software.

Teaching quantitative methods and computer applications
without adequate computer support for more than a
decade gave me plenty of time to dream about my
"ideal" program library for instructional support. Some
of the important characteristics of such a library were:

l. It must be easy to use.

New Orleans LA- 1985

2. It must be self-documented.
3. It must support both keyboard and file

input.
4. It must allow hardcopy output.
5. The programs must be tested and reliable.
6. The program/user interface must be

consistent.
7. There must be a user-feedback mechanism to

allow correction of problems with the
system.

Two alternatives were considered for developing a library
with those characteristics. The first was to request that
the campus academic computer center staff do the work.
The second alternative was to do-it-yourself. Because of
time requirements and staff limitations, the second alterna
tive was chosen.

ORGANIZING THE LIBRARY

A main directory called [BUSINESS] was set up for my use
by the system manager. Three sub-directories were then
created: one called [BUSINESS.LIB]; a second called
[BUSINESS.HLP]; and a third called [BUSINESS.SRC]. (See
Figure 1.)

Figure 1

lBUSINESSJ

lBUSINESS.LIBl

[BUSINESS. HLPI

CBUSINESS. SRCI

The main directory is used for development. Prospective
programs are stored there until they can be tested and
enhanced for addition to the library. When a program is
completed, it is compiled and linked from the main
directory. The image is then copied to the .LIB directory
and the source copied to the .BAS directory. The .DEV
file is deleted as are the .EXE, .LIS, and .OBJ files. A
symbol is defined in my LOGIN.COM for a cleanup
command file which can be invoked in each directory by
simply typing CLEANUP.

The [BUSINESS.LIB] directory contains the LIBRUN
command procedure and the executable images in the
library. A separate directory is used to keep the "finished
products" separate from the "raw materials".

Finally, the [BUSINESS.HLP] directory contains all files
related to the online help system. Each program in the
image directory has a corresponding help file in the .HLP
directory.

146

SUMMARY OF TASKS REQUIRED

Several tasks were accomplished after the
characteristics and organization of the Ii brary were
defined:

Type BL for Easy Access

A system-wide symbol was defined to allow novice VAX
users to get to the library easily. The symbol "BL" was
defined in the system manager's login command file,
thereby enabling the student to type BL to gain access
to the library main menu. (See Figure 2.) Specifically,
the symbol was defined as "®[BUSINESS.LIB]LIBRUN".
The LIBRUN command file does some accounting, sets
the default directory, and displays the library system's
main menu. The command file is in the library and can
be changed at any time by the library administrator.

Figure 2

BUSINESS LIBRARY
MAIN MENU

OPTIONS:

·d>
<2>
<J>
<4>
<5>
<6>

HELP
SEE THE DIRECTORY OF PROGRAMS
EXIT I RETURN TO HOME DIRECTORY
RIJN A PROGRAM
COMMENT ON LIBRARY
RUN SPREADSHEET TEST PROGRAMS

Enter choice nu111ber and press <RETURN>:

Online Help

An online help system was developed which enables the
student to select a HELP option from the main menu. A
HELP menu is then displayed which provides information
on how to run a program, how to return to the home
directory, how to set up a data file, how to use the
COMMENT utility, and how to get the documentation on
the library programs. (See Figure 3.)

Figure 3

LIBRARY HELP SYSTEM

M A I N M E N U

Type the nu1<1ber of your choice and press <RETIJRff:.

<1>
<2>
<-3>
A>
·•S'
;:RETURN>

How to RUN a library progra1<1.
How to return to your 01-m di rectory.
Infor1<1ation on the library prograMs.
Setting up a data file.
Using the COMMENT utilit~.
Exit the HELP SYSTEM.

If the documentation option is selected, a documentation
menu is displayed and the user is given the option of
having the documentation file dumped to his/her home
directory for printing.

Figure 4

DOCUMENTATION MENU

T~pe the nuMber of your choice and press <RETURN>.

a> ASSIGN
<2> CENLIM
<3> MEANS
<4> HULREG
<5> SIMPLEX
<G> TRANSP
G> TRANDRILL
<S> APDRILL
{9) PERT
<10> FORECAST
<11> SIHDRILL
<12> EOO
<13> BINOH

-- The assignMent algorithM
-- SaMpling distribution generator
-- Descriptive statistics
-- Multiple linear regression
-- SiMplex algorithM
-- Transportation algorithM
-- Practice transportation probleMs
-- Practice assignMent probleMs
-- PERT/CPM algorithM
-- Forecasting Module
-- Practice linear prograMMing probleMs
-- EconoMic order quantity analysis
-- BinoMial distribution generator

·;.RETURN> to get back to the HELP SYSTEM HAIN HENU.

What is ~our choice?

Online User Feedback

A COMMENT utility was developed which permits the user
to send brief comments to the library administrator. This
mini-mail utility has an advantage over the MAIL system,
namely, the messages are restricted to three lines. The
utility of this utility is uncertain at the moment.

Consistency Among Programs

A series of "standard" modules in BASIC were developed
to ensure some measure of consistency among the library
programs. For example, every program is introduced the
same way when invoked -- i.e., a credit banner is
displayed. Every program will prompt the same way for
instructions on input/output options. A standard edit
routine for keyboard input is added to every program. A
standard closing is tacked onto the end of each program.
And, most significantly, a standard set of function
definitions is tacked onto the beginning of each program
to allow cursor control and graphics.

BASIC Source Language

BASIC was chosen as the source language for the
programs in the library because it is widely known and
because a large base of BASIC interactive educational
software exists for use with microcomputers. A set of
FORTR.l\N-to-BASIC translation modules was developed to
convert suitable public domain software.

10,000 Lines of Code and Growing

Finally, a list of programs needed for the library was
developed. Work on the library began in October and is
ongoing. An estimated 10,000 lines of finished and docu
mented code have been entered into the library to date.
At least that many lines remain in the queue for testing
and enhancement. The finished programs include several in
each of the four categories listed earlier. All of them
support instruction in management science and statistics.

147

Many of the programs were first developed for use on
microcomputers, but the VAX has proven to be more
effective than microcomputers to support my classes.
All hardware problems are handled by someone else,
and there is no diskette preparation and distribution
overhead.

llEED FOR SYSTEM MANAGER'S HELP

There was a problem at first in establishing the library
as a legitimate entity. There might be some resistance
to corrupting the system manager's login command file
with user-suggested symbol definitions, but the
ease-of-use criterion makes it worth fighting for both a
simple library command and a clear directory name.
Overworked system managers can easily get caught up in
optimizing their own workload at the expense of the
user. It took some talking, but the idea of system-wide
access to a user-developed applications library was
finally reluctantly accepted.

BE PREPARED TO SUPPORT USERS

In proposing the idea of a user library with system-wide
access, there is an implied acceptance of responsibility
for user support at some level. Several problems have
come up concerning this issue. When the library was
first set up, the idea was to keep the users in the image
directory until they finished running their programs. At
that time, they were given instructions on how to return
to their home directory. Many students found it easy to
get into the library, but forgot how to get out. Their
solution was to logoff and complain the next day that
they got trapped in the library. Using the SYS$LOGIN
logical name, the library main menu command procedure
was improved to include an option to exit the library
and return to the home directory. The standard rule has
become, "When you don't know what else to do, type BL
to get back to the main menu."

BROWSING WILL TAKE PLACE

Just after the library was released for general access,
an idle computer science student had been browsing and
TYPEing files. He had managed to work his way into one
of the library subdirectories and had TYPEd a file which
contained a menu screen. The reverse video was turned
on and a large flashing warning message was displayed.
Not knowing how to turn off the reverse video and the
blinking, he sent a message to me through the library's
comment utility admonishing me to turn off the reverse
video in such files.

I suppose Murphy has already said something like it, but
if it's possible to use a system for other than its
intended use, someone will do it. It may not be possible
to anticipate all problems, but it helps to be aware
that there are users who like to explore. And sometimes
that exploring might be helpful. So far the exploring has
been harmless curiosity, I'm pleased to report.

PROGRAM TESTING

It's common sense to thoroughly test programs before
putting them in the library, but how do you know when
they are thoroughly tested? This is an area with some
potential for real problems. If one program is put into
the library with serious flaws, that's the one everyone
will try and its flaws will contaminate the perceived
reliability of the entire library. So it is important that
every program be subjected to some minimal level of
testing. That might slow down the development process,
but it will save a lot of complaints and maintenance in
the long run.

Not too long ago, a request was made by a faculty member
to enter a contributed program into the library. After a
few runs of the program, it was clear that it would not
catch obvious input errors. The program was set aside
until time can be found to debug it. The issue of who's
responsible for maintaining contributed programs remains
unresolved. Since the work on the library is entirely
volunteer, the only way to control program quality is by
controlling which programs enter the library.

Another program was "thoroughly" tested and had run
successfully for several years on a microcomputer. After
converting it to the VAX and testing it again, it was
released to the library. Needless to say, one of the first
students using the program had problems. The problem was
quickly solved, but Orkin's law still holds: no program is
ever bug-free! The question of how much testing is enough
is still unanswered.

LIBRARY USAGE

To my surprise, the library concept received only a luke
warm initial response from the faculty in the School of
Business. There are many factors which could account for
that, not the least of which is their confidence in the
person developing the library. But, I think that response
was related primarily to a reluctance to use the new
computer system. As mentioned above, the University was
IBM-batch-oriented until ten months ago, and less than
one-fourth of the faculty used the computer for either
teaching or research. So, in my view, the problem is first
to get them on the computer, and then to work on library
acceptance.

Meanwhile, the library is being used by students in my
courses and other quantitative courses in the School of
Business. The number of library accesses by students and
faculty in other departments is increasing. Students in the
terminal rooms see business students running the programs
and try them out for themselves.

STUDENT EVALUATION

My students were asked to evaluate their experience with
several of the library programs used in support of topics
in management science. As you might expect, the
responses ranged from "ho hum" to enthusiastic. Although
the responses could hardly be labeled unbiased, on the
whole they were quite favorable and a number of valuable
suggestions were made for improvements.

Upon closer examination, it was found that many of the
neutral responses were from students who had been
pressed for time and viewed the computer exercises as
"extra" work. The more enthusiastic responses were from
students who had spent time with the programs and felt
that their understanding of the topics had been enhanced
as a result. Indeed, the results on a quiz showed a clear
correlation between using the drill programs to study the
assignment and transportation problems, and the students'
grades. Again, it is recognized that there are problems
with this type of interpretation, but I am encouraged
enough to continue with the development efforts.

FUTURE DEVELOPMENT

The DAL (Digital Authoring Language) compiler and the
REGIS graphics editor offer real promise for developing
some exciting courseware. All of the software in the lib
rary to date is designed for use on DEC VTlOO and VT220
terminals and takes advantage of the special graphics char
acters, bold, underline, reverse video, blink, cursor posi-

148

tioning, and other capabilities which can make the pro
grams interesting to the user and more understandable.
Full-color, graphics-enhanced versions of some of the
programs will be developed in DAL for use with
VT240/VT241 terminals which are scheduled to be added
to the terminal rooms in the near future.

Recently, a new use for the library emerged as a result
of an aborted software demonstration. To make the
demo version of the software available for faculty to
explore on their own, it was added to the main library
menu. Faculty were able to type BL to get to the
library main menu and select option 6 to get to the
software. All of the setup required to use the software
was handled by the main menu command procedure and
was transparent to the user. This role as the friendly
frontend for users to access programs not in the library
might become significant as other departments add
useful software to the system.

One of the major goals for the library is to support in
struction with a set of flexible classroom demonstration
modules. Several distribution generators are in the
library now -- sampling distribution generator, binomial
distribution generator, and Poisson distribution
generator. An inventory simulator and queueing
simulator are under development. The list of such
modules seems endless in the quantitative area and will
ultimately include modules in the non-quantitative areas
as well.

A COMMENT ON DIRECTION

Several of my colleagues have suggested that the VAX
is not the way to go -- microcomputers are "where it's
at!" I agree with the part about microcomputers and
that's precisely why my efforts are aimed at the
development of a VAX-based library. I'm betting that
the trend toward multiuser microcomputer systems will
continue and that Digital's systems will be among the
best. With any luck, our School of Business
Administration will install its own multiuser micro-VAX
system. By that time, the library will be a proven and
accepted software system, waiting to be moved onto the
micro-VAX. Only time will tell.

IRTRODUCTIOR TO KICROCOllPUTBRS POR ADULTS

Dr. Richard L. Kopec
Incarnate Word College

San Antonio, Texas 78209

ABSTRACT

A continuing education course designed for adults is
described in this article. Organization, publicity,
fees, content, texts, teaching strategy, scheduling,
and evaluation are discussed. Personal observations
by the instructor about the success of different
teaching formats are included.

This paper will discuss the
organization and presentation of a
continuing education course covering
microcomputers that has been taught by the
author for the past two years at Incarnate
Word College in San Antonio, Texas. Offered
through the Continuing Education Department,
this course serves to introduce adults to
the operation and application of
microcomputers both at home and in the
workplace. By presenting a thorough but
elementary explanation of machine
architecture and operation, memory
organization and utilization, and by editing
and executing simple BASIC programs, the
primary objective of the class is to dispel
the myths and fears that frequently haunt
many of the adults taking the course.

Offered about three times a year, the
course is targeted toward educating both
working and retired adults from widely
divergent backgrounds in the greater San
Antonio area. Many of these people are
retired military personnel or wives of
retired military officers and most have
college degrees in their own right. Parents
with children already using a microcomputer
at home have expressed a desire "to keep up
with" the younger generation. There have
also been a few teenagers in course and some
employees from local business firms. The
latter are often enrolled in the course by
the office manager for purpose of
acqua~nting them with computer basics in
anticipation of the purchase of a business
computer that these same employees will be
expected to operate. All have an intense
desire to learn as much as possible about
the operation of a microcomputer since many
own or are planning to buy a microcomputer
in the near future, either for themselves or
for relatives. This course also serves as
invaluable preparation for those planning to
take more advanced coursework in the
computer area.

Proceedings of the Digital Equipment Computer Users Society 149

Advertising is handled jointly by the
CE department and the public relations
office. About three times a year (January,
May and September), the CE department mails
a detailed brochure to about 6000 people.
As names are added to the list, a weekly
mailing continues throught the year as well.
This brochure contains course information
for all courses offered by the CE Department
including course fees, meeting times,
instructors, prerequisites (if any) and a
registration form to be filled out and
mailed back. The PR people assist by
placing advertisements in several of the
local newspapers and on local radio and
television stations. Many of the enrollees
have taken the course on recommendation of
previous attendees, so word of mouth is also
an important source of avdertising.

PLEXIBLE SCREDULIRG

The cost of the course is based on the
total number of hours the class meets,
which, in turn, is determined by the
availability of the instructor. Typically
the course will meet for a total of 12 to 15
hours at a cost of about $8 per hour.
Although some prospective students have
expressed some dismay over the tuition cost,
the class has rarely been underenrolled and
frequently has a waiting list.

The meeting times and days of the week
vary, again as required by the instructor
and desired by the continuing education
program director. The course has been
taught using a variety of different formats:
two successive Saturdays meeting a total of
seven hours each day including a one hour
lunch break, a combination of four 3 hour
sessions consisting of two weekday evenings
(usually Tuesdays) coupled with Saturday
mornings over a two week period, three hour
classes twice a week (on weekday evenings)
for two weeks, and three hour periods once a

New Orleans LA - 1985

week (also on weekdays) for four to five
weeks. The latter three formats appear to
be the most desirable for both the
instructor and the students, since the seven
hour (including lunch) Saturday meeting
tends to be too grueling for the older
participants (not to mention the
instructor). Most of the adults also reach
"information overload" shortly after lunch
so the instruction time is not well
utilized.

CE CREDIT AWARDED

All attendees are awarded 0.1 hours of
continuing education credit for each hour
the course meets. Certificates are mailed
to each participant upon completion of the
course. Tot al enrollment is limited to no
more than the number of microcomputers
available (currently 13). The college has
recently purchased 10 additional units so it
is expected that the course enrollment will
increase accordingly. Doubling up students
on the micros is not acceptable to the
instructor, because either one of the pair
does all the actual programming while the
second only watches or there is some
friction between the partners over use of
the machine!

The course content is not formally
specified since the instructor attempts to
tailor the material presented to suit the
needs and desires of the class. The course
itself is logically divided up into 4 or 5
three hour sessions. The first hour and
half is devoted to a lecture type
presentation, followed by a 15 minute break,
and concluded with a lab session lasting
about one hour and a half. A typical course
outline is given below.

COURSE OUTLINE

Session 1:
Lecture

a) View "The Computer"
b) "Buzzwords"
c) Computer architecture
d) Basic harware
e) ACSII coding

Laboratory
a) Demonstrate use of hardware
b) Booting a disk
c) Use available software

Session 2:
Lecture

a) Disk operating system
b) Memory organization and function
c) Programming in BASIC

Laboratory
a) Copying, editing, and running

simple BASIC programs

Session 3:
Lecture

a) BASIC programming continued
b) Other programming languages

Laboratory
a) Copying, editing, and running

simple BASIC programs

150

b) Using the printer
Session 4:

Lecture
a) Graphics
b) Review of BASIC programming

language
c) Overview of programming

considerations
d) Demonstration of canned software

featuring various peripheral devices
available

Laboratory
a) Develop simple graphics programs

Session 5:
Lecture

a) Applications
b) Commercially available software
c) Telecommunication
d) Future trends
e) Computer literature
f) Models available
g) What to look for when purchasing

microcomputers
h) Wrap-up, evaluation

Laboratory
a) Free time

An average class session always begins
with an informal lecture on the topics
listed above, except on the first day. At
the first session, a two part slide
presentation with acco1npanying audio
commentary on videocassette is shown first:.
Part one of the video features some
historical background on the development of
modern computers and the people who
pioneered them. The second part of the
videocassette describes how a modern
computer works and serves as a lead in to
the instructor's lecture. The ideas
introduced in the film are developed further
and applied to the particular computer
system being used in the laboratory (in this
case Apple II+'s and Apple Ile's).

The first laboratory session is
designed to help the class to overcome their
initial fear of the computer and, most
importantly, their conviction that they will
"press the wrong key" and destroy the
computer. During the first lab, the
students are introduced to the essential
hardware components and how they function.
The interior components of the Apple are
also discussed including the purpose of the
expansion slots and peripheral boards
present. They are each given a copy of the
system master disk and a tt1torial lab
manual(2) oriented specifically to the Apple
computer, then essentially turned loose.
The instructor then visits the students
individually during the lab sessions to help
solve immediate problems and explain certain
aspects of the computer responses
encountered.

TRIAL & ERROR APPROACH

No specific explanation concerning the
behavior of the computer is giv~n in lecture
before the first lab session other than the

minimum essential information required to
operate the machine. More explicitly,
noexplanations are given in reference to
diagnostic machine responses such as the
infamous "SYNTAX ERROR" message that is
frequently encountered. All of this
explanatory information appears in the
tutorial manual so detailed explanation of
these phenomena are deferred until the next
lecture session.

During the second lecture the
instructor begins to discuss the peculiar
computer responses observed when the various
commands were attempted. Such explanations
include, for example, a detailed discussion
of the difference between the number zero
and the letter "O", the importance of the
"RETURN" key, the difference between "HOME"
and "NEW", and similar ideas. This approach
is sometimes init tally very frustrating to
the class at first, since they feel totally
in the dark about what they are doing and
why the system responds as it does.
However, subsequent sessions that explain
these mysteries are much more effective
after the class has already seen the
machine's error messages. This brute force
approach works well because the students now
have some first hand experience to relate to
the lecture discussion, even though many of
the adults are initially very discouraged.

TOPICS STRESSED

Succeeding sessions begin with a quick
review of previous material before
continuing with new topics. BASIC is the
only programming language used in the
laboratory although other languages may be
discussed in the lectures. As the class
progresses, the concepts of an operating
system, structured programming, reserved
words, variables, memory organization, and
role of the user are developed. A thorough
explanation of computer "buzzwords" such as
RAM, ROM, CPU and similar technical jargon
is also covered. Low resolution graphics is
usually presented and, if there is
sufficient interest, high resolution
graphics is also covered.

During the final meeting of each
session, the lecture portion of the course
will usually last longer than the allotted
hour and a quarter period, and it may be
given during the last half of the session
rather than the the Eirst. This is the most
flexible session of all since the lecture
material is oriented towards the interests
of the class. It will usually cover a brief
review of available computer systems and
then branch off into such areas as
telecommunications or popular software
packages. When possible, local vendors are
sometimes brought in to demonstrate their
latest technology (such as the Apple
Macintosh).

The final lab session is completely
unstructured. The class is encouraged to
finish up the material from the lab manual
or to create their own BASIC programs. On

151

very rare occasions, someone may even write
an assembly language program!

NO GR.ADES ASSIGNED

Attendance is taken, but no homework or
exams are given, nor is a grade assigned.
The major course goal is merely to get these
adults to feel comfortable using the
computer and put them into a position where
they are more knowledgeable about computers
in general. Giving exams and grades would
be counterproductive to achieving these ends
because many of the adults fear they would
not do well academically and would therefore
be less likely to enroll in the course.

In addition to the laboratory manual
that is loaned to each student, a paperback
book that deals with the topic of computer
literacy is also given to each student.
Although not formally used in the course (no
reading assignments are usually given in the
book), this book serves as a reference guide
for the class and supplement to the
lectures. This book will usually contain a
very broad and inclusive discussion on
microcomputer, programmimg, peripherals,
literature, and reviews on currently
available systems. Although the material is
presented to some depth, all of these books
are written for a computer novice and were
selected precisely for this reason.

TEXTS UPDATED FREQUENTLY

A number of different books(3) have
been used over the past two years for this
purpose. Since the personal computer market
is so volatile, books that reflect the most
recent innovations are constantly being
sought to replace whichever one is currently
in use. (The next course offered in July,
1985 will use Computer Wimp.) The cost of
this book, typically $10 to $20 is included
in the course fee. The text used in the
laboratory, however, is collected during the
final class meeting and recycled for the the
next group. Since this text is oriented to
a specific computer and operating system,
its scope Ls much too limited to be of
general interest to a majority of the
enrollees. However, a copy of this tutorial
manual is made available through the school
bookstore for any who desire to purchase a
copy.

At the conclusion of the last session, an
evaluation of both the instructor and the
course is taken. Each student is asked to
complete an evaluation form with eight
questions relating to course content,
instructor effectiveness, and personal
satisfaction. The results to date have been
extremely positive on all questions asked.
A sample of the questionaire is reproduced
below:

EVALUATION FOl.H

Rating

5 Outstanding demonstrates superior
accomplishment
4 Above Average exceeds normal
requirements
3 Average - meets normal requirements
2 Below Average - improvement needed
N Insufficient opportunity to observe

Questions

A. Content was as described in brochure
B. Subject matter adequately covered
C. Content presented was suitable for my
background and experience
D. Instructor knowledgeable in content area
E. Program was well paced within allotted
time
F. Participants were encouraged to take an
active part
G. The program met my individual objectives
H. How would you rate this program in
relation to other programs you have
attended?

A section for comments is also
included. Many of the students who complete
the evaluation have requested the addition
of an advanced course that complements the
introductory course. In response to this
demand, The college is currently
considering a course designed around a
popular integrated software package which
contains word processing, spreadsheet, and
data base capabilities.

The Continuing Education Department also
offers a variety of courses oriented to
primary and secondary school children,
particularly during the summer months.
Further information about these computer
courses, which are not taught by the author,
can be obtained from the IWC Continuing
Education Department.

REFERENCES

1. "The Computer", Hawk hill Associates,
Inc., Madison, Wisconsin
2. Adults Can Touch Computers (formerly
titled Adults Can Touch Too), Shillingburg,
Love Publishing Co., 1983.
3. Understanding Computers, Hopper and
Mandell, West Publishing, 1984.

Your First Computer, Zaks, Sybex, 1980.
The Personal Computer Book, McWilliams,

Ballantine Prelude Press, 1982.
Computer Wimp, Bear, Ten Speed Press,

1983.

152

We don't sit here and say, "You've gotta
program an Assembly because it's the only
way it will be fast enough." Ninety percent
of the time it will be fast enough, and you
can, with minimal effort (and I'll show
you in a few minutes about minimal effort)
fix it to run fast enough.

Figure 7 is an example of 11 c 11 code written
for test in simulation. This is a code
fragment of a piece of our current product.
Its function is to put a telephone line on
hook, and fills the FIFO buffer going out
to that telephone line with SILENCE. Is
that a hardware oriented enough
application? This runs in simulation on
the VAX. Lets examine this code and note
the use of macros. The coding standard
requires that all macros have the first
letter capitalized, and defined constants
are in all upper case.

Take a look at the lines numbered with (3).
Those are macros that actually go out and
touch the hardware. For example,
Select window macro selects a particular
memory-bank to be mapped into physical
address space. The Fill macro on the next
line fills that bank of memory with a
constant SILENCE. The Wr chn cmd macro
writes a command to that IO- channel. On
the VAX, these macros turn into the print
statements that print their parameters and
say, "This is what I just tried to do with
the hardware." In some cases more detailed
simulation can be used. For instance the
Select window() macros could actually use a
large -array of VAX memory to simulate the
bank switching. In the case of the
Write chn cmd, the macro actually sets the
status appropriately in a simulated set of
registers. Thus a Read_chn_status macro
can return the appropriate channel status.

Using macros in this fashion provides a
number of benefits. Foremost, software
development is decoupled from hardware
development. Testing can begin well before
there is operational hardware. Second, the
process of writing such macros increases
the understanding of the programmers of how
the hardware is supposed to work.

one might ask, "Can I simulate interrupts
with this sheme? 11 The answer is yes. The
program that this example code comes from
used three interrupts. The way you do it
is to write the interrupt handler in "C"
and surround it with just enough Assembly
to fix the stack, set up for "C" and call
the handler. The way you run it in
simulation is, to wrap a driver routine
around the interrupt handler, instead of
the Assembly. The driver sets the
simulated hardware registers and calls the
interrupt handler. Since the interrupt
handle is in "C", it cannot tell how it was
called, via assembly routine linked to an
interrupt vector, or by a test driver.
Since all hardware manipulation is done
with macros the interrupt handler cannot
tell if it is in simulation or not.

194

A couple of other things about what we do
in the simulated environment. The lines
marked with (1) are Enter and Exit macros
that are required on all subroutines in the
system. My coders get a template to create
a module. The Enter and Exit are already
there, as are the formatted comment block.
They do a global replace on a string
"<NAME>" with the module name, and the
template is filled in

The lines marked with (2) are intermediate
printouts. They implement the intelligent
trace by compiling to print statements.
For instance, the first macro, Variable,
translates to a print for the variable
chn_ptr with a format of four hex digits.
The Comment macro translates to a print
statement using the provided format
statement to print the optional variable.
This is the form in which all comments in
the code are made. This results in a very
descriptive program trace. To lower the
burden of using this format for comments,
we have built the comment macro into our
language sensitive editor. I type the
first three letters, and the editor inserts
a prototype comment macro or Variable
macro.

You will note that there are only 3
executable lines in the module. The rest
of it is macros and, by the way, most of
those do not even compile on the target
environment.

Other Tools --- ---
We use a number of tools in conjunction
with those detailed above. The following
sections discuss these tools.

Structured Analysis And Design - We use
structure analysis and design.
Unfortunately,! have not seen any automated
tools for SA that I think are worth the
price. So we do it manually. The end
result is that it is not updated after
development begins. It is just too costly
to do manually.

EMACS Editor - We use EMACS as an editor
with some language-sensitive extensions.
We have built a package that supports
coding in "C". In particular, it corrects
most of the mispellings and gives you some
of the construct prototypes. We've thought
about doing a fullblown language-sensitive
editor in EMACS, and it would be possible.
My philosophy at this point is, knowing how
many MLISP programmers I have available,
the $10,000 to buy it from DEC is the least
cost solution.

Forms Library And RUNOFF - The projects
have a central forms library. This library
holds forms for such items as:

• c Programs
• c Subroutines
• Documents
• Letters
• Envelopes

change at 11 where he replaced three lines
of code.

The ACTIVITY HISTORY section provides a
list of all actions taken under this PPR.
Notice the second to last line, another
team member, CHILL, commented on the
problem. All other actions were involved
in implementing the fix. As you notice,
I'm falling down on my job, because I
haven't closed it.

The final section is the TEXTUAL COMMENTS
section. Each textual comment is
time-tagged and the kind of comment is
noted. If you'll notice, look at some of
the hours on some of the comments, the time
of day they were made. These are tame.
There are a lot of comment tagged 03's and
04's in front of them.

This problem is somewhat interesting. The
problem was found by David Castles. The
module was written by Craig Hill. Craig
Hill was a little unhappy when somebody
reported a problem on his software because
he had never had that happen to him before.
I had to remind him about egoless
programming and point out to him that
nobody was saying that he was a poor
programmer. We had just found this problem
and we needed to get it fixed. By the way,
David Castles, who is on a separate
contract, went off and fixed it for him.
So Craig should be quiet and be thankful.

It was Craig's problem, and Castles fixed
it for him, free.

Testing In Simulation

The final major technique that we use is
testing in simulation. The following are
some of the issues to be considered when
building a product for test in simulations:

• Design for Test in Simulation
• High Level Language
• Macros for all External Interfaces
• Portable I/O Package
• Inelligent Trace Via Macros
• Efficiency Thru Measurement

The key point in using simulation for
testing is commitment. You have to decide
to do it. You have to really say, "I'm
going to do that." You can't just say,
"Yeah, that's a nice idea nd if we can do
it when we get to the point of testing,
fine." You've got to say up front, "I'm
going to design it to be tested and
validated in simulation."

If you design for simulation I don't care
what it is, it can be made to run in
simulation. One of the projects I will
describe later is a device driver. It is
interrupt driven. It fields three separate
interrupts and does all of its processing
in response to these interrupts and
hardware status. It was tested on the VAX
in simulation.

193

High level language is virtually a
requirement for testing in simulation. It
should be a requirement regardless of
testing methodology, but that's another
issue. Assembly doesn't run in simulation
very well. It's really hard to run
Assembly language code for the 8086 on a
VAX. It's much easier to write everything
in high-level language. Besides you
benefit from much better programmer
productivity and fewer errors.

The simulation environment typically
changes all of the external interfaces of a
product. Therefore, use macros to hide
these interfaces. In particular, you don't
touch the hardware without a macro. My
contractors didn't understand this.
They're used to barefooting an IBM PC, and
they say, "Gee, you mean I can't just POKE
this location and have something happen?"
And I say, "Sure, you can. Just put a
macro around it." I don't want to see a
poke. (Actually, you can't do a poke in
"C" but the moral equivalent can be
achieved.) Also, don't touch the operating
system without a macro. This is true for
most operating system services. The Vax
has an entirely different set of system
services than the PS-DOS does. Use a macro
to hide the difference.

We use a portable IO package; in
particular, we use the UNIX(tm) V7 package
supplied by Whitesmith. VAXllC supports
identical I/O routines, and we haven't had
any problems compiling and executing
identical code under both environments.
However, it did require a little bit of
work in some of the headers to get that to
work.

Another benefit of test and debug in
simulation is that we can implement
intelligent trace. What I mean by
intelligent trace is that we insert a
number of macros that print information.
Those macros, in the target environment,
are defined to be nothing. So they cost
nothing. On the VAX they produce an
annotated trace of the actual execution,
the intermediate results, routine calls,
etc. Whatever I'd like to have. I can run
that test on VAX in batch. Then look over
the batch log at my leisure. This permits
me to do a detailed analysis in a
non-realtime fashion. Note this also fits
nicely into the DEC/TEST MANAGER scheme.

Finally, we do not code for efficiency.
Gee, who said that? Did I say that about
microprocessors? Everybody knows that you
have to constantly worry about efficiency
on a micro, don't they. I repeat, we don't
code for efficiency. We write code for
maintainability. Then when we get it in
the environment we figure out if it's fast
enough. If it's not fast enough, we
measure what's broken and fix it. We don't
sit here and say, "Every routine's gotta
run blazing fast", because every routine
doesn't.

PPR REPORT

project = NITA

PPR# TITLE
0050 FIELD MISSPELLED IN HARDWARE.H

DATE AUTHOR
5/16/85 DCASTLES

SHORT TITLE
BOARD -> REGISTER

SYSTEM CONFIGURATION TEST CASE ID
Not Applicable Not App.

STATUS
OPEN

PRI
9

ASSIGNEE
DCASTLES

---------------------- EFFECTED MODULES -----------------

PPR

0050
0050
0050

MODULE

HARDWARE.H
HARDWARE.H
HARDWARE.H

GEN

010
010
011

DELTA

0010
0000
0003

STATUS

REPLACED
CANCELED
REPLACED

----------------------- ACTIVITY HISTORY ------------------
PPR# WHO MODULE DATE ACTION

00050 DCASTLES 5/16/85 CREATED
00050 DCASTLES HARDWARE.H 5/16/85 RESERVED MOD
00050 DCASTLES HARDWARE.H 5/16/85 REPLACED MOD
00050 DCASTLES HARDWARE.H 5/16/85 RESERVED MOD
00050 DCASTLES HARDWARE.H 5/16/85 CANCELED MOD
00050 DCASTLES HARDWARE.H 5/16/85 RESERVED MOD
00050 DCASTLES HARDWARE.H 5/16/85 REPLACED MOD
00050 CHILL n/a 5/16/85 COMMENTED
00050 CHILL n/a 5/16/85 COMMENTED
00050 DCASTLES n/a 5/16/85 REQUEST CLS

========== TEXTUAL COMMENTS ==========
COMMENT made by CHILL on 1985-05-16 23:11:46.50:
The statements concerning the near-term volatility of hardware.h

COMMENT made by CHILL on 1985-05-16 21:36:41.64:
The recent developments concerning the header file hardware.h appear to
be causing much grief for all concerned. I agree that we should address
the issue in an expedient manner ..•.

CREATE made by DCASTLES on 1985-05-16 09:48:00.85:
The field board -> registers was spelled board -> register in the
macro Oldval in hardware.h causing myriad compile time errors.
I have generated this PPR so that I may go and fix the file •••.

Figure 5
Example of PPR Report

192

operation where we put contractors on an
hourly basis, then assigning them a problem
report to solve immediately means an
expenditure of money. Somebody should
approve that report before they run off and
spend money; otherwise, we're giving them a
blank check.

Back to the flow, the deyeloper is going to
fix the problem. In the process, he may
RESERVE, REPLACE and UNRESERVE any number
of CMS elements to accomplish the fix.
Each of these actions is recorded and
assigned to the PPS record for that
problem.

Sooner or later, he finishs the problem and
forwards it to me for review. This time I
review what was fixed and any comments he
may have made. I can now detect whether or
not he has updated his documentation,
because all of the documentation is in the
CMS library. There will be a record in the
problem report that he checked out that
documentation to fix it. If he didn't fix
it I can immediately reassign the problem
to him and say, "Now, fix your
documentation." One of the key problems in
traditional development is that the
documentation is never updated. It is just
forgotten. Finally, when I am convinced
that all of the work on the problem has
been completed, I assign it to a CLOSED
state.

One other function is the COMMENT facility.
Any member of the staff can COMMENT on any
problem. This provides a formal means to
capture all of the discussion that occurs
around the solution of a problem.

Figure 4 lists the command options that are
available under PPS:

$ PPS

CREATE
FETCH
FINISH
COMMENT
CLOSE
REASSIGN
ASSIGN
SHOW

ppr_num
ppr_num
ppr_num
ppr_num
ppr num user id
ppr-num user id
report_type

Figure 4
PPS Command Options

I've talked about about the CREATE option.
The FETCH option retrieves a formatted copy
of a PPR from the data base with the
associated text comments. Figure 5 is an
example of a formatted PPR report. Another
option I haven't mentioned is the SHOW
option. This command option permits
limited queries of the PPR data base for
the unwashed user. More complex reports
are generated with DTR commands directly.
Some of the options under SHOW are:

191

• Show all OPEN PPRs
• Show all PPRs assigned to a person
• Show all PPRs with a search string in

the title

Figure 6 presents the options to CMS
trapped by MOCK_CMS.

CREATE ELEMENT file-spec
$ MOCK CMS RESERVE element ppr_num

REPLACE element ppr_num
UNRESERVE element ppr_num

Figure 6
MOCK CMS Command Options Summary

The CREATE we talked about, RESERVE and
REPLACE both require a PPR number. The PPR
number can be a list. Reservations will be
made under each PPR number given. One of
the interesting things about REPLACE is
that it checks for corresponding
reservations. When you say:

$ CMS REPLACE MUMBLE.C 11 5,6,7 11

MOCK CMS makes sure that you indeed did
check MUMBLE.C out under 5, 6 and 7. It
also checks to be sure that there are no
outstanding reservations other than 5, 6
and 7. If it's checked out under a, 9 and
10 MOCK CMS will go ahead and replace it
for you,-but MOCK_CMS will RESERVE Mm:iBLE.C
again under those PPR numbers to permi~ rou
to work on MUMBLE.C under the remaining
PPR's. so, if you would want to stop in
the middle of fixing six problems to
checkpoint yourself, you can. The
UNRESERVE option is to undo incorrect
reservations.

Let's look back at figure 5 and examine a
PPR report. This is a real problem that I
pulled out of the PPS data base before I
left. The report has four sections.

The first section contains the information
we collect at creation time and placed in
the DTR database. As you can see, it is
general information. The problem is
currently in the OPEN state. It was
created by user named DCASTLES, and it was
opened on the 16th of May. Since the
actual problem was a coding error, it
wasn't discovered during tests or by the
review, and there's no test case or
configuration involved.

The EFFECTIVE MODULES section is a list of
any module that was RESERVED under this
problem. In this particular case, i~ w~s
just a single module, HARDWARE.H, which is
a "C" header file. We tracked the
generation number and, also, the size of
the change. If you notice the change from
nine to ten, which is on that first line,
changed ten lines of code when it was
replaced. Then he made another minor

We also use DTR to format
We can ask for: show
problems, show me all the
to Joe Blow, etc.

special reports.
me all the open

problems assigned

The following is our concept of work flow
under this system:

1. Developer produces code and places in
CMS library using create command.

2. Test team finds a problem.
3. Test team uses PPS command to create a

problem report.
4. PPS administrator reviews the problem

and assigns it for work.
5. Developer uses MOCK CMS to RESERVE and

REPLACE modules to solve the problem.
6. Developer requests closure of a problem

with the PPS FINISH command.
7. The PPS administrator reviews the fix

and either accepts or rejects the
request for closure.

Figure 3 depicts this flow. Let's discuss
each of these steps in more detail.

First, the develo~er places code into the
CMS library using CMS CREATE. MOCK CMS
intercepts the CMS CREATE and makes some
group assignments based on the file type.
The user is given the option to assign
other groups and is helped through the
process. This help encourages group
assignments to be made. For each linkable

module we nave a separate group, and each
source file is assigned to at least one
these groups. The test teams only take
their input from the project libraries.
This applies not just to the CMS library,
but that EXEs has been generated using MMS
or a similar process that is directly
tracable to the source.

When the test team finds a problem
(hopefully, they don't do this very often),
they use PPS to create the problem report.
They are queried for a title and some other
information, and finally they make textual
report. That report is mailed off to the
entire project staff, It is also sent to a
reviewer which, in our shop, is me. It
also can go directly into fix. 95% of all
problems that we discover during
1evelopment are bonafide problems, and the
guy who needs to fix them knows it's his
responsibility to fix them. He doesn't
need to be told, so he can just go ahead
and fix it. He doesn't have to wait for me
to get back from DECOS to start fixing the
problem.

The review is really there to cut out bogus
problems or ones out of scope of the
contractors. For example, it would be nice
if we could play PACMAN on the color screen
while the data base search is going on.
Cute idea, but it is out of the scope of
the contract. I would immediately close
that one. When we get into a maintenance

PPS WORK FLOW

_rnii!...--
file

~-t~,,-~
PPS I PPS

!ASSIGN CLOSE

I I
P~S ~

DEVELOP
@ FIND

PROBLEM FI x FINISH~
'--~~~____, I

~.m.;;~~:u.ii--~PROJECT~~~~~ro;;~
L!llRARY

Figure 3
Work Flow under PPS

190

I
\ eJ>..S. I

....._ __ REA~Tirfr-""'

has no way to judge the validity of a
reason. I do that manually. See the above
comment on manual systems.

PPS captures metrics. What do I mean by
metric capture? First metrics are some
measurable quantities of interest in the
development process. We use the PPS system
as an edge to trigger the measurement of
this information and to store it. Some of
the metrics of interest are:

1.

2.

3.

How long the developer
checked out of the
particular problem.
How many lines of code
module for a particular
How many modules did
problem effect.

had a
library

module
for a

changed in a
problem.

a particular

Those are some that we're collecting right
now. We could collect others. We just
haven't sat down to think about what we
want to collect.

We built PPS on standard utilities that we
had EMACS, DATATRIEVE, MAIL, and CMS.
Figure 2 is an overview of how the project
problem system is built. We have two front
ends. We place a command procedure,
MOCK_CMS, in front of CMS, and prevent all
users from direct access to CMS. This
interlocks CMS activity with the PPS sytem.
MOCK_CMS reports to the PPS data base any
requests of interest made to the CMS
library. Resuests of interest are CMS

PPS

MOCK

RESERVE, REPLACE, and UNRESERVE commands.

The PPS command provides options to CREATE
reports, ASSIGN, and CLOSE them. PPS uses
mail to send out problem reports to all of
the project team. There is a distribution
list that controls who gets this mail and
the list is project specific. There is
also a project specific administrator list
based on who is administering the PPS
system. Some reports are mailed only to
the administrator.

The PPS system uses DATATRIEVE (DTR) to
collect the various data. The PPR record
itself is a project problem report that
contains information such as a title for
the problem, a priority, a test environment
that exhibits the problem, etc. The
RESERVATIONS part of the file contains
records for all modules that are currently
checked out of the CMS library for every
problem report. The HISTORY file tells you
action taken on a problem.

EMACS is used as an editor to capture
textual comment information. Rather than
have you type in at DCL level we throw you
into EMACS as an editor (our whole shop
runs EMACS), and it creates the textual
comments. EMACS also provides multiple
windows. For entering textual comments,
one window is setup with the formatted
report of the entire PPR, including all
previous comments, and another window is
setup to accept the text of the comment.

OVERVIEW

p

R

M
OT

E
CMS t--------;ii.i A J

I A
L E

PPS

CMS
L I B.

PPR

TEXT

- HIS.

-RSRV.

- PPR

Figure 2
overview of PPS System

189

~
M c

T

listings. The source code build procedures
are setup to place a new listing in this
directory whenever the project object
libraries are updated. Thus this set of
listings tracks the objects and
executables.

The [PROJ_ID.PPR] contains the
problem reports. In there is two
directories. [PROJ_ID.PPR.RECORD)
the DATATRIEVE (DTR) the files
problem report data base.
[PROJ_ID.PPR.TEXT] contains the
comments.

project
separate
contains
for the

The
textual

This structure permits us to write command
procedures and software tools to manipulate
the components of a project, without making
them project specific. This approach is
part of my attempts to eliminate one time
tools. The biggest problem in reusing
tools is that people tend to build to much
project specific knowledge into them.

Invocation Mechanism - The project
invocation mechanism is the command:

$ WORK_ON proj_id

For instance, I might enter:

$ WORK_ON META

The command
functions:

performs the following

1. WORK ON undefines any current project
I'm -working on. This provides a clean
slate between projects.

2. WORK_ON defines logical names for most
of the directories defined in the
standard project form.

3. WORK_ON redefines any VMS commands that
might be special for a project. This
is accomplished using a project
specific command procedure (in
[PROJ_ID.ADMIN]) thus keeping WORK ON
totally project independent. For
example, my current project redefines
the cc command from being the standard
VAX "C" compiler to a custom command
procedure that includes object library
update.

4. WORK ON defines the generic cross
commands. Again this implemented as a
project specific command procedure
invoked under WORK ON. The standard
commands we currently use are:

5.

• XCC - "C" cross compiler
• XLINK - cross linker
• XLIB - cross librarian.
• XASM - cross assembler
• LINT - "C" syntax checker.

WORK_ON sets the process name.
do a SHOW USER DCL command,
show your name, followed by the
that you're working on. If

If you
it will
project

I had

188

6.

7.

a.

executed the command WORK_ON META, my
process name would be changed to
"SCHORNAK_META". Now everybody on the
system knows what I'm working on.

WORK ON defines the CMS library. This
is a standard CMS SET LIBRARY command
for [PROJ_ID.SOURCE].

WORK_ON does a DCL SET DEFAULT to a
private-user directory. This directory
is the directory dedicated to work by
an individual on the project. That
way, if you decorate a tree or in any
way leave the project, other project
personnel can at least find all of your
work on a specific project.

WORK ON defines other project
specifics. This is an escape clause to
get anything that I have to do that
isn't standard. currently none of our
projects use this feature.

Project Problem System (PPS)

The heart of this environment is the
problem tracking system. It tracks all
problems. It gives us a automated system
for tracking product problems. Normally a
developer or tester is working with a
product. He sees a problem. As any
responsible engineer, he writes the problem
down with a description, test setup
possible causes, and recommended solutions:
(Sure he does.) But even if he does, where
does that peice of paper endup half the
time. LOST, that's where. Then that
problem shows up about six months later
after you have delivered the first one
thousand units. Of course management
understands none of this and fires you.
The objective here is that we don't lose
any problems. We may not fix them all, but
we at least want to know they exist.

We collect all the dialogue about a
problem. In our shop, we don't have a
whole lot of meetings in the hall. The
ones that we do have are very limited,
because not everybody is at the office.
The contractors are not on site . The guy
who does code reviews is in California.
Thus problems are discussed almost
exclusively by electronic mail. Now you
think, how easy to retain all the
discussion, its all entered mail, I just
have to file it. WRONG. In previous
projects, before PPS was implemented in its
current state, we did that. The electronic
mail had to be manually collected and
retained. Since as is the case with must
manual systems, most of the mail was lost.
Now, we have a tool to automatically keep
them as a permanent part of the project
record.

PPS records all of the modifications that
anybody makes and why they made them.
There's some trust here, because the
interlock cannot be automatic. We
automatically catch all modifications, but
the reason may not match since the machine

service to code review,
managers, or other developers
from their other activities
review. This approach gives
no incentive to do an adequate

and expect
to take time
to do the

the reviewer
job.

Unit and system testing is done in
simulation. Remember, we're targeting
towards microprocessor operating
environments. It's extremely difficult to
debug in that environment. It's not so bad
to run validation, but it's terrible to
debug. There are some things that just
can't be tested in simulation. For those,
we do the target environment specific
tests. Also we revalidate in the target
environment. An independent test team
performs all of the simulation and
validation testing. An aside, the
independent test person, resides in
California, our shop is in Atlanta. I have
met him twice in person, yet he is
extremely effective in the testing role.

Now, the best part of all -- deliver, and
sell. Finally, we go into maintenance and
enhancement, which just repeats 3. through
6. all over again, or, actually, 1.
through 6. all over again. The
development environment I will describe
provides automated support for items 3.
through 6. and 8. on the above list.

THE DEVELOPMENT ENVIRONMENT

Our development environment is made up of a
number of components that we have
integrated. The following sections discuss
these components.

Standard Project Form

The standard project form defines a set of
facilities and structures that must be
present in every project. This enforced
through the use of a single project
creation coJ!Ulland. This command sets up a
project in standard form and creates
reasonable defaults for all options. Let
us examine these facilities in detail.

Directory Structure - Figure 1 is a summary
of the directory structure for the standard
form.

The project is a top-level directory. The
name of that top-level directory is the
project ID. For instance, if I have a
project called META, the top-level
directory name will be [000000.META]. By
the way, META was the project we used to
develop the tools that do the project
system. Each of the subdirectories has a
specific purpose and contains a specific
type of file. The subdirectories also give
us the control we need to use Access
Control Lists correctly.

[PROJ ID.ADMIN] contains a number of
procedures and the mail files. Source is a
straight up CMS library, but it's known to

187

DISK$PROJECTS:[proj id]
I -
--[ADMIN] command procs and mail
I
--[SOURCE]
I
--[PUBLIC]
I
--[OBJECT]
I
I
--[HEADER]
I
--(DOC]
I
--[LISTING]
I
--[PPR]

I
--[RECORD]
I
--[TEXT]

CMS library

public versions

object libraries and
executables

"C" include files

Document reading library

Code listing files

PPR admin files

DTR data base for PPS

PPS comment text files

Figure 1
Standard Project Directory Form

be in [PROJ ID.SOURCE]
computable ahead of time.

and that's

The [FROJ ID.PUBLIC] contains all of the
executable versions. For instance, if
you're using this development environment
to develop something that runs on the VAX,
you might put the image there. (Note that
the VAX can be considered as just another
target since no target specific information
is permited in the development
environment.) You might have a special
compiler for this project. You would put
the compiler in this directory.

The (PROJ ID.OBJECT] contains all object
files, including object libraries, EXEs,
maps and the like. This directory also
contains the VAX version, for execution in
simulation, as well as the down-loadable
target version.

The [PROJ_ID.HEADER] contains the "C"
"include" files. If we had any Assembly
language "include" files they'd be there.
As I said before, I try not to have any of
those, so at present the only files there
are "C" headers. We use the CMS
/REFERENCE COPY option to keep the headers
updated. -

The [PROJ ID.DOC] directory contains all of
the documents of the project. This is the
reading library for documents. That
includes the design specifications, the
functional requirements, operators'
manuals, hardware specifications. The DOC
directory contains the documents after
processing by RUNOFF, so they are
formatted. The RUNOFF source to the
documents is in the CMS library for the
project.

The [PROJ_ID.LISTING] contains all of the
listings. It's a reading file for

product specifications, was to
specifications for a
environment. The following
describe the goals setup
environment.

write the
development

sections
for this

we
the
how

We'd

Bullet Proof Products - Above all else,
have to have bullet-proof products. If
products don't work it doesn't matter
good my development system might be.
be out of business by the next DECUS.

Self-Contained Projects - Projects are to
be self-contained. We wanted to be able to
take one point on the system and say,
"Follow this tree and you'll find
everything." We didn't want any pieces of
magic buried in some command file that
SYSLOGIN puts in for you. We didn't want
all kinds of pieces of magic that the
project really depends on, and that no one
is aware of.

Tracability - We want all project related
activity to be traceable. We want records
of every module change, every technical
discussion, and every problem discovered
during the entire life cycle of the
project. The environment needs to
automatically capture this information,
since developers and maintainers are not
dependable enough to do it manually.

Automated - The environment has to be
automated. With six people, it is hard to
enforce anything. So we wanted automated
checks and records. No human interlocks.
I'm here at DECUS. I've got five people in
Atlanta, hopefully working their fingers to
the nubs. When I get back, I can examine
the records, that the environment has
captured, to determine what has been
accomplished. The records were maintained
automatically. It will keep track of every
line of code written, and every problem
found.

Standard Form - A common structure is
required for all projects. This enables a
tool developed in one project to be used
without change on another. General purpose
tools can be designed to run against any
project. The standard form defines a set
of functions and structures that every
project will embody.

Ease Of Operation - The environment must be
easy to operate. I've got contractors
working for me. What incentive do they
have to work my system if it's hard? For
one thing, they'll charge me more money.
The other thing is, they just won't do it.
There's not really not much I can do about
it after the fact, two weeks from the
deadline. If they haven't followed the
rules, what am I going to do, shoot them?
The environment must sell itself by
providing more benefit to the user than
cost. If we make the right methods the
path of least resistance, the developers
will naturally use them.

186

No Human Interlocks - No human interlocks
are permitted. A developer, working at 3
a.m., who runs into a need for something
out of a human librarian is going to give
up and go to bed himself, when that
librarian is in bed, unable to satisfy his
request. Thus the environment is designed
to support 24 hour, 7 day operation. Any
developer can serve himself as librarian.
The environment ensures that records are
kept, but no one person is required.

Management Visibility - The environment
must provide Management Visibility. In
product development it is notoriously hard
to track progress, particularly in the
integration phase. This system provides a
number of measures of progress, that are
available to management.

Metric Capture - We use the environment to
do metric capture. The metric capture
hasn't been thought through as well as I'd
like. But we are collecting some
elementary measures, and we have the hooks
to capture others.

DEVELOPMENT MODEL

Let me briefly examine our method, or our
model, for development.

l. Functional Requirements
2. structured Analysis and Design
3. Coding
4. Code Reveiw
5. Unit Test and System Test in Simulation
6. Target Environment Specific Tests
7. Deliver, Sell, or Use
8. Maintain and Enhance

It is pretty standard. We go through
functional requirements, which, in our
case, become Request for Proposals (RFP) to
contractors. The contractor arrangement
and a formal RFP help us resist the natural
impulse to change the specifications during
development. On the current effort we have
made only two changes in the specification,
both for fatal ommisions. I give this
arrangement a great deal of the credit for
the high productivity we have experienced
on our current project. Then structural
analysis and design is used to turn that
set of functional requirements into a
software design. The design is documented
in a design document.

The code is developed in a top down
fashion, using a packaging concept to break
the work down into managable units. The
code is placed in the CMS library
immediately after it compiles without
error.

Once code is in the library a code review
takes place. We have a permanent person
whose job is primarily to do code review.
This results in very good code reviews.
It's his job, and he has a vested interest
in doing it right. Too many shops play lip

A MICROPROCESSOR CROSS DEVELOPMENT ENVIRONMENT

Clifford J. Schornak, II

Innovative Technology, Inc.
1000 Holcomb Woods Parkway, Suite 422

Roswell, Ga.

ABSTRACT

This paper discusses the development environment
used at the author's company. This company develops
microprocessor based products with software and
hardware components. The company has a unique
organization and makes heavy use of telecommuting in
its operation. The development environment consists
of a number of automated tools and simulation
techiniques. The results of the application of this
environment for two projects are presented.

INTRODUCTION

I am Director of Development for Innovative
Technology, Inc. The company is about 3
years old, but has been active six months.
In fact, I think my first official duty was
to come to the last DECUS. In that time
we've developed and displayed at Comdex,
our first product, an peripheral to the IBM
PC. We developed that product using the
methodologies presented here.

The following topics are discussed:

l. Our corporate culture and facilities

2. The development environment we've made
to support that corporate culture

3. The results of two projects developed
under that environment.

Although Innovative Technology, Inc. is
only six months old, three of the people
involved, have been working together now
for 2 1/2 years. The methodologies you see
here are the third generation system that
we have tried to put together during that
time. There has been a lot of thought put
into this environment and quite a bit of
operational experience.

Corporate Environment

In general, we develop hardware and
software products. That is, the product
itself has a component that is hardware and
is software, so we're not just a software
shop. Typically, they're small projects -
small in terms of what some people report
around here. We usually have two
man-months of effort as a low end and four
man-years for the maximum. Typically, a

Proceedings of the Digital Equipment Computer Users Society

microprocessor is the target operating
environment, either as a dedicated
stand-alone piece of equipment, as a
microcontroller, or as imbedded in another
piece of equipment such as an IBM PC.

Each employee has a terminal on his desk at
the office, and a terminal, printer and
2400 baud modem at home. This is standard
equipment issue for any employee. It is
typical to see two and three people logged
in at 2 o'clock in the morning.

185

we do all of our development with contract
labor. Right now there are six employees
of the company, and we have ten
contractors. My department, Product
Development, has five contractors, and only
one employee, me. These contractors work
from their offices, using a standard issue
workstation.

we have a VAX 750 for a development engine.
The system is equipt with 300 megabytes of
disk, 4 megabytess of memory~ andi all the
data communications you can imag ne.

We are targeting for a number of different
microprocessor environments. If we did
development on the target machines, which
is the tendency for most people who do
development, we would be throwing away
suites of tools every other day. Each
project would be a whole new suite of
tools. That is awfully expensive.
Further, development on typical
microprocessors results in a host of
problems inherent in PC based development.

Goals For The Environment

When we formed Innovative Technology, the
first thing I did, before writing the

New Orleans LA- 1985

The "O" is used to show that the dot is not
printed and the "a" is used to show the dot
is printed.

To use this table the top row of 3 dots
should be placed on the top of the 3 dots
down the left side to get the full six dot
pattern. The character at the intersection
of the line and row will make the composite
pattern.

I have found that the easiest way to create
images with these characters is to first
create a grid that corresponds to the dot
spacing. The six vertical dots occupy 1/12
of an inch or 72 dots per inch. If I select
<Esc>P9q as the horizontal density then I
can use a square grid. If I select <Esc>Plq
then the horizontal axis must be double the
vertical to accomodate twice as many dots
per inch.

on the grid and mark to
print. Then I divide the

dot rows. Using the table
select the characters to

image on the LA-100.

I draw the image
dots I want to
grid into six
above I can
replicate the

Our logo MITRE for example.

DOT PATTERN SET

The characters used for printing are formed
much the same way as described above. A
typical character cell is composed of a 9
by 15 matrix of dots. Usually only the set
B by 10 are used to form the character. If
you look at a down line loadable character
set, it will consist of repeated patterns
like the following selction from the
Equation and Greek character set:

These codes

<ESC>Pl;l;l;4U

KScCcSK?/???@????;

Wcd~dcW?/??ABA???;

?@-@@B??/?ABA????;

OGGO~O?I????????;

GCCGOOG?/@@@@@@@?;

wCQQQCw?/?@AAA@??;
?CgOqC??I?@???@??;

?oKAKo??/BA???AB?;

<ESC>\

Print as

e
x

I\

181

The first 8 characters form the top half of
the image and the characters following the
"/" form the bottom half of the image.

The escape sequence on the first line
instructs a device CVT220 in this case> to
load the characters into a font position.
From l to 94 images can be defined this
way. The numbers in the escape sequence
tell the device to Cin sequence) use font
1, the starting character is 1, to erase
only the characters being reloaded Cl>, the
matrix size 4 means 7 by 10, the width
defaults to 80 columns, and the final 1
indicates a text cell.

So far as I know you cannot down-load fonts
to LA-lOO's. But it is useful to understand
how the printer might handle printing
images with this technique.

Character Set
USASCII
Italian

Name
B
y
> Equation and Greek

Digital VTlOO line drawing O.

These Escape sequences load the character
sets into the GO - G3:

<Esc>(B
<Esc>>O
<Esc>*>
<Esc>+Y

loads GO with B USASCII
loads Gl with 0 line drawing
loads G2 with > Greek
loads G3 with Y Italian.

It does
installed
there the
loaded.

not matter where these are
in the printer. If it is not
default character set will be

Then, if I have done my homework right,
this sequence

<Esc>*B<Esc>+O<Esc>n<Esc>I

will permit me to print normal ACSII
characters with the seven bit codes and the
line drawing set with eight bit codes
without making any other changes.

To do the same thing in just a seven bit
environment I would have to switch the GL
set as follows

<Esc>*B<Esc>+O to load G2 & G3

then

<Esc>n
<Esc>o

to print
to print

USASCII
lines.

This might seem like a lot of trouble. If I
have only one or two characters I want to
add to my text I could do this

<Esc>Ox Ca single character from G3l

where x is the line character that I wanted
to include in my text. This would have to
be repeated for each character I wanted to
substitute. As you can easily see, this
could become quite messy and very difficult
to edit. For complicated images I recommend
you place them is a separate file and
include them in your text only when you
want to print them.

QBJU>HICS

The LA-100 has a graphics mode
you to control the printing of
the print head. You can also
horizontal density of the
sequences that places the
graphics mode are:

Code dots per inch
<Esc>Plq 132
<Esc>P2q 330
<Esc>P3q 220
<Esc>P4q 165
<Esc>PSq 132

that allows
each dot in
control the
dots. The

printer in

180

<Esc>P6q
<Esc>P7q
<Esc>PBq
<Esc>P9q

110
94
83
74

In this mode spaces and carriage returns
are ignored. To return to normal text mode
you would use

<Esc)\

The characters sent to the printer in
graphics mode have different functions than
they do in text mode. The characters that
control the position where the next dot is
placed are:

$ return to left margin
same as $ but down 1/12 inch

? move l dot to right
!22? move 22 dots to right.

The"!" character is used to introduce a
repeat of the next valid character some
number of times.

The characters starting with "@" through
(in octal sequence) are used to

determine which of the top six dots are to
print. This is done by subtracting octal 77
from the binary value of the character. The
dots are printed from top down if the
corresponding bit is a l using the least
significant bit first. The patterns are
shown below:

DOTS
l
2
3

4 0

0
0
0

• o I o
o I ti o
o o o I

I o I
o I I
I I I

5 0 ? @ A B C D E F
6 0

4 I
5 0 G H I J K L M N
6 0

4 0
5 I 0 P Q R S T U V
6 0

4 I.
s I w x Y z [\ J
6 0

4
5
6

4
5
6

0
0

•
I
0
~

4 0

a

g h i

b c d e

i k 1 m

f

n

5 I o p q r s t u v
6 ~

4 •
5 I. w x y z (}
6 I

increment the line counter. Failure to do
this will cause the top margin to creep in
one direction or the other on subsequent
pages. These partial line commands are used
primarily for sub and superscripting where
they would normally be used in pairs
anyway.

Now that you know how to position your text
on the page, you are ready for some other
interesting escape sequences.

ON
<Esc>[2"z
<Esc)[?29h
<Esc)[?7h
<Esc>[20h
<Esc> G
<Esc> 7

OFF
<Esc)[l"z
<Esc)[?291
<EscH?71
<EscH201
<Esc> F
<Esc> 6

USAGE
letter quality
font pitches
auto wrap
line feed
Cl transmit
Cl receive

The first set of codes allow you to
dynamically switch the printer between
letter and draft print quality. This can be
useful if the printer is not located near
you. To make use of the automatic switching
between draft and letter quality the manual
controls on the printer must be disabled.

When you use the sequence <Esc>[?29h the
printer will not accept horizontal pitches
greater than 12 characters per inch. If you
need 13.2 or 16.6 characters per inch, you
must precede these with <Esc>[?291.

The autowrap feature controls what happens
when you try to print beyond the right
margin. With autowrap on <Esc>[?7h printing
continues on the next line. When off
<Esc>[?71 printing of any remaining chara
cters is terminated until a new line is
started with a line feed character.

The line feed feature controls what happens
when a line feed character (octal 12) is
sent to the printer. When on <Esc>[20h the
next character is printed at the left
margin on the next line down. When off
<Esc)[201 the next character is printed at
the current position on the next line down.

The Cl transmit and receive codes instruct
the LA-100 to accept eight bit control
codes. To function properly you will also
need to set the printer to eight bit
communication environment (this is the
eighth switch i.n the "A" bank of switches
inside the printer - see Table 3-2 in the
"Operator Guide). In this mode the printer
will print seven bit or eight bit
characters depending on what is received.

Turning C-1 transmit and receive off causes
only the control codes to be sent in seven
bit mode. The printable characters will
still be sent in eight bit mode. Also
turning off the eight bit communications
environment causes the data to be sent in
seven bit mode (of course).

179

There are two main advantages to using the
eight bit environment. The number of
characters required to be transmitted to
the printer is less and the number of
selectable printable characters is doubled
(188 vs 94).

You may think of these as two 94 byte
buffers <I use the word buffer very loosely
here, it might even be a process or a
pointer.) which the documentation refers to
as GL and GR. GL refers to the seven bit
codes (octal range 40 - 177) and GR to the
eight bit codes (octal range 240 - 377).

You may be curious as to how these
characters are formed and get loaded into
GL and GR and selectively printed. I'll
tell you as much as I can; but be forwarned
that what follows is only my understanding
of what happens and is not necessarily
technically correct.

There are four intermediate buffers called
GO, Gl, G2, and G3. These can be loaded
with the dot pattern corresponding to the
code (7 or 8 bit) that the character
translates to. These patterns are ref erred
to as DPS <Dot Pattern Set> in the docu
mentation. I'll get to how these are formed
later.

Any of the buffers GO - G3 may be selected
for seven bit printing environment GL.
There are two ways to do this:

Code Octal Code Selects
SI ("0) 017 GO into GL
so C "N l 016 Gl into GL
<Esc>n 033 156 G2 into GL
<Esc>o 033 157 G3 into GL

or for a single printable character

<Esc>N 033 116 G2
<Esc>O 033 114 G3.

You can only select Gl - G3 for printing in
the eight bit environment. There are two
ways to do this:

Code Octal Code Selects
<Esc>~ 033 176 Gl into GR
<Esc>J 033 175 G2 into GR
<Esc>I 033 174 G3 into GR

or for a single printable character

SS2 216 G2
SS3 217 G3.

So you think this is confusing and
complicated? You might ask what is in GO -
G3 and how does it get there? Depending on
what LA-100 you have, it came with one or
more character sets in read-only memory.
You may obtain other character sets in
either chip or cartridge form. Each of
these character sets has a unique name. A
partial list of these names can be found in
Table 3-2 of the Programmer Reference
Manual. The ones I will use here are:

directiol'.!
up
down

partial
line
<Esc>L
<Esc>K

down <Esc>[le

full
line
<Esc>M
<Esc>D

<Where: l=line, n=number of lines)

The escape sequences to define the page
length might look like this:

<Esc)[lz<Esc>[66t

The first code tells the LA-100 that the
number of lines per inch is 6. The second
code indicates that there are 66 of these
lines on a page. This is equivalent to
eleven inches. You might additionally want
to tell the LA-100 that the first print
line is line 6 and the last line to be
printed on is line 60. To do this you would
code:

<Esc)[6;60r

You will recognize this as the same code
that sets the scroll region for the VT-100
terminals (with slightly larger values>.
Using this command will cause the LA-100 to
immediately reset top of form where it is
now and then advance the paper to print on
the sixth line. As a precaution you should
check the setup on the printer personally.

If the paper is not where you expected you
can manually reset top-of-form with the
following steps:

1. stop the printer queue
2. submit your print request to the que

you intend to use
3. halt the printer with the off-line

button
4. position the paper to print just

below the physical top-of-form
5. press the "SET TOF" button
6. restart the printer
7. start the que to the printer.

I strongly recommend that you define
and use the /FORMS_TYPE= qualifier for
queues that go to LA-100 printers.

There is no simple way to recover the
original top-of-form without manually
resetting the printer. If you are
adventuresome you might try the following:

<Esc>[l32d<Esc>[60t
<Esc>[l32d<Esc>[66t

This sequence assumes the vertical pitch
was set at 6 lines per inch and the top and
bottom margins were set to 6 and 60
respectively. The first code <Esc>[l32d
forces the LA-100 to the top of the next
page (line 6l. The next sequence redefines
the page length to 60 lines and then the
top and bottom margins to line l and line
60. This should cause the next code
<Esc>[l32d to position the paper at the

178

first print line below the perforation. The
following codes should then cause the
LA-100 to properly align the paper with its
definition of the form. Try it and see for
yourself.

Setting the vertical pitch does not change
the top and bottom margins. Changing the
vertical pitch also does not change the top
and bottom margins. You may notice that the
next print line (after a pitch change) is
not where you expected it to be~ The LA-100
has a simple rule to follow. That rule is

Vertical tabs are set by default at every
line. This makes the CR LF and VT act the
same. Setting vertical tabs therefore has
no effect until you clear all vertical tabs
with <Esc>[4g. Setting and clearing
vertical tabs at the active line can be
done with these codes:

<Esc>3
<Esc)[lg

set
clear

If you have a defined set of tabs you might
want to use the following:

<Esc>[4g<Esc>[l0;20;30;40v

This would clear all vertical tabs and then
set tabs at lines 10, 20, 30, and 40. The
actual position of the tabs would then
depend on the vertical pitch at the time
the VT was sent to the printer.

You have a rich set of vertical control
codes available on the LA-100. If you are
clever you can create some very
entertaining printing. Beware though -- the
codes that cause the printer to reverse
index do not work well unless the paper is
on the platen as opposed to the forms
tractor.

You can set the vertical position within
the top and bottom margins with this code:
<Esc>[ld where l is the line number. As we
saw earlier an attempt to go beyond the
bottom margin will set the form to the top
margin on the next page. Again the actual
position will be determined by the vertical
pitch in effect at the time the sequence is
sent to the printer. The following two
sequences do not produce the same results:

<Esc>Clz<Esc)[l2d two inches from top

<Esc>C4z<Esc>Cl2d six inches from top.

Armed with both horizontal and vertical
control, you can now determine precisely
where the next character will be printed.

Unlike the relatve horizontal codes, the
relative vertical codes can go in either
direction. There are also partial line up
and partial line down commands. These mus~
!!.~ J,t..§~Jl in egu<l,.:l,. ___ Jl~er§__§!_ll~~jhey_9:.Q.. not

In the first case the <<fontl>> may appear
anywhere in the text. The <<file=O,fontl>>
must appear on a line by itself. (Note that
the << >> are used to represent a single <>
combination.>

~ORIZONTAL PAGE CONTROLS

Pitch: <EscHnw

cpi n £.Ei n
10 1 5 5
12 2 6 6
13. 2 3* 6.6 7*
16.6 4* 8.25 B*

* Use pitch code <Esc>[?291
not <Esc>[?29h

Width:
Margins:

Tabs:

<EscHc;n"s
<EscHc;cs

_single

set: <Esc>l
clear: <Esc>[Og

<Esc>c;c .•. u
<Esc>[2g

Position:
absolute:
relative:

<Esc)[c'
<Esc>[na

<Where: c=column, n=number of columns)

The escape sequence to
of the paper 3 inches
look like this:

set the left margin
to the left might

<Esc)[lw<Esc)[30;115s<Esc)[30'

Where the first code sets the horizontal
pitch to ten characters per inch, the
second code sets the left margin at column
30 and the right margin at column 115. The
last code is optional and forces the next
printable character to go in column 30.

If you wanted to change the horizontal
pitch to 13.2 characters per inch, you
would use this sequence:

<Esc>[?29l<Esc)[3w<Esc>[40;152s<Esc)[40'

Here you will notice that the first code
tells the LA-100 that it is to use all
pitches. This is necessary prior to setting
the pitch to 13.2 characters per inch.
Notice also that the left margin is now at
column 40. This is still about 3 inches
from the left edge of the platen.

Horizontal tabs are set at every 8 columns
by default. They can be set with <Esc>l
(one, not lower case L). This code sets a
tab at the active column. You may find this
quite useful if you want several lines of
text to all start at the same place, but
the place is relative to where the next
printable character falls in the text. To
be sure this is the only active tab you can
use this sequence <Esc>2g<Esc>l, which

177

first clears all horizontal tabs and then
sets a single tab at the active column.

If you require several tabs to be set at
predetermined positions, this sequence
might be useful to you:

<EscHlO; 20; 30u

Here we set tabs at columns 10, 20, and 30.
The number of tabs is a variable; for
example, the sequence <Esc>[l;5;7;9;11;13u
is also correct.

To selectively clear a tab you can set the
active column at the tab and use <Esc>Og.

There are two other codes that will help
you control the horizontal position of your
text. We have already visited the absolute
position sequence <Esc>[c', but it needs a
little more explanation of its function.

The "c" is a decimal number that specifies
the column relative to the leftmost
printable position (absolute zero). The
physical position is calculated by dividing
"c" by the horizontal pitch specified by
the sequence <Esc)[nw. This answer is in
inches.

If you specify "c" outside the bounds
determined by either <Esc>[c;cs or
<Esc>[c;n"s then "c" will be set to the
closest legal margin.

The other escape sequence you might use is
one that repositions the active column to
the right by the number of columns
specified. This code is:

<EscHna

where "n" is the number of columns
displaced to the right of the current
active print position. Again, if this moves
the print position beyond the right margin
then the print position is set at the right
margin

Pitch: <Esc>[nz

1& n
6 1
8 2

12 3

Lines: <Esc>[nt
Margins: <Esc>[l;lr

!El
2
3
4

11
4
5
6

Tabs: multiple

set: <Esc>3
clear: <Esc)[lg

Position:
absolute:
relative: up

<Esc>[l;l. .. v
<Esc)[4g

<Esc>Ud
<EscHlA

PAPER ALIGNMENT

Even before we moved the paper to the
center of the platen, we noticed that the
printers would not maintain top-of-form
synchronously with the perforations in the
paper. One document might leave the paper
somewhere other than at the top-of-form.
The next document would then start where
the other left off.

To further compound our problems, we noted
that some users were sending binary files
to the printers. Aside from making a mess
and a lot of noise, the binary codes
occaisionally matched something the LA-100
understood. These matched codes would cause
unpredictable results. The worst case was
when the left and right margins were
redefined as adjacent columns. With auto
wrap still on, it printed everything in
those two columns.

The MASS-11 product has a set of printer
personality tables. In these tables are the
codes (escape sequences ie. terminal
commands beginning with octal 33) that set
the printer to the desired characteristics
for the document being printed. This is
where we defined the left and right margins
for the new position of the paper. You can
also define the codes to set the printer
for the page length, top and bottom
margins, print quality, font selection, and
vertical or horizontal pitch selection.

As you might suspect, there are a lot of
different escape sequences that need to be
specified to set the LA-100 for all the
options it supports. Our problem was to fit
these sequences into the space provided by
the MASS-11 printer personality tables.
This turned out to be a not so trivial a
pursuit.

Having established what we considered a
reasonable set of escape sequences in the
printer personality tables, we discovered
that the LA-100 would not maintain the
prescribed attributes for more than one
page.

It appears that the LA-100 would reset
certain parameters after it received a form
feed instruction. In particular we noticed
that the printer would revert to left
margin of one <not 30 as we needed for the
position of the paper>. Also we noted that
the font and horizontal pitch would change
somewhat unpredictably. Most often though
it would change to draft quality and ten
pitch.

Now we needed to tell the LA-100 the set up
escape sequences at the top of every page.
This is a function that is not supported by
the printer personality tables.

176

To solve these problems we had two issues
that we had to deal with. First, MASS-11
does not permit you to enter the <ESC>
character into the text directly. Second,
we still needed to be considerate of the
users and not impose an unnecessary burden
on them.

There are two different methods that can be
used to enter the escape sequences into
your documents.

1. MASS-11 provides for character
substitution at print time. Using this
capability you can sacrifice one character
and MASS-11 will replace it with the <ESC>
character prior to sending it to the
printer.

2. MASS-11 provides for graphics
integration with text. In this situation
you can simply code your escape sequences
in a file using EDT. Th.en tell MASS-11
where to include these in your documents.

Both of these methods have their advantages
and disadvantages. Using character
substitution you can have more direct
control over the escape sequences you can
use. Standard sequences can be placed in a
list document and included in your document
by using the list processing features of
MASS-11. This method is easier to setup and
maintain. It also makes it easier for the
users as it functions very much like the
font and pitch commands native to MASS-11.

The disadvantages of the character
substitution are that merging documents in
MASS-11 creates additional processing
overhead and printing delays. It also makes
it more difficult to use list processing in
the document <you must merge the document
twice). It is sometimes inconvenient to
sacrifice one character all the time; but
MASS-11 permits you to select the character
you want to substitute, or select a second
substitute character.

Using graphics integration frees you from
the problems of character substitution and
provides relatively clean and faster
processing text.

The disadvantages of graphics integration
are that it is somewhat more awkward to
work with and does not give you the degree
of direct control that is sometimes handy.
This method is also more difficult to setup
and maintain because each escape sequence
must be placed in a separate file and (for
the users convenience) given a logical name
equivalence.

From the users perspective the two methods
appear similar:

<<fontl>> for character substitution

<<file=O,fontl>> for graphics.

THE LA-100 AS A SHARED RESOURCE

Richard G. Fulton
The MITRE Corporation

Houston, Texas

ABSTRACT
This paper describes how you can make effective use
of the Letterprinter 100 as a shared resource in a
text processing environment. The examples show how
MASS-11 and the LA-100 can be made to work together
to produce consistent quality papers with minimal
burden to the users. You will learn what does and
does not work, and how to integrate graphics images
with your text.

Let me first tell you a little about the
environment where we use the LA-100. We
provide technical services to the National
Aeronautics and Space Administration
<NASA>. Our products are printed documents
in the form of technical reports, working
papers, and briefings.

About a year ago we installed a VAX 11/750
running VMS and MASS-11. There are 32
terminals connected to the computer,
including three LA-lOO's. The terminals are
located throughout the offices and general
areas. The LA-lOO's are in µnattended areas
where all employees have easy access.

Just for reference, the workload on the
LA-lOO's has been such that two of them
have already needed repair for normal use
and abuse.

Our initial experience with these printers
was discouraging and frustrating. Some of
the more serious problems we encountered
include:

o paper jams

o paper miss-allignment

o font and pitch setup changes

Clearly, something needed to be done to
restore the productivity of our staff and
regain confidence in the word processing
functions.

The LA-100 has a 15 inch platen with
optional tractor form feed. You can use the
platen without the tractor -- but not with
continuous form paper. Any miss-alignment
of the paper on initial installation will
eventually cause the paper to creep across
the platen and crumple up on one side or
the other.

Proceedings of the Digital Equipment Computer Users Society 175

For best results we found that the forms
tractor performs more reliably. There are,
however, problems with narrow forms. We use
eight and one half inch by eleven inch
paper in our LA-lOO's. Even with the forms
tractor we experienced considerable
difficulty with the paper tearing off.

There are three
paper tearing
increased paper
the platen.

principle causes for this
and they all relate to
tension on the left side of

First, there is a micro switch that
determines out-of-paper condition. This is
a troublesome device that also makes it
difficult to put the paper in at all.

Second, there is a plastic band that holds
the paper against the platen. The shape of
this piece of plastic causes additional
pressure on the paper at each end of the
platen. When using narrow paper this causes
the paper to drag slightly on the left
side.

Finally, on some of the earlier LA-lOO's
the power supply was installed incorrectly.
The position of the power supply is such
that in the incorrect position it caused
additional pressure on the left side of the
platen. This is now a known problem and if
you suspect you may have it your service
representative should be told to
investigate.

One solution to the paper jamming problems
we experienced was to move the paper to the
center of the platen. Specifically, we.
placed the left perforation of the paper
three inches to the right of the left edge
of the platen. Now the paper stays where we
want it and it feeds continuously with no
evidence of the prior problems.

By solving one problem we introduced new
ones. Now we must tell the printers where
the paper is, and do so in a way that our
50 users are not inconvienced. This is the
exercise that prompted this paper.

New Orleans LA - 1985

Fig. 4. Relationship of the Video Frames
to the Laser Disc

The laser video disc can be
mastered via two methods, CAV
or constant angular velocity and
CLV or constant linear velocity.
The CLV method is used for video
movie recordings and is not
suitable for still frame informa
tion. The CAV method, as diagrammed
in Fig. 4., allows for one complete
video frame to be recorded per
revolution of the disc.

REFERENCES

(1) Daynes, R., Byte, Vol. 7, June
1982, pp48-59.

(2) Conrac Corporation, Raster Graphics
Handbook, Conrac Corporation, Convina, CA,
1980.

(3) Foley, J. D. and A. Vandam, Funda
men~als of Interactive Computer Graphrcs;
Addison-Wesley, Reading MA, 1982.

(4) Greenberg, D., A. Marcus, A.H.
Sch~idt, and V. Gorter, The Computer Image,
Addison-Wesley, Reading MA, 1982.

(5) Hurn, Bruce, VideoPRO, Vol. 3,
No. 11, Dec. 1984, pp37-44.

(6) Newman, T., Museum News, Vol. 59,
No. 4, Jan./Feb. 1981, pp28-33.

(7) Newman, W. and R. F. Sproull,
Principles of Interactive Computer Graphics
McGraw-Hill, New York, 1979. '

(8) Nyerges, Alexander, Lee, Videodisc/
Videotex, Vol. 2, No. 4, Fall 1982,
pp267-274.

(9) Waite, M., Computer Graphics
Primer, Howard W. Sons, Indianapolis, IN,
1981.

(10) Digital Equipment Educational
Services Interactive Video Information
System (IVIS) pamphlet and videodisc.

(11) Sony Overview Information Disc.
Sony Corporation.

172

SLOWFWD . x3FASTFWD

Fig. 5.

REV SLOW REV

Laser Beam Trace in Various Modes
of Operation

The laser disc player allows for
several modes of playback. The
one method of interest is the
still.or freeze frame mode,
allowing for the random retrieval
and display of a single frame of
visual information. In the
"still" mode of operation, the
player displays a single spiral
track from the disc and then the
beam jumps back one track and
repeats the process. During each
of the "trick" modes of operation,
the laser beam is shifted forward
or back during the vertical
synchronization portion of the
video frame (refer to Fig. 4.)

(picture elements) comprising the display
on the color monitor.

To achieve the quality of conventional TV
receivers, approximately 480 lines of 512
pixels per line would be needed (245,760
pixels per display frame). Each pixel
would need to represent many values of each
of the red, green and blue colors. An 8
bit byte could be assigned to each of the
colors. Therefore, each TV frame could be
represented by 3x245760 bytes of digital
information or apporximately 0.7 megabytes
for a single frame. Not too unreasonable
considering today's digital disk devices.

Now consider the task of storing 54,000
color video images that a laser videodisc
is capable of storing. Our digital storage
requirements become immense (.7x54,000 =
37,800 megabytes): approximately 37.8
gigabytes.

VIDEO

AUDIO

FFEOUENCY
MOOU.ATION

FREOlENCY
MOOULATION

VIDEO FM SIGNAL

Lll'llTTER

'f0' AAAAWAAAM VlJ v v VlJU rwv \fV \

;.
I' :,
I I ti
i:::I ti 00000000000

PIT SPACING

~ RF

THE LASER VIDEO DISC AND THE RECORDING/
PLAYBACK PROCESS

Fig. 1. Encoding of Information onto the
Disc

A composite signal is produced by
electrically adding the video
signal with two channels of audio.
The signal is limited (clipped)
as to amplitude resulting in a
waveform with peaks that vary in
width corresponding in signal
amplitude and peaks that vary in
period corresponding to signal
frequency. The analogy is the
width and spacing of pits burned
into the photoresist of the laser
disc master - the goal of the
mastering process.

l?l

RF
INPUT

SPINDLE
MOTOR

Fig. 2. The Recording Process

A finely focused laser beam is
modulated by the signal as illus
trated in Fig. 1. The laser
produces pulses of high energy
coherent light that vary in
intensity and period. As the disc
is rotated, the laser burns the
pits into the photoresist of the
mastering disc in an inward spiral
pattern. The information content
of the video and audio signal is
transformed into physical attri
butes of the laser disc media.
It should be noted that the pro
cess is an analog, as opposed to
a digital, process since the
physical pits vary continuously.

Thickness of this photoresist is correspond
to 1/4 wavelength of He-Ne laser into the
plastic di$C.

Fig. 3. Physical Dimensions of the Laser
Disc 'l'racks

The circular tracks on the disc are
spaced 1.67µ (thousandth of a
millimeter), resulting on 54,000
tracks in the space of approxi
mately 9 centimeters (15,240 tracks
per inch). It is interesting to
note a comparison with magnetic disk
media (hard and floppy disk) track
spacing of approximately 100 tracks
per inch. The overall objective is
to utilize the extremely high
density of optical recording media.

Just as with ARTSearch, the manual catalog
ing system has two major components, a
limited cross indexed/master filing card
system, and an incomplete photographic
record system using prints or slides. This
manual system, to work well, requires three
efficient and accurate procedures: 1) in
formation about an object must be easily
entered into the card system and easily
changed: 2) information about an object
must be easily located and retrieved from
the card system and the image base (photo
graphs): 3) the image base of photographs
must be as complete as possible and of high
quality. For a large collection, each of
these three procedures was difficult to
execute with any degree of satisfaction.
To swmnarize the procedural problems with
the manual system, the textual side of the
information system must be subject to
constant updating, retrievals must be fast,
accurate and complete and the visual records
of the objects must not be subject to change.
With ARTSearch, 1) and 2) are addressed
using conventional computer data base pro
grams and a not so conventional microcom
puter workstation controlling the retrieval
of visual images from the laser videodisc
player. Step 3) requires techniques for
photographing and mastering a laser video
disc. A process that results in archive
quality images that prints and slides could
not come close to achieving.

The gains of a computer driven information
systems are realized in its use as a pro
ductive teaching and research tool. They
are mainly ones of speed, accuracy and
completeness of use. The performance of
computer database systems is well documented
and will not be discussed at length here.
The complete database is stored on a main
frame computer (VAX 780) and is managed by
DATATRIEVE. Subset retrievals on the micro
processor (Rainbow 100+) are managed by the
KNOWLEDGE MANAGER database system. The
interesting aspect of ARTSearch retrievals
is the use of the laser videodisc player as
the storage medium for the visual images.
The initial intent in the use of
laser disc players, both in the industrial
and home entertainment markets, was for
conventional video presentations and movies.
Just as with other video recording devices,
the laser player has two modes of operation,
one of which allows for freeze action or
single frame display. This is the capabil
ity that is used by the ARTSearch system.

Before this capability is described in more
detail, one may ask: since we are using a
microcomputer based system 1 why not use the
color graphics capabilities of a micro for
the presentation of the video images. The
answer is that we .could, however there is
an economic consideration. The problem
lies not with the color monitor that is
needed to display a high quality video
image, since microcomputer color monitors
are similar in quality and use as that
which would be needed with a laser player.
The video signals that drive such monitors
are actually very similar. The problem is

170

in the storage of the visual information
that makes up the color video image. The
amount of digital memory (computer memory,
both disk and RAM) required to contain the
color and gray scale information of a high
quality video image is enormous. This
leads into the very roots of the ARTSearch
project.

Prior to the Spring of 1982, Professor Pat
Mansfield was involved in a project explor
ing the aspects of what might be called
semi-structured computer aided design (as
apposed to computer aided design or CAD).
The heart of the system was a micro (Z-80
with an S-100 bus) controlling a video
frame grabber. This allowed conventional
video images, derived from a video camera,
VCR, television receiver etc., to be con
verted to the graphics memory of the
microcomputer. The intent here is to
illustrate the transition that took place
from this low cost image processing system
to the concepts behind ARTSearch. The
video frame grabber on this micro allowed
the researcher to manipulate and design
images using hardware and software tech
niques akin to those used in manipulating
full computer generated screen graphics
(line elements, arcs, solid fill etc.).
Because of the low cost, this sytem lacked
the necessary RAM memory to reproduce high
quality color images, although false color
mapping was possible. Addressing the cost
of a computer graphics system as related
to the resolution or amount of RAM memory
one has at hand, the principle is a simple
one, a large amount of memory cost a large
amount of money. This relationship will
always be true however, each year brings
the cost of computer memory down by orders
of magnitude, both rotating memories
(disks) and random access memory (RAM)
chips. As this paper is being prepared,
RAM chips are commonly being used that
store 256,000 (256K) bits (as opposed to
byte is a string of eight bits) of infor
mation. Today, these 256K chips cost
approximately $20.00. A bit is the sim
plest representation of information within
a computer, it is normally thought of as
having a value of 0 or 1.

In an imaging system like the one investi
gated by Professor Mansfield, a bit can be
used to represent a point in the graphics
picture. The "0" and "l" value can be
used to cause the point, or picture
element (pixel) to be dark or light.
However, in most systems, enough memory is
used so that each pixel can be assigned
enough bits of memory so that levels of
gray and even color can be represented.
In this system, 4 bits were assigned to
each pixel allowing 16 levels of gray to
be represented (i.e., a 4 bit binary
number allows one to count from 0 to 15).
What this is all leading to is a discussion
of the memory requirements needed to store
a full color video image. The other aspect
of the computer image affecting the amount
of memory needed is resolution: that is
the number of rows and columns of pixels

USE OF AN INTERACTIVE VIDEODISC-BASED RETRIEVAL SYSTEM (ARTSearch)
FOR ARCHIVAL MANAGEMENT, COMPUTER-BASED INSTRUCTION AND PUBLIC INFORMATION

Professor Patricia K. Mansfield
and

Computer Specialist, Michael K. Mansfield
University of Wisconsin

1300 Linden Drive
Madison, Wisconsin 53706

May 1985

ABSTRACT

The ARTSearch system provides for selective
retrievals and simultaneous display of text
information from a database with any one of
54,000 full color images of the artifacts
from a laser videodisc. The system has been
designed to provide full informational
access to a collection of artifacts from a
single workstation using the DEC RAINBOW
100+. DATATRIEVE is used to manage the
entire catalog, stored on the VAX, with
subset retrievals managed by the KNOWLEDGE
MANAGER database system. The VAX DESIGN
AUTHORING LANGUAGE enables the overlay of
text and graphics onto random-accessed
frames on the disc. The disc can therefore
be involved in teaching the history of the
artifacts (CBI); it can provide public
information on the collection (exhibits,
cultural events) and it can provide archival
management. The target system used to run
these applications is the DEC PROFESSIONAL
350 !VIS computer system.

The ARTSearch system can be expanded to
incorporate an image processing component.
This component utilizes the visual database
of a collection as a source of images for
artistic applications. The video frame
grabber allows the personal computer to
select images from the laser videodisc and
to manipulate the images through color
mapping tables and grey scales. Graphic
tools allow one to manipulate individual
pixels.

ARTSearch is the name for a University of
Wisconsin-Madison project that has invest
igated the melding of laser videodisc
technologies with microcomputer work
station data base techniques. The goal is
to produce an interactive retrieval system
which controls a dual base of information,
both visual and textual for a museum
collection. The industrial laser video
disc player is the natural choice for
storing the visual side of the database
since it has an excellent freeze frame
capability and can be controlled both
manually and via microcomputer for random
access. Data base programs which have
been in existence for many years could be
used on micros and mainframe computers for
the textual portion of our museum data base.
Therefore, the ARTSearch system combines
retrieval of text information from the
computer database with simultaneous

Proceedings of the Digital Equipment Computer Users Society 169

display of one of 54,000 color images from
the laser videodisc.

To test out the concepts imbedded in the
idea of ARTSearch, two needs had to be met.
One, we needed information for our database,
again, both textual and visual, and two, a
manual system must already be in place for
managing this information, a system that
could be converted to the computer. Just
as the ideas for ARTSearch were evolving,
the Helen L. Allen Textile Collection of
the University of Wisconsin-Madison campus
had needs that could benefit from the
ARTSearch project. This museum collection
was undergoing changes indicative of the
quality of its contents. The collection
was growing in size and the manual catalog
ing system was being tested to its limits.
The textiles were being used for teaching
and research purposes in ever increasing
amounts, and pressure for access to the
collection was growing. ARTSearch and
the Helen Allen Textile Museum were ideal
partners to test the ideas for this
project.

The textile collection was not available
for casual use by researchers, students
and the interested public because it is
not housed in a museum gallery environment.
In addition, only a sparse photographic
record existed. Presently, the curatorial
staff must manually retrieve objects in
response to requests. Therefore, the
objectives of the ARTSearch system are:
l) to provide full informational access to
the Collection from a single workstation;
2) to respond to the increasing demand to
use the Collection by making it more
accessible, without creating additional
burdens on a limited staff; 3) to keep the
objects in a better state of preservation
by protecting them from unnecessary
handling.

The base of the collection is approximately
12,000 textiles, costumes and related
objects bequested by Professor Helen Allen,
assembled during her 41 year tenure at the
University (1927-1968). The mission of
the collection is to provide educational
resources that further the understanding
of human beings within their material and
social environments through the study of
textiles of artistic, cultural and
historic significance. The textiles range
from pre-Columbian and Coptic fragments to
contemporary fiberworks.

New Orleans LA - 1985

c

9000
9030
9040
9050

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
READ

END DO

(6,9030) . +-------+-------+-------+-------+'
(6,9030) ' 13 14 15 16 I'
(6,9030) ' +-------+-------+-------+-------+'
(6,9030) ' 17 18 19 20 I'
(6,9030) ' +-------+-------+-------+-------+'
(6,9030) 'now enter window (1-20) of plot to view.'
(5,9050) N_WINDOW

}{RITE (6,9000)
WRITE (6,9000)
FORMAT (A)
FORMA'l' (' ' , A)
FORMAT (' + ' , A)
FORMAT (I3)

SET_OBO

RETURN
END

167

IF (N __ YWINDOW .LT. 0 .OR. N_YWINDOW .GT. 163) N YWINDOW 0
N_YWINDOW = (N __ YWINDOW * 23) I 164
N_ADDWINDOW = N_XWINDOW + (528 • N_YWINDOW)

ELSE
IF (N_WINDOW .EQ. 4 .OR. N_WINDOW .EQ. 8 .OR.

N_WINDOW .EQ. 12 .OR. N_WINDOW .EQ. 16) THEN
WRITE (6,9000) ' ENTER Y PICTAL OFFSET(0-163)'
READ (5,9050) N_YWINDOW
IF (N_YWINDOW .LT. 0 .OR. N __ YWINDOW .GT. 163) N YWINDOW 0
N_YWINDOW = (N_YWINDOW • 23) I 164
N_ADDWINDOW = 528 * N_YWINDOW

ELSE
IF (N_WINDOW .EQ.17 .OR. N_WINDOW .EQ.18 .OR.

N_WINDOW .EQ. 19) THEN
WRITE (6,9000) ' ENTER X PICTAL OFFSET(0-263)'
READ (5,9050) N_XWINDOW
IF (N __ XWINDOW . LT. 0 . OR. N_XWINDOW . GT. 263)

N_XWINDOW - 0
N_XWINDOW "' N_XWINDOW I 2
N_ADDWINDOW N_XWINDOW

ELSE
N_ADDWINDOW = 0

END IF
END IF

END IF
WRITE (6,9000) SET_l32
WRITE (6,9000) SHIFT_IN_4
WRITE (6,9000) TOP_OF_PAGE
NFIRST = N_WINDOW - ((N_WINDOW I 4) * 4)
IF (NFIRST .EQ. 0) NFIRST = ~
NFIRST = NFIRST - 1
NSECND = (N_WINDOW - 1) I 4
J = (12144 * NSECND) + (132 * NFIRST) + 1 + N_ADDWINDOW
K = J + 131
WRITE (6,9040) LINE_OUT(J:K)
DO I = 1,22

J = J + 528
K = J + 131
WRITE (6,9030) LINE_OUT(J:K)

END DO
WRITE (6,9000) SHIFT_IN_l
READ (5,9000) INPUT_LINE
WRITE (6,9000) TOP_OF_PAGE
WRITE (6,9000) ' '
WRITE (6, 9000) 'sET_080
WRITE (6,9030) 'The graphics area is divided into windows'
WRITE (6,9030) ' you must select to view. Each window is'
WRITE (6,9030) ' 264 piotals across X 164 piotals down.'
WRITE (6,9030) 'Choosing a windo~ other than those listed'
WRITE (6,9030) ' will cause the graph to exit.'
WRITE (6,9030) 'You will not be prompted for but can enter'
WRITE (6,9030) ' next window number after the current'
WRITE (6,9030) ' window is displayed.'
WRITE (6,9030) 'The window arrangement is as follows:'
WRITE (6,9030) ' +-------+-------~-------+-------+'
WRITE (6,9030) 1 2 3 4 I'
WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6, 9030) ' I 5 I 6 I 7 I 8 I '
WRITE (6,9030) ' 1 ---- --- -+--------+--------+-------~'

WRITE (6,9030) 9 10 11 12 I'

166

C***
c
C DISPLAY THE DIGITIZED GRAPHICS ON THE VT220
c
C***

c

c

c

SUBROUTINE VTDISP

CHARACTER*l
CHARACTER*2
CllARACTim' 3
CHARAC'l'ER * 4
CHARACTER*6
CHARACTER*4
CHARACTER*60720
INTEGER*4
INTEGER*4
REAL*4
REAL*4

INPUT ___ LINE
SHIFT_IN_l,SHIFT_IN_2
SHIFT_IN_3,SllIFT IN 4
'l'OP __ OF _PAGE
SE'l'_l32, SET_OBO
INTO_G3
LINE_ OUT
NXCUR,NYCUR,NEXTX,NEXTY
N_WINDOW
DELTAX,DELTAY
XPRIOR,YPRIOR,XFOLLOW,YFOLLOW

COMMON /V'l'GRAPII/ SHIF'l' __ IN_l, SHIFT_IN __ 2, SHIFT_IN_3, SHIFT_IN_ 4,
- TOP_OF_PAGE,LINE_OUT,NXCUR,NYCUR,NEXTX,NEXTY,DELTAX,DELTAY,
- SE'l'_l32, SE'l'_OBO, XPRIOR, YPRIOR, XFOLLOW, YFOLLOW

WRITE (6,9000)
WRITE (6,9000) SET_OBO
WRITE (6,9030) 'The graphics area is divided into windows'
WRITE (6,9030) ' you must select to view. Each window is'
WRITE (6,9030) ' 264 pictals across X 164 piotals down.'
WRITE (6,9030) 'Choosing a window other than those listed'
WRITE (6,9030) ' will cause the graph to exit.'
WRITE (6,9030) 'You will not be prompted for but can enter'
WRITE (6,9030) ' next window number after the current'
WRITE (6,9030) ' window is displayed.'
WRI'l'E (6, 9030) 'The window arrangement is as follows: '
WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) ' I 1 I 2 I 3 I 4 I'

WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) ' I 5 6 I 7 I 8 I'

WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) ' 9 I 10 I 11 I 12 I'
WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) ' I 13 I 14 I 15 I 16 I'

WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) ' 17 18 19 20 I'
WRITE (6,9030) ' +-------+-------+-------+-------+'
WRITE (6,9030) 'now enter window (1-20) of plot to view.'
READ (5,9050) N_WINDOW
DO WHILE (N_WINDOW .GT. 0 .AND. N_WINDOW .LT. 21)

IF (N_WINDOW .EQ. 1 .OR. N_WINDOW .EQ. 2 .OR.
N_WINDOW .EQ. 3 .OR. N_WINDOW .EQ. 5 .OR.
N_WINDOW .EQ. 6 .OR. N_WINDOW .EQ. 7 .OR.
N_WINDOW .EQ. 9 .OR. N_WINDOW .EQ. 10 .OR.
N_WINDOW .EQ. 11 .OR. N_WINDOW .EQ. 13 .OR.
N_WINDOW .EQ. 14' .OR. N_WINDOW .EQ. 15) THEN

WRITE (6,9000) ' ENTER X PICTAL OFFSET(0-263)'
READ (5,9050) N_XWINDOW
IF (N_XWINDOW .LT. 0 .OR. N_XWINDOW .GT. 263) N_XWINDOW 0
N_XWINDOW = N_XWINDOW I 2
WRITE (6,9000) ' ENTER Y PICTAL OFFSET(0-163)'
READ (5,9050) N_YWINDOW

165

c•••••••**********************•••***************•••···•••••••••••***************
c
C WRITE THE BITMAP TO BE DISPLAYED LATER ON THE VT220
c
C***

c

c

c

c

c

c

c

SUBROUTINE VTMAPS

CHARACTER*2
CH/\RACTER*3
CII/\RACTER*4
CII/\R/\C'l'F.R ~- 6
CH/\RACTER*4
CIIARACTER*60720
INTEGER*4
INTEGER*4
REAL*4
REAL*4

DIMENSION IL(6)

SHIFT_IN_l,SHIFT_IN_2
SHIFT_IN_3,SHIFT_IN_4
TOP _OF __ PAGE
SE'!' .. 132, SET_ 080
INTO_G3
LINE_ OUT
NXCUR,NYCUR,NEXTX,NEXTY
NCURCIIR,IL
DELTAX,DELTAY
XPRIOR,YPRIOR,XFOLLOW,YFOLLOW

COMMON I V'l'GRAPH/ SHIFT_IN_l, SHIFT_IN_2, SHIFT __ IN_3, SHIFT_ IN_ 4,
- TOP_OF_PAGE,LINE_OUT,NXCUR,NYCUR,NEXTX,NEXTY,DELTAX,DELTAY,
- SET_l32,SET_080,XPRIOR,YPRIOR,XFOLLOW,YFOLLOW

IF (NXCUR .LT. 0 .OR. NXCUR .GT. 1055) RETURN
IF (NYCUR .LT. 0 .OR. NYCUR .GT. 344) RETURN
INDEXX = NXCUR I 2
INDEXY = N~CUR I 3
IOFFSETX = NXCUR - INDEXX * 2
IOFFSETY = NYCUR - INDEXY * 3
NUMBIT = IOFFSETX + (2 * IOFFSETY) + 1
NUMCHR = INDEXX + (528 * INDEXY) + 1
NCURCHR = ICHAR(J.INE_OUT(NUMCHR:NUMCHR))
IF (NCURCHR .EQ. 63) RETURN

NVAL = 2
DO I = 1,6

IL(I) = 0
IL(I) = NCURCHR - (NCURCHR I NVAL) * NVAL
NCURCHR = (NCURCHR I NVAL) * NVAL
IF (IL(I) .GT. 0) IL(I) = 1
NVAL NVAL * 2

END DO
NVAL = 2

IL(NUMBIT) = 1
NCURCHR = 64 + IL(l) + IL(2) * 2 + IL(3) * 4 + IL(4) * 8 +

- IL(5) * 16 + IL(6) * 32
IF (NCURCHR .EQ. 127) NCURCHR = 63
LINE_OUT(NUMCHR:NUMCHR) = CHAR(NCURCHR)

RETURN
END

164

c•••
c
C SETUP TO WRITE THE BITMAP TO BE DISPLAYED LATER ON THE VT220
c
ct :t * "· * * * * * "' *

c

c

c

c

SUBROU'rINE VTPLOT (XPOSI'I', YPOSIT, IFUNC)

CIIARAC'l'ER'2
CHARACTER•• 3
CHARACTER*4
CIIARACTER'6
CHARAC'l'ER'4
CHARAC'l'ER'60720
INTEGER*4
REAL*4
REAL'4.
REAL*4
INTEGER'4

SHIFT IN _l, SIIIF'T_IN_ 2
SHIFT_IN_3,SHIFT_IN_4
TOP_OF_PAGE
SET __ l32, SET. 080
IN'l'O_G3
LINE_ OUT
NXCUR,NYCUR,NEXTX,NEXTY
DELTAX,DELTAY
XPOSIT,YPOSIT
XPRIOR,YPRIOR.XFOLLOW,YFOLLOW
IFUNC

COMMON /V'l'GRAPH/ SHIFT_IN_l,SIIIFT_IN_2,SHIFT_IN_3,SHIFT_IN_4,
TO~_OF PAGE,LINE_OUT,NXCUR,NYCUR,NEXTX,NEXTY,DELTAX,DELTAY,
SET_l32,SET_080,XPRIOR,YPRIOR,XFOLLOW,YFOLLOW

NEXTX = INT(l055.0 * XPOSIT I 10.55)
NEXTY = INT(344.0 * YPOSIT I 8.19)
XFOLLOW = (XPOSIT - XPRIOR) * 100
YFOLLOW = (YPOSIT - YPRIOR) * 100
LIMRES = 2 * INT(SQRT(XFOLLOW*XFOLLOW + YFOLLOW*YFOLLOW) + 1.0)
ALIMRES = REAL(LIMRES)
DELTAX = XFOLLOW * .01 I ALIMRES
DELTAY = YFOLLOW * .01 I ALIMRES

IF (IFUNC .EQ. 2) THEN
CALL VTMAPS
DO I - l,LIMRES

NXCUR = INT(1055.0 * (XPRIOR + DELTAX * I) I 10.55)
NYCUR = INT(344.0 * (YPRIOR + DELTAY * I) I 8.19)
CALL VTMAPS

END DO
NXCUR - NEXTX
NYCUR = NEXTY
CALL VTMAPS

ELSE
NXCUR NEXTX
NY CUR NEXTY

END IF
XPRIOR = XPOSIT
YPRIOR = YPOSIT
RETURN
END

163

c

c

c

c

c

c

c

c

c

c

c

TOP_OF_PAGE(2:2)
TOP_OF_PAGE(3:4)

LOAD_LINE_l(l:l)
LOAD_LINE_l(2:2)
LOAD_LINE_l(3:5)

LOAD_LINE_2(1:4)

CHAR(27)
'[H'

'+'
CHAR(27)
'Pl;'

'; l(@'

LOAD_LINE __ 4(1: 1) CHAR(27)
LOAD_LINE __ 4 (2 : 2) ~ ' \ '

INTO_G3(1: 1) ··· '+'
INTO_G3(2:2) = CHAR(27)
INTO __ G3(3: 4) ~ '-1@'

cun.son_OFF < i : i) .. • , •
CURSOR_OFF(2:2) ~ CIIAR(2~1)
CURSOR_OFF(3:7) ~ '[?251'

<.JUHSUH .. ON(1: 1) ·- • I.
CURSOR_ON(2:2) CHAR(27)
CURSOR_ ON(3: 7) ' [?25h'

DO I = 1,60720
LINE_OUT(I:I) = '@'

END DO

SET_l32(1:1)
SET_l32(2:2)
SET_l32(3:6)

SET_OBO(l:l)
SET_080(2:2)
SET_080(3:6)

'+'
CHAR(27)
'[?3h'

'+'
CHAR(27)
' [?31'

WRITE (6,9000) CURSOR_OFF
DO I= 1,9

WRITE (6,9010) LOAD_LINE_l,I,LOAD_LINE_2,BIT_MAP(I),LOAD_LINE_4
END DO
DO I = 10,94

WRITE (6,9020) LOAD_LINE_l,I,LOAD_LINE_2,BIT_MAP(I),LOAD_LINE_4
END DO
WRITE (6,9000) INTO_G3
WRITE (6,9000) CURSOR_ON

9000 FORMAT (A)

c

9010 FORMAT (A5,Il,A4,Al7,A2)
9020 FORMAT (A5,I2,A4,Al7,A2)

RETURN
END

162

c

c

c

c

c

BIT_MAP(51)
BIT_MAP(52)
BIT_MAP(53)
BIT_MAP(54)
BIT_MAP(55)
BIT_MAP(56)
BI'l' __ MAP (57) -
Bl'l'_MAP(58)
BIT_MAP(59) -
BIT _MAP(60) -
BITMAP(61)
BIT_MAP(62) ~

BIT_MAP(63)
BIT_MAP(64)
BIT_MAP(65)
BIT_MAP(66)
BIT __ MAP(6?) ~

BIT_MAP(68) ~
BIT __ MAP (69)
BIT __ MAP(?O)
BIT MAP(?1) "
BIT_MAP(72) ~

BIT_MAP(73)
BIT_MAP(74)
BIT_MAP(75)
BIT_MAP(?6)
BIT_MAP(7?)
BIT_MAP(78)
BIT_MAP(79) =
BIT_MAP(80)
BIT_MAP(81)
BIT_MAP(82)
BIT_MAP(83)
BIT_MAP(84)
BIT_MAP(85)
BIT_MAP(86)
BIT_MAP(87) =
BIT_MAP(88)
BIT_MAP(89)
BI'l'_MAP(90)
BIT_MAP(91)
BIT_MAP(92)
BIT_MAP(93)
BIT_MAP(94)

'FFFFFFFF/NNNN????'
'wwww????/NNNN????'
'----????/NNNN????'
'wwwwFFFF/NNNN????'
'----FFFF/NNNN????'
'????wwww/NNNN????'
'FFFFwwww/NNNN????'
'????----/NNNN????'
'FFFF----/NNNN????'
'wwwwwwww/NNNN????'
·----wwww/NNNN????'
'wwww----/NNNN????'
'--------/NNNN????'
'????????/????NNNN'
'FFFF????/????NNNN'
'????FFFF/????NNNN'
'FFFFFFFF/????NNNN'
'wwww????/???7NNNN'
'----????/????NNNN'
'wwwwFFFF/???7NNNN'
'----FFFF/?7??NNNN'
'????wwww/????NNNN'
'FFFFwwww/??77NNNN'
'????----/??77NNNN'
'FFFF----/7???NNNN'
'wwwwwwww/7??7NNNN'
'----wwww/7???NNNN'
'wwww----/????NNNN'
'--------/????NNNN'
'7????77?/NNNNNNNN'
'FFFF????/NNNNNNNN'
'7???FFFF/NNNNNNNN'
'FFFFFFFF/NNNNNNNN'
'wwww????/NNNNNNNN'
'----????/NNNNNNNN'
'wwwwFFFF/NNNNNNNN'
'----FFFF/NNNNNNNN'
'????wwww/NNNNNNNN'
'FFFFwwww/NNNNNNNN'
'????----/NNNNNNNN'
'FFFF----/NNNNNNNN'
'wwwwwwww/NNNNNNNN'
'----wwww/NNNNNNNN'
'wwww----/NNNNNNNN'

SHIFT_IN_l(l:l) '+'
SHIFT_IN __ 1 (2: 2) CHAR(l5)

Sl!IFT_IN_2(1:1) '+'
SHIFT_IN_2(2:2) CHAR(14)

SHIFT_IN_3(1: 1) I+ I

SHIFT_IN_3(2:2) CHAR(27)
SHIFT_IN_3(3:3) 'n'

SHIFT_IN_4(1:1) , +'
SHIFT_IN_4(2:2) CHAR(27)
SHIFT_IN __ 4 (3: 3) 'o'

TOP_OF_PAGE(l:l) = '+'

161

C*
c
C INITIALIZE VT220 FOR GRAPHICS
c
C***

c

c

c

c

SUBROUTINE VT IN IT

CHARACTER*2
CHARACTER*3
CHARACTER*4
CHARACTER*6
CUARACTER*l7
CHARACTER*5
CHARACTER*4
CHARAC'TER * 2
CHARACTER*4
CHARAC'l'ER*60720
IN'l'EGER * 4
REAL*4

SHIFT_IN_l,SHIFT_IN_2
SHIFT_IN_3,SHIFT_IN_4
TOP_OF_PAGE
SET_l32,SET_080
BIT_MAP
LOAD_LINE_l
LOAD_LINE_2
LOAD_LINE_4
rn·ro_G3
LINE_OU'l'
NXCUR,NYCUR,NEXTX,NEXTY
DELTAX,DELTAY
XPRIOR,YPRIOR,XFOLLOW,YFOLLOW
CURSOR_OFF,CURSOR_ON

REAL*4
CHARACTER*7

DIMENSION BIT_MAP(94)

COMMON /VTGRAPH/ SHIFT_IN_l,SHIFT_IN_2,SHIFT_IN_3,SHIFT_IN_4,
- TOP .. OF_ PAGE, LINE __ OUT, NXCUR, NYCUR, NEXTX, NEXTY, DELTAX, DELTAY,
- SE'!' 132, SE'!' _080, XPRIOR, YPHIOR, XFOLLOW, YFOLLOW

DO I - 1, 16
BIT MAP(I) ~ '77777777/77777777'

END DO
BIT_MAP(17)
BIT_MAP(18)
BIT_MAP(19)
BIT_MAP(20)
BIT_MAP(21) ~
BIT_MAP(22) -
DO I ~ 23,30

'77{CCC?7/7??7?7??'
'77CCC{??/?77????7'
'7?0gCA77/7777@A7?'
'77ACg0?7/77A@7777'
'77o77777/77BAAA77'
'77777o77/77AAAB7?'

BIT_MAP(I) = '77777777/77777777'
END DO
BIT_MAP(31)
BIT_MAP(32)
BIT_MAP(33) =

BIT_MAP(34)
BIT_MAP(35)
BIT_MAP(36)
BIT_MAP(37)
BIT_MAP(38)
BIT_MAP(39) -
BIT_MAP(40)
BIT_MAP(41)
BIT_MAP(42)
BIT_MAP(43)
BIT_MAP(44)
BIT_MAP(45)
BIT_MAP(46)
BIT_MAP(47)
BIT_MAP(48) =

BIT_MAP(49)
BIT_MAP(50)

'--------/NNNNNNNN'
'7???7?7?/7777777?'
'FFFF7?77/77777777'
'7777FFFF/77777777'
'FFFFFFFF/7777?777'
'wwww7777/7?7??7?7'
·----????/???7????'
'wwwwFFFF/7?777777'
'----FFFF/7777777?'
'7777wwww/7?777??7'
'FFFFwwww/77777777'
'7777----/7777777?'
'FFFF----/7?777777'
'wwwwwwww/7?777???'
'----wwww/7?77777?'
'wwww----/77?77?77'
·--------/7?7?777?'
'77777777/NNNN77?7'
'FFFF??7?/NNNN77??'
'7??7FFFF/NNNN??7?'

160

Figure 2 Table 1
NUMBER OF DENSITY CHARACTERS

sixel SUBFIELDS LEVELS REQUIRED
1 2 3 4 5 6 7 8 ----------+----------+-----------

1 I 94 I 94
0 0 0 0 0 0 0 0 2 9 81
1 0 0 0 0 0 1 0 3 4 64
1 0 0 0 0 0 1 0 4 3 81
1 0 0 0 0 0 1 0 5 2 32
1 1 1 1 1 1 1 0 6 2 64
1 0 0 0 0 0 1 0 ----------+----------+-----------

sixel
9 10 11 12 13 14 15 16

1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

159

used to define the charaoter. The method
of defining a character consists of a
control string to introduce the soft set
then up to seven positional parameters to
define the character to be loaded. Next
the designation of the soft set is sent.
Last, the sixel values converted to ASCII
characters are sent separated into the two
halves by a "/" followed by the end string
code that indicates the end of the loaded
charaoter.

<DCS> is the device control string
<ESC>P

PARM-I is the font buffer O or 1
PARM-2 is the starting charaoter
PARM-3 selects the characters to erase

(0-all,l-reloaded,2-allsets)
PARM-4 selects the character matrix

size (0,2,3,4)
PARM-5 selects the device width

attribute
PARM-6 select text or full font
"I" indicates the end of the the

parameter list
"@" is the name of the character set
")00000)?/B?????B?" are the sixels
<ST> is the string terminator <ESC>\

<ESC>Pl;l;l(@)OOOOO)?/B?????B?;<ESC>\

A table of bit patterns is provided to
allow quick lookup of sixel patterns.
This table is provided with sixel values
prior to their values being added to
111111 binary.

SIXEL
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

CHARACTER SIXEL
? 100000
@ 100001
A 100010
B 100011
c 100100
D 100101
E 100110
F 100111
G 101000
H 101001
I 101010
J 101011
K 101100
L 101101
M 101110
N 101111
0 110000
p 110001
Q 110010
R 110011
s 110100
T 110101
u 110110
v 110111
w 111000
x 111001
y 111010
z 111011
[111100
\ 111101
J 111110

111111

VII

CHARACTER
-
'

a
b
c
d
e
f
g
h
i
j
k
1
m
n
0

p
q
r
s
t
u
v
w
x
y
z
(

In order to use a oharacter set for

158

graphic purposes in an application,
subroutines must be provided to handle the
loading of the character set,
rasterization, and finally display.
Included at the end of this paper is the
source code used to create a library of
FORTRAN subroutines.

The first routine is called VTINIT,
it take no arguments and readies the tube
for graphics. This routine initializes
the internal bitmap and loads the
character set. Please note that the
terminal on which this software is being
run must be set up for 132 column mode and
as a VT200 with seven bit codes.

The second routine called VTDISP is
used to display the plotted image on the
VT220. It breaks up the image into 20
subfields which can then be called up
separately.

The third routine is VTPLOT it
requires input as to X position and Y
position and if the line is to be drawn
from the last position. X values can vary
from O to 10.55 and Y values can vary from
o to 8.19. This routine calls VTMAPS, the
fourth routine, in order to rasterize the
plot of each line.

These routines while rudimentary will
provide all the plotting primitives needed
to create a large plot library. In order
to see plots in the shortest amount of
time I used the DECUS library software
package SPEEDS to convert DATATRIEVE plot
files in ReGIS to vector files. I then
used the vector files as input to a
display routine which called the library
of plotting routines. The speed of
rasterization becomes much slower as the
length of the vectors increases.

Figure 1

column l 2 3 4 5 6 7 8
+--+--+--+--+--+--+--+--+
I I I I I I I I I

row
l

+--+--+--+--+--+--+--+--+
2 1**1 I I I I 1**1 I

+--+--+--+--+--+--+--+--+
3 1**1 I I I I 1**1 I

+--+--+--+--+--+--+--+--+
4 1**1 I I I I 1**1 I

+--+--+--+--+--+--+--+--+
5 1**1**1**1**1**1**1**1 I

+--+--+--+--+--+--+--+--+

6 I * * I I * * 1
+--+--+--+--+--+--+--+--+

7 1**1 1 1 1 1 1**1 1
+--+--+--+--+--+--+--+--+

8 1**1 I I 1**1 I
+--+--+--+--+--+--+--+--+

9 I 1 I I I I I
+--+--+--+--+--+--+--+--+

10 I I I I I I I I I
+--+--+--+--+--+--+--+--+

Set GO-G3 Character Set
(- GO B - ASCII
) - Gl (- DEC supplemental

- G2 0 - DEC specia:').
+ - G3 @ - User defined

In order for any of these sets to be
used it must be shifted into the GL or GR
space. To do this we use the shift in
escape sequences. These sequences are:
(LSO,LS1,LS2,LS3,LS1R,LS3R,SS2,SS3).
Those sequence names are mnemonics for
shift operations from GO through G3 into
GL and GR. "LSO" stands for, "Locking
shift of GO into GL." All of these shift
sequences and their expanded escape codes
are presented below.

LSD ~ <SI>
Shift in and lock GO in GL
LSl ·- <SO>
Shift in und look Gl in GL
LS2 ,- < ESC, n
Shift in and look G2 in GL
LS3 = <ESC> o
Shift in and lock G3 in GL
LSlR = •ESC> -
Shift in and lock Gl in GR
LS2R = <ESC> }
Shift in and lock G2 in GR
LS3R ~ <ESC• I
Shift in and look G3 in GR
SS2 ~ <SS2> or <ESC> N
Shift in for next character

G2 in GL
SS3 L <SS3> or <ESC> O
Shift in for next character

G3 in GL

Each character set in GO through G3
contains ninetyfour characters which can
be mapped into the eight bit code tables
GL and GR in positions 21 through 7E hex.
In seven bit operation only the characters
mapped into GL oan be displayed as the
eighth bit is zeroed preventing the upper
half of the character tables to be
accessed. Before any characters can be
displayed they must be selected and
mapped. Selecting a character set was
covered earlier and mapping is performed
by the shift commands. In the following
example all four character sets will be
selected and then the ascii and special
graphics set will be mapped into GL and
GR.

<ESC•(B Select ASCII as GO
<ESC•)O Select Special graphics

as Gl
<ESC•'(iil Select loadable as G2
<ESC>+< Select DEC suplemental

as G3
<SI> Map GO to GL
<ESC>- Map Gl to GR

As stated earlier, the intent to use
the the terminal as a low resolution
graphics device will require the use of
the loadable character set. The method of
designating a set as downline loadable and
then loading that set is vital. In order

157

to load a character set it must first be
designated as a soft character set. The
set so designated can be loaded and then
selected and mapped into GL or GR space
just as one of the hard character sets.
The escape sequence " < ESC, (@" loads the
unregistered soft character set "@" into
Gl. "@" will be the character we will use
to designate the down line loadable
character set.

The actual creation of the down
loadable character set involves the
setting of sixel values to be passed to
the terminal in a load character sequence.
The matrix in which the character is built
is eight pixels wide and ten pixels high.
The ten rows are numbered from top to
bottom of the matrix and the columns are
numbered left to right c.f. figure 1.
These rows and columns in the example are
used to build a letter "H". The sixel
patterns themselves are made up of each
column divided into two parts. The first
eight sixels consist of columns one
through eight over rows one through six.
The last eight sixels consist of columns
one through eight over rows seven through
ten. A pattern of turned on bits is
generated for each sixel c.f. figure 2.
These values are:

SIXEL 01 111110
SIXEL 02 010000
SIXEL 03 010000
SIXEL 04 010000
SIXEL 05 ~ 010000
SIXEL 06 ~ 010000
SIXEL 07 111110
SIXEL 08 000000

SIXEL 09
SIXEL 10
SIXEL 11
SIXEL 12
SIXEL 13 -
SIXEL 14
SIXEL 15
SIXEL 16

0011
0000
0000
0000
0000
0000
0011
0000

In order to prepare the sixels for use
in the character loading scheme their
values must have added to them 111111
binary producing the following values:

SIXEL 01 1111101 or 7D hex
SIXEL 02 1001111 or 4F hex
SIXEL 03 1001111 or 4F hex
SIXEL 04 1001111 or 4F hex
SIXEL 05 1001111 or 4F hex
SIXEL 06 1001111 or 4F hex
SIXEL 07 1111101 or 7D hex
SIXEL 08 0111111 or 3F hex

SIXEL 09 1000010 or 42 hex
SIXEL 10 0111111 or 3F hex
SIXEL 11 0111111 or 3F hex
SIXEL 12 0111111 or 3F hex
SIXEL 13 0111111 or 3F hex
SIXEL 14 = 0111111 or 3F hex
SIXEL 15 1000010 or 42 hex
SIXEL 16 = 0111111 or 3F hex

The final sixel values are the ones

can however shrink the verticle dimension
by splitting the characters into two with
a top and bottom half. We must pay for
the refinement in aspect ratio in allowing
all levels of density to be available to
us in either half of ths cell
simultaneously. This means for each level
of density in the top of a cell the level
of density in the bottom of the oell can
be any of the level of density.
Mathmaticly the levels of density raised
to the power of the power of the number of
cells is the number of characters required
to represent all combinations. This
relationship is shown in table one. Note
from the table that in order to arrive
with the aspect ratio of 1:1, the most
number of levels, and the highest density
of cells per inch we would choose to
represent nine levels of density in two
cells in sixtyfour cells per square inch.

IV
While density is a concern in some

plotting applications, most applications
use vectors to define an image. We will
build on what we learned in the previous
section to bring vectors to the VT220. As
stated earlier the use of densities to
present an image requires a decision on
the number of cells into which to divide a
character and the number of levels of
density which are required for the
application.

In the display of vectors the number
of densities is reduced to two either a
particular pixel is on or a particular
pixel is off. We must then decide on the
the number of cells we will break a
character into, in order to have all
combinations of on and off pixels. We
will begin by making some decisions on
acceptable cell configurations.

Since we have an eight by ten array of
pixels we would like to split it into a
regular pattern. A regular pattern will
have the same number of sub cells in each
row and the same number of sub cells in
each column. The only combination that
works is to split the oharaoter into six
sub cells. Each sub cell should be
approximately the same size. We do this
by <lividin~ tho oj.ghty pixels into two
columns four pixels wide and three rows
which are three. three. and four pixels
wide. The aspect ratio of the sub cells
varies between 2:3 for the first two rows
and 1:2 for the last two rows. If we
place the terminal in 132 column mode the
aspect ratios become 1:2 and 3:8. The sub
cells are about nine times as large as the
pixels on a VT240 and therefore the
resolution in both the horizontal and
vertiole directions is about one third
that of the VT240. This is acceptable for
a graphics display. Now we will design
layout of the characters to permit us to
handle rasterization of an image.

v
We will use the layout of the sub

cells in a regular pattern to help us
decide which characters are assigned which

sub cell pattern. If we look at the six
sub cells as bits then we could use the
patterns of six bits to represent which
cells are turned on. For example a bit
string of six zeros would indicate that
all subfields are off.

000000
000001
000010
000100
001000
010000
100000

all sub cells off.
upper left sub cell on
upper right sub cell on
middle left sub cell on
middle right sub cell on.
lower left sub cell on.
lower right sub cell on.

If we append bits 01 to the front of these
strings the bit patterns can then be
related back to the ASCII character set
with the following results.

01000000 '@'
01000001 'A'
01000010 'B'
01000100 'D'
01001000 'H'
01010000 'P'
01100000

We can then designate any combination of
turned on bits by anding the bit patterns
of the selected bits together. The result
is some character between '@'and .
If we substitute '?' for the delete
character we have used sixtyf our of
nintyfour available characters to define
all the necessary bit patterns in our two
by three array. Now we will cover the
steps necessary to load a character set
into the VT220.

VI
The first step in preparing a VT220

for a downline loaded character set is to
designate the downline loadable character
set as one of the four available character
sets GO through G3 that t~e VT220 can load
into its GL or GR space. The GL space is
the left half of the displayable character
set available to the terminal and it
corresponds to values 0 through 127
received by the terminal. The GR space is
the right half of the displayable
character set and it corresponds to values
128 through 255 as received by the
terminal. Character sets from GO, Gl, G2.
or G3 are shifted into the GL or GR area
to be used by the terminal. In seven bit
operation only the GL area has any meaning
as the GR space is unaddressable due to
its corresponding values above 127.

In the example that follows we see the
escape sequences sent to the terminal to
designate various character sets into the
GO through G3 space. Under each character
is an explanation of its function

•ESC> (B
<ESC>) 0
•ESC> *
•ESC> + @

Escape Set Character
to start GO-G3 Set selected
sequence

156

LOW COST TERMINAL OPTIONS
FOR DEC EQUIPMENT USERS

Charles S. Janik
Bell Helicopter TEXTRON

Fort Worth, Texas

ABSTRACT

The VT200 series terminals represent a unique
opportunity for providing graphic capabilities in
otherwise non-graphic environment.

I
The single most difficult problem in

bringing graphics applications to life is
the availability of a suitable development
devices on which to demonstrate ideas
regarding the final product. The cost of
producing graphics on borrowed equipment
is related to the time a programmer must
spend in learning the device protocols and
kinks. If the device used to produce
graphics is simple enough and the
routines used to drive the device are
basic enough then, the task of producing a
graphics application becomes the act of
designing the application rather than
learning the equipment.

II
The DEC VT220 series of terminals

provides a ready answer to the simulation
of most graphic devices with its user
loadable character sets. The ability to
downline load a character set to a
terminal allows a user to create up to
nintyfour different characters beyond the
usual available on the device. Use of
patterns to represent parts of a graphic
image is already available in the
linedrawing character set. The purpose of
using the loadable character set is to
provide more flexibility in the generation
of lmages.

The secret to an effective graphic
display ls resolutlon, by whlch we mean
the density of plxels used to define an
lmage. The DEC VT240/241 terminals have a
horizontal resolution of onehundred dots
per inch and a verticle resolution of
fifty dots per inch. These devices are
considered to be low resolution graphics
terminals, and yet they stlll produce
acceptable graphics for the average
application. The question confronting any
implementer of graphics is therefore, "How
fine does the resolution need to be before
the image is identifiable and therefore
usable."

Wlth the use
character set, a
good as the low
series terminals

of the downline loadable
resolution one third as
resolution of the VT240

can be obtained. In many

Proceedings of the Digital Equipment Computer Users Society

155

first tries at an implementation this
level of resolution is acceptable. Flrst.
however, let us look at a graphic
application that relies on the verticle
and horizontal relationship of a character
to decide the number and types of
characters in the user defined character
set.

III
One way to present a graphic image on

a text device is to use the density of the
characters to represent the density of the
image for a particular cell. This is seen
most clearly in the newspaper photograph
effect obtained on printers with
overstriking to produce density pictures.
The use of characters to define density is
not limited to printers and severaJ
packages are available which produce
density plots on the standard display tube
through the use of characters representing
various levels of density. In the most
common mode with two levels of density
(either on or off) an "@" character is
used to represent the presence of data and
the " " the absence. AS other levels of
density are added between these two the
need for a key to tell the difference
becomes apparent. With the VT220's
loadable character set true densities can
be created for each desired level to the
maximum of the number of characters
available. Each character has available
to it eight columns by ten rows of pixels
which can be turned on or off. It would
seem likely that to cover the density
range of characters we need only use
eighty of the nintyf our characters
available. Even if we do this and we
present a usable density plot the ratio
between the horizontal and verticle
lengths of the character cell is 1:2. The
cell that we are representing is usually
not a rectangle but a square and the
aspect ratio on the cells is 1:1. To
represent the cell accuraotly on the tube
requires that we either widen the
horizontal direction or shrink the
vertiole direction. If we widen the
horizontal direction our problem becomes
one of unacceptable cell representation
with sixteen cells per square inch. We

New Orleans LA- 1985

onhook(chn_ptr)

CHANNEL_PTR chn_ptr;
{
UCOUNT j;

(1) Enter(ONHOOK);
(2) Variable(chn_ptr,%4x);

(2) Comment("Set the line status to on hook.\n",NULL);
chn_ptr->line_state = ON_HOOK;

(2) Comment("Fill the entire memory with silence\n",NULL);
for (j = O; j < MAX_WINDOWS; j++)

{
(2) Comment("Fill window #%d with silence.\n",j);
(3) Select_window(chn_ptr->chn_num,j);
(3) Fill(chn_ptr->wndw_base,OxOOOO,WINDOW_SIZE,SILENCE);

}
(2) Comment("Cmd channel on hook, disable cpm\n",NULL);
(3) Wr_chn_cmd(chn_ptr,(ON_HOOK_CMD + CPM_DISABLE));

(1) Exit(ONHOOK);
return;
}

/* DEC/CMS REPLACEMENT HISTORY, Element ONHOOK.C */
/* *l 20-MAY-1985 11:16:18 SCHORNAK "PPR 7 11 */
/* DEC/CMS REPLACEMENT HISTORY, Element ONHOOK.C */

Figure 7
Code Fragement Written to Run in Simulation

MEASUREMENT SETUP

TARGET

J.(p

TARGET
ENVIRONMENT __ _,,,

EXEC
PROF I LE

H p

1630

IEEE
488

V A X

p c

Figure 8
Measurement setup for Project "A"

195

L 0 AD

MAP

As I mentioned before, the "C" coding is
done by filling out a blank form. In this
way, the header comments then become
machine readable, if we so desire. The
Entry and Exit macros already built in and
a number of other standard coding
conventions are supported. The
documentation form is used the same way.
we bring in a standard format for
documentation and fill in the blanks. We
use runoff for all documentation.

Batchable Tools - All of the tools I've
talked to you about, except for the PPS
Create, run in batch. The commands are
written in DCL and use DTR. As a result
they are terribly slow when run
interactively. Therefore we tend to run
them in batch. We are able to get a lot
more interactive use of the VAX by using
the batch queue to handle these and most
other length non-interactive tasks in
batch.

Coding Standard And Naming Conventions - We
use coding standard and naming conventions.
Enforcement is not yet automatic. I would
like to have the CMS CREATE ELEMENT do a
coding standards check and reject
incorrectly formatted modules. However,
the code reviewer we currently employ does
a pretty good job of enforcing the
standard.

streamlined Documentation - We have
streamlined software documentation. We
don't have program logic manuals. We make
three documents, a design document, an
operators manual or a programmers manual,
depending upon the program and a functional
specification, that is used for an RFP.
The rest of the documentation is in the
code. I haven't met a maintenance
progammer yet that does anything but go
right to the code the minute he thinks he
has a problem. So, any other documentation
is probably not worthwhile. We concentrate
on documentation of the code in the code,
and the glue that holds modules together is
in the design document. We enforce the
maintenance of the design document. Our
shop does not have government or military
requirements, so we can get away this
scheme.

TWO CASES

I'd like to present the results from two
projects that have used these methods.
Please bear in mind, that we've been using
these methods now for about 2 1/2 year, and
the first project predates the current
company.

Case "A"

Table 1 summarizes the first project.

196

TARGET: 68000, STANDALONE

TYPE:

SIZE:

POLLED COMMUNICATIONS PROCESSOR

30,000 BYTES C, 196 BYTES ASSEMBLY
186 BYTES VENDOR LIBRARY

EFFORT: 15 CALENDER MONTHS
3.5 MEN, 36 MAN-MONTHS

TOOLS: SA, PPS, LSE, SIMULATION,
TUNING BY MEASUREMENT

METRICS:
e 289 PPRS, - 20 FOUND IN TARGET
e MOST TARGET DEBUG FOR CUSTOM HARDWARE.
e SPEC FOR 10,000 TRANSACTIONS/SEC.

- BEFORE TUNING 5000/SEC
- 9300/SEC AFTER 1 MANWEEK TUNING
- NO ASSEMBLY USED FOR PERFORMANCE

Table 1
Summary of Case A

The target was a Motorola 68000 without
operating system. It is a data
communication processor that ran inside a
data communications node. The program was
30,000 bytes of "C" with only 196 bytes of
Assembly code. We don't use any
vendor-supplied IO library. It took about
three man-years to develop.

We used the structured analysis, the
problem reporting system, language
sensi ti ve editor. We used validation in
simulation. We also used discrete event
simulation to model the connection
protocol. We were able to model data
networks of thousands of nodes that would
never be built and see how the protocol
would do when pushed to the edge. Those
networks of that size will not be built for
a number of years and I hate being called
back to do maintenance.

Here are some of the metrics from that
project. found. We had about 289 problem
reports. We found about 20 of those in the
·target environment. All the rest were
results of simulation runs and the code
review. Most were fixed before we had
operational hardware. Most of the problems
we found in the target environment dealt
with errors in the custom hardware or the
network environment. The documentation on
the rest of the network was not sufficient
to write a complete specification, so we
found a some problems when we got into the
network. We had built a simulator for the
rest of the network to test in simulation.
However that simulator was based on the
same out-of-date specifications, and
therefore did not help with that sort of
problem.

We met our performance goals through
measurement. The product was specified to
run 10,000 characters a second. Whoever
thought up 10,000 characters a second had

no basis for that--just kind of grabbed it
out of the air and said, "Gee, I think we
can do that." You know, here I am, a poor
programmer, stuck trying to make 10,000
characters a second. So, I wrote it for
maintainability and without any tuning of
the product hit 5,000 characters a second.

To give you an idea of the kinds of things
it was doing, it was handling multiple data
streams of up to 45 possible transaction
types and piping them on to the Ethernet,
encoding them in three layers of protocol
and decoding them on the other end. so it
was doing a lot of work.

Figure 8 displays the measurement setup
used on this project to tune performance.
We set the target microprocessor up in the
target environment with an HPl630 logic
analyzer connected to it. The logic
analyzer was controlled by a PC over an
IEEE 488 bus. The PC told the HP1630 to
collect l,OOO instruction fetches and send
the samples back to the PC. The PC
tabulated them and ordered the HP1630 to do
it again. This process was repeated until
2,000,000 samples had been collect. It
took about two hours to do that, but
everybody went to lunch. When we came back
it was done.

The totaled samples were uplinked to the
VAX. On the VAX we wrote a program to
bounce the samples against the load map.
What the process did was to count how many
times each location of memory was fetched
for an instruction. The end result was an
execution profile which told us the
percentage of time each separate subroutine
actually executed in the real environment.
We could then sort that with a standard Vax
sort utility, and we had a sorted list of
the ten top pigs on the system.

These ten modules were then examined in
detail and algorithms redesigned to improve
effiecency. However the single most
productive technique was to change
subroutines to inline "C" macros. We
reached 9300 characters a second with only
one manweek of code rework. No Assembler
code was used in the operation, only
modifications to the "C" algorithms.

We almost doubled the performance. We
could have made 10,000 characters a second.
We did the measurements for another set of
changes. The changes this time would have
had to be a little more drastic to the
protocols and would have adversely affected
maintainability. We decided the 700
characters weren't worth it, so we just
stopped.

Case "B" ----
Table 2 summarizes the results for the
second project.

197

TARGET: IBM PC WITH CUSTOM BOARD

TYPE:

SIZE:

INTERRUPT DRIVEN, SPOOLER

4034 BYTES C, 326 BYTES ASSEMBLY
6,800 BYTES VENDOR LIBRARY

EFFORT: 2 CALENDAR MONTHS,
2.5 MAN MONTHS

TOOLS: SA, LSE, SIMULATION, PPS

METRICS:
• NO APPLICATION ERRORS FOUND IN

TARGET ENVIRONMENT
e TEN ERRORS IN ASSEMBLY INTERFACE

CODE
• PERFORMANCE BUDGET MET WITHOUT

TUNING

Table 2
Summary of Case B

rhis is the product that we produced for
Comdex in May, 1985. You can see it's a
much smaller problem, with only 4000 bytes
of code. It had more assembly, because it
fielded three interrupts and it took a lot
of bytes of assembly to get the interrupts
taken care of. It took 2 1/2 man months in
two calendar months. That doesn't include
the hardware, that's just the software
component of it.

We used all of the techniques that I've
mentioned before, particularly
language-sensitive editor, testing in
simulation and the problem reporting
system. Of these techniques, testing in
simulation provided a very big surprise.
The code was written to execute in
simulation under the control of a very
simplistic test driver. The code was not
moved to the PC until all problems were
resolved in the simulation.

Once the code was moved to the target
environment, it just worked. No changes
were made in the simulation tested code,
NONE, ZERO. All of the problems were
involved in getting the assembly language
code to work. We met our performance
budget without any difficulty.

FUTURE PLANS

What do we plan to do with our environment
as we go along? If we keep selling
product, or start selling product, one
thing we're going to do is use this for
everything we do. This paper describes a
methodology for developing products for a
microprocessor target operating
environment. The VAX, though not a
microprocessor, is certainly a· target
environment. In fact, the day after I
wrote the design specifications for the
project system the system manager came in
and said, "Gee, could you change these

three things so I could use it for
everything? "I've got ten projects I'd
like to build." Sure enough, the minute
Whitesmith's compiler came in, it was
placed in a standard project structure.
All of their source code went into the CMS
libr~ry, their objects went into an object
file, their EXEs went into the public, and
a PPR system was setup for it.

We want to integrate MMS. In the six
months since DECUS last, we have develop
all of the tools described here and our
first product. The tools are designed for
MMS, we just didn't have time to put MMS
in.

As soon as somebody finds a way to buy DEC
Test Manager we'll do so. One of the
really big pluses for doing testing in
simulation is that it will work with the
Test Manager.

We want a full language-sensitive editor.
I've made my comment on buying a
language-sensitive editor over making one.
we tried making one, and we're a about
one-tenth of where we need to be. We'll
wait for DEC to sell us one.

We're looking for structured analysis
tools. There has got to be a better way
than spending $25,000 and buying an
graphics terminal and a ton of software. I
am still looking for a better way.

Finally, the whole concept will evolve.
That is why there is a Problem Reporting
System setup for the project system itself.
So we can collect and track problems and
suggestions for the environment.

198

·LARGE SYSTEM SIG

TOPS-20 Q & A

Betsy Ramsey
American Mathematical Society

Providence, Rhode Island

Abstract
Large Systems software engineers answered questions from members of
the audience on the TOPS-20 operating system and related utilities.

Introduction

As an experiment, this session was preceded by a "novice" sec
tion In which users with less technical questions were encouraged
to come forward. No users took immediate advantage of this
offer, so the "Novice Q&A" session will probably be omitted In
Anaheim.

The questions and answers presented at "TOPS-20 Novice Q&
A" and "TOPS-20 Q&A" are paraphrased in this paper.

Present from Digital Large Systems Software Engineering were
David Braithwaite, Kevin Paetzold, Dave Lomatire, Marty Pal
mieri and Mark Pratt. Other engineers were present via a tele
conference link to Marlboro.

Questions le Answers

Q. We have experienced a problem where the load suddenly
spikes from 3.0 to 15.0, lines freeze and the ACJ times out.

A. The answer is not obvious from this data. It sounds like it
could be an open line problem for a bank of terminal lines. In
that case, we would expect it to effect the same lines each time.
You can check WATCH data for high BGND figures. If that Isn't
the case, be sure that the ACJ Itself Isn't causing the problem.

Q. If all that fails, where else can I look?

A. Crash the system and get a dump while the lines are hung.

Q. What is the best way to do that?

A. At PARSER level on the console, type JUMP 71. That will
simulate a KPALVH bughlt.

Q. In the new version of DUMPER that was distributed with
V6.0, RESTORE/TAPE-INFORMATION no longer seems to
be the default. Will this be fixed?

A. Yes, it has been QAR'd, and the fix is a one-line patch.

Q. Will it be possible for users to add their own network support
to MS? E.g., will MS sources be distributed?

A. We're not sure what the policy will be on this. We will get
back to you. An attempt was made to write the MS network
support in a modular fashion, so hopefully it will be easy for
users to add their own code.

Q. Is it possible to convert a DECsystem-1091 with 1.25 MW
memory to TOPS-20 without a big performance loss? The max
imum user load is 60 to 70 users with 20 operator jobs. About

Proceedings of the Digital Equipment Computer Users Society 201

half of those are 1022 users, and the other half are general stu
dent users.

A. You should talk to Software House about differences in 1022
performance. File structure and memory management in TOPS-
10 and TOPS-20 are significantly different. It could be that If
your files are large, you will get better performance under TOPS-
20. For the most part, the things that TOPS-10 does well
(like BASIC) will run faster there than under TOPS-20. TOPS-
20 performance is very dependent on the amount of memory
available, so look at those TOPS-10 statistics that will relate to
things like balance set size, swapping rate, working set size.

Q. We have experienced a problem with a DUMPER full save
where every other tape in the set was not written. Alternate
tape drives (TU45, TU78) were used.

A. This problem hasn't been seen on either type of drive previ
ously. It probably Isn't DUMPER. If DUMPER is spinning the
tape, It's writing something.

Q. (another user) Have seen this problem on a TU78. Symptom
is that the tape seems to be moving too fast.

Q. (still another user) Have seen this problem under TOPS-10
as well. It usually culminates in a PULSAR crash.

A. We will investigate this through our hardware people.

Q. I have a possible answer to the user with the load spike prob
lem. LPTSPL can cause load spikes when it tries to print a
file with unprintable characters or when it is spooling to a fast
output device (such as magtape).

Q. Does LPTSPL set itself up to be a system job?

A. Yes, but this can be changed when you build Galaxy. It is a
GALGEN parameter.

Q. DUMPER restores of a structure never go like they're sup
posed to. Files-only directories suddenly become not files-only,
retention counts aren't preserved, accounts are messed up. DEC
should try the process themselves to see if their documented
procedure actually works.

A. There is a known problem with DUMPER where if directory
groups are deleted from a superior directory after a save has been
done, DUMPER will not be able to create the subdirectory on a
restore because the group number is missing form the superior.
The DUMPER developers are working on this.

New Orleans LA- 1985

Q. It isn't a DUMPER problem, it's a CRDIR problem. There
are about half a dozen CRDIR/GT JFN/etc. bugs that combine
to create these DUMPER restore problems.

A. We're working on it.

Q. We use modem control with a statistical MUX on a DEC-
2020 so that links will be broken if either the 2020 or the MUX
goes down. The problem is that if the 2020 never sees ring
indicate, it won't bring up DTR, so it can't drop it to break the
link.

A. Don't know what to say.

Q. (another user) The answer is that there are two different
versions of Bell 103 modem operation. With the newer version
(which I know is used with VAX running VMS), you don't need
ring indicate to raise DTR. All that is needed is carrier detect.

Q. This is a CFS question. I am running the MSCP server to
share my RPxx disks. System A erases, then bughlts again
claiming that system B has its PS: locked for exclusive access.
How can this be?

A. System B can mount system A's PS: for exclusive access
while system A is down because system B has no one to do
CFS voting with. This will prevent system A from restarting.

Q. When V6.0 was distributed to us, the size of BOOT and
MTBOOT looked bad on the floppies, and sure enough, these
files did not contain RP20 support. What happened?

A. You caught us in mid-process. Up through VS.1, RP20 sup
port was treated as an unbundled product. RP20 support was
provided on a separate tape. The monitor includes RP20 sup
port, but a different bootstrap is needed to load the RP20 mi
crocode. This is what was supplied on the separate tape. Be
sure to follow the installation guide, which has specific instruc
tions for RP20 users.

Q. We've noticed that Control-C no longer does an XON. Why?

A. That's the way it was always intended to work, so we fixed
it. It won't be changed back.

Q. Can I use the DUMPER CREATE command between struc
tures?

A. No, you should restore files to the same structure they were
saved from. If you are worried about the create process, run
DLUSER as part of your save process.

Q. This is a TCP /IP question. I've encountered a problem where
Control-0 close to the end of terminal output causes TELNET
to hang.

A. There are two known TELNET bugs: windows get small at
times, and there are problem with sink stuffing. Don't have the
fixes out yet.

A. (another user) The system does flush the output buffers on
Control-0. The code doesn't work.

Q. Sometimes hardwired VT102s go nuts. Smooth scroll was
on.

A. Turn off smooth scroll.

202

A. (another user) Don't let anyone use smooth scroll,.espeeially
with EMACS. It doesn't work.

Q. We use Control-C trapping to prevent users from aborting
LOGIN.CMD prematurely. Will we be able to do this under
V6.1?

A. V6.1 will allow system-wide startup .CMD files which users
can't edit (since they are in SYSTEM:). You could place your
Control-C trap there.

Q. Problems with DUMPER on TU72s. We don't clean tapes
frequently and we use an old version of DUMPER.

A. Not enough information, but it's probably not DUMPER's
fault.

Q. We've experienced problems with Interchange mode in DUM
PER. DUMPER is patched through Autopatch Tape 8.

A. There have been problems for some time with Interchange
mode. Please submit SPRs on any problems encountered. The
new version of DUMPER now in field test should fix some of
the problems.

Q. When we went to restore three versions of an .EXE file, the
first two of which were identical, only two were restored. Why?

A. When DUMPER supersedes older versions (which is its de
fault action), the older file on disk will be deleted.

Q. We have a situation where, ever since Autopatch Tape 9 of
VS.4, our accounting data has shown mysterious OPERATOR
jobs with account OPERATOR (which is invalid at our site)
logged out while detached.

A. You could be seeing an autologout of not-logged~in jobs. Note
that with Autopatch Tape 9 patches installed, not-logged-in jobs
are no longer enabled.

Q. We have experienced hung jobs while using KERMIT.

A. Hung jobs occur fairly frequently under TOPS-20. Use SYS
DPY to look at the jobs scheduler state to determine the prob
lem. Sometimes UNATTACHing the job will clear up the prob
lem. Often hung jobs will be accompanied by FLKTIM bugchks.
If this happens frequently, you can crash the system, get a dump,
and SPR the problem.

Q. Will we be able to add custom terminal types to EDT-20?

A. It's not hard to add new terminal types, but since EDT is
written in Bliss, you would need a Bliss compiler to do it. We
will look into other solutions to this problem.

Q. We would like to dual-port a TU78 between a KL and a VAX.
Can we?

A. Yes, you can do it the same way you would between two KLs.
It's better to use the drive In either A or B mode rather than
A/B mode, however, or problems will occur when a system that
has just rebooted tries to rewind the tape.

Q. We would like a special restore mode in DUMPER in which
files are always superseded.

A. We disagree with that. It is better to start with the most
recent incremental save and work your way back to the full save
using SUPERSEDE OLDER.

Q. The problem was that DLUSER made MAIL. TXT files, so
DUMPER didn't restore them.

A. (another user) Have to say *. *. * on RESTORE command.

A. DUMPER almost always does the correct thing by default
unless you tell it otherwise. Be careful when using the RE
STORE command. It has different wildcard defaults depending
on whether you did recognition input while issuing the command.

Q. When I SAVE an image and GET it back, pages that con
tained all zeroes are not there.

A. This is a feature.

Q. And it's fine under most circumstances. But I want to trap
illegal memory references, and this gets in my way. Why aren't
these all-zero pages saved?

A. Because if they were, they would all be private pages which
get swapped out, and the swapping space would fill up quickly.
The illegal memory reference trap was designed only for PA10-
50's use.

Q. I would like an option to the START command to create
these pages.

A. The trap was implemented only for PA1050. It was not in
tended to be used by general user programs.

A. (another user) You can make your interrupt handler check for
the page address and allow it.

A. (still another user) FAIL used to have the same problem, and
It was fixed in the manner just described.

Q. Batch jobs submitted by certain users can't run without being
NEXT'd from OPR.

A. SPR it.

Q. I need to be able to raise DTR at will.

A. There is some support In the front end to do this on command
from the KL. There is an unsupported patch to MTOPR to add
this functionality.

Q. We are running V4.0 on a DEC-2020 with V4.1 SM files.
Some Cobol executables don't run.

A. Might be mismatched LIBOL or COBLIB.

Q. I've noticed problems executing VT100 escape sequences on
a VT52.

A. Yes, S[does terrible things to a VT52.

Q. We use SPSS in batch. When one of our users ~ut in a
Control-C to return to monitor level, the job looped.

A. It's probably that BATCON Is getting stuck trying to force
the job to monitor level (via the SET JB jsys).

Q. It went away when we took out the Control-C.

Q. What about SPEAR under V6.1?

203

A. The new SPEAR (which has been in field test forever) will
be released with V6.1 of TOPS-20. The ANALYZE module will
no longer exist.

Q. We have a problem with INFO where sometimes the time
stamp gets put in the place of the PIO.

A. Please SPR this problem. It is interesting.

Q. Is ft possible to disable line editing in the TEXTI jsys?

A. Yes, in V6.1.

Q. We've had strange problems on our RP20s that go away when
we push the Attention button. For example, people using that
drive would suddenly have their jobs hang. It turned out that
BATCON was attempting to write a .LOG file and started suck
ing up CPU. It stopped when we pushed the Attention button.

A. There have been lots of fixes made to the RP20 code In
V6.1. Jobs hang because that's the way TOPS-20 works. In
particular, when a job queues an IORB, it will wait until that
IORB is satisfied-it can't abort. This will cause problems with
shared HSC disks. We are working on ways to fix this. Perhaps
some sort of "DISMOUNT /DAMMIT" command that will abort
all the waiting IORBs. If you do that, though, then you run into
problems when the system gets an interrupt and there's no IORB
waiting. Anyway, we're working on it.

Q. I'm running a V5.1 system and we get lots of TTYSTP bug
infs.

A. These are handled comptetely differently under V6.1.

Q. The terminal in the buginf message really does have a job on
it.

A. That shouldn't happen. Also, you should never get more than
one TTYSTP per line.

Q. This is a performance question. I have a DEC-2060 with 1.25
MW, 95 jobs and a load of 35. We are installing the MCA25.
Would it be better for us to use LAT terminal servers in place
of hardwired terminals?

A. We can talk to the NIA-20 faster than we can to the front
end. The NI incurs less CPU overhead because It is on the C
bus (It is a OMA device). DTE devices incur more overhead.
Your bottleneck is probably either in the DTE or RSX Itself.

Q. We have a directory containing 2000 files all with the same file
name but different file types. It takes us three to four minutes
to do a VDIRECTORY with the NO FILES subcommand.

A. The monitor stores the first five characters of a filename In
the directory symbol table as a shortcut to finding the FOB.
Since all the file names are the same, you are not taking advan
tage of this feature.

Q. When I install CFS, I want to change the name of PS: without
doing a rebuild. Can't I just change the home block?

A. Yes, that's no problem. Just be sure to reboot the system
afterwards.

Q. The new autobaud detect code in RSX.;20F does it too read
ily. ·

A. RSX-20F will autobaud only on Control-C or carriage return.

Q. No, it autobauds If the character looks like a Control-C or
carriage returns at one of the baud rates. The solution would
be to wait for two successive character matches.

Q. Will the LAT protocol be available?

A. This is the wrong session to ask that question-you should
have gone to the LAT protocol session. The protocol Is not
public domain at present.

Q. Ever since we applied Autopatch Tape 8 to TOPS-20 VS.1,
there have been two session entries made In the accounting .BIN
file at logout. The second entry Is only a few seconds after the
first. Why are these being made 7

A. Accounting was always meant to work that way. It Is related
to the way the EXEC handles accounting at login time, which
results In two entries at login and logout.

Thia document woo produced i.. the TE'(Ql>Hettln1 a:rotnn end w11 printed on 1 ._·rHolutl .. I••• printer.

204

VMS FOR TOPS USERS -- PROGRAM DEVELOPMENT

Jack Stevens
The Gillette Company
Boston, Massachusetts

ABSTRACT

A member of DEC's LSM Technical Support group gave an overview of the
program development environment and features of VMS, tailored to users of

TOPS-10 and TOPS-20.

AGENDA

A. Presentation
Kathy Rosenbluh (Digital Equipment Corporation)

B. Questions and Answers

Kathy Rosenbluh, of DEC's Large Systems Marketing
Technical Support group, described the basic tools
available to VMS program developers and the
program development cycle as it applies to VMS.
The slides used in the talk are included below.

The basic schedulable entity on VMS is a process.
One is created for you when you log in. Images
run in them. Each process has one 32-bit address
space which is divided into four parts, only one
of which concerns the average applications
programmer.

A process can execute images ("run programs"),
execute DCL commands (the regular VMS user
interface commands), execute procedures
(equivalent to TOPS command, MIC, or batch files),
start detached processes; or spawn subprocesses,
which can run concurrently or return control to
the parent process after completion.

Program development starts with source files,
which, if they are in any of the VMS native-mode
languages (Fortran, Cobol, Basic, PL/!, RPG,
Pascal, Macro, Bliss-32) can call one another, as
well as system services, via a standard calling
sequence. The standard calling sequence defines
three ways of passing arguments (by value,
reference, or descriptor), and all these languages
support all the methods.

There are no generic compile or save commands.
Canpilers and the linker are invoked explicitly.

The /NOOPTIMIZE switch should be included in
compilations until one is confident that a
program runs correctly.

There is no explicit library program, but there is
a LIBRARY command which runs a program. The
/REPLACE switch is used to add entries to
libraries (there is no /ADD switch).

Like most linkers, the VMS linker has a large
assortment of switches, most of which are not
normally used. A user can set up a logical
definition to cause the linker to search an
arbitrary library as a default.

Proceedings of the Digital Equipment Computer Users Society 205

Shareable images (not to be confused with shared
images) are nonexecutable. They are brought into
memory when the calling image is executed.

Programs or parts of programs which require them
can be given privileges, so that users don't have
to be given extra privileges. This is done with
the INSTALL command.

The INSTALL command is run at system startup. It
tells the system to keep headers of certain images
in memory, to reduce the overhead of starting them
up.

Shared images (as opposed to Shareable images) keep
only one copy in memory for all users.

The debugger can be invoked at run time, but it is
not as useful that way. VMS version 4 provides a
window mode for the debugger, which supports up to
12 simultaneous windows. The source code display
shows the source code as it is being executed.
The debugger also allows the definition of VTlOO
keypad keys to perform sequences of commands.
Windows can be set up to display lists of program
modules and to show calls to user subroutines and
user or system services.

Besides using the debugger, other commands can
check up on programs. Sl-(JW PROCESS /CONTINUOUS
shows how much I/O is being performed, what image
is being run, how much of various quotas are being
used, etc. CTRL/T does not show as much
information as TOPS systems show. The set program
name system service can be useful here, in that
a program can change the name it displays as it
moves from stage to stage. If necessary, one can
run a program in a subprocess, set to dump on
error. That dump can be examined with the System
Dump Analyzer.

Of the numerous editors available for the VAX, at
least two versions of EMACS can be obtained from
third parties. TPU is DEC's newest editor, a
programmable one that will be distributed (with
VMS version 4.2) with two user interfaces: one
that imitates EDT and one that is slightly
different. TPU can be programmed to present

New Orleans LA - 1985

whatever interface one wishes, with not much more
effort, say, than it takes to create EMACS
libraries.

System routines can be called directly by many
languages, without requiring assembler
subroutines. The three different kinds of system
routines vary in the kinds of arguments they can
accept, the default values they provide, and, most
significantly, their scope. The system services
provide information about, and affect, wider
system areas; the run-time library routines
tend to provide information about, and affect,
files, other images, etc. The utility routines
involve things like the callable editor and the
print symbiont.

Run-time library routines provide, among other
services, easy ways to use RMS in one's program.
CLI (command language interface) parsing routines
provide services similar to the TOPS-20 COMMAND
JSYS. File conversion services are equivalent to
the ANALYZE/RMS command. The EDT editor can be
called from a program.

Many of the methods for inter-process
communication work only by user definition among
cooperating processes. Global sections are,
essentially, sharing memory. Since lock
management names don't have to refer to actual
resources, they can be used to pass data between
processes. Kernel mode AST's can be used by one
process (with sufficient privileges) to force
another to execute routines which one has defined.

AST's (asynchronous system traps) are equivalent
to progranvnable software interrupts.

File system organizations and access modes are
standard across all languages.

* * * *

A P R 0 C E S S

Process = Context + Executable Image

o Has one 32-bit physical address space

o Has 4 30-bit virtual address spaces

o Contains current image in PO

o Contains stacks, I/8 database,
quota and privilege information,
logical name tables, PSL, etc. in Pl

o contains system space,
shared by all processes in SO

206

A PROCESS CAN

o Execute images

o Execute DCL commands

o Execute procedures

o Spawn another process

P R 0 G R A M D E V E L 0 P M E N T

o Native-mode VMS Languages:

FORTRAN, COBOL, BASIC, PL/l,
RPG, Pascal, MACRO, BLISS-32

Can all call one another

o No explicit compile command or save command

$ FORTRAN FILEl.FOR, FILE2.FOR, •••
$ COBOL FILEl.COB, FILE2.COB, •••
$ LINK FILE1,FILE2,FILE3,FILE4

C 0 M P I L E R S

o Create object modules

o Source code can have multiple program units
-AND- object file can have multiple object

modules

o /DEBUG adds symbols, entry points, line
number info

o /CHECK for out-of-bound subscripts,
arithmetic overflows and underflows

o /NOOPTIMIZE

o /LIST (can use in conjunction with
/NOOBJECT) line numbers, variable
datatypes and addresses

0 B J E C T L I B R A R I E S

o created with $ LIBRARY/CREATE libname

o add entries with
$ LIBRARY/REPLACE libname objectmodule
(you can delete the object file after
placing the object module in a library)

o entries can be extracted and deleted
(Extracting an entry creates an object
file from it. If you delete a lot of
modules, do $ LIBRARY/COMPRESS to reclaim
file space)

o Libraries contain compiled object modules

o -and- other objects (not compiled):

- command language descriptions

- error descriptions

- symbol definitions

- system-defined procedures

L I N K E R

c Invoked with the $ LINK • • • command

o Gets object modules from object files
and/or library files

o Creates executable and shareable images

o /DEBUG appends symbol, line # info to image

- causes image to run under debugger by
default

- override default at runtime with
$ RUN/NODEBUG (can still enter
debugger after CTRL/Y)

o /TRACEBACK dumps image/process state after
error

o /MAP/FULL provides virtual memory map,
global symbols, cross reference, module
synopses, etc.

G L a B A L s y M B a L s L I B R A R I E S

o Linker searches

- explicitly named modules and libraries

- system default libraries

- user default libraries

o User default libraries: (where MYLIB is
an object library)
$DEFINE LNK$LIBRARY dev:[dir]MYLIB

207

S H A R E A B L E I M A G E S

o Shareable images are nonexecutable

- saves disk space

- executable images link to them without
physically including them

- linkage is set up when image is
activated

- use transfer vector macro to save
having to relink executing image when
shareable image changes

- use CLUSTER in options file to bind
macro and image

o Use /GSMATCH in options file to indicate
whether executable image must relink when
shareable changes

o Allow global symbol to be referenced
outside by including /UNIVERSAL in options
file (must relink executables if shareable
is changed)

o Create shareable images with
$ LIBRARY /CREATE /SHAREABLE imagename

- default file type is .OLB

o Advantages: save disk space,
maintainability

Disadvantage: image execution is slower

P R I V I L E G E D P R 0 G R A M S

o Some programs execute privileged system
services or obtain access and resources
through enabled privileges.

o Instead of giving all users the privileges
install image with privileges

$ INSTALL
INSTALL! CREATE dev:[dir]image /PRIV=priv

S H A R E D I M A G E S

o Shared image: only one copy in memory

o Use Install utility to make image shared

D E B U G G E R

o Can be invoked at compile, link, or
execution time

o If invoked only after execution, won't
have access to symbol table

D E B U G G I N G C 0 M F 0 R T

o In window mode, shows 3 default displays:
Debugger output, Source code,
Register contents

o Can save a snapshot of a display

o Can define other displays

o Has keypad mode

o Has HELP and SPAWN commands

B R E A K P 0 I N T S , E T C

o Can set breakpoints at routine start, at
exception break, at any location, on a
type of instruction • . .

o Can set tracepoints at same places, to
just display execution of interesting
instruction and continue

o Can activate breakpoint /AFTER n iterations

o Can conditionally execute list of commands
at break

o Symbols can be used with patch utility

0 T H E R I N F 0 R M A T I 0 N

o SHOW MODULES

o SHOW REGISTERS

o SHOW CALLS

o SYMBOLS

- SET SCOPE to define program region to
use in interpreting symbols

- make symbol uniquely identifiable with
pathname prefix

module routine block section line symbol

C H E C K I N G U P 0 N P R 0 G R A M S

o SHOW PROCESS /CONTINUOUS /ID=xxx

o CTRL/T

o RUN /PROCESS image /DUMP

- examine dump with SDA

o RUN /PROCESS image /ERROR

o relink image with /DEBUG and/or /TRACEBACK

0 sos
o EDT

E D I T 0 R S

line oriented editor, unsupported

line mode
screen mode with keypad commands
screen mode with typed-in commands

o EMACS-32 -- available from third party

o TECO/TY -- Integration tools tape,
unsupported

o SEO -- Integration tools tape, unsupported

o TPU -- Programmable editor

S Y S T E M R 0 U T I N E S

o Languages which can call:

- MACRO, BASIC, BLISS-32, C, COBOL(-74),
CORAL, DIBOL, FORTRAN, Pascal, PL/l

o Arguments are passed by

- value, reference, or descriptor

o Condition value always returned

o Kinds of system routines:

- system services
- run time library routines
- utility routines

S Y S T E M S E R V I C E S

Functions:

208

o Security -- check protections, ACL's,
identifiers, disk erase

o Event flag services

o AST's -- set and deliver

o Logical names -- create, delete, translate

o I/O -- channels, QIO, device, volume
mailbox, breakthrough, message to
job controller, operator, etc.

o Process control -- creation, state,
priority, privileges

o Timer and time conversion

o Condition handling setup

o Memory management -- working set, global
section, lock page, swap mode,
stack limits, map section

o Lock management -- enqueue/dequeue,
get lock info

Does deadlock detection; chooses victim
process and denies the lock it's waiting
for. Program knows lock was granted by
event flag setting, by AST delivery
(routine having been set up for execution
upon AST receipt), or by polling the lock
status block. Same as for QIO request.

R U N T I M E L I B R A R Y

o Same calling and return standards as
system routines

o Use RMS for file I/O

o Execute in same access mode as caller

o Major subsets

- mathematics
- resource allocation
- condition handling
- screen management
- image/process handling

0 T H E R S Y S T E M R 0 U T I N E S

o CLI parsing

o RMS services

o File definition language routines

o Sort/merge routines

o File conversion services

o Data compression/expansion

o EDT access

o Librarian routines

o Print symbiont, job controller interface

I N T E R - P R 0 C E S S
C 0 M M U N I C A T I 0 N

o Common event flags (fast, but only bits)

o Logical name tables (limited data amounts)

o Mailboxes (limited data amounts)

o Global sections (fastest)

o Lock management (fast, but only bytes)

o Shared files (slowest, but unlimited data)

o DECnet task-to-task

o Kernel mode AST

209

I N T R A - P R 0 C E S S
C 0 M M U N I C A T I 0 N

(Between different images executed by same
process)

o Local event flags

o Per-process common blocks

o AST's

o Symbol table

F I L E S Y S T E M

o File organizations

- sequential
- relative
- indexed

o File access modes

- sequential (works with all
organizations)

- random access by key value (for
indexed only)

- random by relative record number
(sequential and relative)

- random by record file address
(works with all)

- block I/O

o Record formats

- fixed length (all organizations)
- variable length (all organizations)
- variable with fixed-length control

(sequential and relative)
- stream (terminator delimited -- disk

sequential only)

TOPS-20 System Directions

Cbn DenTandt
The Trane Company

L.aCrosse, Wisconsin

ABSTRACT

David Braithwaite of Digital Equipment Corporation
presented an update of currently supported versions
of TCF'S-20. Facilities and support of each version
were outlined. Guidelines for implementation of new
operating system versions were given.

PRODUCT DESCRIPTION

There are presently five versions of TCF'S-20
in various stages of support and development.
Each version has been released for a specific
application and contains special features:

4.1 TCF'S for the 2020 and M:x:lel A

5.1 - The present regularly supported TCF'S

5. 4 For NIA and TCP /IP sites

6.0 CI and HSC disk support
6.1 In field trial, supports CEO'ET Phase
IV, CFS, LAT, NIA-20

STATUS AND PLANS

4.1 Original release of this version for
2020's and Model A's was in the Spring of
1982. Included is a DECNET Phase II
implementation. No additional faci Ii ties are
planned, but DEC is consulting with third
parties to possibly get DECNET Phase IV
implemented on 2020's. Autopatch support
w i I I continue.

5.1 This version was also released in the
Spring of 1982. The last autopatch tape,
number 11 is planned for early fal I this
year. Version 5.1 wi I I be superceded by the
final release of 6.1. Maintenance wi I I
continue for six months after 6.1 release.

5.4
originally released in September 1984, this
special TCP/IP release has been maintained
over the ARPANET. It has very I imited
availability and according to Braithwaite is
"only for the brave." Support is direct from
engineering. This release wil I be superceded
by 6.1.

6.0
Another engineering supported release of
TOPS-20, version 6.0 was first released in
December of 1984. The first update was sent
out in Apri I of this year. The last of the

Proceedings of the Digital Equipment Computer Users Society 211

quarter I y updates w i I I come i n September.
There is no SDC support, and engineering has
tried to keep distribution I imited.
Engineering reports that occasionally a site
experiments and finds that this version does
indeed contain no support for the CI and HSC,
just as advertised. Version 6.0 wi I I be
superceded by 6.1.

6.1 Field Trial
The field trial wi I I end in July and limited
support wi I I continue through August.
Version 6.1 wi I I be released to SDC early in
September which should put it on site in
November. DEC Common Fi le System (CFS) is
supported. The initial maximum configuration
supported with be two cpu's with 3 HSC's with
faci I ities to access front end disks on dual
ported drives.

Configurations larger than ~fficial ly
supported are presently working at customer
sites, but DEC is hesitant about immediately
supporting larger systems for a number of
technical reasons. Larger configuration
support wi I I come as part of DEC's commitment
to continue to support Large Systems.

Updates to DUMPER, MS and RP20 wil I be
included in the final release of 6.1.

6 .1 RELIABILITY

Field test for version 6.1 has been the
largest ever run with 26 sites, including 18
customer sites involved. There are at least
42 cpu's with potential of up to 60 using
this version. Because of this and other
factors, the final release of 6.1 wi I I be the
best tested, most stable TIPS-20 ever.
Braithwaite reports it as being the rrDst
thoroughly tested and stable TCF'S ever in
field test.

PERFORMANCE

For al I of the added features and faci I ities,
6.1 wi I I cost I ittle in performance. Some
sites have even reported an increase in

New Orleans LA - 1985

performance. Performance comparisons are to
the I atest autopatched version of 5. 1. The
advertised degradation in going to version
6.1 from 5.1 is 8 percent.

Changes in hardware configuration possible
because of new operating system features may
al low a reduction in floor space.

Fi le synchronization across CFS is presently
being done with CFEN/QJlSE sequences by ~
third parties. This is quite costly. ll:C is
working with this vendors to find a better
solution.

IMPLEMENTATION RECOMMENDATIONS

Because of the many new facilities which
closely involve system administration and
operations, intelligent choices must be made
before implementing new features. For.
example, choices must be made abou~ which
network connection to use, how to implement
CFS the use of L.AT's and the effect of
lar~er memory (4 MN now accesi~le) .on system
performance. Password encryption 1s
avai I able by structure and wi I I probably
require a change of procedures.for ~os~
passwords. This is not something d1ff 1cult,
just something changed.

Clustering may require changes to structure
names because no two structures in a system
can have the same name. Operations and
system administration are the ~t affe~ted
areas with version 6.1. Users w1I I notice
very little difference in system opera~ion.
EXEC enhancements w i I I be the most obv 1 ous
change to users, but only to those who use
them.
Orderly implementation is a must:
First, be sure you can fal I back to a
previous usable implementation.
Second, be sure that operations is wel I
trained.

A logical plan of attack is to first replace
5.1 with 6.1 without implementing any of the
new features. This is a good falling back
place for later implementations.

Next be sure that procedures involving the
ne~rk and shared drives are in place and
well understood and usable by operations
staff before production implementation of
these features.

In the "fal I back" vein, be able to split
systems before a full commitment to shared
disks. Implementing CFS with mostly
exclusive disks wi I I al low operations to come
up to speed without giving too much to users.
Begin without the MCSP server.

212

CFS IMPLEMENTATION

The Common File System (CFS) can cut down on
pack changing in multi-cpu environments.
Bringing CFS up slowly is important.

1. Begin with al I exclusive disks. This will
allow check of the MOUNT operations
faci I ities.

2. Allow limited disk sharing and experiment.
Note performance changes and how your
procedures work.

3. Share mountable dual ported RP06's next.

4. General sharing of HSC50 and RP07 disks
should fol low this.

5. The MCSP server is a heavy resource user
and should wait unti I this point. Again,
be sure to be able to fal I back if the
gains are less than the losses.

6. LAT and other configuration changes wi I I
fol low.

THE FUTURE

The SPR backlog has been going down and
should continue to decrease.

We are presently two years into ll:C's promise
of 5 year development and 10 year support on
ll:CSYSTEM 10/20's. The planned major
development work is nearing completion.

During the next 3 to 4 years, efforts wi I I be
spent on finishing commitments, in particular
to supporting larger CFS configurations.
Continued work on the "integrated
environment" is also high priority. The
continuing concerns of performance and
maintainability, especially in the area of
decreased complexity, wi I I also be addressed
in ll:C's continuing efforts. Present plans
cal I for a final development release in the
Spring of 1988. As priorities have not yet
been officially established, ll:C is open to
suggestions and comments from users.

CONCLUSION

ll:C's commitment to continue 10/20
development is producing a very usable
product that should meet the growing needs of
users for some time. ll:C has obviously
committed many engineering resources to
working with customers and is bringing many
features that have been asked for into the
next major release of TI:FS-20.

Questions and answers were postponed unti I
the end of the fol lowing session, as many of
the questions would probably be answered
there.

TOPS-10 NOVICE Q & A
TOPS-10 Q & A

Jack Stevens
The Gillette Company
Boston, Massachusetts

ABSTRACT

Members of DEC's TOPS-10 development groups answered questions
from the audience. The questions and answers are sLmmarized here.

AGENDA

A. Questions and Answers
Carl Appelhof, Bill Davenport, Joseph Dziedzic, Warren Sander; Dawn Banks, Raun Boardman,
Jim Flemming, Bob Houk, Barb Huinzenga, Don Mastrovito, Larry Sendlosky, Nick Tamburri, Kimo Yap
(Digital Equipment Corporation)

The TOPS-10 Novice Q & A and the TOPS-10 Q & A
sessions are presented here in a combined summary,
reflecting the actual composition of the audience
and the questions.

Three members of DEC's High Performance
Systems/Clusters Engineering -- Carl Appelhof,
Bill Davenport, and Joseph Dziedzic -- plus Warren
Sanders of Large Systems Marketing Technical
Support were available to answer questions from
the audience. Dawn Banks, Raun Boardman, Jim
Flemming, Bob Houk, Barb Huinzenga, Don
Mastrovito, Larry Sendlosky, Nick Tamburri, and
Kimo Yap also answered questions via telephone
hookup from Marlboro.

A user who is running RSX-20F version 15-06 under
7.0lA finds that users on a terminal switch see a
fragment of the welcome message when they
autobaud. This is fixed in 7.03 by having INITIA
not put anything into a line's output buffer until
it is dialed into. A PCO could be generated for
7.02 that might work under 7.0lA.

In an SMP system, an imbalance in the indicated
number of TTY characters transferred on the policy
CPU versus the other CPU(s) is not necessarily a
problem, as all network TTY traffic is handled by
the policy CPU (at clock level for the
DN20/DN87-based network I/O. 800 characters per
second TTY output is a relatively insignificant
number for a KL).

With Galaxy v.4.1, KJOB's in batch streams can
sometimes make jobs hang in TO state in LOGOUT.

Eight-bit terminal support in 7.03 will allow
transmitting and receiving of full 8-bit
characters. If the terminal is opened in 7-bit
mode, the input and output will be translated to
and from 7-bit, to avoid breaking older programs.
To use all the characters, the terminal will have
to support 8-bit characters, and the program will
have to open the terminal in I/O mode 4.

Proceedings of the Digital Equipment Computer Users Society 213

Having an additional model number field in the
terminal type characteristics for user-defined
terminals is being considered, but will not be
done in 7.03.

A problem with RSX-20F sometimes losing its KL
Config file and coming up in KLI does seem to be a
bug, but a directory should be taken of the
front-end area to determine if the file is lost or
just inaccessible.

MF20 and MG20 can (probably) be intermixed.

Just reading a badly fragmented file opened in
update mode can cause monitor detected file
checksLm errors.

To get rid of the "File errors exist" message when
logging in (after cleaning up the file errors),
log in with the /QUOTA switch.

The "DECsystem-lo not running" message that is
sent to all terminals when TGHA runs is caused by
the monitor, not TGHA.

There is no standard 10 utility that will write a
ANSI-labeled tape that the VAX will read easily
(other than the less-than-robust TENVAX). This is
because the 10 only supports volume labels, not
the file labels that the VAX uses. Support for
label processing, as TOPS-10 offers, is not the
same as support for labeled tapes, as there is no
guarantee that what is actually written on the
tape agrees with what the label says. There is a
document that deals with reading and writing VAX
tapes (albeit for TOPS-20) on the Integration
Tools Tape.

On dual-ported RP20's, paths to the drives get
lost randomly. Trying to reestablish the path
by detaching and reattaching the drive seems to
corrupt data and crash programs. Because of the
frequency of reformatting, replacing HDA's, and
microprocessor restart errors, a hardware problem

New Orleans LA • 1985

was suggested (though the questioner's Field
Service office didn't agree).

A suggestion was made to change the hardware
configuration dialogue of MONGEN to separate
actual hardware-related items from the
non-hardware-related items (such as ersatz device
definitions). This goes against the grain of
current development, which is to reduce the number
of configuration files. A further suggestion was
made to remove these types of items from MONGEN
altogether, to be read, perhaps, at ONCE-only
time, to avoid having to rebuild the monitor as
frequently. Anything like this cannot be done for
7.03.

System-wide PATHological device names were
requested. They are being considered, but will
not appear in 7.03.

Will an RH20/DX20/TX02 tape controller combination
give better performance than a DX10/TX02
combination? Not without the 200 ips tape drive
(which DEC won't sell, anyway).

In hacking TOPS-10 to change TTY output from even
parity to space parity, changes have to be made
not only to SCNSER, but also to RSX-20F (xon,
xoff, and DECsystem not running message) and
TTDINT (DECsystem-lo continued message).

If one includes all the new hardware, software,
and DECnet functionality of the 7.03 monitor, it
becomes about 130 pages larger than 7.02.

Backup in 7.03 supports labeled tape reel
switching with indications in the listings.

Backup in 7.03 will not support larger tape
block sizes for 6250 bpi tapes.

[At this point, a short recess was declared until
the beginning of the nominal start of the TOPS-10
Q & A session. An occasional giggle could be
heard over the telephone hookup.]

MDA in 7.0lA can cause all tapes to hang in event
wait (for itself). This was fixed in an autopatch
tape (and is a two-line PCO to TAPUUO).

214

PULSAR regularly dying with a CCD stopcode when a
volume switch is done to an uninitialized tape (or
one initialized at the wrong density) was fixed
with a couple of PCO's.

The requester of larger block sizes for BACKUP
running at 6250 bpi was thanked for his
suggestion and assured that it was being
considered for a future release (not 7.03).

There will be no new tape utilities on the 7.03
CUSP tape (such as one to read VAX labeled tapes).
This is something that might be requested of LSM
on an Integration Tools Tape. It would take a
great deal of work to put it into PULSAR.
The 130-page increase in size of 7.03 does not
necessarily include such things as CI buffers, LAT
buffers, DECnet buffers, etc.

The RUN and GETSEG UUO's still trash the
accumulators in software channel O. This bug has
been around long enough to develop a sentimental
following. Also, no one wants to break programs
that depend on having their accumulators trashed.

Fact file accounting is completely removed in
7.03. The only vestige is a program to convert
Usage files to Fact format.

If one does a LOOKUP or ENTER on a file, using an
extended block, then tries to RENAME the file,
RENAME also expects an extended block. (Bug:
SPR).

There is no chance that anything like the TOPS-20
PMAP UUO will be implemented in TOPS-10.

PULSAR code is brittle; fixing problems is
difficult. No date can be given when it will live
happily ever after (as opposed to fixing
individual bugs).

TOPS-10 Monitor Directions

Susan M. Iamaestra
Johnson & Johnson
Raritan, NJ 08869

ABSTPACT
William Davenport of Digital F,quiprrent Corporation, who is a
Principle Software Engineer involved with the development of
the TOPS-10 rronitor product discussed features of version 7.03
and future directions.

A. Slide and lecture presentation of
7.03 rronitor features.

B. Questions and answers.

Ml'WOR HARDW\RE .ENIJAN::EMENTS -
Support for CI20 and HS:50 (RA.60 and RA.81 disks)
Support for NIA20 (E'I'HERNEI')
IAT support via DEC&J\. (32lines), DECSERVER 100
(8lines), IAT-11
Support for mixed M:A-25 and non M:A-25 KL's in
a SMP environrrent
Software distribution package available with onw
Q# for mixed 1090 and 1091 sites.

Ml'WOR S~ .ENIJAN::EMENTS -
DECNEI' Phase IV
CTERM - (layered on DECNEI' for support of;

heterogeneous terminals.)
User node extended addressing
Alternate context; Push/Pop
Security Features -

Password encryption, longer passwords and
usernarres (up to 39 characters), password
expiration, ILGIN support for validation
failures, SE!' PASSIDRD corrmand allows
password change at rronitor, MCNGEN para
rreter disallows use of comnands when not
logged in (SYS'lAT, Queue, etc.)

Proceedings of the Digital Equipment Computer Users Society 215

Galaxy Enhancerrents -
CATOILG utility (replaces STRIST)
Event queue scheduling
OPR conmmds -

Set core max, Set log max, OPSER corrrnands
(KSYS, etc.) , N:P support for all DECNEI' IV,
ICP support fotr IAT terminals
Multi threaded FAL
Disk quota support {Quam.SYS)

GENERAL .ENIJAN::EMENTS -
NI supports any E:l'HERNEI' protocol; Full DECNEI'
Passe IV requires NI.
Installing either CI or NI in KL will use all
:f;our top RH20 slots. (NI uses 4-5,CI ~ses 6-7)
8.1\.VE.UUO support for multi section M\CRO programs
/USE switch for RUN, GEI', MERGE corrrnanss;
forces relocation to different sections.

Corrrnands may be defined auto pushable.
HELP will no longer destroy core image.
User defined commands via DECIAR program.
New REACT - (GLXLIB based); SYS:ACTDAE.SYS

replaces ACCT.SYS and AUXACC.SYS
Paging enhancerrents
Monitor support for 8 bit AS:::II terminals

Nm' SUPPORI'ED -
HS:::50 based-tapes, DXlO, CI with DECNEI' IV.

Product due for release February/March, 1986.

New Orleans LA - 1985

Reading Foreign Tapes on a DEC-20

Betsy Ramsey
American Mathematical Society

Providence, Rhode Island

Abstract
Reading and writing non-DUMPER tapes Is difficult on the DEC-20, pri
marily because little documentation exists on the methods to use. Berkley
Shands of Emerson Electric, author of several tape utility programs, offered
advice on reading and writing non-DUMPER tapes. Members of the audi
ence asked questions and presented their own ideas and solutions to the
problem.

Reading Foreign Tapes

It is difficult for users to read non-DUMPER tapes from other
sites because little or no documentation exists on how to do It.

When a foreign tape Is received at your site, the first thing to
do is determine whether or not it Is labeled. The easiest way
to do this Is to mount It on a drive that has Automatic Volume
Recognition (AVR) enabled. MOUNTR will Inform you via QPR
whether the tape is labeled and, If it is, the type of label and
volume identifier. Even if the sender tells you the tape Is a
standard ANSI-labeled tape, often you mount the tape and find
It is unlabeled. It is easier not to take anyone's word for it.

If the tape is ANSI- or EBCDIC-labeled, you can use the EXEC
DIRECTORY command to get a list of files on the tape, and
the COPY command to restore the files to disk. COPY will
translate EBCDIC to ASCII if necessary. For text files, use the
BYTE 8 and ASCII subcommands to COPY. For files you want
to restore in 8-bit format, use just the BYTE 8 subcommand.
Be sure to set the tape record length appropriately (4096 Is the
maximum for ANSI standard tapes)-the default 512 is usually
too short.

If the tape is not labeled, you can still try the COPY command,
although you will not be able to get a DIRECTORY. Try It both
with and without the BYTE 8 subcommand before you give up
on COPY.

A number of user-written utilities exist for looking at the tape
and determining Its format. Among these are TOPS-10 DIRECT
and Nelson Beebe's TPLOOK.

If you are unable to restore the files with the COPY command,
you can try other utilities. RFIL11 from the Integration Tools
Clearinghouse does a good job of reading ASCII files from ANSI
labeled tapes. To use it and other programs that expect to pro
cess the tape labels, you will either have to assign the tape
drive directly or mount the tape with the /LABEL:BYPASS
switch. The ancient CHANGE program does run on TOPS-20
with PA1050 but it Is slow.

Writing Foreign Tapes

The first problem in sending out a non-DUMPER tape Is deter
mining what format the remote site can read. When In doubt,
send an ANSI-labeled tape with fixed format records of length 80
with no blocking factor. If the tape Is going to an IBM machine,

Proceedings of the Digital Equipment Computer Users Society 217

use fixed records of length 80 and a block length of 800 (that
is, blocking factor 10). If the tape is going to a DEC machine,
use variable length records with a maximum record length of no
more than 4096.

You can create an ANSI-labeled tape with variable length records
as follows. Use OPR to initialize a ANSI-labeled tape. Mount
the tape using the volid specified at initialization. Change 7-bit
ASCII files to 8-blt before putting dumping them to tape. The
DEC-supplied utility RSXFMT will do this nicely. Set the tape
record length to 4096 or less. Use COPY with its BYTE 8
subcommand to put the files on the tape. When you send the
tape out, be sure to include a directory listing and information
that the tape contains variable length records with a maximum
record size of whatever.

COPY cannot create fixed length records. For this, the best
utility Is TAPE11 from the Integration Tools Clearinghouse. It
can create fixed or variable format tapes, with or without labels.
It can handle both ASCII and EBCDIC data. It will accept either
7-bit files or 8-bit files, depending on the format you select.

Utilities like TAPE11 expect to do their own label processing,
so you must assign the tape drive directly, mount the tape with
/LABEL:BYPASS or start with an unlabeled tape.

If you simply need to make a copy of a tape, utilities such as
MTCOPY, TAPCOP and DUMCPY exist. A couple of these
have appeared on past TOPS-20 SIG tapes.

Information from Q&A Period

If you don't have any luck Interpreting a tape, COPY its first file
to disk and use CHANGE, FILDDT or other utilities to examine
It there. It's too slow to keep rewinding the tape.

Bob Ham of MA-Com/Linkabit reports that they have had good
success reading tapes using a simple Cobol template program.

Rather than use DUMPER Interchange mode to create TOPS-
10 BACKUP tapes, it Is better to obtain a copy of BACKUP
Itself. With a three-line DDT patch, it will run under TOPS-20.

Thf1 P•P•r •••produced br the TeX typtsettln11y1tem, and printed on • low·rHolutlon laHr
printer.

New Orleans LA - 1985

TOPS-20 Utility Closet

Steve Attaya
Wiener Enterprises

New Orleans, Louisanna

Abstract
The SIG tape copy process was reviewed. TOPS-20 users-identified pro
grams that they will submit to the SIG tape. TOPS-20 users indicated
programs they would like to see on future SIG tapes.

Before the presentation of utilities began, Betsy Ramsey, mem
ber of the Large Systems SIG Steering Committee, covered some
administrative matters:

• The Fall 1984 SIG tape was distributed through the National LUG
Organization. The one attendee who had requested the tape from his
LUG had not received it. however.

• The Spring 1985 tape will also be distributed through the NLO. Users
should contact their LUG to obtain a copy of the tape when it is avail
able (after early- or mid-August 1985).

• Steve Attaya would be the new TOPS-20 Tape Copy Coordinator.

• All submissions to the SIG tape must be accompanied by a completed
Tape Copy Release form filled out by the author or their organization.

• No proprietar11 prograrru. modified or otherwise. can be included on
the SIG tape. Therefore. if you wish to submit modifications to propri
etary software. note that only comparison files will be accepted: send
SOUPR .COR files or REDIT .RED files if possible. otherwise FIL
COM /SRCCOM output. Be sure to indicate the version number and
write date of the distributed version of the program.

Steve Attaya then covered the new way in which material would
be identified for inclusion on the SIG tape. In the past, the ma
terial that appeared on the tape was only that which someone
voluntarily submitted. In the future there would be a concentra
tion on users identifying material they would like to have included
and then trying to obtain that material. It was indicated that
this was a experiment and that it was dependent both on users
stating what it was they would like to have and also on finding
someone to submit those programs. To this end, Steve stated
that users should identify where they had seen the software re
quested if they had seen or heard of it in use.

The following is a list of programs/items that were requested
by attendees:

• BitNet support for TOPS-20

• "C" compiler for TOPS-20

• Current version of MM mail system

• WATCH data reduction and reporting system

• Directory mover /creator
• Kermit for Visual Tech 1050

• Menu system for TOPS-20

• PROLOG compiler
• System M Microfiche device driver

• Directories of old TOPS-20 SIG tapes

• Modifications to LOGOUT to simulate terminal server break charac
ter(s)

Proceedings of the Digital Equipment Computer Users Society

Steve Attaya noted that the following software had been identi
fied earlier, and that he would try to get it on the SIG tape:

• EMACS Libraries (Nelson Beebe. University of Utah)
• EMACS Libraries (Rob Austein. MIT)

• Current version of EMACS (MIT)

• Current version of PASCAL. SAIL compilers; an "ancient" version of
SCRIBE (Chuck Hedrick. Rutgers University)

• Current KERMIT distribution from Columbia (via Reed Powell of Dig
ital)

• PC-DOS KERMIT that emulates a VT100 (Tad Marshall. Banker's
Trust)

The following is a list of attendees that said they would make
submissions to the Spring 1985 TOPS-20 SIG tape:

219

• Mike Joy (First Church of Christ. Scientist. Boston. MA)
• Operations and production mangement tools

• Osman Ahmad (Association of American Railroads. Chicago. IL)

• EMACS libraries/modifications

• Clive Dawson (MCC. Austin. TX)

• Galaxy interface to Imagen laser printer

• Text of "Alice's PDP-10" (also to be included in AT LARGE.
the large Systems SIG newsletter)

• Betsy Ramsey (American Mathematical Society. Providence. RI)

• LPTSPL modifications for spooling to terminal lines

• TEX & METAFONT typesetting system (if Donald Knuth. its
author. would submit it)

• Updated WPSIM word processor program (if its author Douglas
Bigelow would submit it)

• Ronny Appleby (Woodward Communications. Dubuque. IA)
• LPTSPL modifications

• Bob McQueen (Stevens Institute. Hoboken. NJ)
• A public domain version of ··c

• Richard Messinger (Eastman Kodak. Rochester. NY)
• LPTSPL modifications for spooling to terminal lines

• SETTERM/TERMTYPE utilities to modify terminal parameters.
FORTRAN/MACRO utility to set up terminal

• JKILLR utility to log out idle jobs

• Minor modifications to NFT
• Reed Kelly (Shearson lehmen Bros. NY. NY)

• LPTSPL modifications for writing EBCDIC data

• Robert Jones (University of DC. Washington. DC):

• Modifications to ACCT20 accounting program

• Charles Lewis (Electro Scientfic. Portland. OR)

• /DESTINATION implementation for TOPS-20

New Orleans LA- 1985

• Ray Cadmus (Computsized Business Systems. Moberly, MO)
• Has some Integration tools that wnt be on the Integration Tools

Clearinghouse tape, not the SIG tape.

At the end of the session a note was made that Digital is going
to Implement "barebones" TTY support In LPTSPL for 6.1. It
was recommended that the SIG tape for FALL 1985 have as a
goal a number of LPTSPL modifications submlttals.

The closing date for submitting utilities to the Spring 1985 SIG
tape will be July 15, 1985. Further information will appear in the
next edition of AT LARGE, the Large Systems SIG newsletter.

Thia docmn- WH produced br the TeX typoaottln1 •11•tem, and printed on• law-roaolutlon
lo-prlntor.

220

MG--J.O/MH-10 MEMORY UPGRADE AND
MULTI-PORT INTERNAL MOS MEMORY

Donald A Kassebaum
University of Te.~as at Avstin Compu·tation Center

Austin. TX 78712

The neEd for upgrading e•isting LCG IMG/MH> memories been
satisfied at this site by replacing core memory modules with
OEM type MOS memories. Utilizing the same concepts. a multi
-port internal memory subsystem for SMP has been designed.

A Introduction by Chairman.

MG/MH 1 0 UPGRADE
BLOCK DIAGRAM

B. Presentation by Ed Jordan of Goodyear
Atomic Corp~ration.

MG/MHlO MOS Upgrade

1) Each memory controller may be upgraded
to maximum of 2M words.

2> Each memory subsystem may be upgraded
to 4M word;,.

31 Two way intsrleaving within the memory
subsystem and two-four way interleaving
is supported between two or mere boxes.

41 ComplEtelu diagnostic transparent.

111110
-BUS

CONNECTORS

READ ACCESS CIS l

IUD CYCLE US>

WRITE CYCLE

MUL TIPORT MOS
BLOCK DIAGRAM

MEMORY

INTER
cneo

MEMORY

INTER

R6111"10 ROS

PUFotlRAICE COllPAllSGI

BUD llfll 11

735 SIO

117U SIO

IO'IO 670

IUD-llODIFT-llRITE CYCLE 1730 970

POllEI REGUIREllEITS 10 1256 Kl 8 -· ,_ ..,,

POllER DISSIPATIOI 2Q WATTI 1500 WATTS

OEM

MEMORY

SECTION• 1

11£11 IZ

350

350

-00

730

1.7 ,_ ,.,

1800 WATTI

Proceedings of the Digital Equipment Computer Users Society 221

ICI.

INTERFACE

PADOl.E l'U.TPORT

llOMD
lfTERFACE

CABLE
CPU 80

.
ICI.

INTERFACE

PADDl.E l'U.TPORT
BOARD llTERFACE

CABLE
CPU •N

Mulitport Interface Functions:
1) 4 word ... 11;p1o.nnv producing 144 ot. bits

to OEM mMhOl"'IJ
2) Unoornctablo ECC Nd ,...tty -•lion.
3) OvtrloppW.V or P1>011ng ... 111-cpu '"""""I

roqunls blf not st..-tiog OEM -v CIJClo
... 111 lost vord frGm ICI.-1 O ts In tr 011Stt.

4) Fut.r• oddrHs ...,.. .. rogtstors for""""'"'
-itv up to 32 mt90vords.

~)Fun DMA-20 emulllttori to ma'ir\t.WI ~tto
compo1Wllftllj.

OEM MEMCRY

1024 K-WOROS
BY

144 BIT WIDE

DATA BUS WITH

ECC CORRECTION

"ULTI PORT INTERNAL "E"ORY
PERFORPIANCE ClllPARISON

READ CYCLE CNS>
1 WORD 730 430•
2 WORD 930 430 3 WORD 1130 430 4 WORD 1330 430

READ ACCESS CNS>
1 WORD 800 450
2 WORD 1000 650 3 WORD 1200 850
'I WORD 1400 1050

WRITE CYCLE CNS>
1 WORD 860-1130 450 2 WORD '150 3 WORD 450 4 WORD 1260 450

READ-"ODIFY-NRITE CNS) 1000 670

POWER CONSURPTION 3700 N 1100 N

•REDUCED CYCLE Tl"ES DUE TO OVERLAPPING WORD TRANSFERS.

New Orleans LA- 1985

TOPS-20 VERSION 6.1 USER'S PANEL

Peter B. Galvin
University of Texas at Austin Computation Center

Austin, TX 78712

ABSTRACT

Representatives of Version 6.1 field test sites
discussed their experiences of converting from V5.X
to V6.1 and their impressions of TOPS-20 V6.1.

A. Introduction by Chairman.

B. Presentations by Richard Jannick of Abbott
Laboratories, Robert Ham of M/A-COM
LINKABIT, and Sean Welsh of Stanford
University's LOTS computing facility.

C. Questions and answers.

Richard Jannick:
Abbott labs maintains 1 DEC-2060 and 2 DEC-
2065s, with many RP06s and RP07s. They have
an HSC50 and 3 RA81s clustered between all 3
systems. They also have 3 DN20s.

All of the systems are allowed access to all
of the disk structures. This required
rebuilding the PS structures to avoid name
conflicts. In addition, all login
directories are duplicated on the 3 systems,
allowing users to login to all of the systems
in the same way. After login, users are
moved off to a shared structure to work.

The CFS system has enabled the users to copy
data directly from any structure on the any
of the systems, making the NFT program
unnecessary. It is also now possible for all
users to continue work even when one of the 3
systems is down.

One problem of the shared disk environment is
that some files may be accessed by multiple
users, and, unless they are careful, the
users could destroy the work of others.

Other points include:
- CI'ERM works well between 20s, allowing

multiple connects between systems.
- 9600 autobaud detect works as advertised.
- New login security works well, limiting the

number of wrong passwords that can be
entered before the system either ignores
the user or drops the phone connection.

Along with the clustering of the DEC-20s came
the need for operator retraining. Operators
could no longer shut down a system with
impunity: a parser "halt" is needed at the
end of a system shutdown to signal other
systems on the cluster. Without the "halt"
all systems on the network would hang. '

Proceedings of the Digital Equipment Computer Users Society 223

Hardware problems with disk drives on the
cluster tend to hang the entire cluster.

The only program incompatibility comes in
program which have job-number based tables
built into them. Programs of this type must
be rewritten to take into account the new
global job numbers associated with clustering
DEC-20s.

The performance of an individual system has
changed between V5.1 and 6.1 of TOPS-20.
Some benchmarks are:
- Number crunchers gained 15-20%
- I/O bound programs gained 15%
- 1022 applications lost 40%! (possibly

because of multiple file opens and closes)
(this is for batch jobs only) .

- Load averages seem about even.

Bob Ham:
M/A-COM LINKABIT has
networked with DECNET
systems were involved
those 3 systems have
hardware.

five 2065s and 25 VAXen
and Ethernet. Only 3
in the field test, and
no CFS, only the NI

The conversion from V5.1 to V6.1 was
"painful" for several reasons. Password
encryption was troublesome since M/A-COM
already was using another password encryption
scheme, and incompatibilites existed.

The first time V6.1 is booted it installs
PPN support on the system disk. The process
is not robust, however, and one time resulted
in a trashed PS: structure. The cause was a
bad directory, so running CHECKD before the
conversion would have avoided the problem.

Version 6.1 itself is very nice, with a few
exceptions:
- VT52 and VTlOOs no longer pause after every

24 lines by default, which is disconcerting
to users who expect them to do so.

- Spoolers which have been modified to spool
to daisy-wheel printers at 1200 baud will
no longer run at that speed. The front-end
is slower (for some reason) to acknowledge
XOFFs than it used to be, so the printer's
buffers tend to get overrun.

- The monitor is fairly reliable now

New Orleans LA· 1985

In general, the NI interface is very good,
and easily replaces the DN20. It's much more
reliable, cheaper to maintain, and simpler to
use.

CI'ERM between VAX VMS and TOPS-20 does not
work for most programs. Both multi-line
TEXT! jsys calls and control-character
passing fail. (This is apparently a problem
with VMS) .

The monitor can no longer be patched with
FILDDT.

In terms of performance, little change has
been noticed by most users, although some
improvement has been seen in COBOL batch
jobs. Also, MAILER and MMA.ILR. are slowed by
the fact that they loop through the job
tables, which have grown from 128 jobs to
512. MMAILR. was at one point 1.75 hours
behind in delivering local mail.

The new DUMPER is still slightly incompatible
with the old, making it difficult to read
V6.l tapes under V5.l.

Sean Welsh:
It should be noted that installing either the
CI, or the NI, or both, takes up 4 RH20
slots.

LOTS only uses the Cls, not Nls,
ethernet support on the DEC-20s via
device.

but has
another

Adding a CFS and V6.l to a system does
decrease system performance, by 20% at LOTS.
There is a noticible improvement in the
performance when the CFS is turned off and
the systems are essentially unclustered.

In general, both
reliable. However,
hangs, the other
too.

V6.l and the CFS are
if a system in the CFS

systems will tend to hang

Using the MSCP service degrades system
performance, and causes the clustered systems
to be more dependent upon each other (so one
system crashing will cause the others to
crash) .

When converting, make sure password
encryption is not turned on until V6.l
stabilizes, since it is impossible to go back
to V5.l with encrypted passwords.

LOTS also noted the PPN conversion problem,
and it is suggested that a catastrophe tape
be made before this conversion is attempted.

Questions and Answers:
Performance of 6.1 has been improving with
each distribution, with the worst performance
being seen in V6.0.

224

Site Environment

MANAGING A LARGE MULTI-SYSTEM
SITE -- A CASE STUDY

Michael D. Joy, Manager
Data Processing Division

First Church of Christ, Scientist
Christian Science Center

Boston, Massachusetts 02115

ABS TRAC'!'

Michael Joy presented a case study of how his
organization manages a large business with
multiple DECsystem-lOs. The techniques used
enable them to actually reduce operations staff
during a period of rising production demands. A
major reason for the increase in productivity was
the automation of functions, such as scheduling,
job set-up and shift reports. These tools are
written in COBOL and are available on the Spring
1985 DECOS library tape.

Topics covered during Mike's presentation were:
his site environment, site scheduling standards,
data entry standards, production improvements (by
using computer generated runbooks, schedules, job
set-ups and reporting on scheduled jobs), and
other hints for improving the workplace. Mike had
samples of the runbook standards, an actual
runbook, an Operators Handbook and Online Data
Entry instructions.

Appended to this report is a copy of the
slides that Mike used during his
presentation. These slides are referenced
during the following description of the
presentation.

Data Entry Evolution

• 1 KL1090 with 2 MEG of memory.
• Data entry was initially card input •
• Next came a disk to tape system •

• 1 KL1077 with .5 MEG of memory.
• 90-100 jobs on weeknights.
• 100-150 jobs on weekends.
• 45 applications •
• Heavy printing.
• Dozens of custom forms.
• Very high quality is required.

Standards

• All jobstreams have an ID. See example
on page 1 of appendix.
• Scheduling cutoff for batch submissions
is 2 PM for initiation at 4:30 PM.
• Online timesharing is cutoff at 4:15 PM.
• Cutoff for submission of jobs to the
data entry staff is 4 PM.

Proceedings of the Digital Equipment Computer Users Society 225

• There was a decision made to go to
online entry. They now have 3 data entry
personnel. They wrote their own onli~e
entry system in MACR0-10 (to be submitted
to the DECOS library) •
• Pages 2 and 3 of the appendix show
formats. Four formats are possible:

X all printable characters
N = numbers only
A = alpha only
D = date

The examples on page 2 illustrate the
flexibility of the formats for data
entry. You are able to define field,
beginning column, field length, and
prompts for each field •
, Online entry features:

Moved easily from key to tape system.
simple for novices to learn.
Flexible.
Requires a minimum of system resources

New Orleans LA - 1985

Production Improvements

• In this part of the presentation, Mike
reviewed functions that were automated to
improve productivity. , .
• Although this is a DECsystem-~o site,
the ideas could be used at a VAX or DEC-20
site. Since the programs are in COBOL,
they could be easily converted.

Run books
These work so well that the operator is
able to handle 90% of the problems that.
arise. Pages 4 through 7 of the appendix
show items in the runbook that are
required for each jobstream.
• Page 4 shows the table of contents for
the jobstream. Items required by the
jobstream are marked with an X.

Page 5 is a sample of the transmittal
sheet for a jobstream. Note that it is
signed by the client. .
• Page 6 is the resource sheet on which
you show items, such as tapes, disks, ppn.
• Page 7 is the dispatching sheet that
shows what is to be done nwith all output
reports and tapes.

Schedules
Page 8 of the attachment is a copy of the
batch schedule. You start with a skeleton
schedule with empty job slots. As jobs
are scheduled, they are placed in a job
slot. Each slot shows the job number,
jobstream ID and priority. When the job
is done, it is checked off in the last
column. Page 9 of the appendix shows
notes that can be entered by the
scheduler.

Job Setup
Page 10 of the appendix shows the job
setup sheet with the tape labels. These
are automatically produced by the
computer. The transmittal checklist for
the schedule on page 11 of the appendix is
also automatically produced. This gives
the scheduler a quick check off
capability. Page 12 of the appendix is
the automated check list for the data
entry personnel so that they can ensure
that data is ready for the scheduled runs.

Reporting on scheduled jobs
Page 13 of the appendix i~ th~ .
automatically generated distribution so
that you can check off creation, handling,
and delivery of reports.
Page 14 of the appendix shows that the
computer also can automatically generate
labels to go on packages that are mailed.
Page 15 of the appendix is a Job Analysis
Report that can be generated by the system
if information is entered concerning
specific jobstreams. You may want to do
this as a reminder in the future for
particularly long or troublesome jobs.

226

Reporting generated by the system

Shift Report (page 16 of appendix)
• These are problems and comments on
system status or specific jobs.
• These are generated by the operator on
the computer during the course of the
shift. Miscellaneous comments can also be
entered •
• It is printed and distributed to all
managers.
• A copy is also sent to the field service
engineer.

Job Performance Memo (page 17 of appendix)
• This can be completed by anyone
including operators, programmers,
analysts, or managers.
• It indicated any problems experienced
with jobs.
• Turnaround in responding to these will
be from one day to a week, depending on
the problem.
• The manager must review these very
carefully to be sure there really are
problems. Resolving them without
upsetting people takes a lot of tact and
diplomacy.

Problem Reporting Form (gP· 18 and 19)
• This can be completed y clients of the
computer center.
• As with performance memos, they should
be handled quickly and tactfully.

Memorandum Format (page 20 of appendix)
• This is used to respond to the problems
reported by clients •
• words must be chosen carefully.

AMAR Re~orts (page 21 of appendix)
• This is one of the reports generated by
the DECsystem-10 performance monitor •
• This has been a product available from
Digital for a set price. It was indicated
that it will soon be available on the
DECOS library tape.
• This product is extremely helpful in
monitoring the DECsystem-lO's performance
and pinpointing areas that are causing
performance problems.

Documents to Review

Mike had a copy of several documents that
his Operations Staff uses. He was willing
to send copies to interested people. The
documents were:

Runbook Standards
Sample Runbook
Operators Handbook (see page 22 of
appendix for table of contents)
Online Data Entry Instructions

Miscellaneous Improvements

Mike closed with a discussion of several
other items that have helped them to
improve productivity. These were:
• Better communications among people. You
have to work at this constantly •
• Training for operators. Their Handbook
for Operators helps here •
• Promotion Review Board •
• Automated Tape Library system •
• Intra system queing facility between
their computer systems.

227

SSSFH

SSS • SYSTEM
PAY • PAYROLL
PER • PERSONNEL
COA • CHART OF ACCOUNTS

F • FREQUENCY
D • Daily
w • weekly
M • Monthly
Q = Quarterly
S • Semi-annually
Y • Yearly
X • As required
u • Unload

tt • A unique two digit number

Example: PAYW21 Weekly Payroll edit

228

Page 1 of 22

JOBSTREAM ID

JOB:APSDOl
SELECT
10l:APS101
20l:APS201
30l:APS301

JOB:APSlOl REC:SO
FORMAT:99 NEXT:l TITLE:"BATCH HEADER"

FIELD:N COL:l LEN:4 PROMPT:"YR.,MO."
FIELD:N COL:S LEN:4 PROMPT:"FILE NO."
FIELD:N COL:l4 LEN:4 PROMPT:"FILE NO."
FIELD:N COL:l8 LEN:l2 PROMPT:"BATCH TOTAL"
FIELD:N COL:30 LEN:S PROMPT:"DOCUMENT COUNT"
FIELD:N COL:35 LEN:lO PROMPT:"ACCT & SUB-ACCT HASH"
FIELD:A COL:45 LEN:l PROMPT:"O OR C"
FIELD:A COL:46 LEN:l PROMPT:"A,R,OR J""
FIELD:X COL:47 LEN:lO PROMPT:"DISTRIBUTION"
FIELD:N COL:69 LEN:2 PROMPT:"ACT.NUMBER"
FIELD:N COL:71 LEN:2 VAL:"Ol"
FIELD:A COL:75 LEN:4 VAL:"CONT"
FIELD:N COL:79 LEN:2 PROMPT:"BATCH NUMBER"

FORMAT:l NEXT:2 TITLE:"ll CARD"
FIELD:N COL:l LEN:4 DUP:REC
FIELD:N COL:S LEN:4 PROMPT:"FILE NO."
FIELD:N COL:9 LEN:l VAL:"S"
FIELD:N COL:l"O LEN:2 VAL:"ll"
FIELD:X COL:l2 LEN:lO PROMPT:"INTERNAL NO."
FIELD:N COL:22 LEN:6 PROMPT:"REQUEST DATE"
FIELD:N COL:28 LEN:lO PROMPT:"GROSS AMOUNT"
FIELD:N COL:53 LEN:6 PROMPT:"DUE DATE"
FIELD:N COL:79 LEN:2 DUP:REC

FORMAT:2 NEXT:3 TITLE:"l2 CARD"
FIELD:N COL:l LEN:4 DUP:REC
FIELD:N COL:S LEN:4 DUP:REC
FIELD:N COL:9 LEN:l VAL:"S"
FIELD:N COL:lO LEN:4 VAL:"l200"
FIELD:N COL:l4 LEN:2 PROMPT:"ACT"
FIELD:N COL:79 LEN:2 DUP:REC

FORMAT:3 NEXT:3 TITLE:"l3 CARD"

0749J

FIELD:N COL:l LEN:4 DUP:REC
FIELD:N COL:S LEN:4 DUP:REC
FIELD:N COL:9 LEN:l VAL:"S"
FIELD:N COL:lO LEN:2 VAL:"l3"
FIELD:N COL:l2 LEN:2 DUP:REC INC
FIELD:N COL:l4 LEN:2 DUP:REC
FIELD:N COL:l6 LEN:4 PROMPT:"FUND"
FIELD:N COL:20 LEN:4 PROMPT:"ACCOUNT"
FIELD:X COL:24 LEN:4 PROMPT:"SUB"
FIELD:X COL:30 LEN:29 PROMPT:"DESCRIPTION"
FIELD:X COL:59 LEN:lO PROMPT:"DEBIT AMOUNT"
FIELD:X COL:69 LEN:lO PROMPT:"CREDIT AMOUNT"
FIELD:N COL:79 LEN:2 DUP:REC

229

Page 2 of 22

JOB:ADSXOl REC:80
FORMAT:O

FIELD:X COL:l LEN:S VAL: "ADSlA"
FIELD:N COL:l6 LEN:l VAL:"l"

FORMAT:l
FIELD:X COL:l LEN:S DUP:AUX
FIELD:X COL:6 LEN:lO PROMPT:"ACCOUNT NO."
FIELD:N COL:l6 LEN:l DUP:AUX
FIELD:X COL:l7 LEN:39 PROMPT:"FIELD t, FIELD DATA"
FIELD:D COL:75 LEN:6 PROMPT:"DATE"

X = All printable characters
N = ts only
A • Alpha only
D = Date

JOB:ADSXll REC:80
FORMAT:l

Page 3 of 22

FIELD:X COL:l LEN:80 PROMPT:"ENTER ALL 80 CHARACTERS
ON l LINE"

230

JOBSTREAM ID SYSX99

1.5 RESOURCES

PPN ,14

MTA

DISK

ISO

DIRECT PRINT f=f

1.6 INPUT TAPES

TAPE ID

1.7 OUTPUT TAPES

TAPE ID I# OF REELS RETENTION
I

SYSUNLSYSX99 I 1
I
I
I
I
I
I
I
I

231

Page 6 of 22

DATE mm-dd-yy

FROM

DESCRIPTION

RECOVERY UNLOAD

JOBSTREAM ID SYSX99

3.3 DISPATCHING SHEET

I T
I 0
I T
I A
I L

DISK: OP4A I
I c

PPN: il4 I 0
I p
I I
I E

REPORT I FILE NAME OR I I s
I ID I TAPE ID IFORM ti
I
I
I
I
I
I
I
I
I
I

lolalsl
IEIUILI
ICIRIII
IOISITI
ILITI I
ILi I I
IAI I I
ITI I I
IEI I I
I I I I
I I I I
I I I I
I I I I

232

T
I
M
E
s

p
R
I
N
T
E
D

Page 7 of 22

DATE mm-dd-yy

Page!. of!.

1--1 SEE PAGE 3.2
I I SPECIAL OUTPUT
I I PROCESSING INSTRUCTIONS

TITLE
IMAIL
ISTOP

··~~~~~~~~~~~~~~~~~~~~""~~~~~~~""~"~~~~~~~~~"~~~~··
+ + I •
+ + I I I I I I I I I I I I t I I I I I J I I t I + ::·r·r·r•t•r•r•r•r·:·r·r·:·r·r·r·1·r·r r·r·r·r·r·:
: : + ! + ! + ! • ! + l • ! + 1•1 +lo!+!+ i + 1 + l + i + ! + ! + ! ! + ! + ! • ! + ! +:
++Ct.SI.Cl It· I ICIZtfl'tC IJ:IC.:CICI IOl:•I It I I I tC+
++~I !lit IC. IM I 1IC I llC I tie I ... IC I ""-l<C It <CINI ... I 1IC f M -c.• I IC I I 1IC I '111111 I lit I ... I -C +
~:t!t!~!.!+!+1+!~1~!~l.!:!~!:i.!~!~!.! !.1.1.1.1::
» • r tt I Y1 t"' -It I ..., r .n I ~ f" ~ t I ... I ~ I ... I f"9 I ..,. I'_. I "' I • I .,. I f ~ I ... I .,. I I ... +
~:~:~:~:~:~:~:~:;:~:~:~:~:~:~:~:~:~:,: l!l~:~1::g:
::~1~1~1=1~1;1:1~1~1~1~1=1~1g1~1:1~1=1 1: 1 ~1~1~1~: +Ql~l»t=t~tQl~IQISl<l~l~IOf~l~IQl~l~I 1~l~1Xt~1~+
:::r~r~r=r~r:r:r:r:r~r:r~r~r:rir:r:r~t;r:r:r~:ir::
::~r~r~1~1=1~1=:~1~1:r:1~1=1:1=1:1:1:::1:1!1~r::~:
• • • • • • : : I I : i i I I I I I I I I t I I I I I I I I I :
••••••••.•• ••• • • • • + •••••••••••••
:t I :
u!~t·t~t·t t~t t t t t t~t~•·t r t t t t t:t~t=~·:
~=~:"1~:4': ::;: I : : I 1:1~1"1 I ' ' I : I:?: .. :::~--: • :ir:rsr:r ::: r r : r r:r:r~: : : r • r r:r:r:r~:
++""INlll"l»I tNf I I I I t"IOIOI I I I ! I IDIOIOIO+
: : 3 : : I .! I .:! I I ~ I I I : : I·~ I ~ I : I I I I , I I ~ I ~ I ~ I ,~ :
••&111101111 1211 I I I I ICI0.10.1 I I I I I l'"'l:l'l.:01.:0•

::~i~i!!~~.!~!.!+1+~.1.l~t~!:L.1.~.1.i.1.1~!~1~!~:
••~•~1~101~1N1~1~1~141,.1=t~lot"l~•~t•t~•~1,.t=•~•o•
••~•~1~to10101010101otototot•t"l•t.,...I"' '"'"' '"'~•
••01010•••~·-·-·-·-1"1 1~·-·-·-·-·-·"·-·-·-·-· • • • • • •
: : I I : I ; I : : I I I I I I I I I I I I : I I :
•••• ••• • ••••••••• ••••••• ••••••••••••••••• : : ; I I I I I : I I I I I I I : I I I I I I I I : • -.l +CI I . ., I I I ..CI , I "'t I I I:-> I I I I.-., I I I I I I I I I +
z+~t ,,., 1 1rn1cn1ri-1..-1 tr-1..-1""1 1r--1.-1.,1.-1..-1..-1 t I I •

~:~i 1!1 1 1.1.1~1.1 1=1.1.1 1t1.1.1.1.1.1 1 1 1 :
++·""'I 1..,.1 I f~l..,IOfQI IOIOIC--1 101 10101..,.1'»1 I I I +
++O"lf 101 I IQIOIWl""I f.,...tNl~I l•IP4fQfNIC-IC°""'I I I I +

::~; 1~: ; :::::;::: :::~::;: ::1~::1~1~1:;;; I I I :
•+41 IAll I 1 .. ICICl~I l&al.alf.alf t'1fltfCICl .. ICI I I I •·n
••~I JZI I 1~1.l.IOi.1 ... 1 l.Zl.Xl:ZI IKIZIUIUIUl'->I I I I +W • • • • • • • .. • • + + •••••••• + •••• +
•~•~•~•~•~•~•~101 1Nt~t~1~101~1=1~1olP4l~•~•~•~to+~

~:~l~l~:~l~f~l~l~l~l:l~l:l:;~l:l~l~l~l~f:l~l~l:l::z . ·~
~· ·~
~: : I : I 1 : : : : I I : : I : : I I I : : : I : ~
:·r : t r t•r•r•r•r·r•t r t•t•t r r tr t r·t•t·:~

+ + I I I I I I I I I I I I I I I I t I I I I I I + U

•••• • • + ••••••••••••• • +++++ •• + • + ••••••• ,,,, ::~1 : : : ::;1..,.,1.-:.,,;.,:..,.,1 : 1~:.,1 t : : : : :~:.,:.,,:
• •n t I I I IO I I I I I I I I I I I I I I I IO I I +
•••• • • + ••••••••••••• ••••••• + •••••••••• •OI t I I lif'l./'lt 1..,.1..,t..et I 101...,.f I I I I I t~t_.I
tn•..,.t I I I INl"""'IOI •IOIOI I 10101 I I I I t l:"'tllftt·J"+
.l..+::.t I I I t<liCl~l.;..l•t•t I t..::.t.:lt I I I I I 1-Cl>CloC+
:.n+vl I I I fU'lil<lll~l•fV11"1ll I IO:llZf I I I I I l::Jt~t:t+
".J+'")I I I I t•t~t:.01"..lll..ICI I l..CICI I I I I I l'Cl.Dl:I+

+..JI I I I t rl. I .:I.. I :I. I - I .l. I :I. I I I I: I 2: I I I I I I I .1.o I a. I_.+ ..
+ 1' I 0 I I ~ .., I 1' I .rt I .C I t"'"> I Tl I ~ I C I .-4 I N I ..., I .r I '.n I 0 I :""' I ~ I ~ I 0 I ..,. I N +
"' ? I .n I I" I .n n I .n I n I .l't I .n I ./1 I .n I 0 I 0 I 0 I .0 I .0 f 0 f 0 I 0 I 0 f .C I r-o I r-- I =-"" +
•o•olOlg ~IOIUIOIOl~IQIOIOIOIOIOIUl~l~IOl~lolOln•

• • +
• • • ._ .. I +
+ • I I I I I I I I I I I I I I I t I I I I 1 • .. • • • • • • • .. • • • • • • .. ••• + • • •••••••••••••
• • I I 1 I I I I I I I I I I I t I I I I I I +

:: ••. ! •• ! ! l ! ! ! ! ~ ! !.!.,! ! ! !.!.!.!.!.!.:
• • '""' t •.n 1 1 o 1 l I 1 I 1 1 I t f r 1 .o 1 1 1 t 1 "1" n 1 .., +
::~:~: :~: I : : : : : I : :~:~: : : ~A>~•o ... ·f~'::~:
•••••• +•+ •••••• + + + +
·n:~:~: l~I I I I I I:: I:;;:~: I I :~1~19.1:-1:1~:
l.. • 4 I • I I :::t; I I I I I I I I I I ..Ji I ~ I I I I "" I ,::, I ,:, I '::I I '11111 I "'C •
J'J • 'IJ I :I) I I _. I I I I I I I I I I 'I: I U I I I I :a. I ~ I > I ~ I U I C°"' •

~.,:·~1~1 :~;I I:: I: f: t:.:~:: I:~:~:~:~:~:~:
• • • • • • • • • • .. • • • • • +
••n1~1,..1~1~101-tNt~t••~•~•~•=•~•o•-•~•~••1~•~•~•=•
• to ~ I -.., I ~ I t"ol I 'I I . .., I ., I ..,, I .., I .., I .., I "" I ..., I ..., I .., I ·fl I "4' I f" I ~ I .r I "'° I "° I ~ I 4" •
••~1n101~101010101~101010101010101otol~tc1nto1~1"•
• + I I I I f I I I I f I I I I I I I I I 1 I I I •
+ + I + ...
+ + I 1 +
+ + I I I I t I I I I I I I I I I I I I I I I I I •

• I I I t tTI l·...,I r I 1.-1 I I I I I I lll"tf I l~I •
+<t,..l'I I t-:>I 101'1""'1 IOl...,.1""'1""'1""'1""'1 I 1.-.1,1..-101

++ I I I t ,_.,I 101 I I le>I I I I I I I IOI I IOI .. • • ... • • • • • • • .. • • + • • • • • • • • • • • • • • • • .. • • • •••••••••••
+ :- I " I _. I 1'4 I I "4 I I I " I .., I I _. I .,. f N I --. I . .., I 'P I I t - I '" I ,..., I - I .., +

.1J•·J'llc..~1.-:1t:J'll IUI 1u1c:.:>1·~· 10101::,IOt"::tlt:>I' ·~•otc:.-1uto•
••...11~1..,,IJI 1-11 1_,1...11•1 l~IWl~f...ll~t~I I 1~1~141CI""•
·n•~l.l)l"-'l'•I t.'11 1·.._1· .. 1· .. 1 1;,1~1.,:,1t.J1.,:,1:.:JI I ICl•.Clr•t ... I ... +
...l•<t:r·:11:..J1.z.1 I.JI l~f.l:l~I 1c1•t ... t~l·.Cl11 I ,,.,_,..,, .. ,

•":Jl':nl4.ol ... I 1:n1 , 111:1-1z1:..111:1~• I t•n1vi1:1~•E• ...
::~;~1~1::~1:1~1~l6t~;:1:::1:1~1~1~;~1~:~1~;~1~:~:
••01~10101010101u10101010101n10101010101010101010•
··~JJJJJJJJJJJJJJWJ~JJJJJJJ~J~JJJJJJJJJJJJJJJJJJJ+•

233

Page 8 of 22

+ •••••••• •• •• •• • • •• • • •• •• ...
• • •• •• • • •• •• • • •• .. .
•• . .
•• •• ••
• • •• • • •• • • •• . .
•• •• • • •• • • •• •• • • •• ...
•• •• ..
•• • • • • ••
•• ••
••
•• • •

"""'"""' ti.
oocooo••
000000••
00¢000•• ...

•• • • •• • • . . .
• I: ••

"II •••••
~ ·- ;..
.-1 '0 ••
'1' ..., ., +

0 •• ':fl • +
~ ... ~ z ,. ·11 ••
.,.. n>t..n+ •
u ... :2 ::» ••
<C " .. . • ..,.. -c il

'~ ;n ...
~ ..., ~ c ••
.al ,. oC .! + •
..... " .-1 + ..
1. O>o'\o++
.:1 ~ ••
;,.,» ' ••

I.I''- ••, ~ .. ' ·~ ..
.._ • DC!> + +

·n(l1 ..., .. ~ • •
•~ "-ca•• c·.J T!:I ~ + ,._
..n ~ """ ...

c "7. ~ .. _,.. ..
t&l~
·n', - + •
~ i- 1.. ...

!""t- - c ••
:a.. "' ...

' 0 aJ • +
~·aJ ·~-= •••
~=~ ... -l"'"'• ...

11111 f..o 71 I ..,. + +
~ " ~

:... ·n •JJi ...:i "'• • .,.-:>.,,. en+•
~ ='I ..,.
:,. 'IS I ~.al '+ to

... ~ .. .? ••
...., .. '"" ...

'".I) "C ••
~ • ., I + .. ,..,, ~.......... . .

·n .n 'lo:' . ., .,, • •
~ n ..,. c ... • +
~•·,,a.-.,,1.,1+•

"=' ..J ~ .. ~ ~ ...
... "" •o "'·n • • . .
..... """ """"""' .. .,... ... o~.,..-=••
oo 4tool ~o • •
OC"'OO + + +

014)(JlllGCO.!: U.::iE St ill u 11 " r; S S 1UU i<t.C£1tt: A r K. A 111 S 11 1 T t A L •

OZ~J(.1A£Sa01: Ust::s CKCJ, • TRr, AftD PU•~ AfTE~ UftLU97.

02oJ< 1A&Sa~l: oUN l•Tt.K AuSaOl, CAS440, tiuT dAFuRt:. t'OlDOl.

, OZo>< JPCl~Ol: POl llllST RU~ AF1t::R AMl Ats.01 Uk ADS40l RUN.

)

O~J)< .1K~fAO.!: ••••• ~UM S17nCJ ••••• 111111111111111111111111111111111

04~J() .. ~c~to: ~u~T OUN aerUK! Aft• UTHt~ LJC JLioS.

05oJ< .1PfSL01: RUMS AARLt ON TaUaS, AA" rklNT kE~ORtS aEtORE AnV PPS•07 lS RUN.

G7:>J' .1HtS .. 01: •11C:nt::v;,;K 11al•40 IS SClltC~LE!l NOS II U S t KUA • oEl'OKE• lf.111

07oJ' 1t'l,AC7: lf ~Aioll IS SCnEDULEO,o~a LT AFTt.R PAVA~7.

079J< JPl~A03: S~EC(iY Rull EITaEK l'OK AN EUlT Uk ELSI:. l'Ok AN Ut'DATt..

080J< >PnlldO: tdIS Jud vAfrit;HS AL .. Tbt:. .. Jc t'U 011 .. INE STUH' so u i<UNS dU& 001.

Od~)')Nt~A10: AUN-CnITCAL JUo - riULD Tl" A.11. Li 1T BUMaS - RUNS ON 0~4A.

C8~)' .1~tSA20: ••• If 'A~M20 IS RU•ftlN~ tHt: SAME NIGHT TllIS NUST RUN •Aff!A• IT. •••

06~)(.1~Hl!57: ... MUST ~~ft AF1t:R vAS,lC ~ lNAL, UD RESA~O u SC1tt;UULED.

087J<)M:iaAl~l iii.IN !!)~All uIKt;i;TLr AtHA T1tl~, AU RUN oOTH Utt.R ALL CAS JCiSS.

089)< >.:HAOC.l hull .\r tr;R MSoAll aUT aEl'Cl<E AitY oJtlle.li CAS JOI! •
..

090)()CH,.20: AUN Arff." C•;'\Oa •HC:Ht;•U s.:.at:CUi.t;lJ~ AL•US Ru~ Aft&R CASA20.

091)<)CASelll Ault 11Ull cu.ob.
09aJ< JMcJ~2~1 PL£ Ba SU~E TO ~I~! OP£nAt1UNS A TRANSMl~TAL

09~)< >~tl•S~: dUd p~jNE11C• uR L1NUA cC .. LlNS HO• SLGN THE TRANS!llTTlLS.

10&>< ,,,SulO: ALeAVS ~VN at:fOHt: ANY AfSUOl KUN.

10~J<)ArSu01: ~UN AfTEll CkTw~o,. lAStlO, t:AC~t't If THr;v 80Ma.

••• e.HL lt P~P~~~ •••

234

Joe: MBSDOL
RUN: aq/2b/!S
VIRT:

SLOT: Dbb
TIME: aa:qs

CORE: 35

USE THE CORRECT SUBMIT FILE
DECK L -- BUFF.OVGHS INPUT ONLY
DECK 2 -- COPFECTIONS ONLY (ODE)
DECK 3 -- BUF.EOUGHS INPUT AND

CORFECTIONS (ODE)
CHECK WITH RAND

INPUT TAPES

PPN:
HTA:

112,1~

1

DISKS: QPqA ~P.F3 DSKB

OUTPUT TAPES

Page 10 of 22

PAGE L 3F 1

•••=•••==z=•=••••===•••••••••sc=•==•=======~=•===~=============s=====•=

ODE * HBSUHLr.BSD01
-----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------~-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------* -----------------------------------*-----------------------------------

UNLOAD OF ~BS 112 AREA

DONE:

235

Qq/2b/S5

MBSDOL

Page 11 of 22

TRUSl!L1tAL C nECK L.lST l"Ow TUt.!t.rltS SCttt.Ovi.E

wEt XC 3 < > - CriECll. l r' kl!.CEJ.Vi:;o

HXUC l < > - CnECI\ ll'' ti C:C EH' t:D

MJ('I.<C3 < > - CnECI\ It Ri<.: r.:I Vt.D

Rh.(C2 < > - C11£Ct\ Ir" 1<EC E:lVW

PP.SX ~'4 < > - CnECI\. IF ln'.C E J. V i::D

H.S.t~::i < > - CrtECA u· i<t.CELVt.O

t'PSllC 1 < > - ChE<.;11. u "e:c E L v eu

f'PS.eC3 < > - CnECI\. Ir ~ECE 1 VEO

t-AS•Cl < > - Cnl:. CK It' llt::CE IVtm

PBL.<:it < > - CnECi\ Ir· HC EL Vi:.U

P~U..<51 < > - C.'1E Cl\ h 11 EC E i Vim

Pi:IUX51 < > - Cnt:CJ< If t< e:c EL V t.iJ

l'ti!SOO 1 < > - CttC:l.11. h It !::CE 1 HO

PAUC3 < > - CrlECi< It' fl i:;c E1 Vc.D

TU.ii.A:':> < > - CttECI\ Lr' RECEJ. Vl:.U

1H,;.) .< l J < > - CttECi(It" ~C:CE;.LVt;O

kES1C20 < > - C uE C.\ Ir' kECHvW

R ESM t 1 < > - CttECt\ Li' 10:.ce i vw

MSB.UC < > - CnECI(Ir k r.C El Vt.tJ

CASX06 <) - CnECK It' ii C:C i:: L V EO

CAS.(~0 < > - Cn~CJ(lf ~t:CEHt.O

CASi18 < > - Cnr;CA [f IEC:: [V ED

HBU55 < > - CdECI\ Ii iCECE1vw

MdUtO < > - C11EC4\ Li" HCt.lVt.D

APS.<05 < > - Ci1t.CK Ir k e:c E I V t.IJ

25 TRAN::iflJ.TT.HS cuu lift() rn~ Tn.LS SCnciJiJL.f.

236

Page 12 of 22

Tttt: 1'' ULL (•I NIO Cuc. JO tS A.~ E Nt.E i.l::t.1 l'Ck
1CtHlintS SCH WUI. t::

ADS.tO 1 < > C::beCA 1f flLt. l<EAOY TO l<l:.U.ASE;

POIOO 1 < > ~kl t:CA If f' LL i:; kEAOv to IH:LtASt:

HAkOOO < :> Cht.CI'\ lF fo' J.Lt. i<EAD¥ TO HLt.ASt.

PUX01 < > Crlt;Co11. u t' IL~ REAOV TO HLJ::ASE

a'H.<0 3 < > CHl:.CA: J.r' r'J. Lt. l<EAiJV 'IU hLHSE

iES.<10 < > Clit:CA It i I.LE kEADY TO HLEASI::

APSDO 1 < > C~.t::CA If FIU. READt to IH.LEASr:

---- !110 (1' 1<E~OHT ------------~-

237

US/08/J."185 PBU

11/i!?_ .Ui;i,.}!! __ -•- BH_l i!Q.!! ~lifi~UHLl!QQli ll&LlUB_IQ Hf QBLHA!tt

PBUflSO.X38 __ 2 b722 PBUX38 DEC P300 CSPS BUDGET DIV. PBURSD.X38

******Ooooooo*ooooooooooo~oooooooooooooooooooo***************************************LAST REVISED: 03/181

PBUXS3.E.XI' 2 b722 PBUX.Sl DEC P300 CSPS BUDGET DIVISION EXPENSE
*** INCLUDES 81.82.&3.aq

PBUXS3.lNC __ 2 b722 PBUXSJ. DEC P3DD CSPS BUDGET DIV. INCOHE
••• INCLUDES a1.a2.a3.aq

PUUXSE.ACT 2 l.722 POUX.SJ. DEC P3DO CSPS BUDGET DIVISION EXPENSE -- *** INCLUDES REPORTS "ll."12."13."lq

PBUX5E.CS1 -- 2 l.722 POUX.SJ. DEC P3DD CSPS BUDGET DIVISION EXPENSE REPORT
N

*** INCLUDES s1.s2.s3.sq
w
00 PBUX.!iE.DIV __ 2 b722 PBUXS1 DEC P3DD CSPS BUDGET DIVISION EXPENSE REPORT

*** INCLUDES bl 0 b2.b3 0 bq

PDUXSE.DPT 2 b722 PBUXSl DEC P300 CSPS BUDGET DIVISION EXPENSE REPORT
*** INCLUDES 71 0 72.73 0 7q

PBUXSE.GBP 2 b722 PBUXSl DEC P300 CSPS DUDGET DIVISION
*** INCLUDES PEURD1. PDURD2. PBURD3 AND PBUROq

PDUXSI.AC1 2 l.722 PBUXSJ. DEC P300 CSPS BUDGET DIV. INCOKE
*** INCLUDES "ll."12 0 "13."lq

PBUXSI.CST 2 b722 PBUXSl DEC P3DD CSPS BUDGET DIVISION INCOKE
*** INCLUDES s1.s2.s1.sq

PBUX!al.DI'I __ Z b71!2 PBUX51 DEC P3DD CSPS BUDGE~ DIV. INCOHE
ooo INCLUDES bl.b2.b3.bq

" I»

PBUXSI.DP? __ 2 b722 PBUX51 DEC P300 CSPS BUD&ET DIV. INCOHE '° II>

••* INCLUDES 71.72.73.7~
w

PBUXSI.GRP __ 2 b722 PBUXSJ. DEC P3DD CSPS BUDGET DIVISION
0

ooo INCLUDES PBURDl. PBURDl. PBUB03 AND PBURDq N
N

········~··••o•o•••••••••••••o••*••••••••••••**********••••*•••••oo••••••o••••oo••o•••LAST REVISED: 03/D,/

PPl' 333
p p 3
PPP 333
p 3
p 333

roe g ltAGDDD
FBOlt I.S. DAU

. .
eONTBOLLEl!S

ODDO It If
0 0 .. If
0 0
D 0 It
ODDO If

PBOCESSIRG DIY •

P3DD

roe ' ltAGDDD
rBOH I.S. DATA PROCESSING DIV.

THE FIRST CHURCH OF CHRIST, SCIENTIST
CHRISTIAN SCIENCE CENTER
BOSTON, MASSACHUSEITS, U.S.A. 02115
SEND ro:

CSPS BUDGET DIVISION

P3DD

PBUX3B

FROM I.S. DATA PiOCESSING DIV.

THE RRST CHURCH OF CHRIST, SCIENTIST
CHRISTIAN SCIENCE CENTER
BOSTON, MASSACHUSEITS, U.S.A. 02115
SEND TO:

eSPS BUDGET DIVISION

P300

PBUX5l

FBOM I.S. DATA PBOCESSING DIV.

239

Page 14 of 22

Page 15 of 22
.JOB ANALYSIS REPORT

.JOB NAllE

•••llARDDlH•

•••TBFDDJ.•••

TOUL RUH IIllE

3 HOURS lS llINUTES

5 HO ··s OS llINUTBS

DUE UKEN
OB lYEBlGE

'1-30-IS

AVERAGE

DUE NOTE
ENTERED

5-Dl-IS

'1-i!i!-IS

NOTES

THIS TillE VIS TAKEN FOR lllBDOl BDNTH END IGAINSt l FIIBL!
HEIV! .JOBSTBElll LOID - POI SOS TRF

THIS IS IN IYEBIGI BUN TIKI!. roe IPBIL.
TJllES VIBI FBOll •• 5 ro 5.15 HOURS - CB!ITING • LABEL tlPIS

Page 16 of 22

SHU'T llt.t'OkT

Ol't.1<410k ATTt:NUAHCU i'Rt.St.llt: llAY1 a.U1 kUSS, •l::li, VlLt.HU: U/T

JUb-,Ulll:. nAHU-SUt r-11.l1U:

HE.;/llll&.0

COK/hOKN

COR/llUHN

CK&SlltS:

CllASn-111.lHt.

llONt:

SllU'U rust

AllSEllTI .Oii!

bUNnEU 1H STEP io ••• •11u RECORDS 011 flLt.• Mt.SSlbE DURlll~
TnE Rt.~lO l'KObRAM··· C.lLL&;D Nt.L lltrs ••• dELD TILL fnl
Ci.It.NI LOOt.li AT fnt. Rt.SK10 llEPOHT TOMUkHO••••

bUMnl::U 1N SfEl' 990 ••• Tn£RE ••s••t AllW MlltfOl.llLI FlLt. ,.
Tiit llblll:LU,14J .lRt:1 ••• CILL&ll Ml:'.L Hits ••• 1u,;aiAMt.O fn£
HNTt"OJ, Hlltt 10 AMII 1111Yfl6 lU.t"S lhll lul"S tu dL.l .. lfLA l'£11
Mt:L ••• HESTAR1£U fHOll St~90 TO llUklllL T&Kllooo

BOllbEU 111 ST!P ~O ••• UllLOAU T.lPt: PllllTV t:llkUllo•• llEST.lRT£U
TU ~OKMAL rr.a11 •••

1077 CK&SdEl.I AT 17ln ••• EU£ STOl'CtDt. ••• Tn! SVSTEM
CONTl~Ut.D ITSt.Lr •••

U•tll 10 11 fROllT t:HD •Ot UOmN AND fut.II CllHTlllut;U 1TS£1.•· AT 170!> ••

~ASK7~ TOTALS CnF.C~ •••
r' lCut: ST bl l rtl:i dEt:ll llt.SUb11lTTED t'UR Tlit; 11ASTF.kS U•U AS
Tiii> Ci.u.i.t UllL~' Rt:Cr.Ul!IJ rut: CUl'H.S •••
l'/011, JH:i'I~ o7U~ o7.t51 l'OkMS Ri>.,t;&:Tr.1.1 •••
.
tlUll ..;(•ht:K tP•llf llAft.IUli. SEilvtCt.S l'll:>.r.U UI' Tut. bUA

240

CJ Information Systems - Operations

[]computer Systems Development

Page 17 of ~
Request Mo. •----

Date Desired ___ _

SOFTWARE
PRODUCTION JOB PERFORMANCE MEMO

Approved --------------

Date -------
PPN: ____ _ Run Date: ______ _

Control File: _________ Program: __________________ __

Problem Encountered

Comments and Questions

Attachments 0 Listing 0 Log

RM 67.1429

241

Data Processi:lg

SEND '!O: Manager, !::l.:!'orma.tion Sy-stems A-31

EEl?ORTS INVOLVED :

ComJr.t'ION: [Please checlt box(es) that app~]

D La.te Deliveey

Scheduled Deliverf Date:

Actua.l. Dellverf Date:

O Incomplete De.li•eey

What was missi:ig:

3;i:plma.tion:

D Other

E:t;lla.nation:

242

Page 18 of 22

DATE:

See ?.everse Sice

Page 19 of 22

- Was advance war:1ng ot the couclition given?

- Was the..~ anything U1'1USU&l &bcut this run?

Volume ot Processing:

Camplexiey:

Other:

- Was input de.Uve..""ed to Infor.u.tiou Systems 011 schedule?

U not, date/time due:

date/time de.livered. to Information Sy-stems:

- ::row ·il'Ollld. Y'OU rate the etf'ect of this condi tioa on 7aw: operations? [Please check oox(es)
th&t apply}

D Sigaiticaat ••• ca.used us major problems

D Ca.used. :problems but we could adjust

0 An incOU"Tenience but 11ot serious

D Little or no problem caused

0 'l'he "better-than-e;c;iected" perfor:llB.nce helped us.

243

Page 20 of 22

MEMORANDUM

TO

FROM :Information Systems

RE: Your Data Processing Quality Control Report

Thank you for your··report. It helps us to continually monitor our
performance and to make improvments when they are needed. The
following is provided for your information.

DATE OF REPORT:~~~~~~~~ DEPARTMENT CONTROL No:~~~~~~~

:Information Systems

244

N
.j:>. I Vl

- AMAR -
DATE: D6-JUL-84 (FRIDAY) DAILY SYSTEM UTILIZATION SIJtAIARY REPORT

TFtcs - 1091
SYSTEM: FCS2 PRIME TIME: 0900 - 1200, 1300 - 1600

--------- CPU UTILIZATION l*I OVERHEAD (#) AND BOTH IOI ---------
----+----

100%

9DI'
* em'

10% ••
60% *

* 50l't * *· *
40% * *· * * ... •.

* *
* 31)11 * .. . ·*

* 20%
... #. * .. I ••• II ••• # .•. fl. • .# ..• # •. . 1 ••• 11 .•• II .•• # .•• II ••• II ••. II ••• II

100%

90%

80%

10%

60%

50%

40%

30%

20%

10% 111% •• II... • • • •• • ..II ••• #.
.. ti ... @ ••• 0 ... 0 ... #

----+----
01 02 03 04 05 06 01 DB 09 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24

-------AVERAGE----- %AMAR Tl
SUP UTIL

----PRIME TIME----- 42
---NON-PRIME TIME-- 33

------------------------- HOUR -----------------------------

------------------- SUlllARY OF KEY UTILIZATION ITEMS ----------------
% CPU %AMAR Tl % OVHD %AMAR Tl % LOST AVG SCHD ACT SWAP

UTIL SUP OVHD TIME SUP LOST TIME RSP TIME RATIO

13 13 6 6 6 .2
9 9 0 0 2 .1

-------AVERAGE----- USER # JOBS I LINES
UUOS/SEC LOGGED IN IN USE

----PRIME TIME----- 162 58 43
---NON-PRIME TIME-- 110 23 9

SWAPPING
BLKS/SEC

90
4

NO. OF IDJRS
USER OSK KEY ITEMS
BLKS/SEC OVER LIMITS

26 4
86 4

fll. OF IDJRS
KEY mus

OVER LIMITS

+ = MORE THAN YESTERDAY - = LESS THAN YESTERDAY ---------- CONTIMJED NEXT PAGE ---------

-0
QI

IO
ID

N
0
N
N

Operator's Manual--Table of Contents

Preface

l. General Concepts

2. Operating System

3. Timesharing

4. Communication Hardware

S. 1077 Hardware

6. 1091 Hardware

7. System Startup

8. Terminal Usage

9. GALAXY Batch System

10. System Programs

ll. Utility Programs

12. Monitor Commands

13. Software Concepts

14. Environment
14.l Air Conditioning
14.2 Humidity
14.3 Air Plenum Guage
14.4 Voltage Regulation
14.S Cleanliness
14.6 Physical Security

15. Tape Library System

16. The SLC-II

Appendix A ONCE Dialog

Appendix B 1091 Console Front-end Programs

Glossary

Index

246

Page 22 of 22

TOPS-10/TOPS-20 and Integration Documentation Status

Session Chair: Barbara Bersack

Session Speaker: Susan Porada
Manager, Marlboro Software Publications

Large Systems Group
Digital Equipment Corporation

ABSTRACT

The Manager of Software Publications presented the status of
documentation for TOPS-10 I TOPS-20 operating systems and
layered products and described the Integration Documenta
tion.

There will be continued support for TOPS-10 and
TOPS-20 Documentation Products as well as Integra
tion and Conversion Documents and customer feed
back is extremely helpful. The TOPS-10 and TOPS-20
Documentation Products fall into four categories:
Operating Systems, Layered Unbundled Products,
Corporate Communication Products, and Software
Notebook Sets. The Integration and Conversion docu
ments also cover four areas: Language Compatibility
and Transportability, Networks and Data
Management, Operating Systems and Utilities, and
System Management and Operations.

TOPS-10/TOPS-20 Documentation

The following is a list of TOPS-10/TOPS-20 revised or
new documentation, presented by area, and a list of
the work planned for the future.

* TOPS-10 I TOPS-20 Operating Systems

1. Documentation has been updated for the fol
lowing products: TOPS-10 DDT V42A, OIL
V2, Traffic-20 V4, and LINK-20 V6.

2. EDT-20 Version 1. Documentation includes
EDT Quick Reference Guide, EDT-20
Primer, and the EDT-20 Reference Manual.

* TOPS-10 I TOPS-20 Layered Products

1. DBMS-20 Version 6.1. Documentation in
cludes the Documentation Directory, User's
Guide and Utilities Manual, DML and DDL

Language Manuals, DBCS Error Message
Manual, Installation Guide, three reference
guides and poster. The documentation kit
is QTOOB-GZ.

2. Datatrieve-20 Version 1. Documentation in
cludes Introduction to Datatrieve-20,
Users's Guide, Reference Manual, Guide to
Using Graphics, and Guide to Writing Re
ports. The documentation kit is QT371-GZ.

3. Fortran-10/20 Version 10. Documentation
includes the Language Manual, Pocket
Guide, Installation Guide, and Compatibility
Manual. This is scheduled to be released
this summer.

Proceedings of the Digital Equipment Computer IJsers Society 247

* Corporate Communication Products

1. PSl-10 Version 1. Documentation includes
an Installation Guide, a System Manager's
Guide, and a User's Guide. The Documen
tation Kit is QH228-GZ.

2. DECnet/SNA TOPS-20 Version 1.

* Software Notebooks

1. Update Number 93 of the TOPS-10 Software
Notebooks is shipping now. It includes
DDT V42A and OIL Version 2.

2. Update Number 23 of the TOPS-20 Software
Notebooks is shipping now. It has docu
mentation for EDT-20 Vl and OIL V2.

* Future--work in Progress

1. TOPS-10 V7.03 and TOPS-20 V6.1

2. DECnet V4.

3. DIU Vl, RMS-20 V3.

4. TOPS-10 Software Notebook Update 94 will
contain PSl-10 and FORTRAN documenta
tion.

s. TOPS-20 Update 24 will contain SNA-20 and
FORT AN documentation.

Integration Documentation

In addition to the TOPS-10 and TOPS-20 documenta
tion work, attention has been focused on Integration
Documentation for multisystem sites. The following is
the list of documentation already available In each of
the 4 key areas as well as work planned for the fu-
t ure.

* Language Compatibility/Transportability

1. FORTRAN

2. APL

3. PASCAL

4. COBOL-20

s. Language Fundamentals

New Orleans LA - 1985

* Networks,Communications,Data Base Management

1. DECnet

2. OIL

3. FTS

4. NFT

* System Management and Operations

1. SPEAR

* Operating Systems and Utilities

1. Commands Comparison (10/20)

2. Monitor Calls Comparison (10/20)

3. Digital Dictionary

* Future-In Progress

1. COBOL-10/VAX COBOL

2. TOPS-10/VMS Commands

3. TOPS-20/VMS Commands

4. TOPS-10/20/VMS Utilities

5. Cross-System Text Editors

6. TOPS-10/20/VMS Operators

7. Networking User's Guide.

Integration Documentation Kits, which contain all In
tegration documents, are available. They are being
distributed to TOPS-10 and TOPS-20 sites. The or
der number for TOPS-10 is QH308-GZ. It includes
Language Fundamentals, OIL, TECO Pocket Guide,
Networking Pocket Guide, FORTAN Compatibility and
Network Compatibility. The TOPS-20 order number is
QT650-GZ. That kit includes EDT Quick Guide,
FTS-20, Language Fundamentals, OIL, Networking
Pocket Guide, Language Compatibility, and Network
Compatibility.

248

TOPS/VMS Performance Comparisons

Session Chair: Barbara Bersack

Session Speakers: Dr. Thomas P. Blinn
Principal Technical Support Specialist

Large Systems Marketing
Digital Equipment Corporation

Mr. Dan Kazzaz
Independent Cons ult ant

ABSTRACT

ABSTRACT Representatives from DEC's Large System Mark
eting reported on the results of a variety of benchmark tests
between the VAX (780, 785, 8600) and the KL (2065) • ~an
Kazzaz made some general introductory remarks; Dr. Blinn
then reviewed the results of the tests which he ran.

For the past six months, Dan Kazzaz has worked with
LSM to help them develop benchmark information. Mr.
Kazzaz emphasized that the VAX and KL are different
machines. TOPS supports paged I /O and uses
dynamic balancing; VMS uses block 1 /0 and manually
selectable working set size. By developping ben
chmarks which rely on certain features, results can
vary between machines. A SORT on the 8600 was
twice as fast as the 2065 SORT. It is not clear if the
difference is due to the different algorithms used or
to the machines. Mr. Kazzaz indicated that most ap
plications will run faster on the 8600 than the 2065;
however he concluded that choosing a system is based
on preference almost as much as on performance.

Dr. Blinn had done more extensive benchmarks. All
comparisons were done using the same source pro
grams. The configurations were:

KL:

* 2065 with 2 MW of memory

* TOPS-20 Operating System, V5.4 (Field Image)

VAX:

* 780/785/8600 with FPA and 32 MB of memory*

* VAX VMS Operating System V4.1 (Field Image)

Most of Dr. Blinn's tests were done on the 780 and
the 2065. He then incoporated other's results for
the 785 and 8600.

Proceedings of the Digital Equipment Computer Users Society 249

The first set of tests were based primarily on FOR
TRAN. Tests included the Whetstone benchmark
(Single Precision, Double Precision, and Gfloat).
FORTRAN VlO and V7 were tested with and without
optimization. All tests showed the 8600 results ex
ceeding the 2065 by a factor of between 2 (considered
the average) to as much as 13 in at least one case.
However, it is important to take into consideration the
difference between the two compilers since the VMS
FORTRAN compiler optimizes code better than its
TOPS-20 counterpart. The 2065 results were general
ly about the same as those for the 780, with some
times better and some, worse.

Some COBOL benchmarks were run between TOPS-20
V13 and VMS COBOL V3.1. 10 was tested using the
10 Devil benchmark. ECS Anker was the basis of the
multi user benchmark. This benchmark on the KL
produced acceptable response times which ranged
from 1/4 second to 1 1/2 seconds at 90 users. The
8600's response curve was flat out to 90 users; the
maximum response time was 1 second and occurred at
200 users.

In summary, there is no simple answer to how one
quantifies the difference between an 8600 and a KL.
Tuning is much more complex and much more impor
tant under VMS than under TOPS. There is still a
need for better multi-user benchmarks and Dr. Blinn
invited users and third party vendors to submit their
results at future symposia and to consider making ar
rangments to run their benchmarks at DEC's Ben
chmarking Center.

New Orleans LA· 1985

u 1500
• UJ

..... 1250 ..
• c 1000
0
+'

" 750
+' • .s:: 500
::J
I
0 250 ...
~

ll 0

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS V4.1 on an 11/780

0,. +..I 1111 c cs+. .I tlt1

'lill/), N on e
11111 Full

T20 V7 T20 V10 T20 X10 VMS V4
Single Precision Computations

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS V4.1 on an 11/780

New Orleans DECUS

Optimization
'lill/), N on e
.. Full

u 1000 -.-~~~~~~~~~~~~~~~~~~~-.
• VJ

..... ..
• c
0
+'

" ..,
• .s::
::J
I
0 ...
~

ll

750

!500

250

T20 V7 T20 V10 T20 X10 VMS V4
Double Precision Computations

New Orleans DECUS

250

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS V4.1 on an 11/780

Optimization
V1llJj None
- Full

u 500 -,-~~~~~~~~~~~~~~~~~~~~~
• UJ
.....

" • c
D ..,,
• .r.
3
I
D

u
• UJ

" • c:
D ..,
" ..,
• .r.
3
I
D ...
....
~

400

300

200

100

1500

1250

1000

750

500

250

0

T20 V7 T20 V10 T20 X10 Vl'IS V4
C Floating Computations

New Orleans DECUS

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS V4.1 on an 11/780

T20 V7 T20 V10 T20 X10 VMS V4
Unoptimized Computations

Data Format
B Single
Ulm Double
- C-float

New Orleans DECUS

251

u 1500 • ID
..... 1250 ..
• c 1000
0

"' .. 750
"' • .s:: 500
3
I
0 250
~

!!£ 0

Whetstone Pert ormance
TOPS-20 V5.4 on a 2065

VAX/VMS V4.1 on an 11/780

Data Format
lBlfB Single
U1lDi Double
111111 C-float

T20 V7 T20 V10 T20 X10 VMS V4
Optimized Computations

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS on 780, 785, 8600

New Orleans DECUS

u 5000 --~~~~~~~~~~~~~~~~~~~--.
• UJ

~ 4000
• c
~ 3000 ..
"' • 2000
.s:
3

~ 1000

780 V3 780 V4 T20 V7 785 V4 8600 V4
Single Precision Computations

New Orleans DECUS

252

u
• 111

..... ..
• c
0 ..,
" ..,
• .I:
3
I
0
~

~

u
• 111

.....

" • c
0 ..,
" ..,
• .I:
3
I
0
~

~

3000

2500

2000

1500

1000

500

0

3000

2500

2000

1500

1000

500

0

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS on 780, 785, 8600

780 V3 780 V4 T20 V7 785 V4 8600 V4
Double Precision Computations

Whetstone Pert ormance
TOPS-20 V5.4 on a 2065

VAX/VMS on 780, 785, 8600

New Orleans DECUS

780 V3 780 V4 T20 V7 785 V4 8600 V4
G Floating Computations

New Orleans DECUS

253

u 5000 • UJ

" • c
0 ..,,
• .c
3
I
0 ...

.....

4000

3000

2000

1000

Whetstone Performance
TOPS-20 V5.4 on a 2065

VAX/VMS on 780, 785, 8600

---··----

Data Format
Imm Single
rIJDj Doub 1 e

- C-f'loat

:lil! 0 -'----11111*114l~--1~,...L-.MM~

• u

780 V3 780 V4 T20 V7 785 V4 8600 V4
Optimized Compilation

Fortran CPU Performance
All Benchmark Programs

New Orleans DECUS

Compiler Used
· · • · F20 V7
- - - . F20 V10
-··-· F20 X10
-- VAX 4.1

c 1.0 -&.--.!..~~..__.i ""--P_..~~--~~""'""'"""""'_,,_ ~~ .,
e
L
0 ...
L • CL

0.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Benchmark Index

New Orleans DECUS

254

0
--4 ..,

Fortran CPU Performance
Relative to 11/780 with FPA

Integer Benchmarks

S!:lstem Tested
~ 20&5 V7
IHm 20&5 V10
rill1/J 2065 X10
.. VAX 8600

" 4. 0 --------------- --------------------------------------- --------
a:

• u
c ..
e
L
0

"" L

• CL

0
--4 ..,

3.0

2.0

Fortran CPU Performance
Relative to 11/780 with FPA
Single Precision Benchmarks

New Orleans DECUS

S!:lstem Tested
m.ID 2065 V7
mfB 2065 V10
rill1/J 20Ei5 X10
1imJ VAX 8600

" 4. 0 ----------------------------- ------------------------------------
0:

• u
c ..
e
L
0

"" L

• CL

3.0

2.0

New Orleans DECUS

255

...
"'

Fortran CPU Performance
Relative to 11/780 with FPA
Single Precision Benchmarks

System Tested
~ 2065 V7
mm 20€..5 V10
UilllJ 20€..5 X10

- VAX 8600

.. 4 .o --
G:

• u

~
e
L
0
~
L

• a.

• u
t: ..
e
L
0
~
L

• a.

3.0

2.0

1.0

4.0

3.0

2.0

1.0

Egypt FFT45 Gauss Hughes

New Orleans DECUS

Fortran CPU Performance
Relative to 11/780 with FPA
Single Precision Benchmarks

System Tested
~ 2065 V7
mm 20€..5 V10
UIIJ1J 20€..5 X10

- VAX 8600

0 • 0 --'--~~ N ff Uttl Lusty Matrix Mflops e

New Orleans DECUS

256

0 ...
~

Fortran CPU Performance
Relative to 11/780 with FPA
Single Precision Benchmarks

S~stem Tested
~ 2065 V7
mfB 2065 V10
rIIlJ1J 2065 X10
- VAX 8600

.. 4. 0 ------------ -- --------0:

• u
c

" e
L
0
c..
L

• A.

0 ...
~ ..
a:

• u
c

" e
L
0
c..
L

• 0..

3.0

2.0

1.0

4.0

3.0

2.0

1.0

------------ --------- --------- -------- ---------

------------ --------- --------- -------- ---------

RR2 RR3 RR4 Single

Fortran CPU Performance
Relative to 11/780 with FPA
Double Precision Benchmarks

Jacobi Philco

257

New Orleans DECUS

S1:1stem Tested
~ 206!1 V7
ffim 2065 V10
rIIlJ1J 20E.5 X10
.. vAx ee.oo

New Orleans DECUS

0, ..
ct:

• u
c ..
IE
L
0
~
L

• 0.

0, ..
ct:

• u
c ..
IE
L
0
~
L

• 0.

J'ortran CPU Performance
VAX 8600 compared to 2065

Integer Benchmarks
5.0 ----------------------,

4.0 --

3.0

2.0

1.0

o.o _._ __ _
Airco-I Airco-S Hanoi Prime

New Orleans DECUS

Fortran CPU Performance
VAX 8600 compared to 2065

Single Precision Benchmarks
5.0 ------------------------.

4.0

3.0

2.0

1.0

o.o ----
Airco-R A sea CAE1 CAEZ

New Orleans DECUS

258

0
.....
~ .,
0::

• u
c ..
e
L
0
~
L

• Q..

0
~ ..
0::

• u
c ..
e
L
0
~
L

• Q..

4.0

3.0

2.0

1. 0

5.0

4.0

3.0

2.0

1. 0

o.o

Fortran CPU Performance
VAX 8600 compared to 2065

Single Precision Benchmarks

OG3 Eg~pt FFT45 Gauss Hughes

Fortran CPU Performance
VAX 8600 compared to 2065

Single Precision Benchmarks

New Orleans OECUS

Uttl Lust~ Matrix Mflops Neff

New Orleans DECUS

259

0 ...

Fortran CPU Performance
VAX 8600 compared to 2065

Single Precision Benchmarks
5.0 -.----------------~

4. 0 ·---------------------------·-------------------------

~ 3.0
c ..
IE 2, 0
L
0
~
L 1.0
• A.

0 ...
41 ..
0::

• u
c ..
IE
L
0
~
L

• A.

o.o ---
RR1 RR2 RR3 RR4 Single

New Orleans OECUS

Fortran CPU Performance
VAX 8600 compared to 2065

Double Precision Benchmarks
5.0 -.----------------------.

4. 0 ---------

3.0

2.0

1.0

0.0 ----
Double Jacobi Philco SP1111

New Orleans DECUS

260

0,
• 0::

• u
c • e
L
0
~
L

• Q.

0
..... ..,
• 0:

• u
c ..
e
L
0
~
L

• IL

Fortran CPU Performance
VAX 8600 compared to 2065

-
8 - ------·-------------- ----------

-
6 - --------------------- ---------- --------------------- ------------

-
4 - ----------- ----------

-
2 ~ -

~

0 ---L....a.J L.m.----....L.m----....-..... ~----....-..-....--....-...-..,,

1. 25

1.00

0.75

0.50

0.25

0.00

COBOL Performance
TOPS-20 COBOL V13

CPU Utilization

New Orleans DECUS

Switches
~None
fHffil /Prod
"ll1lll I 0 p t i m
l.\ill /Quick

Br.it LCG T.imTst USS USB.in USDec Fl.int

New Orleans DECUS

261

0 1.25 ...
~
.. 1.00
B:

~ 0.75
c ..
IE
L
0
~
L

• 0..

0 ...
~

0.50

0.25

COBOL Performance
TOPS-20 COBOL V13
Elapsed Run Time

IO Devil Performance
COBOL-20 V13

Switches
~None
a:mB /Prod

VIIlll /Optim
l!m /Quick

New Orleans DECUS

Switches
~None
a:mB /Prod

~ /Optim

- /Quick

.. 1. 00 ---
0:

• u
c ..
IE
L
0
~
L

• 0..

0.75

0.50

0,25

0 • 00 --'---.1.i.A s c'""'I I

CPU use
ASCII
Elapsed Ti me

New Orleans DECUS

262

0, ..
0:

• u
c ..
e
L
0

"" L

• Q.

0 ...
"' ..
0:

• u
c ..
e
L
0

"" L

• Q.

4.0

3.0

2.0

1. 0

o.o

COBOL CPU Performance
COBOL-20 V13 on TOPS-20

VAX COBOL V3.1 on VMS

S':jstem Tested
mm 2055
rI11ll!J 1117 8 5

- 8600

British Profile TimeTest USSteel

New Orleans DECUS

COBOL CPU Performance
VMS COBOL V3.1 on VAX 8600 with FPA
Relative to COBOL-20 V13 on a 2065

6. 0 -----------------·-------------------

4. 0 ·--------

2. 0 ---------

o.o _... __ _
British Profile TimeTest USSteel

New Orleans DECUS

263

Sorting
700.0

• 600.0 ,., ..
Q: 500.0
c
0 400.0 ... ,.,
u 300.0
c 200.0 ..
L

100.0 I-

o.o
2065 8600

S\jstem Tested
New Orleans DECUS

264

2.00

1.50

" 'U
c:
0 1.00 u
• OJ

0.50

0

Multi-user

"ECS/Anker"

Benchmark

Results

ECS/ Anker Response Times
TOPS-20 V5.1 on 2065

2MW memor~, MCA25

I f I I

t I I I I I ----- --:-- ---- -.\--- ____ , _______ , ----· --:----- --..:- ______ , _ ---- --r---- --
1 I I I I I I
I I I I I I I
t I I I I I
I I I I I I
I I I I I I

I I t I I I I
I I I I I I I I

-------~------~----·--t-------t-------~------~-------t-·-····t···· ..
I I I I I I I I
I I I I I
I I I I

: : I :

I I I I

-------~-·-- --~- ------t- .. -~-...,.-"""·---:---- .. --:-----..
I I I I

10 20 30 40 50 60 70 BO 90
Number of users

New Orleans DECUS

265

" "O
c
0
u
• OJ

" "O
c
0
u
• OJ

ECS/ Anker Response Times
VMS V4.1 on VAX BGOO

2.00
32MB memor~, FPA

I I I I I f

I I I I I I I I

1.50 I I f I I I I I I ••• - .. •r• • • ·- .. ,. ,. ,. .. ·- •••r• • · •••r • · ··-·r·-··· ·r · -- , .. ··
I I I I I
I I I I

. .
t t I I I I I I I

1.00 L ~ ~ ~ ~ ~ ~ ~ ~
I I I I I I I I I

I I I I I I
I I I I I I .
I t I I

t I I I I I

0.50 ------~------~------~------~------~------~-. . .

o.oo
0 20 40 GO BO 100 120 140 160 1BO 200

Number of users
New Orleans DECUS

ECS/ Anker Response T1me8 S~stem

- - - 2065
TOPS-20 V5.1 on 2065 ---· BGOO
VMS V4.1 on VAX B600

2.00 --,-----.-----.----..----~--------. .. ----~-----.. --.......
I I I I I . - ' ' I I I I I I

I I I I I I I I

1. 50 - -------:-------.\-------·-------·-------:----------------·-------·------
• I I I f I
I I I I
I I I I t
I I I I . . .
I I I I I I I I I

1 0 0 ~ ---.... - _:_ - .. --~- - .. - .. -.. l .. ---.. - .. ~ ----- -_:_ _ -----~- .. -- .. --~- --...... -~ .. -:. .. . ~ : : : : ; : : '

-1 1 : I : : : 1 ~ • f
I I I I I I t , I

: : : . : : : ~ - , :
0. 50 --1 -------:-------~---·---+--'-!'-:~------~-·-t---~---:: .. : .. ~-------~-----·

L.. ___ ;..:..::.--: :-:~ :~JO-~~:;:..:-----:-~ '~""" : ---
r ,. I ""i I I I J I -,_.,.

I 1 I I I I I I
I 1 I I I t I

: : : : : : : - "
o.oo

I _I I T I T T T T T I _I I T T T T

0 10 20 30 40 50 GO 70 BO 90
Number of users

New Orleans DECUS

266

TOPS-20 VERSION 5.1 TO V6.l TECHNICAL COMPARISON

Peter B. Galvin
University of Texas at Austin Computation Center

Austin, TX 78712

ABSTRACT

Representatives of Digital Equipment Corp. discussed
changes made to system software from version 5.1 to
version 6.1.

A. Introduction by Chairman.

B. Presentations by Mark Pratt, Martin
Palmiere, and David Lomartire of DEC's
High Performance Systems and Clusters
division.

General differences between VS.l and V6.l
include:
- New hardware support: M320, MCA25, CI20,

NIA20, HSCSO, RA81, and RASO devices.
Support for up to 4 megabytes of memory.
New BOOT code, KL microcode, and RSX20F.
Extensive use of extended memory by the
monitor.
Password encryption, with a one-way
encryption supplied that is easily replaced
by a user algorithm.
Security enhancements, including: optional
password rejection algorithm, ability to
ignore passwords entered after N failures
in a set amount of time.
Autobaud detection from 110 to 9600 baud.
'!he use of 6-1-SYSJOB.EXE AND 6-1-
SYSJOB.RUN.
Dunps placed in directory pointed to by the
logical-name DMP:.
POSTLD determines new PSECT origins upon
overflow detection.
Hardware numbers (serial and channel) are
now reported in decimal.

CFS:
'!he computer interconnect (CI) facilities
include access to HSCSO controllers and RA81
class disks, and allow the loose coupling of
systems via CFS-20.

The CFS-20 environment consists of multiple
DEC-20s (currently only 2 are supported) each
having a CI-20 and CFS-20. One megabyte of
memory is required for each system clustered.
Dual ported MASSBUS disks (except the RP 2 0)
can be accessed from both systems, and
single-ported disks can be accessed by both
systems via the MSCP server . HSCSO disks can
be shared.

Proceedings of the Digital Equipment Computer Users Society 267

Generally, the CFS-20 environment is a
natural extension of TOPS-20, works on
homogenous systems only, allows shared access
to disk structures, and is invisible to the
users. It is a resource manager and
permission arbitrator, and attempts to allow
cluster recovery from a wide variety of
failures.

DECnet:
V6.l DECnet features include:
1 router, elective endnode on
large message buffers, end
layer, network management,
logging, and CTERM support.

EXEC:

Phase IV Level
the ETHERNET,

communication
DECnet event

Major new enhancements to the EXEC are in the
areas of multi-forking, ephemeral programs,
and new commands.

Here is an abbreviated command by command
breakdown of the changes incorporated into
the V6.l version of the EXEC:
- All commands which accept a device name as

a field now allow the colon at the end of
the device name to be optional.

- BUILD and -ECREATE allow quotas of
INFINITY, a PRESERVE option, the setting of
TOPSlO PPNs, and never display passwords of
directories.

- -ECEASE requires confirmation and displays
the node name of the system as well as the
downtime requested. A NOW subcommand will
cease the system immediately after
confirmation.

- COPY has SUPERSEDE subcommands.
- DEFINE now allows input recognition.
- DIRECTORY now has a COMPLETE subcommand

which will display all information about
each file.

- Several INFORMATION commands have been
added or enhanced.

- LOGIN now allows a /FAST switch to avoid
the automatic taking of command files.
This feature can be disabled dynamically or
in the system configuration file. Also,
LOGIN now displays the last date and time
of login, and executes systems wide LOGIN
and BATCH command files.

- LOGOUT now supports a LOGOUT.CMD file.
- A PERUSE command has been added to run

EDITOR: with a read-only option.
- PUSH will execute the EXEC pointed to by

DEFAULT-EXEC: .

New Orleans LA- 1985

- RECEIVE/REFUSE USER-MESSAGES is included
for unprivileged TIMSGs.

- SEND now works for unprivileged users and
has a new user name argument.

- SET HOST invokes CTERM-SERVER or a program
pointed to by NRT:.

- SET STATUS-WATCH changes the control
character used to display program status.

- SYSTAT now displays originating hostname of
network connections.

- SET [NO] TRAP JSYS /DEFINED and /UNDEFINED
has been implemented.

- TYPE now has an UNFORMATTED subcoillllland to
disable CCOC translation.

In addition to these coilllllands, all of the
previously unsupported multi-forking commands
are now supported. In addition, PCL and a
coillllland-line editor can optionally be
included in the V6.1 EXEC.

DUMPER:
Version 5 of DUMPER will be shipped with the
V6.1 Monitor and Exec. It's features
include:
- 5-30% decrease in CPU time used for all

operations.
- Executable under any version of the

monitor.
- Restores files from any DUMPER tape.
- The PRINT coillllland can format output for CRT

screens.
More information is provided by the
control-A coillllland.

- Improved handling of the control-E command.
- Automatic handling of interchange tapes.
- Longer saveset names are allowed.
- MAIL messages are now optional for several

operations.
- New help and documentation are provided.

GALAXY:
Most of the changes to the GALAXY subsystem
of TOPS-20 were made to support the common
file system. Additional changes were made to
implement the QUEUE% jsys, and to allow
GALAXY to produce BUGINFs and BUGCHKs through
OPR.

SETSPD:
The SETSPD system startup program has added
functionality in the area of CFS, ETHERNET
and DECnet control.

268

ALL-IN-1 /WPS-PLUS
DOCUMENTATION DIRECTIONS

Sue Franklin
Digital Equipment Corporation

Maynard, Massachusetts

ABSTRACT
This paper discusses integrated user communications (IUC), a major goal of DIGITAL's
Office Systems Documentation group. To meet this goal, the user interface, the on-line
Help, the Computer Based Instruction (CBI), and the hard-copy documentation cooper
ate in a unified, coherent, consistent manner to teach the user the system. This paper
also details the strategy that will produce integrated user communications, describes its
design and implementation in the ALL-IN-1 and WPS-PLUS documentation sets, and in
dicates future strategic directions.

Office Systems Documentation (OSD) is a group of writers and editors responsible for providing hard-copy documentation for several of
DIGITAL's office automation COA) products. We are not chartered to produce training packages or on-line Help.
In the past, the lines of responsibility have been sharply drawn between documentation, training, and Help
(considered a software development activity). Gradually, this perception is changing.

Working with OA software, both as users and as documenters, has made us aware of the importance of the
user communications package and of our obligation to produce a unified information package rather than
separate pieces of documentation and training. As a result, defining and producing such IUC packages has
become a major goal for our group.

As we have become aware of the importance of this goal, we have also become aware that we will
not meet it without careful planning. Thus, the following strategy:

Phase 1: Definition

Phase 2: Implementation of Product-Oriented Goals

Phase 3: Expansion and Cross-Implementation
of Goals

Phase 4: Delivery of Complete Packages

Having completed the documentation for three versions of WPS-PLUS and for ALL-IN-1 Office Menu V2.0, we are now at Phase 3 of this
strategy.

1.1 Phase 1: Definition

As stated, OSD is chartered to write hard-copy
documentation for several of DIGITAL's OA
products. We work closely with development
to produce technically accurate, useful docu
mentation. Traditionally, an Educational

Services group provides the training and the development group
produces the user interface (menus, forms, screens, prompts) and
the on-line Help. Therefore, the education of the user was the joint
responsibility of at least three different groups with separate
priorities, schedules, and constraints.

OSD believes that the user would benefit from a more consistent,
complete, and unified approach to the product. As we explored al
ternatives, we coined the term "integrated user communications"
and developed the following working definition.

Integrated user communications means applying a single set of
guidelines and conventions to every aspect of the user interface.
The user interface is the critical component because it is through
the interface that the user comes to know the product.
Often described as that point where man and machine meet, it is
the medium through which the user receives information about
the software's functionality. Particularly in the office automation
arena, the user interface IS the product.

Proceedings of the Digital Equipment Computer Users Society 271

With this in mind, we define the user interface as the product
interface (menus, forms, screens, prompts), the on-line Help, the
CBis, and the hard-copy documentation. Assuming that there are
three general types of users (new, competent, expert) and using
experience and customer feedback, we can begin to understand
the nature of the interraction that occurs when user and product
meet.

Instructional materials best serve the new user by providing
basic, step-by-step, task-oriented information. Primers, other
types of tutorial material, summaries, and executive overviews
are desirable for this user. This type of documentation shows
screens frequently and uses examples and illustrations every
where. CBls fall into this category as well and they are ideal for
new users or for passing one-time-only information. They should
be short enough to be quick refreshers and they get high marks if
the user can do real work with the CBI.

User guides, quick lookup guides, master glossaries, master
indexes, Help, and all other types of on-line assistance (prompts,
error messages, on-line documentation) serve the mid-range user
who is competent but who, occasionally, needs help. This material
should be context-sensitive and designed for the person who uses
the system frequently.

At the expert level, we see a demand for technical details, a high
tolerance for dense material, and a low need for illustrations and

New Orleans LA - 1985

examples. Reference material best suits this user who wants only
the facts and wants them presented in as concise and reference
oriented a format as possible.

Our goal is to have all these components cooperate in a unified,
coherent, consistent manner to teach the user the system. This is
integrated user communications. It is an attempt to match the
strengths of each medium to the individual's preferred learning
style and to the types of information that must be transmitted.

This is the future, but it is a future we are beginning to imple
ment today.

Phase 2:
Implementation
Of Specific,
Product-Oriented Goals

Early in the development cycles for ALL-IN-1 and WPS-PLUS, we
established different sets of goals for each product based on what
we perceived as the most critical needs. We formed our definition
of "critical need" using experience, marketing information, and
development goals. Nevertheless, we made every effort to work
the principles of IUC into our current projects.

The documentation efforts for ALL-IN-1 V2.0 and WPS-PLUS
remained separate because, initially, the two products were not as
fully integrated as they are today.

2.1 ALL·IN-1 Version 2.0 Goals
Accepting input from marketing, product management, and devel
opment, OSD developed the following set of goals for the ALL-IN-1
V2.0 documentation set:

• Document the default system, the system as delivered to the
customer

• Improve the quality (and quantity) of the existing Version 1
documentation

• Create a package that is both flexible and customizable

• Create a package that is both modular and integrated

Other goals included simplicity, consistency of terminology,
organization and presentation, and use of material (paper, bind
ers, and so on) readily available worldwide.

2.1.1 User Documentation For The Default System

One of ALL-IN-l's strongest features is customization. This
means the customer can:

• Change the appearance of menus and forms

• Add or remove menu options or commands

• Change the way a menu option or command operates

• Rearrange options on different or new menus

• Add or remove applications or entire subsystems

• Remove or redefine keys

In other words, the customer can alter ALL-IN-l's interface and
functionality.

Nevertheless, it was apparent that we needed to provide a set of
documents that guided the spectrum of potential readers - from
new users to experienced programmers and system managers -
through the product as delivered.

Addressing this requirement, the strategy provided for a complete
documentation set covering all levels of expertise. At the user
level are the following manuals:

272

•An ALL-IN-1 Getting Started Guide that contains exercises and
examples based on the major components. This step-by-step
primer gives users practice in performing basic office tasks
using ALL-IN-1 Office Menu V2.0. Throughout the guide, read
ers are encouraged to use the on-line Help and CBis.

To help readers move easily between manuals, the Getting
Started Guide makes direct references to corresponding chapters
in the User's Reference and to keypad layouts in the Keypad
Cards.

•A two-volume ALL-IN-1 User's Reference based on an extended
quick-reference format that describes ALL-IN-1 V2.0 functional
ity and the tasks that can be performed with the default system.
The goal of this document is to provide, in one place, all the
information on a particular subsystem or application.

The User's Reference is for users familiar with ALL-IN-1 system
basics.

• A set of ALL-IN-1 Keypad Cards that illustrate the default key
pad definitions for the system-wide features, major applications,
and the editors. These cards are a useful tool for all users mov
ing between applications. Each page shows a keypad layout for
a particular subsystem or application and lists any Gold-key
functions for that layout.

In addition to a technical update, the cards were expanded to
more fully describe the keyboard functions.

2.1.2 Technical Documentation For System Managers And
Developers

The second goal for V2.0 was to provide complete and accurate
technical information and to reformat that information to be com
patible with documentation provided for VMS and VMS layered
products.

The amount of technical information documented for ALL-IN-1
V2.0 represents a significant expansion over previous versions.

•The ALL-IN-1 Application Programmer's Reference (APR) is
expanded to three volumes and provides a detailed overview of
how ALL-IN-1 V2.0 works, as seen from the programmer's per
spective.

Volume 1: Flow Control discusses ALL-IN-1 initialization
and flow control, form processing, field processing, and
generic menu design.

Volume 2: Functions covers the three types of ALL-IN-1
functions: control functions (analogous to VAX/VMS DCL
commands), user-defined functions (analogous to commands
created with the DCL COMMAND utility), and internal
functions.

- Volume 3: Applications describes all aspects of application
development, including the ALL-IN-1 File Cabinet, the sub
processes and subsystems, and application tools and design
guidelines.

In addition, Volume 3 provides a set of exercises designed as
a self-paced ALL-IN-1 Office Menu programming course.

The APR also expanded to include flowcharts and similar illustra
tions and to point the reader towards further VMS references
when it does not explain a necessary concept in detail.

Each volume contains a complete table of contents and a complete
index.

• The ALL-IN-1 Programmer's Mini-Reference provides a quick
reference for the developer. It lists and summarizes the quali
fiers, functions, and main applications found in the APR.

•The ALL-IN-1 System Manager's Guide provides information on
maintaining ALL-IN-1 V2.0. It covers the system management
of integral ALL-IN-1 facilities and of applications implemented
through ALL-IN-1.

Intended for those individuals responsible for the maintenance
and efficient running of ALL-IN-1, the guide is divided into
three parts: User Support Activity, ALL-IN-1 Management, and
Multi- and Inter-Node Management.

•The ALL-IN-1 Installation Guide contains step-by-step instruc
tions on how to install V2.0. It also covers setting up the DCL
command to run ALL-IN-1, creating user accounts, verifying the
installation, and converting from a previous version. It antici
pates and discusses possible installation problems.

•The Version 2.0 Release Notes document features and changes
not covered elsewhere. These notes are available on line at
installation.

2.1.3 User Documentation for a Customized System

The documents most impacted by system customization are the
documents that describe the user interface - the Getting Started
Guide and the User's Reference. Once the product has been cus
tomized, the default user documentation no longer describes what
the user sees.

Anticipating this issue, we developed the Customizable Documen
tation Kit. This optional kit contains the tools and the informa
tion the documenter needs to customize the user manuals and
produce new manuals that physically match the default set.

The Kit consists of:

• The ALL-IN-1 Style Guide that discusses the ALL-IN-1 V2.0
documentation strategy, standards, conventions, templates, and
specific documentation tools used in the manuals. This guide in
cludes sample chapters to assist documenters in customizing the
manuals. It provides technical specifications for materials and
processes used, including specifications for type, size, and
weight of paper, use of color, art, and other visual aids, and
packaging information.

The guide also tells documenters how to access the on-line text
files and describes the use of DIGITAL Standard Runoff (DSR)
commands in the default documentation set.

• The ALL-IN-1 Writer's Guide that discusses the software docu
mentation process, including planning, reviewing, production,
and printing. Technical documentation and production terms
are kept to a minimum.

• A magnetic tape that contains the full text of the Getting
Started Guide and the Users Reference in DSR format. Because
these text files contain the DSR commands that format the doc
uments, we call them source files. The meaning of the word
source in this context is analogous to its use in programming.

The tape also contains master files and command files to ease
the rebuilding of customized documents.

2.1.4 Achieving Modularity And Integration In Documentation

ALL-IN-1 V2.0 is a highly modular system and, at the same time,
a fully integrated system. Reflecting modularity, the Getting
Started Guide and the User's Reference are composed of self-con
tained chapters. Each chapter consists of information about a par
ticular subsystem.

Further, each chapter is written to follow a single template or
pattern (one for the Getting Started Guide and one for the User's
Reference). The templates make it easy to produce user manuals
that are consistent in format, organization, and writing style. The
templates also make these books simple to update, customize, or
translate.

The ALL-IN-1 templates are based on the menu structure as the
organizing element in the product. They copy the software itself
by presenting a top-down view, the user's view, of the system. The
reader gets an overview first and then is Jed through a discussion
of each option in increasing layers of detail and complexity.

273

The user documentation templates for ALL-IN-1 are task
oriented. That is, they are task-oriented in as far as the menus
themselves are task-oriented and form lists of activities that the
user may wish to perform.

Reflecting modularity, the templates separate the user interface
from the functionality. What the user does (that is, select options
from menus to initiate actions, functions, applications) is covered
by procedures (series of steps). What happens as a result is
described in narrative paragraphs following the procedures.

This procedural approach means that users can quickly scan the
Getting Started Guide and the Users Reference while getting a
sense of the number of steps any activity. The steps provide
handy reference points for starting, stopping, continuing, or
skipping tasks.

The templates also provide consistency. The user need become
familiar with only one format or style of presentation in either
book.

Finally, templates give greater stability to those documenting a
customized system. User manuals document the user interface,
the area most affected by customization (from the user's perspec
tive). This material is isolated in the procedures and can be easily
dealt with there. Descriptions of functionality are isolated in
paragraph modules and can be dealt with separately.

Used in combination with the Customizable Documentation Kit
(which provides the on-line text files), a documenter can remove,
add, or rearrange whole chapters or sections to reflect the user's
final software configuration. Users perceive the resulting custom
ized documentation as an integrated whole just as they see their
ALL-IN-1 system as an integrated whole.

Documenters using the templates to produce customized books
will find that they are structured enough to provide a general
pattern and open-ended enough to allow the individual writer to
express a measure of creativity.

2.2 WPS-PLUS Documentation Goals

With the ALL-IN-1 project, the documentation group faced the
challenge of providing a set of books for an interface designed to
be changed (customized). That challenge produced the Customiz
able Documentation Kit.

With WPS-PLUS, we faced a slightly different challenge. Here,
the basic core of functionality stays the same while the interface
changes slightly under different implementations and for different
hardware configurations.

Currently, WPS-PLUS runs under several versions of VMS, under
ALL-IN-1 V2.0, and under Rainbow/MS-DOS. Plans are also
underway for a version of WPS-PLUS that will run on the Profes
sional under POS. Because WPS-PLUS is available in so many
configurations, there is interest in making the software and the
documentation:

• Cost-effective

• Easier and faster to produce

• Fully international and easily translatable

However, none of these goals were seen to be as important as pre
senting to the user a single and consistent approach to learning
WPS-PLUS regardless of the implementation.

The first step toward a solution involved two realizations:

•We realized that WPS-PLUS was basically the same wherever it
operated. We called this sameness the core of WPS-PLUS.

• We realized that the differences between environments and
versions of WPS-PLUS appeared, largely, in isolated areas of
functionality.

Therefore, we knew that we would have to devise a documenta
tion strategy that was largely environment and version independ
ent.

The solution that developed represents a highly modular approach
to documentation. It attempts to identify those aspects of func
tionality that remain the same across all WPS-PLUS systems. As
this functionality is the core of WPS-PLUS, it forms the basis of
what we call the core concept in WPS-PLUS documentation.

2.3 The WPS-PLUS Documentation Set

The core concept separates those parts of WPS-PLUS that are the
same everywhere (core) from those parts that are different (non
core). Correspondingly, the documentation set is divided between
core manuals and non-core manuals.

For each WPS-PLUS documentation set, there are two core books
(books that are 90% or more system- and version-independent).
All three published versions of these two books are nearly identical.

• WPS-PLUS Editor Functions describes the features of the WPS
PLUS editor for those users who are already familiar with the
basics of WPS-PLUS word processing.

• WPS-PLUS List Processing explains how to use WPS-PLUS List
Processing, List Processing Math, and Sort Processing.

There are two books that are approximately 70% system-inde
pendent.

• WPS-PLUS Quick Lookup for people who have used WPS-PLUS
but who want a quick and brief reminder of the steps involved
in an operation.

• WPS-PLUS Getting Started, a tutorial designed to teach the
user a set of basic tasks: creating a document, editing a docu
ment, printing documents, and deleting documents. It does not
cover all system functionality and should be used with the
WPS-PLUS CBis.

There are two books that are 10% or less system-independent
(major differences exist between versions of the documents).

• WPS-PLUS On X (where Xis the operating environment, such
as VMS or Rainbow) handles product functionality that actually
differs across implementations. Examples are print functional
ity, File Cabinet maintenance, User-Defined Key/Procedure
maintenance, and document transfer functionality. In addition,
this guide covers the various menus, forms, and keyboards
encountered. It is the user interface book for a given WPS
PLUS implementation.

In the case of WPS-PLUS/ALL-IN-1, we were able to eliminate
this book entirely because those aspects of product functionality
were covered by the ALL-IN-I User's Reference.

flm % of System Independence

WPS-PLUS WPS-PLUS
Editor Functions Quick Lookup

WPS-PLUS WPS-PLUS
List Processing Getting Started

WPS-PLUS
OnX

WPS-PLUS
Installation

274

• WPS-PLUS Installation describes how to install and maintain a
particular version of WPS-PLUS within a particular operating
environment. Logically, it cannot be a core document. The
procedures for installing and maintaining WPS-PLUS differ
radically from environment to environment.

The simplest illustration of this concept may oe seen in the prod
uct names: WPS-PLUS/VMS, WPS-PLUS/ALL-IN-1, WPS
PLUS/Rainbow. The core name (WPS-PLUS) is the same in all
three cases. Only the appendage that describes the implementa
tion environment changes. You might think of /VMS, /ALL-IN-1,
and /Rainbow as non-core elements in this case.

The issue becomes more complex when dealing with functionality
differences. WPS-PLUS Editor Functions documents the WPS
PLUS editor and every version contains the same information -
except for specific references to VMS, ALL-IN-1, or Rainbow fea
tures.

For example, since the WPS-PLUS/Rainbow Editor Functions doc
uments WPS-PLUS on a personal computer with floppy disk
drives, the user must be aware of the physical location of docu
ments. To select a document, WPS-PLUS/Rainbow users must
enter B: before the document title if the document is stored on
Drive B:. The B: preface is called the path name of the document.

As a result, WPS-PLUS/Rainbow Editor Functions reminds users
to include the path name when they select a Library or Abbrevia
tion document. This difference appears only in WPS-PLUS/Rain
bow Editor Functions and not in any of the other versions of this
manual.

The following equations may
help make these concepts more concrete:

Core Software =

Core Documentation =

Non-core Software =

Functionality that is always present,
regardless of the version of WPS-
PL US or of the operating environ
ment

Documentation of that functionality

Functionality that varies across oper
ating environments

Non-core Documentation = Documentation of those variations

To summarize the core concept, it:

• Gives consistency in organization and format to users migrating
to and from different operating systems

• Factors out "generic" material to create general purpose, reus
able modules of information

• Eliminates needless redundancy in instructional material

• Captures and preserves well designed, written, and tested
modules of information

• Allows for the insertion or deletion of material at any audience
level or for any version or implementation

We should be able to continue producing core documentation as
long as engineering produces a core WPS-PLUS.

2.4 On-Line Help, CBls, and the User Interface

During the development cycles for ALL-IN-1 and WPS-PLUS, the
documentation group was able to provide considerable input in
these three areas. We were directly involved in the writing of
Help frames for both ALL-IN-1 and WPS-PLUS and served as
consultants to CBI and user interface development. Particularly
in the Help area, every effort was made to make the information
consistent with and complementary to the hard-copy documenta
tion.

2.4.1 The On-Line Help

The on-line Help was expanded significantly for both WPS-PLUS
and ALL-IN-1 V2.0. You can get Help anywhere, anytime by
pressing Gold H. Providing support to both new and experienced
users, ALL-IN-1 and WPS-PLUS display context-sensitive
messages in a window overlay at the top of the screen.
The Help message includes a list of related Help topics as well.

Characteristics:

• Help on menus and forms (level 1)

• Help on menu options and form fields (level 2)

• Help on editing keys and general information topics (level 3)

• Modular - Each module a single Help topic

• Uses templates

• Builds cross-reference lists automatically

Guidelines and templates are also provided for those who wish to
write their own Help or supplement the existing ALL-IN-1 Help.
It may not always be possible to follow these templates exactly,
but the more consistent the format, the easier it is to update and
customize Help.

2.4.2 The CBls

The CBis for ALL-IN-1 V2.0 and WPS-PLUS embody
important new principles. They are task-oriented, pulling in the
user's actual files in the execution of a task. For example, while
learning to read mail, users read their own real mail messages. If
they have no mail, the CBI sends a mail message. Thus, the user
is learning how while actually doing.

In this same sense, the CBis are interactive. The user interacts
with the product instead of the CBI simulating an interaction
with the product.

Finally, the CBis were designed to be easy to use. A user needs
no prior knowledge of either of these products to activate and run
the CBis.

2.4.3 The User Interface

Finally, the software interface itself came under careful scrutiny
during the development of ALL-IN-1 V2.0 and WPS-PLUS. Im
portant design considerations were that the products be predicta
ble in behavior and consistent in the presentation of menus,
forms, screens, error messages, and prompts.

The approach is basically top-down and menu-oriented. This
approach minimizes memorization by presenting a list of choices
available to the user at each step in an activity. The user is fur
ther assisted through the use of:

•Descriptive phrases and mnemonics

• A small number of form types

• A small number of universal options that may be invoked from
any subsystem

•In ALL-IN-1, an open, customizable architecture that may be
personalized to suit each user

ALL-IN-1 and WPS-PLUS also support the more experienced user
by allowing the entry of a string of commands at the initial
screen or menu.

275

Finally, the products give users the ability to create User-Defined
Procedures CUDPs), which are documents used to store frequently
invoked commands or keystrokes. When the user invokes a UDP,
the system executes this series of commands or keystrokes auto
matically. In this way, the system watches and remembers a
sequence of steps and, in effect, can learn from the user as the
user is learning the system.

Phase 3:
Expansion And
Cross-Implementation
Of Goals

Given our experience with WPS-PLUS,
ALL-IN-1, and other OA .iystems and
products, we have gained considerable
expertise in turning out hard-copy docu

mentation. We try to understand our audience and we try to
understand the office environment. Our documentation packages
attempt to embody what we know about both. During this phase
of the IUC strategy, we will try to implement the lessons learned
working with ALL-IN-1 to WPS-PLUS and its options (high
quality print and graphics).

In particular, we plan to continue to:

• Refine the Core Concept

We will continue the movement towards user communications
packages that are increasingly modular and generic (core). This
approach gives users greater consistency in the same way that
software achieves consistency from modular and generic code.

• Increase the use of templates in documentation and on-line Help

Both core documentation and the use of templates give the user
consistency in instructional approach and give us greater stability
as development moves through the product release process.
Despite the instability inherent in any development cycle, much
of the core functionality remains solid from version to version and
across versions. When the software is stable, the documentation is
stable. Thus, we are able to concentrate on new areas instead of
continually rewriting descriptions of basic functionality.

As discussed, the use of templates also minimizes the impact on
both the user and the writer when functionality does change.

Expanding on our traditional role, we will try during this phase
to influence development to provide:

• Simple (not simplistic), intuitive, logical systems

• Consistent and, therefore, predictable systems

• One way to perform one function

• Only the functionality needed to get the job done

• Customizable, open systems

Finally we plan to seek earlier and more direct involvement in
on-line Help, CBI development, and user interface design. We
support this expansion of traditional responsibility because it
allows us to gain control over critical areas and to put into prac
tice what we believe about the needs of our audience.

Phase 4:

Production
Of Complete
Packages

Our goal, then, is to produce
complete and fully integrated
user communications packages,
packages that adhere to a single

set of guidelines and conventions. At its highest level, this set of
guidelines consists of the following elements:

• Technical accuracy and completeness

• Consistency and clarity in terminology and presentation

• The treatment of a system as a system, not as a collection of
products

After technical accuracy, consistency is perhaps the most critical
element. Perhaps surprisingly, it is a difficult goal to achieve -
even within a single area like documentation. During the final
phase of our strategy, we must carry this goal even further until
we achieve consistency across documentation sets, on-line Help,
CBis, and the user interface. The elements identified as critical to
the issue of consistency are:

• Terminology (definition of terms)

•Word usage

• Format (presentation) templates

Another key concept during this phase is called the systems
approach. The documentation efforts for ALL-IN-1 and WPS-

PLUS were designed to teach us, as communicators, how to docu
ment a system as a system (solutions to business problems) and
not as a collection of pr'>tl.ucts and tools. IUC is part of a systems
approach because it delivers to the customer a single, organized
instructional package. To produce such packages, we must con
stantly

276

remind ourselves that:

• No one is primarily interested in the technology. People want to
get their work done.

• Users are experts in the content of their jobs. The best we can
do is to help them do tasks faster and more efficiently.

• People do not work in isolation. The office is a community and
should be seen as a place where people constantly interact and
share work, decisions, reports, and judgments.

• Tasks are not discrete entities and should not be automated or
documented as if they were performed in isolation. Every task,
decision, or judgment has antecedents and consequences and is,
itself, part of a system.

In the areas of human factors and support of our customers, we
can always improve. We believe that we understand, and have
respect for, our audience. We read marketing reports, take
courses, attend conferences, and talk to customers whenever we
can. We have worked at audience definition and user profiles for
years.

The lessons for us are clear, and I believe we are moving in the
right direction. Our goal is to focus, not on theories or abstrac
tions, but on the products and the people who will use them. The
core concept, the templates, the Customizable Documentation Kit,
the task-orientation, the emphasis on consistency and a systems
approach and, indeed, the concept of integrated user communica
tions itself, all support that goal.

OA - BEYOND THE INFORMATION SPECTRUM

Myron K. Hayashida
American Management Systems, Inc.

Arlington, Virginia

ABSTRACT

Office automation technologies span the
Information Spectrum, i.e., information content,
form and flow from the event which creates the
information to the management or operational
decision it supports. Accordingly, requirements
analysis procedures and productivity measurements
need to apply to the spectrum also. An
information-based OA planning approach and
methodology is offered to truly integrate OA into
the total information systems environment of
computers, organizations and people.

The Office Automation Myth

"Office automation improves the productivity
of people. . . "

What could be further than the truth? It would
appear that the explosion of office systems over
the past few years has produced little in terms of
the promised productivity for all but a few of the
most typing bound secretaries. Organizations in
search of technology got just what they sought,
pieces of technology which c:ontributed _little. to
the office except faster typing, all this despite
the enormous computing capability of these
machines. One result was a glut of hardware which
saw little use commensurate with their capability,
especially among the professional staffs.

What is closer to the truth is that people improve
the productivity of office automation. Off~ce
computers just sit and wait for someone with
ambition and innovative ideas come along to put
the computer to work. Without imaginative people
to provide the impetus, the most sophisticated
systems in the world will just sit with little to
do. Office systems must be viewed as tools for
people doing their jobs, a_nd not si~ply as
technology. Accordingly, office automation must
be oriented toward providing solutions to people
who have job needs.

One way of integrating office automation into ~he
job environment is to provide a means for basing
OA requirements on information needs in a
substantive way. Merely measuring office workload
to justify automatic typing and printing
represents a word processing mentality whi_ch ~s
not in step with the technology. Information is
the principal commodity of the office and needs to
be managed as a resource. Information s~ould also
be the basis for defining office automation system
requirements. The perspective ?ffered by the
Information Spectrum approach provides the breadth
of scope necessary to focus on inform~t~o~ as the
basis for systems development and acquisition.

Proceedings of the Digital Equipment Computer Users Society 277

The objectives of this paper are to review
information planning methodologies, compare them
with OA equipment justification methodologies,
describe an integrated information-based
methodology and point out some current OA issues.

Problems with Information Systems Planning

The increasing investments in computerized
equipment in the office have ca_us.ed manage;s ~o
sit up and take notice. Additionally, it is
becoming recognized that automation QOes be~ond
just being a productivity tool, but i_t provides
the competitive edge needed by businesses to
survive. The wide and varied scope of office and
information systems has fostered a concern that
perhaps more planning and coordination is required
for computer systems so that the maximum need will
be satisfied by the least equipment. In general,
the problems with the information systems planning
and development process are:

o Business Needs Unsatisfied

o Systems Unresponsive to New Technology

o Incomplete Systems Design

In many ways, we cause our own problems. The_I/S
planning process is often subverted by such thi~gs
as arrogance on the part of our high
technologists, ignorance of emerging or ex~sting
technology, or organizational turf. The notion of
the Information Spectrum forces a total view of
information systems and affords an opportunity to
evaluate system needs from an information
perspective across technologie_s to. overcome
arrogance, ignorance or turf considerations.

Current Methodologies

Business Systems Planning (BSP) .. This IBM
methodology is a top-view approach with a strong
orientation toward business processes. It employs

New Orleans LA - 1985

a team of senior organization people on an
intensive several month study, and leads to the
definition to those processes most essential to
the survival and success of the business. It
further goes on to define "data classes" created
and used by each of the processes and arrays both
processes and data classes into a matrix called
the Information Architecture. Several other steps
are taken to rel ate processes to organizational
elements to fix responsibility and to identify
prob 1 em areas which may or may not be re 1 ated to
information systems. The Information Architecture
represents the organizations total information
need based on a logical presentation of processes,
data classes and their relationships. this
architecture becomes the basis for the
implementation of BSP.

The implementation of a BSP is a follow-on effort
to the initial BSP study and inc 1 udes the
development of a data architecture, and
applications architecture and geographic
architecture. (Figure 1) The data architecture
typically consists of an identification and
definition of organizational entities, those
things which the organization needs to keep
information about. Entities are derived from the
data classes of the Information Architecture and
charted to show functional relationships among
entities. This model then becomes the foundation
for data base design. The applications
architecture maps applications against processes
to determine which processes are not adequately
support by data. Existing systems become the
basis for making this determination. Those
processes which neither create nor use data
classes are suspect. The geographic architecture
maps the distribution of data in a physical sense,
the objective being to determine where data needs
to reside in order to effectively support
processes.

Another methodology is structured analysis, the
most popular being the methodo 1 ogy known as the
Vourdon-DeMarco methodo 1 ogy. It is a top-down
decomposition of functions or processes with the
goal being a level of detail suitable for the
development of computer programs. It uses such
tools as data flow diagrams, a data dictionary and
structured English to document the data processes
and flows of an organization.

The data flow diagram is most useful to chart the
essentials of how an organization processes its
information and for charting its data flows. The
use of simplified symbols for processes, a circle,
data flow, an arrow connecting processes and other
data sources, a rectangle to denote data sources
of sinks, and an underlined title to illustrate a
data store, all make for an extremely easy
methodo 1 ogy. An ex amp 1 e is shown in Figure 2.
Its weaknesses include its lack of a process
validation step verified by management and its
inability to reflect temporal factors.

Key product analysis is a methodology which
attempts to weave information requirements into
justifications for office automation systems by
identifying costing "key information products" to
be used as a basis for estimating cost savings.
It focuses principally on the professional staff,
noting that this part of the organization accounts
for the great majority of payroll dollars. It
supplements key product data with quantitative
office workload volumes. This methodology does
not validate the key products themselves or
identify the processes they support.

The steps for key product analysis include the
determination of a productivity baseline of key
products, a macro- level office automation system
design, a functional specification, a cost
justification assessment and a post-implementation
audit.

BSP-I The Next Step

Figure 1

278

.. ,, ...
' .

• : 1 ..

\. ~:

Data Flow Diagramming - An Example

WORD-LIST

c:
CORRECTLY

SPELLED WORDS

MISSPELLED WORDS

Shortfalls of Current Methodologies

~ partial systems analysis. Each methodology
offers only partial analysis. BSP is too top
oriented to be of value to the system designer in
any meaningful sense. Structured analysis is weak
in addressing what should be as opposed to what
is. While key product analysis comes close in
objective to what office automation analysis
should be, it falls short in providing data about
other than key data, which may amount to a
significant omission.

Inadequate communications~~ levels. Whatever
model is created by the methodology should be
understood and usable at all levels in the
organization. BSP does very well in providing
top-management's view of information, but does not
do the same for people lower in the organization
or for those doing the system design work.
Structured analysis does fairly well when
decomposed to levels which can equate to system
modules, i.e., a process which can be viewed as an
integral set of software support data flows and
inputs and outputs. Key product analysis is keyed
for justifying costs and savings and not very
useful to users and designers.

No help with hardware selection. All these
methodologies leave the selection of supporting
hardware to chance. It is expected that the
analyst use abundant amounts of imagination in
conjuring up a network of sorts to solve the
functional problems and data flows. However,
there are well established and recognized decision
rules and principles which can and should be built
into a methodology which will assist the user in
configuring the best solution to the functional
problem. For example, decisions on how to
distribute data to best support business processes
can logically lead to the selection of whether
data should be maintained at the corporate level
(mainframe), the department level or the
workstation level (workstation).

Fi~ure 2

279

No ~ to determine all information costs. Costs
modeTS Tan be builtfor each of tfieexisting
methodologies, but since they provide only a
partial picture of the system, capturing all costs
is not possible.

Poor transition into implementation. The absence
of clearly defined bridges from plan to action is
common trait among current methodologies. While
intellectually appealing in approach, they leave
one hanging when the pl an must be implemented.
The net result of any methodology should be a
logically configured systems architecture
consisting of information structures as well as
hardware, software and communications. None of
these methodologies provide this.

DIMENSIONS OF INFORMATION

In order to be effective, any information systems
methodology should address information needs from
three perspectives: content, form and flow.
(Figure 3)

Content pertains to the logical attributes of
information. It includes its definition, its
relationship to other bits of information and how
it is logically represented to the system, i.e.,
how it is symbolically coded. Form includes the
media the information is recorded on. It could be
RAM, magnetic disk, paper, tape, film, optical
disk, or any other means of recording data. Form
also includes the physical symbology of the
information, its representation to the hardware
and software which must interpret the data to
retain its logical attributes. Finally, flow
embodies the movement attributes of information
expressed in terms of volumes, distances traveled,
routing and velocity or speed.

Next, the methodology should address the life
cycle or path of information from its creation to
use. When one evaluates the fundamental nature of

Total Analysis Includes All

Dimensions of In.formation.

Logical Attributes Movement Attributes

o Defl111tio11

o .Media
o Phy1fcal

Symbolon

Physical Attributes

Figure 3

information, it becomes apparent that any
information is a spinoff from some other activity
or process; it does not exist for its own sake.
In a given process, be it sales activity or
manufacturing procedures, there are points in the
process when something is observed, measured and
recorded. The result is an information spinoff
which flows to a decision- making process. It is
typically a combination of these information
spinoffs which cause decisions to occur.

The approach to analyzing this information cycle
in conjunction with the three dimensions of
information is what is referred to in the
remainder of this paper as Information Spectrum
Analysis.

The value of this approach becomes evident when an
organization' s information sys terns problem is
identified as having too much focus on equipment
and technology solutions and not enough attention
to the business needs of the organization.
Because equipment and technology has been
emphasized in recent years, applications were
developed for specific hardware technologies
without regard to needs for sharing data and
interfacing equipment. Hence we see an abundance
of computerized micrographics, teleprocessing,
word processing, microcomputing and mainframe
system, each with its own set of standards for
information and interfaces which are incompatible
with other technology parts. There was little
attempt to evaluate business processes, their
information spinoffs and the need for information
to traverse the gap between the event which
creates it and the decision it supports in a
systematic and orderly manner.

The Information Spectrum can be viewed as a
continuum of information accessabil ity. In its
simplest form for human consumption, voice, there
is no need for a translation facility if the
language spoken is the same. On the other hand,

280

more and more such translation facilities are
n~ed~d as the information becomes increasingly
d1ff1cult to read by humans, thereby making the
information more remote from the user. Hence, as
voice and paper, which are essentially readable
without the aid of any special hardware and
software devices, become more remote by di stance
or form, it takes more equipment to read it. The
further away from voice and paper the information
moves, it becomes less accessible to humans and
more machines are needed to serve as
intermediaries. Electronic signal and light
pulses fall in the extreme category of requiring
computerized devices to return information to a
state of readability to humans.

As information travels the Information Spectrum,
it moves in and out of various states of
accessability, some of which impact upon the
timeliness of the information, the accuracy of the
information and its value to the decision making
process.

The total view afforded by Information Spectrum
Analysis are benefits which include the following:

o Total Systems Analysis - A top to
bottom, end-to-end look at information
processing and flow rather than by
technology or hardware.

o Bridge Between Planning and
Implementation - A logical connection
between business planning, information
planning and the acquisition of computer
systems to support information needs.

o Corrmunications Between Users and
Developers A better means to
corrmunicate user requirements to
technicians and technical capabilities
to users.

o Justification for Hardware and Software
Provides basis for determining
productivity savings by business
process, not just by hardware use, which
has proven to be virtually impossible.

o Total System Cost Shows all
information costs, not just hardware and
software by technology category, i.e.,
MIS, micrographics, word processing,
etc.

BASING OA REQUIREMENTS ON INFORMATION

Virtually all the analytical tools to perform OA
information requirements are currently available
in existing methodologies. However, as pointed
out earlier, not one of them is adequate to the
total task. The solution is a composite
methodology using the best and strongest features
of what already exists, certainly not a novel
approach. The fol lowing methodology attempts to
lay out the steps which lead to a bonafide
information-based OA systems architecture.

STEP l Defining the Information Architecture

Planning. The starting point for an Information
Architecture is the top of the organization. A
top-view is essential for providing a business
view of the organization in terms that
non-technical personnel understand. This top-view
must be maintained throughout to insure clear
vision by those responsible for goals, strategy,
and operations of the business. The technician's
view rarely coincides with management and should
not be used to bias this important first step.

Clearly, a BSP approach as espoused by IBM is
appropriate to establish this top
view. It is business process-oriented and
provides a rel at i onshi p between major processes
and data needed to support the processes. It
further provides designations as to who in the
organization is responsible for both processes and
data, and to what degree they share
responsibility. This step is critical to clearing
up any questions as to who is responsible for what
and for educating the organization on how
functions and responsibilities are actually
apportioned.

Because of its business process orientation, it
focuses on the professional staff of the
organization instead of the administrative or
clerical staff, which seem to be overemphasized in
OA studies. Since OA grew out of word processing,
there is an overwhelming urge to use typing
statistics to justify OA systems while ignoring
the capabilities which facilitate computing,
analysis, and communications in support of the
professional staff, which by the way typically
comprise 95% of an organization from a salary
point of view.

The net result is a process to data class model,
or an Information Architecture. It can simply be
represented in a matrix that shows which processes
use or create data classes, or expanded to include
high-level entity models of information used the
the organization. Having such an architecture
provides a reference model to refer back to insure

that implementation is sound and on track. Top
management must subscribe to this model. If they
do not, there is no top-view.

Process Decomposition. Once a top-view is
established, a methodology such as Yourdon-DeMarco
structured analysis should be used to decompose
processes and document data flows. Each of the
processes in the Information Architecture should
be decomposed to the level that an identifiable
organizational entity or a person can be assigned
responsibility for the process at each level.
Keying the decomposition process to actual
organizations simplifies the process and promotes
understanding. For example, if vice presidents
comprise the second tier in an organization, then
top level processes are assigned to that officer
who has primary responsibility for the process,
even though others may share in it at lower
levels. If marketing is the major top-level
process, it can be decomposed into market
analysis, advertising and promotions. Advertising
could be decomposed to the next level to ad design
and ad budget. Note here that the ad budget, even
though a process under the major process
"Marketing," could be assigned as a subprocess to
"Budgeting" under the Controller without violating
the decomposition process. This procedure would
then reflect the true interplay among processes as
one moves down through the organization to its
lower levels. Process decomposition is an
extremely critical step in analysis and should be
carefully managed to insure that all processes at
each level are effectively identified.

Responsibility for Data. Using the Information
Architecture as a base, responsibility should be
established for all data cl asses for each of the
following categories and levels in the
organization:

o Creation - Where does the information
originate? Who is responsible for
entering it into a system acceptable
form?

o Accuracy Who, if anyone, is
responsible for verifying the data?

o Form Who is responsible for
establishing the standards for data each
time its form is changed?

o Media Who is responsible for
determining what media is used to record
the data?

o Meaning - Who is responsible for data
definitions and context?

It wi 11 not be unusual to find many of these
responsibilities shared by several organization
elements, people, and levels in the organization.
It is the data administrator's responsibility to
keep track of these things to insure complete and
coordinated action when data requirements change.

STEP 2 Define Baseline Workload

Once the Information Architecture is built, it
wi 11 be necessary to capture workload data to
properly configure the OA system with needed

281

capabilities and capacities. One approach is to
use Job Content Profiles as a basis for estimating
amount of information handling and processing work
being performed broken out by categories.

The people in an organization can be categorized
as one of the following:

o Executive Level - The Chief Executive
Officer and the individuals occupying
line and staff positions immediately
below the CEO. This may vary by
organization, but it should not be
difficult to identify that tier which is
considered to be the executive level.
People at this level normally collect
information prepared by others in the
organization and disseminate decisions.
Most of their information activity is in
face-to-face exchanges with subordinates
and others.

o Management Level Division level
managers, normally at a level
immediately below the executive level
and who have major staff and operating
responsibilities. Managers spend 1 arge
portions of their time synthesizing
information and preparing it for the
executive level. Information is
received from the professional level in
somewhat summarized fashion and
subjected to management scrutiny before
being passed upward. There is much
human interaction through meetings and
calls to collect and disseminate
information upward and downward.

o Professional Staff Professionals,
including lower level working managers
who have staff or operational
responsibilities. Also includes support
staff not serving in an
administrative/clerical capacity. This
level works most closely with the data
base. Their activity is the analysis of
detailed information and the formulation
of recommendations for the organization.
There is a heavy exchange of information
laterally as well as upward as masses of
information are sifted, analyzed and
prepared for presentation. Original
text entry/creation is typically one of
the major tasks at this level.

o Administrative/Secretarial - Secretaries
and personnel who operate the
information processing and distribution
system. At this level, information is
refined and produced in final form.
Tasks include typing, filing, printing,
copying and distributing.

Interviews and surveys are conducted at each
level, the objective being the identification of
information related tasks and quantification of
how much time is spent performing each task. Such
tasks include ~ext entry (typing), retrieving
docu~ents, drafting documents, attending meetings,
talking on the telephone, proofreading, data
entry, copying, or delivering documents. The
types of tasks and the amount of time spent on
each wil 1 vary of course from 1eve1 to 1 eve l and

282

even within levels. The methodology calls for the
profiling of personnel in the organization at each
level so that average times spent on tasks can be
calculated.

Once average times are calculated, the tasks can
be analyzed for how much workload is represented
by time spent. For example, if one hour each day
is spent drafting correspondence, and a drafter
can produce 2 typed equivalent pages each hour,
than a weekly drafting workload of 10 pages each
week can be inferred. If a secretary types for 2
hours each day and a rate of three finished pages
can be determined, the workload is six pages each
day, or 30 pages in a week, or an annual output of
1500 pages based on a 50 week workyear. Each page
of original typing can be expected to be printed
2.5 times before the final product is attained,
resulting in a printer workload figure of 1500
pages X 2.5 = 3750 pages annually for each
secretary. Phone calls, meetings, spreadsheets,
data entry transactions and other tasks can be
determined the same way.

The Data Flow Diagrams and other documents
developed in STEP 1, Defining the Information
Architecture, will be invaluable in determining
data flow volumes, content, timing, media and
form. Each data flow should be analyzed from all
three information dimensions. Estimates or actual
traffic data should be derived to reveal data flow
volumes, number of transactions over time,
applications by type and any external
communications requirements.

STEP l Refine the Information Architecture

Armed with the data from STEPS 1 and 2, you should
be able to drive the Information Architecture down
to a more significant level of detail. Three
subarchitectures are meaningful at this point: a
data architecture, an applications architecture
and a data distribution architecture.

The Data Architecture. If entities were defined
Trl STEP 1, the next step is in determining the
relationships among the entities. The result is
predictably an entity relationship diagram which
documents how each entity acts upon other
entities. The next step is to decompose the
entities down through its composite data cl asses
down to the data element level so that a data
element has a hierarchical relationship with only
one data class. Once at the data element level,
data dictionaries become handy tools to keep track
of elements and their parent classes.

The Applications Architecture. This architecture
reflects relationships among data and relates the
relationships to office automation
functionalities. Such relationships are shown in
the Figure 4.

The Data Distribution Architecture. With multiple
tiered system architectures, e.g., host mainframe,
intermediate host distributed processor, and
workstation, the distribution of data at each of
these levels becomes a key management decision.
No longer is the focus only on the mainframe host,
for there are DBMS and other sophisticated
capabilities in the intermediate host and
workstations as well, these being office
au tom at ion components. Hence the di stri but ion of

The Applications Architecture

Relationships Among Data

Relationships OA Function

o Among Text Documents Word Processing

o Within and Among Lists

or Records

DBMS

o Within and Among Matrices Electronic

Spreadsheets

o Among offices and people Electronic

Mail

o Between offices and Communications

host computers Networks

dtt1 11110ng these tiers should be based upon:

o The need to share •••
- Among all offices.
- Within the department
- Not at all.

o Size of the Data Base
o Processing Power Required
o Securtty Requirements
o Availability of Conmunications

Figure 4

STEP ± Configuring the Office Automation System

There are two environments which must be dealt
with:

o The Workstation Environment

o The Host Environment

The architectural configuration should be viewed
from these two environments. (Figure 5) The

I Workstation and Host Environments

r,------·-·:···-··1
I I
i i
' I
I I
I • !
! I
i_ ___J

r-···········----············-······
1~1 l--··--·-········---................................ -

.,, :.i I :

! i
I :
i !
I :
I .. C9IVl'D IHtlll I
L ... ·-···········-···········.i

Figure 5

283

workstation environment is defined as the
multiplicity of functions which can be performed
in a standalone mode using the workstation as one
would a dedicated personal computer or word
processor. In this capacity it provide processing
capability to the user for applications such as
spreadsheet, data base management, word
processing, graphics and others. If so equipped,
the workstation environment may have access to the
host environment through a communications
capability, i.e., the hardware and software
necessary to al low the workstation to emulate a
terminal. In this mode, the workstation then
functions as a gateway to electronic mail systems,
data bases and software resident in the host
environment.

Access to the Host Environment gives the user
greater capacity and power as well as
communications throughout the host environment.
The primary or intermediate hosts often have more
powerful software, greater memory and storage
capacity and the ability to share scarce
resources. Further, this environment serves as
the gateway to other hosts for electronic mail and
other applications.

The configuration of the workstation environment
is based on the requirements analysis performed in
STEP 3. Standard configurations should be
established for workstations at each level in the
organization from executives to professional to
secretarial. Generally, executive configurations
should be fully PC capable with emulation
capability to both intermediate and primary host
for electronic mail and limited data base access.
Management and professional workstations should be
PC-capable with a word processing, spreadsheet and
DBMS applications available at PC level or
intermediate host level. Reliance on the primary
host for DBMS, 4GL and other capabilities should
be dependent on specific needs for such
capabilities, not because it is convenient or
always done that way. The amount of processing at
this level distributed to the workstation or
intermediate host should be maximized. Finally,
secretarial workstations should be full-function
PC configurations, but with access to facilities
at both host and works tat ion 1 evel s for document
finishing, such as laser or letter quality
printers. Applications software should be
restricted to intermediate host so as not to tie
up mainframe resources doing administrative tasks.

Once workstation quantities are determined by
level, intermediate host, mainframe and
comm uni cat ions configurations to support the
workstations can be designed.

OA SUCCESS FACTORS AND ISSUES

By taking the broad view of office automation
across the Information Spectrum, it becomes clear
that office automation systems have impact across
total organizations, in particular:

o Users
o Development Process
o Information Management
o Productivity

284

User Factors and Issues

The advances in technology and the microcomputer
explosion have created a pervasive awareness of
office automation among the general population.
In the past, users tended to remain remote from
the computing environment. Now, they want an
active role in the automation of information
relevant to their jobs. Office automation by its
very nature delivers computing power to users and
one can expect that interest wi 11 grow as more
system capabilities become avail able. In some
cases, user awareness at the workstation level
will exceed that of the MIS professional.
Pa~ticul ar attention .is needed to carefully manage
this awareness and interest to insure that they
are channeled into activities which are
constructive to the overall information management
system and do not create troublesome
incompatibilities in the future. In-house user
groups provide excellent outlets for this
enthusiasm and interest and offer the MIS manager
an opportunity to be aware of what is happening at
that level.

Productivity among the professional staff remains
an issue. OA has yet to come up with a
universally accepted method of measuring
productivity of professionals. The method
prescribed in this paper is but one of many which
attempt to do so to the satisfaction of those who
manage resources. While it is intuitively obvious
to those who have extensive office automation
others will find precise measurement of
~roductivity improvements an elusive entity. The
impetus to do so may fall by the wayside as more
methodologies are developed to show the impacts of
office automation as a competitive business
advantage. As a minimum, however, organizations
must re~i~t the temp~ation to use word processing
productivity techniques to measure office
automation productivity. It is professional
productivity which has the greatest payoff.

Developmental Process Factors and Issues

Microcomputer workstations have finally brought
legitimacy to end-user computing. While end-user
mainframe languages have been with us for awhile,
their introduction into user organizations has
been slow. Information Centers were introduced to
provide user assistance in using these end-user
languages. But it was not until now, with
microcomputers proliferating in the office that
the Information Center takes on real meaning. No
longer did the user have to endure the long,
traditional software development process. Here
was total control over information right in the
user's office with user information and user
software packages. But it still is not "all"
information, for there is still "corporate" data
stored elsewhere, typically on the mainframe.
This is where the marriage of end-user computing
components, micros and mainframe take place.
Organizations which do not recognize the
importance of Information Centers in cultivating
and facilitating end-user computing will not be
able to exploit their investment in office
automation.

Information Management Factors and Issues

In larger organizations, information is not
managed well outside the the immediate unit which
creates or uses it. Hence the notion of creating
information once, and using it many times
throughout the organization is difficult to
achieve. This notion, which we will call
"leveraging information," should be a data base
design and organizational goal in establishing
office automation systems. Without it, users will
use their new found computing power to establish
yet more data bases which are not synchronized
with others and leading to more inconsistency on
critical organization data.

A companion issue is how to administer data at the
workstation level. How many rules are enough to
establish control, consistency and sharing? What
standards should be established for file formats,
document formats or documentation? Too many rules
frustrate users and are probably not enforceable.
Too few perpetuate the problem of incompatible
data.

285

IN SUMMARY

Office automation should be viewed from the
perspective of the entire Information Spectrum and
not as an ind iv i dual segment in the information
pathway. The interaction of the various
technologies is what produces the most effective
and efficient set of OA system capabilities. The
basis should always be information, that precious
commodity for which all these system components
are being put together. Current methodologies are
available to establish information based
requirements for OA and should be used.
Information requirements should then be combined
with office workload requirements to determine the
optimum configuration for office systems.
Finally, everyone should recognize that equipment
alone does not improve productivity or provide the
competitive edge. It takes people who are
organized for the specific purpose of making the
system do its job. Then the OA Myth, "Office
Automation improves the productivity of people ••• "
can be replaced by the truth, "People improve the
productivity of Office Automation."

DEVELOPMENT OF AN IN-HOUSE TRAINING PROGRAM FOR ALL-IN-1

Nancy R. Pflanz
COMPUTER TECHNOLOGY ASSOCIATES, INC.

Albuquerque, NM

ABSTRACT
This paper defilles the reaso11 for ar1 ill-house traillillg
program, alld the steps illvolved iu implemelltiug a workiug
traiuiug program. Traiuir1g room facility requiremeuts
arid costs; iustructor qualificatioris; course type,
f requer1cy, arid coutellt are illcluded ill this preser1tat iors,
as well as illsight illto the backgroulld promptillg the
developmerit of the iri-house trairiir1g program. Further,
to adequately represellt arid qualify ari ill-house trai11illg
program, much of the data presellted has bee11 specifically
alld accurately extracted from a currellt, successfully
operatirsg trair1ir1g program. Additiollal recommelldatiolls
and/or gelleric-type suggestior1s are also presellted for
corss iderat iors.

1. 0 BACKGROUND

The Air Force Operatiorsal Test alld
F.:valuatior1 Cer1ter (AFOTEC) initiated a Pilot
Project, to explore the use of computers for
improvillg productivity alld effectiver1ess ir1
Operatior1al Test arid Evaluation (OT&E) mallage
mellt arid cor1duct. This AFOTEC Pilot Project is
beirsg accomplished through the installatiou of a
limited-scale, distributed, integrated, multi
furictiors computer system, located at Headquar
ters (HQ) AFOTEC, Kirtlalld Air Force Base, NM;
ir1corporatior1 of selected fur1ctior1al capabili
ties (i.e., office automatior1, irsformatioll
mariagement, arid data processing fursct iorss); arid
measurement of system performance, includir1g the
effects on productivity, aud other related fac
tors that result from the availability arid use
of the system.

The traiuir1g program includes formal
classes and cor1sists of ALL-IN-1 * classes iu
Desk Marsagement, Word Processing, Electror1ic
Mail, Graphics, OTEMIS** (Operatior1al Test alld
Evaluatiori Mauagemer1t Iriformatioll System),
RUNOFF, arid an Electror1ic Spreadsheet--
PLOW Cale***. In additior1 to formal classes,
time- is sper1t iri tutoring (on all individual
basis), iri ar1swerillg questioris, arid iri resolvirig
trouble calls. Due to the colltillual turr1over ill
Air Force persollllel, there is a demalld for a
cor1tir1uous traillir1g program.

*Trademark of Digital F.:quipmerst Corporatiors
(DEC).

**Air Force Program.
***Trademark of Gerseral Research Corporatioll

(GRC).

Proceedings of the Digital Equipment Computer Users Society 287

2.0 SYSTEM DESCRIPTION

The AFOTEC Pilot Project computer system
corssists of a Digital Equipmellt Corporatioll
(DEC) VAX 11/780, with 16 Mb of memory. Disk
storage collsists of four RA81 Willchester disks,
with 456 Mb per drive. There are 112 termillal
ports, of which 12 are cornsected to modems (to
allow system access to remote users, alld to
allow dial-out access to remote systems by local
users). The types of termillals currelltly ill use
ir1clude the DEC VTlOOs, VT102s, DECmate Is alld
I Is, VT125s alld VT24 ls; alld zeui th Z-100 arid
Z-150 microcomputers, with VTlOO emulators. The
most commollly-used (local) prillter is the DEC
LQP02, of which 24 are currelltly available.

AFOTEC 's Office Automatiors System has beell
modified extellsively from the DEC-delivered
product, to illclude a graphics interface, a
third-party spreadsheet, all 011-lir1e documellta
tioll alld information system, alld all exterllal
r1etwork alld commursicatioll access, as well as
customer-tailored addi tior1s/modif icatiorss to
some of the s ta lid a rd ALL-IN-1 menus. Figure l
illustrates the ALL-IN-1 Maill Mer1u optior1s.

AFOTEC Automated Office
Professional Workstation

WP Document Processing
EM Electronic Mail
OM Desk Management
IM Information Management
Bl Business Applications
Pd Program Development
PS Profession Specific

NU Instructions to the New User
EX Exit ALL-IN-ONE
LO Leave Workstation

Enter selection and press RETURN
OR press the HELP key for help.

GR Graphics Applications
CO Communications

PH Phone Utility
CP Change Password
VI VAX System Information

Figure 1. AFOTEC Mairs Mellu Optiolls.

New Orleans LA - 1985

Approximately 550 people presently have
access to the AFOTEC VAX 11/780 computer system.
The average user load, however, is 30. As of 01
October 1984, 44 perceut of the users' log-011
time was speut in word processi11g1 and 26 per
ce11t was spent in Electronic Mail. Figure 2
summarize these statistics.

WP 47°"

Figure 2. Utilization Of ALL-IN-1 Options By
AFOTEC Personnel.

3.0 SELECTION OF COURSE SUBJECT MATTER

Ortce the AFOTEC Office Automation System
was ir1stalled, some basic classes needed to be
taught, irt order to instruct the general user.
The user commuuity, as a whole, has ara
exte11sively-varied backgrouud of computer
experieuce arid k11owledge, ra11gi11g from the
1xperie11ced programmer, to art inexperienced
clerk/typist (who has never seen a computer
terminal). 8asic classes need to be taught
first, so the ir1experienced user would not be
irttimidated.

Two types of classes are presently being
taught ira the AFOTEC training program:

0 Beginning Classes--The Beginning
classes include the basic office auto
mation tools, which are the most
f requeratly used office automation
functions, as well as being relatively
easy arid straightforward (arid,
ge11erally, do not overwhelm the new
user). The three 'basic' classes
include the following:

(1) Desk Management--This course is
selected as the first 'basic' to
be taught, primarily to familiar
ize the user with the keyboard
(especially the mini-keypad). Ir1
addition, the user becomes accus
tomed to procedures for filling
out 'forms' arid in their use.

(2) Word Processing--This function,
the second 'basic' to be taught,
is fundamental to office auto
matio11, involvi11g the use of a
full-screen editor. Familiarity
with this editor also assists in
the understanding of the third
basic, Electronic Mail (EM)
(since EM also requires use of
this editor).

and

288

(3) Electronic Mail/File Cabinet
Maintenance--This easy-to-use
function provides the primary
mechariism for interoffice commu
nication (for such things as
memos, notices, reports, official
correspor1dence, etc.) , r1eeded by
all users.

o Advanced Classes--To date, the ad
vanced classes include the following:

(1) Graphics--The Graphics package is
DEC's POLYGRAFIX, supporting a
wide range of graphics applica
tions. The graphics class only
covers the Graphics Editor, the
Slide Projection system, and the
Data Plotting Package. The
Graphics Editor allows the user
to create and edit pictures
interactively. Pictures created
can then be stored in files, for
use with the Slide Projection
System. The Data Plotting Pack
age performs ir1teractive file and
data manipulation for graphics
plotting1 and these can also be
stored in files, for use with the
Slide Projection System.

(2) FLOW Calc--is a third-party soft
ware-package, providing an "elec
tronic spreadsheet" function.
Worksheets cara be constructed,
stored, retrieved (back to the
screen) for updating, and printed
(hardcopy). The FLOW Cale class
introduces the student to a
spreadsheet: it instructs the
student in procedures for con
structing one, and 'walks' the
student through the various
commands, using the newly-
constructed spreadsheet.

(3) Digital Standard Runoff (DSR)--is
a text-formatting facility. The
Runoff class covers the basic DSR
commands, which are entered
directly into the text, and allow
the user to cor1trol the format of
word processing output.

(4) OTEMIS--The OTEMIS program is a
specialized course, developed by
AFOTEC, and contains ir1formation
about test programs. The class
shows the user the operatior1 and
features of OTEMIS.

By request, new courses can be
added to the schedule, in order
to satisfy immediate or
short-term needs. If there is
continued demand for the same
course, it can then be added as a
regular class.

i

(

f

i

4.0 SELECTION OF TRAINERS

The selectio11 of trai11ers is a critical
co11sideratio11. Two of the most conunon choices
are: an engineer, or an in-house staff trainer.
While most engirieers know the subject matter
proficiently, they generally lack the r1ecessary
skills arid patience to relate the informatior1 to
a r1ew user. Further, most e11gineeririg
professionals have a tendency (uriintentior1al) to
use terminology that is ur1familiar to the
less-kr1owledgeable individual. Further, the
er1gir1eer occasionally has difficulty
ur1derstar1di11g such an iridividual 's questions.
On the other haud, someone with a11 educatioual
background or with teaching experience is more
adaptable to this environment. Educators are
gerierally more aware of the differe11t levels of
understaridiug, aud realize that uot everyone can
lister1 to ir1formation, absorb it, and correctly
u11derstand it. Generally, there will be a
variety of students in a class: some with
computer backgrou11ds, and some without: and some
who like to work with computers, and some who
are afrai<'I of them. A trai.11er with teachi11g
experierice is usually better adept in
accommodatirig the varied understanding levels of
a 11 the studer1ts.

Engirieers are also (gerierally) more expen
sive tha11 an i11-house trainer with an educa
tior1al backgrour1d and, additior1ally, are 11ot
usually cor1ter1t in a permar1e11t role of a
trair1er. Ari in-house staff trainer could keep
the cost of the program miuimal: and the experi
erice, patience, and ded1catio11 of a trainer with
a11 educatiorial background cau practically ensure
the success of an in-house training program.
Ariother advaritage of an in-house trai11er is that
he/she would also be available, when 11ot in
class, to ar1swer any questions about ALL-IN-1,
whenever users encouuter difficulty or whenever
problems occur.

Wheu one (or several) persori(s) is involved
in the role of trairier (solely), a morale prob
lem could arise: repetitive teaching of the
same classes can lead to boredom and dissatis
E act ion with the job. Teach i ug ur1der au in
house trair1ir1g program is different thar1 teach
i11<,j i11 a u11iversity er1viro11mer1t: in a uriiversi
ty program, the same class might be taught more
tha11 or1ce i.11 a day: but the studerits are moved
through the subject matter daily. In ALL-IN-1
tr.=1i11i11g, the same class must be taught over arid
over. Whether it is taught 011ce a week or once
a mouth, the subject matter is always the same:
a11d, after teachiug the same material mariy, ma11y
times, a class car1 become extremely moriotorious
for the trair1er. I11 order to break the tedious
r1ess of trairiing, backup persormel are essen
tial. A rotatio11 schedule should be developed,
so that the trainer is take11 away from the
classroom for a specified time period, to per
form other, 11on-training tasks; arid a backup
trair1er performs the trai11i11g. With such r1011-
trai11ir1g tasks occurring periodically ir1 the
trairier's schedule, the mo11oto11y in trai11i11g
wi 11 subside cor1s iderably.

5.0 THE DEVELOPMENT OF CLASS NOTES AND LESSON
PLANS

The developmer1t of a class requires several
steps, to be performed in a specific order:

289

(1) Learning the material--Depe11ding on
the trair1er's background, time needs
to be set aside for the trainer to
lear11 the material and to practice
(har1ds-on experience) on the system.
From this, the trainer can develop
class 11otes.

(2) Developing class notes--Class notes
are basically for the trair1er's
ber1efit, arid coutai11 notes that the
trainer needs to review in order to
properly present the material. Class
r1otes generally cor1tain detailed
i11formatio11 about the subject, 11ot all
of which will be related to stude11ts:
but, if questions arise or if users
are havi11g difficulty while worki11g on
the system, the trainer will have a
larger (detailed) pool of knowledge on
which to rely in a11swering questions
or i11 solvir1g problems. If training
is bei11g performed on a large scale,
backup persormel are essential. Not
only will these class 11otes be a
tremendous aid to backup trair1ers, the
lead-time for alternate trainers would
also be greatly reduced, since the
class notes and lesson plans will have
been previously prepared by the
primary trainer. (Theoretically,
backup trair1ers should be able to step
in at the last minute and conduct the
class.)

The backup personnel (especially if
they do not have an educatio11al back
ground) should perform a 'dry run' of
each class they are going to teach,
under the directior1 of the permanent
trainer. This would allow the trainer
to critique the backup's teaching
techniques, so that the quality of
instructio11 is comparable to the
trainer.

(3) Constructing lesson plans--From the
class notes, a lesson plan is derived.
Lesson plans contain a detailed out
lir1e of the topics to be taught, and
the order in which the material will
be prese11ted. The lesson plan ca11
ther1 be used as a guide duri11g
teaching. It establishes consistency
in covering the material, as well as
assuring consistency betweer1 trainers
arid their backups. Table 1 illus
trates an example of a brief lesson
plan, for the Word Processing class,

(4) Prepari11g handouts--Handouts covering
the subject matter can be distributed
to the studer1ts. Such handouts sup
plement the material being covered,
thus making the subject matter easier
to understand. It also reduces the

amou11t of riotes students would need to
take, allowi11g th~m to conce11trate
more fully on the i11structor's
prese11tatior1. liar1douts also serve as
a quick-referer1ce guide for the
studer1t, 011ce he is 011 his ow11 with
the system. Si11ce the DEC ALL-IN-1
User's Guides are 11ot very co11ve11ie11t
to use, a11d most ALL-IN-1 users do riot
have the time to read the er1tire
mar1uals, it is difficult arid time
co11sumi11g for the student to locate
the ir1formatior1 he 11eeds. Cor1se
que11tly, the ha11douts serve as quick
a11d cor1ve11ie11t substitutes for the
User's Guides. Table 2 illustrates ar1
example of the first page of a brief
ha11dout for the Word Processi11g class.

TABLE 1. SAMPLE LESSON PLAN FOR WORD PROCESSING

1. Mail Message
a. Fi le word process i11g pr act ice document

us i11g <FM> optiou from the electronic
mail meuu

2. <WP> Word Processing Optiou
a. <C> Create a documer1t
b. <CL> Create 1011g form

(1) Header ir1formatior1
(2) Set;,.ip--available choices (4 or1

mi11i-keypad)
c. <SEL> Select a documer1t

(l) Recogr1 it ion
(2 l Se le ct ion of word processing

pr act ice documer1t
d. <E> Edit optior1

(1) Leaflet--WPS editor
(2) Harn'lout
(3) Moveme11t withiri docume11t
(4) Deletior1 of items from document
(5) A character stri11g Search (arid

Replace)
(6) Additior1 of text
(7) Ce11terir1g of text
(B) Cut arid paste fur1ctior1

(a) Movir1g a selected portion of
text

(b) Car1celi11g a selectiori
(c) Copying a selected portior1 of

text
(9) Uppercase and lowercase
(10) Tra11spositior1 of two characters
(11) Re-' pa ir1t ing' of the screer1
(12) Irisertion of date a11d time
(13) Paginatior1
(14) Help
(15) Ir1sertior1 of a documer1t ir1to text
(161 Desk calculator access
(17) <GOLD M>
(18) Ruler setting
(19) Exiting from the docume11t

e. <D> Delete optio11
f. <T> Display opt ior1
g. <P> Pririt option--Available pri11ters
h. <I> Docume11t index option
i. <SEA> Search file cabir1et option
j. <SC> Spell check optior1
k. <WF> WPS file cabinet
1. <RP> Read protect optio11

1.

2.

290

(5) Teachir1g the class--Completio11 a11d
utilizatio11 of the above steps and
materials promotes effective class
ir1struction, i11 additio11 to providirig
useful preparatiou, guideliues, aud
uotes for teachir1g the class.

TABLE 2. SAMPLE HANDOUT
FOR WORD PROCESSING CLASS

To Move Arou11d The Docume11t
a. Dowr1 Arrow < >--moves the cursor dowr1

oue li11e.
b. <GOLD # >--moves the cursor dow11 as

mauy lir1es as specified (i.e., #).
c. Up Arrow < >--moves the cursor up 011e

:i. ine.
d. <GOLD # >--moves the cursor up as mar1jl

lir1es as specified (i.e., #).
e. <Advance> key--moves the cursor to the

right 011e positio11; if the cursor is at
the e11d of a li11e, pressiug this key
will move the cursor to the first
positior1 of the uext lir1e.

f. <Back Up> key--moves the cursor to the
left 011e positio11; if the cursor is at
the begirnii11g of a li11e, pressi11g this
key will move the cursor to the last
positior1 of the previous liue.

g. Distance keys (blue keys)--These
keys are used to move through
documer1t after the directiou has
set (through first pressi11g
<Advar1ce> or <Back Up> key):

five
the

beeu
the

(1) <Sent>--moves the cursor to the
begi1111i11g of the r1ext (or
previous) se11te11ce (looks for a
period ".").

(2) <Word>--moves the cursor to the
begirn1i11g of the r1ext (or
previous) word.

(3) <Para>--moves the cursor to the
begir111i11g of the uext (or
previous) paragraph.

(4) <Line>--moves the cursor to the
beg ir1ni11g of the next (or
previous) liue.

(5) <Page>--moves the cursor to the
begi11rii11g of the uext (or
previous) page.

h. <GOLD B>--moves the cursor to the
bottom of the document.

i. <GOLD T>--Moves the cursor to the top
of the documer1t.

j . <GOLD Next Screen> (<GOLD Advance>)-
moves the cursor forward 21 lir1es.

k. <GOLD Previous Screen> (<GOLD Back
~--moves the cursor back 21 1 i11es.

Delete Items From Docume11t
a. <Rub Char Out> key--deletes the

character to the left of the cursor.
b. <Rub Word out> key--deletes the word to

the left of the cursor.
c. <Del Char> key--deletes the character

011 which the cursor is positio11ed.
d. <GOLD Del Char> key--replaces the last

character that was deleted with <Del
Char>. (This will also work if the
<Rub Char Out> key was used.)

e. <Del Word> key--deletes the word to the
right of the cursor.

TABLE 2. SAMPLE HANDOUT
FOR WORD PROCESSING CLASS (Continued)

f, <GOLD Del Word> key--replaces the last
word that was deleten with <Del Word>.
(This will also work if ~he <Rub Word
Out> key was used.)

g. <GOLD Rub Line> (<GOLD Rub Char>)-
deletes the line to the left of the
cursor.

h. <GOLD Rub Sent> (<Gold Rub Word Out>)-
deletes the senter1ce to the left of the
cursor.

i. <CTRL U>--deletes everything to the
beginning of the line.

3. l\dcHng Text--Position the cursor where text
is to be added, and begin typing.

4. Reformatting Text--Wheri white diamond (<>)
appears at the end of a ser1tence, the text
needs to be reformatted: use <GOLD Wrap
Paragraph> or <GOLD Para>.

S. Searching For Character Strir1gs (And
Replacir1g)
a. <GOLD ,>--searches for a specified

character string.
b. <GOLD • >--cor1tillues search.
c <GOLD :> or <GOLD S>--(global search

arid replace) searches for a specified
character string alld replaces it with
ariother specified character or
character strillg.

6. Cer1tering Text--<GOLD C>--The cursor must
be positioned to the right of the text to
be centered.

7. Moving or Copying Sections of Text
a. C;.i.t arid Paste--moving text

(1) <Sel> key--Selects the text to be
moved.

(2) <Cut> Key--Removes the selected
text and stores it in the "Paste"
buffer.

(3) <Paste> Key--Illserts the contellts
of the Paste buffer at the cursor
positiori.

b. Caricelling a choice
11.fter text has been selected, if
remova 1 is riot des ired, press <GOLD
Reset> <GOLD Sel>.

c. <GOLD Copy> (<GOLD Cut>)--copying Text
(1) <Sel> key--Selects the text to be

moved.
(2) <GOLD Copy> (<GOLD Cut>) Key-

Copies the selected text and
stores it in the "Paste" buffer.

(3) <Paste> Key--Inserts the cor1ter1ts
of the Paste buffer at the cursor
positioll.

8. Char1gir1g Cases
a. <Upper Case> Key--char1ges one character

from lower to upper case.
b. <GOLD Lower Case> (<GOLD Upper Case>)-

chauges one character from upper to
lower case.

c. To change a word, 1 ir1e, or ser1te11ce:
(1) Press the <Upper Case> key or

press <GOLD Upper Case>, depending
011 the specific 11eed

(2) PrPss the <Word>, <Liue>, <Saut>,
or <Down Arrow> key

(3) Turn off by pressi11g either the
<Advance> or <Back Up> key.

291

TABLE 2, SAMPLE HANDOUT
FOR WORD PROCESSING CLASS (Concluded)

d. To char1ge the case of a section of text
(1) Select the range (<Sel> a11d a

distance key)
(2) Press either <Upper Case> or <GOLD

Lower Case>, depe11ding on whether
the selected text is to be changed
to upper case or to lower case.

9. Changiug Margir1s
a. <GOLD R>--the default value for the

left margin is 1: for the right margi11,
70.

b. To change the left margin--move the
cursor to the desired position for the
left margira and type a <W>.

c. To change the right margin--move the
cursor to the desired position for the
right margin and type a <R>.

d. To save a ruler--Once the left and
right margir1es are set (see b. a11d c.
above), press <Shift S>, and type a
number from the main keyboard (between
0 and 9). Up to 10 rulers ca11 be
saved.

e. To recall a ruler--Type the appropriate
number (the 11umber Ullder which the
desired setting was saved).

f, To exit from the ruler--press the
<RETURN> key.

10. Transposirag Two Characters
a. <GOLD Right Arrow>
b. <GOLD Enter>

ll. Redo-irag the Screen--<CTRL W>
12. Ir1sertir1g Date a11d Time--<GOLD >
13. Paging

a. <GOLD Page>--automatic, to see where
the page break will occur

b. <GOLD N>--illserts a new page (puts ill a
permar1er1t page marker when it is used)

c. <GOLD P>--Puts ill a temporary page
marker: the printer ignores this type
of page marker.

14. Help Screen--<GOLD H>
15. Inserting Document or Message in Text-

<GOLD G>
16. Using the Desk Calculator

a. <GOLD #>
b. The result is in the paste buffer-(Bug)

17. Us i llg the Edi tor Menu--<GOLD M> brir1gs up
the editor meuu, which includes:

Caleudar Management
Desk Calculator
Enter DATATRIEVP.
Read Next Message From Inbox
List Of ALL-IN-1 Users To Paste Buffer
Update Document Header

18. Updating Document Header Information--<GOLD
U>

19. <GOLD F> a11d <GOLD Q> (or <GOLD K>)
a. <GOLD F>--saves changes a11d returr1s to

the WP Me11u.
b. <GOLD Q> (or <GOLD K>)--does not save

~hanges; but also retur11s to the WP
Merau.

6.0 TRAINING SCHEDULES

Ir1 the AFOTEC trai11ir1g program, each class
is allotted 2.5 hours, with a 5-to-10-miuute
break durir1g that period. There are three basic
ALL-IN-1 classes: Oesk Ma11agemer1t, Word
Processir1g, arid Electrollic Mail/File Cabir1et
Maillter1arice). These classesare taught COll
secutively, Olle each day for three days. The
teachillg frequer1cy of this series is cor1tir1gellt
upori user demar1d. The Advallced classes
(Graphics, RUNOFF, FLOW Cale, arid OTEMIS) are
also offered relative to user demar1d. Ger1er
al ly, the basic classes will be taught more
ofter1 thar1 the Advallced. Ari example traiuir1g
schedule is illustrated ir1 Table 3.

TABLE 4. SAMPLE TRAININr. SCHEDULE
April 1985

DATE TIME SUBJECT
01 Apr 0900-1130 ALL-IN-1 Desk Mar1agemer1t
02 Apr 0900-1130 ALL-IN-1 Word Processi11g
03 Apr 0900-1130 ALL-IN-1 Electrollic Mail/

File Cabi11et Mair1tella11ce
04 Apr 0900-1130 RUNOFF
05 Apr 0900-1130 FLOW_Calc Spreadsheet
15 Apr 0900-1130 ALL-IN-1 Desk Mar1agemer1t
16 II.pr 0900-1130 ALL-IN-1 Word Processir1g
17 Apr 0900-1130 ALL-IN-1 Electrollic Mail/

File Cabillet Mair1teuallce
18 Apr 0900-1030 OTEMIS
22 II.pr 0900-1130 GRAPHICS

The basic ALL-IN-1 classes (Desk Mar1agemer1t,
Word Process ir1g, arid Electroriic Mail) should be
taker1 ir1 the order as listed. Al 1 flew VAX users
MUST at ter1d the Desk Mar1agemerit course.

Iridividual tutorir1g is available or1 request for
ar1y of the above subjects. For appoilltmer1ts,
call the trailler.

A course catalog is available through the VAX
INPORMATION optio11 ill ALL-IN-1. To access the
catalog, type VI at the mai11 ALL-IN-1 mer1u; a11d
select the documer1t "Currer1t Available
Traillir1g".

Studer1ts who have er1rolled ir1 a class alld sub
sequer1tly caru1ot atter1d should llOtify the
trai11er of the car1cellatior1 as soor1 as possible.
This will provide a11 ope11illg for others who are
waitiug to e11roll for the class.

Studer1ts wishir1g to er1roll ir1 a class, or who
have quest ior1s regardi11g the tra i11i11g/tutorillg
should cor1tact the traiuer.

7.0 TEACHING TOOLS AND TECHNIQUES

There are several teachir1g tools a11d/or
techlliques that car1 make the traiuer's job
easier. Orie major cor1sideratior1 is the class
locatior1 arid facilities. Because a 'har1ds Oll'
program is prover1 more effective thar1 a
'lecture-or1ly' format, a special trairiir1g room
is recomme11ded, with termir1als for studerits a11d
ir1structor. Wher1 the room is riot beir1g used for
trair1i11g or tutorir1g, these termi11als will be
accessible to users, for performi11g their daily
tasks.

292

The physical layout of the room is also of
vital importallce. A suggested trai11ir1g room
layout, similar to the 011e supportiug the AFOTEC
trairiiug program, is illustrated ir1 Figure 3.
At preser1t, the AFOTEC trai11i11g room (measuri11g
15 X 24 feet) accommodates seve11 termi11als (DEC
VTlOOs arid VT102s), all of which have access to
the VAX: six for studer1t use, arid the sever1th
for the illstructor' s use (located ir1 the rear of
the classroom). A large screer1 is located ill
the fror1t of the room, with a video projector
positiolled ill the cellter of the room. This
projector is com1ected to the i11structor's
termillal, so that the studelltS call see the
commallds as they are beillg e11tered, thus
verifyir1g the correctlless of their OWll entries.
Through his/her locatior1 at the rear of the
room, the illstructor has visual access to the
stude11ts' termiuals, thus affordillg greater
aware11ess alld respor1sive11ess to the lleeds/
problems of each studer1t. The ir1structor is
able to offer immediate assistar1ce to the
studellts, thereby mair1tai11illg a u11ified class.
(The immediate availability of the iustructor
reduces/elimir1ates the frustratior1 that call
occur wher1 or1e or more studeut becomes disori
er1ted or coll fused with the procedures or
i r1s truct ior1s.) Further, the iris tructor is
always available outside of the classroom, for
respor1dir1g to questiolls a11d/or problems that may
be ellcou11tered whe11 stude11ts apply what they
have learr1ed, durir1g the performallce of their
routi11e, daily tasks.

A11other teachi11g aid, especially with a
traillir1g room setup like the or1e described
above, is proper 1 ightillg. A dimmer switch is
highly recommer1ded, i11 order to accommodate the
r1eed for viewir1g the projectioll screer1, as well
as the lleed for seeillg the characters 011 the
keyboards, readillg har1douts, arid tak ir1g llotes.

i:;--- -f

Figure 3. Trairiiug Room Layout.

Ill settillg up a trairiillg room, the possible
'traffic' hazard existi11g by the preser1ce of the
mally wires r1ecessary for the termillals arid the
projector equipmer1t must llOt be overlooked. Ill
the AFOTEC trair1ir1g room, this problem was
avoided by keepi11g all the wires alor1g oue wall,
away from the major traffic. Ir1 additioll, power
poles have beeu used through which to rull the
termillal commur1icatioll lir1es. Where the
preser1ce of wires i11 the traffic area could riot
be avoided, rubber strips have beer1 placed over
the wires, protectillg the wires while concur
relltly elimillati11g a potelltial hazard.

A switchbox, which will allow the
iristructor to project (or1 the 3creeri) the dis
play from ar1y of the stude11ts' termir1als, car1 be
a tremer1dous teachiug aid, especially ir1 pro
jectirig a problem beir1g experier1ced by 011e of
the studerits arid, subsequer1tly, explai11i11g (to
that stu<ieut arid to the whole class) the reasor1
for the problem, arid the solutior1 for exitir1g
out of it arid for avoidir1g it i11 the future.

Ar1other useful item is a lighted poir1ter,
projecti11g a11 arrow 011 items that 11eed to be
stressed or brought to the stude11ts' atte11tio11.

The typical cost of settir1g up a trai11ir1g
room as described above (to accommodate six
studer1ts--recommer1ded) is $27,450 35,450, a
breakdowr1 of which is illustrated i11 Table 4.
Although up to 10 studer1ts could be taught
without jeopardizi11g lear11ir1g (limited primarily
because of visual access to the scree11), a class
of 6 stude11ts is recomme11ded (with 10 beirig a
suggested maximum).

TABLE 4. COST OF EQUIPMENT FOR A TRAINING ROOM
BASED ON SIX STUDENT TRAINEES

VIDEO PROJECTOR
PROJECTION SCREEN
TERMINALS (SIX VT220s)
PRINTER
FLOOR SPACE (13 FT2/Y)
FURNITURE

6,000-14,000
1,000
7,770
2,000
4,680
6,000

27,450-35,450

As mer1tior1eci previously, haradouts are very
beriefi.cial for ma11y reasous: as a cor1ver1ier1t
refere11ce <iuri11g class; as a class guide, mai11-
tair1ir1g the order i11 which the material is beir1g
covered i11 class; i11 providi11g auswers to
commoraly-asked questio11s arid/or topics that were
previously covered i11 the class; arid ir1 pro
vidi11g refere11ce a11d guidarace support wher1 the
stude11t is worki11g i11depe11de11tly.

The harads-011 e11viro11mer1t (i.e., or1e studer1t
tier termiraal) is recommer1ded, as opposed to the
lecture e11virornner1t, because it riot or1ly 1 imi ts
the 11umber of studer1ts ir1 a class (thus guarar1-
teP.ir1g more ir1dividualized i11structio11), but
also allows the studer1t to practice, 011 the
spot, what he is lear11ir1g. I11 a lecture
e11viro11mer1t, or1 the other ha11d, more studeuts
car1 be taught; but the amou11t of ir1formatio11
absorbed is mi11imal, especially sir1ce most of
the studerats are uuaccustomed to takir1g r1otes
arid recalli.r1g (absorbi11g) the material covered
ir1 this fashio11.

The order ir1 which the various class topics
are prese11ted must also be carefully plarn1ed,
sirace ma11y optious are cor1tir1ge11t 011 others.
(e.g., it is difficult to demorastrate the "get
docume11t" optior1 i11 Word Processir1g, if there is
110 documerat i11 the studerat's file cabiraet to
'get'.) The class must be pla1111ed i11 such a way
that it moves smoothly, reduces co11fus ior1, aud
makes se11se to the s tuder1ts (eve11 the apprehe11-
s i ve or slower studeuts, who ca11 become very
discouraged arid possibly less productive with a11
;mfamiliar system).

293

Ir1 the AFOTEC trai11i11g program, classes are
taught ir1 a specific order, to optimize the
effectiver1ess of the program. For the first day
of the begirniillg (basic) classes, Desk Mar1age
mer1t is taught. At the start of class, the
studer1ts are show11 how to logi11 a11d cha11ge their
default passwords. A system overview arid the
various meraus are also preseuted, to provide the
studer1ts with a ger1eral kr1owledge of what is
available, ir1 additio11 to that which is covered
ira the classroom. Some time is ther1 speut 011
the Ir1structior1s to New Users optior1, followed
by the Desk Ma11ageme11t Mer1u. The primary pur
pose of this class, besides ir1troduci11g the
studeuts to the system, is to familiarize the
r1ew user (s) with the keyboard and the necessary
procedures for fillir1g out forms.

Before the Word Processi11g class (the
seco11d begir111ir1g class), two electror1ic mail
messages are ser1t to all of the stude11ts, both
of which co11ta i11 docume11ts: or1e, to demor1strate
the Spell Check opt ior1; a11d the other, to prac
tice the word processing comma11ds. 011ce the
studerats have properly processed their mail.
messages, the Word Processir1g menu optio11s are
explai11ed. The Create optior1 is used to
familiarize the stude11t with several word
processiug optious: c.:reatiug a docume11t;
viewiug the Create Long-form optior1; usi11g the
Select Documer1t optio11, to select the word
process i11g documer1t that was se11t to the
studer1ts; aud usir1g the Edit optio11, to edit
that documer1t. The studer1ts are the11 issued a
ha11dout cor1tai11ir1g the word processi11g comnar1ds.

The last basic class (Electrouic Mail/File
Cabir1et Mai11ter1a11ce) ca11 be a very e11joyable
class, eve11 for the ir1structor. Prior to the
class, several mail messages are se11t to the
studer1ts, usually contair1ing ir1formatio11
directly relative to the option bei11g covered.
Several more mail messages are also se11t to the
stude11ts durir1g the class; a11d all the
Electroriic Mail mer1u optio11s are covered.

Sir1ce the Air Force has made several
additior1s/modificatior1s to the origi11al ALL-IN-1
Elec.:troriic Mail me11u, ar1 additior1al har1dout is
also distributed to the studer1ts, which briefly
summarizes the AFOTEC Electro11ic Mail optio11s as
well as the the basic ALL-IN-1 Electrouic.: Mail
optio11s.

The last subject covered i11 the Begi1111i11g
classes is File Cabi11et Mai11te11ar1ce (FC), from
the Desk Mar1agemer1t mer1u. After lookir1g at the
mer1u optior1s ir1 File Cabiuet, the last items to
be perform by the studer1ts are several multiple
deletes to clear1 out their file cabi11ets so
that, whe11 they have f iriished the three basic
classes, they leave the trai11i11g room with a
clea11 user accour1t. To assist in this clea11up
process, all docume!lts created durir1g the three
classes were filed i11 the folder "temp".
Therefore, the delete is simplified: all file
folders marked "temp" are deleted, as well as
all "ser1t" aud all "read" messages.

8.0 SUMMARY/RECOMMENDATIONS

The primary cousideratious for establishir1g
are ir1-house trairdug program iuclude three focal
polrats:

(l) The Tra iuer' s Backgrouud--A decis iou
must be made regardir1g whether au
er1giueer or au in-house tr1tiner with
au educatiorial backgrour1d is to imple
meut arid mauage the program. A
traiuer with au educatioual background
is recommended.

(2)

(3)

In addition, if the trainirig program
is to be pArformed on a relatively
large scale, backup persoru1el for the
traiuer are highly recommended.

The Trairiinl Room Setup--A trairdng
room, suppl ed with an video pro-
jector, is a necessity. Further
reconuner·1ations include individual
terminals for each student in the
class (6-to-10), a11d one for the
ir1structor, with a switch box between
each terminal and the projector.

The Environmer1t--A hands-on program
(011e student per terminal), supple
mented with handouts, is the most
effective means of ir1structior1 of this
type. The three basic ~LL-IN-1
classes, Deslc:. Ma11ageme11t, Word
Processing, and Electronic Mail,
provide a solid fou11datio11 for system
use, and (depending 011 the type of
work performed by the studer1ts)
advauced classes should be selected
aud taught only as specificly needed.

294

MUMPS SIG

A WALK THRU THE FOREST
HOW TO FIX YOUR MUMPS TREES

Denise Simon
Digital Equipment Corporation

Hudson, Massachusetts

ABSTRACT

This paper talks about the general structure of DSM-11
globals and how to repair minor corruptions using the system
utilities. It does not delve extensively into the global
structure but discusses global creation and growth. It is
assumed the audience has a general knowledge of DSM-11.
After reading this paper, you should have a basic
understanding of DSM-11 globals and be able to perform
simple database reparations. It is assumed that the reader
is familiar with the utilities mentioned and therefore
detailed instructions are not provided for running these.

WHAT IS A GLOBAL?

A DSM-11 global variable or GLOBAL is a
variable stored on disk. It is
semi-permanent in that it exists on disk
until you specifically delete it with a
KILL command.

Global Creation

A global is created
referenced in a
%GLOMAN, the qlobal
In the simplest
something like:

S "X=l

when it is first
SET command or by
management utility.

case, this would be

When a command like this is issued, the
following events occur:

Proceedings of the Digital Equipment Computer Users Society 297

1. An entry is made in the Global
Directory for the UCI in which the
global is being created. This entry
contains information such as collating
sequence, journalling status and
protection codes. The block number for
the first block belonqing to the global
is also stored in the global directory.
This is known as a POINTER to the first
block.

2. A block is taken from the database
and given to this global. This first
block is known as a POINTER block. In
the case of the above SET statement, it
will contain the name of the global C"Xl
and a pointer to a data block. Pointer
blocks can point to other pointer blocks
or to data blocks. In the above case,
there will be one pointer block and it
will point to a data block. Pointer
blocks that point to other pointer
blocks are known as POINTER blocks.
Pointer blocks that point to DATA blocks
are known as BOTI'OM LEVEL POINTER
BLOCKS.

New Orleans LA - 1985

3. A block is taken from the database
and given to the global as a DATA block.
The data block contains the name of the
global and the data.

Therefore,
created a
<figure 1):

.BLANK
GLOBAL
DIRECTORY

conceptually, you have
global that looks like this

BOTI'OM LEVEL
POINTER
block #1001

DATA
block #1005

This structure
Suppose you
information to
the following:

"X 1001

"X 1005

"X = l

CFiqure 1)

is known
now want

this global

as a TREE.
to add some
and you do

F I=l:l:lOOO S "XCI)=I

Each piece of data added to the global
"X will be added to the DATA block until
it becomes full. When the next SET
after the block becomes full is done, a
BLOCK SPLIT occurs. What happens here
is this:

1. A new block is allocated.

2. A pointer from the first data block
to the second is created. This is
called a RIGHT LINK POINTER. The
rightmost block will have a right link
pointer pointing to block O.

3. A pointer is inserted in the pointer
block that points to the DATA block.

Assume that "X<20l was the first node in
new block (after a block split). This
is what the global would look like
(figure 2):

GLOBAL
DIRECTORY

BOTI'OM LEVEL
POINTER
block #1001

DATA
block #1005

1001

"X
"XC20l =

"X l

1005 0
1007

1007

<Figure 2)

J

298

As you add more and more data, more data
block splits occur and more pointers are
added to the pointer block. Finally,
the pointer block fills and, it too,
must split. When this occurs, the
following happens:

1. If the pointer block splitting is
the top level pointer block, a new row
consisting of 2 blocks is created.
These are linked together with a right
link pointer.

2. The old information as well as the
new pointer that forced the split is
copied into the two blocks in the new
row.

3. The original pointer block is
cleared of all old down pointers and
down pointers to the new two blocks are
added.

This means that once a global is
created, the number of the first block
remains the same throughout the lifetime
of that global. The result of the above
operation looks like this <figure 3):

"X(20> 20 f---; 0

GLOBAL
DIRECTORY

POINTER
block #1001

BO'ITOH LEVEL
POINTER
block #1003

DATA
block #1005

"X = 1001

"X
"X<50l

"X
"XC20l

=

l

1003
1012

1005
1007

0

1012

1007

<Figure 3>

This structure is very effective. You
can have a global dispersed all over
your database, but DSM-11 merely follows
the pointers down a section of the tree
to access specific portions of the tree.

Types of Blocks

Suamarizing, the above, a global is made
up of several types of blocks. These
are:

1. A Global Directory block which
contains pointers to the first block of
each global in a given UCI.

2. Pointer Blocks which point to other
pointer blocks.

3. Bottom Level Pointer blocks which
point to data blocks.

4. Data blocks which contain the actual
data.

5. Hap Blocks keep track of the usage
of database blocks.

"Wait a
mention
saying.
now:

minute, Denise, you didn't
Hap Blocks", you might be

You are right. Let me do so

I '"' .. , = 1020 -r-) 0

<To More Data>

"XC20l 20 ... etc ...

299

DSM-11 disks are separated into chunks
of 400 blocks. Every 400th block
starting with block 399 is called a MAP
block. Each map block contains a one
word entry called an ALLOCATION WORD
that tells us about the status of each
of the 399 blocks preceding the MAP
block. It tells us if each block is
free or in use and if it is in use, who
owns it and who set it. The only time
you have to worry about the Map block
while repairing a minor corruption is if
you have a hopelessly corrupted block
you wish to remove from a broken global.
If you do this, you may wish to go into
the map and free the block so it will be
available for use in the future. I'll
show you a corruption later where we
will have to free a block.

It should be noted in the illiustrations
above, that each pointer contains the
name of the data node which is the first
node in the block below.

The above explains how a qlobal beinq
created sequentially is built. If you
are insertinq nodes into already
existinq blocks, block splits occur in
much the same way. The exception is
that when the split occurs, some data is
copied from the old <splitting) data
block to the new one. This is done to
allow for future insertions and thus
reduces the amount of subsequent splits.

HHY DO GLOBALS BREAK?

There are a number of reasons that
qlobals break. They can break due ta
hardware problems. If memory breaks or
a disk goes bad, you might see problems.
Corrupted system software or a bug in
the operatinq system miqht be
responsible for a break. If you use the
VI~ command, a mistake can cause
problems. In other words, almost
anythinq can cause a problem if the
circumstances are right.

HOW DO YOU KNOW A GLOBAL IS BROKEN?

<DKSER> or <DKHER> Messages

More often than not, these errors
indicate a block has gone bad and must
be entered in the bad block table.
Occasionally, however, you will see one
of these caused by a global corruption.

<DBOOD> Errors

<DBOOD> indicates a database degrade.
You will get one of these if you or your
software try to to access a global that
has become broken.

System Hangs During Startup

This can also be due to hardware. It
can sometimes indicate a corruption to
the system definition qlobal ASYS.

Integrity Checker Messages

If you get any of the above errors, you
should run the AIC or integrity checker
proqram. It will try to follow all of
the pointers in a global and check the
validity of the data and print error
messaqes indicatinq any errors if they
exist. This proqram should be run once
a week or so on your entire database so
you can become aware of minor
corruptions before they get worse.

300

What do you do?

Once you know a global is broken, thert
are a few things you should ana
shouldn't do:

Panic - This is not a qood idea. I
would avoid panic at all costs.

Cry - Although sometimes helpful, don't
do this right away. Wait until
you know the extent of the
damaqe.

Breathe - Take a few deep breaths and
look at the situation. Things
are probably not as bad as
thev look. This is highly
recommended.

ISOLATING THE PROBLEM

There are several utilities that will
allow you to get an idea of what your
global looks like. The most important
part of fixinq broken qlobals is the
ability to draw pictures. . These
utilities will help you do that. I will
use small globals throughout this paper
for ease of handling. The method of
handling larger globals is the same but
you may have to draw portions of your
global.

%GE

The Global Efficiency Routine will qive
you a "Bi.rd' s Eve View" of what a global
looks like. Figure 4 shows a sample
run:

>D A%GE

Global Efficiency

GlobalCs> ? > X
Global Cs) ? > <C:"11.}

TST,DPS Global Directory Block: 4811

Global AX First block: 4928

Bottom pointer level 1 - 1 8%

Data level - 9 88%

(figure 4>

You are told what block is the global
directory block, which is the first
block for the global and some
information about what the qlobal looks
like. The 1 to the right of- the words
"Bottom pointer level l" and the 9 to
the rig'ht of "Data level" indicate the
number of blocks on each row. The
percentage numbers tell you how full
each block is indicating how efficiently
the data is stored. The 8% is somewhat
misleading in that the data is
efficiently stored but there aren't many
pointers so the block usage is low.
From the information in figure 4, you
can actually draw a picture of the
global (figure 5>:

GLOBAL
DIRECTORY
<Block 4811)

BOTI'OM LEVEL
POINTER
<Block 4928>

DATA

= 4928

(figure 5)

At this point, you don't know the block
numbers, but you have a good idea of
what the global looks like.
Occasionally, a global is corrupted in a
way that %GE will fail. If this
happens, don't despair, there are other
ways to picture what the global looks
like. This must be run from the UCI in
which the global resides.

%G or %GL

The global list utilities will not
really help you draw a picture. In some
cases, for example a right pointer being
corrupted, you may get a partial listing
and this might help you in figuring out
what is wrong. This must be run from
the UCI in which the global resides.

"IC

The integrity checker <"IC> reads
through the global and tries to give you
a message indicating where an error
exists. The "IC program must be run
from the system manager's UCI. Figure 6
is a sample "IC report:

301

>D "IC

1. Print existing report
2. Compile new report
Enter one of the above options >...1..
Do you want the report to automatically print when it's done? <Y> N

Check data base integrity for which volume set? >..§Q

Structure SO: UCI ? > TST
Global ? > "X
Searching directory ...
Global ? > " <c~)
Check Routine Directory ? <Y> N

Structure SO: UCI ? > (ctL>

Selected UCis for Structure SO

UCI #6 <TST)
"X

Integrity checker running in background
A report will be compiled into "IC

1. Print existing report
2. Compile new report
Enter one of the above options > 1 Output Device ? > 0

--- INTEGRITY CHECKER REPORT ---

6-Apr-85 13:26 CHECKING UCI #6 <UCI NAME: TST, STRUCTURE: SO>
6-Apr-85 13:26 CHECKING "X
ERROR in block 4931 (pointed to by 4928>: Right pointer: expected 4932 got
4933
6-Apr-85 13:26 FINISHED

1. Print existing report
2. Compile new report
Enter one of the above options >
) <cR}

<Figure 6)

You can use the integrity checker report
to help identify the problem as you draw
your picture. If you run the integrity
checker on a global that is in use, you
will occasionally see an error message
when an error does not exist (for
example, a block splits while you are
checking). If you get an error where
none existed before on a routine "IC,
re-run the integrity checker on that
global only to double check that an
error exists.

302

"BLDMP

The block dump utility can be used to
dump the contents of a given block to a
terminal. It can be used in a major
corruption to determine if any data in a
corrupted block is salvageable. To use
it, you must have a knowledge of the
layout of DSM-11 block structures
(discussed in 13 of the DSM-11 User's
Guide). -------------------
I am only talking about minor corruptions
so I will mention no more on the block
dump utility. It must be run from the MGR
UCL

"FIX

This is the major utility used for both
analyzing the DSM-11 · global structure
and for repairing broken trees. There
are many different things you can do
with the FIX utility. I will mention
these here and then show some of them to
you as we actually fix a broken global.
The "FIX utility must be run from the
MGR UCI. The functionality of "FIX
changes with the type of block you are
accessing:

Global Directory Block If you are
----------------------- looking at a Global
Directory Block you can do the following:

1. Punt leaving the block unchanged.
<This option was no doubt invented by a
frustrated armchair quarterback).

2. File the block savinq all changes
you have made.

3. List the block printing the block to
a terminal.

4. Clear the block eliminating all data

5. Insert a Global by adding a pointer
to that global.

6. Erase a global by removing it's
pointer.

7. Change the offset. The offset is
the number of the next available \ byte
in the block. If you lower the offset,
you effectively eliminate data following
the new offset.

8. Change a right link pointer.

9. Change a down pointer.

Of the above, you can expect not to use
the clear or off set options and I will
not discuss these further.

303

Pointer Block - If you are accessing
------------- either a pointer or bottom
level pointer block, you can do the same
things as above with the exception that
options 5 and 6 (insert and erase
globals> become insert and erase
pointers.

Data Block - If you are accessing a data
---------- block, your options are again
the same but options 5 and 6 allow you
to insert and erase global nodes (data>
instead of pointers.

Map Block - If you are accessing a map
--------- block, you are very limited in
what you can do. You can Punt, File and
List the block as above. Additionally,
you can Reset the Free count. This
option causes "FIX to read the entire
MAP block and record the number of
allocation words indicating free blocks
in a special byte in the map block. You
can also change the allocation word.
This is the option you will use to free
a block you have deleted from your
global.

COMMON CORRUPTIONS

We will.look in detail at a few of these
corruptions, but for now, let me list
the more common corruptions:

Pointer Corruption Either a down
-------------------- pointer a right link
poi~ter has become corrupted. This is the
easiest and, by far, most common.

Data Block Corruption Somehow,
--~---------------------- something gets
written.over the data in a data block.
When this happens, there is usually some
loss of data. This is sometimes the
whole block and sometimes part of a
block.

Pointer Block Corruption Something
-------------------------- gets written
over a pointer block. This may or may
nor cause data to be lost. Often you can
reconstruct the information lost at this
level.

Garbage in Subscript - Occasionally, we
-------------------- see something like
control characters in a subscript rather
than what we expect to see. If this is
at a da~a level, we sometimes lose data.
At a pointer level, this can usually be
fixed without a loss of data.

I'm sure I have left other corruptions
out, but these cover the more common
problems you may encounter.

HOW DO YOU REPAIR THE DAMAGE?

Th.ere are two methods of repairing
damage to a global. These are:

AFIX This is used
---- damaged globals.
is what you will use.

to reconstruct
In most cases, this

A%GTO and A%GTI - These can sometimes be
--------------- used when you have lost
many pointers but can verify that your
data level is in tact. Ca level being a
row on the tree>.

These will both be used in fixing some
broken globals.

SOME SAMPLES

Pointer Corruption

Take a glance back at figures 5 and 6.
Figure 5 shows us what global AX looks
like and figure 6 shows us the AIC
results. It claims that we have an
error in block 4931 which is pointed to
by block 4928. We are furt~er informed
that the error is a right pointer error
and that the integrity checker expected
to find block 4932 and found block 4933.
What we have to do now is play integrity
checker. Let's draw a picture and see
if we can find the problem. To do this
we will use the AFIX utility. We don't
have to worry about draw~.ng the global
directory block. Figure 7 shows a
listing of the first block of AX. The
number for that block was found in the
%GE results (figure 4). You could also
find the first block by running AUCIADD
to get th~ number of the directory block
and then using AFIX to list that block
in the same manner as we list the first
block below.

>D AFIX

Enter block # > 4928 4928:SO

OPTION: PUNT <LEAVING BLOCK UNCHANGED>
OK ? <Y> (ell.)

I.figure 7)

Once you enter the block number, the
first thing you see is the number of the
UCI that owns the block and the number
of ~he UCI that set it. AFIX gets this
information from the map. You are then
prompted for Block type, Global name and
collating type. The defaults are the
current values and you should type
carriage returns through them until you
get to the OPTION prompt. If any of
these appear blank, you probably have a
completely corrupted block. If you know
what the global is and what the block
type should be, you can fill these in
and try to list the block, but chances
are the information it contained is
lost. In that case, you want to either
restore from a backup or remove the
block and re-enter the information. In
an upcoming example I will show you how
to do this.

MAP block entry indicates block is
Block type: <BOTTOM LEVEL POINTER>
Pointer block for: <AX> «:c~

Numeric collating? <Y> <c:..12..)

in UCI 6 set by UCI 6
<'<.:..r-.>

OPTION: LIST BLOCK
Output Device ? < 0 > <c:.£)

BLOCK 4928:SO

OFFSET: 70
0: x = 4929
6: X<"l37"l

16: X("260"l
25: XC"506"l
34: XC"629"l
43: X<"752"l
52: X("875"l
61: XC"998"l
70:

4930
4931
4933
4934
4938
4939
4940

RIGHT LINK POINTER: O:SO

304

At the option prompt, I chose to list
the block. The first block is a bottom
level pointer block. This means it
points to data. The listing gives us
the block number and right link pointer.
It also gives you the offset. The
offset shows the next free byte
available in the pointer block. Each
pointer line shows the off set in the
block where the pointer is located. It
then shows the full global reference of
the first global in the block it points
to and then you are given the number of
the block that global or the next
pointer to that global resides in.
Furthermore, the listing tells us there
are eight blocks on the data level.
Each pointer points to one block.
Immediately, we become suspicious. A
glance back at figure 4 tells us that
there should be 9 blocks. For each down
pointer, there should be a corresponding
right link pointer in the next row.
Therefore, the pointer block listed
above tells us that the next level down
Cin this case, the data level> should
look something like this '.figure 8):

DATA

4929 4930 4931 4933 4934

<figure 8>

The PUNT option allowed me to exit the
AFIX program. Now, let's go back into
AFIX and look at the DATA level to check
the right link pointers (figure 9):

>D AFIX

Enter block# >--1.1lQ. 4930:50

4938 4939

MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> (~~>
Data block for <AX> A .(c.~)
Numeric collating? <Y><~R>

OPTION: RIGHT LINK POINTER
BLOCK # (4931:50> No action taken.

OPTION: PUNT CLEAVING BLOCK UNCHANGED>
OK ? <Y>- (ci:!.)

305

4940

Enter block # > !2J.l 4931:50
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> (G~)
Data block for <"X> "<c.a.}
Numeric collating? <Y>~c~>

OPTION: RIGHT LINK POINTER
BLOCK # '(4932:50> No action taken.

OPTION: .l?UNT <LEAVING BLOCK UNCHANGED l
OK ? < Y> <.a>
Enter block # > 4932 4932:50
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> <L~>
Data block for <"X> "< c.:i.:..>
Numeric collating? <Y> <c.A>

OPTION: RIGHT LINK POINTER
BLOCK # (4933:50> No action taken.

OPTION: PUNT <LEAVING BLOCK UNCHANGED>
OK ? <Y) <c:R>
Enter block# > 4933 4933:50
MAP block entry indicates block is in UCI 6 set bv UC! 6
Block type: <DATA> <cit)
Data block for <"X> " (c.~>
Numeric collating? <Y><c~>

OPTION: RIGHT LINK POINTER
BLOCK # '(4934:50> No action taken.

OPTION: _fUNT <LEAVING BLOCK UNCHANGED>
OK ? <Y> <c.:r..;-.
Enter block # > 12l! 4934:50
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> (c.-1.)
Data block for <"X> " ~c.~)
Numeric collating? <Y> (Lro>

OPTION: RIGHT LINK POINTER
BLOCK #(4938:50> No action taken.

OPTION: PUNT <LEAVING BLOCK UNCHANGED>
OK ? <Y>-<c. IZ->
Enter block # > 4938 4938:50
MAP block entry indicates block is in UCI 6 set by UC! 6
Block type: <DATA> < c.:,;i.;.
Data block for <"X> "<<-P.. >
Numeric collating? <Y> <.<.: 1:)

OPTION: .EIGHT LINK POINTER
BLOCK # <4939:50> No action taken.

OPTION: PUNT <LEAVING BLOCK UNCHANGED)
OK ? <Y>- <"-"->
Enter block # > 4939 4939:50
MAP block entry indicates block is in UCI 6 set by UC! 6
Block type: <DATA> <. ci:..>,,
Data block for <"X> " ,L~>
Numeric collatin~? <Y> ~<-~>

OPTION: _BIGHT LINK POINTER
BLOCK# <4940:50> No action taken.

306

OPTION: PUNT <LEAVING BLOCK UNCHANGED)
OK ? <Y>- <.c.tt)
Enter block # > ~ 4940:50
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> <c~>
Data block for <"X> " .:::cA~
Numeric collatinq? <Y> <.c.r-.'>

OPTION: RIGHT LINK POINTER
BLOCK # (O:SO> No action taken.

OPTION: _fUNT <LEAVING BLOCK UNCHANGED>
OK ? <Y> <'.<-.9..)
Enter block # > i...<tJ..)

< fiqure 9 >

Hhat I did above was look at each right
link pointer. Hhen the right link
pointer option is chosen, the current
value is given as the default. A
carriage return leaves it unchanged, so
the above left everything unchanqed but
told me the data level looked like this:

4929 4930 4931 4932 4933

(fiqure 10>

Well, this is different from what we
expected. We seem to have picked up an
extra block in here. That is block
4932. This means that one of two
situations exist. Either we have an
extra block or we have lost a pointer.
Let's list block 4932 and take a look at
it's contents (fiqure lll:

D "FIX

Enter block # > 4932 4932:SO

4934 4938

MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> <:<:.t:.)
Data block for <"X> "<.c.l!.>
Numeric collating? <Y> .:::..:r.>

OPTION: LIST BLOCK
Output JJe""vice ? < 0 > (c.~)

BLOCK 4932:SO

OFFSET: 1002 RIGHT LINK POINTER: 4933:SO
0: X!"383"l = "383"

12: X<"384") = "384"
20: X!"385"l = "385"

(data omitted)

994: X!"505"l = "505"
1002:

OPTION: PUNT CLEAVING BLOCK UNCHANGED>
OK? <Y>-.:::~.~>

(figure lll

307

4939 4940

~ look b~ck at figure 7 shows that this
information would fit nicely between
blocks 4931 and 4933. We must insert a
pointer into block 4928 (figure 12):

>D "FIX

Enter block # > 4928 4928:SO
MAP block entry indicates block is in UC! 6 set by UCI 6
Block type: <BOTTOM LEVEL POINTER> <: c...rt)
Pointer block for: <"X> ~L~>
Numeric collating? <Y> ~~~>

OPTION: l.NSERT POINTER
Insert Global "X(383l
Pointer block# 4932:SO Inserted
Insert Global " ,Lr->

OPTION: LIST BLOCK
Output Device ? < o > <~~>

BLOCK 4928: SO

OFFSET: 79 RIGHT LINK POINTER: O:SO
0: x = 4929
6: X<"l37"l

16: X<"260"l
25: X<"383"l
34: X("506"l
43: X< "629"l
52: X<"752"l
61: X< "875")
70: X<"998"l =
79:

4930
4931
4932
4933
4934
4938
4939
4940

OPTION: FILE BLOCK
OK ? <Y>'«.-:>FILED
Enter block # > <~ tl)

>

(figure 12)

To insert a pointer, chose the INSERT
option. I was then prompted to enter
the full name of the first global in the
block and the block number. Note the
"SO" after the block number. This
indicates volume set O. It is required
and you can specify either a specific
disk (eg. "DLO" > or a volume set
number. I listed the block to make sure
it looked okay and then I FILED the
block. This is very important. All
changes are temporary until you FILE
them. If I had exited without filing
the block, nothing would have been
changed.

The global is fixed. There is only one
thing to do now; That is to run the
integrity checker to assure the qlobal
is fixed <figure 13):

INTEGRITY CHECKER REPORT ---

The printed report shows no errors in
the global. We have fixed it.

A right link pointer corruption is dealt
with in the same manner. When you draw
a picture, you will see a discrepency
between the down pointers and the right
link pointers. Once you determine what
is wrong, you take appropriate action to
repair the damaged pointer.

If you get garbage in a pointer, you
might see a "bad first node" error. A
look at the pointer and a look at the
look at the information in the block
will tell you what the pointer should
point to. You can then erase the bad
pointer and insert the proper one. Most
corruptions can be handled as pointer
corruptions once the problems are
isolated.

Of the common corruptions, I would say
that corrupted single pointers and
missing or extra pointers can be handles
as above.

7-Apr-85
7-Apr-85
7-Apr-85

9:16
9:16
9:16

CHECKING UCI #6 <UCI NAME: TST, STRUCTURE: SO)
CHECKING "X
FINISHED

(figure 13)

308

Data Block Corruption

In the case of a data block corruption,
you must once again draw a picture of
your global. A "bad first node" error
is a sign you might hava bad data. If
you do, your picture will look okay, so
you have to start looking at the data.
Here is an AIC report from a global with
a bad data block (figure 14):

INTEGRITY CHECKER REPORT

7-Apr-85 9:35 CHECKING UCI #6 <UCI NAME: TST, STRUCTURE:
7-Apr-85 9:35 CHECKING ROUTINES
7-Apr-85 9:35 CHECKING Ay
ERROR in block 4931 <pointed to by 4928):
ERROR in block 4931 <pointed to by 4928):
7-Apr-85 9:35 FINISHED

(figure 14>

Note that there are two errors listed.
Sometimes you will get multiple messages
for one error. Address one error at a
time and then run the integrity checker
and this presents no problem.

Assume you have drawn a picture of your
global and it looks in order. Now we
must look at the block we think the
error is in <figure 15):

Enter block # > 4931 493l:SO

Bad first node
Bad first node

MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> «.,·->
Data block for " (block not filed> ,(<-1:>
Enter block # > (c1z.>
>

(figure 15>

The first indication we have a bad
corruption is that there is no global
name listed. We can go into AFIX and
try to reconstruct <figure 16):

Enter block # > ~ 493l:SO
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> .(..:. ,~ >
Data block for "Y
Numeric collating? <Y> L..: .:;:.

OPTION: LIST BLOCK
Output Device?< 0 > ~~,:>

BLOCK 493l:SO

OFFSET: 1001 RIGHT LINK POINTER: 4932:SO
0:

<UNDEF>WRTAFIXDATA1:2

<figure 16>

309

SO)

After supplying the name of the global
and trying to list the block without
success (the <UNDEF> is not due to a bug
in AFIX but rather the result of a nasty
corruption). my only choice is to
remove the bad data block.

The first thing we want to do is remove
the pointer to the bad block, list it to
see if it is okay and then FILE it
(figure 17):

>D AFIX

Enter block # > 4928 4928:SO
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <BOTI'OM LEVEL POINTER> <~~)
Pointer block for: <AY> ~~r->
Numeric collating? <Y> <~r->

OPTION: LIST BLOCK
Output Device ? < O > ~~A)

BLOCK 4928:SO

OFFSET: 34 RIGHT LINK POINTER: O:SO
0: y = 4929
6: Y<"l37"l

16: Y<"260"l
25: Y<"383"l
34:

4930
4931
4932

OPTION: ERASE POINTER
ERASE GlObal AYC260l Erased
ERASE Global A«<-ic)

OPTION: LIST BLOCK
Output Device ? < O > .((1~)

BLOCK 4928:50

OFFSET: 25 RIGHT LINK POINTER: O:SO
0: y = 4929
6: Yl"l37"l 4930

16: YC"383") = 4932
25:

OPTION: FILE BLOCK
OK ? < Y>~:>FILED
Enter block # > <t:•t>
>

!figure 17>

The next thing we want to do is adjust
the right link pointers on the data
level so they match the pointer block we
just changed (figure 18):

310

>D "'FIX

Enter block # > ~930 4930:50
MAP block entry indicates block is in UCI 6 set by UCI 6
Block type: <DATA> <c.i:.>
Data block for <"Y> "<ca)
Numeric collating? <Y>(c.~>
OPTION: .B...IGHT LINK POINTER
BLOCK # <4931:50> 4932:50 Done.

OPTION: FILE BLOCK
OK ? <Y>(<l)FILED
Enter block # > (~A)

The last thing we want to do is go into
the map block and make the removed block
a free block. The following formula
will give you the block number for the
map that keeps track of a given block
figure 19:

Map block # = Block number \ 400 " 400 + 399

<Figure 19l

Applying the above formula to block
4931, we find it is mapped by block
5199. Now we can adjust the allocation
word to indicate the block is free
C figure 20 l :

>D "FIX

Enter block# > ~ 5199:SO
Map Block

Map Type: <DATABASE> <er-)

OPTION: ALLOCATION WORD
For Block# 4931
Allocation word: <USED BLOCK> FREE BLOCK Done~
For Block# (.:.:}

OPTION: ,ZILE BLOCK
OK ? <N> Y FILED
Enter block # > ,(°c..t1.)

(figure 20>

We are now done, but we have one
problem. We have lost data and we need
to know what is lost. To do this, you
can use the "FIX program and list the
blocks that were on either side of the
removed block. In this case that is
blocks 4930 and 4932. Note the last
node in block 4930 and the first in
4932. Any data that would fall <in sort
order> between these two nodes is what
was lost. You must re-enter the
information or copy it from a backup.
You cannot do a partial restore, so this
would involve restoring to another disk
and then use the global save C%GTOl and
global restore C%GTI> utilities to
recover the data.

311

The above two samples are very simple
ones, but used as guidelines, they
should help you get started on repairing
a simple degradation.

A FEW RULES

1. Analyze the situation. If you find
many errors in one global, it may be
faster to restore from a backup and
dejournal than to try and repair the
situation.

2. DON'T delete corrupted globals
before you fix them. If you have a
corruption where one global points into
another, you may delete more than you
wanted. The garbage collector uses the
right link pointers and these should be
repaired prior to deletion.

3. If you don't have a backup, backup
before you repair. The "'FIX utility can
also be a "BREAK utility. You may make
a situation worse, so be sure you have a
backup before you attack the corruption.

4. Take notes. Everything you do with
"FIX can be undone if you keep track of
your changes.

5. Run the integrity checker on fixed
globals before you give them a clean
bill of health.

WHAT NEXT?

Now that you have fixed the global what
should you do? If you have a good idea
of what caused the corruption <eg ...
Corruption occurred after a power
failure), I would recommend you do what
you normally should be doing. That is,
regular backups, and periodic integrity
checks. I'd also recommend you
periodically use AFIX to obtain listings
of the global directories for each UCI
<so you have a record of global name and
first block) and that you run a weekly
slow disk block tally (ADBT>. This may
be more than necessary, but I am
cautious and would recommend you be
cautious as well.

If you don't know what caused the
corruption, I would recommend you assume
the worst. Assume the corruption will
occur again and use the %GTO program to
save a copy of the repaired global. You
might also increase the frequency of
backups you perform until you have
isolated a problem or are relatively
confident the corruption was a one-time
event. This can not always be
definitely determined, but if the
database stays in tact for many days, I
would assume that the problem has gone
away.

If the problem recurs, try to identify
any software or hardware changes that
might be responsible. If you have
changed your software or applied
patches, go back and make sure you
didn't make any mistakes.

312

SUMMARY

In the limited amount of space I have
here, I have just touched the surface of
database repair. I hope you have gotten
some insight into how to repair a broken
database. In my samples, I used very
small globals. With larger globals, you
might have had multiple levels of
pointers, but the methodology would have
been the same. The biggest piece of
advice I can give you is to tell you to
be patient and draw pictures. If you
look closely at broken globals, you will
get the answers. Database reparation,
in most cases, is a very
straight-forward procedure.

I recommend you create a test UCI on
your system (if you don't already have
one). Create some globals and use the
previously mentioned utilities to look
at the globals and draw pictures of
them. Once you are comfortable with
that, use AFIX to remove a pointer or
change something then run the integrity
checker to see what it reports. Fix the
globals. If you do this a few times, it
may help you when you have a real
corruption. Good Luck!

BACKGROUND

nunPS Programming Standards
or

How I Stopped Worrying and Learned to Love nUHPS

by

Robert C. <Chris> Richardson
Computer Scientist

Computer Sciences Corporation
P. O. Box 2217

Ridgacraat. California 93555

ABSTRACT

The HUHPS programming language has been called
cryptic by its detractors and conciae by its ad
vocates.

Application• are all too
network model• rather than a
and this can make the program
unprovable. The raault may
decipher let alone support.

often developed as
heirarchical models.
flow mathamatically
wall ba difficult to

At the Naval Weapon• Center in China Lake. we
have developed some programming standards to aid
our programmers in developing good coding tech
niques. Thia paper provide• a liat of these guide
lines. These standards should be a guide-lines and
not a stick. We are providing a compliance checker
for our programmers. which allowa our programmer•
to teat themselves against the standard. They then
develop a consistent programming etyle which any of
the other programmers may follow.

The Standards

The major HUHPS application at the
Naval Weapons Center <Code 064> is the
Integrated Disbursing and Accounting <IPA>
system. We are currently running DSH-11 on
a PDP-11/34 <the production aystem> and
using DSH running on a VAX-11/760 <our
development system>. We will soon be
upgrading the 11/34 to an 11/44.

Aa stated in the abstract. a standard
should not be a stick used to make a
programmer conform. It ahould be a aerie•
of guide lines on how to ehop or a group of
programmers should develop code. This
allows any of the members of the group to
support the code of any of the others.

We have also been using HUHPS for some
scientific applicationa. Thie includes a
paraer for 30.000 lines of assembler for
the processor on a missile. The parsed
tab lea were then used to generate
paaudo-Paecal coda.

Additionally. we have Dr. Richard
Walter'• Micro-MUMPS running on several DEC
Rainbows.

"1 never met a piece of HUKPS code that
didn't want to rewrite."

- Anonymous.

RATIONALE:

1. Routine Naming Conventions

A. The first label of a routine should be
the same as the name of the routine itself.

Thia allows
version of
production
identity of

us to make a backup or second
a routine without impacting the
veraion and not loaing the
the original source routine.

e. Routines in the aame package should
share the same first three letters.

Quite often a HUHPS application package
"HUHPS is an Anarchist's dream." will contain more than a single routine.

- Anonymous. We recommend that the routinea directly

Proceedings of the Digital Equipment Computer Users Society 313 New Orleans LA - 1985

associated with a package share the same
three character prefix. This allows the
routines that are closely related to be
listed together. There are usually
utilities that allow the selection of
groups of routine names. Thia allowa the
grouping of related routines.

c. Utility routines

a big feature of nunPs.
the creation of special rou

be invoked by. but not
user. These routines all

character.

Utilities are
nunps allows
tines that may
changed by the
start with a "%"

* Utility routine names should begin with
a '%' <percent> character.

nanager utility routines are an
important feature. They allow code to
be accessible to users elsewhere on the
system. They may use this code. but
may not modify it.

* Utility variables should also begin
with a '%' character.

Percent variables are reserved for
utility routines. This keeps the
utility routines from impacting the
applications routines which call them.
There can't be any confusion over
utility variables that start with '%'
and application routine variables where
the first character may not be'%'.

2. First Line Conventions

The %FL <First Line> utility supplied with
most nunPS implementations creates a list
of the first lines out of each of a series
of routines. As mentioned earlier the
first three characters of each routine name
in a packages must be the same. Thie
allows %FL to sort routines of a single
functional area <package> together. Thie
in turn allows us to keep track of routines
and packages.

A. A single "DO" command

This constraint causes every application to
have a consistent execution structure. and
gives the support programmer an initial
understanding of how the routine works.

* In an effort to simplify and unify the
execution of application segments. we
have divided the execution of any
program module into at most, three
parts. The arguments following the

EXAMPLE 1:

"DO" command in the first line should
be one or more of the following:

a. INIT - Environmental setup.

This establishes the require files and
variablea that must exist before the
production part of the application
routine.

b. START - The production portion of
the application.

This is where the real work of the
application is performed. It is in
this area that we will establish the
restart capability of the application.
Should the application halt, the
analyst may look to this area to
restart the application run.

c. EXIT The cleanup from the
application.

Thia section allows us to clean up the
scratch variables and globals that are
not needed after the production. This
is extremely important if the routine
is called from a control routine.

• The first operational block below the
"DO" command should be one of the
labels above, <usually INIT or START>.

B. A brief statement of the routine's
purpose.

Since the %FL routine lists the first line
of each of a series of selected routines.
it allows the tracking of related routines
and utilities. Routines which share
similar or related function can then easily
be grouped.

C. The last date the routine was updated.

The last date a routine was updated must be
included on the first line. This
chronicles back-up copies of a routine. and
allows the most recent change to be
identified. %FL makes the scanning of
these routines easy.

D. The name of the author of the routine.

The author's name is important. but lees so
once these standards have been adopted.
"Programming standards should be so
thorough that to an outside observer. all
programs appear written by the same
person." <"Productivity now! <Why Wait?>"•
by George Proudfoot, Computerworldl.

A sample first line is illustrated in
EXAftPLE 1:

COMPLY DO INJT,START.EXITI Compliance Checker Driver 2-APR-85 RCR

314

3. Block Structure Conventions

To be consistent with block structuring,
the labels mentioned in the title line
should be defined immediately after the
control block and should be placed in the
order called. The block structuring used
in this process is not the classic stepped
block structure. In this technique. all
blocks are defined at the same level. Only
three levels are required at a time:

l> The block in question.
2> The block level that calls this block.
3> The blocks that are called from this

block.

HUMPS allows the start of execution at any
block level. Each block below the current
level should be able to be treated as a
discrete piece of code. The symbol table
may be initialized to simulate the state of
execution prior to entry into the block
being tested.

A. Each block should have a single label
for entry.

Consistent with structured design. this
restraint allows for the easy definition of
the hierarchical model of the application.

In MUMPS, this is doubly important since
the MUMPS language allows the start of
execution at any label or an offset from a
label.

B. A Label should not be numeric.

MUMPS allows the use of numerics as labels.
This practice conveys little practical
information for support and there may be
difficulty with this technique in certain
implementations. Some implementations may
try to evaluate a numeric label as a value
rather than a character string.

c. No label reference should be a
displacement off of a label or an alternate
entry point into another routine. i.e.
Avoid "DO ABLE+5" and "DO BAKER-SORT".

GOTO and DO commands use label references.
The use of displacement and alternate entry
point references are usually used to cir
cumvent structured techniques. These
should be carefully watched.

D. No block should call itself. Avoid
recursion.

Recursion is a useful tool when used well.
Unfortunately, few programmers use this
technique properly. It is aleo a disguised
loop. These guidelines are supposed to
make loops and levels of control easy to
follow.

Potential recursion. or the possibility
that a routine may unintentially call
itself, must also be avoided. For example.
routine A calls routine B. Then routine B
calls routine C. Routine C invokes routine
A. Who is controlling whom?

315

E. No block should call a block defined
above it.

This simple rule assures that the hierarch
ical model does not degrade to a network
model. This should extend to the
application level.
there should be no
routine looping
recursion.

At the routine level,
chance of inadvertent
because of accidental

F. No program line should be over 80
characters in total length.

The importance of this recommendation is
not immediately clear. MUMPS has a eimple
block structuring built into it. The
control structure types. FOR, IF, ELSE. and
GOTO, provide a line execution capability.
Thie ability to control commands to the
right of the control command implies a type
of block structure. The maximum line
length on a line in a routine in MUMPS is
255 characters. By limiting the length of
a line to 80 characters. we force these
implied blocks to be brief and concise.
Another advantage is that the routines may
be edited on a terminal with full screen
capability. This also insures that %INDEX
listings of a set of routines will not need
to have rap-around lines on a 132 column
listing.

G. The last command in every block should
be a single unconditional "QUIT" or "HALT"
command.

The ending of a block is critical to real
block structuring. This insures that
control does not inadvertently fall into
the next block. The flow and visibility of
control is essential in a support environ
ment.

The QUIT is usually used to end a block.
It provides a means of returning from a
block. The use of inline QU!Ts is normal.
It provides the means of conditionally
terminating FOR commands and block return.
The HALT is an emergency exit from an
application.

H. No block should be longer than 20 lines
of code.

MUMPS is a very concise means of coding.
Most functions that should be contained in
a block. can almost always be completed in
less than twenty lines. Thie limitation
also keeps the programmer from getting
concepts jumbled together in the same
block.

4. Command Conventions

The commands in MUMPS are on the surface
reminiscent of similar commands in FORTRAN
or Pascal. There are some other commands
that don't have analogs in any other
language.

A. Avoid the "BREAK" command in production
routines.

The BREAK command is advantageous in the
evaluation and testing of code. It has no
place in production code. however. since it
could allow the user into Programmer node
and thus destroy any security in the
system. Nothing could be more devastating
than an uninitiated end user being suddenly
confronted with an operating system prompt.
BREAK commands must NOT have potential for
execution during a live application.

C. Avoid the "ELSE" command.

The nunPS ELSE command is unlike the 'ELSE'
command in any other language. and it is
potentially ambiguous. In nunPS it tests a
system environmental status flag. STEST.
It is true that STEST does reflect the
condition of the last IF command. i.e •• 1
or 0 <true or false>. It also provides for
the testing of the successful completion of
timed 1/0 and data base lock features.

The line at code containing the ELSE com
mand may be preceded by variable logic that
will affect the outcome of STEST. The
STEST variable may be changed by a variety
of sources. By the time STEST is evaluat
ed. the command that last changed STEST may
be unpredictable. The only way the ELSE
should be used is directly after a device
control command. See EXAftPLE 2:

It was a cute idea. but it still needs
work. A waiver is still required.

D. Avoid the "GOTO" command.

The GOTO is the most dangerous command in a
hierarchical model. The GOTO relinquishes
control of the current process to whatever
label or line of code is mentioned. All of
a sudden. a hierarchical model become a
network model.

~XAHPLE 2:

There ia no CASE command in nunPs. The
GOTO is the closest thing HUHPS has to this
useful command. It must be implemented
very carefully as in EXAHPLE 3:

In the precaeding example. the GOTO only
references blocks defined immediately after
itself. Any of the quit commands actually
terminate block XSPLIT and not the block it
belongs to. The evaluations are attached
to the GOTO command after each label and
colon <=> attached to the GOTO command.
These are known as postconditionals. The
last evaluation. 1, is always true. If all
of the other evaluations are false. this
last label will be jumped to. As soon as
one is found to be true. that label is
selected to control the continuing execu
tion. The QUIT at the end of the XSPLIT
block is never executed.

E. Avoid the "XECUTE" command.

The XECUTE command is a really neat idea.
It allows the HUHPS programmer to store
HUHPS code in a string <local variable or
stored as a data base>. This may be used
to hide non-standard code. Usually this
can be useful for performing difficult
activities utilizing the routine buffer.

F. Avoid the "VIEW" command.

Huch of the VIEW command structure and
facility is left to the implementor.
Ostensibly, it is a means of viewing <and
possibly changing> locations in memory.
The locations in memory that are usually
used are implementation dependent. This
means that a waiver for this command is
critical.

G. Avoid the "Z"
functions.

class commands

The "Z" - class commands and functions
extensions to the standard. This

and

are
is a

USE 0 READ !."enter name>",NAnE:lO ELSE WRITE "time out"

EXAHPLE 3:

DO XSPLIT
QUIT

XSPLIT USE 0 READ !,"enter value>",X
GOTO ABLE:X<1.BAKER:X<l.25,CHARLIE:X=2,DELTA:X>2.EPSILON:1
QUIT

ABLE SET Xl
QUIT

BAKER SET XlX=l+X
QUIT

CHARLIE SET XlX=l-X
QUIT

DELTA SET X2
QUIT

EPSILON WRITES !."X is a value between 1.25 and 2.0",?32.X
QUIT

316

means for a software implementor to provide
features to the language for inclusion in
the standard. It is a laudable idea. but
it inhibits the transportability of the
code. This is a warning level of error. A
waiver is still required to justify these
features.

5. Control Structure Conventions

FOR. GOTO. IF and ELSE are the control com
mands. They are used to control the execu
tion flow of commands near them. The FOR.
IF. and ELSE control the execution of com
mands that lie to its right. The GOTO may
control the re-execution of code to its
left or the redirection of control away
from code to its right. Thie is
illustrated in EXAMPLE 4:

The FOR loop will continue to ask for the
name until an entry is made that contains
no control characters.

A. A control command should be the first
command on the line it controls.

Control commands are important. It is
important to make them prominent. We do
this by putting the first control command
as the first command on that line. The 80
character line restriction helps to keep
the line blocking from being too complex.
One of the reasons for these constraints is
to teach the programmer to program in "baby
talk".

8. No more than two control level commands
should be on the same line.

There is a strong tendency in most MUMPS
programmers to try to stick as many com
mands as possible on a single line. It is
possible to have many nested FOR loops on a
single line. This can make the code
difficult to follow.

The control commands are important. The
complexity of commands around these control
commands can obscure the real control of a
piece of code. If more complexity is
needed. a block may then elaborate the
complexity as a series of discrete lines.

c. Variables in the "FOR" command should
be LPnn if they are used for driving a
loop.

Loops are fun. Loops are easy. Loops are
trouble. especially in MUMPS when the same
variable may be used and changed within a
FOR loop construct.

EXAMPLE 4:

6. Variable Conventions

Variables are always a big problem. Many
languages try to write a book in order to
follow the variables. MUMPS maintains the
symbol table intact during and after the
run. There are very few assumptions
involved in the use of MUMPS. The length
of the variable name is not quite as
important in MUMPS as in other languages.
However. the use of shorter variable names
in MUMPS increases the speed of execution.
So there are some conflicting concerns in
the HUMPS language.

The restrictions on variables are similar
to those specified in other language stand
ards. A variable should be descriptive.
MUMPS has a dynamic symbol table and
symbols should not survive longer than they
are needed. MUMPS does allow a percent
character to be used as the first character
of a symbol. These are reserved as state
variables for utilities <such as %AB for
abort and %ERR for errors encountered
within a utility process>. By restricting
scratch variables to one or two characters.
we can quickly segregate important
variables from scratch variables. Short
variable names are not a problem. HUMPS
maintains the symbol table even if the
process errors off. It is usually easy to
tell the purpose of a symbol from its
contents.

Variables in MUMPS have self attributes
which are available to the programmer.
These are length. descendency. numeric
value. and dynamic existence. Other lang
uages require specific typing to make such
attributes available.

A. Variables which are used in generalized
utilities should start with a percent
character.

The percent sign is valid if used as the
first character of a local variable name.
These may be created and destroyed by the
programmer at will. As a matter of conven
tion. we reserve these variables to be set
by generalized utilities. Other routines
may interrogate these utility interfaces
upon return.

The percent sign may also be used in global
names. Only routines running in the
manager's partition or account may kill or
create percent global nodes.

8. A variable should be created only when
it is needed. It should be killed as soon
as it is no longer needed.

FOR LP011:1 R t."entername>".NM QUIT"NM'?.ELC.E W "no cntrl chars"

317

The dynamics of the ftUftPS language allow
for th• run-time creation and destruction
of local variables. This allows the
application to clean up as it goes. Should
a problem occur. only those variables which
are still in existence will remain
available in the symbol table.

C. A scratch variable (only used within a
single block> may be a single character.
All others should be three characters or
more.

There is a strong chance that the reuse of
variables outside of a particular block
will cause a problem. since all local
variables are common. it is easy to
unintentionally step on the wrong variable.
Care must be taken to insure that variables
that are assumed to be only local are not
inadvertently changed. By the use of the
51NDEX routine. it is easy to identify
where a variable is just referenced. creat
ed. or changed.

D. Avoid Indirection.

Indirection allows the programmer to use a
variable to hold a string containing
another variable name or nunPs code. It
sounds like using mirrors. but it is a
valuable technique.

Indirection is a powerful tool in ftUftPS.
Like recursion. there are many who try to
use this technique. unfortunately there are
few who use it well. This technique is a
way that a clever programmer can write
unsupportable code. <You will notice I
used 'clever•, not •good' programmer.> A
waiver is required for the use of this
powerful technique.

EXAftPLE 5:

1. XECUTE Waiver for COftSTORE

X CNTRL
1

ENFORCftENT:

The enforcment of a standard can be a
nerve-racking experience for many program
mers and their egos. This process can be
helped along by the programmers having
access to the compliance checking routines.
These are the same routines that the
quality assurance staff will be using to
validate the programmer's style. He should
have a waiver ready for each of the excep
tions he has had to use. The programmer
should be confronted with very few
surprises from quality assurance.

The waiver process of this standards
system is important. Any standard may be
waivered <if the standard provides no other
way of implementing the logic>. The stand
ards effort is an attempt to provide
consistent. repeatable techniques for the
generation of applications code. The
waiver should be intentionally slightly
difficult to generate. but definitely not
impossible. It should be incentive to
develop standard conforming code. The
intent of the standard is two fold. 1)
quality control and 2> programmer training.

The management staff will notice that
the programmers will begin to program in
similar patterns. Thia means that the
initial software design staff doesn't have
to be chained to the maintenance staff.
The documentation staff will like this
because there will be less 'clever' code to
decipher and any exceptional code has
waiver documentation to cover it. See
EXAftPLE 5 for a sample waiver.

<••4D XECUTE connAND Found **> START+6ACOftSTORE

This XECUTE command controls the load=ing of the select=ed rou=tines into the
rou=tine buffer. Each rou=tine is dismantl=ed one line at a time and stored
into a global called ACOftP<"TEXT". The second key is the rou=tine name. The
third key is a sequential number indicat=ing which line of this routine is
stored in this node. There is a series of lines of MUMPS code creat=ed within
the symbol table. The names and call=ing order of these lines are elaborat=ed
here.

CNTRL Invokes TRANS and reloads the COftSTORE routine when done.

TRANS Selects each routine in turn and invokes LOAD.

LOAD Loads each routine in turn and invokes SAVE.

SAVE Extracts each line from the routine buffer using TRNT and TXT.

TANT Contains a template for loading the routine lines into Aeon.

TXT - This string is modified from TANT by SAVE.

All of these symbols are killed when this block is exited.

318

CONCLUSION:

These are the standards being used by
the Computer Sciences Corporation nunPS pro
grammers at the Naval Weapons Center. These
are just a suggestion or a starting point.
DO NOT ADOPT THESE STANDARDS, adapt them to
your situation.

Be aura to include a mechanism for
uaiver. There should be a uay of circumvent
ing any of these standards. but don't make it
too easy to get a uaiver. nake sure there is
a good reason for the uaiver and there is not
a uay to implement the same algorithm uithin
the standard. Execution speed is seldom a
reason for a uaiver.

We are uorking on a routine to serve as
a compliance checker. Thia routine uill
allou our programmers to develop their oun
programming style. We uill publish this code
uhen completed.

BIBLIOGRAPHY

<1> "Productivity noul <Why uait?>, by
George Proudfoot. Computeruorld. Vol.
XIX. N. s, February 4, 1965, page 29.

<2> "Programmer Productivity. ftyths. ftethods.
and norphology"• by Louell Jay Arthur. A
Wiley-Interacience Publication. John
Wiley and Sons. 1963.

<3> "American National Standard. Information
Systems. Programming Language. l'IUl'IPS",
Draft ANSI Xll.1 - 1963.

319

NETWORKS. SIG

Data Interchange Between An IBM Main Frame
And DIGITAL Minicomputers

Leonard J. Moriarty
Go~dard Space Flight Center

Greenbelt, MD

ABSTRACT

This report details the installation and testin~ of
communications protocols and software that are used to link an
IBM-3081 mainframe with DIGITAL minicomputers. The application
environment in which the computer interfacing is done is
scientific processing. User programs and scientific data flow in
either direction between the mainframe and the minis. The minis
are used for the analysis of spacecraft data that are resident to
the mainframe mass storage cartridges and a large tape library.
The mainframe runs both CMS and MVS. The minis run VAX-VMS. The
current implementation is with the mainframe MVS system. The
communications medium is currently twisted pair with Gandalf 56kb
modems. The distance between the mainframe and the minis is
approximately 300 meters. Both binary and character data ~re
transmitted.

Attached to the Unibus of the minis are custom 68000 micros.
Within each mini, there are detached processes running that
perform character conversion protocol translations and queue/job
management. The hardwar~-software system is COMBOARD-HASP
marketed by Software Results Incorporated of Columbus, Ohio.

Organizational Environment

This paper discusses the implementation of
COMBOARD-HASP(CH) at the Laboratory For
Extraterrestial Physics(LEP), Goddard Space Flight
Center(GSFC). CH is a computer to computer
communications system marketed by Software Results
Incorporated(SRI) of Columbus, Ohio.

GSFC is one of the seven NASA sites and js
designated as a space flight center. In terms of
people GSFC is second in size with 3545 civil
servants and 6000 contractors. During the 85
fiscal year $1.2 billion will flow throu~h GSFC.
The implementation to be discussed is within the
Space Sciences Directorate of GSFC. Sapce
sciences has 760 civil servants. LEP is one of
five laboratories within this directorate. The
~oals/charter of LEP are the scientific
investigation of the planets with emphasis on
electric and magnetic fields, plasma physics,
radio emissions and astro-chemistry. The current
contingent of LEP is 110 civil servants. Of this
number 15 are clerical or technicians, 58 are PHDs
and the remainder act in technical support of the
scientific effort. In addition to the civil
servants there are 10 contractors and 8 post docs.
LEP has experimental data from over 30 spacecraft.

Computer Environment

The Space Sciences Computation Facility(SCF)
has recently been reorganized and now includes a
IBM 3081 model K, an Amdahl 270 and a Cyber 205 as
the primary computation and production facilities.
At present the Amdahl and the Cyber are colocated.
The 3081 is approximately 600 meters from them.
Within the near future the 3081 will be colocated
within the SCF computational center. Figure one
shows the SCF IBM-3081 facility. The primary
in-house LEP computational facilities include a
VAX 11-780 and a VAX 11-730. The 780 was acquired
in September 80 and was a replacement for an
IBM-1800. The 730 was acquired in May 84 and is
used primarily in support of laboratory balloon
flights. The 780 is used in the development of
programs and the analysis of data as derived from
production runs on the SCF facilities. The LEP
primary computer facilities are shown in Figure
two. The implementation of CH to be discussed is
with the 3081, desigilated the central and the LEP
VAX 11-780, designated as the remote.

Proceedings of the Digital Equipment Computer Users Society 323

CH is a hardware-software system. The
hardware consists of a 68000 based micro attached
to the 780 unibus, a 1231 DEC to IBM interconnect
four wire twisted pair and two synchronous Gandalf
S260 56kb modems. The software system consists of
a VAX detached process running a C based software
system that in conjunction with the 68000 micro
performs job mangement and protocol
transformations necessary for linking the 780 with
the 3081. To the 3081 the CH system appears as a
RJE station actin~ in the JES2-!1VS environment.
The VAX RJE station is configured at the IBM side
to have two readers, four printers and four
punches. Each punch is of a different class.

The CH command SEND is the basis for the
transfer of files from the VAX to the IBM. From
the IBM side the JES2 ROUTE card is the basis for
directing the central IBM job output to the remote
Digital minicomputer. In addition to the rules
for an IBM RJE station the following rules apply
at the remote side.

(a)

(b)

(c)

All print files and one punch class
requires EBCDIC to ASCII conversion.

Most VAX files SENT to the CENTRAL
require ASCII to EBCDIC conversion.

All files sent from the remote to the
central must be configured to be a valid
JCL set.

Rather than attempting to familiarize the LEP
staff with the intricacies of JCL th~ :.SP
implementation of CH has emphasized the use of VAX
COM files that prompt the user for JCL parameters
and have the COM files develop the appropriate
JOB, DD, EXEC, ROUTE and other JCL related
statements. The JCL file developed at the VAX is
then sent for processing at the 3081. This does
not preclude any LEP users from developing their
own JCL files and using the CH SEND command.
There are however, local ground rules for data
routing that must be followed and they are
documented subsequently. The basic COM files
developed for the LEP CH system included options
for:

1. Routing an IBM sequential file to a user
daily scratch space as a print file.

2. Routing a IBM PDS to a user daily scratch
space as a print file.

3. Routing a remote file(s) for storage on
the central.

New Orleans LA - 1985

Figure 1. Sc:lentlflc Computational Fac:llly(SCF).

24 IBM
3350 Disks

7.62 G-Bytes

IBM 30111:
16 M-Byte/
16Clwmel

CPU

VM/MVS

41BM
3380 Disks

10.084
G·Bytes IBM 3850

Mass StoreSystem

s . .
'-TI
G::JJ

BIBM
3350 MSS

Staging
Dr"iYes

Figure 2. Laboratory For Extra-Terrestrial Physics
Computer Facllltles

~-

VAX
11-730

VMS

VAX
11-780

VMS

IBM-3081
MYS

324

-

4. Process central sequential datasets (disk
or tape) at the central selecting records
by type and/or time or selecting all
records. Within each record selected the
user can specify fields for processing
and conversion to DEC format. The
records/fields are sent as binary Fixed
Block(FB) packets to the remote over
SYSOUT classes C, D and E punch files.
These classes are not processed for
EBCDIC to ASCIII conversion. The binary
records as formed at the central are then
directed to a user specified file at the
remote. User file specification is done
by two route records. The first route
record applies to punch files. The
second route record applies to print
files and is developed by the IBM banner
records that precede print files. The
user comment contained on the IBM jobcard
is used for routing to disk and/or a
printer. A user input comment record is
also used to alter the processing
functions and generate print records
rather than punch records. If the user
includes the string "PRINT' in the user
comment input record, the items selected
are processed as print files and the
resultant ASCII printout directed to a
user daily scratch space at the remote.

5. Process a DSR remote file(s) for printing
on the central IBM 3800 printer. This
file can be processed at the remote prior
to sending converting DEC form feeds to
EBCDIC carriage control.

6. Route remote files to become members of a
central PDS. The user can specify the
ADD and REPLACE options of the IBM
utility IEBUPDTE.

The IBM TSO user can invoke CLISTS whose
function is the routing of print or punch output
to the remote. These CLISTS create a JCL file and
this file is used with the TSO SUBMIT command.

At the remote side, the COM files have been
developed to minimize user responses through the
use of COM file defaults. In most cases the user
can select the default by merely presssing the
return key. The expereienced COM file user can
further minimize responses by including COM file
parameters at invocation. These parameters allow
the user to:

(a)

(b)

(c)

Gain experience
remote file for
or PRINT as
parameter(Pl).

ana create a reference
SENDing by including TYPE
the first COM file

Include as the second parameter(P2)J the
numeric value associated with tne COM
file option as shown above.

Include as third parameter(P3), the
string "NO" and thereby select all
defaults. The COM file then omits most
prompts. It should be pointed out that
including this P3 string requires that
the user be familiar with the COM file
functions and defaults. It makes no
sense to select a default IBM cpu time of
ten seconds for a job that might require
several minutes.

The execution of option 4, REBLOCK is the
mechanism used to process IBM files and retrieve
the output as binary Fixed Blocked(FB) data
packets formatted in a DEC format. This option
invokes a CH related IBM executable load module
which uses the IBM QSAM access method for reading
the user specified disk or tape file. This
program processes one input file and can generate
up to ten punch files of class C, D and E. It
requires that the user know:

325

(a) The IBM dataset name and/or tape volume
serial number.

(b)

(c)

(d)

That the user can define a record by type
or be able to select all types.

That the user furnish start/stop times or
be willing to select any record without
regard to time.

That the user can identify fields within
a record type that have an algorithm for
DEC conversion. The user selected fields
are the only items that are converted and
punched.

Before going into further detail let it be
pointed out that the record selection and
conversion algorithm were based on the LEP data
dictionary bible, "Commonly Used Digital Tape,
Disk And Card Formats". After reviewing this
document, and in particular the requirements
associated with VOYAGER Magnetic(LFM) field and
Plasma(PLS) experiments, the algorithm for
retrieving data and converting it to DEC format
was developed. There are approximately 5
gigabytes of VOYAGER I and II, LFM and PLS data
stored on the central mass store cartridges.In
addition to the data associated with an experiment
VOYAGER data contains engineering records(ENGR),
trajectory data(SEDR), and header records(HDRl ana
HDR3).

The header pref ix consist of 20 distinct data
elements. LFM consists of 33 distinct data
elements. ENGR consists of 2 data elements. SEDR
consists of 9 distinct data elements. HDRl
consists of 27 distinct data elements. HDR3
consists of 10 distinct data elements. PLS data
word sections have up to 133 distinct data
elements.

In order to be able to process these varied
data elements, a Pseudo Format (PF) was developed.
PFs are similar to but distinct from the familiar
FORTRAN FORMAT statement specifiers. The REBLOCK
program recognizes eleven type PFs and allows
groupings by parenthesis up to a level of three.
The PFs types are shown in Table 1. They are the
road map and the mechanism by which the user
selects IBM based data and converts it to DEC
binary data.
There are fifteen format specifiers , seven for
positioning and eight for data conversion. Table
1. lists these tyPes.

Table 1. Pseudo Format Types

Type Description

B Reference data location from the beginning
of record in bytes.

C Character data of length one; EBCDIC to
ASCII conversion is implied.

D REA1''<8 data converted from IBM to VAX
format.

E REAL•"4 data converted from IBM to VAX
format.

H INTEGER>'<2 data converted from IBM to VAX
format.

I INTEGER*4 data converted from IBM to VAX
format.

L LOGICAL>'<! data, no conversion done.
P REAL"'4 data converted from IBM to VAX format

after having been examined for range. Since
the range of IBM floating point numbers is
greater than that of the VAX, a validity
check is made before the conversion process.
A number is rescaled if its absolute value
is less than 1.E-37 or if it is greater than
1.E37. The rescale algorithm is

Q

R

s
x
RB
RD
RH

new value= 1.E37 x natural log of (original
value).

REAL>'<8 data converted from IBM to VAX format
with an algorithm similar to that of the P
format above.
Reference data location from the beginning
of the data record in words.
Reference data location from the beginning
of the header record in words.
Space up by a byte.
Equivalent to B.
Equivalent to S.
Equivalent to R.

NOTE
Variables using the P or Q format incur a one
byte overhead per value as a logical array of
length equal to the pseudo format repetition
factor precedes the data. This array will flag
as true all values that have been rescaled by
the defined algorithm. Positive rescaled
values are = 1 while ne~ative rescaled values
are = to 3. The user 1n their VAX application
program must make any adjustments to rescaled
data. The user should also be cognizant that
the overhead logical array associated with P
and Q pseudo formats is part of the output
record which must be less than 8000 bytes.

It is also possible for the user to group
format types with enclosing parenthesis and a
pref ix repetition count. Up to three levels of
groupings are possible.

In addition to the user PFs the REBLOCK program
requires as input:

1. A value of A, B E or T for defining what
•the record seietion criteria is. These
values equate to All, Binary, Ebcdic and
Time.

2.

3.

The al~orithm to be used
conversions.

for tirre

Per record type the user must furnish:

(a) The length of any header prefix data
area.

(b) The location of a record
identifier.

(c) The string pointed to by b.

string

(d) The location of the record time
specifier.

(e) The record
times.

start/stop processing

A value of 0 for (a) and (b) terminates
the input of this input record class.

326

4. The user PF string. A PF can be up to
240 characters contained in three
records. A double blank signals the
termination of a PF for a record type.

This input set then consists of one each of input
record type 1 and 2 1 n+l of record type 3 and n of
record type four. although a PF can be up to 240
characters, in practice they are generally less
than 80 characters.

There is an association of how IB!1 punch and
print classes are processed at the remote. CH has
as part of its sysgen input files, an AUTOOPR.CBA
file which defines the RJE station at the remote.
At the LEP, CH has defined that punch class B and
all print files require EBCDIC to ASCII
conversion. Punch classes C D and E are for
binary data such as that developed by the REBLOCK
program. Table 2 shows the LEP AUTOOPR.CBA file.

Table 2. LEP Auto Operator Configuration File.

.Il /HO /RT=IBMl

.I2 /HO /RT=IBM2 /NOTR /STREAM

.Pl /HO /RT=IBMl SYSSSCRATCH:PRINT###.PRl
/PRO=(O:RWED,S:RWED G:RWED W:)

.Pl /HO /RT=IBMl SYSSSGRATCH:PRINT###.PRl
/PRO=(O:RWED S:RWED G:RWED W:)

.P2 /HO /RT=IBMi SYSSSGRATCH:PRINT###.PR2
/PRO=(O:RWED,S:RWED G:RWED W:)

.P3 /HO /RT=IBMl SYS$SGRATCH:PRINT###.PR3
/PRO=(O:RWED S:RWED G:RWED W:)

.P4 /HO /RT=IBMi SYS$SGRATCH:PRINT###.PR4
/PRO=(O:RWED,S:RWED G:RWED W:)

.PS /HO /RT=IBMl SYSSWEEKLY:PUNCH###.PUl
/PRO=(O:RWED S:RWED G:RWED W:)

.P6 /HO /RT=IBMi SYS$WEEKLY:PUNCH###.PU2
/PRO=(O:RWED,S:RWED~G:RWED6W:) /STREAM /NOTR

.P7 /HO /RT=IBMl SYS$WhEKLY:PuNCH###.PU3
/PRO=(O:RWED~S:RWED~G:RWEDJJI'.:) /STREAM /NOTR

.PS /HO /RT=IBM~ SYS$WhEKLY:PuNCH###.PU4
/PRO=(O:RWED,S:RWED,G:RWED,W:) /STREAM /NOTR

The .I stands for input channels and .Pl thru .P4
designate print output channels. The values .PS
through .PB designate output punch channels. The
CH keywords HO stands for hot, i.e. the channel
is active; RT= directs the output to one of two
output queues designated IBMl and IBM2; NOTR
designates no translate to ascii; STREAM is used
to designate a binary output file; PRO= defines
the default protection class for the output
dataset. The default file designator is defined
to be to HASP account daily or weekly scratch
space. The string ### is a designator to CH that
a count value associated with a channel should be
incremented and this value becomes part of the
filename.

Since all punch files are by definition 80 or
less characters, variable length records must be
reconstructed at the remote. This process is done
by having the central include as the first two
bytes of the variable length record the record
length in DEC integer form. The FB 80 byte
packets are then used with a remote based program
to form the user specified variable length record.
The transformation of the FB to V format is done
after CH has received the binary data.

Routing of data to remote user files is done
primarily through the identification of route
records that are sent with the data. In the case
of punch output a formatted record allows the user
to specifically route to a remote file. Print
files are handled differently. Since all print
files are of the same class there is no way to
direct print to a remote file definition unit.
Instead a banner string that is prefixed by JES2
to SYSOUT=A files is the mechanism for directing
printout to use daily scratch space. The user
must manage the files routed to the remote. Print
files must be copied and punch files either copied
or run through a Fixed Blocked(FB) to Variable(V)
reformatting program. This program resides within
CH space and is accessible to the user.

The punch route record is formatted into 5
fields.

1.

2.

3.

4.

5.

The route identification string "'*"'COMBD
(8 characters).

The jobname as contained on the user IBM
jobcard(8 characters).

The channel number associated with the
punch file(l character).

A batch submit field consisting of the
string ··SUB." or "'FAS.··. Either string
designates a batch submit with the later
directed to a fast batch queue.

The name of a user COM file to be used
with the batch submit. This file must be
within a user subdirectory
<usrid.COMBD>. This field is 12
characters long.

6. The fully qualified name of the user file
that is to be the destianation of the FB
data packets.

The punch route card is terminated by a
double blank followed by an underscore. The
underscore is included to ensure that JES2 punches
the two trailin~ blanks following the file
identification. This route card~ a user specified
comment card1 and two REBLOCK generated header
cards appear oefore the binary data. The user
comment record is used for additional punch file
routing. Normally each FORTRAN WRITE(n,m)
statement directs the punch output to a different
punch class. If the string MRGHDR appears within
the user comment string all punch output from the
n record types are redirected to CLASS=C. If the
string PRINT appears in the user comment string
the data elements defined by the user PFs are used
to generate a printout of the data, i.e. there
will be no binary punch files generated by the
REBLOCK program. If the string "NOHDR" appears
then only the first route header recora is
included in the punch output stream. Route
headers are included with each punch class and are
converted to ASCII at the central prior to
transmission. The REBLOCK generated headers(3 and
4) contain information on user input values and
input file characteristics as derived from central
control blocks.

Print files are identified for routing by the
appearance of one of the following strings:
VAX.TO. IBM, IBM.TO.VAX,VAX.TO.AMDAHL
and VAX.TO.CYBER. These strings appear on the
user JOBCARD in the job comment section and are
part of a print banner string included with all
SYSOUT=A datasets. Once one of theses strings has
been identified CH installation written software
retrieves the remote userid from the section of
the banner string that contains the IBM jobname.
The first two strings can have suffixed to them
the strings V or VD, which in turn generates a
print batch submit to the. ~emote VERSATEC
printer/plotter. The D specifies that the
reference print file is to be deleted after
p:inting. A samp1.e use of the REBLOCK option is
shown in CH recognizes the batch submit string on
the punch file routing card and invokes a user COM
file to create a VAX variable length record. In
this test case the batch file also

(a)

(b)

Generates a VAX variable length record
and computes ancillary data parameters.
This file is written to user SYS$WEEKLY
space.

The file defined by (a) then passes thru
the LEP Interactive Digital Signal
Processing program filtering the data.

(c) The output of the IDSP program is used to
generate Versatec plots.

Tables 3 4 and 5 show the JCL file created by the
COM fil~ the batch-submit file created by CH and
the user file used in this SUBMIT.

327

Table 3. User Data File Used to Retrieve Central Data and
Generate a Batch SUBMIT

//U2LJMTHR JOB (U0016tBF21 l0) 1 VAX.TO.IBM,MSGCLASS=A,
/I TIME=(l~59) 18-0C ·1%4 lu: 30 .
/*ROUTE PKINT R9.PR1
/*ROUTE PUNCH R9.PU1
/*JOBPARI! LINES=l0,CARDS=60000
//*COMBDYSECSIBM5nnn<200,057>DR2:<WEEKLY.YSECS>SI'ITLER.Pl0 _
!/ EXEC PGM=REBLOCK
//STEPLIB DD DSN=U0#08.COMBOARD,DISP=SHR
//IT06F001 DD SYSOUT=A

~4*'68~K&~§~!hc~M5SUB.STWEEKLYDR2:<WEEKLY.YSKET>SI'ITLER.Pl0 _
~r'ple input for retrieving binary central resident data
'DAY"

128 lL 780250000000 80256000000
0 0

~~j~6i~,6~,15RH,4L,17RH,2H,37RH,8E,81RH,34E,183RH,2D,46E,
//IT16roo1 DD SYSOUT=C,DCB=CRECf!l.:=!.~~LRECL=80,BLKSIZE=400)
//DATAIN DD DSN=U0#16.VOYAGER.SunrIAJ<Y.Ml0428,DISP=SHR
// DD DSN=U0#16.VOYAGER.SUMMARY.M10437,DISP=SHR

Table 4. Batch-SUBMIT File Generated by COMBOARD·HASP

CHECK OPEN:
OPEN/READ/ERROR=SLEEP TEST DR2:<WEEKLY.YSKET>SITTLER.P10
GOTO CONTINUE
SLEEP:
WAIT 00:04
GOTO CHECKOPEN
CONTINUE:
CLOSE TEST
@<YSKET.COMBD>STWEEKLY DR2:<WEEKLY.YSKET>Sl'ITLER.P10
~~¥E/KEEP=2 DUMMY.LOG

Table 5. User COM File Used With COMBOARD·HASP Batch SUBMIT
(<YSKET.COMBD>STWEEKLY.COM)

ASSIGN 'Pl FOROlO
SET DEF DR2:<WEEKLY.YSKET>
COPY DRl:<YSKET.IDSP>PLOTKET.DAT FOR026.DAT
PURGE*·*
RUN DRl:<YSKET>BINFWO
RUN DRl:<YSKET.IDSP>INPUTKET
DELETE/NOCONFIRM FOR009.DAT;l
RUN DRl:<YSKET.IDSP>PLOTJB
PHASE2
EXIT

The configuration defined at LEP has remained
relatively constant over the past six months. The
routing CH software is installation dependent.
The LEP routing programs consist of seven FORTRAN
based routines with a total of three hundred lines
of code.

In summary the LEP CH has been in operation
as documented for approximately one year and has
met our goals/req~irements for data availability
and retrievablity. The 56kb data line runs at
approximately 70% of capacity; an actual data
rate of 40kb. The chief uses for the CH facility
have been:

1.

2.

3.

4.

Retrieval of scientific data stored
within the main frame mass store and tape
library.

Quick turn around of IBM printouts.

Sending Dec Standard Runoff files to the
main frame for printing on the IBM 3800
laser printer.

Code development on the VAX with the
debugged code then sent to the IBM 3081
for production use.

A CAMAC LSI NETWORK*

R. Friesen, A. Simmons
Lawrence Livermore National Laboratory

Livermore, California

J. Helton, R. Schell
EG&G Las Vegas Area Operations

Las Vegas, Nevada

ABSTRACT ------
We have implemented a distributed network to process and
archive digital video images from multiple cameras. The
system consists of a high speed dual-ported memory con
trolled by an LSI-11/23 processor for each camera. The
CAMAC serial highway is used to "buss" the LSI-11 front-ends
to a single LSI-11 "master." The "master" processor ana
lyzes and archives data gathered by the front-end proces
sors.

INTRODUCTION

A new data capture system was needed at the Nevada
Test Site to record video images from cameras look
ing at downhole nuclear tests. The system built
consists of several CAMAC crates, each with its own
LSI-11 local processor. One of the crates is a
"master" crate and the others are "acquisition"
crates connected to cameras. It was required that
this new system be able to capture approximately
.5 mb of data per camera, have a battery backed
memory, be easy to set up, be self-diagnosing, have
data compatibility with LLNL data reduction codes,
and be "bullet proof." This paper will cover the
development of a CAMAC based LSI-11 network to ful
fill these requirements.

SYSTEM CONFIGURATION

The system configuration was designed to support a
three phase fielding sequence. The set-up and
testing phase, called "dry-runs," requires up to
two months and involves loading test data and
"capturing" it. During the "event" (underground
nuclear test), the acquisition crates capture data
autonomously. The data retrieval phase is almost
identical to the dry-run phase except for added
precautions to protect the real data.

At event time, the system has several unique and
interesting features. The system is unattended,
with all operations performed from a control point
several miles away. To help insure reliability, no
single point failure may prevent all cameras from
recording data. The Acquisition crate CPU is a
state machine and will remember its state through a
power interruption. It will power up to the data
capture mode before the event and to a "safe" mode
after the event for data retrieval. We plan for a
power loss at "zero" time with the crate power
supply able to hold up the system for about
50 ms. The camera is destroyed about 5 ms after
"zero" time. The data recovery is delayed until
the area is safe for workers to re-enter the area.

The Master crate is set up as a standard computer
system with a touch screen terminal, 1 mb and 10 mb
floppies, color graphics monitor, screen copier,
and the CAMAC serial highway interface. The serial
highway is a loop passing through each Acquisition
crate. Each crate has a crate address and each
module in the crate has a module address. Each
Acquisition crate is configured with a serial high
way crate controller, an LSI-11 CPU, an MRV-11 with
ROM, battery backed RAM, high speed battery backed
RAM, and a camera interface. The data capture
timing signal is generated by an external system
and routed to each Acquisition crate.

The physical configuration of the serial highway as
a loop would normally imply a token passing, or
similar type of network. However, the logical con
figuration of the network is somewhat different.
The serial highway is logically configured as a
star, with the Master able to connect to any of the
Acquisition crates and the Acquisition crates un
able to connect to each other.

At event time, the logical configuration is
changed. The Master crate is disabled and the net
work disappears, so that each Acquisition crate
becomes a stand-alone system. The local CPU is
used only to monitor the system state, select the
appropriate memory bank, and arm the high speed
memory interface to be ready to take data. The
high speed memory records the camera data under
control of external timing signals.

THE CAMAC NETWORK FEATURES

Before choosing the CAMAC serial highway, we looked
at several other networks. DECNET was difficult to
implement in the space we had available and re
quired RSX or VMS as the master operating system.
We wanted to keep the operating system as simple as
possible to promote system reliability and minimize
software maintenance. The GPIB require multiple
connections which increase the probability of fail
ure. We looked at communication boards like the

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under contract number W-7405-ENG-48.

Proceedings of the Digital Equipment Computer Users Society 329 New Orleans LA - 1985

Computrol and Corvus, but they made it difficult to
move to fiber optics, a feature we wish to add in
the future. We could not find an "off-the-shelf"
RS-232 serial network protocol.

The CAMAC serial highway mapped reasonably well. in
to the ISO Network Standard. The application, pre
sentation, and session layers we hard coded into
the the application code. We wrote the transport
layer. The network layer is the CAMAC serial high
way protocol and is implemented in hardware. The
data link layer is the CAMAC message format with
crate and module addressing. The physical layer is
the bit serial multidrop loop.

We were able to implement standard network features
with the CAMAC network. We can down-load diagnos
tic codes and do error logging in the Acquisition
crate processor. We can "halt" and "re-boot" the
Acquisition crate and collapse the serial highway
loop for debugging. The serial highway is a hard
ware system and powers up to a known state, as does
the Acquisition crate processor. The Acquisition
crate processor can read the previous state from
the battery backed memory and go to the correct
next state.

The CAMAC network environment allowed us several
operational advantages to enhance the final
system. The ability of the master to deactivate
the serial highway for the event configuration
reduced the potential for erroneous commands to
occur at event time. With each Acquisition crate
acting autonomously at event time, no single crate
failure can prevent the others from capturing
data. The serial highway 11 bypass 11 prevents a
failed crate from interfering with data retrieval
from the other crates, and the battery backed
memory can be physically removed from a failed
crate for possible data recovery. The CAMAC
Auxiliary buss allows either the Master or the
Acquisition crate processor to directly address any
module in the Acquisition crate and the CAMAC
serial highway has hardware error detection. The
modules needed to construct the system are avail
able "off-the-shelf" and the software is modular
and can support a variety of configurations.

Although the system has been in successful opera
tion for several events, there are several things

330

about the current system we would like to improve.
The serial highway requires more supporting modules
than we like, and the hardware error detection is
not as comprehensive as we would like it to be.
Also, the serial highway byte to bit mapping is not
fast enough to support future requirements. Possi
ble changes we are currently considering are chang
ing the serial highway to a GPIB bus or embedding a
FALCON in a CAMAC crate controller. The number of
connections in the GPIB bus are a problem, but
there is a large software library to support GPIB
and the bus is faster. The most attractive option
would be the FALCON in a CAMAC crate, if we could
work out the network reliability issues and if the
serial port can be used as the network connection.

SUMMARY

The CAMAC serial highway is useful in the creation
of computer networks even though it has a few weak
nesses. It maps well into the ISO standard and is
well supported in industry. The supporting soft
ware is not difficult to write, and a diversity of
configurations are possible. However, the number
of modules required to implement it and the speed
of data transfer need to be considered when design
ing a new system.

DISCLAIMER

This document was prepared as an account of work
sponsored by an agency of the United States Govern
ment. Neither the United States Government nor the
University of California nor any of their employ
ees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process dis
closed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial products, process, or
service by trade, name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the
United States Government or the University of
California. The views and opinions of authors
expressed herein do not necessarily state or re
flect those of the United States Government there
of, and shall not be used for advertising or pro
duct endorsement purposes.

Techniques of Protocol Validation

by

William T.C. Kramer
University of Delaware

192 S. Chapel Street
Newark, DE 19716

(215) 793-2410

ABSTRACT

This paper investigates the state of protocol validation and describes a number of methods now in
use. The emphasis of the discussion is toward automating these methods so the validation process
may be improved. Seven techniques for protocol validation are discussed; finite state machines,
and the related methods of directed graphs and petri nets are evaluated first. Then programming
and special languages and hybrid techniques are studied before simulation and temporal logic.

This paper was done under the direction of Dr. Dave Farber and Peter von Glahn in conjunction
with class work at the University of Delaware.
1. Introduction

In recent years, communication protocols
have bf'come increasingly complex. It has
become necessary to ievelop formal rules for
specifying these protocols. Along with formal
specification comes the need to develop
methods to validate that a protocol
specification will perform the services it
claims, and the design itself does not have any
flaws. This is particularly important in net
work protocol design, since there will be dis
tributed and independently developed imple
mentations of the protocol will be used. It
becomes very difficult and expensive to correct
design errors after the specification is release.

The first section discusses some of the
implications of validation and verification.
These are closely related terms and are many

times used interchangeably. The next section
discusses the attributes of a protocol which
may be tested and hopefully validated. These
include absence of deadlock, liveness, safeness
and other problems which may come up in a
communications protocol.

Each type of verification technique is
then discussed separately. First the large area
of Finite State Machines is broken down into
subtopics, including directed graphs and Petri
Nets. For each technique, a discussion of the
automation of the technique is included along
with mention of actual protocols which have
been verified. After finite state machines, pro
gramming and special languages, hybrid tech
niques, simulation techniques and temporal
logic techniques are discussed in the same
mode.

Proceedings of the Digital Equipment Computer Users Society New Orleans LA - 1985

331

Protocol Validation

2. Validation and Verification

The terms protocol validation and pro
tocol verification are used interchangeably in
some instances. Regardless, they have an
overlapping meaning and purpose. It is worth
while to start the discussion by explaining the
difference between these two terms. It is first
necessary to look at what is specified in a pro
tocol specification. First, there is a
specification of what services the protocol is to
provide to its user. In this case 11 U8er11 means
either a person, a program or another layer of
the communications protocol. This
specification is called the Service
Specification [Sunshine79]. There is also the
Interface Specification, which is a descrip
tions of how to implement the service
specification for a particular computer or sys
tem. Verification is the checking of the inter
face specification against the service
specification from which it was derived to
show that the implementation does indeed
provide the services which were specified.

Validation is insuring that a protocol
satisfies the design or Service Specification and
thus will satisfy the needs of its users.
[Bochmann80A] The validation process deter
mines whether or not a protocol has a sound
logical structure. Validation attempts to iden
tify design errors in the protocol which result
from incomplete definition of the design.
These errors cause unpredictable behavior of
implementations of the design [West78A].

The reason these terms are sometimes
interchanged is that a protocol verification of
an implementation presupposes a properly
designed service specification. A protocol may
not be validated, so when an implementation
of the protocol is verified, it may uncover
design errors. Adding to the confusion is the
problem that many protocols have not been
specificed in a formal manner. Thus, to try
any validation of the entire protocol, some
sort of implementation or interpretation of the
service specification is necessary. In some
cases, even the validation method is actually
verification an implementation of a kind. As
protocols are designed in a more formal
method in the future, the difference between
the two terms should become clear.

332

3. Properties which may be Validated

Validation properties may be divided
into general and specific properities. All proto
col designs should have the general properties,
which are considered an implicit part of the
Service Specification. An example of these
properties is freedom from deadlock. Specific
properties are dependent on the service the
protocol is to provide. These could be the
proper clearing of a terminal screen in a vir
tual terminal protocol or the correct copying
of a file in a file transfer protocol. These
specific properties are generally defined in the
Service Specification.

Beyond the specific service specification
There are a number of general properties
which are important to validate in a protocol
specification. In the following discussion, the
properties are described in terms of a finite
state machine. However, these properties may
he validated in any method of protocol
specification. In some cases, such as temporal
logic, several properties may be stated with
one assertion.

The first property is that the
specification does not allow any deadlock
states that may he entered. A deadlock state
is one from which an implementation can
never emerge. These states may be those
which, once entered, do not have any events
which would cause them to exit or there may
he states whose exit events can never be trig
gered. It must be recognized that a deadlock
state is not necessarily an error, since it may
represent an acceptable terminal state of the
process [Zafiropulo80].

There is also the problem of distinguish
ing between partial correctness during vali
dation and progress or termination
[Bochmann80A]. Partial correctness means
that, if the protocol preforms any action, it
will he in accordance with the service
specification. However, there is no guarantee
that any progress will he made or that the
protocol will do anything at all. Progress or
termination means that the protocol will even
tually provide the services specified in a finite
time, although the service may not be correct.

The second situation which may he vali
dated is that of liveness, or progress. This
means that from each reachable state, any

Protocol Validation

other state in the system is reachable. [Mer
lin 79] It should be additionally remarked that
for each reachable state, there exists another
reachable state from which this transition
event can occur. Basically, this property
specifies that there will be no long term cyclic
behavior specified during which useful activity
does not takes place. It also sometimes
includes the idea that there are no deadlocks.

The general term correct execution is
used to cover several related properties. Basi
cally, the specification should behave properly
in all instances (handling errors, not creating
errors and properly maintaining synchroniza
tion with other processes.) Completeness in
the specification requires that any specification
handle all possible conditions. A process in a
particular state must be prepared to accept
any transitions which the other processes
could possibly generate. Unspecified recep
tions to a process might cause unpredictable
results in implementations (Merlin79J.

Self synchronization or the absence of
state ambiguities is another general property
of a protocol. The different communication
parts of the network must be able to syn
chronize their states together. In addition, the
processes must not be able to fall out of syn
chronization permanently, which could happen
if transitions are allowed between process
states without any messages flowing between
them.

Another area under the general heading
of correct execution is the need to have a
mechanism in the protocol specification which
prevents the communication channel (includ
ing the physical connection, buffers queues,
etc.) from overflowing. This mechanism is also
known as providing flow control and may be
as simple as a transmit/receive acknowledge
ment or a hardware signal. In temporal logic,
these properties are grouped together under
the term safeness.

Other basic properties which all protocol
specification should have are the ability to
properly terminate, the idea of fair
scheduling of resources and no unnecessary
states or specification. Making sure that all
the processes which make up the protocol
reach a proper terminal state helps insure the
processes synchronize and also that all users
will be able to terminate. Fair scheduling is

333

necessary for good performance of a protocol.
If several users are all trying to pass data over
one hardware link, the protocol must insure
all the users are receiving part of the resource.
Of course, it is never desirable to have states
which may not be entered under any condi
tion.

4. Approaches to Protocol Validation

Seven different approaches to validation
of protocol specification will be discussed; Fin
ite State Machines, Directed Graphs, Petri
Nets, Programming and Formal Languages,
Hybrid Models, Simulation, and Temporal
Logic. With the exception of the simulation
studies, all these techniques require that the
protocol be specified in a formal manner
approppriate to the validation method. There
has been a great deal of work done to build
systems which will allow for a protocol
specification and automated validation of the
specification. Some of these attempts have
proceeded to automatically generate protocol
implementations as well. A brief description
of each technique will be provided, followed
with discussion of advantages and disadvan
tages. Comments about automating the tech
niques and attempts to validate actual proto
cols will finish the discussion.

4.1. Finite State Machines

Some of the first attempts to use formal
methods to both specify and validate protocol
specifications dealt with finite state machines.
The finite state machine consists of a diagram
or description of each state a process may be
in, the input or reasons the state was entered,
and all the output produced by the current
state and the reasons the state will be exited.
A "state" in the machine denotes some
independent processing states of the machine.
This method was familiar to protocol
designers from other areas of computer sci
ence. It works well with simple protocols,
which can be thought of as a series of rela
tively simple processing steps, each responding
to some input to trigger a transition to a new
state [Sunshine79).

There are a number of severe limitations
to the finite state machine method. First is the
problem of an "explosion" in the number of
states. Since finite state machines have no

Protocol Validation

capacity for memory, each state must be
independent. Thus, if a protocol which
employs a series of sequence numbers is to be
tested, a complete set of states for each
sequence number must be specified. Indeed, if
there is no limit on the sequence numbers,
then the machine will not longer be finite.
Second, other common attributes of protocols
may be difficult to specify. For example,
timeouts are generally considered to be inter
nal events, but in a finite state machine, there
would have to be a separate external machine
specified to produce timeouts and the actual
communicating processes must allow transi
tions triggered by the timeout input.

A third problem is that there are at
least two processes communicating in any pro
tocol specification. Each of these processes are
finite state machine, which may have identical
specifications. These machines are treated as
cooperating processes, not identical ones since
one will be transmitting and the other receiv
ing at any given time. For validation, it is
difficult to synchronize the two finite state
machines.

Even with these problems, finite state
machines are common models for protocols.
Some extensions to the model have been made
to help overcome its limitations. There are
also well known procedures which are beyond
the scope of this discussion which may be used
to reduce the number of states whenever possi
ble.

4.1.1. Automation of Finite State
Machine Validation Regardless of the lim
its of the method, a number of automated
protocol validation systems are based on the
concept of finite state machines. Most systems
allow for a finite state machine to be described
as a 5-tuple [Danthine80]:

<X, I, 0, N, M>

where

X is a finite set of states
I is a finite set of inputs
0 is a finite set of outputs
N is a state transition function -

given an input it specifies a
state to enter

M is an output function -

given a state and input it
specifies an output

From these descriptions, two or more finite
state machines may be combined into a global
state transition diagram. Essentially, a new
machine is constructed, which has all the pos
sible combinations of the states of the two
other machines. In addition, a global finite
state machine may be produced which com
bines to two finite state machines.

Reachability analysis is an exhaustive
exploration of all the possible interactions of
two finite state machines [Sunshine79J. A
composite system must first be generated,
which is the combination of the states of both
processes, and the messages transferred
between them. machine state is a 2X2 matrix,
with the state of the communicating processes
on the diagonal and the messages in the other
elements [Zafiropulo80]. The matrix would be:

I Pl state Pl to P2 message I
I P2 to Pl message P2 state I

This method may conceivably be extended to
more then two process communication, but
the number of states grows (even with only
two processes) in an exponential manner.

Perturbation analysis is a variation
of reachability analysis in which a reachability
diagram is constructed by starting from the
initial state and generating all possible combi
nations of transitions to other states. Those
states are then perturbed to new states. In
the end all the paths should return to the ini
tial state. Reachability analysis or perturba
tion analvsis allow most of the general proper
ties of a. protocol to be validated. Deadlock
detection is relatively simple, since it is a case
where a state has no further transitions and
no messages. Unspecified receptions are indi
cated by states that have no departing transi
tions to accommodate an input.

4.1.2. Actual Protocols Validated with
Finite State Machine Methods

4.1.2.1. X.21 Protocol

A number of automated protocol valida
tion svstems are based on the finite state
machi~e approach. The call establishment
phase of the OOITT X.21 protocol has been

334

Protocol Validation

validated using a state transition model and
reachability analysis [Bochmann80A].

4.1.2.2. IBM's System Network Archi
tecture (SNA) Protocol

IBM's entire SNA protocol was described
and validated using a finite state machine
method with extensions for the description of
data control [Schultz80]. It is worth looking
into this particular method, since the
approach is typical of protocol validation
work. The protocol was described in a pro
gramming type language (F APL), which is an
extended PL /I. The extensions to PL /I allow
three types of structures to be easily specified;
finite state machines, data entities and queues.
Finite state machines were specified with a
state transition matrix similar to the one
described above and was translated into a
PL/I procedure. Data entities and list han
dling facilities were the basic constructs for
the data element description. Queues were
handled as special case first in first out lists.
Combining these added structures, the F APL
language was capable of completely specifying
SNA.

Passing the F APL specification through
a pre-processor translated it to standard PL/I.
Not only could this translation be used as the
basis of a protocol implementation, but it was
also be used to automatically validate the
design. The validation technique used the
state perturbation method. The processes
were modeled as finite state machine and the
channels connecting then were modeled as
queues. The validation detected deadlocks,
inconsistent and incomplete design, or the loss
of synchronization.

The validation procedure is to tun as
two half _processes, one called the primary
which may send requests and initiate the con
nection. The second half process may only
respond to the primary. During the validation
procedure, histories of the channel interaction
are kept so that particular sequences which
lead to improper behavior may be studied.
This has the additional benefit of being able
test implementations with the same sequences.
Some of the errors detected by the validation
process were shown to occur only under pecu
liar time situations.

4.1.2.3. V ADILOC and HDLC

The V ADILOC system is also based on
finite state machines, but with the additional
concept of predicates [Rafiq83}. It is an
interactive system which describes states in
the machine as
<Event From-State Predicate To-State Action>
The validation is done by studying two enti
ties, each as described in the above format,
while they communicate over a channel, using
reachability analysis. Deadlocks, unspecified
errors, and non-executable transitions are
detected as errors.

The V ADILOC system has been used to
validate the ISO transport protocol (classes 0
through 3) including error recovery, the
ECMA synchronization/resynchronization
phase and an HDLC-like protocol [Rafiq83].
The system has the added feature of being
able to produce skeleton programs from the
system description in Pascal, ADA and PDIL.

4.2. Directed Graphs

Zarifopulo proposed that two finite state
machines which interact may be viewed as the
interaction between two directed graphs. [Zar,.
ifopulo78] The nodes of the graph represent
the states of the process and the arcs in and
out of the nodes represent input transitions
and output respectively. Graphical represen
tation of the interaction is shown using phase
diagrams which are maps of the states the
machine enters while it is working. They dift'er
from finite state machines because they expli
citly show how many times a state executes.

335

From the directed graphs, segments may
be extracted called unilogues which show a
complete path leaving and then returning to
the initial states. When the unilogues of two
communicating processes are combined, they
are called a doulogue.

4.2.1. Automated Validation with
Directed Graphs

A procedure using a duologue phase
diagram held in a matrix is used to automate
the evaluation of protocols specified with
directed graphs. The rows of the matrix
correspond to the states of one process and the
columns correspond to the states of the other.
The values inside the matrix are used to

Protocol Validation

indicate the transitions from each state. It is
possible to trace the execution of the processes
and derive correctness properties from this
matrix [West78B].

Another approach to directed graph
analysis is to consider a graph model in three
domains: control fl.ow, data fl.ow and interpre
tation. The protocol is modeled in each
domain and all three are analyzed simultane
ously [Razouk80). Control fl.ow and data fl.ow
are directed graphs. The control fl.ow graph
consists of nodes and arcs. There are AND
and OR specifications for the transitions arcs
to allow for a node being entered when any
input for the node is triggered or only when
all arcs are triggered. The data fl.ow graph
consists of data sets, controlled and uncon
trolled processors and data arcs. The purpose
of data fl.ow graph is to model .the changes
which take place in the data. The interpreta
tion is simply a description of all the data for
mats.

4.2.2. Actual Protocol Validation with
Directed Graphs

The X.21 specification was also validated
using the duologue phase diagram techniques
which correspond to directed graphs. The vali
dation was carried out using a APL program
[West78B]. The validation program took
advantage of some APL features for optimiza
tion, and used less than an hour of CPU time
on an IBM 370 model 158.

The X.21 protocol was also validated
with other systems, one of which was SARA
[Razouk80). This system allows the control
fl.ow and data fl.ow models to be expressed in a
pseudo-language used to described graphs.
The interpretation is done using PL/I data
definition statements.

SARA has been used to validate the
CCITT X.21 protocol. The validation showed
a number of ambiguities in the specification,
which mostly were due to a process reaching a
state which had no provisions to receive
incoming signals. The X.21 protocol was
modified to add states and transitions to
remove most of the ambiguities. With there
additions, the modified protocol was shown to
properly terminate and have the liveness pro
perty.

336

The above analysis of X.21 was carried
out with the assumption of an error free com
munications medium. SARA was modified to
take into account certain errors such as lost
signals and altered or undefined messages.
The number of -states grew rapidly with the
added complexity, but the time to describe
and study the system grew linearly with the
number of states.

4.3. Petri Nets

A technique which was developed to
address some of the limitations of the finite
state machine and state transition models dis
cussed above is the Petri Net. Petri Nets were
initially used to study interaction between
concurrent or parallel processes. Their advan
tage over finite state machine machines is that
Petri nets express the idea that an event in
one process will not occur until a particular
event or events in the other process occur.
Despite this additional capability, Petri Nets
suffer from two problems, also seen in finite
state machine models [Berthelot82). First,
any moderately sophisticated protocol leads
quickly to an extremely complicated and
unmanageable graph. Reachability analysis
quickly becomes impractical because of the
"explosion 11 in the number of states involved.
Second, some common techniques of program
ming and protocol design, such as sequence
numbering of messages leads to complicated
Nets.

Nevertheless, Petri Nets are useful in the
analysis of protocols. Petri Nets may be
thought of as a 4-tuple [Danthine80] in the
following form:

<P, T, I, 0>
where

P is a set of places or conditions
T is a set of transitions or

events which become enabled
I is a input function
0 is an output function

The Petri Net consists of places, which
are nodes, and conditions or transitions, which
are events. Both are connected with directed
arcs. Places are connected to a transitions,
and transitions are connected to places. A

Protocol Validation

transition is enabled if all the inputs to that
transition have at least one token. The
"firing" of transition means that one token is
removed from each input to the transition and
one token is placed on each output from the
transition.

Petri Nets are also extendible. They can
include the important concept of timing
within a protocol specification. For example,
two time variables may be added to each tran
sitions of the Net, to indicate the minimum
and maximum time allowed for the transition
to fire, once it becomes enabled [Danthine80].
It is also possible to describe relationships
between actions and data (the tokens) by
adding predicates to the Petri Net description
[Diaz82].

Another extension is the
predicate/transition Nets, which can be
thought of a summations of large ordinary
Petri Nets [Berthelot82]. These nets have
tokens which are made up of constants and
variables. Each transition has predicates
which relate the constants and variables and
thus allow the transition to fire only with cer
tain combinations of values.

4.3.1. Automation of Petri Net Valida
tion

Petri Net theory allows for the valida
tion of properties of a protocol by methods
other than reachability. Reduction methods
and linear invariant methods may both be
used for validation. These methods were
develoyed for general Petri Nets and have
been automated [Berthelot82]. Starting with a
two separate Petri Net descriptions for the
two communicating processes, a global model
is obtained. This is done by connecting places
and transitions with the same labels in the
separate nets. Then reduction rules are
applied to the global model, which will main
tain the properties of boundedness, liveness,
safeness and linear invariants. The reduced
net can then be described as a matrix with
rows for the places and columns for the transi
tions. A positive one indicates an output from
a place to a transition and a negative one
indicates an output from a transition to a
place. An automated Petri Net analyzer is
reported in [Kujansu82]. Written in PASCAL
it uses reachability analysis to analyze Petri

Nets stored in a matrix format.

4.3.2. Actual Protocols Validated with
Petri Net Methods

Few actual protocols have been vali
dated with Petri Net techniques. The Euro
pean Computer Manufacturer Association
(ECMA) transport protocol, which is between
the session and network layers of the ISO
model has been validated [Berthelot82]. Petri
Nets have also been used to stochastically
model Ethernet to investigate the waiting
times for network requests for transmissions
[Florin83].

4.4. Programming and Special
Languages

Programming languages are a natural
way to specify and validate protocols. Speci
fying a protocol in a programming language is
much like implementing a specification.
Indeed some of the protocols specified are
almost directly translatable into a program.
Protocols may also be specified and validated
using formal grammars and with special
languages.

Languages, whether common computer
languages and their derivatives, or special
languages such as executable logic statements
are well able to handle many elements of pro
tocol implementation, such as variables,
parameters and sequence numbers. However,
programming language specification are very
dependent on the style and abilities of the pro
grammer. Specifications are also difficult to
minimize.

Protocols specified in a programming
language are many times validated with simu
lations. The creation of the process
specifications is helped by the program
language and then simulation techniques may

'be used to evaluate them.

337

4.4.1. Automation using Languages

The problems of validating protocols
written in programming languages is the same
as that for proving correctness in general pro
grams. Much work has gone into this area,
with some results. However, all the desired
attributes of a protocol cannot yet be
automatically validated. When using formal

Protocol Validation

grammars already established techniques are
useful to investigate the correctness of a pro
tocol.

Special languages have also been
developed for protocol specification and vali
dation. These languages are specifically
designed for the problems they address. One
such language is a special calculus which
creates a precise mathematical model for con
current processes [Aggarwal83A]. This
language defines functions in terms of states
and transitions. The description is then for
mally reduced to keep the number of states
manageable. Another reduction technique,
called homomorphism, reduces the description
by looking at probabilistic or timing informa
tion to eliminate unlikely transitions
[Aggarwal83A]. This type of formal approach
allows for exact specification and reduction,
eliminating many of the problems which are
associated with finite state machines and gen
eral programming languages.

4A.2. Actual Protocols Validated using
Languages

The transport protocol for the French
CYCLADES computer network was validated
using the programming language approach
[Sunshine79]. In a separate investigation,
[LeLann78] used simulation to evaluate the
Cyclades protocol with respect to perfor
mance and efficiency which was specified in a
programming type language.

4.6. Hybrid Methods

Many useful attempts to combine the
above methods have been made in an attempt
to eliminate some of the problems with each
technique. One of the most common
approaches is to combine a finite state
machine specification for the control flow and
a programming language to describe the data
flow of a specification. The final models gen
erally are more closely related to one or the
other of the methods.

4.6.1. Actual Protocols Validated using
Hybrid Methods

HDLC has been validated using hybrid
methods, and parts of the X.25 specification
were also evaluated [Bochmann80B]. In the
HDLC case, the protocol was first divided into

small sub layers within each layer of the
specification. The control flow of the protocol
was modeled using finite state machines and
the data flow with a type of programming
language. Global program variables were also
described with a type of programming
language [Bochmann80B].

The protocol was verified by using a pro
gram assertion technique. An assertion invari
ant, which is some type of boolean expression,
is assigned to the states of the system. The
assertion is true when the system is in a given
state. This approach served to validate the
protocol in terms of partial correctness and
liveness.

4.6. Validation through Simulation

Validation through simulation of proto
eol activities differs markedly from the other
methods so far discussed. First, there must be
actual implementation of the communicating
processes to work with the simulation. This
means that the protocol specification must in
a sense be implemented, which is of varying
importance, depending on which method was
used to specify the protocol and how detailed
the implementation is. The implementation
may range from something generated from a
formal specification to something which is a
complete implementation. Of course, the
implementation process increases the chance
for error, since there may be

338

A greater problem is that the correctness
of a protocol can not be proven, only dispro
ven. Problems with the specification may be
found related to all the areas discussed. There
is no proof that all the errors in a protocol
specification are found with simulation,
because simulation can not be exhaustive.
Simulation has also proved to be expensive
when carried out to the degree necessary for a
reasonable assurance the protocol lacks errors
[Remes82].

On the other hand, simulation has
several benefits which are not available in
other methods. There is a history of the
interaction between the processes generated.
This history may be used to test implementa
tions as well as specifications. In addition, the
work done to study the specification may be
carried to testing the actual implementations.
The greatest benefit in simulation is that it

Protocol Validation

can give indications as to the efficiency of the
protocol as well as indication of its correct
ness. During simulations, parameters which
indicate the 11 responsiveness 11 of the protocol
may be measured, either absolutely or rela
tively. As the specification changes or is
updated these response indicators may be
compared. In addition, different specifications
or implementations can be tried and decisions
made as to the best specification not only
based on correctness but on performance.

4.6.1. Automation of Simulation Valida
tion

Unlike other validation techniques, many
of which were developed manually and con
verted to automated methods, simulation
techniques have been primarily automated.
The basis for a good simulation study is a
thorough understanding of the protocol and
some assumptions about the behavior of the
network [Remes82]. Most protocols may be
thought of processes which deal with queues of
data. Requests for services, channels connect
ing communicating processes, and the output
from services are the queues. These queues
may have different statistical properties. The
simulator's task is to identify the queues,
assign the correct properties and then generate
the queue interaction with the processes.

Simulation also allows the study of a
protocol for properties which are beyond the
idea of formal correctness. These are
specification dependent properties, instead of
general properties, although most
specifications will have the same properties
with different limits. These attributes include
fair network service, guaranteed network ser
vice and delay times [Geissler82]. Fair
scheduling means that the flow control
mechanisms of a protocol will allow all the
users of the protocol to receive fair and
approximately equal service, within their own
level of priority. Some protocol specifications,
such as X.25 allow for users to modify the
parameters of their process. These parameters
include window size, priority class and others.
When this is done, the protocol specification
must still allow for the requested service to be
provided. It can be shown with simulation
that such protocol models can dramatically
effect the performance of the network with

339

regard to these parameters. Delays are also
important in any protocol because they will
cause timeouts and indicate the perceived
performance of the network. In packet net
works, packet delay is important and is closely
related to overall throughput of the network.
This has been studied with simulation
[Geissler82].

Protocol simulation studies may use spe
cial simulation programs which are designed
for the specification and simulation of general
networks models. Special simulation packages
which allow for the simulation of parts of a
network exist as well [Remes82]. There are
also special purpose simulation languages such
as SIMSCRIPT and GPSS. These 1anguages
provide convenient facilities to model queues
and other items generally found in a simula
tion model. However, use of these languages
usually involves the translation of the
specification into the special language, thus
introducing room for error. Lastly there is the
use of programming languages to implement a
specification and simulate its activities. This is
generally tedious work and worthwhile only if
exhaustive simulations will be done.

Simulation also allows the study of a
protocol for properties which art: beyond the
idea of formal correctness. These are
specification dependent properties, instead of
general properties, although most
specifications will have the same properties
with different limits. These attributes include
fair network service, guaranteed network ser
vice and delay times [Geissler82]. Fair
scheduling means that the flow control
mechanisms of a protocol will allow all the
users of the protocol to receive fair and
approximately equal service, within their own
level of priority. Some protocol specifications,
such as X.25 allow for users to modify the
parameters of their process. These parameters
include window size, priority class and others.
When this is done, the protocol specification
must still allow for the requested service to be
provided. It can be shown with simulation
that such protocol models can dramatically
effect the performance of the network with
regard to these parameters. Delays are also
important in any protocol because they will
cause timeouts and indicate the perceived
performance of the network. In packet

Protocol Validation

networks, packet delay is important and is
closely related to overall throughput of the
network. This has been studied with simula
tion [Geissler82:

4.6.2. Actual Protocol Validation with
Simulation

A number of protocol specifications have
been studied with simulation to check the
specification and to give some idea of the per
formance of the model. Ethernet has been
studied to evaluate is performance for indus
trial process control [Florin83]. The first step
in this study was to collect statistics from typ
ical industrial application as to message traffic
load. Then a model of Ethernet written in
the special simulation language SIMULA was
used to study the network response to the
modeled conditions, which were asserted in
terms of probability models. The results of
the simulation revealed the upper limits on
the response time for a request and the
number of maximum request per second.

The Cyclades network was also studied
with simulation techniques. The studies
showed a number of features about the proto
col including the fact that there is no abso
lutely reliable technique for opening or closing
connections because synchronization may be
lost due to transmission uncertainties
[LeLann78]. In addition, other aspects of the
protocol specification were studied to ensure
fair service. This included investigating the
mixture of short and long packet sizes, and
the effect oi "channel stealing protocol" which
allows empty channels from one category to
be used by another, and a different channel
control scheme which used no pre-allocation.

4.'7. Temporal Logic

The use of temporal logical to specify
and validate protocols is relatively new. Tem
poral logic is a formal language which is
designed to express time dependent operation.
It grew out of the problems associated with
using general languages to describe protocol
specifications, and the inability to clearly
separate the necessary features of the protocol
from the incidental needs of the language
chosen to implement it.

Temporal logic contains two basic con
trol operators - henceforth and eventually -

340

combined with the notation that control may
be at, in, or before a statement. Temporal
logic is used to specify a system's actions over
time [Sunshine82]. This makes validation of a
specification with respect to the properties of
progress and safeness easier than with other
methods. Additional operators have been
added to temporal logic systems to make the
specification of common protocol techniques
easier. These include the until and latch
until operators. With these, it is relatively
simple to specify concepts such as having
sequence numbers on messages increase, while
not specifying the actual starting number.
This type of concept is difficult to describe
with other methods such as finite state
machines [Schwartz81].

State Deltas is a validation approach
which makes implicit use of temporal logic
[Sunshine82B]. The basic unit of the
specification is the state delta, which contains
a precondition, a modification list and a
postcondition. The theory says that if the
precondition becomes true, then at some later
time, the postcondition will also become true.
In the interval, the variables listed in the
modification list may change. [Sunshine82B].

4. '7 .l. Automation of Temporal Logic
Validation

To prove the correctness of protocol
specifications using temporal logic, proving of
program assertions is needed. Assertion prov
ing has been used to validate protocols and
other systems specified with of languages.
Special systems have been developed for the
proving of program assertions using temporal
logic. Generally three steps are needed for
this type of approach:

1) Formal specification of the protocol
2) Choosing the assertions needed

to prove correctness
3) Proving the assertions are true

Most automated systems require the first and
second steps to be done manually and the
automated system does the last step. Gen
erally two properties are asserted for correct
ness of a protocol - the Liveness and Safety
Properties. (Safety corresponds to the correct
execution property [Sabnani82].)

Protocol Validation

4.7.2. Actual Protocols Validated with
Temporal Logic

No major protocols, on the order of
SNA or X.25, have been validated using tem
poral logic. However, automated systems
have been used to validate theoretical proto
cols. A multi-destination protocol was
specified and then validated using an
ALGOL-like language for the specification
[Sabnani82]. The protocol was validated,
using the assumption that there will never be
two packets being transmitted at the same
time which have the same sequence number.
It was also shown that specification will loop
forever if there is a complete breakdown of the
communication channels. This problem is
corrected by adding provisions for timeouts of
the sender and receiver.

Using temporal logic, Kurose showed the
correctness of a three way connection estab
lishment protocol which was described using
an extended PASCAL [Kurose82]. The total
correctness of the protocol described is con
cisely stated as:

11 Eventually, both processes will enter
and remain in the connection esta
blished state and will have agreed on
the sequence numbers of the messages
to be transmitted." ([Kurose82] p 48.)

This was verified in the described protocol
using semi-automatic methods.

There is an automated system, the Con
current State Delta (CSD) system, which has
been used to specify and validate protocols
using the state delta method [Sunshine82A].
Each state had a precondition, postcondition
read list, modify list and time bounds. If the
precondition becomes true, then the postcondi
tion will also become true with the time lim
its. During the time the postcondition takes
to become true, the variables in the read list
will be referenced and those in the modify list
will be changed. In theory, this system will
automatically generate proofs, with no user
aid. In practice however, the system quickly
becomes overtaxed, and user help is needed in
helping the system move through the proof in
a reasonable way. Since time bounds are
included, the system can simultaneously study
progress and safety. This system is relatively
new, and rated difficult to use, but is

341

undergoing continued development.

6. Evaluation of Methods

Eacn of the methods discussed above
presents certain problems along with the capa
bilities. Finite sh.te machines, and other
associated techniques such as directed graphs,
abstract machines .i.nd Petri Nets have limita
tions in handling "real life" protocol
specification. At the same time they have pro
vided a number of useful validations, by speci
fying simplified protocol descriptions which
either assume error free transmission, assume
no loss or misordering of messages, or disre
gard error correction. Other common protocol
features such as timeouts and sequence
numbers on messages difficult or impossible t9
express. Without simplification, state models
iuickly become unmanageable and the number
of states grows extremely rapidly.

It seems that analysis of protocols with
10,000 to 100,000 states is now possible
[West82]. In addition, it is common to break
protocols down into layers to simplify the
specification and validation. With automated
state reduction methods surprisingly complex
protocol specifications may be analyzed.
Extensions to the state machine methods allow
for real protocols to be analyzed in meaningful
ways.

Specification validation using program
ming or special languages is also faulted. The
languages allow for specification of looping,
sequence and other methods, but the
specification becomes obscured with the details
of the language used. In addition, the
methods of proving program correctness are
not completely understood, and certainly not
automated completely.

Temporal logic is an attempt to
mathematically formalize protocol
specification and provide rules for correctness
proving. This new technique shows promise
and will continue to improve. Proving pro
gram assertions is not currently a totally
automated process. It requires a great deal in
ingenuity on the part of the protocol specifier,
both in the specification and in providing the
correct assertions to prove the correctness of
the protocol.

Protocol Validation

Simulation is not a solution to proving
protocol correctness. However, it has been
very useful in developing protocol
specificatio~s. It has the ability to provide
quantitative information about protocol per
formance as well. In many cases this is just as
important as proving the absolute correctness
of a specification.

The development of a protocol is an
interactive process. A specification is made
and then analyzed for correctness. Problems
are discovered and then eliminated in the
specification. In addition, protocols are sel
dom specified completely, but rather in steps.
This approach to developing protocols requires
a close relationship between the protocol
specification method and the validation
method.

6. Conclusion

The methods of protocol validation have
improved as the methods of specification have
improved. Major protocols have been vali
dated with a variety of techniques, but always
with difficulty. There is yet no systems which
can automatically validate numerous large
protocols. None of the techniques discussed
here are clearly superior to the others.

The methods outlined above are not an
exhaustive listing, but rather the methods
which seemed to be the most used to do vali
dation. They have been automated in various
ways, and have been used with success to
automatically validate protocols. There are
limitations with each system, both in the
methods themselves and in the automation
techniques. Some of the techniques, such as
finite state machines, seem to be limited by
the ability of the computer resources used for
the validation. Other methods such as tem
poral logic show some promise that they may
be able to overcome the limitations. Regard
less, there remains a great deal of work left to
fully understand and realize the promise of
easy and automated protocol validation.

[Aggarwal83A] S. Aggarwal, R. Kurshan and

K. Sabnani, A Calculus for Protocol
Specification and Validation, pp 19-34
in Protocol Specification, Testing
and Verification III, H. Rudin and
C.H. West editors, North-Holland
Publishing Company, Amsterdam,
1983. Proceedings of the IFIP WG6.1
Third International Workshop on Pro
tocol Specification, Testing and
Verification.

[Aggarwal83B] S. Aggarwal, R. Kurshan and
K. Sharma, A Language for the
Specification and Analysis of ProtO·
cols, pp 35-50 in Protocol
Specification, Testing and
Verification ID, H. Rudin and C.H.
West editors, North-Holland Publish
ing Company, Amsterdam, 1983.
Proceedings of the IFIP WG6.1 Third
International Workshop on Protocol
Specification, Testing and
Verification.

[Aggarwal83C] S. Aggarwal and R. Kurshan,
Modeling Elapsed Time in Protocol
Specification, pp 51-62 in Protocol
Specification, Testing and
Verification ID, H. Rudin and C.H.
West editors, North-Holland Publish
ing Company, Amsterdam, 1983.
Proceedings of the IFIP WG6.1 Third
International Workshop on Protocol
Specification, Testing and
Verification.

[Berthelot82] G. Berthelot and R. Terrant,
Petri Net Theory for Correctness of
Protocols, IEEE Transactions on
Communications, Com30:12 .. (Dec
1982), pp 2497-2505. A good discus
sion of basic Petri Net techniques.

[Bochmann80A) G. Bochmann and C.
Sunshine Formal Methods of Com·
munications Protocol Design, IEEE
Transactions on Communica
tions, Com28:4 (Apr 19SO), pp 624-
631. A general discussion of protocol
design, with a fair section on valida
tion techniques.

[Bochmann80B] G. Bochmann, A General

342

Protocol Validation

Transition Model for Protocols and
Communication Services, IEEE
Transactions on Communica
tions, Com28:4 (Apr 1980), pp 643-
650. A good paper on a particular use
of hybrid techniques for HDLC class
protocols.

[Danthine80] A. Danthine, Protocol Represen·
tation with Finite State Models, IEEE
Transactions on Communica
tions, Com28:4 (Apr 1980), pp 632-
642. A survey of several variations of
finite state machines. It is of general
interest.

[Diaz82] M. Diaz, Modelling and Analysis of
Communication and Cooperation Pro
tocols Using Petri Net Based Models,
pp 465-511 in Protocol
Speclflcation, Testing and
Verification, C. Sunshine editor,
North-Holland Publishing Company,
Amsterdam, 1982. Proceedings of the
IFIP WG6.1 Second International
Workshop on Protocol Specification,
Testing and Verification. A detail
ezplanation of Petri Nets.

[Florin83] G. Florin, S. Natkin and J. Attal,
Quantitative Validation for Industrial
Ethernet Local Networks, pp 251-256
in Protocol Specification, Testing
and Verification, C. Sunshine edi
tor, North-Holland Publishing Com
pany, Amsterdam, 1982. Proceedings
of the IFIP WG6.1 Second Interna-
tional Workshop on Protocol
Specification, Testing and
Verification. A specific di1Jcus1Jion of
one type of protocol. It is not of gen
eral interest.

[Giessler82] A. Giessler and J. Hanle, Simula
tion of Packet Switched Data Com
munications NetworkB, pp 119-140 in
Computer Networks and Simula
tion II, S. Schoemaker editor, North
Holland Publishing Company,
Amsterdam, 1982. A good paper
which gives a feeling of what simula
tion doeB well.

[Kurose82] J. Kurose, The Specification and
Verification of a Connection Estab
lishment Protocol using Temporal
Logic, pp 43-62 in Protocol
Specification, Testing and
Verification, C. Sunshine editor,
North-Holland Publishing Company,
Amsterdam, 1982. Proceedings of the
IFIP WG6.1 Second International
Workshop on Protocol Specification,
Testing and Verification. This is an
interesting article which ezplains tem
poral logic in an understandable way.

[LeLann79] G. LeLann and H LeGoeff,
Verification and Evaluation of Com
munication Protocols, Computer
Networks, 2:1 (Feb 1978), pp 50-69.
A detailed presentation of one net
works. It is of interellt since the net
work was specified using a special
language.

[Merlin79] P. Merlin, Specification and Valida
tion of Protocols, IEEE Transac
tions on Communications,
Com27:11 (Nov 1979), pp 1671-1680.
A comprehensive presentation of a
number of protocol validation
methods. It is a good place to start
reading.

[Rafiq83] O. Rafiq and J Ansart, VADILOC -
A Protocol Validator and its Applica
tionB, pp 189-197 in Protocol
Specification, Testing and
Verification ill, H. Rudin and C.H.
West editors, North-Holland Publish
ing Company, Amsterdam, 1983.
Proceedings of the IFIP WG6.1 Third
International Workshop on Protocol
Specification, Testing and
Verification. Thia is a good paper on
a particular system.

[Razouk80] R. Razouk and G. Estrin, Model
ing and Validation of Communication
protocols in SARA: The X.f1 Inter
face, IEEE Transactions on Com
munications, Com28:12 (Dec 1980),
pp 1038-1051. This paper presents
the SARA in detail. It ill worth read
ing.

343

Protocol Validation

[Remes82] A. Remes, Simulation techniques in
Network Design, pp 101-118 in Com
puter Networks and Simulation
II, S. Schoemaker editor, North
Holland Publishing Company,
Amsterdam, 1982. A general discus
sion of simulation. It is not necessary
for someone who has done a little
simulation work.

[Sabnani82] K. Sabnani and M. Schwartz,
Verification of a Multidestination Pro
tocol using Temporal Logic, pp 21-42
in Protocol Specification, Testing
and Verification, C. Sunshine edi
tor, North-Holland Publishing Com
pany, Amsterdam, 1982. Proceedings
of the IFIP WG6.1 Second Interna-
tional Workshop on Protocol
Specification, Testing and
Verification. An average presentation
on temporal logic.

[Schneider79] G. Schneider, Computer Network
Protocols: A Hierarchical Viewpoint,
Computer, 12:9 (Sep 1979), pp 8-10.
A brief overview of techniques.

[Schoemaker82] S. Schoemaker, A Review of
Simulation, pp 79-100 in Computer
Networks and Simulation II, S.
Schoemaker editor, North-Holland
Publishing Company, Amsterdam,
1982. A general discussion of
simulation abilities and methods.

[Schultz80] G. Schultz, D. Rose, C.H. West
and J. Gray, Executable Description
and Validation of SNA, IEEE Tran
sactions on Communications,
Com28:4 (Apr 1980), pp 661-677.
This is an interesting and full view of
what it takes to validation a real pro
tocol.

[Schwartz82] R. Schwartz and R. Mellier
Smith, From State Machines to Tem
poral Logic: Specification Methods for
Protocol Standards, pp 3-20 in Proto
col Specification, Testing and
Verification, C. Sunshine editor,
North-Holland Publishing Company,
Amsterdam, 1982. Proceedings of the

344

IFIP WG6.1 Second International
Workshop on Protocol Specification,
Testing and Verification. This is an
introduction to temporal logic. It does
not quite relate finite state machines
to temporal logic.

[Schwartz83] R. Schwartz, R. Mellier-Smith
and F. Vogt, Interval Logic: A
Higher-Level Temporal Logic for Pro
tocol Specification, pp 3-18 in Proto
col Specification, Testing and
Verification ill, H. Rudin and C.H.
West editors, North-Holland Publish·
ing Company, Amsterdam, 1983.
Proceedings of the IFIP WG6.1 Third
International Workshop on Protocol
Specification, Testing and Verification

[Sidhu83] D. Sidhu, Protocol Verification via
E:i:ecutable Logic Specifications, pp
237-248 in Protocol Specification,
Testing and Verification ill, H.
Rudin and C.H. West editors, North
Holland Publishing Company,
Amsterdam, 1983. Proceedings of the
IFIP WG6.1 Third International
Workshop on Protocol Specification,
Testing and Verification

[Sunshine79] C. Sunshine, Formal Techniques
for Protocol Specification and
Verification, Computer, 12:9 (Sep
1979), pp 20-27. A complete general
overview.

[Sunshine82A] C. Sunshine, Four Automated
Verification Systems, pp 373-379 in
Protocol Specification, Testing
and Verification, C. Sunshine edi
tor, North-Holland Publishing Com
pany, Amsterdam, 1982. Proceedings
of the IFIP WG6.1 Second Interna-
tional Workshop on Protocol
Specification, Testing and
Verification. An interesting discus
sion of automated system, comparing
the ease of use in specifying the alter
nating bit protocol. It shows there is
still work to be done.

[Sunshine82B] C. Sunshine, Formal Modeling
of Communications Protocols, pp 53-

Protocol Validation

75 in Computer Networks and
Simulation II, S. Schoemaker editor,
North-Holland Publishing Company,
Amsterdam, 1982. Arwther overview
of methods. The current state delta
discussion is worthwhile.

[Sunshine83] C. Sunshine, Experience with
Automated Protocol Verification, pp
229-236 in Protocol Specification,
Testing and Verification ill, H.
Rudin and C.H. West editors, North
Holland Publishing Company,
Amsterdam, 1983. Proceedings of the
IFIP WG6.1 Third International
Workshop on Protocol Specification,
Testing and Verification. A duplicate
of the 1982 paper above.

[Walden79] D. Walden and A. McKenzie, The
Evaluation of Host to Host Protocol
Technology, Computer, 12:9 (Sep
1979), pp 29-38.

[West78A] C.H. West, General Techniques for
Communications Protocol Validation,
IBM Journal of Research and
Development, 41:4 (Jul 1978), pp
393-404. A good presentation of the
perturbation method.

[West78B] C.H. West. An Automated Tech
nique for Communications Protocol
Validation, IEEE Transactions on
Communications, Com26:8 (Aug
1978), pp 1271-1275. A discussion of
Zafiropulo 's Duologue method, with
additional suggestions.

[West82] C.H. West, Applications and Limita
tions of Automated Protocol Valida
tion, pp 361-372 in Protocol
Specification, Testing and
Verification, C. Sunshine editor,
North-Holland Publishing Company,
Amsterdam, 1982. Proceedings of the
IFIP WG6.1 Second International
Workshop on Protocol Specification,
Testing and Verification

[Yemini82] Y. Yemini and J. Kurose, Towards
the Unification of the Functional and
Per/ ormance Analysie of Protocols,

or, 18 the Alternate Bit Protocol
Really Correct?, pp 189-197 in Pro
tocol Specification, Testing and
Verification, C. Sunshine editor,
North-Holland Publishing Company,
Amsterdam, 1982. Proceedings of the
IFIP WG6.1 Second International
Workshop on Protocol Specification,
Testing and Verification

[Zarifopulo78] P. Zarifopulo, Protocol Valida
tion by Duologue Matrix Analysis,
IEEE Transactions on Communi
cations, Com26:8 (Aug 1978), pp
1187-1194. A good presentation of the
method for directed graphs.

[Zarifopulo80] P. Zarifopulo, C.H. West, H.

345

Rudin, D. Cowan and D. Brand,
Toward Analyzing and Synthesizing
Protocols, IEEE Transactions on
Communications, Com28:4 (Apr
1980), pp 651-660. This was a very
useful paper on combining finite state
machines and performing reachability
analysis.

,,,,, ,'

'if:, ',:;!;

1
i PINO

2
i PINS

3
i PIN1

4
i PIN12

5
i PIN2

6
1 PINS

7
i PIN4

WHAT NOW? SUB 0 SUB :1
CNT 4 CNT !5
DMEM- 0 DMEM- 0
MMEM- 0 MMEM- 0
TS 0 TS :1
PER 200NS PER 200NS

Figure 1. WAVEFORM Display

Interfaces

The block diagram (Figure 2) shows various
interfaces between tasks and peripherals. When
WAVEFORM invokes GAM terminal emulation in the PC
is suspended, and the RS-232 ports and line which
connect the PC to the VAX are used by the two
tasks as a communications port for messages which
are interchanged between the two tasks.
Specifically, WAVEFORM issues SYS$QIOW calls to
SYS$COMMAND:, and GAM issues calls to the POS (Pro
Operating System) services CCTXD and CCRXD.

At all times when it is active GAM controls
both the keyboard and screen. All output
(including echoing of keystrokes) to the screen is

VAX

via calls to the GIDIS interpreter. All input
from the keyboard is via the GETKEY service.

The left circle in the lower block represents
a disk file named WAVPRM.DAT, which is used to
i ni ti al i ze col or maps, command syntax, and other
operational parameters whenever GAM is first
activated. The right circle, WAVHLP.HLG,
represents a special graphics HELP file which
contains informational text which is graphically
displayed whenever the user presses the HELP key.

The names of these files are passed to GAM by
the application which invokes GAM. This method of
resolving parameter and HELP file names at startup
time enables different VAX-resident applications
to invoke the single GAM task image.

WAVEFORM

PC-350

Figure 2.

: SYS$COMMAND
I

: RS-232
I

I
I XK:
I
I

WAVEFORM Interfaces

350

1

2

3

3

2

1

The Hierarchf al View

The layered model (Figure 3) illustrates the
hierarchy of modules used for intertask
canmunication between WAVEFORM and GAM. From the
standpoint of the outermost layers (1) WAVEFORM
and GAM interchange application-dependent
messages which define data to be stored on the
PC's hard disk, tell WAVEFORM which vectors the
operator wishes to see next, and otherwise
synchronize the two tasks.

WAVEFORM ..,...

VAXCOM

SYS$QIOW
I

RS232 I

' I
' I

I

CCTXO/CCRXD

COMSUB

GAM "'

' ' ' ' ' '

LAYERED

MODEL
' ' ' ' ' ' '

Application
Dependent
Messages

Figure 3.

The two modules in layer 2, VAXCQl\1 and COM SUB,
are al so functional counterparts. Both of these
modules implement high level communication
services which in turn call low level
canmuni ca ti on primitives, such as CCTXD. These
layers are totally independent of the applications
which call them, and in no way know the "meaning"
of the contents of messages which are passed
between the WAVEFORM and GAM. In practice, the
software which implements these communications
services is used by all Sentry applications which
conform to the 1 ayered model.

In addition to making software in layer 1
independent of the communication primitives in
1 ayer 3, VAXCOM and COMSUB perform another more
crucial function. The application-dependent
messages are regarded by the 1 ayer 2 services to
be a varying 1 ength string of bi nary, eight bit
bytes. Limitations imposed by the communication
primitives in layer 3 prohibit use of the low
level services for sending certain binary
characters, for example XON, which are used by
layer 3 services for flow control and other
purposes.

Software within VAXCOM and COMSUB encode each
message prior to transmission by replacing each
prohibited byte with two bytes, both of which have
acceptable values. Equations 1 through 4 define
the transformation used for each character, C, in
the message. Equations 1 through 3 result in
replacement of C by a two byte pair of characters,
and Equation 4 leaves C unaltered.

351

(1) C' = 32, 32+C
(2) C' = 126, 32+(C-126)
(3) C' = 254, 32+(C-254)
(4) C' =C

Once the bytes in
encoded the count of
transformed by Equations
pair, Nl and N2.

(5) Nl = (N div 64) + 32
(6) N2 = (N mod 64) + 32

if C in [0,32]
if C in [126,160]
if C in [254,255]
otherwise

the message have been
encoded bytes N is

5 and 6 into a two byte

When all transformations are complete the
layer 2 software transmits Nl and N2, followed by
all of the encoded C' characters. The 1 ayer 2
routine which receives the message first reads Nl
and N2, computes N, reads the remaining encoded
characters in the message, decodes the message,
and returns the decoded buffer to its caller in
layer 1.

Software within layer 3 consists solely
standard operating system software. These
services receive encoded (no control characters)
buffers from their level 2 callers and perhaps add
flow control characters to the data which is being
sent across the RS-232 line which connects the
processors. Layer 3 software on the other end of
the line processes any flow control characters and
returns an encoded data buffer to it's layer 2
caller.

Overlay Structure

GAM consists of a root segment and eight
overlays. Figure 4 shows the relationship between
the root segment routines, the overlays, and the
various modules which make up each overlay.

GAM is also the name of the main program
module within the root segment. It serves to
initialize the task by calling SETUP, and
dispatches control between the BUILD overlay and
LOCAL.

It is within the BUILD overlay that all
communications (with the VAX) take pl ace. BUILD
is the module which receives data from WAVEFORM
and adds the data to that already on the PC disk.

The Gl\M mainline calls the module LOClL
whenever it is time for the PC to interact with
the user. LOCAL in turn calls PARSE to prompt the
user for a response. Once a response is read from
the keyboard, LOCAL may return the response to GAM
(for transmission to WAVEFORM) or process it
locally at the PC by calling TAGA (zoom, pan, ..
.), DISPLY (draws graphics), HELP, SELX
(special subwindow), or AUX (displays graphics
parameters) •

The GETCHR module is included in the root
segment as a common interface to the POS GETKEY
routine, and is called by PARSE, HELP, SELX, and
AUX. (Initial attempts to call GETKEY directly
from different overlays resulted in errors at
task build time.)

Similar in concept to GETCHR, GIDOUT is the
module which contains the only calls to the GIDIS
interpreter. GIDOUT can run in an unbuffered or

GAM

LOCAL ROOT
SEGMENT GETCHR

GIDOUT

SETUP BUILD TAGA OISPLY

DPNFIL BLOSUB GRIDS

CDMSUB ORTA GS

ORBOTT

Figure 4. DRMIDL

buffered mode. When unbuffered, a call to GIDOUT
results in an immediate display of graphics on the
screen. When buffered, GIDOUT calls the GIDIS
interpreter only when its buffer is full • GIDOUT
is called from SETUP, DISPLY, PARSE, HELP, SELX,
and AUX.

IMPLEMENTATION ISSUES

In order to produce a functioning WAVEFORM
application which conformed to the architecture
which was previously discussed, .and in order to
provide high performance it was necessary to
develop a number of essential capabilities. This
section details implementation of cold start into
terminal emulation, automatically suspending
terminal emulation and invoking a PC-resident task
from a VAX, use of the hard disk for graphics
storage, and how to achieve an orderly return to
terminal emulation.

Cold Start to Tenninal Emulation

A major design objective in the use of the PC
as a smart graphics engine was that it be turnkey
in the strictest sense. The reason for this

0

PARSE HELP SELX AUX

OVERLAY

STRUCTURE

requirement was that most of the time the PC would
be used for terminal emulation, usually by persons
who knew nothing about the PC-350. Forcing users
to learn to use POS menus would only interfere
with the real task they were trying to accomplish.

The capability to
emulation is available
has been installed,
changes to implement.

cold start into terminal
if PRO DCL or PRO TOOL KIT
and requires only minor

For WAVEFORM some added protecton was
desirable: A "safety net" program, (named SENTRY)
was designed so that if the user inadvertantly
pressed EXIT or MAIN SCREEN while in terminal
emulation he would be warned of the fact, and
would automatically return to terminal emulation
if the next keystroke was any key other than "+".

Figure 5 illustrates the automatic entry into
terminal emulation, and the manual steps which are
required in order to return to the POS main menu.
When the PC is cold started a self test is
automatically run and control is passed to POS
(1).

;yuRY.TSK

~TA(RT.CMO~OF(j) "'@'"" ~:'
FIRSTAPPL. PRO DCL '5\
(ZZAPOOOO? \.::._)

(0 POS~©
Cold
Start

Figure 5. Cold Start and Exit

352

Ordinarily the main menu would appear at this
point. However, if there is a file on hard disk
named [ZZSYS]FIRSTAPPL.PTR, then POS first reads
the contents of this file looking for the "ZZAP"
name of the directory in which an application
resides (2). For the WAVEFORM, ap~ication
software is installed in such a manner that
FIRSTAPPL.DIR contains the text ZZAPOOOOl -- the
application directory for PRO DCL.

The POS main menu is bypassed and
[ZZAPOOOOl]START.CMD becomes active. This is
the startup file for PRO DCL. A modified version
of this startup file has been configured such that
WAVEFORM, SENTRY, and other applications are
automatically installed. The final line in
START.CMD is the command RUN SENTRY (3).

The SENTRY program takes control of the PC and
calls SPAWN 14) to activate and wait on the DTE
(Digital Terminal Emulator) program. Once DTE
becomes active, tenninal emulation is achieved.

Any time the EXIT key is pressed (5) while in
tenninal emulation, DTE tenninates. SENTRY, which
has been waiting on DTE, continues execution,
calls GIDIS to issue a warning to the user that
tenninal emulation is about to be exited, and
calls GETKEY to read a keystroke.

If the user presses any key but "+" (6A),
SENTRY repeats step 4 to reestablish terminal
emulation. If "+" is pressed (68), SENTRY
tenninates, the DCL startup resumes and encounters
an EDF in START.CMD (7), and the PRO DCL prompting
character appears on the screen.

At this point the user can press the EXIT key
(8) a second time to return to POS, issue DCL
commands, or manually RUN SENTRY to reestablish
tenninal emulation.

Invoking The PC-resident Task

For a task at the VAX to cause suspension of
tenninal emulation and activation of a PC-resident
task is a simple matter, and is detailed in the
documentation for PRO/Communications Rel 2.0. For
a task at the VAX to invoke a PC-resident task and
then reliably establish intertask communication is
entirely a different matter.

WAVEFORM and GAM execute a seven step sequence
in order to synchronize themselves and es tab 1 i sh
intertask communication:

1. WAVEFORM, vi a a call to an entry point within
the VAXCC1<1 module, issues a QIO which captures
current SYS$CC1<1MAND characteristics and returns
them in a buffer. This is so that they may be
restored when WAVEFORM tenninates.

2. WAVEFORM issues another QIO which is
equivalent to the VMS command "SET
TERMINAL/NOBROADCAST/EIGHTBIT/NOWRAP". BROADCAST
and WRAP are surpressed because SYS$COMMAND is
about to become a communications port. Broadcast
messages or wrap characters from VMS must be
inhibited in order to prevent garbled intertask
communi cations.

3. WAVEFORM issues a third QIO which writes the
characters <ESC>_aGAM!<ESC>\ to SYS$COMMAND.

353

("<ESC>" represents the single character, ESCAPE).
This escape sequence causes suspension of tenninal
emulation at the PC and activates CAM.

4. When CAM becomes active it calls CCTXD to
write the two character sequence <169><215> to the
communications port.

5. WAVEFORM issues QIO calls which read
characters one at a time until the sequence
<169><215> is encountered. A time out of five
seconds is specified for each character, so that
if WAVEFORM is invoked from other than a PC-350
with GAM properly installed, a time out will occur
and WAVEFORM wil 1 perform an orderly recovery.
Reading characters until the special sequence is
encountered flushes the type-ahead buffer at the
VAX and synchronizes WAVEFORM and GAM. That
particular character sequence was chosen because
the characters are advanced graphics characters
which would not be likely to be found in a
type-ahead buffer.

6. GAM writes an encoded application-specific
message which tells WAVEFORM that it was GAM which
sent the two character sequence.

7. WAVEFORM reads (and decodes) the message.

Storage of Graphics Data on Disk

Because GAM must access more data than will
fit in memory or on the screen it is necessary to
store graphics data on the pc-350 hard disk.
figure 6 shows the four major windows into which
the screen is divided and associates with each
window a filespec.

For a par ti cul ar WAVEFORM run the XYZ portion
of the fi 1 espec refers to name which is
user-specified or defaulted. This name is passed
from WAVEFORM down to GAM at initialization time.
The last character of the extent name of the
fil espec is used to differentiate the names of
files which store data for the various windows.
A 11 four files are opened with the
STATUS='UNKNOWN' option to avoid filling up the
disk with old versions of graphics files.

The .ART file stores pin group info, one
record per pin group, and consists of the ASCII
strings which are displayed on the screen. The
records are fixed length, unformatted, and are
randomly accessed.

Similarly, data within the .ARV file contains
the text which is displayed at the bottom of the
screen and a real number which defines the period
(in time) of each vector. In Figure 1 all vectors
had equal , periods of 200 nanoseconds, but often
vectors have different periods.

Data within the .ARG file consists of 4096
byte fixed length records which are accessed
sequentially when the screen is drawn. The large
record size was chosen to minimize time consuming
disk accesses. Data within each record is
organized logically into subrecords of one or more
bytes which define each entity (shape or strobe)
to be displayed, and into which row/column
intersection the entities should be displayed.

XYZ.ART XYZ.ARG - -
ONE DISK FILE
PER WINDOW. . .

XYZ.ARC XYZ.ARV - -
Figure 6. Windows and Disk Files

Byte-oriented storage was chosen to minimize
disk and communication overhead. A message which
defines a wave shape, for example, is stored into
the .ARG file exactly as it is received from the
VAX.

Computational overhead in conversion to GIDIS
coordinates is avoided by prescaling all possible
GIDIS X and Y values and storing them in a static
array. When it is time to draw a shape the byte
which defines an X or Y coordinate in the .ARG
file is used to index the static array of
INTEGER*2 values, which are then passed to the
GIDIS interpreter.

The final file, XYZ.ARC, contains copies of
GAM's state variables. Included within this file
is the number of rows (1-20) on the screen, scale
along the X axis, first row on the screen, and
first vector. This file is updated whenever
GAM terminates.

A boolean which is passed to GAM at
initialization time tells GAM whether to
restore the state from the previous run by reading
in the data from the .ARC file, or whether to
reinitialize it's state variables.

This feature provides a powerful capability
for the user. It is possible to terminate
WAVEFORM and return to terminal emulation, run
other utilities at the VAX, and later invoke
WAVEFORM with a "/RESUME" qualifier. When /RESUME
is specified graphics data from the previous run
is retained from disk -- WAVEFORM returns to its
previous state in a matter of seconds by not
having to regenerate the graphics data.

Orderly Return to Terminal Emulation

To return from GA"! to terminal emulation is a
seven step process:

1. When the EXIT key is pressed GAM closes all of
its disk files.

354

2. GA"! clears the screen and reinitializes GIDIS
to restore the color map entries to their default
state.

3. GAM calls COMSUB to write a message which
tells WAVEFORM to exit.

4. GAM terminates via a CALL EXIT. Terminal
emulation will resume in a second or less.

5. WAVEFORM reads the exit message from GA"!, and
waits two seconds to insure that GAM has time to
terminate.

6. WAVEFORM closes it's disk files and issues a
QIO which restores the terminal characteristics
which had been saved prior to invoking GAM.

7. WAVEFORM terminates.

GIDIS TOPICS

The initial version of GAf>I had used calls to
CGL (Core Graphics Library) to produce it's screen
displays. Full functionality was achieved using
CGL, but the speed of this version.was found to be
marginal -- a dense screen (20 pm groups by 10
vectors) took more than two minutes to display.

Throughput studies of GAM and experimental
benchmarks with GIDIS indicated that a throughput
increase in the range of 3X to 5X could be
achieved if GAM were modified to use the GIDI S
interpreter for all if it's graphics. Conversion
of GAM to GIDIS was surprisingly easy, due to the
presence of various tools which had been developed
during the evaluation of GIDIS.

Experience in development of t~e CGL vers~ on
of GAM had shown that the tlme consum1 ng
edit/compile/task build/debug cycle for PC
resident applications was the pacing item when
developing or modifying software on the PC. It
was thought that conversion of GAM to GIDIS could
be speeded up by first developing software tools
which would reduce the number of these cycles.

1 1 INIT

275 maps, text. cursor

2 29 SET POSITION

50 x

450 y

255 35 DRAW CHARACTERS

104 h

105 i

-32768 END LIST

0 24 END PICTURE

Figure 7. A Simple GID2 Source Program

The GID2 Graphics Assembler

The first such tool to be implemented was a
simple one-pass graphics assembler named GID2.
The purpose of GID2 was to provide a mechanism for
rapid experimentation with GIDIS, as an
alternative to using FORTRAN 77 for this purpose.

The GID2 assembler reads in ASCII text which
specifies various GIDIS commands, converts the
text into a binary GIDIS buffer, and passes the
buffer to the GIDIS interpreter which draws the
graphics on the screen. The edit ... debug cycle is
replaced by a much faster edit/run cycle. The
idea here is for the user to be able to try out
various sequences of GIDIS commands before
implementing them in FORTRAN.

Figure 7 shows a simple GIDIS sequence in GID2
source format. This sequence of GIDIS commands
will draw the characters "hi" at coordinates 50,
450 of the screen.

The leftmost column contains operand counts
and the operands themselves. For example, the
left column of line 3 is an operand count of 2,
and the left column of lines 4 and 5 are two
operands which are the X and Y coordinates for the
"SET POSITION" directive.

The center column is either a GIDIS opcode (29
in the case of SET POSITION) or blank if the left
column is an operand. The rightmost column is
canmentary, and is ignored by GID2. The GID2
assembler detects the end of a GIDIS sequence by
detecting and end of file.

The result of using GID2 was that an entire
category of bugs -- those in which incorrect
sequences of GIDIS directives are issued -- were
eliminated prior to coding. Although quantitative
data is absent, it is believed that this tool has
increased productivity by making it easier to
develop GIDIS applications.

Data Statement Generator

Immediately prior to conversion of GAM-CGL to
GAM-GIDIS a simple application (a wafer map

355

display) was coded and debugged so that :nore could
be learned about the realities of GIOIS-based
applications. A major source of coding errors was
found to be in manual entry of opcode/operand
count numbers and the operands themselves.

A second program, named DATA, was created to
automate this process. DATA reads in the same
source file which is read by GID2. Rather than
writing graphics to the screen, DATA produces DATA
statements and array declarations (in FORTRAN 77).

The coding cycle which was used for generation
of GIDIS sequences for GAM was a four step
process:

1. Write and debug a GID2 program by watching
GID2 display the graphics on the screen.

2. When convinced that the GIDIS sequences are
correct, run DATA to generate a FORTRAN data
statement.

3. Use the editor to rename the array. Add
EQUIVALENCE statements for rapid run time access
of those array locations which are variable. The
constant locations will remain unaltered.

4. Insert the declarations from step 3 into GAM.
Add appropriate code to set the variable
locations. Use calls to GIDOUT to pass the entire
buffer to the GIDIS interpreter.

The results of generating code in this manner
were found to be two fold: code tended to be
relatively bug free, and was efficient at run time
due to the predecl arati on of constants and
buffering of multiple GIDIS commands.

Other GIDIS Utilities

Figure 8 shows the relationship between GID2,
DATA, and a number of other GIDIS-rel ated
utilities which emerged during the conversion of
GAM, and have proven useful in development of
other applications. Names shown within boxes are
the names of devices or disk file formats. The
other names are the names of various utilities
which read in data in either GID2 or .GID format
and output data in another format or to a device.

DATA F77 DATA
~~ST_M_T___,

jGro21------ 1

Figure 8. GIDIS Utility Programs

The PLOT and PLAY programs are only a few
lines in length, because they merely prompt the
user for a filespec and then call Core Graphics to
convert the data. With the exception of UNGID,
which reverse assembles a .GID file into commented
GID2 format, the other programs are only a page or
two in length.

Color Hard Copy from GIDIS-based Applications

At the same time GAM-CGL was converted to
GAM-GIDIS, the capability of producing color hard
copy on an LVP-16 pen plotter was added. As shown
in Figure 9, generation of a color plot is a
simple three step process:

1. In response to a keyboard command, GAM sets a
boolean which tells the GIDOUT subroutine to write
GIDIS sequences into a file named·DATA.GID instead
of calling the GIDIS interpreter to write them to
the screen. GAM then calls a subroutine which
refreshes the screen. Because the boolean is set,
all of the GIDIS command sequences are stored into
the disk file.

~CREENI

2. When DATA.GID is complete, GAM closes the file
and calls SPAWN to invoke a task named GPLOT. GAM
becomes inactive until GPLOT terminates. GPLOT (a
small FORTRAN program) calls various Core Graphics
routines to cause DATA.GID to be "played back" to
the plotter.

3. When GPLOT terminates GAM again becomes
active. In general , use of the Core Graphics
Library is incompatible with direct calls to GIDIS
because CGL also calls GIDIS and thus alters
various GIDIS state variables. Because these
variables are in an unknown (to GAM) state, GAM
reinitializes GIDIS and causes the entire screen
to be redrawn.

In general , addition of the ability to
generate (LVP-16) color hard copy from a GIDIS
application can be easy or quite difficult,
depending on the structure of the application in
question. In the case of GAM, diverting the
output from GIDIS to DATA.GID was trivially simple
because the GIDIS interpreter was called at only
one place within the enti.re aoolication -- a

GAM-GIDOUT

® F::,
' ,,

IPLOTTERI

PAT A. GID!---'>G_PLOT)
-/// ®

......... -----------___
... ________ _

1. GAM diverts I/0 from screen to disk.

2. GAM spawns GPLOT (CGL) to plot file.

3. When done. GPLOT handshakes with GAM,

which reinitializes GIDIS and redraws.

Figure 9. Plotting from GAM-GIDIS

356

single WTQIO call within the GIDOUT subroutine.
Addition of a single IF/THEN/ELSE structure and
addition of a (FORTRAN) WRITE statement was all
that was required. Had GAM been written with many
GIDIS calls scattered about in many different
pl aces, addition of col or hard copy would have
been more difficult.

RESULTS

Conversion of GAM to use the GIDIS interpreter
required major modifications to virtually every
one of GAM' s subroutines, which totalled roughly
6000 lines of FORTRAN. Conversion and
optimization was assigned to a summer coop student
who was unfamiliar with the PC-350, and was
completed in only six weeks.

When conversion to GIDIS was complete, GAM was
again benchmarked and found to execute 4 times
faster than GAM-CGL. Times required to draw the

357

screen ranged from 1 ess than 30 seconds (dense
screen) down to 2 seconds (sparse screen).

Performance of several applications which
utilize the PC-350 as an intelligent graphics
engine have been compared to the performance of
similar applications which use "dumb" terminals.
The speed improvements ranged from 3X to an
astonishing 30X -- all in favor of the PC.

COt«:LUS IONS

Development of the WAVEFORM appl kation has
proven that it is possible to use the PC-350 as a
higher performance alternative to conventional
color graphics terminals by implementing the
graphics presentation portion of the software
locally on the PC. GIDIS is the method of choice
for implementing such 1 ocal graphics presentation
software, both in terms of performance and ease of
development.

. SITE MANA.GEMENTANJ) TRAINING SIG

DON'T GET BURNED!
COMPUTER ROOM FIRE PROTECTION

Terry C. Shannon
THE DEC* PROFESSIONAL Magazine

Springhouse, Pennsylvania

ABSTRACT
Tb is paper addresses the fire problem in an EDP environment and details
some of the measures you can take to minimize the possibility of a fire
related computer room disaster. It presents an overview of the fire pro
tection systems most commonly used in computer room applications, as
well as the relatil>e advantages and disadvantages of each type of system.

Numerous articles have been written about different aspects
of computer security and computer room design, but the topic

of fire prevention and suppression in data processing installations
has been sorely neglected. Often this neglect has had catastrophic
consequences, such as the total loss of thousands of personnel
records in a fire at a St. Louis military computer installation, or
the loss of millions of dollars in revenue which resulted from the
New York Telephone Company computer fire in New York City.

If you are a system manager or site manager, a basic knowledge
of fire protection systems and techniques can help you make an
informed decision should you be called upon to evaluate a pro
posed system for your own installation. Such knowledge may also
save you money - by being aware of the capabilities, limitations
and usual applications of the various fire protection systems, you
should be able to select the most cost-effective system for your
facility. Even if you don't have managerial duties, you still owe
it to yourself to be aware of fire protection principles and to know
what fire protection systems, if any, are in use at your facility.

Often, little consideration is given to the topic of fire protec
tion beyond meeting the express requirements of insurance under
writers or the local building code. Particularly in a small installa
tion, fire prevention and suppression measures may consist of
nothing more than posting "no smoking" signs in the computer
room and hanging a twenty dollar fire extinguisher on the wall.

Two reasons help foster this attitude: nobody really expects
to have a fire and, perhaps more significantly, fire protection costs
money. As a former system manager, I am well aware of budget
constraints and cost justification. And as a former fire protection
engineer and firefighter, I am equally aware of the costs of inade
quate or nonexistent fire protection measures.

The costs of a major fire, both tangible and intangible, can be
very substantial. Property damage, equipment loss and the restora
tion of a building or facility to its pre-fire condition are all costly.
In our line of business, the costs of system downtime and file restora
tion must also be considered. It's impossible to place a dollar value
on the intangible costs of injuries, fatalities and the unemployment
of workers who have been burned out of a facility, but these so
called "intangible" costs are very real and very significant.

Finally, a high proportion of businesses which suffer large
scale fires close down and never reopen. For these reasons, a basic
knowledge of fire protection systems and techniques can be very
valuable to you.

THE CHEMISTRY OF FIRE

To get an idea of how to put out a fire, you should be aware
of the elements that must be present for fire, or continuous sus
tained combustion, to take place. In order to sustain itself, a fire
requires the presence of four factors or elements in the proper

Proceedings of the Digital Equipment Computer Users Society 361

proportions. The first three of these elements are fuel, oxygen and
heat - the components of the "fire triangle" that you probably
learned about in a high school science or chemistry class. The
fourth element is the combustion chain reaction-a continuous
chemical reaction which permits the intermolecular collision of
fuel and oxygen molecules and is essential to the continued life
of a fire. This chain reaction converts vaporized fuel into "free
radicals," or forms of carbon and hydrogen. It is these free radicals
that combine with oxygen and do the actual burning in a fire.

METHODS OF FIRE EXTINGUISHMENT

Traditionally, there have been three ways to put out a fire, one
for each leg of the fire triangle. Briefly, these are:

• Removal of Fuel - by pumping, diluting, covering or coating it.
• Removal of Oxygen - by inerting, smothering or blanketing

the fire.
• Removal of Heat - by application of water which vaporizes

and absorbs heat.

The concept of the combustion chain reaction, the fourth leg
of the fire tetrahedron leads to a another method of fire extinguish
ment. This is referred to as "chainbreaking," or inhibiting the com
bustion chain reaction. This may be accomplished by the introduc
tion of a chemical which inhibits the production of the free radicals
discussed above.

Several chemicals that inhibit the combustion chain reaction
are in use today as extinguishing agents. The most common of
these are dry chemical agents like monoammonium phosphate and
purple-K. These agents are generally referred to as dry powder.
If you have a small fire extinguisher hanging in your kitchen or
elsewhere in your home, chances are it's filled with one of these
chemicals.

The other group of chemicals that inhibit the combustion
chain reaction are the gaseous halogenated hydrocarbons, more
commonly known as the Halons. Both classes of chainbreaking
agents are covered in this paper, but for now it's sufficient to note
that these agents don't absorb heat, remove fuel or remove oxygen
in the course of putting out a fire.

FIRE PROTECTION EQUIPMENT

Two forms of fire protection equipment are available for pro
tecting a structure or a room within a structure. These categories
consist of manually operated fire extinguishers and built-in
automatic fire suppression systems. Extinguishers are intended for
local application of extinguishant by the occupants of a protected

New Orleans LA- 1985

area, while fire suppression systems are designed to flood an en
tire protected area with large quantities of an extinguishing agent.

FIRE EXTINGUISHERS

Not counting the esoteric, special purpose extinguishers that
only a firefighter would have knowledge of, there are five types
of fire extinguishers that you are likely to come across. Each extin
guisher is categorized by the extinguishing agent that it's charged
with, namely carbon dioxide, dry powder, foam, Halon and water.

For data processing applications, you should limit your choices
to carbon dioxide and Halon extinguishers. Dry powder is an excel
lent extinguishing agent which acts by breaking the combustion
chain reaction. It's discharged as a stream of very finely divided
particles to increase its effectiveness. After you use one of these
extinguishers, you have a major cleanup problem - the powder
residue tends to cling to every surface that it touches. You can imag
ine what this residue would do to the memory boards, control
lers, wiring and circuitry in your CPU cabinet, particularly if they
had an opportunity to get good and hot. You don't even want to
imagine what the powder would do if it was sucked into one of
your disk drives. In summation, dry chemical extinguishers are
fine for your automobile, home and office-but keep them out
of your computer room.

Foam and water extinguishers are not recommended for data
processing or electrical applications for more obvious reasons -
potential water damage to equipment, and the very real possibil
ity of electrocution. Both foam and water are excellent conduc
tors of electricity, and it is very likely that the stream of extin
guishing agent would contact energized electrical circuits in the
event of an equipment fire in a computer room.

Carbon dioxide and Halon extinguishers discharge their con
tents in gaseous form, leave no residue, do not conduct electric
ity, and are very effective. Both extinguishers are good candidates
for data processing applications.

Carbon dioxide has the advantage of being far less expensive
than Halon, but Halon is more than twice as effective on a weight
basis as carbon dioxide. It's also far less likely to cause thermal
shock to computer chips than C02. In my opinion, Halon is the
superior fire extinguishing agent, and I would choose it over
C02 virtually without exception. However, carbon dioxide is a
perfectly acceptable alternative if cost is your primary
consideration.

No overview of fire extinguishers would be complete without
addressing some of the drawbacks associated with them. First, re
member that a fire extinguisher is an effective fire suppression tool
only in an occupied area and only after a fire has been detected
by personnel in the area. An extinguisher is utterly worthless if
there's nobody around to use it.

Secondly, fire extinguishers are nortable devices that are in
tended to put out small fires. By virtue of being portable, extin
guishers contain limited quantities of extinguishing agent and can
not be relied upon to combat large or severe fires.

Third, in order to use an extinguisher effectively, the operator
must have had some training in the proper use of the device. Most
portable extinguishers discharge in a matter of a very few seconds,
and if an understandably distraught individual doesn't aim the
extinguisher properly, he or she can run out of ammunition in
no time at all.

Finally, consider the three foregoing points and don't let the
presence of fire extinguishers inspire overconfidence. Remember
that extinguishers are not a panacea - they are local application,
"first aid" tools. The effectiveness of an extinguisher is contingent
upon the size and type of fire, its severity, and the proper behavior
of the person operating the extinguisher.

FIRE PROTECTION SYSTEMS

Unlike local application fire extinguishers designed for "first
aid" use on a fire of limited size and intensity by area occupants. a
fire protection system is a group of components that act together to:

362

• detect a fire.
• sound an alarm.
• and discharge an extinguishing agent throughout a protected

area to suppress the fire.

The components of a fire protection system include:

• a storage container for the extinguishing agent.
• a discharge nozzle or distribution piping attached to the

container.
• an automatic detection and release mechanism with manual

override.
• and pressure switches to sound alarms, shut off equipment

and close doors and ventilation ducts.

Several types of fire protection systems are ;n·ailable for com
puter room applications. Each has its relative advantages and
disadvantages. all of which should be weighed before choosing
a system best suited to your needs. We'll look briefly at four kinds
of systems - carbon dioxide. Halon. automatic sprinkler and
combination.

Carbon Dioxide Systems

Carbon dioxide is a very effective extinguishing agent for
electrical fires and has had widespread use in computer rooms
and other facilities with electronic equipment for this reason. It
is relatively inexpensive, readily obtainable and leaves no residue
to foul chips, memory boards or peripheral equipment. However,
a C02 fire protection system does have some shortcomings in
data processing applications.

The primary disadvantage involves personnel safety. When
a carbon dioxide system discharges, it floods the area that it is
designed to protect with C02 gas, thereby displacing the normal
atmosphere and reducing the oxygen concentration below the 15 %
required to support combustion.

This 15% threshhold also applies to respiration. A C02 sys
tem is usually designed to provide a 30% to 60% concentration
of carbon dioxide gas. This concentration is more than adequate
to suffocate people who are unfortunate enough to be stranded
in a protected area at the time of system discharge. Because a
C02 system discharges very rapidly, the air in the protected area
is rendered unbreathable within just a few seconds. For this rea
son, C02 systems generally have a delay of at least thirty seconds
between sensing a fire and discharging. When the system detects
a fire, it will sound an alarm to warn people to evacuate the area
prior to actually dumping its supply of agent. A manual override
switch is provided to abort system discharge. Some systems are
semiautomatic - they employ automatic fire detection and alarm
devices but must be manually discharged. Manual discharge
eliminates the possibility of personnel being trapped in the pro
tected area when the system floods the area with extinguishant.

While both the automatic time delay and manual system dis
charge switches are life safety features, they have their disadvan
tages. If a protected area is not occupied twenty four hours per
day, a system that must be manually discharged is useless during
nonworking hours. And while the built in time delay between
alarm activation and agent discharge is critical to personnel safety,
it may allow a fire to intensify. Thirty seconds or so may not seem
like a long time, but it can mean a great deal in the development
of a fire.

Remote
disk ------; I DC-handler DC:

lRSP units:
0 l 2 7

Svstem A

Remote
disk

I
I

I

DC service job

i
1 I/O channels:
L2_ l 2 • • • • 7 . 8 9 10 11 12 13 14

·~-------§- __ T_T ___ --=-
Mail

L~" LPOo I.Pl' ~
HL DC-handler MT:

System B (to next system)
8 0 1 2 7

Figure 3. DC Data & I/O channels

systems may be accessed, even when there are
intermediate systems.

Currently the following hardware is implemented as
the physical data link:

LSI-11: DRV-11 (DEC)

PDP-11:

WBV-11 (Buchholz I Hammond, Germany)
Qnector (Westvries Systems, Holland)
(DMA-interface)

DR-llC
DR-llK
WB-11

(DEC)
(DEC)
(Buchholz I Hammond, Germany)

However, as all hardware dependent code is in the
DC-handler and job-handler, implementation of new
hardware only requires that that these handlers are
adapted to drive that hardware. The general purpose
parallel interfaces DRV-11, DR-llC, DR-llK require
simple electronic circuitry in order to form a
handshake connection, which can be used on interrupt
bases. Only one FLIP-FLOP and one OR-gate are the
needed components [1]. In the first version also
DL(V)-11 type hardware was supported. However, this
was dropped as transfer rates are low and DEC
supports these data links within the RT-11 package
(programs VTCOM and TRANSF, handlers XL, XC).

The size of the DC service job is about 1.5 Kw

363

including it's 256 word default buffer and the
job-handler. The size of the DC handlers is about
700 words and that of the pseudo handlers ca. 50
words. Default the DC job handles read, write,
special function (.SPFUN) and boot requests on all
channels. However, one channel the message channel,
is special purpose and used for message transfer to
the user on the other system. These messages and
news are also put in a mailbox, a file which is
present on each system that runs at least one DC
job. The message channel is also used for transfer
of date&time from system to system and DC job
configuration data (list of remote devices,
read/write access).

Normally the job tries to open an I/O channel to all
devices in a list, the job device list. This
requires that these devices are loaded. One
exception on this rule are Special Directory devices
such as Magtape. In fact, these devices have no
directory and require special operations to open a
file. Therefore when an "open file" request
(.LOOKUP, .ENTER) is received, this is forwarded to
the device itself and not processed by the local USR
as for disk devices. Handling Special Directory
devices requires additional code in the DC job. This
code, including handling "asynchronously directory"
operations for Magtape (see RT-11 Software Support
Manual), is about 200 words in size. This code may
be selected at assembly time by setting a
conditional in the DC job source. So two versions
may be kept at hand: one that supports all devices
(DCJOB.SPD) and one that supports all but Special
Directory devices (DCJOB.REL). At the other side of
the link a pseudo Magtape handler is available which
behaves like a normal Magtape handler but is much
smaller in size (ca. 180 words).

USING THE DATA LINK

As already pointed out: remote devices are used in
the same way as local devices are used! However,
pseudo-handlers use the DC-handler and this requires
that the DC-handler must be loaded when using a
pseudo handler! When it's DC-handler is not loaded a
pseudo-handler immediately returns a hard I/O error.

A utility HELLO can be used to send a message to the
user at the remote system. It also checks whether
there is a difference between remote and local
date&time. Further it prints which remote devices
are available, the device's characteristics such as
size, identifier (helps you to "see through" logical
assignments at the DC jobs site), etc. and
read/write access to.the remote devices. The JBDATE
utility is very useful! in the startup command file
as it copies remote date&time and sets them locally.
When at a site one or more DC jobs have been
started, the JSHOW utility should be run. It
displays the following data:

.JS HOW

JOB Hndlr Nr. I/O Checks Protoc Buffer
requests errors errors size

DCJOBO (O,QJ 9K 950 0 0 1024 No SPDIR
DCJOBl (1,DJ 12K 372 0 0 256 No SPDIR
DCJOB2 (2,DI not running!

SHOW ALL I r&w I change r&w I exit

Another fact to consider is the possibility of thermal shock
to computer chips and circuit boards caused by the extreme low
temperature of the carbon dioxide gas. For this reason and the
safety factors mentioned above, it is suggested that total flooding
carbon dioxide systems be employed only in areas which are not
generally occupied by personnel, such as tape libraries and electri
cal rooms.

If you decide that carbon dioxide provides the optimal solu
tion to your fire protection needs, you should be aware that there
are two basic types of carbon dioxide systems, referred to as low
pressure and high pressure storage systems. The storage method
you will use is almost entirely dependent upon the size of the area
you intend to protect. Relatively small areas are candidates for high
pressure systems, while large areas are better served by low pressure
systems.

A high pressure carbon dioxide storage system consists of high
pressure cylinders which are manifolded together with flexible
connections to provide the carbon dioxide to the piping and dis
tribution system. These cylinders maintain an average pressure of
850 PSI at normal room temperature, thus keeping the carbon
dioxide liquefied until it is discharged. This type of system nor
mally contains two banks of cylinders. The main bank of cylinders
provides primary fire protection while the reserve bank ensures
that the system will continue to provide protection immediately
after the main bank is discharged in response to a fire. This backup
protection is useful in situations where expended cylinders can
not be replaced immediately but continuous fire protection is
required.

In situations that require a total carbon dioxide capacity in
excess of one ton, a low pressure carbon dioxide storage system
is often provided. This type of system utilizes an insulated, electri
cally refrigerated storage tank which maintains the liquefied car
bon dioxide at approximately zero degrees Fahrenheit and about
300 PSI. Refrigerating and liquefying the gas allows the storage
tank of a low pressure system to be filled to a greater density than
equivalent tanks in a high pressure system where the gas is stored
at the ambient temperature. In effect, you can store considerably
more C02 per unit of volume in a low pressure system than in
a high pressure system.

However, this density advantage, which translates into a vol
ume advantage, is offset by the fact that the low pressure system
requires an uninterrupted power supply to maintain the agent at
the optimum temperature. In the event of a prolonged power out
age, the C02 will gradually warm to the ambient temperature. In
doing so, the pressure inside the tank will increase and the gas
will be vented to the atmosphere via a safety valve. This, of course,
renders the system inoperative.

Halon Systems

There is a gaseous alternative to both high and low pressure
carbon dioxide systems. This is Halon, an acronym for
HA l..ogenated hydrocarbON. This agent, a relative newcomer to
the field of fire suppression, possesses some unique properties and
advantages. Unlike conventional extinguishing agents that act by
removing heat, fuel or oxygen from the fire equation, Halon breaks
the chemical chain reaction of combustion, the fourth leg of the
fire tetrahedron. This chainbreaking property of halogenated hy
drocarbons was discovered early in the century and was put to
use as early as 1907 in the form of carbon tetrachloride fire
extinguishers.

Unfortunately, as was learned over a period of years, carbon
tetrachloride gives off highly toxic decomposition products when
it is applied to a fire and thus subjected to heat. The most notable
of these toxic thermal decomposition products is phosgene, which
was used extensively as an asphyxiating gas during the first World
War. In the 1930's a number of deaths and serious injuries were

364

attributed to the use of carbon tetrachloride as a fire extinguishing
agent, and its use in this capacity was subsequently outlawed.

The modern Halons, notably Halon 1211 and Halon 1301, do
not share this toxicity hazard to any great extent. Developed in
the past thirty years, these distant cousins to Freon refrigerant are
colorless, odorless and tasteless gases which are effective extin
guishants even in very low concentrations. In the concentrations
commonly used for fire suppression, the Halons pose virtually no
threat to the occupants of protected areas.

According to the DuPont Company, a manufacturer of halo
genated hydrocarbons, "In its manufactured state, Halon 1301 pre
sents little hazard to individuals exposed to concentrations of 10%
or less for up to 10 minutes." A 3 % to 4 % concentration of Halon
is sufficient to extinguish most common fires, and the normal design
concentration for a total flooding Halon system is 6% to 7%.

Recently, some questions about the long-term toxic or muta
genic effects of chronic, or repeated and continuous, exposure to
the Halons have been posed. This isn't to say that sniffing Halon
causes cancer, for there is no evidence available to support such
a theory. Over the past thirty years, numerous exhaustive tests on
the toxicity of Halon have again and again borne out the conten
tion that it is a safe, "user-friendly" fire extinguishing agent.

The decomposition products of Halon can be toxic in suffi
cient concentrations. However, any fire of sufficient size and dura
tion to cause a large percentage of the Halon in a protected area
to decompose would undoubtedly result in evacuation of the area
before the decomposition products presented a toxicity hazard.
Because Halon inerts flames so rapidly, it is highly unlikely that
a fire in a protected area would be able to decompose a signif
icant amount of the agent before being extinguished by the fire
suppression system.

As it extinguishes a fire, Halon produces acid halides, notably
hydrogen bromide and hydrogen fluoride gases. In most fire situa
tions, the concentrations of these acid halides will be below 20
parts per million, barely detectable to the nose. Brief exposure to
concentrations of this magnitude is not considered to be a major
health hazard. In the event of an extremely hot, intense fire, these
concentrations may reach levels of as much as 200 to 300 parts
per million. Prolonged exposure to these levels of hydrogen fluo
ride and hydrogen bromide can be harmful, but such exposure
would be noxious, irritating and immediately recognizable. The
irritating nature of these decomposition products provides a built
in alarm which gives ample warning to occupants of a protected
area before toxic concentrations are reached.

Generally speaking, intense heat, smoke, carbon monoxide
and other products of combustion from the fire itself present a
greater health hazard than do the decomposition products of
Halon.

In addition to enjoying widespread use in data processing
installations, Halon systems are also used in museums and libraries
where prevention of damage to rare books and collections is crit
ical. It is also used for such diverse applications as the protection
of jet aircraft engines and racing cars. During the time that I was
employed as a fire protection system specialist, I witnessed a num
ber of tests of Halon systems and have actually been in computer
rooms during these tests when total flooding systems have dis
charged. I am convinced that Halon is the safest and most effec
tive extinguishing agent available for total flooding applications.

The major drawback to a Halon fire suppression system is its
expense. Halon costs about five dollars a pound, significantly more
than carbon dioxide. However, if you are more concerned with
occupant safety and minimal interruption of activity than expense,
Halon is your best choice for fire protection. The relatively high
initial cost of a Halon system is often outweighed by the minimal
downtime imposed by the discharge of such a system in response
to a fire.

A typical Halon fire suppression system consists of the same

components used in a carbon dioxide total flooding system, with
several modifications. Manual discharge of the agent is not nor
mally required, and the time delay between alarm and agent dis
charge is reduced and in some cases eliminated. Because of the
expense of Halon, system actuation is often based on the use of
"cross-zoned" detectors. In this scheme, a protected area is divided
up into zones, each of which is protected by photoelectric or ion
ization smoke detectors and ultraviolet flame detectors. When one
detector in one zone is activated, an alarm will be given, but the
system will not discharge its extinguishing agent. Actual discharge
comes only when a second detector in a different zone is activated.
In the case of a minor fire, cross-zoning gives personnel time to
eliminate the problem and deactivate the system before it floods
the protected area with $5.00 per pound Halon agent. In the event
of a wastebasket fire or the false activation of a single smoke detec
tor, this feature can save a great deal of money, aggravation and
disruption.

Automatic Sprinkler Systems

We can now look at another kind of fire protection system
- the automatic sprinkler. Automatic sprinkler systems have been
in use in one form or another for over 100 years. While the con
cept of automatic sprinklers is somewhat antiquated, the sprinkler
system is still the most popular and frequently specified fire
suppression measure. Automatic sprinkler systems are far less ex
pensive on a square foot basis than systems employing gaseous
extinguishing agents, and have historically been more than 96%
effective in fire suppression.

It may seem heretical to suggest that you even consider em
ploying a water-based fire suppression system in a computer room,
but there are a number of circumstances which can dictate its use.
First, water is generally a cheap and abundant commodity. Second,
it is extremely effective as a cooling and smothering agent. As it
flashes to steam, one pound of water absorbs 970 BTUs of heat
- making it more effective than virtually any other heat absorb
ing media. (Granted, metallic mercury is more effective, but it's
expensive, toxic and extremely heavy besides). And third, an au
tomatic sprinkler system provides insurance against catastophic
structural damage should a Halon or carbon dioxide fire protec
tion system malfunction.

Two types of sprinkler systems are of interest from the stand
point of computer room fire protection. The first and most com
mon variety employs sprinkler heads with fusible metal links that
melt when they reach a given temperature. Once the links melt,
the sprinkler heads are free to discharge water. This type of system
will continue to discharge water until it is shut off by the fire
department or the building owner.

As computers and electronic equipment are allergic to water,
a fusible link sprinkler system is not recommended for electronic
data processing applications. However, there's another kind of au
tomatic sprinkler that doesn't share this drawback. This second
type of sprinkler system utilizes on-off sprinkler heads that are
actuated by a thermal valve - a bimetallic element that works like
the coil in your heating system thermostat. In an on-off system,
the valve on each sprinkler head will open and discharge water
when a preset temperature (usually 165 degrees Fahrenheit) is
reached. Unlike fusible link sprinklers, these sprinklers will shut
themselves down when the temperature in the protected area falls
below the preselected actuation temperature.

The main problem associated with sprinkler systems is damage
from excess water - not the water which vaporizes into steam
and actually extinguishes the fire. The on-off sprinkler system min
imizes the amount of water used to suppress a fire and applies the
water only where it is needed. Therefore, this kind of system is
less likely to cause damage from excessive water than an ordinary
sprinkler system. Furthermore, the bimetallic element in an on-

365

off sprinkler head is designed to actuate in response to a rise in
temperature more rapidly than the fusible link in a standard
sprinkler head can melt. These features make on-off sprinklers suit
able for data processing installations, particularly very large sites
that would be prohibitively expensive to protect with total flood
ing carbon dioxide or Halon systems.

Combination Systems

The last type of fire protection system that I want to touch
on is one that combines the best features of total flooding and au
tomatic sprinkler systems. In very large data processing installa
tions which have raised floors, a combination fire protection system
is often employed. This system will protect the subfloor area where
the bulk of the electrical wiring is located with Halon while on
off automatic sprinklers are installed overhead. In such an installa
tion, a fire is most likely to start in the underfloor wiring and
cables. The Halon system will deal with this fire very efficiently
and with virtually no interruption to data processing activities.
Should a fire get out of hand and penetrate the floor or originate
above the floor, the on-off sprinklers will quench the fire with
minimal damage to the facility and its equipment. In a large instal
lation, a combination system offers effective fire protection at far
less than expense than an equivalent total flooding Halon system.

SELECTING A SYSTEM

When you do choose a fire protection system for your installa
tion, you must take several factors into consideration. The most
important factor is life safety: your system must first protect peo
ple. Data processing equipment is replaceable - human life is not.
Choose your system with this thought in mind.

It goes without being said that the cost of a fire protection
system is a critical factor in system selection. Your goal should
be to select a system that will give you maximum desired protec
tion at minimal expense. If you have a choice between an automatic
sprinkler system and a total flooding Halon system and are inter
ested mainly in extinguishing a fire, the automatic sprinkler sys
tem should give you the protection you need at less cost than a
Halon system. If you are also concerned with potential water dam
age and service interruption, the additional expense of the Halon
system may well be justifiable.

The expense of disaster recovery should also be taken into
consideration. Often, this factor is not weighed during the evalua
tion of a fire protection system. While a fire protection system is
an expensive item, recovery from a computer room fire can be
far more expensive, particularly when you add up the costs of sys
tem downtime, cleanup and repair or rebuilding of the computer
center, replacement equipment, and the intangible cost of lost
business.

Check with your insurance company to determine what steps
you must take to protect your computer facility. Your insurance
policy may well require that you adopt a minimum level of protec
tion. If you fail to provide this minimum degree of protection,
a hold-harmless clause in your policy may absolve the insurance
company from any liability resulting from a fire. If you lease your
EDP equipment, read the terms of the lease very carefully. Most
lessors require that you protect your leased equipment even though
you do not own it. In any event, it is more than likely that the
provision of more than the minimum required level of fire protec
tion will reduce your overall insurance premiums.

FOR MORE INFORMATION

In this paper I have covered some of the fundamentals of com-

puter room fire protection and fire protection systems. Please don't
regard this paper as an in-depth study of fire protection technology.
Should you be considering the purchase of a fire protection system,
some of the best sources of further information are fire protec
tion system vendors, major fire protection equipment manufactur
ers and independent fire protection engineers and consultants.

The NFPA, or National Fire Protection Association, which
promulgates fire and life safety codes, is another excellent source
of further information. Check the reference section of your public
library for further information on the NFPA.

366

Your local fire department and building code commission as
well as your insurance carrier may also be of assistance. Finally,
your state fire marshal's office may be able to provide you with
information or answer some of your questions.

It is hoped that you will find some of the information pre
sented in this paper to be useful. My goal in researching and writ
ing this paper is to make you more conscious of the importance
of fire protection and suppression in a data processing environ
ment, and provide you with some ideas for increasing the level
of fire protection, safety and fire awareness at your installation.

HOW TO WRITE USER-FRIENDLY DOCUMENTATION
Terry C. Shannon

THE DEC* PROFESSIONAL Magazine
Springhouse, PA 194n

ABSTRACT
One of the most significant problems confronted by software developers
is the production of high quality product documentation. This paper
presents some guidelines and suggestions that you can implement to in
crease the quality and useability of your reference manuals, users guides,
and other forms of product documentation.

"user-Friendly," one of the computer catchphrases of the
1980's, is usually equated with programs and systems, not

with the equally important documentation that supports them. In
all too many cases, excellent software packages are supplemented with
user's guides that are as nebulous and frustrating as the instruction
sheets that accompany products contained in cartons bearing the
warning caveat "SOME ASSEMBLY REQUIRED."

It's bad enough that we have to deal with instruction sheets like
this when we are confronted with something that has to be put
together. Its far worse when we, as writers, foist this sort of docu
mentation on hapless computer users. At best, hostile documenta
tion confuses and infuriates computer users. At worst, it turns hesi
tant novices into outright computerphobes.

This paper is not intended to teach you how to write, but to
offer suggestions on what to write and where to locate it in your
documentation. Its objective is to assist you in writing documenta
tion that is as "user-friendly" as your software. While the focus of
this discussion is on software documentation, most of the material
presented here is equally applicable to other aspects of technical
writing for the computer industry.

THE IMPORTANCE OF GOOD DOCUMENTATION

The satisfaction and the success of your software customers de
pends on many factors, not the least of which is the quality and con
sistency of your documentation. Prospective clients may visit exist
ing sites as they evaluate your products. During such visits, one of
the things that they will usually see is your documentation. Alter
natively, a prospective customer may request samples of your system
documentation to use in a case study or product evaluation. In this
case, your documentation is the vehicle that will provide a potential
buyer with that all-important first impression of your product. In any
event, your documentation projects a corporate attitude to your readers
- it mirrors your company and its concern for the people who use
its products.

Take a moment and contrast your software documentation with
an advertisement for the same software package. In one regard, they
are synonymous - your document can be considered to be an adver
tisement for your firm and the software that it markets. Compared
to an advertisement, a user manual has a long half-life: the manual
will be around long after the conclusion of a software advertising
campaign. A lucid, well written manual provides readers with a
favorable impression of your firm and its product each time the
manual is read. Conversely, a poor quality manual projects an un
favorable image of your company whenever it is used.

For these reasons, it is important to all of us who write docu
mentation to contribute to the success of our users, employers, and
ourselves by striving to write the best documentation possible. If you
do not actually write documentation yourself, you can read and cri
tique documents written by others, and make suggestions to these
writers to help improve the quality and readability of their work.

Proceedings of the Digital Equipment Computer Users Society 367

WHAT MAK.ES DOCUMENTATION "GOOD"

An analogy can be made between a college textbook and a doc
umentation manual. Both are intended to present information and
facilitate learning, and both can be of good or poor quality. The rea
son for this is not so much the nature of the information being pre
sented in the textbook or manual, but the style or method in which
the information is presented.

As a technical writer or documentation specialist, your primary
objective should be to convey information to your audience. To
achieve this goal, you must first get and maintain the interest and
attention of your readers. By doing so, you create an atmosphere
which motivates your readers and facilitates learning.

Many factors contribute to the quality of documentation, and
there are many criteria by which documentation can be judged. If
a document is readable, understandable and usable, it can be consid
ered to be adequate. If the manual conveys all the information a reader
needs to use a particular software package, and conveys the infor
mation so clearly, coherently and completely that the reader doesn't
have to turn to another manual or another person to resolve unan
swered questions, then the manual is an example of "good"
documentation.

CHARACTERISTICS OF GOOD DOCUMENTATION

Your main goal should be to write "good" documentation, using
the criteria of clarity, coherence and completeness. These criteria are
summarized as follows:

• CLARITY - Convey essential information in such a manner
that it will be understood, not misinterpreted.

• COHERENCE - Write so there is a natural progression between
each section of your document. Confine your discussion
of each major topic to its appropriate section within the
document.

• COMPLETENESS - Provide all the information a user might
need to use your system or program. Users want to refer
to a single source - not a shelf full of manuals - to get
your system to work.

THE DUAL PURPOSE STRATEGY

Much documentation from software houses and independent
software writers is in the form of a dual purpose manual, with a title
such as "Reference Manual and User's Guide". A title like this implies
that you should have dual objectives in mind as you organize and
write. A dual purpose manual is often written to save documenta
tion development and publication expenses (why write two manuals
when one will suffice?) However, writing a dual purpose manual is
not an easy undertaking. You must provide your reading audience

New Orleans LA- 1985

with a document that is both tutorial and informational in nature,
and you must keep these two concepts separate from each other to
prevent confusion.

A reference manual is the place where the "technical user", such
as a programmer or systems analyst, looks for answers to questions
about a system. Many of these answers may need detailed informa
tion, which your manual must provide. A reference manual also de
mands a logical organization so that information is easy to locate, sup
planted by a good table of contents and index. The user of a refer
ence manual wants detailed answers or needs to know where to find
these answers.

A user's guide, on the other hand, is where the "average user"
turns for instructions and information on how to make the system
work to accomplish his or her routine processing needs. Often, this
person does not want much detail. He or she may want a discussion
of the work flow and some suggestions for the preparation and
processing of data. Do not intimidate your average user with highly
technical and usually irrelevant information.

Both types of users need an overview of the system. They need
to have in mind a conceptual understanding of the structure of the
system. From this point forward, their needs are quite different. This
is why the structure of your manual is so critical to its success.

Writing for the Average User

Remember that your average user is not likely to have much expe
rience with your particular system, or computer systems in general.
Your documentation should ease this reader into your system, explain
ing the system in layman's terminology wherever possible. Introduce
your reader to your system through the use of easily read, small sec
tions of text, each of which covers one main point. Avoid the use
of complex acronyms where possible.

Obviously this isn't possible all the time-acronyms are an ines
capable fact of life in the computer industry. Whenever you do make
use of an acronym (such as VMS), spell out the definition of the
acronym the first time it appears in your text so that your reader will
know what you are talking about. To maintain interest, you may wish
to provide a brief explanation of the origin of the acronym. This strat
egy is equally applicable to jargon. For instance, if you use the term
"debug" in a manual, you might attribute the term to Grace Hopper,
who coined it after she extricated a dead moth from a relay in
Harvard's Mark I computer.

Be sure to include a glossary for complete explanations of ac
ronyms and data processing terms which your reader probably is
not familiar with. A technique that I find useful is to bold or underline
those words or phrases in the body of a document which appear
in the glossary. By doing this, I make the reader aware that a com
plete explanation of a term may be found in the glossary.

Lay the manual out in a logical sequence, so it makes sense to
the reader. Don't deal solely with program dialogue and options -
provide sections where there are discussions of how the system solves
problems and manages data. These discussions need not be complex
or highly technical in nature, but most average people are at least
mildly interested in how the system or program that they are using
works. Brief discussions of this kind can be used to help hold your
reader's attention. Remember the college textbook analogy - a book
which monotonously presents a series of facts with little or no
supporting information is far less interesting or readable than a book
which manages to present the same facts with pleasant accompany
ing dialogue and examples.

Writing for the Technical User

Most of the information sought by a technical user - the indi
vidual who is more interested in a reference manual than a user's
guide - should be compartmentalized, either in separate chapters
or within appendices. Technical information should be throughly

368

indexed, as a technical user is more likely to refer to the index than
to the table of contents. Again, you should strive to make the informa
tion you are presenting interesting as well as informative. Systems
programmers have attention spans, too.

QUESTIONS TO ASK YOURSELF

In deciding to write a dual purpose manual, you have chosen
a more difficult task than that of producing a single purpose manual,
where the objective of the manual is singular and clearly defined.
In order to produce a clear, useful document, you should keep the
following questions in mind throughout the writing and editing of
the document.

• Who am I writing this particular section for?
• How am I specifically helping my reader here?
• Will it make sense to my reader?
• Is this material in the right place in the manual?

Answering these questions continuously, always analyzing what
you are writing and to whom you are writing it, will assist you in
producing a more useful and informative document. Remember that
you are addressing a number of different individuals: the data entry
clerk, the computer operator, administrative staff, and technical per
sonnel. Each category of reader has different needs, and you should
tailor your writing to accommodate your overall reading audience.
This is best done by writing different sections of your document for
different kinds of readers. The strategy that I employ to effectively
address a broad spectrum of users is covered in the following text.

THE STRUCTURE AND SECTIONS OF THE MANUAL

The structure of the manual is important because your readers
are usually introduced to your system through the manual. They must
find the manual easy to read, and pleasing in layout and appearance.
The manual must contain useful, easily accessible information which
is presented in a logical manner.

You must provide separate sections of your manual which ad
dress the needs of both elements of your intended audience: the "av
erage user" who wishes to read a user's guide, and the "technical
user" who is interested in the more detailed reference manual. A
good philosophy is to attend to the needs of a user's guide reader
within the main body of the manual, and to provide reference infor
mation within an appendix or appendices. Through the use of this
technique, you can address the needs of both the average and tech
nical reader independently. In essence, you are separating the wheat
from the chaff for your readers. Neither type of reader is forced to
slog through material that is of no consequence to him.

Your manual should describe the essential components of any
data processing program or system: input, processing, and output.
These essentials can be treated in a number of ways, depending on
the system. One good method is to organize the manual by subject
or major activity, and cover the processing of each in tum. Thus,
a manual which covers a number of programs may be arranged so
that a chapter is devoted to the input, processing and output of each
program. Conversely, a manual dedicated to one program or system
can be structured so that input, processing and output are covered
in separate chapters. These three main processes are augmented by
the following manual sections - a preface, a table of contents, an
introduction, an appendix (or appendices) and an index. Optionally,
a bibliography and a reader's comment sheet may also be provided.

The Preface

The preface should provide a very brief introduction to your man-

No Device name iden. size

0 DLO:SYSII .DSK FILE 4800.
1 DLO:SOURCE.DSK FILE 4800.
2 DLO:VER .DSK FILE 4800.
3 DLl:ERPROG.DSK FILE 4800.
4 DLl :DATBAS .DSK FILE 4800.
5 DLl :ERP .DSK
6 DLO:DIPOL .DSK FILE 1200.
7 DLl :ER • DSK FILE 1200 •
8 SY :JBINFO.DAT FILE 16.
9 HL : 377 o.

10 SP : LP o.
11 DLO: DL 20450.
12 DLl: VM 384.
13 DM : DM 53724.
14 MT : MT o.
15 JOB: 300 o.

Press RETURN to continue

Central device DCJOBO

characteristic

* FILE *
* FILE *
* FILE *
* FILE *
* FILE *
Not in system
* FILE *
* FILE *
* FILE *
SP FUN
WONLY
FILST SPFUN VARSZ
FIL ST
FILST SPFUN VARSZ
SPECL HNDLR SPFUN
SP FUN

DCJOBl
--

0 LDO: sys 11/23 R w R
1 LDl: R R w
2 LD2: R R
3 LD3: R R
4 LD4: Datbas R R w
5 LOS: N N
6 LD6: R R
7 LD7: R R
8 JBINFO Mailbox R w R w <=
9 HEL R w R w <=

10 SP: Spooler w w <=
11 RDO: Remote disk R R
12 RDl: R R
13 RD2: R R
14 MT: Mag tape N R w
15 JOB handler R w R w <=

Note: R=read, W=write, N=no device

Show all I r&w I CHANGE R&W I exit

Change ?
Give JOB nr. :1:
RC, RS, we, ws :WS:
Device no.(0-14):13:

Change ?
Give JOB nr.

Show all I R&W I change r&w I exit :EXIT

With this utility the read and/or write access to a
device for a certain job can be changed. The number
to the left in the device list is the DC channel
number (also RSP unit number). Note that although on
RSP unit no. 12 the device DLl: is specified, this
device in fact is the VM: disk ! This is because the
logical assignment ASSIGN VM DLl has been made
before the DC jobs where started!

A job is simply stopped by aborting it:

.ABORT DCJOBl
• UNLOAD DCJOBl

369

SPECIAL FEATURES

One special feature is using a remote disk as system
disk. When a remote disk is made bootable for the
DC-handler (e.g. DC:) and contains the necessary
systems components such as monitor file and
utilities, it can be booted with the standard
command:

.BOOT DC:

The disk may have been made bootable before with the
command:

COPY/BOOT DC:RTllFB DC:

However, it could also have been made bootable at
the disk's site with the command (assume that the
disk's name is DK:):

.COPY/BOOT:DC DK:RTllFB DK:

The ability to use a remote system disk is a very
powerful feature because it allows using memory-only
(or better: no disk!) systems! In order to serve
memory-only systems, the DC job also acknowledges a
boot command. When such a command is received, it
transmits a block of data (256 words, without
protocol header and tail!) : the BOOT program.
Sending the boot command to the DC job can be done
by a small program which has been put in (P)ROM.
However, it could also be typed in (toggle-in boot)
using CPU-ODT available on most machines. When the
BOOT-program is received and activated, it asks a
password. When the correct password has been
entered, it asks the unit number of the bootable
disk, fetches the bootstrap from that disk and
activates it, RT-11 will then come up. When using a
disk data cache also multiple systems can use the
same (remote) system disk [3,4].

Another feature is parallel processing. By this is
meant that data are transferred from the memory of
one system directly to the memory of another system.
The data can then be processed in parallel by both
systems. This feature is realized by using a special
purpose, internal queuing, handler (refer to:
"Internal queuing handlers" in Chpt. 7, RT-11
Software Support Manual). This special purpose
"parallel" handler can accept a next write request
before a previous read request is finished [1].
Therefore this handler can transmit data from a
buffer within one job to the buffer of another's
job,

Display in detail of the activity of a DC job can be
realized using a device I/O logging&display package
[3]. The packets transmitted and received can in
this way be monitored by selecting the job-handler
as the device under investigation. The I/O display
is activated by loading a special handler and
running another system job (SHOWIO or LOGG). Also a
test version of the DC job may be generated, This
job prints a "C" for each command-packet received, a
"R" for each data-packet received, a "S" for each
data-packet transmitted and an "E" for each
END-packet transmitted. After an "E" the next
characters are printed on a new line •

Not a feature but more a problem is that of "job
blocking". As the DC job runs as Foreground or
System job, it runs at a higher priority than the
Background (BG) job. This may be one of the causes

ual, its purpose and intended audience. The preface should tell your
readers why they should read the manual and how they will benefit
from reading it. The preface need not be very lengthy - in many
cases, one page of text will provide an adequate introduction. A cur
sory examination of the prefaces contained in most Digital Equip
ment Corporation manuals proves this point. If the manual you are
writing is a revision or update of an existing volume, the preface is
the logical place to list the differences between the old manual and
the system that it documents and the revised version.

The Thble of Contents

A well organized and complete table of contents serves as a road
map to your document, and is often consulted by users looking for
information before they turn to the index. The table of contents should
be at least partially completed before you begin writing the main body
of the document. This way, you can use the table of contents as a
rough outline for your manual.

Don't overdo the table of contents: for example, if you are writing
a chapter which discusses five programs, list the five programs under
the chapter number, but save references to the ten subfunctions of
each program for the index.

The Introduction

In the introduction, briefly describe the purpose of the manual
and the purpose and capabilities of the system. Make it clear that
the technical aspects of the system, such as file design, program inter
nals, and a complete description of the system oriented towards the
technical user may be found in the appendix.

Include a brief system overview in the introduction, but phrase
it in such a way that you will not intimidate an average user.

The introduction is also the logical place to list the conventions
that are used in the manual (such as "depressing the RETURN key
will be indicated by the symbol " < RET > "). A brief definition of
responsibilities may also be included in this section. Here, explain
what duties are to be performed by data entry personnel, technical
staff, and computer center personnel.

Input

The discussion of the first element of the data processing proce
dure should include a description of input media and procedures,
information about the data elements derived from this media, and
a descriptive listing of error messages or routines that may be encoun
tered in this phase.

Bear in mind that this section will most likely be read by data
entry personnel. Provide them with illustrations of source documents
and screen or menu formats that they will encounter as they use
your system.

Processing

While covering the main portion of your system, include a
discussion of system commands, step by step operating instruc
tions, examples of system dialogue or menus, "Help" messages,
and error recovery procedures. This portion of your manual should
be addressed to data entry or computer operations personnel, and
should contain flowcharts or diagrams which illustrate process
ing procedures in the order that they occur.

Pay particular attention to error recovery procedures. If you
have ever been a computer operator, the need for these procedures
should be obvious to you. If you don't have an operations
background, put yourself in the shoes of the new third shift
operator who inadvertantly deletes a file that is needed for fur
ther processing. He or she needs to know what steps to take to
rectify the mistake right away. If your recovery instructions are

370

not laid out in a clear, logical step by step manner, or if you fail
to provide these instructions, there is little doubt that you will
be disturbed by telephone calls in the middle of the night.

Output

Here, explain the nature of the output - magnetic media,
printed forms, graphics, microfiche, or whatever. Supply illustra
tions of what the output should look like, where appropriate. Pro
vide an explanation of balancing procedures, control totals, and
other relevant information. Attention should be devoted to edit
and error lists, and error recovery steps that the user may take,
if needed. Direct this information to data control and administra
tive personnel - the end users of your system.

The Appendix or Appendices

Once you have provided detailed, step by step instructions
that explain how to use your system, you need to provide the infor
mation that goes beyond the essential operating instructions. Using
the structure that I suggest, the appendix is the logical place to
locate reference and "nice to know" information. This section
should be addressed to the technical user who wants detailed infor
mation on the functioning of the system - the kind of informa
tion to exclude from the main body of your document. It is of
little or no consequence to the casual user of the system, and its
presence in the "how to do it" section of the manual serves only
to confuse and alienate the average user.

Simple flowcharts and examples in the introduction and main
body of your document should provide sufficient technical
information for the casual or average user. Depending on the size
and complexity of your system, several appendices may be needed.
One could be devoted to file layout and design, another to
programming internals, one to initial system setup, and possibly
another one devoted to detailed technical error recovery proce
dures which would be beyond the scope of the average user.

In some instances, it may be advisable to include a brief appen
dix for the average user. For example, your system might have noth
ing to do with VAX/VMS except run on a VAX computer. In this
case, it might be wise to include a short appendix on "Using
VAX/VMS" so the users of your system will at least know how
to log in to the computer and run the programs that your system
consists of. Take nothing for granted, particularly with new users.

The Glossary

Because of the number of acronymns and terms common to
the data processing business, a glossary containing nontechnical
explanations of acronyms and system specific terms is essential.
Deciding what to include in a glossary isn't easy, but should be
based on common sense: while the average user probably has no
need to know what UAF stands for, he or she might need to know
what a UIC is, or what DCL stands for. Common terms like "field",
"file" and "record" should be explained in this section. These
explanations should be thorough without going into further detail
than is necessary to help your readers understand your manual.

Although a glossary should be arranged in alphabetical order,
there is no need to include multiple definitions for each entry,
as a dictionary might. Keep it simple.

The Index

If you are using a text formatter like Runoff, or a sophisticated
word processing program, you can insert index entries into the body
of the text as you are writing it. Although this will not provide a
complete index, it will simplify the final step of reviewing the docu
ment and highlighting important topics which should be indexed.

Remember that the index must not merely be an alphabetized
version of the table of contents. Not only should it list program
functions and subfunctions in greater detail and more thoroughly
than does the table of contents, the index should also make direct
references to topics that an average user will consider to be
important.

Cross-referencing and subindexing entries may also prove to
be helpful to your readers. Again, this extra step is most easily
accomplished with a text formatter or word processor.

After highlighting and indexing what you feel is important,
enlist the aid of a user and find out what he or she thinks should
be included in the index. For example, you could write an excellent
manual about a payroll system and index it to the hilt - but unless
you happened to be a payroll clerk, the significance of an index ·
entry for the Advanced Earned Income Credit might be lost on
you. Make use of your users - the results will be beneficial to
you as well as them.

The Bibliography

This section is optional, and should only be necessary if you
refer to documents or manuals not dosely related to your specific
system. A bibliograpic reference to your master accounting system
manual is not needed at the end of the manual which describes
the cash disbursements subsystem of the accounting package. How
ever, if you make repeated or continual reference to a magazine,
textbook, or third party documentation, such as Digital VAX/11
manuals in your document, you may wish to include these publi
cations in a bibliographic "For More Information" section.

The Reader's Comment Sheet

Finally, you may wish to include a reader's comment sheet at
the end of your document. By doing this, you can obtain positive
and negative feedback on your writing, and use this feedback to im
prove future editions of your manual, and your overall writing style
as well. I strongly advise the use of a reader's comment sheet, as it
represents the only vehicle available to you for user feedback beyond
that which is generated during an in house review of your manual.

GENERAL ADVICE

There are probably as many writing styles and techniques as
there are technical writers, and what works well for one writer
may not necessarily be effective for another. However, there are
a number of general techniques which can be implemented by any
writer to increase the quality and useability of documentation.

First Person Tense

Where possible, try to write to your reader. Don't phrase
everything in the third person. I prefer to read a document that
refers to "you" instead of the anonymous "the user" (a phrase
with sinister connotations).

Remember Basic Grammar

Keep each sentence in the same tense. I've seen single
sentences in documents that include three verb tenses, like "is ask
ing," "will occur" and "did prompt the user for." This kind of struc
ture does not make for easy reading or coherent flow of thought.
Nor is it a good reflection on the quality of your documentation.

Be Consistent

Maintain consistency throughout your document, in capitalii.a-

371

tion, abbreviation, and in user instructions. Establish a style or
format at the beginning of your document, and adhere to it. This
will avoid confusion and misinterpretation on the part of your
readers.

Cons~stency is also important in manuals that document differ
ent but related systems. It's far easier to find the answers toques
tions in a multiple volume document set if each volume is struc
tured in a similar manner. To maintain consistency without going
to extremes, you can identify different systems in a software
package with color-coded binders or paper.

Avoid Forward-Referencing

Forward-referencing is a common trait shared by many expe
rienced writers who are attempting to convey information to a
novice audience. Forward-referencing takes two basic forms: foot
notes and examples preceding explanations. An example of
footnoting is a five-step checklist that concludes with a "by the
way" statement like "before proceeding with Step One above, you
must . . ." Few people read instructions thoroughly before carry
ing them out, so you must ensure that your readers won't be con
fronted with any unpleasant surprises at the conclusion of a step
by-step procedure.

Preceding explanations with examples is more common than
footnoting and more difficult to eliminate. If you write a five chap
ter manual that contains examples of program commands or a
system command language in the first four chapters, but doesn't
explain these commands until the fifth chapter, you are guilty of
forward-referencing. By explaining new topics as they are encoun
tered, you will prevent this form of confusion.

Avoid Repetition

Avoid the use of monotonous, repetitious passages of text.
If you must explain the dialogue of fifteen program which are all
run in the same manner, give a detailed explanation of the stand
ard way to invoke a program when discussing the first. For the
remaining fourteen programs, state that "PROGRAMNAME is in
voked in the standard manner."

White Space

Few things are as threatening to a new user as confronting
a manual or document that consists of page after page of dense,
closely packed text. Paper costs money, but you shouldn't present
your reader with a document that reads like an unabridged diction
ary. Break up your text into chunks and set each new concept or
key point apart by surrounding it with liberal quantities of blank
paper, or "white space."

Provide Illustrations And Examples

Make use of illustrations and examples, and keep them as sim
ple as possible. Remember, people don't like to read documenta
tion. The less they have to read and digest to make a program or
system work, the happier they are.

Keep It Simple

As previously discussed, there will be times when you must
include acronyms and jargon in your text. Tu the average user, "four
gigabytes of virtual address space" sounds like a quote from a Star
Trek script. Not only is the phrase highly technical, it is out of
context. It has no bearing on the way your system works, and
serves only to confuse your readers.

Remember that many computer-related terms ("swapping", for
example) have very different meanings to average users than they

do to computer programmers or system managers. These terms
are generally of no importance to the reader of a user's guide. If
a term or phrase has no impact on your system or users, it doesn't
belong in the document.

Use Analogies

There will be times when you must use and define complex
terms. If you had to explain memory management on a VAX com
puter to a novice audience, you would definitely have to include
a description of paging. To complicate matters, you would have
to phrase your explanation in terms that a novice could under
stand and relate tn.

When you are faced with a situation like this, make use of anal
ogies, keeping them as simple as possible. Example 1 (at the conclu
sion of this paper) shows the analogy I used to explain the the con
cept of paging in a book I wrote for first time users of VAX compu
ter systems. Through the use of analogies and comparison, you can
often make complicated concepts understandable to your audience.

Adopt A Businesslike Style

Do not be condescending or patronizing to your audience.
There is no place in a well written manual for laudatory or congrat
ulatory phrases, such as "congratulations on your purchase of the
Duz-It-All word processing package." Avoid the use of cliches, slang
and distracting language. Your readers don't want a pat on the back
or a manual full of buzzwords-they want to learn how to use the
system.

Be Considerate

Finally, remember that you are writing to people in lieu of talk
ing to them in person. Think of writing as your half of a two way
conversation. 'fry to anticipate the other person's questions, and an
swer them clearly and completely. Although you likely never will
meet your readers, they will appreciate your efforts on their behalf.

372

EXAMPLE I

(From Chapter I, "INTRODUCTION TO VAX/VMS," by Terry C. Shan
non. Copyright © 1985, Terry C. Shannon and Professional Press.)

VIRTUAL MEMORY

Virtual memory is the ability of a computer to address and
use more memory than its central processing unit physically con
tains. A one megabyte VAX processor can address not just the one
million locations contained in its physical memory, but, due to
its 32 bit address length, a total of over four billion storage loca
tions. At this point, a question might come to mind: How does
a computer make use of over four billion addresses when it can
store only one million of them at a time?

The answer is relatively simple when you look at it in simple
terms. The VAX does essentially the same thing that you do every
time you read a book. Regardless of the length of a book, you read
it one page at a time. The computer does the same thing-it pro
cesses a program one page at a time.

To the VAX, a program is similar to a book composed of many
pages which is stored on its disk drive. When you issue the com
mand to run a program, the computer first scans the entire pro
gram, breaks it up into pages, and creates an index to reference
the location of each page. Each page is a 512 byte, or word, seg
ment of a program which is read into the computer from the disk
and is then processed or acted upon. When the computer is fin
ished with a segment, it scans its index to locate the next page
it needs. It then generates a "page fault" by returning the com
pleted page to the disk and then reading in the next segment
needed to continue processing the program.

In essence, the page fault executed by the VAX is equivalent
to the human action of turning the page of a book. Because of
its ability to process a program one page at a time, the VAX can
process a program of almost infinite length within the confines
of its physical memory.

MULTIPROCESSING AND HIGH SPEED DATA COMMUNICATION WITH RT-11

Harry Haenen
Dept. Clinical Neurology and Information Processing

University Hospital Groningen
P.O. Box 30.001

9700 RB Groningen, The Netherlands

ABSTRACT

A multiprocessor network concept is described and it's
implementation under RT-11. The multiprocessor concept may be
seen as alternative to using a multi-user single processor
system. However, the multiprocessor option has multiple CPU
power and memory available over a single processor system.
With decreasing hardware prices, the multiprocessor is the
better solution especially in highly demanding environments
such as high speed data acquisition and processing. The
datacommunication software provides transparent use of remote
devices. Memory-only systems may be run using a remote system
disk.

INTRODUCTION

Data processing of ten starts with a single CPU
system. A multi-user operating system then seemingly
makes CPU and other peripherals available to
multiple users. However, with the advent of newer
user-friendly software like screen editors, graphics
etc. CPU load increased and responsiviness often
decreased considerable. A concept with multiple
systems, connected by high speed datacommunication
links can face the higher demand. Shared disks,
printers etc. assure that data are available to
multiple users and that expensive peripherals do not
run idle for longer periods.

In the laboratory a multi-user system is often
inappropriate. High speed data acquisition may block
the whole system and frustrate other users.
Undisturbed processing may now be realized by giving
each application it's dedicated processor. Again,
high speed datacommunication links assure that
expensive peripherals are not needlessly duplicated,
that data may be s;hared and realise parallel
processing (multiple CPU power for a single job).

The multiprocessor goal is believed to have been
closely approximated with the package here
presented. An earlier version was already described
elsewhere [l] (reprints available on request).

In the remainder of this article DC will be used as
an abbreviation for datacommunication.

CONCEPT

The multiprocessor concept should fulfill the
following requirements:

- High speed communication: remote systems should
seemingly be close. The data amount to be stored
or processed elsewhere may be quite large,

Proceedings of the Digital Equipment Computer Users Society 375

therefore the transfer speed should be high. Low
cost as well as more sophisticated (DMA) hardware
should be supported.

- Low overhead, simple communication protocol. This
contributes to high speed and may keep CPU load
low during transmissions.

- Any network topology may be realized: from the
simple point to point connection to complex
structures.

- No modification of standard system components: all
software should be realized within programs and
handlers (device drivers).

- Hardware dependent code should only appear within
handlers.

- No arbitration in who issues a transfer request.
One site should always be "listening" to the
other.

A basic point to point connection is symbolically
represented in Fig. 1. System A always issues the
transfer requests. It has a DC handler which
controls the physical data link. System B has
continuously running a so called DC service job
(task), which is ready to serve requests from the DC
handler at the other side. Note that although the

I/O REQUESTS

Figure 1. Data link concept

New Orleans LA- 1985

I/O requests go in only one direction, the data go
in both directions. With a data read A receives data
from B and with a data write A transmits data to B.
Besides I/O requests for data transfers, also
special function requests may be issued by A. For
example by issuing a special function request, A
could ask B to return the size of disk unit.
Logically there will be several channels within one
data link. Each channel is then used to allocate a
device unit or file or used to perform a special
operation. For example one channel, the message
channel is reserved for the exchange of messages
("mail") between A and B. For that purpose B has
reserved a "mailbox" file, which stores news for A
as well as B and messages received from A for B and
visa versa. Such a message from A for B may be e.g.
a request to give read and/or write access to a
certain device unit.

In order to safely transfer data over the link, a
datacommunication protocol is needed. The protocol
assures that both sides of the link "understand"
what the other is "doing". Also the data integrity
can~guarded by applying an error detection algorithm
over all data received.

With the basic link now defined even more complex
networks can be set up as shown in Fig. 2.

Symmetric link

Star

Ring

Figure 2. Basic network structures

376

THE RT-11 LINK

The DC service job runs under RT-11 as a Foreground
or a System job. In a monitor with system job
support up to 7 DC jobs may run simultaneously. The
DC service job links to the DC hardware by using a
handler, called the.Job-handler. A DC job is now
started with the following commands:

.LOAD QJ ! Load the job-handler

.ASS QJ JOB ! Name it logically JOB:

.FRUN/BUFFER:nnnn DCJOB I Run the DC job

next job:

.LOAD DJ

.ASS DJ JOB

.SRUN/BUFFER:nnnn/NAME:DCJOBl DCJOB

etc.

When the /BUFFER:nnnn is specified an extra data
buffer of size nnnn words is allocated to the job.
This buffer is added to the default internal buffer
of 256 words (1 disk block).

The complement of the DC service job is the handler
driving the DC hardware at the other side of the
link. The protocol used by this handler and the
job-handler is a modified Radial Serial Protocol
(RSP, [2]). This protocol basically transfers words
of data and is described in detail in [1]. The RSP
protocol can maintain up to 256 data channels over
one link. The current implementation uses only 15 of
these channels as these channels are one-by-one
coupled to an I/O channel in the service job.
Although RT-11 allows defining up to 256 I/O
channels for each job, 16 is the d~fault number. As
one channel (#15) is used by the job handler, 15
remain to be used for allocating devices. Each data
channel has a number 0-14 which also will be called
the RSP unit number. An example of DC data channel
allocation is given in Fig. 3. As a handler has
maximum 8 device units (0-7), only the first 8 data
channels can be controlled by the DC handler.
Normally the DC handler is defined to the system as
a random access device (disk) and therefore cannot
be used to simulate e.g. a remote lineprinter.

Both problems, accessing the higher data channels
8-14 and simulating several different type devices
are solved with the introduction of pseudo-handlers.
These are handlers that do not drive hardware
themselves, but use the DC handler for that purpose.
The DC-handler has provisions for receiving requests
from pseudo-handlers: an internal queue. I/O
requests from the DC handler itself and from the
pseudo-handlers are stored in this queue and removed
from the queue when they are served. These
pseudo-handlers make it also possible to use also
the data channels higher than 7. For example a
service job has allocated channel #10 to a
lineprinter. This channel may now be accessed by a
pseudo-handler which transforms a request received
on device unit number 0 to a RSP unit number 10 by
adding the value of 10 to the device unit number.
This pseudo-handler may also be defined to the
system as a standard lineprinter so that programs
and RT-11 utilities cannot "see" the difference
between a real lineprinter handler and the pseudo
lineprinter handler. Note that the service job may
also allocate channels to a DC handler within the
same system. In this way devices on all connected

that intermittent problems occur when the BG job
does high speed A/D cu11vers1on, while the Foreground
is also active. The A/D converter may report errors
and samples may be lost. In such a situation it
would be desired to block the DC jobs until all time
critical activity of the BG is stopped. Until now
RT-11 has no provisions for such a facility.
Therefore the following "trick" is used. A set of
subroutines, to be used in a BG program, can
block/suspend, unblock/resume DC jobs. When job
blocking is required a "no wait" .SPFUN request is
send to the job-handler. When the job-handler
receives this request, it accepts it but does
nothing. This means that no other I/O requests,
those from the DC job, can enter the job-handler and
the DC job is thus blocked. The BG can in the
meantime process it's critical tasks. When the BG
wants to resume the DC job it aborts the "hanging"
.SPFUN request. The DC job I/O requests can now
enter the job-handler and so can resume it's
activity.

INSTALLATION OF THE SOFTWARE

First of all the DC job programs De.JOB.REL and in
case of special directory support DCJOB.SPD, the
utilities and pseudo-handlers are copied to the
system disk. The DC jobs and utilities may also
reside on another available disk unit. The
pseudo-handlers may also be renamed to a more
appropriate name. The DC and job-handlers should be
inspected for having the correct I/O page and vector
addresses. There is also an option, selected by a
conditional, for disabling the checksum calculation.
When disabled, a fixed bit pattern is transmitted,
instead of the checksum, as the tail of each packet.
When a packet is received the bit pattern is
checked, Although this procedure assures some
minimal error detection, data corruption within a
packet is not noticed. However, in practice, there
are many physical data links which show up seldom an
error. And when it occurs, it comes in bursts so
that these errors are detected in any case. When the
handlers are assembled (with system conditional file
SYSGEN.CND) and linked they are copied to the system
device.

The DC jobs require that a list of devices is
available to which they should open I/O channels at
startup. They expect to find this list within the
job's data file SY:JBINFO.DAT • Within this file
further are stored: default read/write access
settings (may be changed while DC jobs run with
JSHOW), which channel is the message channel and
which reserved for Magtape, a list of the names of
available job-handlers, bootstrap programs for
memory-only processors and the mailbox.

The file SY:JBINFO.DAT can be created and the data
in it are set by the program JOBS. All the
modifiable data mentioned above (device&job lists,
read&write default access), are stored in a readable
format in the file JOBS.CND. Using an editor they
may be changed to the appropriate values. Then JOBS
should be assembled, linked and run once. During the
assembly phase JOBS.CND is read and processed.

377

PERFORMANCE

The performance of the data link was measured for
all hardware types. For this purpose a dummy handler
was constructed comparable to the null-handler
(NL:). This dummy handler immediately satisfies any
I/O request that it receives, but does not perform
any data transfer from or to a buffer. Data were
transmitted in records of 1024 words (4 disk
blocks). As the protocol allows the transfer of max.
256 words/packet [1], four data packets are
transmitted for each record. Before these packets
are transmitted a command packet is send and after
the four data packets an End packet is received. The
throughput rates in the table are effective rates.
This means:

including the protocol overhead just described,
+ transfer from memory to interface by DC handler,
+transfer over the cable (20 m.),
+ transfer from interface to buffer of DC job,
+ 6 I/O requests by DC job to interface handler,
+ 4 I/O requests to dummy when buffer job is 256 w.
(1 I/O request to dummy when buffer job is 1024 w.)

TRANSMISSION RATES in Kw./s.

No checksum Checksum calculation

Buffer: 1024 256 1024 256

Qnector:

11/23 35.7 31.3 22 .7 21.3
+ (30) (28) (55) (50)

11/23

WB(V)-11:
12.3 11.8 11.9 11.6

11/34 --- (60) (60) (73) (73)
+ I

11/23 --- (74) (74) (86) (86)

DR-11:

11/34 16 .7 15 .9 14.7 14.3
+ (92) (88) (94) (92)

11/34

Note that in the table the machines linked, differ.
The PDP 11/34 is in many respects about 20% faster
than the LSI-11/23. The Qnector was not set to it's
highest speed because of high bus load. However, at
it's highest speed a throughput rate of 67.2 Kw./s.
(= 1 Mb.) was measured. The hardware specifies max.
250 Kw./s. (s 4 Mb.). Therefore it is demonstrated
that the often impressive throughput rates specified
by manufacturers do n~tell much about the effective
throughput under software control! The values
between the pharenthesis give the CPU load in %
during the transmission at the DC handler side. The
CPU load at DC job site shows nearly the same
values. Note that these values apply to the test
situation! Under "normal" circumstances, where I/O's
have to be processed by devices, the CPU load
measured is considerable lower (20-40%) I

CONCLUSIONS

A collection of programs and handlers realises
multiprocessing and high speed data communication
with RT-11. Remote devices are used in the same way
as if they were local. The well-structured software
allows all type networks to be setup. Low cost as
well as high performance hardware is implemented.
Moreover implementing new hardware is a relative
small task as only two handlers have to be coded.
Cheap memory-only systems can be put to work due to
boot capabilities,

378

REFERENCES

1. Haenen, H.T.M.
"A Modular Data Communication Package Providing

a Multiuser Environment and Parallel Processing"
Proceedings DECUS EUROPE
Coventry U.K., Sept. 1982, pp. 81-88

2. The "Radial Serial Protocol (RSP)".
Microcomputer Interfaces Handbook. DEC 1980, p. 640

3. Haenen, H.T.M.
"Disk Usage Analysis and Disk Data Caching
under RT-11"

Proceedings DECUS EUROPE
Zuerich, Switzerland, August/Sept. 1983, pp. 247-252

4. Haenen, H.T.M.
"The Disk Data Cache under RT-11"
Proceedings DECUS U.S.A.
New Orleans, Louisiana, May 1985

THE DISK DATA CACHE UNDER RT-11

Harry Haenen
Dept. Clinical Neurology and Information Processing

University Hospital Groningen
P.O. Box 30.001

9700 RB Groningen, The Netherlands

ABSTRACT

A disk cache is described which speeds up I/O service from
disk devices. The cache may also be applied to the system disk
in order to seemingly eliminate swapping. The system disk may
also be set to write-protect. When the cache runs, only a
cache handler (CH:, size ca. 250 words) is added to the RT-11
system. Caching is fully transparent and may run unsupervised.

INTRODUCTION

The usefulness of a disk cache has already been
argued before [1] and elsewhere [2,3]. In general
cached systems run smoother and faster. Dramatic
performance improvement may be seen with so called
disk bound programs and/or slow disk devices such as
floppies. Many large programs become disk bound
because of the large number of data files they often
handle. A pleasant side effect of the cache is that
it realises setting write-protect of the system disk
(novice users can no longer corrupt it). Further in
a multiprocessor environment the same system disk
may be used simultaneously by multiple
processors[4,S]. An earlier version of the cache was
already presented some years ago [1]. However, in
the meantime one major update was realized. This
update assures that the cache is even more easier
installed and used. The update also takes into
account newer developments such as the logical disk
and variable volume size.

WHAT IS A DISK CACHE?

RT -11

0

DISK

Figure 1. "Gear" cache

The general principle of a disk cache is well
explained by the symbolic two-gear example in Fig.I.
The larger gear represents the traditional main
disk. It is (relative) large, therefore can contain
a lot of data, but is slow in speed and so the
access time to data is high. The smaller gear
contains less data, but rotates much faster and
therefore it's access time is also much lower. So,
when there comes a request for data on the large
disk, but these data are also present on the small
disk, they can be accessed fast. In the remainder of
this article, the smaller gear is called the CACHE
and physically it will be the well-known virtual
memory disk VM:. VM: uses extended memory to store
it's data. However, any fast disk could be used to
form the CACHE for a (larger) slower disk! So, a
Winchester disk could be used to form a cache for a
floppy unit.

well known answers to this "cache strategy" question
are, in terms of caching algorithms:

Now we know that we need a fast storage device,
the next question that comes is: "which data should
be extracted from the slow disk and be put in the
CACHE and how should this be done?". The three most

Proceedings of the Digital Equipment Computer Users Society 379

1. Direct Mapping
2. Look Ahead
3. Least Recently Used

In case 1, direct mapping, some predefined disk
area's (such as directories, swap files etc.) are
permanent present in the CACHE. In case 2, the look

New Orleans LA - 1985

ahead, the disk I/O request data but alsa data
following the requested data are stored in the
CACHE. When the next I/O request is for data
following sequentially the previous requested data,
these data can be retrieved from the CACHE! In case
3, the least recently used, all data from each disk
I/O request are stored in the CACHE until it is
completely filled up with disk data. When a next
disk request comes, the least recently used data
from the data queue in the CACHE are removed and the
new data are put in. All cache algorithms mentioned
above were evaluated given a "typical" RT-11
environment (but is there one!?) and given some
defined cache parameters such as CACHE size, maximum
I/O request cached etc. The results (see [1],
reprints available on request) show that Direct
Mapping is far superior over Look Ahead or Least
Recently Used. Another advantage is that Direct
Mapping is much simpler to implement!

HOW IT WORKS!

We will now concentrate on the details of the direct
mapping cache and the implementation under RT-11.
With this cache type a contiguous disk space, to be
called cache area, is mapped to a contiguous space
in the CACHE. In RT-11 reality this contiguous space
in the CACHE will be a file, the cache file (named
CACHED.SYS, CACHEl.SYS etc.), on VM: (Fig, 2). Read
requests falling within a cache area are serviced
fast with data from the CACHE and require no disk
access (read hits, fig. 3). Write requests to a
cached area update the cache as well as the disk.

Disk unit 0

Directory

VM:

Directory

Disk unit 1

Free Space
Directory

Figure 2. Cache area mapping

380

READ • HIT
WRITE• UPDATE

READ= HIT
WRITE• HIT

I NO HIT

Figure 3. Cache area layout

This is called the WRITE-THROUGH principle, and
assures that at any given moment the disk data are
correct. As there may also be disk data with only a
temporary value, also temporary cache area's may be
defined. A cache area may be temporary as a whole or
only a higher part, Write as well as read requests
falling in a temporary cache area are serviced fast
from the CACHE without a disk access (Fig. 3). A
good candidate for a temporary cache area is for
example the system file SWAP.SYS, which only
contains swapped program parts and temporary system
data. When the computer crashes, data in the
temporary area's are lost while those in the
Write-Through area's are retained. I/O requests
falling only partially in a cache area are difficult
to handle. In order to keep the cache as simple as
possible, partial hits only generate a disk request
and therefore should be avoided. This can be done by
adjusting cache area's to file boundaries and
putting not a part but whole directories in a cache
area. Partial read hits are no problem. However,
partial write hits only update the disk and not the
cache. So a next read could retrieve old data from
the cache. As partial hits are indicated and
adjustment to appropriate boundaries is simple done
and often natural, this is no practical problem.

Disk I/O requests are intercepted by the cache
handler CH:. A small MACRO (3 words of code) within
the disk handler realises this interception (Fig.4)
So when the cache runs CH: as well as VM: have
to be loaded. The caching algorithm is very simple,
Special function requests are returned immediately
to the disk handler. However, read and write
requests follow:

IF (cache hit) THEN

END IF

IF (read) THEN
(call VM handler)

ELSE
(call VM handler ;
IF (write-through) THEN call DISK hnd)

END IF
ELSE

(return to disk handler)

The VM handler is called in a similar way as RT-11
itself calls a handler. The CH: handler also
realises setting "write-protect" of disk units. The
cache algorithm, coded within CH:, has been
worked-out in detail in Fig. 5

HOW THE CACHE IS USED!

The cache package consists of the following
components:

CACHF .SAV
CACHE .SAV

CH .SYS

CSHOW .SAV

Utility for FILES & DIRECTORIES
Utility for setting up cache area's
by specifying disk block boundaries

Cache handler CH:

Utility, prints caching merit,
write-protection, disk unit size
and cache area's layout.

The components normally reside on the system disk.

Besides the cache handler also VM must be installed
in the system. VM: should have enough free space to
accommodate the cache files. In a fully occupied 18
bit memory you have 376. blocks available on VM: (a
full 22 bit memory something like 5000. blocks!).

The CH: handler determines which disk will be
selected for caching. Type SET CH SHOW to check the
selected disk. If not appropriate change the disk to
be cached by typing SET CH DISK="selected disk
number".

CACHE and CACHF are utilities for starting, stopping
testing caching and enabling/disabling write
protection of disk units. Disk area's to be cached
may be specified for each disk unit. Disk units

Disk I/O requests from programs

' .DRBEG DK DISK handler
I - '
I ---- - ""' @ r-c- - - - -

~ ' I
I

.DRFIN DK

.DRBEG CH Cache handler

l VM I/O requests from programs

.DRBEG VM Virtu~l(extended) Memory
I handler
I

I
I

'------ ""'
r-C- -- - MEMORY I
I
I

I

DRFNVM

Figure 4. Control and data flow with caching

381

1/0 requests

Check if requested disk unit
contains a cache area

Yes

high 1 imit

No

Can se ect next
cache area? N

cache area? Y

N

~?:~ti~_~t-111

' I
limit (low limit Y J I

cache area?

Low limit)

High

L~-~-~~~:1a1 __ ~!__~------.I

* Hi~~--N ~-----_-__. __ ~
1 r Temporary area?

KWrite request?)

I

y

Figure 5. Caching Algorithm

should be specified in increasing order. If files to
be cached are neighbours, they can be put in one
cache area/file which has the size of the sum of the
individual file sizes.

CACHE sets up the cache area's by specifying
absolute disk block boundaries. CACHF is a utility
similar to CACHE. However, cache setup is much
simpler if you want to cache FILES and DIRECTORIES!
You do not have to look for the start addresses and
length of files and directories, but you can simple
specify filenames for caching files and device names
for caching directories. A "/T" switch after a
filename puts it in a temporary cache area. All
other area's are default Write-Through. With a "/D"
switch the directory of the specified device is
cached. The disk space from block 1 (the home block)
until the end of the directory is put in a
write-through cache area.

Also directories and files on logical disks (LD:)
which reside on a unit of the cached disk can be
easily cached by specifying the logical disk name.
Block offsets to the LD disks (Fig. 6) are
automatically retrieved from the LD handler by the
CACHF program.

The program also creates the necessary cache files
on VM:. However, if possible initialize or squeeze
VM: before starting CACHF. For it is not permitted
that the cached files move when you squeeze VM:!

Note that you can set the system disk to
Write-protect if system files to which write
operations occur (SWAP.SYS, handler files, ••) are
in temporary cache area's. Of course SET operations
of handlers are then also temporarily, When the
handlers are not in a temporary cache area, KMON
prints an error message and the SET command is not
executed. The write protection scheme is a nice
extra feature of caching and can help preventing
corruption of the system disk by "naive" users.

An example of a CACHF run is shown below:

.CACHF
Cached device is RK: Caching is OFF

SELECT)

Cache/ Stop/ Test/ Read-only/ Write-enable: CACHE

*RK:/D
*RK:RTllFB .SYS
*RK:SWAP.SYS/T
*RK:X.DAT
*LD2:/D
*LD3:Y.DAT
*IS

!RKO:=SY:, cache directory of SY:
!Cache the monitor write-through
!Put SWAP.SYS in a temporary area
!File X.DAT in write-through area
!Cache directory of LD2: (on RK:)
!Cache file LD3:Y.DAT (on RKl:)
!Stop entering input

Note: /H prints HELP info!

The CSHOW utility prints whether caching is on or
off and the disk selected. It further prints the
total number of reads and writes to each disk unit.

r offset
LDO •ti-

offset
LDl

' _J

DISK

Directory

disk
files

Directory

LD disk
files

l Logical

size LDO:

disk
files

Directory

LD disk
files

disk
files

Figure 6. Logical disks on (cached) disk

disk

disk

382

The size of each disk unit in blocks and also
"NoWrite" if a disk unit is set to read-only. A "V"
after the size means that the unit is a variable
size volume. Further the position of the cache
area's, which part is Write-through and temporary,
hits rates. An example of the printout is given
below:

.CSHOW

** RT-11 CACHE SH 0 W V6.0 for device QN: **

Reads Writes DISK Size(blocks)

5467 709 UNIT 0 4800V

23 0 UNIT 2 4800V Nowrite
12014 251 UNIT 5 4800V

319 0 UNIT 6 1200V NoWrite

!Block-Addr. Write-Thr! Read Up- Part Wrt-tmp DISK
! Cache-area up to Hits date Hits Hits unit
!---------------------! -------

1- 148 122 3421 0 0 709 0
1- 37 37 9810 23 0 0 5
1- 25 25 219 0 0 0 6

HOW IT IS INSTALLED!

"F irst of all the CH: and VM: handlers have to be
installed in the RT-11 system. Like other handlers
CH: should be assembled with the system conditional
file SYSGEN.CND. Default CH has space for maximum 3
cache area descriptors. When a larger number of
cache area's will be in use simultaneously, the
conditional NAREA in CH: should be set to the
appropriate value.

Further a small Macro, called the CACHE Macro, is
inserted in the disk handler. This is simply done by
running the cache installation program UPD and
specifying the two letter filename of the source
(e.g. RK.MAC):

RU UPD
*RK [Return]

UPD then creates a new updated source file with
extension .SRC

You can prepare several disk handlers if you want
those to have potentially available for caching. The
CACHE Macro only occupies 3 words in the handler and
performs no function when caching is not on.
Assemble, link and copy the updated disk handlers to
SY: , e.g.

MACRO/OBJ:RK
LINK/EXE:RK.SYS
COPY/SYS

SYSGEN.CNDtCHMACR+RK.SRC
RK
RK.SYS SY:

What did UPD? The CACHE Macro is inserted directly
after the .DRBEG Macro in the handler source. Refer
to the following example for the device RK:

Existing code(example):

.SBTTL
.DRBEG

DRIVER ENTRY
RK

MOV #RKCNT,(PC)+

After INSERT CACHE:

.SBTTL DRIVER ENTRY

.DRBEG RK
CACHE
MOV #RKCNT,(PC)+

Update also the VM handler for caching with UPD.
Copy the VM handler source (VM.MAC) to the disk on
which you are working, then:

RU UPD
*VM [Return]

UPD then creates a new updated source file: VM.SRC,
then assemble, link:

MACRO/OBJ:VM
LINK/EXE :VM.SYS
COPY/SYS

SYSGEN.CND+VMMACR+VM.SRC
VM
VM.SYS SY:

What is done by UPD? UPD replaces the .DRFIN macro
in the VM handler source (appears at two locations;
one for SJ/FB and one for XM) by macro call DRFNVM:

existing code:

VMERR: MOV VMCQE, R5
BIS #HDERR$,-(R5)

VMDONE: .DRFIN VM

new code:

VMERR: MOV VMCQE,RS
BIS #HDERR$,-(R5)

VMDONE:DRFNVM

Copy CACHF and/or CACHE, CSHOW to SY: and the
installation is finished!

CONCLUSIONS

By adding a cache handler to the RT-11 system, disk
data caching has become a ready-to-use feature.
Systems run faster and "smoother" with the cache on.
With disk-bound programs and/or slow disks
considerable performance increase will be noticed.
The cache is fail-safe as a Write-Through algorithm
is used. Therefore using the cache has many
advantages over e.g. using VM: as a fast disk. Data
on VM: are lost when a powerfail or boot occurs.
Further the cache uses VM: only for those disk
area's which are most frequently accessed. The VM
cache also may be servicing several disk units.

In a multiprocessor environment the cache is also
very effective. Data transfers over the data link
can be reduced by having caches in (memory-only)
processors. Also multiple processors may use the
same system disk [1].

383

REFERENCES

1. H.T.M. Haenen
"Disk Usage Analysis and Disk Data Caching
under RT-11"

Proceedings DECUS EUROPE
Zuerich, Switzerland, August/September 1983,
pp. 247-252

2. P.T. Thordarson
"Performance and Disk Data Caching"
Proceedings DECUS U.S.A.
New Orleans, Louisiana, April 1979,
pp. 1113-1121

3. D.K. Brown, K. Strutynski, J.H. Wharton
"Tweaking more Performance from an Operating

System"
Computer Design
May No. 6, Vol. 22, 1983 pp. 193-204

4. H.T.M. Haenen
"A Modular Data Communication Package providing
a Multiuser Environment and Parallel Processing"

Proceedings DECUS EUROPE
Coventry U.K., Sept. 1982, pp. 81-88

5. H.T.M Haenen
"Multiprocessing and High Speed Datacommunication
with RT-11"

Proceedings DECUS U.S.A.
New Orleans, Louisiana, May 1985

REAL-TIME TEMPERATURE GRAPHICS DATA ACQUISITION SYSTEM USING DEC RT-11

Donald J. Mandley
Engineering Mechanics Department

General Motors Research Laboratories
Warren, Ml 48090-9057

AB.STRACT

A software scheme was developed on a DEC computer for a
real-time temperature graphics data acquisition system using
the F/B monitor of RT-11. This system scans all 67 tempera
ture transducers from a automotive plastic hood mold at
2-second intervals and produces user selected data plots
within seconds after each part is molded (each cycle is
normally 60-100 sec long). Having data graphs within
seconds after each mold cycle enabled the experimentalists
to draw meaningful conclusions from the temperature varia
tions during the test, especially during the initial
start-up transient. This data acquisition system uses a DEC
LSI-11/23 (MINC) computer with a DRV11 parallel interface to
communicate with a third-party multichannel digitizer.
ReGIS commands to a VT-125 graphic terminal provide fast
data plots and a LA-100 printer provides optional hard
copies.

Fortran and assembly language routines were written to
control the many functions of the data acquisition system.
Virtual memory was used to store the background subroutines
for fast overlaying and for temporary data storage (up to 90
mold cycles). This menu-driven real-time data acquisition
system was developed without modifying the standard RT-11
operating system or the DEC hardware. The important
features of the hardware, RT-11 operating system, and the
modular-software will be discussed to illustrate the useful
ness, ease and user-friendliness of this system.

INTRODUCTION SYSTEM REQUIREMENTS

A data acquisition system was developed as part of
an experimental program to verify an optimal thermal
design (1) in a production mold for a fiberglass
automotive hood. The object of the design is to
minimize the spatial temperature variations on the
cavity surface of the mold, thus promoting uniformly
cured parts at rapid cycle times.

A method was needed to monitor and present temper
ature data from 67 mold thermocouples rapidly enough
to allow the experimentalist to evaluate these tem
perature distributions during the molding process.
For this reason it was necessary to develop a real
time data acquisition and graphics system.

In order to illustrate the usefulness, ease, and
user-friendliness of this data acquisition system to
the general reader as well as the experimentalist
and computer programmer, this paper will present the
full system starting with its general functions and
move towards a more detailed discussion of its more
significant elements.

Proceedings of the Digital Equipment Computer Users Society 385

The inputs to the data acquisition system were
67 thermocouples which measured temperatures on both
the molding surface and steamline walls as shown in
Figure 1. These measurements provide the experi
mentalist with check points against predicted
values. The data acquisition system must read the
thermocouple values from the digitizer and perform
the following functions during the molding process.

1. Scan digital inputs from 67 thermocouples every
2 seconds for up to 90 molding cycles of approx
imately 60-100 seconds duration.

2. Acknowledge signal from press computer to estab
lish the duration of each molding cycle and
catalog data according to each cycle.

3. Store all of the data, from every data scan, for
up to 6 of the 67 thermocouples which can be
selected by the user before, and changed during,
the test.

New Orleans LA - 1985

4. At the end of each cycle, compute the average
temperature value for each of the 67 thermo
couples and store the results.

5. Generate user-selected data plots in ~eal-time.
I

6. Provide for data storage on a diskette either
during or after the test.

OFFSET SECTION
SURFACE THERMOCOUPLES .'/5S -

-H-t-f-f-f-f-f-t

OFFSET SECTION
SURFACE THERMOCOUPLES .#21 - /132

LOWER MOLD HALF UPPER MOLD HALF

iNTm~~o O O o ~
HEATING LINE THERMOCOUPLES #1 - 1/8

0 00000

CENTERLINE
HEATING LINE THERMOCOUPLES '/33 - :f4l

Figure 1 MOLD SHOWING THERMOCOUPLE LOCATIONS

SYSTEM OVERVIEW

Standard data loggers are available to record
temperature data, and separate computer software
exists to produce off-line graphics. However, to
perform both of the above tasks together with the
speed and resolution necessary for interactive real
time graphics for the fiberglass mold, it was neces
sary to develop a data acquisition system with a
special computer software scheme that could syn
chronize a constant data input rate with both data
processing and user interactive graphics. Before
discussing this scheme in detail, however, we begin
by giving a general overview of the system
functions.

A Digital Equipment Corporation (DEC) computer and
an Analogic digitizer provided the required hardware
features necessary to meet the experimental require
ments. The data acquisition system hardware is
shown in Figures 2 and 3. A terminal, hardcopy
printer, and floppy diskettes are available to the
user as output devices. The DEC computer (LSI-11/23
microprocessor) is a single-user computer, dedicated
to a single task when used with the real-time oper
ating system (RT-11). See Appendix A for additional
computer features.

The RT-11 operating system has a unique feature that
allows two separate programs to run alternately and
independently of each other. This feature is called
the foreground and background (F/B) monitor. DEC
gives the highest priority to the foreground program
allowing the background program to run only when the
foreground program is placed in a suspended state.

The data acquisition software was written in two

parts to take advantage of the F/B monitor. The
block diagram in Figure 3 illustrates the main parts
of the data acquisition system. The most important
task of the system was to record data from the dig
itizer every 2 seconds during each mold cycle,
average it at the end of each cycle, and then store
the data in specific locations in computer memory.

386

MINC
COMPUTER

FLOPPY
DISKS

ANALOG IC
DIGITIZER

COMPRESSION LA-100
MOLD PRINTER

GRAPHICS
TERMINAL

Figure 2 DATA ACQUISITION SYSTEM HARDWARE

MOLD

1
DIGITIZER

l
FOREGROUND

1
I BACKGROUND

VIRTUAL MEMORY J

t

DISKffiE HARD COPY ~ TERMINAL

Figure 3 DATA ACQUISITION SYSTEM BLOCK DIAGRAM

Therefore, the software written to perform these
tasks was placed in the foreground area to assure a
constant data scan rate. One might think of this
program as a data logger section. The foreground is
activated every 2 seconds by the real-time clock
within the computer and can complete its data
scanni~g tasks within 15 milliseconds. Therefore,
the background program has most of the available
computer time to process the data and produce the
user requested graphics.

The foreground program stores the thermocouple data
in two different forms. A direct data buffer stores
every measurement for up to 6 of the 67 thermo
couples and a average data buffer stores the average
temperatures for all 67 thermocouples during each
cycle. Placing the 6 channel limit on direct data
was due to the large amount of memory required for
saving each data value from each scan. This limita
tion, however, did not compromise the experimental
objectives since the average data was the primary
data form.

The remaining data acquisition tasks are performed
by the background which executes only when the fore
ground is not running. The background programs were
written to allow the user to interact with the data
collected by the foreground programs. These back
ground programs produce menus which allow the user
to choose from six types of data plots. The graph
is usually generated on the terminal screen within
five seconds after the user selects the last plot
ting parameter. After this, the user can request a
hard copy from the on-line printer. The background
programs also allow the user to transfer both the
average and direct data files to a floppy diskette
during the test for permanent storage. The user
could use this option if critical data might be
destroyed by computer power failures during a storm
or by hostile machines located near the computer.
However, normally this data transfer is done after
the test is complete by using standard DEC copy
commands.

The software scheme that synchronizes the above
software programs with the hardware and allows for
user interaction will be discussed after some addi
tional technical features are presented.

IMPORTANT TECHNICAL FEATURES

The following DEC computer hardware and software
features were necessary to accomplish the speed and
resolution requirements for the mold evaluation:

1. Fast data storage and retrieval from virtual
memory during the test.

2. Software overlays for the background
subroutines.

3. Fast data input using a foreground assembly
language subroutine.

4. Clock interrupts to maintain a constant data
scanning rate from the digitizer.

5. Direct graphics instruction set (ReGIS).

New DEC RT-11 virtual memory support provided 200K
bytes additional memory for temperature data. DEC
read and write commands are valid for communicating
with virtual memory for fast data access. This

387

feature allowed virtual memory to be a common data
area where both the foreground and background can
quickly access the thermocouple data.

The software overlay feature of RT-11 permitted the
large background programs to operate within a small
region of memory. RT-11 is a fast operating system
but it only supports up to 64K bytes of program '
memory, including its own operating system software.
Therefore, all the background subroutines were writ
ten as separate independent modules. These back
:round subroutines are placed in virtual memory and
>nly the subroutine required for a specific plot is
~opied into system memory. This was done from vir
~ual memory to save time whenever the user calls for
a new type of graph. Overlaying is much faster from
virtual memory than from a floppy diskette which is
the normal method.

Rapid data scanning from the digitizer was accom
plished through an assembly language subroutine in
the foreground. DEC assembly language converts a
software program, written with DEC mnemonics,
directly to machine code for optimal execution
speed. A fast data path from the digitizer to the
computer was necessary to allow the user the maximum
amount of time to interact with the graphics. It
turned out that the assembly language routine was
able to ask and receive data faster than the digi
tizer could transfer it. Therefore, the assembly
language routine adds each new thermocouple value to
those previously accumulated from that channel while
it waits for the next input, thus saving additional
time at the end of each cycle to average each
channel.

The programmable clock within the computer activates
the assembly language data scanning subroutine to
provide a constant data sampling rate from the
digitizer. However, before reading data, the assem
bly language routine issues a special set of com
mands to reactivate the foreground environment which
allows the main foreground program to resume after
the assembly language completes its tasks.

The most important technical feature of the DEC
equipment that allowed real-time graphics to be a
part of this data acquisition system was being able
to write direct graphic commands. Standard FORTRAN
callable subroutines are available from DEC to
create graphics. However, they use nearly half of
the programming memory and operate too slowly for
our purposes. DEC provides a Remote Graphics
Instruction Set (ReGIS) to create an image by
directly turning on or off each individual pixel
within the VT-125 terminal. To use ReGIS, it was
necessary to write separate software subroutines for
each different graphic option. These software sub
routines position all of the graphic lines, text,
and data points on the terminal screen. Writing the
plotting subroutines with ReGIS commands was time
consuming but allowed the system to operate at the
necessary speed.

SPECIAL SOFTWARE SCHEME

Synchronizing the various activities of the data
acquisition system with the many hardware and soft
ware items already described was the most critical
element in this project. Creating a software scheme
to record data at precise intervals, while giving
the user rapid access to the data for a continuous
flow of optional temperature plots, provides the

experimentalist with a valuable tool. Figure 4
illustrates the modularly written software and the
various data flow patterns available from the mold
to the foreground, background, virtual memory,
graphics terminal, and the floppy diskette.

AVERAGE
Illes

DIRECT
files

BACKGROUND SUBROUTINES

~}
Figure 4 DATA FLOW BLOCK DIAGRAM

VIRTUAL
MEMORY

Since data scanning is extremely important, the
clock was used to activate the foreground data
scanning routine from its idle state at 2-second
intervals throughout the test. After the foreground
is activated by the clock-driven data scanning
routine, it must complete the following basic tasks:

1. Accept data from the digitizer.

2. Separate direct and average data measurements.

3. Store data in virtual memory files if current
scan is the last one in the mold cycle.

4. Open an input message buffer to receive
asynchronous background messages.

5. Respond to any data request from background.

6. Suspend itself until the next clock interval.

These six tasks establish the foreground protocol
and can be accomplished in less than
10 milliseconds.

The foreground tasks increase when the user selects
one of the temperature plots from the background
menu. The background must then communicate with the
foreground to determine whether the required plot
ting data is located in a local foreground buffer or
in a virtual memory file. For the background to
obtain this information, it must synchronize itself
with the foreground by sending a data request mes
sage to the foreground. The foreground receives
this data request message asynchronously whether it
is active at the time or not. If the foreground was
not active when it received the message, it cannot
respond to the message until it is reactivated by
the clock driven data scanning routine and completed

388

the primary data tasks. Only then will the fore
ground look for a background data request.

If the foreground did receive such a background data
request message, it will establish a synchronized
communications link with the background to initiate
the sequence of events for a data transfer. Both
the foreground and background place themselves in a
standby mode after each message, creating this syn
chronized communication link.

The complexity of this foreground and background
chain of events depends on whether the requested
data is located in a local foreground buffer or in a
virtual memory data file. The simplest form is when
the requested data is already available in the fore
ground area and must be passed to the background to
create a plot for the user. This can be accom
plished by passing the data buffer to the background
with a wait command to make sure the background
received the data buffer before the foreground sus
pends itself. After the foreground suspends itself,
the background can run asynchronously to plot the
data. If and when the background needs more data,
it will again establish the synchronized communica
tion link.

The synchronized communication link becomes more
involved when the foreground returns a message to
background stating the requested data is located in
a virtual memory data file. In order for the
background to fetch data from both the foreground
and virtual memory, additional steps must be taken
to assure the foreground protocol will not be dis
turbed. Only one program at a time can be attached
to the same virtual memory data file; therefore, the
foreground must first detach itself from the file,
send a message to background stating the data is
located in virtual memory, and then place itself in
standby. After receiving the message, the back
ground will attach itself to the designated virtual
memory file, retrieve the data, detach itself, and
return a message to foreground stating it has the
data and wants to plot the data asynchronously.
After receiving this message, the foreground will
reestablish its link to virtual memory and suspend
itself allowing the background to create the plot.
Even with these extra communication messages for the
virtual memory data, the foreground still only needs
to be active 2 percent of the 2-second data scan
interval. This leaves 98 percent of the time for
the user to generate real-time graphics. This is
why the user is unaware of the foreground data
processing activities.

DATA HANDLING

All of the thermocouples are hard-wired to the
digitizer. The computer is programmed to read each
thermocouple value, individually from the digitizer,
every 2 seconds during the entire test. The fol
lowing sections will describe how the data is pro
cessed to produce various temperature plots. See
Appendix B for the Analogic digitizer features.

Data Processing

All temperature values during a given cycle are held
in a separate temporary buffer in foreground. A
signal from the press computer notifies the data
acquisition system at the end of the mold cycle at
which time these data values are passed to the
virtual memory storage area. The temporary data

files within the virtual memory area limit the data
acquisition system to 90 cycles before it is neces
sary to copy them to a floppy diskette.

All of the thermocouple data values were stored in
millivolt values from the digitizer. Only those
data values used for a graph were scaled through the
functions shown in Figure 5. This method saved the
time necessary to convert each data point from a
voltage value to a temperature value.

DIGITIZER

GAIN = DIGITIZER I/O GAIN C0.2326 V/l'fV)
CNT = 12 BIT AID TEMPERATURE COUNT CO TO 4095>
FSO = DIGITIZER FULL SCALE OUTPUT C20.0 Vl
SCALE= RATIO BETWEEN 130 TO 190 deg C ClB.l deg C/l'fV)

SCALE I GAIN x FSO I 4096 = 0.380 deg C/CNT

GRAPHICS

TEMP = THERMOCOUPLE TEMPERATURE IN DEGREES CELICUS
PR = PIXEL RANGE ON Y-SCALE
TR = TEMPERATURE RANGE ON Y-SCALE
P = PIXEL COORDINATE AT TOP END OF Y-SCALE
T = TEMPERATURE AT TOP END OF Y-SCALE
PC = PIXEL COORDINATE CORRESPONDING TO TEMPERATURE COUNT

TEMP C0.380 dea C/CNT> x CCNTl + 5 deg C offset

PC CT - TEMP> x PR I TR + P

p T

PR TR

Figure 5 DATA SCALING FUNCTIONS

The usual operating temperature range for the mold
was 130 to 190°C. The temperature-voltage relation
ship within this range is linear within 0.1°C. It
should be noted, from Figure 5, that a +5°C offset
was added to provide the best linear fit between 130
to 190°C. This causes a 5 degree error at zero;
therefore, a small error will occur on the 0 to
200 degree scale. This coarse scale was only
included to give the user a rough indication of any
thermocouple value during the mold warm-up period.
All meaningful data taken during the test was plot
ted using the 130 to 190 degree option.

All of the data stored in virtual memory and the
floppy diskettes are stored in their original form
in order to provide maximum precision for off-line
data analysis.

User Graphics Options

After the first mold cycle, data is available for
background options. The background will produce
three basic plots with specific options: time,

389

section, and cycle. Each of these types can be
displayed in a large plot (high resolution) or four
small plots (low resolution).

The time plots are drawn using the direct data from
the last molded hood. Each plot will show all tem
perature values for a single thermocouple from the
last completed cycle as illustrated in Figures 6 and
7. The background fetches this data from the fore
ground buffer before it is transferred to virtual
memory.

Figure 6 SINGLE TIME PLOT

Figure 7 FOUR TIME PLOTS

The section plots are drawn with the data stored in
the average data buffer. Each plot will display the
average temperature values from the last completed
cycle for each thermocouple located along one of the
four cross sections shown in Figure 1. The data
points indicated with small circles in Figure 8 are
the steamline wall temperatures and those indicated
by connected lines are the mold surface tempera
tures. Each data point represents the average
thermocouple value from the last molded hood.

The cycle plots are drawn using all of the previous
average data for the channels selected as illustra
ted in Figure 9. This is the only plot that

requires data from both the foreground and virtual
memory. This task required the most complex
software scheme because the foreground must keep a
log for all of the average 1ata buffers. The
foreground and background must continually pass
messages in order for the background to know where
to locate the data. Each plot will display the
average temperature values of a single thermocouple
as a function of the mold cycle. This is the most
used graphics routine because it indicates to the
user when the mold temperature has stabilized for
specific process conditions.

Figure 8 SINGLE SECTION PLOT

Figure 9 SINGLE CYCLE PLOT

The user will always have the option after each plot
to press the return key and wait for an updated plot
having the same options or to press the H key for a
hardcopy and/or the E key for ending that specific
plot. Ending will automatically display the
graphics menu on the terminal screen as shown in
Figure 10. The user also has the option to copy all
of the average and direct files from virtual memory
to a new floppy diskette during the test.

390

Figure 10 USER GRAPHIC MENU

Permanent Disk Storage

This option will allow the user to copy the direct
and average data files from virtual memory to a new
floppy diskette. The user should realize that this
data transfer routine could use most of the next
mold cycle, leaving little or no time to display the
data from the last part. The only reason for the
user to use this routine is when important data
could be lost due to electrical interference prob
lems from near-by machinery or from power outages.
Normally all data files would be transferred from
virtual memory to a new floppy diskette after the
test is ended with standard copy commands. This
must be done before the computer is powered down
because the virtual memory is destroyed after the
computer power is turned off.

SYSTEM VERIFICATION

To determine the overall precision of the data
acquisition system, each thermocouple channel was
connected to a thermocouple which was heated to near
190°C. The test apparatus consisted of a Thermotron
oven, a large aluminum bar, and four thermocouples
as illustrated in Figure 11. The aluminum bar had a
hole drilled into its center for the tips of the
four thermocouples. This allowed us to establish a
stable reference temperature. Approximately 1 hour
was required to connect the four thermocouples to
each of the 17 cards (68 thermocouple inputs) and
run our own special software program to record each
card separately. This test was performed every day
for five consecutive days leaving the oven on
continuously.

The test data shown in Figure 12 illustrates typical
results from one day's test. The data formed a bell
shape curve with all of the measurements within
± 1°C. Most of these variations can be attributed
to the digitizer (see Appendix B).

V>
--'
LU z z
..::
I
u

u..
0

"" LU

"" ::;::
::::> z

30

25

20

15

10

0

DIGITIZER

•:.•C:.• o•o 0 0 •. 07•0• 0 o•
•.•••o!...A_•Oo 0 0• 0 0o .• 0

OVEN

COMPUTER

Figure 11 SYSTEM EVALUATION LAY-OUT

10. 32 10. 34 10.36 10. 38 10.41

191. 8 192. l 192. 5 192. 9 193.4

MV

oc

Figure 12 TYPICAL DATA FROM SYSTEM EVALUATION

SUMMARY

Special software was written with a unique scheme to
synchronize, control, and communicate among various
independent software and hardware elements to create
a real-time interactive graphics data acquisition
system. This software was written to interface an
ANDS5400 Analogic digitizer to the DEC (MINC LSI-
11 /23) computer with a graphics terminal to display
mold temperatures in various formats. This system
was used to verify the results of an optimal thermal
design for a production fiberglass hold mold.

This special software enabled real-time interactive
graphics to be incorporated into a data acquisition
system providing a means to quickly evaluate the
changing temperature patterns during the actual
test. The system records and plots mold temper
atures with a precision of± 1°C from 67 thermo
couple locations in the mold. All 67 thermocouples
are scanned every 2 seconds during each mold cycle
which is normally 60-100 seconds long. At the end
of each cycle, the data may be plotted in six dif
ferent formats selected through user menus. Having
data graphs within seconds after each mold cycle
enabled the experimentalists to draw meaningful
conclusions from the temperature variations during

391

the test, especially during the initial start-up
transient. Although special software was written
for this specific project, the same concept can be
applied to other experiments requiring real-time
graphic display of transducer measurements.

ACKNOWLEDGMENTS

The author wishes to thank Edward Clayton for his
support with interfacing the digitizer to the com
puter, making the special cables, calibrating the
digitizer, and testing the system for the temper
ature evaluation each morning for several weeks.
Also, to Dan Dowdall for testing the software menus
and documenting the problems which made them easy to
find and debug.

The author also expresses his appreciation to the
Project Leader, Dave Caulk, for his positive atti
tude and willingness to discuss and resolve tech
nical concerns.

REFERENCES

1. M. R. Barone and D. A. Caulk, "Optimal Thermal
Design of Compression Molds For Chopped-Fiber
Composites," Polymer Engineering and Science,
Vol. 21, pp. 1141-1148 (1981).

APPENDIX A

DEC Computer Features

A Digital Equipment Corporation (DEC) computer was
used with a real-time operating system (RT-11). The
DEC computer consists of the LSI-11/23 microproces
sor, RX02 double density floppy disk drive, 16 bit
parallel interface card, VT-125 graphic terminal,
and the LA-100 dot matrix printer as shown in Fig
ure 2. The computer supports up to 256K bytes of
memory, but the RT-11 operating system will only
allow 64K to be used for the system and programming
software. Therefore, the remaining 200K bytes were
used as virtual memory for fast data storage and
background overlaying. Data stored temporarily in
virtual memory can be transferred during or after a
test to a floppy diskette for permanent storage.
The data path to and from virtual memory is illus
trated in Figure 4. Data for up to 90 molding
cycles can be stored in virtual memory and then
transferred to a diskette for off-line analysis.

A standard DEC general purpose interface circuit
board (DRV11) was purchased for the computer to pro
vide 16 bit parallel communication between the com
puter and the thermocouple digitizer. This DRV11
interface board passes 67 thermocouple values in
less than 5 milliseconds.

The DEC VT-125 terminal provides both text and
graphic viewing for the user through ReGIS commands.
After the software package is loaded into the com
puter, the user is continually being prompted
through a text menu displayed on the terminal
screen. Once the user has selected a specific data
graph option and the text is cleared from the
screen, ending the text mode, the terminal enters
the graphics mode displaying the chosen graph.
ReGIS commands produce graphic images with a resolu
tion of 240 x 768 pixels. Each of these pixels can
be turned on by sending ASCII character to the

VT-125 terminal from the background software to
create a specific graph. Each pixel location has
four gray levels which were used to enhance the data
points relative to the grid lines. This programming
method is tedious but execution is very fast. For
example, Figure 6 was fully displayed on the VT-125
terminal in less than 5 seconds.

APPENDIX B

Analogic Digitizer Features

An Analogic ANS5400 transducer digitizer (Figure 2)
converts each low voltage thermocouple signal to a
12 bit binary number through a multiplexer and
transfers it to the DEC computer upon request. This
12 bit number is left-adjusted in the 16 bit DEC
input; therefore, the assembly language routine must
shift each thermocouple value 4 bits to the right.
The least significant bit is approximately equal to
0.38°C when using type J (I.C.) thermocouples.

The Analogic digitizer, Model ANDS5400, was
purchased with the following items:

Quantity
1
1
1
1

19

Calibration

Part No.
ANDS5400-B-B
ANDS5400-B
AC261
AC2712-2D
AC4272-"J"

AC23B

Description
Master chassis
Expansion chassis
Signal processor
A/D converter
4 ch thermoplexer

cards
GPI card

Two different calibrations are available for the
digitizer. The first calibration mode checks only
the digitizer by disconnecting all thermocouples
through an internal relay. Voltage levels that
produce plus full scale, zero, and minus full scale
outputs are internally connected to the input ampli
fiers of each channel. Both the gain and offset can
be adjusted for every channel. The digitizer is
normally stable within± 0.76°C (± 2 counts).
Details for this calibration can be found in the
Analogic ANDS5400 instruction manual.

The second calibration mode includes the thermo
couples and allows the user to adjust the cold
reference junction on each four channel input card.
This adjustment calibrates the temperature sensing
resistor for zero volts output with the thermocouple
at 0°C. Only one temperature sensing resistor is
available for each input card to compensate for the
reference junction of the type "J" input thermo
couple wire. Each card contains four thermocouple
channel inputs, channel #0 to channel #3.
Channel #0 is located on the bottom edge of the card
and channel #3 is located at the top. The sensing
resistor is located in the center between
channels #1 and #2. Channel #1 on each card was
chosen to calibrate this cold reference junction.
The calibration was accomplished by placing the
thermocouple into an ice bath {0°C) and adjusting
the output of channel #1 to 0.0 volts. The other
three channels were normally within 0.76°C
(2 counts) of zero.

392

EXPERIENCES WITH STYLE IN FORTRAN

Robert Walraven
Multiware, Inc.
Davis, California

Ralston Barnard
Sandia National Laboratories

Albuquerque, New Mexico

ABSTRACT

Good programming style makes code more readable and maintain
able. Here are some suggestions from experienced FORTRAN
programmers about style that you might find useful.

Don't be overly clever.

Clever programming tricks make for code that is
difficult to understand. Say what you mean as
simply and directly as you can. It is important to
make code clear, so people can debug, maintain and
modify it.

For example, what does this code do?

1

DO 1 I=l,N
DO 1 J=l,N
X(I,J) = (I/J)*(J/I)

It puts ones on the diagonal of the matrix X and
puts zeros everywhere else.

Here is a clearer way to code the operation that is
actually faster:

10
20

DO 20 I = l,N
DO 10 J = l,N

IF (I.EQ.J
X(I,J)

ELSE
X(I,J)

ENDIF

CONTINUE
CONTINUE

Follow the KISS principle.

) THEN
1.0

0.0

Keep it Simple, Stupid!

Use spaces freely to improve the appearance of code.

Here is some code that is badly in need of some
spaces:

IF(X-Y)30, 10, 10
10 IF(Y-Z)S0,20,20
20 W=Z

GO TO 70
30 IF(X-Z)60,40,40
40 W=Z

GO TO 70

393

so W=Y
GOTO 70

60 W=X
70

It is rewritten in the next example with spaces
added for readability.

(This example will be rewritten several times in
the following examples.)

Don't use ARITHMETIC IF statements. They are too
complicated.

Notice how difficult this code is to follow:

IF (X-Y) 30, 10, 10
10 IF (Y-Z) S0,20,20
20 w = z

GO TO 70
30 IF (X-Z) 60,40,40
40 w = z

GO TO 70
so w = y

GO TO 70
60 w = x
70

The next example shows the same code without
ARITHMETIC IFS.

Avoid GO TO statements whenever you can.

The following code is difficult to understand
because it uses GO TO statements:

IF (x .LT. y GO TO 30
IF (Y .LT. z GO TO 50
w = z
GO TO 70

30 IF (X .LT. Z) GO TO 60
40 w = z

GO TO 70
so w = y

GO TO 70
60 w = x
70

The next example shows the same code without GO TO
statements.

Use meaningful comments to explain what logical
blocks of code can do.

C •••••• W =the smallest of X, Y, and Z

w = x
IF (Y .LT. W W = Y
IF (Z .LT. W W = Z

Use meaningful names where possible.

C •••••• SMALL= the smallest of X, Y, and Z

SMALL = X
IF (Y .LT. SMALL
IF (Z .LT. SMALL

SMALL = Y
SMALL = Z

Use library and intrinsic functions when possible._

C •••••• SMALL= the smallest of X, Y, and Z

SMALL =AMINO (X, Y, Z

This performs the same operation as the ten lines
of code we started with.

INDENT

It has been experimentally proven that for psycolo
gical reasons two to three spaces of indentation
make the most readable code.

No indent:

3 spaces:

Tab:

IF (X .LT. Y
IF (Y .LT. Z
CALL XYZ
ENDIF
END IF

THEN
THEN

IF (X .LT. Y) THEN
IF (Y .LT. Z) THEN

CALL XYZ
ENDIF

ENDIF

IF (X .LT. Y) THEN

ENDIF

IF (Y .LT. Z) THEN
CALL XYZ

ENDIF

Make IF-THEN-ELSE blocks stand out.

BAD ---

CALL SUBRO
IF (I.EQ.l) THEN
x = 12.
CALL SUBRl
ELSE
x = 13.
CALL SUBR2
ENDIF
CALL SUBR3

--- GOOD

CALL SUBRO

IF I.EQ.l THEN
x = 12.
CALL SUBRl

ELSE
x = 13
CALL SUBR2

ENDIF

CALL SUBR3

394

Eliminate simple FORMAT statements.

--- BAD

WRITE (5,10)
10 FORMAT (' Enter some text: ')

READ (5,20) N,STRING
20 FORMAT (Q,A)

WRITE
READ

GOOD

5, *
5, I (Q,A) I

'Enter some text: '
N, STRING

Use spaces to align for readability.

x = 1.2
YX = 52.1

BAD ---

IF (X .GT. 12.) GO TO 10
IF (YZ .GT. 1.9) GO TO 20

x =i 1.2
YX 52.1

GOOD ---

IF X .GT. 12.0
IF YZ .GT. 1.9

GO TO 10
GO TO 20

Don't jump out of code block with GO TO.

BAD

C •..••• A block of code

GO TO 10

C •••••• Another block of code

10

GOOD ---

C •.••.• A block of code

GO TO 10

10 CONTINUE

C ••••.. Another block of code

Avoid bushy trees.

C •••••• SMALL= the smallest of X, Y, and Z

IF (X .GE. Y) THEN

IF (Y .GE. Z) THEN
SMALL Z

ELSE
SMALL Y

END IF

ELSE

IF (X .GE. Z) THEN
SMALL Z

ELSE
SMALL X

END IF

END IF

Use indentations and blank lines to make code more
readable.

The previous example without indentations and blanks
look like

C ••.••• SMALL= the smallest of X, Y, and Z

IF (X .GE. Y THEN
IF (Y .GE. Z THEN
SMALL = Z
ELSE
SMALL = Y
END IF
ELSE
IF (X .GE. Z) THEN
SMALL Z
ELSE
SMALL X
END IF
END IF

Define symbolic names in PARAMETER statements.

Bad:

Good:

IX !PEEK ('176504'0)

INTEGER*2 adac csr
PARAMETER adac csr

IX !PEEK (adac csr

'176504'0)

Each DO-loop should terminate on a separate
CONTINUE statement.

Bad:

Good:

DO 10 I=l,10
DO 10 J=l,10

10 X(I,J) = Y(I,J)

DO 20 I=l,N
DO 10 J=l,N

X(I,J)
10 CONTINUE
20 CONTINUE

Y(I,J)

395

Don't GO TO an executable statement.

Bad: GO TO 10

10 DO 100 I=l,J

Good: GO TO 10

10 CONTINUE

DO 100 I=l,J

Use good visual separators to divide logical blocks
of code.

c

c

BAD ---

A BLOCK OF CODE
x 1.2
Y = LOG (X)
Z = X+Y
ANOTHER BLOCK
X Y+Z
Y LOG(X)
z 1. 2

GOOD

c A block of code

x = 1. 2
Y = LOG (X)
Z = X+Y

c Another block

X Y+Z
Y LOG(X)
z 1.2

Use spaces in argument lists for readability and
TABability.

BAD

SUBROUTINE BAD EXAMPLE (X,Y,Z,N,FLAG)

GOOD

SUBROUTINE GOOD EXAMPLE (X, Y, Z, N, FLAG)

Miscellaneous:

1.

2.

3.

Begin main progams with
PROGRAM name

Statement numbers should be in ascending order.

Avoid the DIMENSION statement. Use explicit
type declarations instead.

4. An array in a COMMON block should have its
dimensions declared in the COMMON statement.

5. Group EQUIVALENCE statements with the array
declarations concerned.

6. Within a program module, the subprograms should
be ordered alphanumerically.

7. Within a program unit the COMMON declarations
should be ordered alphanumerically.

8. In mixed-mode expressions and assignments, the
type conversions should be written explicitly.

9. Logical unit numbers should be symbolic
constants.

10. Use RETURN in subroutines and functions only
for alternate returns.

Commenting your code.

Should be a helpful tool after the code is written.

Should not look like the coder's shorthand.

Bad comments contribute to "Write-only" code.

Purpose: Help maintainers to quickly isolate
problematic sections of code.

Test Question

"Do these comments tell the reader something he
doesn't already know from reading the code itself?"

Commenting Techniques

Comments should be written to meet the needs of
the audience.

Use spacing and format to improve readibility.

Use spacing and format to show subordination.

Be consistent in presentation of comments.

More Techniques

Use a prose paragraph overview at the begining of
the module.

Use the overview to pull together the line-by-line
comments.

Don't have your comments parrot the code.

Line comments should act as an access device to the
code section.

Code Labels

Don't use undefined acronyms or abbreviations.

Let labels convey meaning.

396

USING AN LSI-11/23 AND RT-11
TO DIGITIZE ANALOG TAPES

John N. Stewart
Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

I describe in this paper the design and implementation of
a system on an LSI-11/23 under RT-11 that digitizes
14-channel analog tapes at given intervals and writes the
digitized data to a magnetic tape. The analog tapes
contain 13 channels of data and one channel of IRIG-B time
code. A given interval is selected by entering a time and
an interval. The IRIG-B time code is read from the analog
tapes and used to start the digitizing. A programmable
clock board is used to control the digitizer and to count
the interval length. In order to achieve the through-put
rates needed, I wrote the code in MACRO and addressed the
magnetic tape controller directly instead of using
programmed requests.

THE PROJECT

This project started in the spring of 1984 when I
was asked if there were any codes to digitize
14-track analog tapes. My reply was that there
were none, but that I could probably write one if
they were not in a big hurry. I had several LSI
sys tams digitizing 24 hours a day and storing the
data on magnetic tape, so I was familiar with the
equipment and could program it. I asked a few
questions to pinpoint exactly what was wanted.
Essentially, there were several 14-track analog
data tapes containing seismic events at various
times. Of the 14 tracks, 13 were data and 1 was
IRIG-B time code. The time and length of the
events were known. The desired digitizing rate
was 500 samples per second per channel. The
digitized data would be written to magnetic tape.

The equipment situation looked good. I had
another LSI system running RT-11 (SJ) which was
used for development work and also included a
magnetic tape unit, a digitizer board, and a
programmable clock board. There was an IRIG-B
time code reader available, and an analog tape
playback unit could be found. Figure 1 shows how
the system looked. I decided to write the soft
ware in MARCO to gain speed, simplicity, and
memory over writing it in a high-level language.

switch buffers and start the write tape process
when a buffer filled.

There were no apparent problems with memory. The
code would use two output buffers, each big enough
to hold one second of data, which would give me
plenty of time to write a buffer to magnetic tape
while putting data into the other buffer. The
size of each buffer would be 7,000 words (14,000
bytes), slightly large for a standard magnetic
tape record but acceptable.

I did not see any problems writing the magnetic
tape. The tape unit had a density of 1600 bytes
per inch and moved at 75 inches per second. The
code should be able to easily write 14,000 bytes
in less than a second.

THE FIRST PROBLEM

The only analog tape playback unit that could be
found forced playback at twice real time which

The 16-channel digitizer that would be used could
handle +/-10 volts, +/-5 volts, 0-10 volts, or 0-5
volts. It could do a digitization in 25 micro
seconds and had an automatic channel sequencer. I
felt the actual digitizer loop in the code would
take less than 100 microseconds which would allow
a digitizing rate of better than 10,000 samples
per second. Since I only needed 500 samples per
second per channel for 14 channels or 7,000
samples per second I seemed in good shape. I
would have the code digitize the selected channels
of data as quickly as possible and then wait for
the next clock interrupt rather than doing an
equal interval type of digitizing. This would
provide enough time between sampling intervals to Figure 1. The Equipment.

Proceedings of the Digital Equipment Computer Users Society 397 New Orleans LA - 1985

meant the code had to digitize at twice the
desired rate or 1000 samples per second per
channel. That is a total of 14,000 samples per
second (28,000 bytes). This meant the digitizer
had to take a sample in less than 71 microseconds
and also make available an extra slot of time
every second to switch buffers and start writing
out the old buffer to magnetic tape. Again,
considering the 25 microsecond digitizer con
version cycle and needing only a few instructions
to digitize a channel, I felt the speed up could
be handled.

The amount of memory for the two 1 second buffers
would double to 28,000 words (56,000 bytes). This
would not leave enough memory for the code even
though I would be programming in MACRO. I needed
to go to smaller buffers and, hence, records; but
I did not know the amount of time the tape unit
used to start and stop when writing a record
(record overhead time). I was also starting to
worry about the volume of data the tape unit could
handle in one second. I searched through the tape
manual and found the information as shown in
Table 1.

TABLE 1

TAPE TIMING (for 9 track, 75 !PS tape)

Ramp time
(getting up to speed) 5. 000 milliseconds

Write gap delay 1.000 millisecond

End-of-record
(3 blank frames, CRC,

3 blank frames, LLPCC) .067 milliseconds

Write stop delay .300 milliseconds

Ramp time
(slowing to a stop) 5.000 milliseconds

Record overhead time ll.367 milliseconds

Time to write
1600 bytes (1 inch) = 13-333 milliseconds

Therefore, a 28,000 byte (1 second) record would
take:

(28,000/1600) * 13-333 + 11.367
= 244.700 milliseconds.

233. 333 + ll. 367

I had thought that tape operations were much
slower and so I was pleasantly surprised with the
above numbers. With the record overhead time
being so short, I could go to a more reasonable
record size of approximately 4000 bytes and the
buffers would only total to approximately 8000
bytes. This would solve the memory problem.

A 4000 byte record would take 44.7 milliseconds to
write. I decided to have the code calculate a
record size based on the digitizing rate such that
the record would contain more than 100 wall clock
milliseconds of data. This would allow time to

switch buffers and start the tape writing between
sampling intervals.

THE TIME CODE READER

The next consideration was how to start digitizing.
At first I had planned to take the easy way out.
I would have the user position the analog tape
close to the desired time by looking at the IRIG-B
time code reader display, and then have the user
start the analog tape reading and press a key on
the input tenninal to signal the code to start
digitizing. The IRIG-B time channel could be
digitized to enable the user find the real time
when the digital tape was processed. For one or
two events this would do, but not for hundreds of
events. I remembered someone saying there was a
BCD output on the time code reader. I checked the
manual and found that the time code reader had a
BCD time output of 32 bits giving seconds through
days. I only had one 16-bit parallel interface
board so settled for 7 bits of seconds, 7 bits of
minutes, and 2 bits of hours. The 16-bit BCD time
code is shown here:

398

HOURS MINUTES SECONDS
--xx xxx xxxx xxx xxxx

where x represents 1 bit.

For example: time 16: 58: 21 would be received as
the following 16 bits

10
(2

101
5

1000
8

010
2

0001
1).

Allowing only 2 bits for hours meant the user
would have to keep track of the hours. Table 2
shows the correspondence between the 2 bit hour
and the actual hour.

TABLE 2

HOUR BITS 00 01 10 11

0 1 2 3
HOUR 4 5 6 7

8 9
COULD 10 11 12 13

14 15 16 17
BE 18 19

20 21 22 23

Since the code would now have access to tape time,
I decided to have the user set up a list of event
times. The code would compare the event time with
the analog tape time and, when found equal, would
start digitizing. I would have the code convert
the inputted time from ASCII to a BCD time so only
one test needed to be done to check for the
correct time.

Another problem occurred in that if the code was
continuously looking for a time when the user was
positioning the analog tape, a false time match
could occur when changing analog tape speed to

fast forward and back to regular speed. To get
around this I added a flag to each event time that
if set to "P" would cause the program to pause
until a character was entered at the terminal,
otherwise the code would continue checking for the
next time. This would allow the user to manipu
late the analog tape without worrying about
causing false time matches.

PUTTING IT TOGETHER

Having thought the project through, it was time to
put the code together. The code was named FASDIG
for the obvious reason that the code would be
digitizing much faster than any of the other
codes. What follows mostly reflects the existing
state of FASDIG.

FASDIG uses the .GTLIN programmed request to read
the input file. This was the only routine I could
find to read a line of ASCII characters from a
file. Therefore, the user is forced to run FASDIG
from an indirect command file. The first line of
the input file has to be "RUN FASDIG". The input
data follows that. The first line of data con
tains 4 numbers: the number of channels, the
number of .1 milliseconds (wall clock) per
digitizing interval, the numerator and the
denominator of the ratio of wall clock time to
data tape time. Following that are up to seven
teen 60-character lines for describing the tape
and each of the channels being digitized. Then
there is one line for each event consisting of the
starting day, hour, minute, second of the event,
number of seconds to keep, and the pause flag.
The event time is in terms of analog tape time,
the number of seconds to keep is in terms of wall
clock time. I did not like mixing time bases but
did not want to convert number of seconds from
analog tape time to wall clock time which was
needed for the digitizer. An example of an input
file follows:

RUN FASDIG
4,10,2,1, 4CHAN,1000S/SEC,RATI0=2
EXPERIMENT # 2032 S5 MEGA PUMP

CHl= EE-1 VERT (4V) PRECAMBRIAN
CH2= CEBT (4V) PRECAMBRIAN
CH3= BANC (4V) SURFACE
CH4= LAFK (4V) SURFACE

341,04,24,36,10,P,
341,04,34,22,10, '
341,04,34,50,10,P,

The first action of FASDIG is to execute the SETUP
routine. The routine prints a startup message as
follows:

MUST RUN FROM INDIRECT FILE. WANT EXAMPLE (Y,N) ?

If the answer is a Y the routine then prints the
startup message as shown in Figure 2.

After the startup message the routine calculates
the address of the second buffer by adding half of
the available memory to the first buffer address.
Care is taken to keep the address at a word
boundary.

The first data line is read in.
digitizing rate and the number of

Using the
channels, a

399

record size is calculated such that it contains
more than 100 milliseconds of data and the size is
about 4000 bytes and less than the buffer size.
For 1000 samples per second and 13 channels of
data the size comes out as 4026 bytes and 143
milliseconds. Each record contains an 11 word
header and each sampling interval contains the
16-bit BCD time from the time code reader at the
start of this sampling interval in addition to the
digitized data.

Various other quantities are calculated such as
sample intervals per record and time per record.
The number of .1 millisecond ticks per ~ampling
interval is put into the clock buffer. When the
clock is started, an interrupt will occur after
that many ticks. Next, the comment or ID lines
are read into a temporary array. The array will
be part of the file header.

Finally, the event time lines are read and put
into four arrays for the digitizing part of the
code. Array 1 contains the ASCII day, hour,
minute, and second for each event to search for.
This ASCII time is put into the header of each
event of the data output tape. Array 2 contains
the BCD time to look for, converted from the times
in Array 1. Array 3 contains the number of
records to form and write for each event. This
number is formed from the calculated record size
and the number of seconds desired for an event.
When digitizing, it is this number which is used
to determine the end of an event rather than
actually counting the seconds. Array 4 contains
the pause flag: 0 for no pause or 1 to pause.

Once the input file has been completely read, a
177777 octal is placed in the BCD array after the
last time. The SETUP routine then calls a tape
initializing routine. This routine brings in the
hardware tape driver and asks if the tape is a new
or old tape. If it is an old tape, the routine
will search for a double end-of-file and position
the tape between the end-of-files; otherwise, it
will rewind the tape. Then, it will write out the
file header record. Next, the SETUP routine
prints "READY TO DIGITIZE. START ANALOG. ENTER
LETTER,CR ?" and now we return to the main program.
A flow diagram of the SETUP routine is shown in
Figure 3,

The rest of the code cons"ists of 4 nested loops as
follows:

Loop 1: inner-most digitize all channels.
Loop 2: next = do number of sample intervals

in a record.
Loop 3: next do number of records in an

event.
Loop 4: outer-most do events until BCD time word

is 177777 octal.

At the start of loop 4 the code continuously reads
the 16-bit parallel interface board for the BCD
analog tape time and compares it with the BCD
event time. When a match occurs the clock, loops
1, 2, and 3 and the digitizer are started and the
clock interrupt flag check is skipped. There
after, before starting loop 1, the clock interrupt
flag is checked. If it is set, then the code is
too slow for this digitizing rate and the code
stops; otherwise, the code waits for the clock

USING AN EDITOR BUILD A FILE, FILENAME.COM A.S FOLI.OWS:
l."RUN FASDIG" (DONOT INCLUDE")
2.NUMBER CHANNELS,NUMBER .lMILLISEC/SAMPLE,NUMERATOR,DENOMINATOR OF RATIO

WHERE RATIO•PLAYBACK SPEED TO RECORD SPEED
3.UP TO 17 LINES OF ID (60 CHAR EACH) IF < 17 LINES, END WITH CR ONLY LINE.

LINE l•GENERAL INFO, THEN ONE/CHAN WHERE lST NONBLANK CHAR
AFTER • SIGN IS CHAN ID

4.UP TO 100 PICK TIME LINES (DAY,HR,MIN,SEC,# SEC TO KEEP, P OR NOTHING)
NOTE: P IS FOR PAUSE AT END OF THIS EVENT
NOTE: SEC TO KEEP ARE WALL CLOCK SECONDS.

~.END FILE WITH A CR ONLY LINE

TO RUN CODE - ENTER "®FILENAME" (DO NOT INCLUDE ")

DO YOU WANT TO CONTINUE (Y,N) ?

Figure 2. Startup Message

SETUP SUBROUTINE

ENTER1------_....INITIALIZE DIGITIZER. CLOCK
AND PARALLEL INTERFACE

PRINT STARTUP MESSAGE
AND WAIT FOR ANSWER

CALCULATE MAX SIZE AND
ADDRESSES OF BUFFERS

READ "NCHAN.TICKS.RATIO NUMER.DENOM"
NUMBER OF TICKS/SAMPLE TO CLOCK

CALCULATE VARIOUS QUANTITIES

READ ID LINES
UP TO 17 OR BLANK LINE

READ A TIME LINE

BLANK LI NE ? YES
NO

ASCII TIME INTO ARRAY
CONVERT TIME TO BCD, INTO 16 BIT BCD ARRAY

NUMBER OF SECONDS TO KEEP INTO ARRAY
PUT A 0 INTO PAUSE ARRAY

~PUTAllNTO
~ __ _.__N_O_~ PAUSE ARRAY

~-----'-'N,,_O_, HAVE 100 TIMES? ----~
t YES

177777(0CTAL) INTO 16 BIT BCD ARRAY
SETUP TAPE HARDWARE DRIVER ,.,._ ____ ~

YES OLD TAPE ? 1~NO~----

l POSITION TAPE BETWEEN
DOUBLE END-OF-FILE I REWIND TAPE I

'------'WRITE FILE HEADER RECORD--~

PRINT "READY TO DIGITIZE. START
ANALOG. ENTER LETTER.CR ?"

WAIT FOR A LETTER

Figure 3. Flow Diagram of SETUP.

400

..

interrupt and then starts loop 1. After loop 1
finishes a check is made to determine if the
buffer (record) full flag is set. If so, a write
of buffer 2 to tape is started and the flag
cleared. Loop 2 continues until the correct
number of sampling intervals to make a record are
in the buffer. After loop 2 finishes the buffer
addresses are switched and the buffer full flag is
set. Loop 3 continues until the desired number of
records have been digitized. After the end of
loop 3 the code stops the clock, writes the last
record to tape, writes an end-of-file, and back
spaces over the end-of-file. Next the code checks
the pause flag. If the flag is set, the comment
"AM IN PAUSE. ENTER LETTER,CR TO CONTINUE." is
printed and the code waits for input from the
terminal. If the flag is not set or input has
been received, then loop 4 continues until an
event time equal to 177777 (octal) is found which
ends loop 4, The code does a little clean up and
finishes. Figure 4 shows a flow diagram of FASDIG.

The clock interrupt handling routine decrements
the clock interrupt flag, clears the interrupt
bit, and returns from interrupt. The flag is
reset by setting it to a 1. If the flag is ever
negative, then more than one interrupt has

occurred since the last time the flag was reset.
Al though not mentioned previously the clock
interrupt flag is checked for +, O, and -.

MORE PROBLEMS

After putting the above code together and
debugging it, I started to run the real case of
1000 sampling intervals per second (i.e. 10 ticks
or ten .1 milliseconds per sampling interval). Lo
and behold I got the message "CODE IS TOO SLOW."
I tried several other values and found the code
would digitize at 20 ticks but not at 18 ticks. I
studied the listing of the code and squeezed out
every unnecessary instruction I could find in the
inner loops. I also rearranged the order of some
instructions. I did everything imaginable to
speed up the code, but to no avail.

At that time I was using the .WRITE programmed
request to write the data out to tape. Since
nothing else I had done speeded up the code, I
decided to look at the tape controller manual to
find out how easy it would be to control the tape
unit directly instead of using the .WRITE pro
grammed request. I found that the tape controller
had several registers and only the command,

FASDIG PROGRAM

GET BCD TIME FROM
PARALLEL INTERFACE

NO AT Tl ME WANTED ?

4YES
I RESET CLOCK AND FLAG I

YES

N"""°~D~IG~1T=1z=E=R,.....,,F=1N=1~sH=E=D~?~
YES

PR I NT "CODE TOO SLOW"

NO DONE ALL CHANNELS ? PRINT ''TAPE TOO SLOW"

t YES f NO
(iRITE FLAG ON ?)>--Y~ES~---.. •(TAPE UNIT IDLE ?)

NO YES

--~N=0-1. BUFFER FULL ?

YES
SWAP BUFFER ADDRESSES

SET WRITE FLAG

~~....., DONE ALL RECORDS ?

YES
STOP CLOCK

LAST BUFFER TO TAPE
EOF TO TAPE. BACKSPACE

IS PAUSE SET ? r-Y~ES~-
NO

YES

START BUFFER2 TO TAPE
CLEAR WRITE FLAG

RECEIVED LETTER ?

Figure 4, Flow Diagram of FASDIG.

401

address, and buffer count registers needed to be
accessed in order to check activity on the tape
drive and to have the controller start writing
data to the tape. It seemed simple enough, so I
replaced the following piece of coding

.WRITE
BCC
.PRINT
JMP

#AREA,#l,@#BUF2,@#WDPREC
57$
#WFAIL
EXIT

57$: Reset write flag

with

57$:

TSTB
BMI
.PRINT
JMP
MOV
MOV
MOVB
Reset

@#MTCMD
57$
#NOCTRL
EXIT
@#BUF 2 ,@#MTADR
@#NEGBYT,@#MTBRC
#5,@#MTCMD

write flag

where BUF2 contains the address of the data buffer
to write out, WDPREC is the number of words to
write out, NEGBYT is the negative number of bytes
to write out, and MTCMD, MTADR, and MTBRC are the
magnetic tape controller registers: command,
address, and buffer count. WFAIL and NOCTRL point
to two error comments. Thus, the .WRITE programmed
req_uest is replaced by three MOVE commands: two
to tell what data to use and one to signal the
controller to start writing. The error checking
is slightly different in the two cases; in the old

n.iHR
-1~
TENT
-1~~

THOM --..-~-----~---~--~------------'

case the carry bit was set to denote that the
.WRITE was unable to q_ueue the write req_uest, in
the new case the byte sign bit of the command
register is cleared when the controller is busy.
In either case, if the carry is set or the sign
bit is cleared, the tape can not be written and
the code is stopped. With this new change, the
code had no trouble digitizing at a total rate of
13, 000 samples per second and writing the 4026
byte tape records every 143 milliseconds. Figure 5
shows a' sample of the data that was digitized.

CONCLUSION

In the above project, I almost didn't try any
method other than the • WRITE programmed req_uest.
I was worried about the conflicts that might occur
with the system and the amount of effort fighting
the system would take. However, I did try and the
method I used did work with very little effort.
My first conclusion is, therefore, don't give up
before you try.

Secondly, I want to point out that the ease with
which this change was made was largely do to
running under the RT-11 operating system. I have
tried to do similar projects under RSX-llM and
usually have to spend months reading up on what
data bases and packets must be built to accomplish
what I want. Even then I would guess that the
system will have a few "gotchas" that I overlooked.
The simplicity of running under RT-11 is wonderful.

~~~ ;-..,__-_ .. _ .... _-_ .. _ ... _-_ ... _·-,k t.--·-_ .... _._._._"""'_._-_-_,. .. _ .... ~·;.,_~----~.1...1<-'"CU-L-~M..._.._~~~~~-----:1 
Figure 5. Sample of the Digitized Data. 

402 



RSX-11 SIG 





LOADABLE DEVICE DRIVER DATA BASES 
IN RSXllM SYSGEN 

Carl T. Mickelson 
Goodyear Aerospace Corporation 

Akron, Ohio 44315 

ABSTRACT 
In order to support multiple and differing configurations of 
peripherals on different computer systems, a method for 
modifying RSXllM SYSGEN is discussed that allows device 
drivers to be built with loadable, rather than resident, 
device data bases. System tailoring is done at VMR time when 
the particular devices for each configuration are included in 
the bootable system image. The method allows the addition of 
new devices without a new SYSGEN. 

INTRODUCTION 

What do you do when your OEM employer's business is 
growing and he acquires a room full of new computer 
systems for a variety of different customers? Each 
system has a different configuration of discs and 
terminal interfaces and you are expected to provide 
a consistent software development environment on all 
these different systems so that user's may build 
programs on any development system and move them to 
any test stand system to check out your product 
hardware. The users don't want to be confronted 
with different operating procedures on each machine 
and would like to move even privileged tasks, when 
possible, from system to system without re-building 
them. In addition, you don't want to be confronted 
with performing a new system generation for every 
new system as it arrives. 

It would be much more convenient to maintain a 
system generated for each generic processor (11/34, 
11/24, 11/40, 11/70) and memory configuration and 
simply build an operating system for a new computer 
by selecting an existing pre-generated system and 
specifying what devices are in the configuration at 
VMR time. Further, the tailoring of the terminal 
driver for different systems raises an additional 
complication for systems having the same processor 
but differing terminal I/O controllers. 

This paper discusses a method of achieving this 
degree of hardware/software independence for RSXllM, 
and discusses how this goal to provide a common 
operating environment was achieved. It should be 
noted that privileged tasks that map over the 
Executive can still only be ported between systems 
with the same or similar processors and the same 
memory address range (18 bit or 22 bit). This 
represents an improvement over "vanilla" RSXJ 1.M 
since device configuration is no longer a 
consideration. 

ISSUES NEEDING CONSIDERATION 

The principal method needed to achieve the goals 
stated above is to modify the RSXllM SYSGEN 
procedure to make all DEC supplied device drivers 
look like user-written drivers, each task-built 
containing its own loadable device data base 
structure. By doing this, device data structures 
are no longer resident in the Executive task image 

Proceedings of the Digital Equipment Computer Users Society 405 

(RSXllM.TSK), and individual devices can be 
configured into a system by loading their data 
bases, together with their driver code at VMR time. 
In fact, the only device drivers that need to be 
present in the bootable system image are the boot 
device and terminal device drivers. All others can 
be loaded into GEN with a /HIGH switch in the system 
startup file. The ability to add additional devices 
is also enhanced, since a SYSGEN can now be avoided. 
There are, however, a number of issues that must be 
addressed in order for this technique to be 
successful. 

First, all link time references to I/O data 
structure symbols must be eliminated, since the I/O 
data structures are no longer resident in the 
Executive. Without doing this, the link time 
references to .TTO and .COO in the Executive (SYSCM) 
and any privileged tasks such as the Pool Monitoring 
Task (PMT) and the Console Output Task (COT) will 
produce undefined references when they are 
task· built. 

This requirement is satisfied by adding some code to 
the Executive module INITL.MAC to walk down the 
device DCB chain when the virgin executive is 
initially started to locate .TTO, the console 
terminal UCB address, and .COO, the console output 
UCB address. Once found, these addresses are loaded 
into the required fields of SYSCM, and RSXllM 
continues as if the data bases were resident. 
Similar code is added to PMT and COT at their entry 
points, and the references to these symbols are made 
indirectly to local copies of the addresses. This 
isolates these privileged tasks from the actual 
locations of the data structures. 

Second, the Executive module SYSTB.MAC, generated by 
SYSGEN during the device configuration phase, must 
be split into individual files (xxTAB.MAC), one for 
each type of device selected for inclusion in the 
SYSGEN process. The only data structures remaining 
in SYSTB are the pseudo-device structures for SY:, 
LB:, etc, and the clock queue list-head. The device 
data base files must later be assembled with the 
RSXllM driver sources, so additional commands must 
be added to RSXDRVASM.CMD. Also, the driver task 
build command file, RSXDRVBLD.CMD, must be modified 
to task build each driver with its own local data 
base. 

New Orleans LA - 1985 



Finally, to support different configurations of 
terminal interfaces on systems with similar 
processors, a method must be found to build multiple 
versions of the terminal driver. Each version of 
the driver must have a loadable data base structured 
for that particular system so that the driver for 
the proper terminal configuration can be loaded at 
VMR time. It is assumed that the full-duplex 
terminal driver is the driver of choice for this 
effort as it provides full system functionality for 
the user. 

DEVELOPING THE CHANGES 

Once it is understood what must be 
must be developed to automatically 
when a system is to be generated. 
should be applied in two parts. 

done, a method 
apply the changes 
This method 

The first part applies the needed changes to SYSCM 
and the privileged tasks to eliminate the link time 
references discussed earlier. These changes are 
required for the SYSGEN changes to be successful, 
but they can stand alone so that the tasks do not 
directly access I/O structures at link-time. 

The second part of the modification package should 
apply the changes to the SYSGEN procedure files, and 
should only be applied if the first part changes are 
made. These modifications amend the SYSGEN 
procedure to achieve the functionality described 
earlier. 

In order the develop the changes, a number of 
utilities are necessary, among them the standard 
utilities SLP, PIP, MAC, TKB, etc, and a DECUS 
supplied disassembler DOB. This utility is needed 
to disassemble certain modules, delivered only in 
object format so that they may be modified in source 
form, re-assembled and re-inserted into their 
appropriate object library. 

A trial SYSGEN was performed, stopping at all end of 
section and end of execution breakpoints to study 
the state of the files produced by SYSGEN. The 
SYSGEN command files themselves were examined to 
determine where changes had to be made and a set of 
command procedure (.CMD) and source update (.SLP) 
files were developed to apply the changes 
automatically. The specific modifications made to 
the SYSGEN procedure are discussed below. 

SYSGEN PROCEDURE CHANGES 

The default option for all device drivers is set 
loadable, and this specific question is eliminated 
from the SYSGEN dialogue. The need for this is 
self-evident since the desired goal is to make a 
system with loadable device data bases. Also, the 
user is given the opportunity to include the 
Executive routines $PTWRD and $GTWRD regardless of 
whether user-written device drivers are to be 
included during the system generation. This is done 
to insure that these routines are available if a 
user-written driver will be incorporated at some 
future time. 

Additional questions are added to the procedure to 
allow the user to establish an identifier (xxx) for 
each specific version of the terminal driver and 
system executive configuration being simultaneously 
generated for a common processor type. This 
identifier is appended to the terminal driver task 

406 

and symbol table file names, and to the Executive 
symbol table and bootable system file names to 
designate the system configuration pertinent to each 
set of files. 

A tailored system VMR command file (SYSVMRxxx.CMD) 
is generated for each individual system 
configuration, and the user is given the opportunity 
to specify the device drivers that should be 
included in the system image prior to the first 
bootstrap. The balance of the VMR file is tailored 
to install only those privileged tasks needed for 
support of the devices loaded into the system image. 
Thus, if DUDRV is loaded, RCT is installed, and 
queue manager support is included only if LPDRV has 
been loaded. 

Finally, just before VMR is invoked to create a 
bootable image, the user is permitted to select the 
version of the system and hence TTDRV version to be 
used to create the bootable system image for the 
SYSGEN host system. 

The modified procedure, when completed through Phase 
II creates a set of virgin system (RSXllMxxx.SYS) 
files that can be moved to another disc medium and 
together with the drivers and privileged tasks in 
[1,54], libraries in [1,1] and other system 
directories such as [1,2] can be used to VMR another 
system for a different hardware configuration. The 
resulting system can be booted on the new system 
configuration and has the same Executive and 
resident library characteristics as the originally 
VMR'ed system. 

USING THE MODIFICATION KIT 

The modifications described here are performed by a 
set of command procedures that will be available on 
the RSX SIG tape from the New Orleans DECUS. They 
should be used in accordance with the following 
procedure. 

First copy the RSXllM baseline distribution kit to 
scratch media as described in the RSXllM SYSGEN 
reference manual. Then apply DEC's distributed 
Update D patch procedure to recreate the RSXllM 
baseline kit against which these modifications are 
performed. If the Able Computer Technology ENABLE 
Memory Management Unit (and Cache) is to be 
installed in your host system, apply the Able 
supplied patches next. Remember that any system 
built with the ENABLE hardware support cannot be 
moved to a system without the same hardware. This 
is a restriction of the Able patches, and not the 
changes discussed here. Finally, apply the 
procedure described in this paper by invoking the 
DECUSMODS.CMD command procedure. 

This command procedure supports all three types of 
RSXllM distribution kit and will ask the user to 
specify which kit is in use. The procedure will 
then ask the user to re-build the indirect command 
processor (ICP) to enlarge its symbol table if a 
very large system configuration is being generated. 
This step should be taken, and the new ICP installed 
if the SYSGEN being performed will generate a system 
with a very large number of devices. 

DECUSMODS should be re-invoked to apply the 
modifications described here. A set of hexadecimal 
modifications can be installed by this procedure if 
the user wishes. These hex modifications are 



discussed in the companion paper "RSXllM Hexadecimal 
Command Line Numerics" presented at this DECUS 
symposium, The next set of changes that can be 
applied are the first part or I/O symbol linkage 
changes discussed earlier. These must be selected 
if the loadable driver data base changes are to be 
applied. 

Each set of changes will be applied in sequence as 
the user selected. The procedures are designed to 
verify the modified files against expected results, 
but due to DECUS restrictions about copyrighted 
source code content on SIG tape submissions, not all 
the required files can be included. This should 
pose no problems, so long as Update D of V4,l is 
used as the baseline for the procedure, After the 
modifications are performed, the normal SYSGEN 
procedure is initiated as described in the SYSGEN 
manual. 

DIFFERENCES IN SYSGEN PROCEDURE 

The following procedural changes should be observed 
when performing a SYSGEN with these changes applied. 

If the system is autoconfigured, and the 
autoconfigure results are not overridden and 
amended, the resulting system will be restricted to 
supporting only the devices found by the 
autoconfigure program. This defeats a major purpose 
of using these changes, that is to generate a single 
system capable of supporting many different hardware 
configurations. 

If autoconfigure is suppressed or overridden, when 
SYSGEN asks for the number of controllers of each 
device type in the system, the user should specify 
the controllers that comprise the union of all 
controllers in all the systems to be supported. 
Thus if three systems are to be supported on three 
different systems disc types, the controllers for 
each disc should be specified in the hardware 
configuration section. The number of each 
controller type to be generated should be specified 
as the maximum across all the systems to be 
supported. By following these two rules, SYSGEN 
will build all the device drivers necessary to 
support all the systems and will generate data bases 
to support the largest hardware configuration. 
Smaller systems will indicate off-line status for 
those devices not present at boot-time. 

The same rules pertain to specifying the number of 
terminal controll~rs YL, YH, YZ, etc during the 
system hardware configuration, Later during the 
procedure, where each system's terminal driver is 
configured, the procedure will permit the user to 
specify the actual number of each controller type 
supported by a given system configuration. This is 
where each TTDRV data base is reduced in size to 
support only the specific terminal interfaces 
present in a system. 

A word of caution applies here however. If the 
maximum number of any specific terminal interface 
class (YL, YH, YZ, etc) is greater than one, the 
minimum number that should be specified during this 
tailoring phase is either 0 (none) or 2 controllers 
for that class. This is particularly important for 
the YL class of single line controller. If this 
rule is not followed, the driver will assemble for a 
multi-controller system configuration, but the LOAd 
processor will create an Interrupt Transfer Block 

407 

(ITB) in POOL to support only a single controller, 
If this should happen, the generated Executive will 
CRASH ON THE FIRST KEYSTROKE after the virgin 
Executive is bootstrapped! 

The SYSGEN procedure continues normally, configuring 
Executive, terminal driver and other system 
features. During the device configuration phase, 
where. CSR and vector addresses are specified for 
each device controller, when the terminal devices 
are being configured, the modified procedure a~ks 
for the system identifier discussed earlier. The 
procedure then asks for the number of each type of 
terminal controller in the system. The procedure 
creates a terminals data base containing the 
currently specified subset of controllers and asks 
if another driver data base is to be built. If 
another is to be built, a new identifier and 
controller set is requested and the new data base is 
created. This process is continued until no more 
data bases are requested, 

During this section, if the first system identifier 
specified is the NULL string, a standard single 
configuration system is built, including support for 
loadable data base device drivers. A non·null 
string causes a tailored terminals data base 
(TTTABxxx.MAC) to be created for the system, 

Phase I of SYSGEN continues normally, assembling the 
Executive, drivers and individual driver data bases 
and preparing for Phase II task building. Chaining 
to Phase II continues the SYSGEN procedure where the 
system libraries, Executive and privileged tasks are 
built. It is during this phase that the modified 
procedure asks the user to re-specify the list of 
system identifiers used to designate the different 
terminal driver configurations. This list is used 
to create a virgin system boot file for each 
individual system configuration. In addition, the 
user is given the opportunity to specify a list of 
device drivers to be installed in each system. This 
list of drivers is used to tailor a SYSVMR file for 
each system configuration. At the end of this 
stage, the user is asked to specify the system 
identifier for the system on which the SYSGEN is 
being performed, The proper version of the terminal 
driver is selected for inclusion in the host's new 
system, and the system VMR process is executed to 
configure the new operating system for the host 
machine, When Phase II of SYSGEN ends, the new 
Executive is booted and saved with the bootstrap 
block written in the usual manner. 

When the system re-boots itself, SYSGEN Phase III 
can be performed to re-build any needed utilities to 
use RESLIB, ANSLIB or other system features. After 
completing Phase III, and purging the system disc, 
the system is ready to be transported to another 
hardware configuration. 

MOVING TO ANOTHER HARDWARE CONFIGURATION 

To move the newly generated system to another 
hardware configuration, the following minimum set of 
directories and files should be copied to a new 
system disc device, ((1,1], (1,2], [1,54], 
[11,lO]RSXMC.MAC), 

Directory [1,1] contains the system object and macro 
libraries; (1,2] contains the help files and 
standard startup procedure files; and [1,54] 
contains the system privileged tasks and utilities. 



RSXMC.MAC is included to provide definitions of the 
supported system features so that privileged tasks 
needing this information can be assembled correctly. 

The correct version of the terminal driver task 
image and symbol table should be copied from 
TTDRVxxx.* to TTDRV.* and VMR. executed using 
SYSVMRxxx.CMD to configure the bootable Executive 
for the new system. The new system image 
RSXllMxxx.SYS should then be bootstrapped and saved 
with bootblock to create a system disc that is 
bootable on the new configuration. 

This new system has exactly the same Executive, 
resident libraries, privileged tasks, and utilities 
as the original system. Further, neither system has 
suffered a loss of dynamic storage or POOL space due 
to un·necessary device data structures resident in 
the Executive. Also, the terminal driver has been 
tailored to support the specific kind and number of 
controllers on each hardware configuration. 

ADDING A NEW DEVICE 

Adding a new device to a system built with these 
changes is a relatively easy job. There are a 
number of different cases that need to be 
considered, but the job can typically be 
accomplished without the need of another full system 
generation. 

If a device is to be added on an existing 
controller, the procedure is as follows. First, the 
data base source file xxTAB.MAC is edited, adding a 
new UCB structure to the file. The new UCB is added 
to the end of the existing UCB's in the file and is 
linked to the DCB and SCB already present. The 
highest unit number field of the DCB is incremented 
to enable the new unit. 

The revised file is re·assembled with RSXMC.MAC and 
EXEMC.MLB to produce an object file for the new data 
base, The driver task and symbol table are 
re·created by task·building the new data base with 
the driver code object file. The new driver is 
placed in service by simply LOAding it at system 
startup if it was not installed by VMR. Otherwise, 
a copy of the virgin Executive, RSXllM.TSK, must be 
reinitialized with VMR and re·booted to install the 
new driver. 

Installing new devices on a new controller is a 
similar procedure, except that a new SCB together 
with the UCB(s) must be added to the data base. 
Additional information on performing these steps can 
be found in the Guide to Writing a Device Driver in 
the sections describing how the I/O data structures 
are organized. 

If a new type of device is to be added to the system 
and the system was originally generated anticipating 
the device's inclusion in the configuration, this 
task simply entails LOAding a driver that is already 
available. If a pre·built driver is not available, 
the data structure for a similar type device could 
be used as a model for the new device. However, 
this approach is difficult to accomplish 
successfully except in the simplest of cases for 
straight forward devices. The approach breaks down 
if the device UCB is extended to include device 
specific fields. In this case, the driver should be 
built during the SYSGEN procedure. 

408 

CONCLUSIONS AND COMMENTS 

The techniques discussed here and embodied in the 
files of the modification kit permit multiple 
configuration systems to be generated 
simultaneously, with fully loadable device drivers 
and data structures. This permits a running system 
to be expanded easily and can eliminate the need to 
do an additional SYSGEN to make simple system 
configuration changes. 

These techniques have been successfully used to 
generate systems supporting PDP 11/34, PDP 11/24, 
and PDP 11/40 UNIBUS processors. Systems with both 
18 and 22 bit address support have been built from 
big disk, RK06/RK07 and RL02 distribution kits. The 
following cautions and caveats are applicable when 
considering using these changes: 

l, Controller CSR and vector addresses must be 
consistently set across all systems. SYSGEN'ing 
different types of controllers at the same address 
is acceptable as long as their device drivers are 
not LOAded into the same system image during VMR 
processing or system operation. 

2, Support for multiple terminal driver 
configurations is provided for the full·duplex 
terminal driver only, 

3, The changes apply to Update D of RSXllM V4,l, 
Proper application to other updates of V4.l is not 
guaranteed, Since Update D added DEUNA driver 
support to RSX, and changes are made in building its 
data base, earlier Update kits are known to be 
incompatible with the changes. 

4. Laboratory devices (A/D and D/A converters) and 
the IC series devices have not been addressed. 
Since the systems at the author's site do not use 
these types of interfaces, no changes have been 
designed for these devices during SYSGEN. 

5, Any layered product that expects to find some I/O 
symbols defined in the Executive symbol table will 
not link successfully. This applies only to layered 
products that are built as privileged tasks as they 
are the only ones with the potential to access these 
I/O structures directly. 

6. The compilers in use at the author's site have 
been built and used without modification. DECnet, 
however, has not yet been added to these systems, so 
it is not known if the changes will effect the 
NETGEN procedure. Inclusion of DECnet in these 
systems is planned for the near future, 

7. While the changes made to the SYSGEN procedure do 
not depend upon the processors being UNIBUS based, 
no Q·bus machine configurations have been generated. 
It is not known if these changes will properly 
support a Q·bus based system. 

8. Last, but not least, it must be remembered that 
systems generated using this procedure are 
transportable only between multiple hardware 
configurations that share the following 
characteristics: 

a. same or similar processors; if built for EIS 
support, all processors must support EIS. 

b. have memory management hardware; must be 



mapped systems to provide the support necessary 
for loadable device drivers. 

c. same memory address range; if built for 22 bit 
extended memory, all systems must support 22 bit 
addressing. 

CAVEAT 

The kit of files comprising the SYSGEN changes 
described here are supplied for information purposes 
only. Use of these changes at any PDP·ll/RSXllM 
site is entirely at the risk of the using 
organization. Neither the author, nor Goodyear 
Aerospace Corporation, nor DECUS, nor the RSX SIG is 
responsible if these changes do not perform 
successfully in any particular system. 

409 





RSXllM HEXADECIMAL COMMAND 
LINE NUMERICS 

Carl T. Mickelson 
Goodyear Aerospace Corporation 

Akron, Ohio 44315 

ABSTRACT 
This paper describes a set of modifications to RSXllM SYSLIB 
and FCSRES to support the processing and display of numeric 
quantities as hexadecimal character strings. The 
modifications provide additional system subroutine entry 
points to allow application programs to parse hexadecimal 
quantities from command lines and to display numeric values as 
hexadecimal numbers when outputting data to the user. 

BACKGROUND 

Since RSXllM was first released, the operating 
system has been limited to representing numeric 
quantities on command lines and in program generated 
output as either octal or decimal character strings. 
Some programs such as DuMP provide a hexadecimal 
dump mode supported by routines within the program. 
However, RSXllM does not provide a means within 
SYSLIB for any program to "hear" or "speak" hex by 
way of a simple subroutine call. 

The tools provided by RSXllM include a number of 
system library entry points to convert byte wide, 
word wide, and double-word wide data to and from 
octal and decimal character strings. Some of the 
applications developed at the author's site required 
a similar facility for processing MCR"like command 
switch parameters in hexadecimal. 

The goal of this effort then was to develop a set of 
modifications to the numeric conversion routines in 
SYSLIB to provide a similar set of facilities for 
processing hexadecimal quantities as already exist 
for processing octal and decimal quantities. 

ISSUES NEEDING CONSIDERATION 

The code that processes octal and decimal numeric 
strings is contained in a number of modules in 
SYSLIB, the system object library. These routines 
also reside in the system resident library, if this 
option is selected during system generation. 

The changes discussed here are changes to these 
modules that make the modules larger. Programs that 
need to use these new functions can simply link 
copies of the modules into their task images to do 
hexadecimal numeric conversions. A potential 
problem exists, however, if these modules are 
replaced in a resident library. 

If these larger modules are included in a resident 
library on a single system, it could prevent tasks 
that do not use the new functions from being 
transferred between systems with different resident 
libraries because of differences in entry point 
addresses for the two library versions. The 
solution to this problem was introduced in an Update 
to RSXllM V4. l. The entry points into the resident 
library were vectored into the code portion of the 
library using a technique that is similar to the way 

Proceedings of the Digital Equipment Computer Users Society 411 

VMS vectors calls to system functions through a 
transfer vector. 

The transfer vector consists of a JMP instruction to 
each entry point within the resident library task. 
Any task linking to a library routine transfers 
control to one of the JMP instructions which 
transfers control to the local entry within the 
library. By keeping the order of the JMP 
instructions, and hence the library entries, fixed 
within the transfer vector, the internal library 
modules can be changed without effecting a task's 
ability to find entries in the modified module. 
Tasks that are linked to a library containing 
modules supporting the new hexadecimal functions, 
but that make no use of them, can successfully be 
moved to a system with a resident library that does 
not support the hex conversions. All that is 
required is that the order of the transfer vector 
entry points are preserved between the library 
versions. The module entry point addresses within 
the library are different between the two versions, 
but are important only within the context of the 
library task. 

NUMERIC CONVERSION TOOLS IN SYSLIB 

Table 1 summarizes the numeric conversion facilities 
supplied with the standard RSXllM distribution. 
These routines are documented in chapters 4, 5, and 
6 of the RSXllM System Library Routines Reference 
Manual. There are entry points available for input 
conversions from octal and decimal ASCII digit 
character strings to internal binary, and output 
conversion entries for translating from internal 
binary to octal or decimal ASCII digit character 
strings. In addition, a generalized formatting 
subroutine is provided that permits a MACRO 
programmer to create character oriented output 
records from a buffer of binary data. The record 
format is determined by a control string that is 
interpreted by the subroutine in a manner analogous 
to a FORTRAN FORMAT statement. The subroutine 
supports both octal and decimal format specifiers. 

The new hexadecimal functions added to these SYSLIB 
modules are summarized in Table 2. The changes 
include support for both input and output 
conversions using a hexadecimal radix. In addition, 
format descriptors are added to the formatting 

New Orleans LA· 1985 



subroutine to support hexadecimal output. The 
calling sequences for these new functions are the 
same as the calling sequences for the existing 
functions. Detailed documentation on the use of the 
new functions is included as an appendix to this 
paper. 

ASCII to Binary Conversions 

Radix 

Octal 
Decimal 

Data Length 
Word Double·Word 

$COTB 
$CDTB 

.OD2CT 

.DD2CT 

Binary to ASCII Conversions 

Radix 

Octal 
(Magnitude) 
(Signed) 

Decimal 
(Magnitude) 
(Signed) 

Data Length 
Word Double·Word 

$CBOMG 
$CBOSG 

$CBDMG 
$CBDSG 

$CBTMG (byte) 

$CDDMG 

Generalized Formatting Descriptors ($EDMSG) 

%B Binary Byte to Octal String 
%D Binary Word to Signed Decimal String 
%M Binary Word to Decimal Magnitude String 
%0 Binary Word to Signed Octal String 
%P Binary Word to Leading Zero Octal 

Magnitude String 
%Q Binary Word to Zero Suppressed Octal 

Magnitude String 
%T Binary Double Word to Decimal 

Magnitude String 
%U Binary Word to Zero Suppressed Decimal 

Magnitude String 

Table 1 · Standard RSXllM Numeric Conversions 

ASCII to Binary Conversions 

Data Length 
Radix Word Double·Word 

Hexadecimal $CHTB .HD2CT 

Binary to ASCII Conversions 

Data Length 
Radix Word Byte 

Hexadecimal 
(Magnitude) 
(Signed) 

$CBHMG 
$CBHSG 

$CBGMG 

Generalized Formatting Descriptors ($EDMSG) 

%G Binary Byte to Hexadecimal String 
%H Binary Word to Hexadecimal Magnitude 

String 
%J Binary ~~ to Signed Hexadecimal 

String 

Table 2 • Hexadecimal Numeric Conversions 

412 

DEVELOPING THE ADDED FUNCTIONS 

There are six modules in SYSLIB that are changed to 
support the hexadecimal functions described earlier. 
The modules CATB, CBTA, .ODCVT and OD2CT have 
additional instructions inserted to perform the 
actual conversions of character strings to and from 
binary. The EDMSG and .TPARS modules are modified 
to make reference to the new function entry points 
when hexadecimal numbers are to be converted. 

The changes to these modules are designed and 
implemented as source language update (SLP) 
correction files to be applied to a source file for 
the module. The sources for the modules are 
generated by an object code disassembler. Once the 
modules are changed, the updated source files are 
re-assembled and replaced into the system library 
object file. Any program needing access to these 
functions can link the revised modules into the task 
image to use the new functions. In addition to the 
changes made to these SYSLIB modules, two system 
macro definitions, CSI$SV and ISTAT$, are enhanced 
to allow a MACRO programmer to access these 
hexadecimal conversions from the Command String 
Interpreter, CSil and CSI2, and the Table Driven 
Parser, TPARS. 

The only remaining detail is to include the new 
functionality in any resident library that is built 
during SYSGEN. The resident library built during 
the SYSGEN procedure is approximately 6 Kwords long, 
and is organized into two overlay sections so that 
the entire library can be accessed using only one 4 
Kword APR. During the SYSGEN procedure, the 
resident library symbol table is created from the 
object modules FCSSTl and FCSST2. The library task 
includes the modules FCSLBl and FCSLB2, each linked 
into the beginning of an overlay segment. The 
FCSLBx modules contain the library entry point 
transfer vectors, while the FCSSTx modules define 
the externally available entry point addresses to 
each transfer vector in the library. It is critical 
that the order of the entries in the FCSSTx and 
FCSLBx modules are and remain the same. To maintain 
compatibility with other libraries, any new entry 
points must be added at the end of the transfer 
vector list. The new hexadecimal support entry 
points are added to the end of the DEC specified 
transfer vector list, leaving some empty vectors 
available for additional DEC supplied functions in a 
future release of RSXllM. 

The modules FCSSTx and FCSLBx are disassembled, 
changed with a SLP correction file, re-assembled and 
replaced into SYSLIB. The resident library task 
build driver file, FCSRSlBLD.BLD, is changed to 
include the new entry points in the overlay symbol 
table. Finally, the modified resident library is 
built by the SYSGEN procedure in the normal fashion. 

USING THE MODIFICATION KIT 

The modifications described here are performed by a 
set of command procedures that will be available on 
the RSX SIG tape from the New Orleans DECUS. They 
should be used in accordance with the following 
procedure. 

First copy the RSXllM baseline distribution kit to 
scratch media as described in the RSXllM SYSGEN 
reference manual. Then apply DEC's distributed 
Update D patch procedure to recreate the RSXllM 



baseline kit against which these modifications are 
performed. Finally, apply the procedure described 
in this paper by invoking the DECUSMODS.CMD command 
procedure. 

This command procedure supports all three types of 
RSXllM distribution kit and will ask the user to 
specify which kit is in use. The indirect command 
processor re-build step can be skipped if the SYSGEN 
procedural modifications described the the companion 
paper "Loadable Device Driver Data Bases in RSXllM 
SYSGEN" are not being performed. Application of the 
HEXMOD command procedure should be selected to 
install the functionality described in this paper. 

The procedure is designed to verify the modified 
files against expected results, but due to DECUS 
restrictions about copyrighted source code content 
on SIG tape submissions, not all the required files 
can be included. This should pose no problems, so 
long as Update D of V4.l is used as the baseline for 
the procedure. After the modifications are 
performed, the normal SYSGEN procedure is initiated 
as described in the SYSGEN manual. 

CONCLUSIONS AND COMMENTS 

The techniques discussed here and embodied in the 
files of the modification kit permit support to be 
provided for processing and generating hexadecimal 
numerics in PDP-11/RSXllM programs. 

These techniques have been successfully used on PDP 
11/34, PDP 11/24, and PDP 11/40 processors. However 
the following comments and cautions are applicable 
when considering using these changes. 

1. The changes apply to Update D of RSXllM V4.l. 
Proper application to other updates of V4.l is not 
guaranteed. 

2. The extra code added to certain SYSLIB modules to 
support hexadecimal numerics may make large programs 
that include copies of the modules within their task 
images too large to be built successfully. Tasks 
mapping a resident library should not be affected by 
this size increase. The changes do not make the 
library bigger than the single APR already required 
to map the resident library code. 

CAVEAT 

The kit of files comprising the hexadecimal changes 
described here are supplied for information purposes 
only. Use of these changes at any PDP-11/RSXllM 
site is entirely at the risk of the using 
organization. Neither the author, nor Goodyear 
Aerospace Corporation, nor DECUS, nor the RSX SIG is 
responsible if these changes do not perform 
successfully in any particular system. 

APPENDIX 

The following information provides documentation on 
using the hexadecimal conversion functions added to 
SYSLIB and described in this paper. The structure 
of this documentation is similar to that appearing 
in Chapters 4, 5, and 6 of the RSXllM System 
Subroutine Library Reference Manual, and should be 
regarded as a supplement to that manual. 

413 

The changes made to the macro definitions CSI$SV and 
ISTAT$ are also documented here. This information 
supplements data appearing in the RSXllM IO 
Operations Reference Manual. The details of using 
the macros are explained in Chapters 6 and 7. Only 
the changes made to the macros, and the additional 
functionality these changes provide is discussed 
here. 

Hexadecimal~ Binary Double-word Routine (.HD2CT) 

The .HD2CT routine converts an ASCII hexadecimal 
string to a double length (two-word) binary number. 

The routine accepts leading plus (+) or minus (-) 
signs, and the numbers 0 - F. A preceding ! symbol 
is legal in the hexadecimal number string. A ! 
symbol and a period in the same string is invalid. 
A trailing decimal point will be accepted in the 
input string, but will cause the decimal, rather 
than hexadecimal, radix to be used. This condition 
exists because the .HD2CT routine is an entry point 
in the .DD2CT routine, which converts decimal number 
strings to binary double-word values. 

Any other characters in the ASCII hexadecimal number 
string will cause the .HD2CT routine to terminate 
the conversion procedure. 

The value range of a hexadecimal number to be 
converted is - 2A31 to +( 2A31 1). 

To call the .HD2CT routine: 

1. Supply three input arguments in the task's 
source code: 

a. in Register 3, the address of the two-word 
field in which the converted number is to be 
stored. 

b. in Register 4, the number of characters in 
the string to be converted. 

c. in Register 5, the address of the character 
string to be converted. 

2. Include the statement 

CALL .HD2CT 

in the source program. 

The .HD2CT routine saves and restores all the 
calling task's registers. Outputs from the .HD2CT 
routine are: 

1. The converted number, where the high order 16 
bits are stored in word 1 of the field specified 
in R3 input, and the low order 16 bits are stored 
in word 2 of the field. 

2. Condition Code: 

c bit clear if conversion was successful. 

C bit set if an :illegal character was found 
and conversion was incomplete. 

The user can determine, in the task, whether 
conversion was complete by testing the C bit in the 
Condition Code. 



Hexadecimal to Binary Conversion Routine ($CHTB) 

The $CHTB routine converts an ASCII hexadecimal 
number to binary. Valid characters in the number to 
be converted are 0 • F. 

The end of the string must be marked by a 
terminating character, which may be any ASCII 
character except the numbers 0 · F. Examples of 
terminating characters are: blank, a tab character, 
an alphabetic character other than A· F, and a 
special symbol. Leading blanks and tab characters 
are ignored. 

The maximum value of a hexadecimal number that can 
be converted by the $CHTB routine is FFFF. 

To call the $CHTB routine: 

1. Input, in Register 0, the address of the first 
byte of the ASCII characters to be converted. 

2. Include the statement 

CALL $CHTB 

in the source program. 

The $CHTB routine calls the $SAVRG routine to save 
and restore registers 3 5 of the calling task. 

The outputs returned from the $CHTB routine are: 

1. RO= the address of the next byte in the input 
buffer. 

2. Rl the converted number. 

3. R2 the terminating character. 

The user can determine, in the task, whether an 
input string was successfully converted by testing 
the content of R2. If the content is other than the 
expected terminating character, the conversion was 
incomplete, since some other invalid character was 
found in the input string. 

Successive input string conversion may be effected 
by setting up a processing loop to repetitively call 
$CHTB. 

BINARY TO HEXADECIMAL CONVERSION 

There are three system library routines that convert 
internally formatted binary numbers to external 
ASCII hexadecimal format: 

1. Convert Binary to Hexadecimal Magnitude 
Routine ($CBHMG), which converts an internally 
stored binary number to a 4·digit unsigned ASCII 
hexadecimal magnitude number. 

2. Convert Binary to Signed Hexadecimal ($CBHSG), 
which converts an internally stored binary number 
to a 4·digit signed ASCII hexadecimal number. 

3. Convert Binary Byte to Hexadecimal Magnitude 
Routine ($CBGMG), which converts an internally 
stored binary byte to a 2·digit ASCII hexadecimal 
number. 

These routines use predefined parameters that are 

414 

passed to the general purpose conversion routine 
($CBTA), which performs the actual binary to ASCII 
conversion. 

Convert Binary ~Hex Magnitude Routine ($CBHMG) 

The $CBHMG routine converts an internally stored 
binary number to a 4·digit unsigned ASCII 
hexadecimal magnitude number. 

The $CBHMG routine uses the following predefined 
conversion parameters: 

radix = 16. 
field width = 4. characters 
sign flag = UNSIGNED 
leading zeroes flag = NOSUP (no supression) 

To call the $CBHMG routine: 

l. Supply three input arguments in the task~s 
source code: 

a. in Register 0, the starting address of the 
output area in which the converted 4·digit 
number is to be stored. 

b. in Register 1, the binary number to be 
converted. 

c. in Register 2, the zero supression 
indicator, where: 

R2 = 0 to specify supression of leading 
zeroes in the converted number. The output 
number will be left-justified. 

R2 = nonzero to specify that leading zeroes 
are not to be suppressed. 

2. Include the statement 

CALL $CBHMG 

in the source program. 

The predefined conversion parameters are 
automatically pushed to the stack on entry to the 
$CBHMG routine. If the user specifies, via R2 = 0, 
that leading zeroes are to be suppressed, the NOSUP 
parameter is reset. In any case, the $CBHMG routine 
passes the parameters in Register 2 to the General 
Purpose Binary to ASCII Conversion Routine ($CBTA), 
which performs the actual conversion of the binary 
number. 

The $CBTA routine calls the $SAVRG routine to save 
and restore registers 3 · 5 of the calling task. 
Registers 1 and 2 are destroyed. 

Outputs from the $CBHMG routine are: 

l. The converted number, a maximum of four digits 
in length, in the specified output area. 

2. RO = the next available address in the output 
area (the pointer to the location following the 
last digit stored). 

The $CBHMG routine does not return error conditions 
to the caller. 



Convert Binary !2_ Signed Hex Routine ($CBHSG) 

The $CBHSG routine converts an internally stored 
binary number to a 4-digit signed ASCII hexadecimal 
number. 

The $CBHSG routine uses the following predefined 
conversion parameters: 

radix = 16. 
field width = 4. characters 
sign flag = SIGNED 
leading zeroes flag = NOSUP (no supression) 

To call the $CBHSG routine: 

1. Supply three input arguments in the task's 
source code: 

a. in Register 0, the starting address of the 
output area in which the converted 4-digit 
number is to be stored. 

b. in Register 1, the binary number to be 
converted. 

c. in Register 2, the zero supression 
indicator, where: 

R2 = 0 to specify supression of leading 
zeroes in the converted number. The output 
number will be left-justified. 

R2 = nonzero to specify that leading zeroes 
are not to be suppressed. 

2. Include the statement 

CALL $CBHSG 

in the source program. 

The predefined conversion parameters are 
automatically pushed to the stack on entry to the 
$CBHSG routine. If the user specifies, via R2 = 0, 
that leading zeroes are to be suppressed, the NOSUP 
parameter is reset. In any case, the $CBHSG routine 
passes the parameters in Register 2 to the General 
Purpose Binary to ASCII Conversion Routine ($CBTA), 
which performs the actual conversion of the binary 
number. 

The $CBTA routine calls the $SAVRG routine to save 
and restore registers 3 - 5 of the calling task. 
Registers 1 and 2 are destroyed. 

Outputs from the $CBHSG routine are: 

1. The converted number, a maximum of four digits 
in length, in the specified output area. 

2. RO = the next available address in the output 
area (the pointer to the location following the 
last digit stored). 

The $CBHSG routine does not return error conditions 
to the caller. 

Convert Binary Byte to Hex Magnitude Routine 
($CBGMG) 

415 

The $CBGMG routine converts an internally stored 
binary number to a 2-digit ASCII hexadecimal number. 

The $CBGMG routine uses the following predefined 
conversion parameters: 

radix = 16. 
field width = 2. characters 
sign flag = UNSIGNED 
leading zeroes flag = NOSUP (no supression) 

To call the $CBGMG routine: 

1. Supply three input arguments in the task's 
source code: 

a. in Register O, the starting address of the 
output area in which the converted 2-digit 
number is to be stored. 

b. in Register 1, the binary byte to be 
converted in the low order byte. 

c. in Register 2, the zero supression 
indicator, where: 

R2 = 0 to specify supression of leading 
zeroes in the converted number. The output 
number will be left-justified. 

R2 = nonzero to specify that leading zeroes 
are not to be suppressed. 

2. Include the statement 

CALL $CBGMG 

in the source program. 

The predefined conversion parameters are 
automatically pushed to the stack on entry to the 
$CBGMG routine. If the user specifies, via R2 = 0, 
that leading zeroes are to be suppressed, the NOSUP 
parameter is reset. In any case, the $CBGMG routine 
passes the parameters in Register 2 to the General 
Purpose Binary to ASCII Conversion Routine ($CBTA), 
which performs the actual conversion of the binary 
byte. 

The $CBTA routine calls the $SAVRG routine to save 
and restore registers 3 - 5 of the calling task. 
Registers 1 and 2 are destroyed. 

Outputs from the $CBGMG routine are: 

1. The converted number, a maximum of two digits 
in length, in the specified output area. 

2. RO = the next available address in the output 
area (the pointer to the location following the 
last digit stored). 

3. Rl = low order byte is unchanged; high order 
byte is cleared by the $CBGMG routine. 

The $CBGMG routine does not return error conditions 
to the caller. 

GENERALIZED FORMATTING 

Generalized output formatting is provided by the 
Edit Message Routine ($EDMSG). The changes 



described in this paper have added three types of 
output format conversions to the capabilities of 
this routine. These format conversions are 
documented here. The terms used in explaining these 
conversions have the same meaning as that used in 
Table 6·1 in the RSXllM System Library Routine 
Reference Manual. 

Directive Form 

G %G 
(binary byte 
to hexa· 
decimal conv) 

H 
(binary to 
hexadecimal 
magnitude 
conversion) 

J 
(binary to 
signed 
hexadecimal 
conversion) 

%nG 

%VG 

%H 

%nH 

%VH 

%J 

%nJ 

%VJ 

Operation 

Convert the next binary byte 
address in ARGBLK to hexa
decimal and store result in 
OUTBLK. 

Convert the next n binary 
bytes from address in ARGBLK 
to hexadecimal numbers, and 
store results in OUTBLK; 
insert space between numbers. 

Use the value in the next 
word in ARGBLK as repeat 
count, convert the specified 
number of binary bytes from 
address in ARGBLK to hexa' 
decimal numbers, and store 
results in OUTBLK; space 
between numbers. 

Convert the binary value 
in the next word in ARGBLK 
to hexadecimal magnitude 
and store result in OUTBLK. 

Convert the 'next n binary 
values in ARGBLK to hexa 
decimal magnitude and 
store results in OUTBLK; 
insert tab between numbers. 

Use the value in the next 
word in ARGBLK as repeat 
count, convert the specified 
number of binary values to 
hexadecimal magnitude, and 
store the results in OUTBLK; 
insert tab between numbers. 

Convert the binary value in 
the next word in ARGBLK to 
signed hexadecimal and store 
the result in OUTBLK. 

Convert the next n binary 
values in ARGBLK to signed 
hexadecimal and store the 
results in OUTBLK; insert 
tab between numbers. 

Use the value in the next 
word in ARGBLK as repeat 
count, convert the specified 
number of binary values to 
hexadecimal and store the 
results in OUTBLK; insert 
tab between numbers. 

416 

COMMAND STRING INTERPRETER MACRO CHANGES 

The use of the Command String Interpreter switch 
value macro CSI$SV enhancement is explained below. 
This information supplements the explanation of the 
'type' parameter to the macro. See the RSXllM IO 
Operations Reference Manual, section 6.2.4.2 for 
more information. 

The conversion-type argument can take on the value: 

HEX · Indicating that a numeric switch value is to 
be converted to binary using hexadecimal as a 
default conversion radix. 

On the next page of the referenced manual the last 
two paragraphs describing numeric conversions should 
be replaced with the following: 

On numeric conversions, the default conversion type 
specified for a switch value can be overridden by 
means of a pound sign (#), an exclamation point (!), 
or a dot (.). A numeric value preceded by a pound 
sign (for example, #10) forces the conversion type 
to octal; a numeric value preceded by an 
exclamation point (for example, !10) forces the 
conversion type to hexadecimal; a numeric value 
followed by a dot (for example, 10,) forces the 
conversion type to decimal. Note also that a 
numeric value can be preceded by a plus sign (+) or 
a minus sign (-), The plus sign is the default 
assumption. If an explicit octal or hexadecimal 
value is specified using the pound sign (#) or 
exclamation point (!), as described above, the 
arithmetic sign indicator (+or -), if included, 
must precede the pound sign or exclamation point 
(for example ·#10). 

If the conversion type is decimal, the switch value 
is evaluated as a single number; an overflow into 
the high-order bit (bit 15) results in an error 
condition. However, if the conversion type is octal 
or hexadecimal, a full 16·bit value may be 
specified. 

TABLE DRIVER PARSER MACRO CHANGES 

The use of the Table Driven Parser has been enhanced 
to include two state transitions based on a 
hexadecimal digit or a hexadecimal number, 
information supplements sections 7,1,2 and 
the RSXllM IO Operations Reference Manual. 

This 
7.2.1 of 

The following two state transitions are defined for 
use in the 'type' parameter to the TRAN$ macro: 

$HXDIG • Matches any single hexadecimal digit (0 
F ). 

$HXNUM · Matches a hexadecimal number. 
Such a number consists of hexadecimal 
digits, followed optionally by a period, 
If number is not followed by a period, it 
is interpreted as hexadecimal. Numbers 
followed by a period are interpreted as 
decimal and the decimal point is included 
in the matching string. A number is 
terminated by any non-hexadecimal 
character. Values through 2A32 1 are 
converted to 32·bit unsigned integers. 



The transitions in a state may represent several 
syntax types; a portion of a string being scanned 
often matches more than one syntax type. Therefore, 
the order in which the types are entered in the 
state table is critical. Transitions are always 
scanned in the order in which they are entered and 
the first transition matching a string being scanned 
is the transition taken. Therefore, the following 
order is recommended for states containing more than 
one syntax type: 

char 
keyword 
$EOS 
$HXDIG 
$ALPHA 
$DIGIT 
$BLANK 
$HXNUM 
$NUMBER 
$DNUMB 
$STRNG 
$RAD50 
$ANY 
$LAMDA 

Placement of !label transitions in a state depends 
on the types and positions of other syntax types in 
the state as well as on the syntax types in the 
starting state of the subexpression. 

417 





A REAL-TIME MULTIPROCESSOR DATA ACQUISITION NETWORK 

Mark F'odans 
James M. Galm 

Fr<:rncis L,. Merat 
Department cf Electrical Ensineerins 

Case Inst:ltut« of T'"chnolo~J!,1 
Case Western Reserve Universits 

Cleveland, Ohic 44106 

A multiProcessor, real time data acauisition sYstem 
has been developed for use in an onsoins meterolosical 
stud~. Usina custom desianed ffiOdules. the ssstem fe~tures 

hilh speed fiber oPtic data Paths, a disli:'.bute•.i .-.,~t.'·l"lfi·; 
architecture and Precise micrometerolasical instrument~. ~ 

f'Df'-11/24, runnina RSX11-M acts as s•;steri; coun!i1uta1• .:~nd 
mass storase structure. 

INTR01tUCTION 

Recent studies have indicated a need 
for millimeter wavelenlth proPalation meas
urements correlated with chanses in the 
complex index of refraction of the atmos
phere (1], The atmospheric lcomPlexl index 
of refraction is responsible for absorPtion 
and dispersion at milli111ete1' wav(~lc1dtiE iJ1;d 
is a sPat.ial f•Jnctior1 of the ilt.:11osPhE.'<'i.1.· 
temperature and humiditw. 

The reauirements for a millimeter 
wavelensth Pr0Palatior1 e':Periment ,ne1 'li;:J~ 

, a means of me0;;,uri.11!'l th£· millim€·t1u 
wavelensth proPaSation cha1dcteristic~ while 
simultaneously measurinl th~ (111ic10) 1eteo
rolosical Parameters of ~he at•osphere, 
This paper will not address the me~~u:ement 

of ProPasation Paramelers themselv0~r~J, tut 
will address the desi;Jr; <Jf a nt:twork for U·1"' 
collection and Processins of acauired m~tea
rolosical data within the In~crn2ti~nal 

Stand2rds Orlanizat:lo1'1's 0»•.?fl s~L·.\,i:;•m Inlt•I''" 
connect model. 

The meteorolosical clata 
s~stem IMDASl is a dist.ribut.ed mult.ifl"\JUJ·~ .. 
sor network oPeratinl in ~ ru2ster/sl6V~ 
relationship with a host ~omPuter. 

<Detailed descriPtion of the hardware and 
software aspects <>f MDA!: can be fu,rnd in 
Reference (2],) M1tAS utili:es Lhe concePt of 
111n111um hardwar1: imFleme11ation with •11a;:im•J:11 
software flexibility t.o eccomodate exP2ri-
11ental chanaes. For MDAS this resulted in 
the use of microprocessors with inL~Sral 

data communications features, havinl minimal 
11e11or~ and user defined peripherals. A mod
ified ISO-OSI Protocol is used for the 
network controllinl protocol f3J. SYstem 
flexibility is attained bw u·;i.11:;'. the i10st 

Proceedings of the Digital Equipment Computer Users Society 419 

comPuter to d~namicall~ reProsram the dis
tributed :.;sstem; thus' the !u.71i.<:.;;:l 
architecture of lhe s~stem is of a multidro? 
nature rather than a ·:;t;:;" 01· dns nE1.wurk 
which can be ouicklY char1<i!ed to ff•eet r"'w 
data acauisition or control '"~m.:.ir1?me11ts 
with no hardware changes. 

The Phwsical la~out of MDAS has been 
dictated b\c: ar1 onloins PrOPaSation e;.:Pel'i-
ment (4], For the experi•~nt referred to, 
six 161 meteorolosical measurement sites (or 
towers) are eouallY sPacid at 320 mete1 
intervals over a 1.6 Km linear distanc~. 
The host computer· r-·rov1de;; OVL':·al '!. swc.t.;n, 
control and data disPla~ a~d storasel the 
network Provides ,jat;; comm1.111ic:<:tion·:. 
hardware' controlling software and data com
munications Protocols; the tC1wer·';:; Pr01·.i ... h; 
measurements of such JtmosPheric: P"rameters 
as static and dwnamic temperature, hu~id1t~, 

and wind velocity, 

1tESCRIPTION OF MDAS HAR1tWARE 

A schematic dii~ram of th~ ssstem m~~ 

be found in Filure 1. The host computer is 
a Disital EauiPment CorPoration PDP-11/24 
runnins RSX-llM with disk anJ ~ape data sto
raae. The PDf'-11 is resPonsibl~ fur th~ 

overall control cf the network, the s~stem 
clock Ca KW11-K real time clock), data ~to

i·ase, and ir1teract.Lon with the h1.1m,rn 
operator, This latter include·0; ;.,,,1.~clior1 uf 
e>:ecutable ?rosram·~· data di~Pla·,;, and di;
Plaw of swstem status. A DRll-C 
bidirectional parallel interface connects 
the host computer to a dwn~micallw re2ro-
1rammable• microprocessor based front end 
Processor IFEPl. This intprface ha11d!es the 
details relardinl communicatons to and from 
the towers. Communications between towers 
is done with fiber oPtic data Paths. This 
imposes some restraints on possible tower 
interconnection schemes because of the 
one-waw communications nature of most opti
cal fiber swstems. Commercial fiber-oPtic 
transmitters, receivers• and cable were used 

New Orleans LA· 1985 



throushout the sYstem[5J, From a losical 
standPoint1 varoius ways of interconnecting 
the towers could have been devised. In 
HDAS1 two fiber oPtic cables - one carrYins 
information away from the FEP and one carrs
ins data to the FEP ( see Fiiure 1 ) 
connect the towers to the FEP. Each tower 
actively receives and retransmits all infor
aation on the two fiber oPtic channels with 
hardware to losicallw determine the towers' 
interconnections under software control. A 
losical diasram of the Possible routing 
Paths at each tower is shown in Fisure 2, 

The Intel 8031 microrocesso1' was choser1 
to imPlement the communicatons and control 
functions of each tower. This microproces
sor was chosen Primarilw because of the 
8031's on-board full duPlex UART with spe
cial ninth-bit mode. As will be discussed 
in the next section this ninth-bit mode Per
mitted a very simPle command format. The 
8031 is a hiSh SPeed <12 MHz clockl 
microprocessor with a control-oriented 
architecture1 ideally suited for data acGui
sition and control aPPlications. 

The FEP is an 8031 system similar in 
form to those in the towers. The FEF' 
includes extended memory and a Parallel six
teen-bit interface to the host comPuter, 
Each tower contains a snapshot 8-channel 
A/D1 i.e. all data acGuisiticn occurs on 
all eisht channels simultaneously, The 
snapshot AID is a standard 8 channel A/D 
Preceded bY eisht sample/hold amPlifiers. A 
CONVERSION command causes all samPle'hold 
amplifiers to enter the hold mode until all 
data conversion is complete. The maximum 
network latency time <time between transmis
sion of a command and the receipt of an 
acknowledsement to that command) Permissible 
between towers for the ProPaSation experi
ment is aPProximatelY 100 microseconds. In 
HDAS1 a CONVERSION command sent to all 
towers simultaneously Yields an overall max
imum latency ldue to a combination of 
transmission delaws and skewins of the indi
vid•Jal microProcessor clocks> betweer• any 
two channels on any two towers within the 
above maximum. The swstem is capable of 
simultaneously acouirins 128 116 towers x B 
channels/tower) channels of analos informa
tion and transmittins the data to the host 
computer at a rate on the order of 250Hz, A 
maximum samPlins speed of 6 KHz can be 
attained with the swstem collectins from a 
sinSle analos channel on one tower. 

DESCRIPTION OF MDAS SOFTWARE 

The Philosophy of software flexibility 
reouired the software to be orseni~ed in a 
modular fashion1 Permittinl the software to 
evolve as the experiment srows or chanses. 
A Protocol based on the IBO-OSI model as 
interPreted by Tanenbaum <Fisure 3) Provides 
the necessary modularity [6), Tanenbaum's 
•odel has been somewhat altered to include 
the master-slave relationshiP between the 
FEP and the towers. In the control Protocol 
"local' refers to the FEP Cthe master>• and 
'remote• to the towers (slaves), The 

420 

ISO-OSI model contains seven layers of Pro
tocol interpreted as follows <also refer to 
Fisure 4): 

APPLICATION LAYER Responsible fur 
obtainins and transferrins necessary files 
to run network and collect real time data. 
This is done bw usins a friendly human 
interface. The human interface enables g 

user not familar with the network tu easily 
set UP data collection from various instru
ments on the towers at any rate he chooses 
Cin increments of .01 seconds) or use a Pre
viously saved experiment. BY beins able to 
save the setup of the sYstem a knowledsable 
user once havins saved an exPerimenl can 
send anyone out to run it asain. The human 
interface also enables someone who knows ho~ 

the network works to be able to control the 
network from the Session laYer <the lowest 
laYer directly attainable to the user), 

2, PRESENTATION LAYER - This ldYer contsins 
the imPlementation of freeuentlw used 
subroutines called by the APPlication laYer 
i.e. tower diaSnostics• sensor checks• los
ical reconfisuration of link1 and link 
commands. 

3, SESSION LAYER - This is the lowest user 
interface into the network. The software 
executes in the PDP-11 and controls the 
DR11-C1 the data communication between the 
host computer and the FEP. If the user was 
in this layer he would be able to have 
direct control, throush the software1 over 
the FEP and all the remote towers. 

4, TRANSPORT LAYER - The FEP software makes 
UP this layer. The FEP is responsible for 
the control of the subnet, ssnchroni:ation 
of data acGuisition1 Packasind and rurmat
tinS data and encoding commands as well as 
disPlaYinS network and instrun1ent sL;tus or, 
the status Panel. 

5. NETWORK LAYER Responsible for 
sendins/receivins data or commands to/from 
the FEP and the remote towers. It Packaaes 
the command <Fisure 51 into a two byte Pack
et containins the tower address, command and 
checksum. This checksum could be shortened 
so that the Packet could also contain tower 
status information. Data is set in variable 
lensth blocks ransins from O to 255 bwtes 
lons. The tower however is onlY able to 
send the FEP its data table. The data table 
contains the data captured from the instru
ments and is Presently seven b~tes lons 
Calthoush it can be increased or decreased 
at wi 11). 

6, DATA LINK LAYER Uses the PhYsical 
laYer to Provide an error free data Path. 
The 9th bit is added to the data Packet to 
siSnal a command work. BY setting this bit 
hiSh1 the FEP is able to interrupt the 
towers with a command or leave it low and 
onlY be connected to a Previously selected 
tower, 

7, PHYSICAL LAYER - This is the hardware 
level and includes the fiber-oPtic communi-



cations s~stem and the internal UART on the 
8031's, 

The hu•an interfaces asks the user for the 
instruments to be used on each tower. This 
information is encoded into the Parameter 
block, alons with the desired rate of sam
Plins. The block is individually sent to 
each tower but all the towers simultaneously 
start execution with a ilobal run comruand. 
The data table is UPioaded from each r~nning 
tower and stored in the FEP, After the FEP 
accumulates enoush data, it will interrupt 
the PDP-11 throush the DR11-C so that the 
host com?uter can disPlaY and/or store all 
the data on disk for subseauent transfer to 
masnetic tape, 

METEOROLOGICAL INSTRUMENTATION 

The meteoroloSical instrumentation is 
important from two standPoints - it had to 
be custom desiSned for this exPeriment and 
its function should be under network con
trol. In current experiments, there are twu 
classes of tower: normal and SPecial. The 
normal towers Presentl~ number six and con
tain instrumentation for measurins 
temperature and humidity differences and 
3-axis wind speed. A special tower contains 
instrumentation which controls the rnillirnc-· 
ter wave source. A secund special tower 
incorPortaes a Motorola 68000 based detector 
control subs~stem for receivins and process
ins the millimeter wave radiation. 

In the current experimental 
confisuration differential rather than ~bso
lute lsinsle Point) teruPerature is bein~ 

measured. The instrumentation for measurins 
termPerature differences is based uPon work 
done at the U.S. Army's Atmospheric Sci
ences Laboratories with incandescent li~ht 
bulb filaments [7]. The tun•sten filament 
wires respond to chanSes in ambient tempera
ture with corresPondins changes in 
resitivitY sufficentlw linear and fast as to 
make the sensors usable for manY atmosP~eric 

measurements. Two such filament sensors are 
operated in a bridse configuration to meas
ure differential temperature in the vicinity 
of each tower. This sensor conf.is•.irat:ion i.'~ 
OPerated aPProximatelY 2 meters off the 
Sround with an adJustable sensor sPacins of 
10 cm to 1 meter. 

As lisht bulb filaments are muite deli
cate• the most likely cause of temPerat.ure 
sensor failure is the oPeninS of a filament. 
Sensor failure information is cc.•mm•rnL"at.c~d 

throush the network to the TransFort Layer, 
A network status Panel driven bw the FEP 
indicates the status of all sen~ors the net
work for operator convenience. 

Humid it~ is measured us ins a 
L~man-AlPha hYSrometerr similar to thaL des
cribed b~ Buck [9] but with improved 
electronics [10J, An ultraviolet source 
emits at the L~man-AlPha absorption line of 
h~drosen. An ionization-type detector meas
ures the source Power at a fixed distance 
from the source, The detected siSnal will 

421 

corresPond to the absorption of the UV radi
ation by the h~drosen atoms of water 
molecules between the source and detector. 
This received si•nal Yields the absolute 
water vapor densit~ (humidity) between the 
source and detector tubes when correctly 
calibrated. The nature of the detector tube 
allows very fast lsub-millisecondl measure
ment of humidity and is the reason wh~ such 
a comPlex device was used. 

For differential humidity measurements 
these detectors cannot be Put in a bridse 
confisuration as the temperature sensors 
werel conseauentlY• the output sisnals from 
individually matched LYman-AlPha hygrometers 
must be subtracted and filtered to Yield a 
differential humidity, Considerable network 
control is exercised over the Lwman-AlPha 
hYSrometers because of their complexity, 
The APPiications layer is responsible for 
turnins on the source tubes' waitins for the 
tube temperature to stabilizer and detectins 
tube failures. The most common cause of 
hwsrometer failure is catastrophic failure 
of either the source or detector tubes. As 
with the differential temperature sensors• 
tube failures are detected bw monitorin~ the 
difference sisnal between two hw!rometers 
for a larSer constant value. In the future• 
additional information on ~raceful failure, 
i.e. tube aSinS• misht be developed bw rnon
itorins source tube impedance, 

The wind sensors are commer·ciallw 
available three-axis Senerator-tYPe anemome
ters [12J, emPlo~ing small, Perrna~ent ma!net 
ProPartional tachometers• rather than oPti
call~ encoded disital tachometers. Use of 
the former t~Pe is motivated bw the much 
simPler Processin! electronics needed bw the 
generator anemometers. Furthermore' optical 
tachometers Produce Pulse outPl1ts which R1ust 
be Processed over relativelw lons Periods to 
~ield wind velocit~ resultinS in Ion! 
resPnse times and limited bandwidth for low 
wind velocities. An offset buffer amPlifier 
Provides siinal conditioning to convert the 
bipolar voltages senerated bw the anemome
ters to a 0 to 5 volt siSnal for the A/D 
s~stem with a level of 2.5 volts rePresent
ins a zero velocity alons the anemometer 
axis. Values Sreater than 2.5 volts indi
cate wind from the Positive direction. 
values less than 2.5 volts are obtained for 
wind from the nesative direclion. 

Initiall~• as shown in Figure lr the 
focal Plane scanner subswstem will not be 
directl~ tied to the network but rather 
connected throush two DZll Ports on the 
PDP-11 for testins and debugsins Purposes. 
When testins is comPleted the scanner sub
s~stem will be connected to the network and 
considered to be another tower. Because of 
the modular hardware desiSn• this connection 
can be accomPlished without havins to break 
the fiber optic data Path bw merely connect
inS the scanner s~stem to the fiber optic 
communications board of an existins tower. 
In essence' PiSS~backins two towers tosether 
to create a local tower cluster. This was 
done usins the loSical interconnection 



feature of the fiber oPtic system. This 
ability is advantaleous because it allows 
the tranmitter-scanner Path len~th to be 
easily chansed for short Path experiment~ er 
checkins beam alisnment alans the ProPaBd
tion Path. Tower clusterinl can be Jone 
easily anywhere in the networ~ since tower 
address decodins occurs in the CPU of each 
tower rather than in the communications 
hardware. 

PDP-11 CONTROL AND ACQUISITION SOFTWARE 

Current software in the PDP-11 allows 
the user to access the network at the ses
sion layer since the a~Plications and 
Presentation lawers are not currently imPle-
1ented. A menu driven Prolram called 
'DLOAD' written in MACRD-11 allows a 
knowledseable user to load Prolrams into the 
remote towers and the FEP for hardware test
ins and data collection. Tuw~rs ar~ 

uniauelw addressed by usinl octal valu~s 
rePresentins the tower number in the addres~ 
byte of the command codes assembled in the 
FEP. A Blobal tower address allow~ the use1 
fro• the PDP-11 to start and stop Prolram 
execution and data acuuisitior1 in the dl of 
the remote towers simultaneouslw. After the 
towers are runninSr the user can either 
choose to dis?law the data bein~ collected 
in real time or have the data stored on disk 
for later analysis. If the user chaoses the 
real tiae display of the collected data. th~ 

values re?resentinl the AID channels and 
status bytes for each tower alons with the 
tiae will be disPlawed on a VT125. The 
screen is onlw updated everw 600 mil
liseconds due to the overhead in doinl the 
data conversion and screen I/O in the 
PDP-11. If the user chooses to store the 
incoains data on diskr DLOAD Prompt;; for <Ho 

out?ut file naaer opens the file if the out
Put volu•e is mounted and Proceeds to write 
out the data in two block increments. 
Should soae error occur in trwins tu OPen 
the data file the tJser is returned to l~he 
aain aenu, In the disk data acauisilion 
mode data fraaes are collected in one second 
incre1ents. The current version of the 
software uses the MRKT$ (ruark-timel direc
tive and event flass to control data 
acouisition timins, this presents • drawback 
for us since the lllinimum samF·le· int.en1al can 
therefore onlw be 1 clock tick 11/60 sec.I 
which is too slow for some of the atmospher
ic Phenoaena we wish to ~tudw. The use 0f 
the KW11-K real time clock will alleviate 
this Problem and allow burst d~ta aceuisi
tion rates of 1 KHz, Some minor hsrdware 
aodifications in the FEP and software modif
ications in both the FEP and the PDP-11 must 
first be done before hiSh fremuencY data 
acouisition can be imPlemented, 

SUHHARY AND CONCLUSION 

A meteorolosical data acauisition sws
tea has been described which is bein~ used 
for a variety of atmospheric ProPa•ation 
exPeri•ents. A sim?ler robust hardware 
desisn Permits maximum experimental flexi
bi l itY throush software. The software can 

Permit UP to sixteen towers on the s~stem 

with the maximum data acauisition rate beins 
a function of the comPlexitY of the tower 
software. For simPle tower functions and 
6-8 towers in the system' 200 Hz dat~ 
acouistion rates are Possible. The limiting 
factor is how fast the FEP can transfer data 
to the host computer. A 16 bit FEP Pos~iblY 

based on the DEC J-11 chiP would helP lo 
alleviate this bottle neck. 

Tower instrumentation has been desisncd 
for simultaneous measurement of all analos 
inPuts. Resistance tYPe temPerBture sensors 
and LYman-AlPha humidity sens0rs 6llow meas
urement of di ffer·;;:·,tic;l 1.c~mf»~rature and 
humidity at each tower. These can be Pro
cessed bw the host computer to sield lhe 
complex index of refraction. Wind sensors 
allow corrections to be made for air mov0-
ment across the sensors. 

The network as debcribed in this P~Pet 

is bein• used to study atmospheric effects 
upon millimeter· w<?.v1dr!n!:lth :··n,pa!;lation• i.J•.1t 
there is no reason whw such a local 3rea 
network cannot be aPPlied to such diverse 
aPPlications as industrial control lwhere 
individual controllers maw be networked tu 
Produce an intesraled factors under ~omPlete 
comP•Jter control) and sP.nsor S!:!:>tem:; fu,. 
robotics. 

REFERENCES 

1.w.A. Floodr 'OverviE~ of Near Millimeter 
Wave Propagation•' Proceedi~ls SPJE 259, 521 
October 1980. 

2.J.C, Gibbonsr 'A Distributed 
Hulti-HicroProcessor Data Acauisition Sus
tem•' M.S. Thesis• Case Western Reser~e 

University, Cleveland• Ohio, Ma~ 1983. 
3.H. Zimmerman• 'OSI Reference Model The 

ISO Hodel of Architecture for 02en SYsteMs 
Interconnection•' IEEE Transactions Communi
cations COM-281 425-4321 APril 1980, 

4.P.C, ClasPY and F.L. Merati 'AlmusPheric 
ProPasation Studies at Near Millimeter 
Wavelenlths•' Proceedinss SPIE 337, 31-371 
Hay 1982. 

5.Fiber optic transmitter HFBR-1002, receiver 
HFBR-20011 and HFBR-2000 cable. 
Hewlett-Packard CorPoration1 640 Pase Mill 
Roadr Palo Alto. California• 94304. 

6.A.S. Tanenbaumr Computer Networks, 
Prentice-Hall, 1981. 

7.D. Brown. U.S. Armw AtmosPhic Sciences 
Laboratory, White Sands, New Mexico• Person
al communications. 1981-1982, 

8,D, GilloolYr p, Henneuse1 'Multifunction 
ChiP Plays Many Parts in Analol Desi!n•' 
Electronics• 121-129, APril 1981. 

9.A, Buckr 'Notes on the fabrication of a 
Fixed-Path LYman-AlPha HYSrometel'•' RSF 
040-032-0041 National Center For AtmosPheric 
Research• Boulder• Colorado, December 1979. 

10.R, Simons. J, Vandervoort, 'Improved 
Instrumentation Electronics for the 
LYman-AlPha HYSrometer,• LLTR-20• Case West
ern Reserve UniversitYr Cleveland, Ohio. 
APril 1983. 

11.Analos Devices• One TechnoloSY Way, P.O. 
Box 280, Norwoodr MA 02062. 

422 



12.Gill UVW AnemomPte1·/ProPeller Anem•in1et.e1·:· 
R.M, Youn! Somp~n~, 2801 Aeru-Pdrk Or1vu1 
Tranverse City, MI 49684. 

ACKNOWLEDGEMENTS 

This work is SUPPortPd bs the U.S. 
Army Research Office under ~ontr. t No 
DAAG 29-81-K-0172. In addition the ~ut~ors 
wish to acknowledle helPf~l discussions 
about micrometeorololical inst~ument.at!on 
with Ilr. W, Flood of AF:O, Dr. f.:. 01~..:n 
of the Atmospheric Sci2nces Laborator~ dt 
White Sands• and Ors. S. Clifford and R. 
Hi 11 of NOAA, 

POP-11/24 
"''"' END 

PROCESSOR 

- LYMA"I l\l.1'111\ T>"()Rf'S 
• 'l'~·MJ>f.l<ATll'll P~ORF:S 

- l--'XlS ANf:MOMF'l'f:R 

- RAINfAJ,i, r.Allr.F: 

Meteoroloqical Data Acquisition System 

TO NF.JCT '!'OWE 
(f'EP 510 n 

R J 
: 

Figure 1 

TO C"f'U SFJUJ\t, 
rnAT 

ti 
r 

• .. 
[ 

_J 

• 

Communication Optics Logical Setup 

Figure 2 

423 

TO NtXT 
if'AR S 

TOWER 

tOF.) 

SFT-UP CPU 

• 



APPI.!CATION LAYER 
APP!.ICJ\TION I.AYJ·:P 

PRESENTATION LAYJ.;R 
PRESF.NTJ\TION LAYER 

SESSION LAYF:R SF.SSJON LAYER 

TRANSPORT LA YER TRANSPOPT LAYER 

Nt.:TWORK LAYER 
NETWORK LA YER 

DATA LWK LAYF.R 
DATA LINK LAYF'P 

PHYSICAL J,1\YF.R 
PHYSJ('J\I, J.AYF.R 

THE ISO-OSI REFERENCE MODEL 

Figure 3 

r:n-u1,s L01;1cr,L Lf,Yrn ~LOCK UIAGRAf; 
APPLICATION LAYER 

r-- --1 
TRANSPORT LAYER I 

--' 
REMOTF. NET

a.----... WORK LAYER 
REMO'T'F NE'J'-
NORK LAYER 

REMOTE PHY-
SICAL LAYER 

-1-PDP-11/24: FEP REMOTF. TOWERS (TOTAL OF SF.\l~N) 

Figure 4 

424 

RF.MOTF. NET-
ooo WORK LAYER 

000 

000 REMOTE PHY-
SICAL LAYER 

REMOTE NET-
WORK LAYER 

REt10TE PHY-

SICAL LAYER 



SELECT 
TOWERS 

SET 

CONNECTION 

Network: 

Data-Link; 

NO 

SELECT 

PARAMETER 

CONVERT 
INTO 

BLOCK 

TOWER 
COMMANDS 

FORMAT 

NO 

NAME 

EXPERIMENT 

I A~o~ ;or"!A~~-• I ' ;H:c:~~".'. ' I 
...... .._P_A ... T ... Al~·--...... ' L _!,?~A~ _ _J 
._._..,p .... -:.._r_.-. ........ ---1 I . <;H~CfS.~M. , I 

1 BYTE 
~ 

l!J I ~d~r , ctm'."a.nd1 

t.!J I ~at.a <::hTc~su1m11 

Figure 5 

425 

Application 

Presentation 

Session 

Transport 

Physical 
SERIAL 

TRANSMISSION: 

Continuous stream 
of bits over an 
optical fiber. 





PROGRAMMING WITH INDIRECT COMMAND FILES 

Sharon Linnea Johnson 
Division of Epidemiology 

University of Minnesota 
Minneapolis, MN 

ABSTRACT 

The indirect command processor has features which allow it to 
be used as a programming language. The essential programming 
language features of the Indirect command file processor and 
other selected directives, are included in this paper. 
Methods of structuring command files for readability and ease 
of modification are suggested. 

The purpose of this paper is to describe those 
features of the RSX indirect command processor which 
make it a programming language and to suggest an 
approach to indirect programming style. According to 
Digital Equipment Corporation, the purposes of the 
indirect command processor are the following: 

(1) Testing hardware or system and user data 
structures 
(2) Manipuiating user files and data 
structures 
(3) Execution of control structures 
(4) Creating a context for execution of tasks. 

However, approaching indirect command files as 
programs results in more creative use of command files 
for applications development and system management. 
Remaining aware of programming style when structuring 
indirect command files produces files which are easier 
to understand and maintain. 

The indirect command processor has four 
features which make it a programming language. There 
are three types of variables, which are referred to as 
symbols in the documentation and in this paper. Basic 
control structures for flow control and logical tests 
are provided. Special directives for terminal input 
are included as well as basic file input and output. 
It is in its executable statements that the indirect 
command processor is most powerful. Any DCL or MCR 
command can be used as an executable statement in an 
indirect command file. The values of symbols can be 
substituted into these DCL or MCR commands. 

Using the Programming Features 

To use variables in a command file, symbol 
substitution must first be enabled. There is no 
reason not to enable substitution. Substitution must 
be enabled at the beginning of the command file, 
before initializing any symbols. This is done by 
using the statement below: 

.ENABLE SUBSTITUTION 

Legal symbol names can be from one to six 
characters long. All characters must be alphanumeric 
or dollar signs. A symbol name must begin with either 
a letter or a dollar sign. There are three types of 
symbols, logical, numeric, and character string. 
Numeric symbols are integers ranging in value from 0 
to 65535(10). Floating point numbers are not 
supported. 

Unlike other programming languages such as 
FORTRAN or Pascal, which include separate statements 
for declaration and initialization of variables, 
indirect symbols are both declared and initialized 
with .SETa statements, where a determines the type of 
symbol in-question. Numeric and string symbols each 
have a .SET statement and there are two types of .SET 
statements for logical symbols, depending upon whether 
the symbol is being assigned true or false. The 
sample below demonstrates the initialization of 
symbols of various types and values: 

Proceedings of the Digital Equipment Computer Users Society 427 

.SETT MOUNTD 

.SETF OVERLY 

.SETN COUNTR 0 

.SETS MAX "MAXBUF=" 

To substitute the value of a symbol into an 
executable statement, the symbol name is surrounded by 
single quotes. In the example below, a FORTRAN-77 
compile would be performed, with the values of the 
string symbols OBJ and FTN substituted into the 
command. 

F77 'OBJ' ,'OBJ'/-SP='FTN' 

Various special symbols of all three types are defined 
within the indirect command processor. They are 
indicated by reserved names surrounded by square 
brackets. <EOF>, a special logical symbol is true 
when end of file is reached reading an input file. 
<STRLEN> is a special numeric symbol returned by 

certain directives. <EXSTRI> is a string symbol 
returned by string manipulation and other statements 

Indirect numeric operations include addition, 
subtraction, multiplication and division. The 
operators, +, -, /, and *, are similar to those of 
FORTRAN. These operations are performed using the 
.SETN directive. Separate directives for incrementing 
or decrementing a numeric symbol by one are also 
included. These are particularly useful when coding 
loop structures. The code segment below includes all 

three types of numeric operations. 

.INC COUNTl 

.DEC COUNT2 

.SETN C A+B 

Despite the limitations of its arithmetic, the 
indirect command processor provides a good variety of 
string operations. To assigning character strings 
all literals must be surrounded with single quotes'. 
Substrings are surrounded by square brackets and are 
referenced with !2.!_:n2 by character number, similar to 
substring references in FORTRAN. The concatenation 
operator for merging multiple strings into one symbol 
is a plus sign. Strings can be divided into 
substrings based on the occurrence of a selected 
delimiter character using the .PARSE directive. In 
the example below, if the string symbol FILE contained 
"DR2:[300,300]PROG.TSK", the string DEV would contain 
"DR2" and the string NAME would contain 
"[300,300]PROG.TSK". 

.PARSE FILE":" DEV NAME 

New Orleans LA - 1985 



The .TEST statement serves as an index 
function. In the example below, the string FN2, a 
filename, is tested to determine if it contains a 
substring. If the string contains the substring in 
question, the special numeric symbol <STRLEN> contains 
the value of its index. If the string does not 
contain the substring, <STRLEN> equals zero. 

.TEST FNl ".PAS" 

Using substitution, strings can be converted to 
numerics. In the example below, the special string 
symbol <TIME>, which contains the system time, is 
converted to a four digit numeric value. In the first 
statement, concatenation is used to create a new 
string symbol, T, without a colon. Next, the value of 
the string T is substituted into the numeric symbol 
NTIME • 

• SETS T <TIME>[l:2J+<TIME>[4:5] 
.SETN NTIME 'T[l:4]' 

The commenting features of the indirect command 
processor make it easy to create internally documented 
programs. A semicolon in the first column of a line 
indicates a comment which is echoed on the terminal 
unless the statement .ENABLE QUIET has been invoked. 
Enabling quiet also suppresses the echo of any 
operating systems commands used as executable 
statements. If quiet is disabled, the text, including 
the semicolons, are displayed on the user's terminal. 
Enabling quiet is used to its best advantage when you 
wish a series of commands to be executed, but not 
echoed on the user's terminal. This is useful in 
command files de.signed for naive users. Using • ENABLE 
and .DISABLE QUIET to prevent comments from being 

echoed becomes confusing to program and is not 
recommended. 

Instead of enabling and disabling quiet around 
documentation text, the other type of comment line 
should be used. A period in the first column and a 
semicolon in the second column of a line indicates a 
comment which is not displayed regardless of the 
status of QUIET. This is the best way to include 
documentation text in a command file. Exclamation 
points can be used following indirect statements to 
place comments on the same line. It is important to 
remember that this exclamation point syntax does not 
apply to MCR or DCL commands used as executable ~
statements. Since· indirect statements are not echoed, 
inline comments with exclamation points are not 
displayed. 

A special set of statements for querying users 
for values of symbols are included in indirect. There 
is a·separate .ASK statement for each type of symbol. 
These statements consist of .ASK, .ASKN, or .ASKS 
followed by an optional set of default values, time 
out intervals, ranges for numeric symbols, or 
acceptable lengths for strings enclosed in square 
brack~ts, and then·the name of the symbol followed by 
a string to be used as a prompt. Default values are 
used if the user responds with a carriage return. If 
ranges have been set and out of range values are 
entered, the prompt is repeated. 

To use time out intervals, .ENABLE TIMEOUT 
must be included in the command file. If a query 
statement times out without a user response, the 
special logical symbol <TIMOUT> becomes true. Based 
on the value of <TIMOUT> conditional action can be 
taken. In the first example, the logical symbol 
OVERLY has a default value of false and a response 
time out of two minutes. "Using overlay?" is the 
prompt which appears to the user. Acceptable user 
responses are the letter Y or the letter N. In the 
second example, the numeric symbol OPTN has an 
acceptable range of one through nine, a default value 
of nine, and a time out limit of five minutes. The 
string symbol BLDFIL can be up to 32 characters long, 
has a default value of whatever the string symbol P 
contains, and a time out limit of two minutes. 

428 

.ASK r<FALSE>:2M] OVERLY Using overlay 

.AlltN 11:9.:9.:SMJ OPTN Enter option 

.ASKN [1:32.:'P':2M] BLDFIL Name for .BLD 

Files for input or output can be opened for 
read, write, or append. If more than one file must be 
open simultaneously, an optional number can be 
associated with each file. Individual files can also 
be closed. Text is read from files into string 
symbols, one line at a time. Lines up to 132 bytes 
long can be read. The .DATA directive writes one line 
of text, which can include substituted symbols, to a 

file. The statements .ENABLE DATA and .DISABLE DATA 
can write more than one line of data at a time. 
Opening the device TI: as a file and using .ENABLE and 
.DISABLE DATA allows larger sections of text to be 
displayed without the semicolon in the first column of 
each line which would appear if comments were used. 
The section of code below demonstrates the various 
file processing directives. 

.OPENR #1 CHOICES.PRM 

.OPEN #2 'NAM' .CTL 

.OPENA #3 'TEST'.OUT 

.READ U LINEl 

.DATA 13 This is your test output. 

.CLOSE #3 

.OPEN #3 TI: 

.ENABLE DATA 
********* 
working 

********* 
.DISABLE DATA 

Special symbols which contain the status of 
files include <EOF> and <FILERR>. When end of file is 
reached attempting to read a file, the logical symbol 
<EOF>- is true. The FCS file code for each read 
attempt is in the special numeric symbol <FILERR>. If 
<FILERR> equals 230(10), then no such file was found. 
Both of these symbols can be tested and used in error 
recovery code. 

Structuring Indirect Command Files 

Indirect command files have only a few built-in 
control structures. In an unstructured language, a 
structured, disciplined style depends the programmer's 
own efforts. There are several general rules which 
improve readability and make command files easier to 
maintain. Modular structure should be used as much as 
possible. Avoid creating a spaghetti-like network of 
.GOTO statements and labels. A consistently 
structured typing style, using indentation, blank 
lines to create white space, and comment lines 
containing rows of periods to separate subroutines 
greatly increases readability. 

Labels and .GOTO statements must be used to 
build control structures in indirect command files. 
DO loops and IF-THEN-ELSE blocks are not built into 
the language. A label contains up to six character~ 
which can be alphanumeric or dollar signs, is precec 
by a period and is followed by a colon. Descriptive 
names make command files easier to follow than simpl 
statement numbers. A sample series of statements 
needed to implement a fixed count loop are shown 
below. 



.SETN NSTOP 10. 

.SETN COUNTR 1 

.LOOP!: 
.IF COUNTR GT NSTOP .GOTO EXLOOP 

• INC COUNTR 
.GOTO LOOPl 
.EXLOOP: 

Two types of logical test statements are used 
to test the value of a logical symbol or a logical 
condition. To. test the value of a logical symbol, 
.IFT or .IFF is used. Conditions are tested with .IF. 
The logical operators EQ, NE, LT, GT, LE, GE can also 
be typed as =, <>, <=, >= , The logical and and 
logical or operators must be preceded by periods, .AND 
and .OR. Logical "test statements are followed on the 
same line by the action to be performed if the 
condition is true. The action can be an indirect 
command statement or an operating system command. 

.IFF CONTIN .GOTO FINISH 

.IF ICNT GT 3 .OR .IFT <EOF> .GOTO EXIT 

My personal preference for creating 
well-structured command files is to use subroutines 
wherever possible. The main routine of the command 
file ·can then be reduced to a series of calls to 
subroutines which perform each step. A subroutine is 
called with the statement .GOSUB followed by the name 
of the subroutine. The subroutine itself begins with 
the name of the subroutine in the same syntax as a 
label and ends with the .RETURN statement. .RETURN 
causes the command file to continue processing at the 
line following the subroutine call. 

Blocks can be used within a command file to 
create sets of local symbols. All symbols defined 
within the block are local and become undefined 
outside the block. Blocks are delimited with the 
statements .BEGIN and .END. 

Global symbols which remain defined when one 
command file invokes another command file are 
designated by a dollar sign as the first character of 
their names. To use global symbols in a command file, 
the statement .ENABLE GLOBAL must be invoked first. A 
good place to do this is at the beginning of the file. 
One command file can invoke another with @filename or 
with .CHAIN followed by the command file name, Up to 
nine command line parameters can be included after the 

file name when invoking indirect command files. The 
are parsed using spaces into the reserved symbols Pl 
through P9. 

Two different statements are used to stop 
indirect command processing. Each behaves slightly 
differently. The .STOP statement stops processing 
altogether, including the invoking command file if the 
command file containing the .STOP was invoked from 
another command file. Using .STOP in command files 
which are invoked by other command files can cause 

unexpected side-effects, especially if you invoke the 
file from the middle of a system startup command file. 
In these cases, .EXIT should be used instead. The 
.EXIT statement causes a return to the invoking 
command file and continuation at the line following @ 
or .CHAIN. If the file was not invoked from another 
command file, .EXIT stops processing. 

429 

Some Special Symbols and Statements 

A variety of special statements and symbols are 
provided. This section describes only a few. The 
statements .TESTDEVICE and .TESTFILE are used to 
obtain information about the status of devices and 
files. .TESTDEVICE places a string containing device 
attributes in the special string symbol <EXSTRI>. 
Using .TESTFILE places the FCS file code in the 
special numeric symbol <FILERR>. This information can 
be checked to determine if the necessary files or 
devices are available before attempting processing • 

Command files· can delay for a specified time 
span or pause until restarted by the terminal which 
invoked them. The .DELAY statement is followed by an 
numb~r and a time unit, which can range from ticks to 
hours. Following a .DELAY statement with a control-G 
character on a comment line causes the terminal to 
beep after the designated time has passed. The .PAUSE 
statement displays a "PAUSING" message and the command 
required to restart the command file. It is unwise to 
include .PAUSE in command files invoked from batch 
jobs. 

The screen control features of the VT-100 
terminal are available from indirect command files. 
This is done by opening the device TI: as a file and 
using the .DATA directive followed by the chosen 
escape sequence. The escape sequences are described 
in detail in "Nifty Things to Do with RSX Indirect 
Command Files", by Watson, et. al. in the DECUS Spring 
1983 RSX/IAS SIG Symposium Handout. 

Special symbols contain useful information 
about the system, the terminal on which the command 
file is running, and the success or failure of 
commands invoked. The exit status of the last MCR or 
DCL command line is contained in the special numeric 
symbol <EXSTAT>i 0 is warning, 1 success, 2 error, 4 
severe error, and 17 no status returned. The logical 
unit number of the user's default device is in the 
numeric symbol <SYSUNIT>. A range of octal values 
corresponding to various baud rates are used to code 
the current terminal speed in <TISPED>. A string 
containing the login UIC (user identification code) of 
the current user in the form "[ggg,mmm)" is found in 
<LOGUIC>. The current system date as "dd-mm-yy• and 
system time as "hh:mm:ss" are found in <DATE> and 
<TIME> string symbols. If timeout has been enabled 
<TIMOUT> is true if the last directive timed out ' 
waiting for a response. 

Uses of Indirect Command Files 

This section is a description with selected 
examples of some indirect command files implemented in 
the ~ivi~ion of Epidemiology. Our major computer 
applications are research and statistical analysis. 
For brevity and format consistency with the previous 
examples, all code samples are shown in upper case 
with comments in lower case and large documentation 
sections have been omitted. Typically, I use lower 
case for indirect command statements and MCR or DCL 
commands and upper case for comments. A typical 
documentation section contains the original date of 
the command file, the programmer's name, a description 
of the command file's purpose and algorithm, and its 
relationship to particular research projects, if 
applicable. 



Indirect command files have been especially 
useful as interfaces for naive users running 
production jobs. In"teractive command files prompt the 
user for the answers to a series of simple questions, 
then formulate the appropriate commands, perform 
prellminary file m~nipulation, run the necessary 
programs to complete the job, and delete temporary 
files. The ability to set acceptable ranges and 
default values for user responses is particularly 
useful in this type of application. One of our 
applications for this type of command file is the 
production of test result letters for participants in 
health surveys. 

Another application for indirect control files 
is structuring batch jobs. One example of this was 
the reformatting and recoding of death certificate 
data files involving three states and twenty-three 
years of deaths. The command file provided loop 
control to run the program in batch on selected series 
of states and years. Command files run in batch 
obtain answers to .ASK queries by reading the series 
of responses from the batch command file. Responses 
to the indirect command -statements are not preceded by 
dollar signs, as shown below. 

$@DFCODE 
y 
65 
4 

We have developed a set of utilities to creat 
statistical analysis data files for research users. 
The multiple FORTRAN-77 sources, command files for 
task-building, and command files for running the tasks 
are stored in a universal library. To rebuild the 
utility from source, I wrote a command file which 
extracts all sources and command files from the 
universal library, compiles the FORTRAN-77 programs, 
recreates the object libraries, builds the tasks, and 
then deletes the sources, objects, objects libraries 

and other files which are no longer needed, This 
file, CREATE.CMD, was then added to the same universal 
library with the optional descriptors EXTRCT:ME:FIRST. 
This reduced the steps required to rebuild the entire 
utility to extracting CREATE.CMD from the universal 
library and then invoking it. 

The BMDP (Bio-Medical Computer Programs) 
statistical package is used for most of our 
statistical analyses. To prevent major degradation of 
system performance, BMDP must be run in batch between 
8 a.m. and 5 p.m. Three batch processors are 
available during the day, one of which is limited to 
test runs. At 7 p.m., two more batch processors are 
added and the test run batch processor becomes 
available to longer jobs. At 7 a.m. the two 
additional processors are deleted. The addition and 
remov.al of batch processors is implemented with a task 
run in the clock queue at 12-hour intervals. 
BAPPER.TSK, which was written in FORTRAN-77, calls the 
system subroutine SPAWN to invoke a command file, 
BAPPER.CMD, with the parameter AM or PM, depending 
upon the system time. 

The main routine of BAPPER.CMD is extremely 
short. It consists of the three lines shown below. 
The value of the command line parameter Pl is 
substituted as the name of the subroutine in the 
.GOSUB call. The subroutine AM contains the operating 
system commands to deassign BAP2 from the batch queue, 
assign it to QWK, the test queue, and delete BAP3 and 
BAP4. The subroutine PM deassigns BAP2 from QWK, 
assigns it to the batch queue, creates BAP3 and BAP4 
and assigns them to the batch queue. 

• ENABLE SUBSTITUTION 
.GOSUB 'Pl' 
.EXIT 

430 

option number chosen, a subroutine is called. When 
the subroutine completes the menu is displayed again 
A timeout interval of five minutes applies to the ma 
menu and a two minute time out interval to all other 
prompts. If <TIMOUT> is true, the terminal logs off. 
The main routine of this command file is shown below, 
followed by the subroutine DISOP which displays the 
option list. Subroutine DISOP illustrates the use of 
VT-100 screen control escape sequences to produce a 
bright blinking display and then return to normal 
display. 

.IFENABLED QUIET .DISABLE QUIET 

.iif called from another cmd that 
•l had it enabled 
.ENABLE SUBSTITUTION 
.ENABLE TIMEOUT 
.GOSUB !NI 
•l 
.OPT: 
•l main loop for option query to which 
.:subroutine returns 

.GOSUB DISOP 
•l display option list 
.ASKN [1:9::9.:5m] OPTN Enter option: 
.IF OPTN EQ l .GOSUB ED 
.IF OPTN EQ 2 .GOSUB COM 
.IF OPTN EQ 3 .GOSUB BLD 
.IF OPTN EO 4 .GOSUB MAKBLD 
.IF OPTN EQ 5 .GOSUB RUNTSK 
.IF OPTN EQ 6 .GOSUB PURG 
.IF OPTN EQ 7 .GOSUB TYPEIT 
.IF OPTN EQ 8 •• GOSUB OTHER 
.!FT <TIMOUT> .GOTO DONE: 
.IF OPTN EQ 9, .STOP 
.GOTO OPT 
•l 
.DONE: 
•l beep & log off 
i-G 
BYE 
.DISOP: 
•l display main list of options on crt 
•l 
.OPEN TI: 
.DATA <ESC>[lm 
.ENABLE DATA 

1-- edit 
2-- compile 
3-- build 
4-- create 
5-- run 
6-- purge 
7-- type 
8-- pause 
9-- exit 

.DISABLE DATA 

.DATA <ESC> [Um 

.CLOSE TI: 

.RETURN 

Conclusion 

.BLD file 

The indirect command processor is a useful tool 
for implementing both applications and systems 
programs. The ability to include any MCR or DCL 
command within a command file makes it an extremely 
powerful programming language. It does lack 

structured programming features. To compensate fo the 
lack of built-in structures, it is important to 
develop a disciplined, modular style in order to 
create indirect command files which are easily 
revised • 







T.A.E.: TRANSPORTABLE APPLICATIONS EXECUTIVE, NASA's FRONT-END FOR SCIENTIFIC/ENGINEERING PROGRAMS 

Martha R. Szczur, Dorothy C. Perkins, David R. Howell 
NASA/Goddard Space Flight Center, Code 635 

Greenbelt, MD 20771 

ABSTRACT 

The Transportable Applications Executive, developed by 
NASA's Goddard Space Flight Center, is designed for use on 
interactive analysis systems, and provides executive 
services such as menu and command user interfaces, command 
procedures, program library management and asynchronous 
and batch processing. Subroutines for use by applications 
programs are also provided. These include services for 
parameter acquisition, user-program communications, message 
logging, disk input/output and device-independent image 
display. TAE is designed to be portable to new operating 
systems; use of its service subroutines enhances the 
portability of application programs as well. This paper 
explores TAE concepts and structure, and the application 
of TAE to an interactive system. 

1.0 INTRODUCTION 

In 1975, the Information Extraction Division at 
NASA's Goddard Space Flight Center took on its 
first charter to build an interactive analysis 
system for Goddard research scientists (Bracken 
et al., 1977). That was followed in 1977 by a 
second system (Dalton et al., 1981), and in 1978 
by a third (Dalton et al., 1979). In 1979-80, 
planning for four more systems -- for 
meteorology, earth resources, oceanography and 
data base management -- began. Previous 
experience and the new system requirements 
clearly indicated that there existed common 
structures and system service routines that 
could serve all of these systems, and that what 
was unique to each was application software. At 
the same time, only limited manpower was 
available to support the development of all of 
these systems simultaneously. 

In this environment, the Transportable 
Applications Executive (TAE) was conceived. It 
was proposed to be a general purpose software 
executive which could be applied to the various 
systems being developed. The idea of a reusable 
executive was viable because -- despite 
diversity in the potential user communities -
they all made essentially the same demands on 
their supporting computer systems 

These shared requirements determined the initial 
requirements placed on TAE: a consistent, 
controlled, easily learned interactive user 
interface; easy incorporation of interactive 
imaging and graphics; batch processing; and 
potentially large collections of programs, 
interrelated by the need to share data. 

Experience with prior systems and changing 
technology led to the adoption of some 
additional goals: the system must be usable by 
novice and casual users, yet give flexibility 
and freedom to expert users; a user should be 

Proceedings of the Digital Equipment Computer Users Society 433 

able to locate data and programs easily, and to 
get on-line information which explains the 
substance and operation of the system; the 
system should shield the user from the host 
operating system; it must be easy to reconfigure 
the sy~tem and to add new programs; the 
executive must be written to be portable to new 
machines, thereby being a catalyst rather than a 
hindrance for users with changing computational 
needs; the executive must supply common services 
needed by applications programs, which would 
enhance their portability as well; and the 
system must be independent of project, 
discipline or data. 

TAE has grown from an early, limited prototype, 
first made available in August, 1981, to a 
powerful, broadly used operational version, most 
recently upgraded in March, 1985. Its 
development has seen regular stages and 
releases, feedback at every step from a growing 
user community and interested observers, and an 
evolutionary growth shaped by the experiences 
and criticism of its users. Throughout its 
development, TAE has been influenced by work in 
virtual operating systems, human factors 
research, command language design and 
standardization efforts, and system portability. 

This paper discusses the features of TAE and how 
they can be and have been effectively applied to 
interactive analysis systems. Brief attention 
is also given to details of implementation which 
apply to the DEC environment. 

2.0 TAE FEATURES 

TAE consists of two distinct bodies of 
software. The first is the TAE Monitor (TM). 
It handles all user-computer communication, and 
locates, executes, and interacts with the 
applications and utility programs initiated by a 
user. The second is a subroutine library which 
provides several packages of commonly needed 
functions for applications programmers. 

New Orleans LA - 1985 



2.1 User-TAE Communication 

TAE is most visible in its extensive interface 
for interactive users. Inexpert or casual users 
can make their way through a system driven by 
menus and augmented by extensive on-line help, 
while experienced users have a powerful language 
for commanding the system and controlling the 
environment. Any user always has a variety of 
on-line explanation of system operation and 
functions. A user can type the string HELP (or, 
H) at any time to get assistance on how to 
operate the system. The HELP given is tailored 
to the particular situation a user is in, and 
tells him/her what actions are available, 
including what other kinds of HELP can be 
obtained. 

An interactive user's purpose in using an 
applications executive is to exercise the 
analysis functions of that system. To 
accomplish this under TAE, a user manipulates 
two entities: procs and parameters. 

PROCS 

A proc is some function -- whether analysis, 
display of products, or housekeeping -- which a 
user wants to exercise. Internally, a proc may 
be either a process (an executable program) or a 
command procedure, a predefined sequence of 
commands, including the execution of procs. A 
proc is made known to TAE by the existence of a 
disk resident, editable text file called a proc 
definition file (PDF), which internally 
identifies itself as a process or procedure. 
TAE understands and treats each differently. To 
the user, however, the distinction is 
transparent. 

Sets of related procs are stored in "libraries." 
On any one system, there may be many libraries 
of procs, and users may choose to employ all 
libraries or a selected subset. The libraries 
are searched in a defined order whenever a proc 
must be located. First searched is the "user 
library," usually a user's private proc 
collection. Next are "applications libraries," 
one or more libraries, typically of related 
applications, which a user (or system manager on 
the user's behalf) may choose to include in the 
search. Finally there is a "system library," 
which typically contains procs of interest to 
all users. 

PARAMETERS 

Each proc may have associated parameters, 
defined within the proc's PDF. Parameter values 
are the means a user has to adapt the actions of 
a proc to immediate needs. For example, an 
input parameter may be defined as the data file 
on which a proc is to work. Parameters may be 
integer or real numbers, strings or files, and 
may be declared to be either input or output. 
They may have default values, multiple values, 
and restrictive ranges (or lists, for strings or 
files) which will be validated by TAE before 
they are received by the proc. They may also be 
declared to be optional (null value). Whenever 
a proc is executed, parameter values chosen by a 
user (whether explicit or default) are packaged 
by TM and sent to the proc for processing. TAE 

434 

allows a user to save sets of parameter values 
for easy, repeated application to a proc. 

In addition to defining the bounds of a 
parameter, a PDF also contains help text for a 
proc: information on the proc itself, and 
descriptions of each parameter. 

2.1.1 Interaction With TAE Through Menus 

The menu user of TAE sees a controlled, ordered 
inter~ce in which he/she chooses a path through 
the system from a series of formatted lists of 
options. The choices which can be made from any 
one menu are restricted, but menus are typically 
designed to group related functions, in 
anticipation of the likely choices a user will 
make. Under TAE, menus are arranged in a 
tree. The leaves of the tree are procs. Any 
one menu or proc may appear in the menu tree as 
often as desired. 

Once a user reaches a proc, he/she interacts 
with TAE by "tutoring," to enter parameter 
values. A user may also have occasion to 
respond to messages. These interactions are 
described in this section. 

MENUS 

Figure 1 shows a typical TAE menu. 1 The actions 
available to a menu user are presented to the 
user through a prompt line at the bottom of the 
menu. These options include selecting a 
numbered proc or menu, requesting help 
information, returning to previous menu or to 
top of the menu tree, traversing to another 
named menu, switching to command mode or logging 
out of the system. 

Figure 1: TAE Menu 

- - "MUTll", &m.y "TWMENU" 

•••••••••••••••• 
• LAS Utilili• M- • 
•••••••••••••••• 

1)1 ..... .millclllllllllilili• 

2) ..... -lr•il tll'lliml lllililiM 

3) s ..... ......... ulilili• 

Elllr. 1electi111 nulllller, HELP, BACK. TOP, MENU, COMMAND, or LOGOFF 
7 HELP 

TUTORING 

In "tutor" mode, a formatted 1 ist of parameters 
is presented to a user for perusal and 
editing. The name tutor implies part of the 
function of this mode, which is to teach a user 
the command language of TAE. Tutor mode assists 
a user in understanding and entering parameter 
values, and in running a proc. 

A menu user enters tutor mode whenever the node 
chosen from a menu is a proc. Tutoring uses the 
proc's PDF to find the names and brief 
descriptions of parameters. Initial tutoring on 
a proc occurs before the proc is initiated. A 
proc may also use tutoring to acquire additional 
parameters from a user. 



Fig~re 2 shows a typical tutor screen. The 
opt~ons available to a tutor mode user include: 
assign values to parameters, request Help 
select a particular tutor page, scroll th;ough 
values of a multi-value parameter, execute a 
proc, and save/restore parameter sets. In tutor 
mode, there is a simple editor which allows 
users to retrieve and edit parameter values 
displayed on the screen. 

P12. 

Cetiill ..... ...,, ............ file._ llllr/IAT _,to mll/IAT •MIOfY. 

-~- ~ ..... 
OUT ._ .. ...,.. ....... 
WINDOW Windawof ...... 0 (I) 

(II) 0 (2) 
=(SP,Sl.IP.lij 0 (31 

0 (4) 

Entw: Plllll=nlu, HELP, PAGE. SHOW, RUN. EXIT, SAVE. RESTORE; RETURN to PllL 

-·-1·-·-· -·-· -· ·-------------------------------" 
A variation on tutoring which does not require a 
full screen and minimizes the amount of 
information written to the terminal is also 
available. It is used for hardcopy terminals, 
unsupported CRTs, or user preference. 

MESSAGES 

Messages may come from TAE itself, or from procs 
through TAE. A typical message has the form: 

(WHOSE-WHAT) description 

where WHOSE identifies the source of the message 
(e.g., TAE, GEMPAK, METPAK) and WHAT is a key 
e.g., NOSUCHFILE). Any message may be 

supplemented by additional help, which a user 
accesses by typing "?" when the message occurs 
or by typing "HELP-MESSAGE WHOSE-WHAT" in ' 
command or proc interrupt mode. 

2.1.2 Interaction With TAE Through the TAE 
Command Language 

Users who choose to interact with a system 
through the TAE Command Language (TCL) can 
freely control and direct system activities. 
The extent of flexibility is directly related to 
the user's understanding of system operation and 
content. Unlike menu users, who have a limited 
set of possible actions and very little to 
remember at any one time, TCL users are limited 
only by the breadth of available system 
functions and their ability to remember how to 
use them. 

2.1.2.1 Interactive Use of TCL 

The commands available to a user are either 
names of procs or TAE intrinsic commands. Procs 
are the application and utility functions of a 
system, as described in section 2.1. TAE 
intrinsic commands perform simple functions, 
generally to change a user's operating 
environment. Table 1 is a sample list of some 
of the TAE intrinsic commands available to 
interactive users. 

435 

Table 1: TAE Interactive Intrinsic Commands 

•TUTOR 

• DEFCMD/DELCMD 

• ENABLE·LOG/DISABLE·LOG 
•DISPLAY 
•LET 

•MENU 

• SETLIB 
•SHOW 
•EXIT 

• LOGOFF 
• RESTORE/SAVE 

Cbmmands may be modified by subcommands, in 
order to group related functions, e.g., DELETE
GLOBALS, DELETE-LOCALS. Users may also define 
their own commands, using the DEFCMD intrinsic 
which assigns an alias to a command string. ' 
Whenever that alias is used as a command TAE 
substitutes the equivalenced string in place of 
the alias before processing the command. The 
hierarchy for command resolution is first user 
commands, then intrinsics, and finally the proc 
search. 

TAE allows procs to be run synchronously, 
asynchronously or from a batch queue. Saved 
parameter sets may be applied to a command, or 
parameter values may be entered on a command 
line, positionally or by keyword. Parameter 
names may be abbreviated. 

An i~-line editor ~s ~vailable for retrieving, 
editing and resubm1tt1ng previous commands. 

A command user enters tutor mode on any proc or 
intrinsic command by using the TUTOR command. 
For a command user confronting an unfamiliar or 
complex proc, tutor mode is a form of help or a 
fallback position. Like menu users, command 
users will see tutoring whenever a proc requests 
parameter input. 

2.1.2.2 Command Procedures 

A TAE command procedure is a contained 
collection of TAE commands, executed as a single 
named function. This powerful feature allows 
users to set up standard, repeatable sequences 
of commands for regular operations. Procedures 
are invoked with exactly the same syntax as 
processes. Figure 3 is an example of TAE 
command procedure. 

Figure 3: TAE Command Procedure 

PROCEDURE HELP=• 
PARM BAND lYPE=STRING 
REFGBL DATA 
LOCAL X lYPE=STRING 

BODY 
letX=DATA//BAND 
DISPLAYX 
COPY IN=tX OUT=TEST.DAT 

END·PAOC 
.TITLE 

.END 

INFORMATION FOR THE PROCEDURE 
AND ITS PARAMETERS. 



TCL supports several intrinsic commands which 
control the definition and execution of command 
procedures. A sample list is provided in Table 
2. 

Table 2: Intrinsic Commands Used in Procedures 

FOR/END-FOR ITEMIZED LOOP CONTROL 

LOOP/END-LOOP 

IF/ELSE/ENO-IF 

IF/ELSE-IF/END-IF 

BREAK 

GETPAR 

GOTO 

LET 

NEXT 

PUT MSG 

RETURN 
STOP 
WRITE 

INFINITE LOOP 

CONDITIONAL EXECUTION 

MULTI-WAY CONDITIONAL EXECUTION 

EXITA LOOP 
GET DYNAMIC PARAMETERS 

UNCONDITIONAL BRANCH 

VARIABLE ASSIGNMENT 

FORCE NEXT ITERATION 

WRITE A MESSAGE TO STANDARD OUTPUT/ 

SESSION LOG 

TERMINATE PROCESURE EXECUTION 
TERMINATE ALL PROCEDURE LEVELS 
WRITE A STRING TO STANDARD OUTPUT 

TCL language features such as global and local 
variables, substitution, assignments, input and 
output parameters and expression evaluation 
support programming through procedures. 

2.2 TAE Subroutine Library 

The TAE subroutine library provides common TAE 
or host services for the application 
programmer. These routines also isolate 
applications code from host operating system 
services. Such standard interfaces, resident on 
all TAE hosts, allow application programs to be 
host independent, thereby enhancing their 
portability. 

TAE provides service routines for parameter 
processing, image I/0, terminal I/0, message 
display and a few miscellaneous initialization 
and termination functions. 

At its simplest, parameter processing includes 
the passing of parameter values -- those values 
entered by a user and validated by the TAE 
monitor -- into a program. Unless there are 
interdependencies between parameters too complex 
to be checked by TAE, a program accepts the 
values as valid and carries out its functions. 

A program may also "dynamically" tutor a user 
for additional parameter input by using all or 
some of the parameters defined in a PDF, with 
optional modification of their default values 
before display. A user may be tutored for the 
complete, initial PDF, for a subset of that PDF, 
or for parameters from a totally different PDF, 
as required by the program. 

Formatted parameter sets may also be written to 
disk for later retrieval by the same or another 
program. 

The image I/0 subroutines provide a simple 
package which handles band sequential or band 
interleaved images and allows user-defined 
labels to be inserted at the front of an 
image. This package is optimized for efficiency 
of I/0, not storage. While the internal labels 
are designed to describe simple image files, 
this package in fact can be used for any direct 
access block I/0 requirements. 

436 

2.2.3 TAE Subsystems 

TAE provides a strong basis for the development 
of special purpose services which are run under 
TAE and are options to the basic executive 
system. Four of these optional subsystems 

have been released as prototype 
versions. They are briefly described below. 

OMS, a Display Management System: provides 
device-independent access to raster image 
devices, and user services to support this 
access. 

CM, Catalog Manager: pro vi des a system 
independent means of building and maintaining 
catalogs of disk files and related descriptive 
information. CM does not replace the host 
system file handling capabilities, rather 
compliments them by allowing users to store more 
meaningful information about their files. 

RCJM, Remote Communications Job Manager: allows 
a TAE user on a local machine to run TAE procs 
on remote machines. The prototype was designed 
to furnish some of the remote TAE capabilities 
and to provide some experience in designing and 
implementing TAE in a network environment. 

Window Manager: provides as an extension to 
TAE, a user interface that uses graphic windows 
and is based on current concepts of effective 
user displays and user dialog. The prototype 
currently executes on the VAX Station 100 and 
the VT220. Other targeted work 
stations include the IRIS, APOLLO and SUN 
workstations. 

3.0 BUILDING A SYSTEM WITH TAE 

TAE is not a complete system in and of itself. 
Rather, it is designed to provide a core of 
services needed in any interactive system, and 
to be the framework upon which customized 
applications can be installed and managed. The 
major TAE services -- user-interface, command 
language, proc activation and service 
subroutines -- were described in section 2. 
Some of the ways in which a system builder can 
tailor a TAE-based system are mentioned below. 

Global Variables Globals are session wide 
variables used to pass information between procs 
and to provide the TAE Monitor with dynamic 
control information. In a particular system, 
certain parameters or special conditions -- such 
as file names, area definitions, or an index 
into a data base -- may appear repeatedly. To 
avoid requiring the user to enter the same 
information each time, the parameter may be set 
up as a global variable. 

TAE provides a basic set of global variables for 
session control. These vary from letting a user 
define his own commands line prompt to 
controlling how messages are displayed (quiet or 
bell, pause or continue). 

A system builder may also create additional sets 
of global variables which may be individually 
loaded. These sets are defined in special PDFs 



which when "RUN" are loaded and made ready for 
use. 

Session Initialization/Termination: At the 
beginning of a session, TAE executes a system 
wide logon procedure which can perform a variety 
of functions, such as setting up standard 
application libraries and global variables, or 
restoring variables saved in a previous 
session. It is also possible at logon to 
display an installation "bulletin board." After 
the session is initialized, a user logon proc is 
run to customize the session for an individual 
user. For example, special application 
libraries could be added to the standard set. 

At the end of a user's session, system and user 
logoff procs are run. These are used primarily 
for cleanup and saving the user's environment. 

System Appearance: The physical appearance of 
TAE is designed to help the user learn the 
system quickly. Such attributes as standardized 
display formats, rigorous categorization, 
sequential task subdivisions, and functional 
redundancy create a consistent learning 
environment. For example, menu interaction 
gives an introduction to the system and helps 
the user construct a mental picture of the 
system's configuration. In addition, menu . 
choices may appear in several places, allowing 
frequently used entries to be displayed where 
they logically belong. In adapting TAE for a 
specific site, care must be taken to produce a 
good menu structure. However, once this 
conceptualization is complete, its 
implementation is relatively easy. 

TAE provides mechanisms for establishing and 
formatting extensive on-line help and message 
information. Content, however, is particular to 
each system. Experience has shown that, 
unguided, programmers will typically write help 
information for applications functions in 
programming terms rather than in user terms. 
Experience has also shown that poor help 
information can frustrate and discourage a user, 
even in an otherwise well designed system. 

Host Commands: Without replacing the host 
computer operating system, TAE overlays it with 
an environment tailored to a specific 
application. TAE insulates the user from the 
operating command language and error messages. 
However, both the user and the software 
developer may want to use certain functions in 
the operating system command language. Rather 
than reinvent these commands, TAE allows fast 
access to them to complement the portable 
commands in TCL, while retaining the TAE 
environment. 

Host commands can be executed interactively or 
they can be "captured" in a proc to isolate the 
user from them. Procs containing host commands 
may be entered into a TAE menu in the same way 
as any other proc. Entire menus of host 
commands may be thus created with no 
applications code present. While this gives 
more power and flexibility to the system . 
builder, procs containing host commands are in 
most cases not portable. 

437 

Prototyping: A particularly valuable feature of 
TAE is the ability to prototype a system. An 
entire functioning model of the system -- with 
all menus, proc definitions, help files and 
global variables -- can be built and run by the 
user without writing a single line of 
applications code. Users can actively use and 
easily and quickly change or reconfigure the 
system by editing text files. Participation at 
this level may lead to experimentation in the 
appearance and functioning of the system, and 
should increase the likelihood of building a 
successful system. The prototype ultimately 
serves as a detailed model to guide the 
implementers in the development of the 
applications code. 

Modularity/Extensibility: TAE is an open 
system. It allows easy growth, incremental 
development and addition of new functions. Both 
procedures and processes may be added 
dynamically at any time by simply adding a PDF 
file to one of the libraries, including the 
user's private library. A menu can be updated 
quickly by editing the appropriate text file. 

The power and task orientation of TCL encourages 
programs to be small and specific. Procedures 
may then be written to treat the processes as 
"subroutines," with input and output 
arguments. With an appropriate library of 
specific function applications, TCL becomes a 
higher level applications oriented programming 
language in which new applications procs can be 
created rapidly. 

Portability: Portability is a key consideration 
in the development of TAE. All system 
dependencies are isolated from the portable 
code, which comprises approximately 85% of the 
total. The remaining code is machine specific 
and all or part of each routine must be 
reimplemented on each new host. 

Experience with TAE and its prototype in three 
prior ports indicates that a typical 
minicomputer porting of TAE requires 4 to 5 
person-months. TAE does not address portability 
problems of applications programs that may be 
associated with differences in compilers, word 
length or address space. However, most 
applications can be ported between heterogeneous 
TAE systems if they adhere to a standard like 
FORTRAN 77, use TAE service routines, and avoid 
operating system interactions. (Rigid adherence 
to such standards can be difficult in practice.) 

Layering: Layering is a method of customizing 
the system to individual needs. Layering for a 
user may be done in three different ways: 
(1) Creation of unique utilities and 
applications. 2) Using the TAE command 
language to create higher level or customized 
procs that either do a larger, more complex task 
or provide a simpler interface that hides the 
existence of some parameters from a user. 
(3) Creation of new intrinsic commands within 
the TAE Monitor. These would likely be 
functions which must respond very quickly or 
special operations on particular kinds of data. 



4.0 Documentation 

A variety of TAE documentation is available in 
hardcopy form: 

"Conceptual Design" 
"User's Reference Manual" 
"Appl i ca ti on Programmer's Reference Manua 1" 
"System Manager's Guide (VAX and UNIX)" 
"Utilities Reference Manual" 
"Guidelines for Designing Menus and Help Files" 
"Primer" 
"Functional Specification" 
"System I nte rna 1 s" 
"Display Management Subsystem" 
- "Functional Specification" 
- "Programmer's Reference Manual" 
- System Programmer's Reference Manual 

"VAX/VMS Release notes" 
"VAX/UNIX 4.2BSD Release Notes" 
"SUN/UNIX 4.2BSD Release Notes" 
"RCJM Prototype for TAE: VAX/VMS Rel ease Notes" 

The user's, programmer's,system programmer's and 
utilities manuals are included as text files on 
the TAE delivery tape. 

5.0 TAE Support Office 

The TAE Support Office (TSO) was established to 
ensure the availability of information about TAE 
and to assist users and developers in resolving 
problems. The TSO staff give tutorials in 
programming and in using TAE. They receive 
problem reports from user sites and prepare 
responses. They help organize the annual TAE 
Users' Conference and issue a TAE newsletter 
three times a year. 

6.0 Applications of TAE 

When TAE was delivered as a prototype in late 
1981, it was incorporated into three new systems 
at Goddard. The operational TAE is seeing a 
much broader use. A few of the larger systems 
are: 

- Land Analysis System (LAS) - general image 
analysis, Thematic Mapper data processing, earth 
resources, geographic information system 

- MultiMission Image Processing Laboratory 
(MIPL) - general image analysis, planetary image 
processing 

- General Meteorology Package (GEMPAK) -
graphics and gridded data analysis, gridding and 
analysis of surface and upper air observations 

- Atmospheric and Oceanographic Image Processing 
System (AOIPS) - meteorology image display and 
navigation, and some analysis, RADAR, Stereo 
displays, Stereo cloud height analysis 

Agencies of the U.S. Department of Defense are 
also developing a number of TAE-based systems. 
TAE software is in the public domain, with 
distribution through the Computer Software 
Management and Information Center (COSMIC) at 
the University of Georgia. 

7.0 IMPLEMENTATION 

438 

This section describes some implementation 
details of general interest which have not 
already been addressed elsewhere within the 
paper. 

With the exception of a small number of host
dependent primitive subroutines, the TAE Monitor 
(TM) is written in the C programming language. 
Standards for this coding are imposed for the 
sake of portability. They are described in the 
TAE Internals Manual • The subroutine libraries 
are also written in C, but are FORTRAN-callable 
through a bridge front end to each routine. The 
C versions are made available to C programmers. 

Under VAX/VMS, processes and DCL commands are 
run in a permanently active, spawned 
subprocess. Parameters and messages are passed 
between TM and a process by mailbox. Under 
UNIX, the vfork feature is used to run 
processes. A pipeline is established for 
passing parameters. 

TM is essentially an interpreter and maintainer 
of a variety of tables which define the current 
contexts for a user, and a parser for user 
commands. 

Three symbol tables, implemented as singly 
linked lists, define TAE command language (TCL) 
variables: 

- a symbol table for global variables, 
accessible to any proc; 

- a symbol table for local variables, accessible 
only within the context of a single proc; 

- a symbol table for parameters passed to a 
proc. 

Each variable is defined by a substructure, 
which is allocated dynamically as needed. 

TM also maintains a data structure which defines 
the context of a procedure that is being 
interpreted. This contains, for example, the 
parameter and local symbol tables, pointers to 
the global symbol table, a table for the command 
qualifiers, nesting level, proc type, etc. 
Procedure invocation may be recursive, and is 
limited only by the amount of dynamic memory 
available for storing structures. 

The structures of TCL intrinsic commands are 
defined by include files. Each intrinsic 
command has an associated function which 
processes that command. Any installation can 
create its own intrinsic commands by updating 
the include files and adding a function. 

Parsing of a command line is done in a single 
pass, with substitution performed at the time a 
substitution operator is encountered. A parsing 
machine (Aho and Ullman, 1974) evaluates 
expressions. This machine also handles TCL and 
installation specific functions. Stacks are 
maintained for nested control structures -- for 
example, nested IF statements. 

Special processing occurs for menu and tutor 
displays. Both are source driven from menu and 
proc definition text files. Menu processing 



formats and presents menus, and maintains a 
stack of a user's menu path. It returns a 
"TUTOR procname" command when a menu selection 
is a proc. Menu commands are handled within the 
menu processor module. Menu contents and tree 
structure are defined through the menu 
definition files. Tutor processing builds 
memory-resident structures from PDFs to assist 
in the display and processing of subcommands, 
parameters and help information. 

8.0 CONCLUSION 

The increasing costs of development are driving 
diverse system developers to pursue common 
solutions to meet their common requirements. 
The upgrading of systems to accommodate new 
technology and to escape the costs of 
maintaining older systems has become a standard 
operation in environments which support changing 
user requirements and communities. As a 
flexible, open and portable system, TAE is a 
powerful tool in making such transitions cheaper 
and less formidable. 

TAE is also proving to be highly adaptable to 
system developers with diverse objectives. The 
rapid increase in the number of TAE 
installations supports the original thesis that 
" .•• TAE will be a multi-purpose interactive 
executive ••• intended to serve as a common 
foundation for future systems development •••• " 
(Howell et al., 1980). 

Current plans call for TAE to be upgraded to a 
network operating system command language for 
distributed processing between TAE-based systems 
in a local area network. Expansion of the 
display management subsystem to handle groups of 
images and to incorporate standard graphics 
processing is also planned. 

9.0 ACKNOWLEDGEMENTS 

TAE is being developed by the Image and Analysis 
Center, NASA/Goddard Space Flight Center and by 
Century Computing, Inc. The work is sponsored 
by the NASA Information Systems Office, which is 
part of the Office of Space Science and 
Applications, 

10.0 FOOTNOTES 

1. Examples of screens in this paper are taken 
from the Goddard Space Flight Center's Land 
Analysis Sys tern. 

11.0 REFERENCES 

AHO, A.V. and S.C. Johnson, "LR Parsing", ACM 
Computing Surveys, June, 1974, pp. 99-124 

ANSI, "Operating System Command and Response 
Language (OSCRL) Language Specification 
(DRAFT)," Rev. 18, ANSI X3Hl/09-SD, January 
1984 

Beech, D., "What is a Command Language?" in 

439 

Command Language Directions, D. Beech, ed., 
North-Holland, 1980 

Carlson, Patricia, "User-Programmer Dialogue: 
Guidelines for Designing Menu and Help Files for 
Interactive Computer Systems", NASA TM-84980 
1983 • 

D~lton, John, et al., "Interactive Color Map 
Displays of Domestic Information" ACM Computer 
Graphics, Volume 13, No. 2, 1979 ' 

Demers, Richard, A. et al., "System Design for 
Usability", Communications of the ACM, Volume 
24, No. 8, August, 1981. 

Dalton, John, et al., "The Visible and Infrared 
Spin Scanning Radiometer (VISSR) Atmospheric 
Sounder (VAS) Ground Data Systems:, Society of 
Photo-Optical Instrumentation Engineers 
Technical Symposium, April, 1981 

desJardins, Mary, and Ralph Petersen, "GEMPAK: 
An Interactive Display and Analysis System" 
Proceedings of the 9th Conference on Aerosp~ce 
and Aeronautical Meterology, 1983, pp. 55-59. 

Engelberg, Norman, and Charles Shaw, 
"Considerations of Command and Response Language 
Features for a Network of Heterogeneous 
Autonomous Computers", NASA TM 86089, 1984 

Howell, David, et al., "Conceptual Design for a 
Transportable Applications Executive," GSFC 
internal document, 1980 

Ling, Robert, General Considerations on the 
Design of an Interactive System for Data 
Analysis", Communications of the ACM, Volume 23, 
No. 3, March 1980, pp. 147-154 

Moran, Thomas P., "An Applied Psychology of the 
User", ACM Computing Surveys, Volume 13, No. 1, 
March, 1981 

Perkins, Dorothy, et al., "A Device Independent 
Interface for Image Display Software", 
Proceedings of the National Computer Graphics 
Association Conference, 1984 

Shneiderman, Benjamin, Software Psychology: 
Human Factors in Computer and Information 
Systems, Winthrop Publishers, 1980 

Bracken, P.A., et al, Atmospheric and 
Oceanographic Information Processing System 
(AOIPS) System Description, NASA Publication 
X-933-77-148, March 1977. 





Mini-disaster Prevention Planning 
for the VMS System Manager 

Marisa Riviere 
2407 Irving Ave. South 

Minneapolis, Minnesota 55405 

Abstract 

The security and reliability of a computer system needs more "behind the 
scenes" preventive preparatory work than is usually assumed. This paper 
addresses the use of standard VMS tools to carry out such preparation. Some 
of the concepts described here cover general system maintenance issues that 
can also apply to other systems. 

VMS mini-disaster prevention planning 

When observing a running computer system, its quality 
can be appreciated easily. It is seen, for example, in the 
turn-around time for tape mounts and printed output, and in 
the response of the interactive jobs. One would like to as
sume that a good system is reliable and secure, but that may 
not always be the case. In general, one could say that a safe 
and reliable system can protect itself against any possible 
disaster. For example, floods, hurricanes and fire can destroy 
a system. A good insurance policy, which should include a 
backup mainframe available on another site, should be part 
of the system maintenance planning. This wiU not be 
enough, however, if the system manager does not comple
ment the insurance policy with off-site storage of all the 
needed data files to reconstruct the operational system. This 
should include dumps of on-line data as well as copies of 
important system and user tapes containing off-line stored 
materials. 

A major disaster may never strike most computer sys
tems, but 1ther things, not as drastic, will certainly happen 
now and then. The computer room air conditioner may stop 
functioning or a power failure can take place. If the equip
ment is improperly turned off, or if it is left exposed to heat 
or power l luctuations, costly and delaying repairs may be 
needed. Brief and handy notes for the operators describing 
how to tut n off the equipment should be available for this 
kind of emergency situation. 

Leaving aside major or uncontrollable events which an 
operating system should be ready to deal with, we encounter 
other more routine issues that have to be considered as well 
when pursuing security and reliability. How those events are 
handled depends largely on the skill of the system mainte
nance team and. in addition, on the skill of a "devil's advo
cate" to direct the team's attention towards them. This paper 
attempts to play that role and, focusing on VMS, addresses 
some of those issues. One should bear in mind, however, 
that full security and reliability may be unachievable. 

Proceedings of the Digital Equipment Computer Users Society 441 

"The system does not boot" 

Sometimes it may happen that, if an 1/0 operation is in 
progress on the system pack at the time of a power failure, 
the pack wiU be improperly closed and wiU not be a good 
booting device any longer. The same applies to the console 
medium. Either a power failure or any other factor may 
produce a phone call to the system manager's office (or 
home) with the news that "the system does not boot" and "it 
does nothing". One of the reasons why the system does not 
boot may be problems with the console medium. An updated 
backup copy of the console medium should be available. 
Generally, the console medium is updated when software up
grades require it and when the system device changes. The 
booting files on the console medium are equipment depen
dent. They refer to the system configuration by hardware 
values. If an updated copy is not available, it may still be 
possible to boot the system by using an older copy and 
manually entering the appropriate console instructions. For 
that, familiarity with the equipment configuration and boot
ing file instructions are needed. It may certainly help to list 
the booting files ahead of time to undersand their instructions 
and, of course, to keep the list handy. It may also help to 
ktep a copy of the current console medium on line in case it 
has to be reconstructed. 

The console medium may be right, but the system may 
continue acting dead after all the "booting clicking noises" 
were made. Messages about the system pack being "improp
erly closed or formatted" may show up on the operator's con
sole. There are several remedial alternatives for that situa
tion. They depend on the system configuration and, of 
course, on some work done ahead of time. 

If there is only one disk drive on the system, Stand
alone Backup may be the only alternative for a damaged 
pack. Operator instructions should be available describing 
the use of Stand-alone Backup. The notes should include 
samples of the Backup requests and how to answer them. 
Stand-alone Backup is a mini-system that loads on the com
puter from the console media. Its loading time may seem 
surprisingly long for any one who has not worked with it be
fore. Timing information should be included in the notes. 

The Stand-alone Backup kit depends on the systP-m 
harrlware configuration and on software updates. A new 
version has to be made each time it is required by the instal-

New Orleans LA - 1985 



lation of a software update and when the system device or 
the tape drives are replaced by others of a different hardware 
type. An old version of Stand-Alone Backup may not be able 
to read tapes written by a newly released Backup utility, or, 
if it is, it may not be able to take full advantage of new 
features. The Stand-Alone Backup system should be tested 
whenever possible. A duplicate copy should be made for ad
ditional safety. 

lf there is a free removable pack device an old system 
pack can l:e mounted there. Booting the old system will al
low the use of the Analyze utility to try to repair the dam
aged pack. On systems without removable drives a small 
version of a bootable system can be created ahead of time on 
one of the user file devices. This system will be much 
smaller th:in the current running system. It does not need 
compilers. help libraries, accounting files, etc. This system 
shouid contain only enough software to mount and dismount 
the system pack and to run the Analyze utility. 

Should the system pack be irreparably damaged, up
dating the backup copy of the system pack can be a faster 
alternativu to Stand-alone Backup. Incremental Backup 
dump tapes will be needed. If incremental dumps are not 
taken freq:iently some important data may be lost. Examples 
of that are the validation file, software developments, confi
guration descriptions, etc. Attention should be paid to what 
may be important to preserve between dumps. The "new 
changes" could be, for example, backed up on another pack 
or on tapes. A copy of the validation file can be placed at 
short time intervals on a different device. 

The Backup utility 

Since a damaged system pack may eventually require to 
be rebuilt with the use of the Backup utility, we will address 
here some of the issues that are relevant when using this 
utility to take dumps for general file preservation. The fre
quency of the full dumps and of the incremental dumps may 
differ for •Jach system, but weekly full dumps and daily in
cremental .fomps can be ideal in most cases. At least two 
ve1sions of old Backup tapes should always be available. A 
set of tape> should not be re-cycled until a new set is written. 
If there is :l damaged spot on a tape the files from that area 
can alway:. be recovered from an older tape. Some old Back
up sets should also be kept for longer intervals of time. 
Keeping sets of tapes on a monthly, quarterly and/or yearly 
basis can help to recover files that have been intentionally 
but erroneously deleted. Incidentally, those monthly or quar
terly backup tapes could also be used for off -site storage. 

DCL procedures should be prepared for backing up and 
reloading user and system disks. The backup dumping and 
reloading procedures should specify when Backup qualifiers 
such as /IMAGE, /RECORD, /OWNER UIC, /SINCE, 
/INCREMENT AL, /OVERLAY, or /NEW VERSION 
should be used, and take care of the appropriate validations 
that may be needed for the job, such as BYPASS, EXQUO
TA, and VOLPRO. The reloading procedure, for example, 
can ensure that no active data packs will be altered during 
the reloading process by mounting the target device right be
fore the B:lckup command, request the loading of the incre
mental tapes and, if needed, rebuild the Quota file. When a 
pack of us.ir data is damaged and needs to be rebuilt is not 
the best time to go searching for the right combination of 
Backup parameters and DCL statements! 

442 

"The system boots but ... " 

The system may boot, but suddenly, the startup pro
cedures may abort. There is a lot of activity in progress 
when these procedures run. Users' packs are mounted, dev
ices are initialized, drivers are loaded, hardware is connected, 
system definitions are made, network communications are 
brought up, etc. The startup procedures may stop on any one 
of these tasks. This may happen when hardware components 
are not available or are functioning badly. The booting pro
cedures should have some messages to inform the operator as 
the different booting steps are accomplished, such as "User 
packs mounted", or "Special drivers loaded". The messages 
should be informative but short. Long printouts from the 
startup procedures can produce paper jams if the system goes 
down and boots several times while unattended. A list of the 
startup procedures made in advance helps the operator to see 
where the problem may be. Should the problem not be easy 
to find, a conversational boot will be needed. Here again, the 
console media has to be ready for it. It has to contain files 
for the current system device. And, by the way, was the 
minimum configuration choice ever tested? 

Human factors: system users 

Certainly, the ability to recover a damaged operating 
system may be the minimal safety required for its proper 
operation. That is not enough, however, to make the system 
as safe and reliable as one would like it to be. There is more 
organizational planning-ahead and managerial day-to-day 
work to do. This work deals with human factors. On an 
operating system, protection has to exist for the system 
against the users, the users against each other and the users 
against themselves. The same applies for system program
mers and managers. VMS has very good features for protec
tion against malicious users such as hashed passwords, file 
protection, validation restrictions and captive accounts. Even 
so, the user's capability to break into the system should never 
be underestimated. Users should be informed of the illegali
ty of misusing accounts and asked for cooperation to inform 
the system manager of any possible system weakness. Cau
tion should be exercised when granting to any computer user 
more than the standard system access validation. Usually, for 
most application packages the standard authorization param
eters suffices. 

User access to system software should be permitted 
only in execute and, where necessary, read mode. If possi
ble, the system software should reside on a pack by itself, 
where a quota allowance is given only to system accounts. 
Users' root directories should be created, for example, with 
write permission granted only to the users and/or the group. 
Groups should be defined for people working on common 
projects, or for administrative reasons. Users should learn 
how to use the VMS file protection and be aware of group 
validation features when they are in groups where some of 
the members are entitled to privileges that can exercise con
trol over the members. A quota value should be enforced on 
all multi-user disks. Users should accomplish maintenance 
tasks for their own protection, such as to observe and clean 
up their file's directories, to check their quota values and to 
set up their job's time limit. They should keep track of their 
sessions by saving accounting records at the end of each ses
sion as permanent files and checking them at login time. 
Passwords, of course, should be changed frequently. 



Human factors: system programmers 

System programmers are supposed to work for the 
well-being of the operational system and its users, but it may 
not always happen that way. We will leave aside from this 
paper considerations about internal sabotage. Those are 
psychological and legal issues to be ,dealt with by the overall 
site management and not by an operating system alone. We 
should assume that system programmers will only create 
unintentio1:al harm and see how their work and the work of 
the system manager should be organized to minimize that 
harm. 

For t,xample, system programmers need to use accounts 
with special privileges to access and alter system files. Those 
accounts should be restricted to acquire special privileges 
only as the~· are needed, and to do it within captive DCL 
procedures. Such accounts should enforce a secondary pass
word and hallowed to log in only on specific (e.g., hard
wired) terr•inals. 

Several members of the system programming team may 
need to work simultaneously altering software across many 
system dirtctories. The system manager should design the 
organization of the system directories. The organization 
should be suitable for easy searches, off-line backups and for 
the tracing of changes to procedures and source files. A 
well-planned design for system software directories becomes 
more and more valuable as time passes and the software pro
duction becomes larger. Some rules should apply to the 
internal structure of the system directories and subdirectories. 
For example, each directory and subdirectory could contain a 
file with a brief description of the function of the other files 
that reside there. Another file should contain a description 
of all the changes made in the directory. Scratch intermedi
ate files should not be left in the system directories. After a 
change, the altered directories should contain only two ver
sions of files, the new versions and the versions that were 
used prior to the change. System software should be 
developed in a location separate from the production system 
directories. Logical names could be used to reference the lo
cation of all the files that are used by those procedures and 
programs. This makes the software easily transportable for 
testing. 

Great coordination is required on the system team to 
schedule and organize system upgrades and modifications i11 a 
satisfactory manner. Changes and additions should be con
sistent in style and quality. Not all system programmers have 
all th~ samr: good qualiiies that a system manager would like 
for every 0ne of the team's members. The system manager 
should compensate for that by assigning work, when possible, 
to more th3n one person. Each person can act as a moderator 
for the oth1Jrs. Frequently, bright programmers turn in a 
large and prompt production of undocumented software. 
Those products suit their purposes well until someone else has 
to make a change. More conservative and not so impressively 
bright programmers tend to be consistent in style and neat
ness, mainly for their own sake. Grouping people with com
plementary work characteristics can produce software that 
will be easily understood by others. Software changes have to 
be tested at appropriate times and with proper user notifica·· 
tion. Changes which affect users and operators should be 
clearly documented ahead of time and the date of the change 
announced properly. System notes and a directory of system 
documents and user notices can be used for users' infOima
tion. 

443 

Human factors: system manager day to day 

The system activities should be monitored in a routine 
manner. Daily maintenance runs should produce snapshots of 
changes in system data, such as quota files, system parame
ters, validation, free disk space, hardware configuration, 
startup procedures, login files, error reports, etc. The daily 
printouts should be brief, so they can be checked fast and at 
once. Weekly reports should be made of important system 
data and statistics. Lists of startup files, quota files, brief 
accounting information, protection and size of user root 
directories and operator procedures, should be printed or 
placed on tape or microfiche at a certain frequency. 
Snapshots of data on the "live" system status should be in
cluded. The reports can help to trace back the reason of 
many obscure problems that may eventually appear. 

When the system crashes, the system dump should be 
analyzed at the next booting time. A printout of the dump 
can be included in the startup procedures. The printout 
should be made on a printer, not on the console. The error 
log should be monitored for sudden increases in size. If that 
happens, it should be analyzed immediately. It may possibly 
contain information on a partially failing device. Detected in 
time, the problem can be taken care of before it brings the 
system down, or a proper shutdown, if needed, can be 
scheduled. Maintenance procedures, such as accounting runs 
and system reports, should be carefully written. The pro
cedures should take care of cleaning up temporary files and 
old versions of reports. They should also take care of pro
tecting any information which should not be made public. 

The installation of new software should be carefully 
documented. It will help, later on, if the software has to be 
removed. New software may affect several directories and 
sections of libraries and documentation. It may happen that, 
eventually, those sections may be shared by other products. 
Keeping track of installation changes will help if the software 
has to be deleted in the future. Images to be installed with 
special privileges such as KERNEL or PHY IO should be 
carefully screened if they are not provided from a reliable 
source. Additions to startup and system login files may in
clude symbol definitions that can overlap with existing sys
tem symbols. Those procedures should be carefully screened 
before they are used. Changes in non dynamic parameters 
should be tested immediately. Some Sysgen parameters are 
relation dependent on each othe1. A change in one may re
quire changes in others. Any change in non-dynamic 
parameters should be followed by a test boot operation. 

A description of other possible system manager mini
disaster traps could continue for several pages or forever. 
Every reader may have additions based on inquisitive test 
runs or on bitter experience, but the information here should 
be enough to direct system managers' attention to observe 
their own systems' needs for reliability and security. 

Smile! Your system may be running ... and well. 





ADVANCED DCL PROGRAMMING 

Richard H. Warner 
Measurex Corporation 
Cupertino, Ca 95014 

This session wi I I describe how DCL can be used as a high 
level programming tool. As an example, I wi I I describe a 
sophisticated set of DCL procedures which were written to 
enable S/W integrators to bui Id Process Control S/W Systems. 

The procedures are designed so that al I high CPU usage is 
done in batch jobs at lower priority. The interactive 
procedures check fully for file existance, and dates. The 
integrators have an opportunity to correct most errors 
before the batch jobs are submitted. 

The set of procedures consists of: 
{12) interactive procedures, averaging 300 lines each. 

(6) batch procedures, averaging 200 lines each. 
{10) utility procedures, which are used 150 times. 

The batch procedures utilize MAC, and TKB Utilities, 
and (2) user written FORTRAN programs. 

The session notes wi I I include examples of: 
effective standards for al I procedures 
formatted screen outputs 
often used uti I ity procedures 

Welcome to the session on Advanced DCL Programming! 

It has been a very challenging task, and a very 
satisfying experience getting prepared for this 
presentation. 

Everyone here should think very strongly about 
presenting a paper at DECUS. Nearly everyone should 
have some topic which would be of interest to DECUS 
members. 

I had been thinking about presenting a paper, but 
not very seriously. At the Fall meeting in Anaheim, 
a question from the audience triggered my decision 
to do it. 

The question as I remember it was about like this: 
"Does a person who writes DCL command procedures 
qualify as a programmer?" Implicit in that was 
another question: "Is DCL a programming language?" 

My answer to both is a resounding "Yes!" 

I have been writing DCL command procedures for over 
5 years, and I have extensive experience in FORTRAN 
and assembly language programming. I find that DCL 
is truly capable of performing powerful programming 
tasks. 

There are areas where it lacks "bells and 
whistles", and in some cases it requires more 
programming skill than FORTRAN. 

Here is how we use it at Measurex. 

Proceedings of the Digital Equipment Computer Users Society 445 

Some background on what Measurex does 

Measurex builds computer process control systems 
for manufacturing facilities. For the purposes of 
this presentation, the system will be a system 
based on a DEC 11/23 processor for control of a 
Vinyl Calendar mill. 

The Measurex hardware system consists of a set of 
scanning gauges which pass over the Vinyl sheet as 
it is being produced. When one of the gauges detect 
an abnormal or out-of-target condition, the control 
system adjusts the input variables to return the 
Vinyl to the proper specifications. 

The Weasurex software system consists of 2 parts. 
system programs which are constant for a 

product line 
databases and control functions specific to 

a user's facility 

The system integrators adapt a conditional file to 
meet the custome~s requirements. This conditional 
file is used by the DCL Command procedures to 
create database listings, system Maps, and an 
executable file on a floppy diskette. 

The procedures assemble modules using RSX MAC, task 
build using RSX TKB, then merge the .EXE files into 
a total system .EXE file. The total system .EXE is 
dumped to 1 or more floppy diskettes. 

New Orleans LA - 1985 



I STARTBLD I 

I IDENTIFY I 

DECADE SYSTEM 
BUILD PROCEDURES 

I ASSEMBLE I 
---------- 71" -

I TASKBU I LD I 

I MERGE I 
REPEAT THESE 
UNTIL SVSTEH 
CHECKED OUT 

How the Measurex system software is built: 

There are 9 basic procedures which the integrators 
use, very briefly this is what they do: 

STARTBLD - sets up logical assignments in users' 
LOGIN.COM 

IDENTIFY - creates a .DAT file which is sent to 
a S/W shipping clerk. This alerts 
the clerk of an upcoming system. 

ASSEMBLE - submits batch jobs to run MCR MAC on 
desired .MAC files. 

TASKBUILD - submits batch jobs to run MCR TKB 
on .OBJ command files. 

MERGE - submits a batch job to merge all of the 
. EXE files into a full system. 

DECDUMP - dumps the system .EXE onto 1 or more 
floppy diskettes. 

Note: the above 4 procedures are repeated until 
the system is checked out. 

DECFINAL - rebuilds the entire system, creates 
multiple floppy copies, listings, 
and creates a microfiche tape. 

446 

I DECDUMP I _w_ 
I DECFINAL I 

I SHIPMEMO I 

I WRAPUP I 

SHIPMEMO - allows the S/W integrator to document 
information specific to this system. 

WRAPUP - puts the completed software onto 
archive tapes and removes all files 
from working directories. 

These processes are CPU intensive and are run 1n 
Batch mode. The batch processing requires good 
Command Procedures to be effective. 

The interact1ve part of the command procedure set 
contains an enormous amount of file and error 
checking. If there is anything missing or in error, 
the Batch job is not submitted. The user has an 
opportunity to fix the problems now, not hours or 
days later when the batch job failed. In addition, 
the extensive checking means that re-runs of batch 
jobs are reduced. The net effect is more effecient 
use of the computer resources . 

The S/W integrators soon get into a nice production 
groove. Find a S/W bug, edit the affected source 
file, send a batch job off to re-assemble the file. 
Find another bug, fix it, submit another batch job, 
etc. After all the known bugs are found, then they 
re-assemble everything that needs it. 

The extensive use of batch processing means that 
the user terminals are not tied up with jobs which 
are CPU intensive. In fact, normally the S/W 
integrator's terminals are "OFF". 



SAMPLE ASSEMBLE INTERACTIVE SESSION 

ASSEMBLE 

THIS PROCEDURE WILL ASSEMBLE SOURCE (.MAC) FILES, 
AND CREATE .OBJ AND .LIS FILES. 

AFTER YOUR BATCH JOB, YOU MAY CONTINUE WITH TASKBUILD, ETC. 

YOU MAY SELECT INFORMATION ABOUT THE FOLLOWING: 

(1) DECxxA.CNF AND .ASM FILES (6) 
(2) ASSEMBLE OPTIONS (7) 
(3) PROCEDURE DEFAULTS (8) 
(4) BATCH PROCESSING (9) 
(5) CHAINING BATCH JOBS 

BATCH JOB .LOG FILES 
RULES FOR "NEED TO BE ASSEMBLED" 
ASSEMBLE OF NON STANDARD FILES 
USE OF ALTERNATE SOURCE DIRECTORY 

Enter Information Number, or Zero to End Information: 0 

Do you want to ASSEMBLE individual 

Why our command procedures are effective: 

The command procedures have been designed to be 
very user friendly. They feature such things as 
screen clearing often, so that as information is 
presented it writes down instead of scrolling up. 
All questions and presentations are standard in 
format. Error and control y handling has been 
included in all procedures so that they cannot 
abnormally terminate leaving a mess of open files, 
incomplete data, or submit a batch job which will 
fail anyway. 

Some of the command procedures can be run 3 ways: 
1. Normal mode: a preamble about the procedure 

is put on screen. Before each question, 
enough information is presented to enable 
the S/W integrators to make the correct 
decisions. 

2. Novice mode: the S/W integrators have an 
option to display up to 10 screens of 
information documenting the use and 
features of the procedure. 

3. Expert mode: screen clearing is eliminated, 
questions are not preceded by information, 
and other features are eliminated to 
allow the user to get through as quickly 
as possible. All error and file checking, 
however, is still done. 

The command procedures have been written to be very 
general. We have to support over a dozen different 
industries, each with different system programs and 
databases. In order to accomplish this, all of the 
procedures are file-driven. 

The entire system build has been modularized into 
small files and libraries which are then combined 
into 1 assemble task (MCR MAC). The object modules 
and libraries are combined into a list for use by 
the task builder (MCR TKB @xxx). 

.ASM fi les[YES/NO]?: NO 

447 

For each industry, there is a set of configurator 
files. These define the names of all files needed 
to be assembled, task built, and merged to create a 
complete system. 

The assemble and taskbuild requirements are defined 
by files which are then unique to an industry. 

By using the file-driven concept in the writing of 
the procedures, the procedures now became general 
purpose, and they can handle all of our different 
industry requirements. 

The other feature of the general purpose procedures 
is the use of logical names pointing to specific 
industry master files. When a system is started, a 
procedure is executed which defines the master 
directories for the industry. For example: 

MX$S 
MX$0 
MX$D 

Sources 
Objects 
Drivers 

MDSA: [MXVINYL. SOURCE. B202] 
MDSA: [MXDECADE. OBJECT. B201 J 
MDSA: [MXVINYL. DRIVER. B201 J 

The use of the logicals makes the procedures much 
simpler and allows 1 set of procedures to be used 
for all industries. 

The procedures are designed so that the user can 
chain them together. When the user selects files to 
be assembled, the user may elect to have the batch 
job submit another batch job to do the next step, 
ie, task build. Similarly, the user may elect to 
merge the .MAP files, and dump the system .EXE to 
a floppy. The batch procedures continue chaining 
unless a fatal error occurs. 

Since the procedures are batch oriented, the .LOG 
files become very important. The batch procedures 
are run with SET NOVERIFY so that they are short. 
Whenever an important event occurs, it is carefully 
documented in the users' .LOG file. The batch job 
and .LOG file names use the system number for 
identicication. The computer operators track jobs 
with these IDs. 



YOU MAY ASSEMBLE: 

ANY OF THE FILES SHOWN BELOW, ALLOW THE PROCEDURE TO 
SELECT ALL THAT NEED TO BE ASSEMBLED, OR ASSEMBLE ALL 
OF THEM IN ONE BATCH JOB. 

I FILE NAME DESCRIPTION # FILE NAME DESCRIPTION 

1 COMMV4 COMMON 8 KRNLV4 KERNEL DATABASE 
2 CTLV4P CONTROL B/C WINDOW 9 LOGV4C LOGIC ORDINAL TABLE 
3 DIGV4P DIAGNOSTICS B/C WINDOW 10 MISV4P MIS B/C WINDOW 
4 FRMV4P FRM B/C WINDOW 11 USERV4 USER COMMON 
5 FXV4DB USER FEX DATABASE 12 ZZKRZE KERNAL PATCH FILE 
6 GAGV4P GAUGING B/C WINDOW 13 ZZCOZE COMMON PATCH FILE 
7 GDRV4P GDR B/C WINDOW 

YOU NOW 1 - Assemble individual files from list 
HAVE 3 2 - Assemble al I files from list which need it 
OPTIONS 3 - Assemble a 11 f i I es in I i st 

Enter Number of Option[1:3]: 

The ASSEMBLE and TASKBUILD procedures have been 
designed to give the S/W integrators 3 options. For 
example, when assembling files they may: 

assemble one or more files by entering specific 
file names 

assemble all files required by the system 
assemble all files which need it (ie, source or 

a component file edited) 

The concept of assemble or task build "everything 
that needs it" has three very important features: 

the S/W integrators do not have to keep track 
of changes to various modules 

by using "everything that needs it", the CPU 
usage is reduced because less files are 
processed each time 

it is "safe" and always produces a correct 
system every time 

* GENERAL STANDARDS FOR ALL PROCEDURES * 

START PROCEDURE WITH NAME, AUTHOR, REVISOH, AND DATES 

PUT A 1 OR 2 LINE DESCRIPTION AT BEGINNING 

DOCUMENT PROCEDURES REALISTICALLY - IT MAY HE ALL THERE IS 

DO NOT OVER-DOCUMENT, TOO MUCH WILL MASK MEANINGFUL COMMENTS 

IF INPUT PARAMETERS ARE USED, DOCUMENT THEM AT BEGINNING 

USE MEANINGFUL SYMBOLS FOR VARIABLES AND LABELS 

AVOID OBSCURE COMMAND STRING EQUIVALENCES, SPELL IT OUT 

DO NOT ABBREVIATE COMMANDS OH QUALIFIERS 

COMMENTS AT BEGINNING OF LOGICAL PROCEDURE SEGMENTS 

DO NOT PUT COMMENTS ON A DCL COMMA.ND LINE 

DO NOT COMMENT WITHIN HIGH USAGE LOOPS 

For the following sections, I have an outline of 
the coding "standards" which I have adopted. These 
have proven to be very effective for my command 
procedures. 

448 

Following the "header" are actual examples from my 
procedures. There is a little problem in 
synchronizing the two, so some flipping back and 
forth may be necessary. 



\ 

~ 
! 
\ 

RS:ASSEMBLE.COM R.H.WARNER 27 FEB 85 S! 
S! 
S! 
S! 
S! 
S! 
S! 

COMMAND FILE TO ASSEMBLE BLOCK CHAIN WINDOW OR COMMON FILES. 
THE OUTPUT IS ALWAYS A .LIS AND A .OBJ FILE FOR EACH INPUT. 

IF Pl IS "EX" (FOR EXPERT MODE) THEN CUT OUT SOME SCREEN PROMPTS 

S OCS:VERIFYUSR 
S IF 'SSTATUS .EQ. 3 THEN EXIT 
S ON CONTROL Y THEN GOTO ABORT 
S USRDIR := TFSLOGICAL("SYSSDISK") ''FSDIRECTORY()' 
S END := •11 

S ERRORS = 0 
S OPTION := "INDIVIDUAL" 
S QUEUE := •MX ASMB" 
S SYS NUM :==-'FSLOGICAL("MXSSYSNUM") 
S IF wT• SYS NU.I'" .EQS. "" THEN GOTO NUM ERR 
SCOT NU.I:- -
S O'PEN/READ/ERROR=NO_LBLMSTR TEMP LBL'_SYS_NUM'.MAC 
S CLOSE TEMP 
SCONTINUE: 
S EXPERT := "NOP 
S IF Pl .EQS. •• THEN GOTO NO_Pl 
S IF ("''FSEXTRACT(0,1,Pl)'") .NES. "E" THEN GOTO NO_Pl 
S EXPERT := "YES" 
S GOTO START 
SNO Pl: 
S 'RuN ES:CLEARSCRN 
SSTART: 

The following are items that I feel are important, 
and highly recommended are: 

Always start the procedure with procedure name, 
modifier's name, current revision date. If it was 
written by someone else, add a line telling who the 
original author was, date, etc. 

Put a 1 or 2 line description of the procedure at 
the beginning. 

Document your procedures realistically. Very seldom 
are our command procedures documented from a 
programming point of view. We tell the users how to 
use them, etc, but the "maintenance" programmers 
are out of luck. Therefore, any documentation that 
you put into a procedure is invaluable. 

Do not over-document! Too many comments may mask 
the important and significant comments. It is like 
crying "Wolf! n. 

If input parameters are used, document these at the 
beginning. 

Variables and labels should have meaningful names. 
I have found that names between 4 and 8 characters 
long work best. 

Initialize variables at the beginning of the 
procedure. This is very valuable when adding 
commands later which could be out of the original 
sequence. 

Labels should be left justified. Be generous in 
label names, they should be meaningful. Use 
underscores freely. 

449 

Command lines should be indented 2 spaces after the 
$ sign. Continued lines should be "tabbed" in 8 
spaces. 

Variable equivalences using "=" and ":=" are more 
easily read when they are surrounded by blanks. 

At the start of a procedure, clear the screen, and 
present a screen full of information about the use 
of the procedure. 

I also clear the screen before presenting 
information to the user. It is easier to read text 
from the top down, than to read text which is 
scrolling up. 

I avoid putting comments on a valid command line. 
Usually this makes a procedure hard to follow 
logically. I think that this clutters the listings 
and is not that important if meaningful names are 
used. 

Avoid creating obscure command string equivalences. 
For example: 
SPHDC2QL:="PRINT/HEADER/DELETE/COPIE=2/QUEUE=LONG" 
is very obscure and misleading when it looks like 
$ PHDC2QL OUTFILE as a command. 

Note: if it really bothers you to have redundant 
characters in a command line, find a nice loop 
which is executed many, many times and abbreviate 
as much as possible. Then when you have it out of 
your system, go back to full, meaningful names. 

When you are searching through someone else's 
procedure to find a bug, or to make a change, then 
you will appreciate the redundancy. 



S IF EXPERT .EQS. "YES" THEN GOTO INPUT LOOP 
S TYPE SYSSINPUT -

ENTER INDIVIDUAL FILE NAMES DESIRED AS: AAAAA.ASM 

AFTER LAST FILE, THEN ENTER /END, OR /NOOBJ 

(NOTE: /NOOBJ OVERRIDES DEFAULT OF .OBJ CREATED) 

••• FILE CHECKING WILL TAKE TIME .. PLEASE BE PATIENT ••• 
S! - - - - - - - - - - - - - - - - - - - - - - - - -
$! - - - USERS INPUT INDIVIDUAL FILE NAMES - - - - - - - INPUT LOOP: 
S! - - - - - - - - - - - - - - - - - - - - - - - - -
SINPUT LOOP: 
S ON WARNING THEN CONTINUE 
S WRITE SYSSERROR " " 
S INQUIRE FILE NAME" ''NEXT'Fi le name" 
S IF FILE NAME .EQS. "" THEN GOTO INPUT LOOP 
S LENGTH =-'FSLENGTH(FILE NAME) -
S LOC SLASH= 'FSLOCATE("7",FILE NAME) 
S IF [OC SLASH .EQ. LENGTH THEN GOTO CHK BLANK 
S FILE NAME .- 'FSEXTRACT(O,LOC SLASH,FI[E NAME) 
SCHK BLANK : - -

I find it very convienient to use TYPE SYS$INPUT 
followed by the text. In EDT editor keypad mode 
the text duplicates the screen. ' 

I use "WRITE SYS$ERROR" for single line output. It 
must be used when symbol equates are used in a text 
line. I avoid SYS$0UTPUT because it may have been 
assigned to a file, or null device. 

Use comment lines at the start of logical procedure 
segments. This makes it easier to scan through a 
long procedure and locate segments of interest. 

There are times when comments are harmful. In a 
high usage loop, for instance, it greatly increases 
the procedure overhead. 

* GENERAL STANDARDS FOH ALL PRDCEDUHES (Continued) " 

INITIALIZE VARIABLES AT BEGINNING, DO NOT SCATTEH AJWUND 

LEFT JUSTIFY LABELS, USE UNDEllSCORES FHEELY 

INDENT DCL COMANDS 2 SPACES AFTER DOLLAR SIGN 

INDENT CONTINUATION LINES AT LEAST 8 SPACES 

SURROUND"=" AND":=" WITH A BLANK FOR READABILITY 

CLEAR SCREEN BEFORE PRESENTING DATA TO USER 

MAKE ALL PROMPTS AND QUESTIONS UNIFORM 

USE "TYPE SYS$INPUT" FOR DISPLAYING LONG TEXT 

USE "WRITE SYS$ERROR" WHEN SYMBOLS ARE TO BE OUTPUT 

ALWAYS EXIT GRACEFULLY, ESPECIALLY CLOSE OPEN FILES 

HANDLE ALL ERROR CONDITIONS AT END OF PROCEDURE 

More general standards for all procedures. Some of 
the examples are shown best on previous slides. 

450 

~s procedures get more complex, and much larger, it 
is very useful to break up the procedure into 
separate procedures. 



S! - - - - - - - - -
S! - - - ERROR HANDLING 
S! - - - - - - -
SNUM ERR: 
S WRITE SYSSERROR -

"MXSSYSNUM not assigned in LOGIN.COM, a temporary System Number needed" 
S OCS:GETNUMBER " Enter a temporary system number" 1111 9999 
S IF '$STATUS .EQ. 3 THEN GOTO ABORTl 
S SYS NUM :== ' NUMBER' 
S GOTO-GOT NUM 
SNO LBLMSTR: 
S WRITE SYSSERROR -
" •••COULD NOT FIND LBL'' SYS NUM'.MAC • • •" 
S OCS:YESNO -

"Do you want to continue" 
S IF '$STATUS .EQ. 3 THEN GOTO ABORT 
S IF YESNO .EQS. "N" THEN GOTO ABORT 
S GOTO CONTINUE 
SABORTl: 
S ON WARNING THEN CONTINUE 
S CLOSE CNF 
SABORT: 
S TYPE SYSSINPUT 

••• THE JOB WAS ABORTED, RE-RUN THE PROCEDURE ••• 

S EXIT 

Check for error conditions. Handle all error 
conditions at the end of the procedure, out of the 
logical flow. Always exit gracefully. 

Remember to close any files which were opened. If 
they are not, then the next run of the procedure 
uses the file at its previous position at time of 
abort. 

* STANDARDS APPROPRIATE TO MODULAR PROCEDURES ,.. 

PUT DUPLICATED CODE INTO A SEPARATE SUB-PROCEDUHE 

PUT INDEPENDENT SECTIONS INTO SEPAH.ATE PHOCEDUims 

USE GENERAL PURPOSE UTILITY PHOCEDURES WHERE POSSIBLE 

RETURN VALUES WITH STATUS CODES OH. GLOBAL VAHIABLES 

* STANDARDS USED WHEN SUBMITTING BATCH PROCEDUHES * 

CHECK ALL FILES USED IN A BATCH JOB FOR EXISTANCE 

ALLOW USERS TO RUN THE BATCH JOB LATER OR OVERNIGHT 

DISPLAY PARAMETERS OF BATCH JOB BEFORE SUBMITTING JOB 

ALLOW THE USER TD CHANGE TllEIH MIND, EXIT GRACEFULLY 

SHOW STATUS OF QUEUE WHERE JOB WAS SUBMITTED 

If a section of commands is used in more than one 
place, split it out to another procedure. Note that 
the new sub-procedure can have 8 parameters passed 
to it to handle variations. For example, I have a 
checking procedure which is called from several 
places in 3 separate procedures. By passing 5 
parameters, the sub-procedure handles all of the 
calling procedure's requirements. 

451 

Independent sections lend themselve to separate 
procedures. I use an information section for novice 
users, and put it into its own procedure. This 
keeps it out of the logical flow, reduces the size 
of the original, and makes it easier to edit either 
one. 



S SAVE VERIFY = FSVERIFY() 
S SET NOVERIFY 

CS:YESNO.COM 14 SEP 83 
R.H.WAHNER GET ANSWER TO qUESTlON 

S ON CONTROL Y THEN GOTO STOP 
SREPEAT: -
S WRITE SYSSERROR " " 
S INQUIRE YESNO "''Pl' [YES/NO]?" 
SI 1 1 IF "YES" •YE" nyn "NO" OR "N" IS NOl tNTERED THEN PROMPT AGAIN 
S. iF. (YESNO.NES'.•YES~.AN6.YES~O.NES."YE".AND.YESNO.NES."Y" -

AND YESNO.NES."NO".AND.YESNO.NES."N") THEN GOTO REPEAT 
S! i ! .IF THE PROCEDURE REACHES HERE THEN A CORRECT RESPONSE WAS GIVEN 
S YESNO := 'FSEXTRACT(0,1,YESNO) 
S YESNO :== 'YESNO' 
S IF SAVE VERIFY THEN SET VERIFY 
S EXIT 1 -
SSTOP: 
S IF SAVE VERIFY THEN SET VERIFY 
S EXIT 3 -

Write general purpose command procedures to handle 
common tasks. For example, I have a procedure named 
YESNO.COM which is really great! There is a copy in 
the session notes. This procedure alone is worth 
your price of admission. 

YESNO.COM is a really fine utility. It is easy to 
use, saves time, labels, and keeps the DCL code 
neat. As you can see, it is short, handles all 
normal and error conditions, and exits gracefully 
on control y. One of the things that I noticed 
while using it, is the ease of standardizing the 
questions presented to the users. 

S SAVE VERIFY = FSVERIFY() CS:GETNUMBER.COM 29 JAN 85 
S SET NOVERIFY PROMPT FOR NUMBER R.H. WARNER 
S ON CONTROL Y THEN GOTO STOP 
SREPEAT: 
S WRITE SYSSERROR " " 
S INQUIRE NUMBER ""Pl' ["P2':"P3']" 
S ON WARNING THEN GOTO REPEAT 
S CHl := 'FSEXTRACT(O,l,NUMBER) 
S IF (CHl .LTS. "O" .OR. CHl .GTS. "9") THEN GOTO REPEAT 
S IF (NUMBER .LT. P2 .OR. NUMBER .GT. P3) THEN GOTO REPEAT 
S NUMBER == NUMBER 
S IF SAVE VERIFY THEN SET VERIFY 
S EXIT 1 
SSTOP: 
S IF SAVE VERIFY THEN SET VERIFY 
S EXIT 3 
S! • • • • • DOCUMENTATION SECTION • • • • • 
s ! 
S! THIS IS A GENERAL PROCEDURE TO GET NUMBER FROM THE TERMINAL 
s ! 
S! THE TEXT TO BE PROMPTED IS PASSED BY PARAMETER PI 
S! THE LOW RANGE OF THE NUMBER IS PASSED BY PARAMETER P2 
S! THE HIGH RANGE OF THE NUMBER IS PASSED BY PARAMETER P3 
S! 
S! IT WILL REPEAT THE PROMPT UNTIL THE NUMBER IS ENTERED IS VALID 
s ! 
S! NUMBER IS RETURNED AS A GLOBAL SYMBOL 
S! 
S! IF CONTROL Y ENTERED, A VALUE OF 3 IS RETURNED IN $STATUS 

Other very useful procedures are GETNUMBER.COM, and 
VERIFYUSR.COM. Copies of these are also in the 
session notes. 

Note that GETNUMBER handles all conditions, 
out-of-range, illegal alpha entries, and control v. 
This is another qreat time-saver. 

Some key points about utility procedures: Values 
may be returned by using global symbols, or small 
odd integer values may be returned by EXIT status. 
I use this for handling control y interrupts. 

452 

If you use Global Symbols to communicate with other 
procedures, precede the name with a unique symbol 
such as "under_score". One of the hardest things to 
find in debugging a procedure is a variable which 
is both global and local with different values. 

If you have a lot of documentation, it is better to 
put it at the end of the procedure. The use of a 
separate page (form-feed), works well. 



S SAVE VERIFY = FSVERIFY() CS:VERIFYUSR.COM 14 SEP 83 
S SET NOVERIFY CHECK USER WRITE PRIV R.H.WARNER 
S OPEN/WRITE/ERROR=WRONG DEF XX DIRECTORY.BAO 
S CLOSE XX 
S DELETE DIRECTORY.BAO;• 
S IF SAVE VERIFY THEN SET VERIFY 
S EXIT 1 ! NORMAL EXIT 

WRONG DEF: 
WRITE SYSSERROR " " 
WRITE SYSSERROR -

••• YOU MUST BE IN YOUR OWN DIRECTORY TO RUN THIS PROCEDURE ***" 
WRITE SYSSERROR " " 
IF SAVE VERIFY THEN SET VERIFY 
EXIT 3 

• • • * * DOCUMENTATION SECTION * • * • • 

MAKE SURE THAT USER HAS WRITE PRIVILEGE FOR PRESENT DIRECTORY 

IF DIRECTORY IS OK, EXIT WITH $STATUS = 1 

IF NOT, EXIT WITH SSTATUS = 3 

This little procedure comes in very handy in my 
procedures. 

Our users often roam all around in various other 

directories, especially in masters. If they forget 
to return to their own directory, they could get 
into trouble. This procedure will not allow them to 
write into other users directories. 

'' - - - - - - - - - - - - - - - - - - - - - - - -
S! - - FINISHED WITH SUBMIT OPTIONS, SUBMIT JOB - SUBMIT!: 
S! - - - - - - - - - - - - - - - - - - - - - - - -
SSUBMITl: 
S IF TIME .NES. "" THEN GOTO SUBMIT2 
S OCS:YESNO "Can the Batch Job be run after 8 PM" 
S IF 'SSTATUS .EQ. 3 THEN GOTO ABORT3 
S IF YESNO .EQS. "Y" THEN TIME := "/AFTER=20:00" 
SSUBMii2: 
S WRITE SYSSERROR -

" *** •••" 
S WRITE SYSSERROR -

n ••• JOB'' SYS NUM'ASM WILL BE SUBMITTED TO THE ***" 
S WRITE SYSSERROR -

" ••• ''QUEUE' QUEUE TO ASSEMBLE YOUR FILES •••" 
S IF TIME .NES. "" THEN WRITE SYSSERROR -

n *** ''TIME' •••" 
$ WRITE SYSSERROR -

" ••• 
$SUBMIT3: 
$ WRITE SYSSERROR " " 
S INQUIRE CR -

"THE PROCEDURE HAS PAUSED; HIT RETURN TO SUBMIT JOB; CONTROL_Y TO ABORT" 
S SUBMIT/NOTIFY/KEEP/QUE='QUEUE''TIME'-

/LOG FILE="''USRDIR'"'_SYS_NUM'ASM/NAME='_SYS_NUM'ASM
RS:ASSMBLBA/PARAMETERS=(' SYS NUM',"''USRDIR'",-
", 'TEMP FILE,", 'DEFAULT',"' 'PRT'"' 'TASK' I 'MERGE,, 'FLPY_LABEL ') 

$ SHOW QUEUE/ALL 'QUEUE' 
$ EXIT 

Procedures which submit batch jobs require special 
features. Some of my coding "standards" appropriate 
to these are as follows. 

Check to make sure that all files used by batch 
jobs exist. If there is a missing file, the user 
can resolve the problem before submitting the job. 
Do everything you can to reduce failures. 

At the end of procedure, allow the user to elect to 
run the job later, or at night. This allows the 
batch job load to be spread out more evenly. 

453 

Display parameters before submitting jobs. Show 
users what will happen, and then give them the 
option of not submitting the job. Make sure that 
the procedure exits gracefully at this time. 

Do not abbreviate commands or qualifiers. If a 
default qualifier is important to the function of 
the procedure, include it. This protects against a 
user overriding defaults, future changes, and also 
helps to document the function. 

Do a SHOW/QUEUE/ALL queue to show the status of the 
batch queue. This is a real convenience to the user. 



Batch procedures require special coding standards. Some of the most important ones are listed below. 

* STANDARDS APPROPRIATE TO BATCH PROCEDUH.ES "' 

EXIT IF PROCEDURE IS NOT TO BE RUN INTERACTIVELY 

SET NOVERIFY TO KEEP .LOG FILE AS SHORT AS POSSIBLE 

PRINT OUT PARAMETERS USED TO TllE .LOG FILE 

ALLOW USERS TO RUN BATCH JOB USING SUB-DIRECTORIES 

IF DEFAULT IS CHANGED, SHOW WORKING DEFAULT DIRECTORY 

PRINT OUT ANY SPECIAL LOGICAL ASSIGNMENTS USED 

PRINT OUT ANY SIGNIFICANT EVENTS OF INTEREST TO USER 

IF PROCEDURE SUBMITS ANOTIIEH. JOB, DESCRIBE THE EVENT 

HANDLE ERROR CONDITIONS CAREFULLY, EXPLAIN TO USERS 

s 
s 
S! 
S! 
S! 
S! 

IF "''FSMODE()'" .EQS."INTERACTIVE" THEN GOTO START 
SET VERIFY 

RS:ASSMBLBA.COM R.H.WARNER 

ASSEMBLE LIST OF DEC SOURCE FILES FROM .TMP FILE 

S SET NOVERIFY 
S WRITE SYS$ERROR -
" • • PARAMETER LIST • •" 
S WRITE SYSSERROR -
" Pl= ''Pl' 
S WRITE SYSSERROR -

: SYSTEM NUMBER" 

w P2 = ''P2' : DEFAULT DIRECTORY" 
S WRITE SYSSERROR -

21 FEB SS 

• P3 = ''P3' : LIST OF FILES TO BE ASSEMBLED" 
S WRITE SYSSERROR -
• P4 = "P4. : . LIS I • OBJ OPTIONS: [BOTH], [NONE I [LIS], OR (OBJ). 
S WRITE SYSSERROR -

PS= ''PS' : SPECIFIES PRINT QUEUE: [MX NOTE], [NONE] [MX TOME]" 
WRITE SYSSERROR - - ' -
P6 = ''P6' : [NO), OR -DECxxT.CNF- TO TASK BUILD IF NO ERRORS" 
WRITE SYSSERROR -
P7 = ''P7' : [NO), OR -DECxxM.CNF- TO RUN MERGE IF NO ERRORS" 
WRITE SYSSERROR -
PS = ''PS' [NONE], OR FLOPPY LABEL FOR DUMP" 
WRITE SYSSERROR -

• • END OF LIST • •" 
SET DEFAULT 'P2' 
SHOW DEFAULT 
OCS:NEWLOGIN 'P2' 

SSTART: 

Many procedures are designed for batch use only. If 
this is true, exit with a message when used 
interactively. 

If, however, a "batch" procedure can also be run 
interactively, then do not print parameters. 

454 

It is important to keep the .LOG files as short and 
concise as possible. SET NOVERIFY at the beginnin&, 
after the name. 

Print out parameters in the .LOG file in an orderly 
list. This turns out to be good docuaentation for 
the procedure. 



S ! ASSMBLBA . COM R . H. WARNER 12 JUL 84 
s ! 
S! ASSEMBLE LIST OF DEC SOURCE FILES FROM .TMP FILE 
s ! 
S SET NOVERIFY 

• • PARAMETER LIST • * 
Pl = 1428 SYSTEM NUMBER 
P2 = UDF1:[R1428] DEFAULT DIRECTORY 
P3 = 114ASM.TMP LIST OF FILES TO BE ASSEMBLED 
P4 = BOTH . LIS I • OBJ OPTIONS: [BOTH] I [LIS] I [OBJ] ' OR [NONE] 
PS = SYSSPRINT SPECIFIES PRINT QUEUE: [MX NOTE], [MX TOME], [NONE] 
P6 = DECV4T.CNF [NO], OR -DECxxT.CNF- TO TASK BUILD IF NO ERRORS 
P7 = DECV4M.CNF [NO], OR -DECxxM.CNF- TO RUN MERGE IF NO ERRORS 
Pa = NONE [NONE] , OR FLOPPY LABEL FOR DUMP 

• • END OF LIST * * 
UDFl: [R1428) 
MXSD = "UDDl: [MANT.CANDA.COM]" (process) 
MXSS = "MDSA:[MXCOATER.COATERB2)" (process) 
MXSZ = "MDSA:[MXDECADE.B2DB]" (process) 
24-JUL-1984 10:14:18 

A= CONV4C.MAC 
S MCR MAC CONV4C,CONV4C.LIS/Ll:TTM/-SP/CR=A 
ERRORS DETECTED: 418 
CONV4C,CONV4C.LIS/LI:TTM/-SP/CR=A 

COMPLETION STATUS WAS - ERROR -
S MCR CRF CONV4C.LIS 

SUBMITTED JOB TO MX QUICK BATCH QUEUE TO RUN THE ERROR 
PROCEDURE. THE ERROR LIST WILL BE PRINTED ACCORDING TO PS. 

Job S951 entered on queue MXQ_FAST 

This a portion of a typical .LOG file. This one has 
been edited for brevity on the slide. Note the 
clear, concise information presented for the user. 

The Parameter list is of great value in evaluating 
users' problems. It is a true history of what they 
submitted. The parameters are used to their fullest 
by allowing several options for each of them. 

If any special logical assignments are used by the 
batch procedure, print them out for reference. 

Since NOVERIFY is on, the procedure must print out 
any significant events. It is also important to 
SHOW TIME when starting a CPU intensive task, such 
as MCR TKB. 

One of the best features of the procedures is the 
ability to "chain" batch jobs. The ASSEMBLE batch 
job can submit a TASKBUILD batch job, which can 
submit a MERGE batch job, which finally can submit 
a batch job to dump the floppies. Each time that a 
new batch job is submitted, the event is described 
in the .LOG file. 

The batch procedures are in nice modules so that it 
is a simple task to "chain" them. The DECFINAL,for 
example, is mostly housekeeping, and run the 
already available procedures, plus a batched job 
to create a final microfiche tape. 

We have computer operators staff to the Print, 
Tape, and Floppy requests for the users. The Tape 
and Floppy jobs each have their own Batch Queue. 
These queues run at a higher priority than batch 
to expedite them through operations. 

455 

It is very important to check for errors, and 
handle the error conditions carefully. Try to 
continue processing as much as possible to get the 
most information from the batch job. 

In this particular ASSEMBLE batch job, there was an 
error found. When an error is found in this job, a 
batch job is submitted to help locate the errors. 

If errors are found, always explain the conditions 
to the user and suggest possible solutions. 

Why use Batch? 

The integrators have two uses for the computer, 
EDIT files, and run Command procedures. 

If all integrators did all of their work 
interactively at top priority, the computer usage 
would look like this typical day. 

The VMS operating system handles an overload 
problem like this by effectively reducing the 
available CPU time proportional to its overload. 
The immediate result is poor response time for 
interactive tasks such as editing, searching, 
directory, etc. 

Any one here have an overloaded VAX.?? When you run 
EDT in key pad mode you get these lovely pauses ... 
maybe I didn't hit the back arrow .. then blast!! 
. . way past where you wanted to go ... 



TYPICAL DAILY COMPUTER USAGE PROFILE 
PRIME TIME 

w 
<..'.J 
<I 
(J) 
:::> 

a::: 
w 
I
=> a.. 
:l: 
0 
u 

J 4 I 6 8 10 12 2 4 6 8 10 I 

AM TIME OF DAY ~ 

Our solution to the problem was to do all high CPU 
intensive tasks in Batch mode at lower priorities. 
Short jobs such as 1 to 3 assemblies run at a 
priority of 3. Longer jobs run at a priority of 2, 
and the longest jobs run at a priority of 1, or are 
forced to run after 6 PM. 

When this was done, the computer usage had a nice 
pattern to it as shown here. Plenty of time for 
interactive jobs; short jobs come out of batch in 
about an hour or so, longer jobs require about 4. 

Another feature is that the integrators have the 
option of delaying any batch job until after 8 PM. 
It is surprising how well the integrators have 
adapted to this feature. If it is late in the day, 
or they have a meeting to attend, they just elect 
to have their job run later at night. 

The high usage of Batch processing is the reason 
for the extensive command procedures. In order to 
make it all work well, the procedures have 
considerable on-line checking, and the procedures 
then became very large. 

TYPICAL DAILY COMPUTER USAGE PROFILE 

w 
<..'.J 
<I 
(J) 
:::> 

a::: w 
I-
=> a.. 
:l: 
0 
u 

PRIME TIME 

t-~~~~~~~~-t-~~~-:::=-~~~~~~~"T"!!"T"-=-it---..-'=""'1~~"11ae:c 

-
-

19 
AM PM 

456 



* ADVANTAGES TO USING DCL COMMAND PROCEDURES ~ 

Allow efficient use of batch processing 

Can be used to create effective tools 

Use a very familiar and friendly language, DCL 

Can be used as a high-level language 

Can run other high-level language programs 

Do not require compile and link processes: 

easier to test and debug modules 

easier to modify and maintain 

I have been criticized very severely at times 
because my procedures are too large and too 
inefficient. 

It is true that my procedures are large. My 
ASSEMBLE.COM procedure and its associated 
sub-procedures contain about 1800 lines of code. It 
submits the ASSMBLBA.COM procedure which totals 
about 1200 lines. 

It is also true that if the procedures were written 
in FORTRAN they would be more efficient. It is 
difficult to determine quantitatively how much 
would be gained by using programs. 

We have had excellent results with our procedures. 
We made an excellent choice in using DCL as our 
programming language for building our systems. 

457 

These are some of the tradeoffs: 
procedures and programs are equally easy/hard to 

write 
procedures are easier to test and modify because 

they are interpretive and do not require a 
LINK process when making a minor change 

procedures are easier to maintain for the same 
reasons 

programs are best for CPU intensive applications 
procedures may run FORTRAN modules which are CPU 

intensive 
programs are best for clearly defined functions 
procedures are best for constantly changing 

requirements 

I clearly recommend DCL procedures over high-level 
programming. The advantages are clear. 





Recovery of Lost Files from VAX/VMS Disk Structures. 
A Case Study. 

Larry w. Ebinger * 
Sandia National Laboratories 

Instrumentation Development Division I 
Albuquerque, New Mexico 

ABSTRACT 

Having a corrupted system disk can be a scarey 
thing. This paper will describe the somewhat 
humorous events leading up to the destruction of 
the file structure on the only good copy of our 
VMS system disk. This disk unfortunately also 
contained all of the user files. The method used 
for file recovery will be detailed. Copies of the 
programs developed to recover the files will be 
available. Other recovery programs will also be 
noted. 

HOW WE GOT STARTED 

The whole thing started when our new VAX 
minicomputer arrived. Although we had spent 
over 10 years with numerous PDP-11s this was 
our first VAX. We told everyone we didn't 
know what we were doing because we were 
still inexperienced. 

The master plan was to upgrade the 
minicomputer we call the Laboratory System 
from a PDP-11/50 to a VAX-11/751. The 
VAX-11/751 is an ugly rack mount version of 
the VAX-11/750. The current system had to 
remain operational because of several prior 
commitments. We devised a plan where one or 
both of the RP06 disk drives and one or both 
RL02 disk drives could be on either system. 
The tape drives could also be on either 
system. This could be accomplished by 
simply moving cables even when one or both 
systems were being used. Obviously we had a 
very fle~ible setup. 

Things were going along just fine. The 
users were gaining experience and 
confidence. We could use both systems 
effectively and we were learning about the 
system management of our new VAX. We had 
done system updates to the operating system 
and had installed three layered products. 
Our users were basically happy with the 
system even though they were told we were 
not yet treating it as operational. They 
were told to be careful about which kind of 
files they kept on the system because the 
system disk was not being backed up at 
regular intervals. 

HOW WE GOT INTO TROUBLE 

Two of our users became concerned because 
they had some files on the system which they 
didn't want to lose. We reminded them that 
they were not to do that. We also decided 
it was well past time to do another backup 
of the system disk. One of the RP06 disk 

Proceedings of the Digital Equipment Computer Users Society 459 

drives was then being used as the system 
disk and the RA81s were used as scratch 
drives. We also decided it was time to 
switch over to the RA81s and use one of them 
as the system disk. We were unsure of using 
the BACKUP utility on line to save the 
system disk because we always received these 
strange messages about files still open by 
another user; we knew we were the only user 
on the system at the time. We were 
concerned that maybe we were not making good 
copies of our disk. Anyway, we brought the 
system down and booted a copy of the 
stand-alone BACKUP from an RL02. We then 
typed in a command to copy the data from the 
RP06 disk pack into the RA81 disk drive. We 
checked our command and then write protected 
the RP06 so that even if something went 
wrong we would not destroy our original 
system disk. 

We were very unlucky that day. We were 
accustomed to the IAS/RSX Monitor Console 
Routine which generally requires the 
destination or new file to be specified 
first and the source or old file last. You 
guessed it, the VMS BACKUP utility wants 
them in the reverse order. Actually, BACKUP 
will prompt you for the destination and 
source. We tried to take advantage of the 
feature but the stand-alone version of 
BACKUP doesn't work that way. It requires 
the entire command to be on a single line. 

So far we have had three errors. First 1s 
the inability of stand-alone BACKUP to be 
user friendly and the second is a syntax 
error in typing the command and the third is 
there were to be no critical files on the 
system. The fourth error came when we write 
protected the RP06 drive o. Yes, we did 
indeed write protect an RP06 drive 0 and 
yes, our system disk was in the RP06 drive 
o. Unfortunately we had one RP06 disk drive 
on each of the systems and they were both 
drive o. We had write protected the wrong 
drive. Our BACKUP was making a copy of the 

New Orleans LA - 1985 



scratch disk on top of our only good copy of 
the system disk. When we realized what was 
happening we halted the CPU but it was too 
late. To prevent making things worse than 
thay already were we write protected the 
correct, but now corrupt system disk because 
we didn't want to make things worse than 
they were already. 

We have found that if you 
careful it takes at least 
errors to really foul up. In 
case we had at least four. 

are 
two 

this 

Our next step was to find out what was wrong 
with the disk. We could mount it but it now 
had the volume ID of the scratch disk. The 
directories and file names within the 
directories were also the same as those of 
the scratch disk. Most of the files 
however, were not actually there because we 
did get the operation stopped before the 
majority of the transfers were completed. 

HOW BAD WAS IT? 

Here we are. We have two users glaring at 
us and yelling "What have you done to us?!" 
and we are responding "What did you do to 
yourself?". After things calmed down a bit 
we found out the first user had been 
programming in FORTRAN and had listings of 
all he had done. He estimated it would take 
two to three days to get back to where he 
was before the "backup". We told him to 
hold off a while as all was not lost and 
there was still a possiblity of recovering 
his files. He didn't believe us and elected 
to reenter his programs back into the VAX. 

The second user was a dirferent story. He 
had been working on a large document which 
was the conglomeration of status from about 
ten different people working on the same 
project. When the information was entered 
into the VAX the original status sheets were 
discarded. This represents a sixth error as 
he had lost the ability to easily 
reconstruct the data. He was willing to 
wait to see if we could recover his file for 
him. All of the dozen or so other users 
said any files they had on the system were 
either backed up elsewhere or they were just 
"learning" files and were unimportant. 

When you have a disk disaster 
there are usually only a very few 
files which need to be recovered. 
Most of the others are on old save 
sets or are not very important at 
all. 

Next I started calling people for help. I 
talked to some of the expert friends of mine 
but they were of little help. I called the 
VAX Local User's Group's president and 
librarian to see if there was anything they 
knew about from DECUS which might help. 
Neither of them knew of anything relevant to 
our particular situation. I then called a 
couple of experts from DIGITAL. The only 
help I got from them is they told me where 
to find the definition of the VAX/VMS disk 
structure. I called some other users in 

460 

Albuquerque with no further luck. 

WHAT TO DO NOW 

By now a few days had passed and we hadn't 
recovered a thing. I figured if it was 
going to get done I had better get busy. I 
looked throu~h the file 
SYS$SYSROOT:[SYSLIBJSTARLET.REQ (see Figure 
1) which is 986 blocks long. There I found 
the file header definitions for the Files-11 
Structure Level 2. What I thought I needed 
was within about five pages. The only 
problem was that it is written in BLISS and 
I don't know how to read BLISS code. After 
some study of this section I thought I 
understood what it was saying. It contains 
the offset, size and bit fields within the 
file header. 

Using DUMP I printed out the header of 
several files from a good VMS disk (see 
Figure 2 and 3). I was able to confirm what 
the BLISS file was trying to tell me about 
the locations of the items within the file 
headers. What I found was that in the first 
byte of the file header was the word offset 
to the "ident" area and it looked like it 
was always 38. The second byte was the map 
area offset in words and its value was 
always 65. The file name was always in 
ASCII and started at byte 76 and was about 
20 characters long. 

Now I was ready to start looking for the 
badly needed file. I coded a program called 
READHEAD to read every block on the now 
defunct system disk (see Figure 4). I 
checked to see if those two bytes were 
correct and if they were I printed the 
physical block number and the name of the 
possible file. This gave me a list of over 
2000 file names. We found the correct file 
name among the others (see Figure 5). 

Next I used DUMP with the 
/FILE/BLOCKS=(START:100572,COUNT:1) switches 
and indeed we had found the correct file 
header. It said the file was 104 blocks 
long (see Figure 6). Things were starting 
to look up. 

Now a routine was written called FORMHEAD 
(see Figure 7) to read a header block from 
the clobbered disk and output the block 
number, the file name, the starting block 
number of the actual data and the length of 
the data in blocks. It then continued to 
list out additional data blocks if the file 
happened to not be contiguous. This program 
turned out to be unnecessary as the DUMP 
utility will supply that information. (See 
the bottom of Figure 6.) 

We now have all we need to go get the lost 
file. READFILE was the next program written 
to read a block of data from the clobbered 
disk and write it out to a good disk (see 
Figure 8). It requires the clobbered disk 
name, the new file name, the starting block 
number and the number of blocks. If the 
file was not contiguous this program needed 
to be run once for each of the data blocks. 
The individual files could later be appended 



with the VMS COPY or APPEND command. At 
this point we had the file on a good disk 
but it was still an unformatted file. Next 
I wrote a program called REFORM (see Figure 
9) to convert the unformatted fixed length 
file into a variable sequential file with 
implied carriage control. It turned out 
this program was also unnecessary. All that 
was needed was to edit the file with the 
EDIT editor and it would automatically 
convert the file on exit. 

Now we had the file recovered and of course 
we were heroes. Others now decided some of 
their files were actually worth recovering. 

OTHER RECOVERY PROGRAMS 

There is a nice package on the 1984 Spring 
DECUS US VAX SIG Tape. Fortunately, I have 
yet to need to use it so I really don't know 
what it does or how well it works. 

In the VMS package there is a program called 
ANALYZE/DISK STRUCTURE which will find files 
which are in-the master index file but not 
in any directory. This is good for if some 
reason the directory file goes bad you may 
recover your files. 

In the VMS package is a routine which 
corrects disks which were unloaded before 
the file system was finished with them. 
This could happen because of a power failure 

or some other error. When you remount the 
disk, the system automatically rebuilds it 
for you. 

SUMMARY 

This paper was not to show my expertise in 
solving lost file problems but to show how 
simple something can really be if it is 
broken down into manageable pieces. The 
coding was left as it was when I completed 
the recovery of this one file. All the 
programming was done in FORTRAN and I used 
no tricks. No one would ever present this 
code to impress someone. Each program is so 
simple that any novice programmer should be 
able to understand them. They could easily 
be combined into one or two programs and be 
made to run automatically or semi
automatically. Some of the problems with 
the current routines is that they rely on 
finding the file header but the data may be 
there even when the header is not. They are 
inconvenient to run and the offsets are 
fixed so a new release of the file system 
could break the code. But for now I'm 
satisfied. The code recovered our files and 
all is well. 

If you have a disaster you might 
try this method of recovery. You 
may be able to recover from 
someone deleting a file they 
didn't want to delete or even from 
a head crash. 

* This work performed at Sandia National 
Laboratories supported by the U.S. Department of 
Energy under contract number DE-AC-76DP00789. 

461 



Figure 1 

Part of SYS$SYSROOT:[SYSLIB]LIB.REQ 

!+ 
! File header definitions for Files-11 Structure Level 2 
!-
! ... $FH2DEF 

MACRO 
MACRO 
MACRO 
HACRO 
l'!ACRO 
tv1ACRO 
MACRO 
MACRO 
.LIT EH.AL 
l.JITERAL 
NACHO 
.LITERAL 
MACRO 
MACHO 
HACRO 
MACRO 
MACHO 
MACRO 
LITBRAL 
JV!ACRO 
JV!ACRO 
JV!ACRO 
MACRO 
JV!ACRO 
JV!ACRO 
LITERAL 
MACRO 

MACRO 
LITBRAL 
tv1ACRO 
.LITBH.AL 

FH2$B IDOFFSET 
:B'H2$B-MPOFFSET 
:B'H2$B-ACOFl!'SET 
l!'H2$B-RSOFFSET 
l!'H2$W-SEG NUM 
:B'H2$W-STRUCLEV 
l!1H2$B-STRUCVER 
l!'H2$B-STRUCLEV 
FH2$C-LEVEL1 
:B1H2$C-1EVEL2 
.l!'H2$W-l!'ID 
:B1H.2$S-FID 
FH2$W-FID NUJV! 
J!1H2$W-FID-SEQ 
FH2$W-FID-RVN 
l!'H2$B-FID--RVN 
FH2$B-:B'ID-NMX 
FH2$W-EXT-FID 
FH2$S-EXT-FID 
FH2$W-EX FIDNUM 
FH2$W-EX-FIDSEQ 
FH2$W-EX--FIDRVN 
:B1H2$B-EX-FIDRVN 
FH2$B-EX-FIDNMX 
FH2$W-RECATTR 
FH2$S-RECATTR 
FH2$L-FILECHAR 

FH2$V NOBACKUP 
FH2$M-NOBACKUP 
J!'H2$V-WRITEBACK 
:B'H2$M-WRITEBACK 
.B'H2 $ V-READ CHECK 

! ... $.l!'I2DE.1!1 

JV!ACHO 
.Ll'.CBH.AL 
1v1ACH.O 
1v1ACRO 

.t<'I2$T FILENAME 
FI2$S-FILENAJV!E 
FI2$W-REVISION 
.l!1 I2$Q-CREDATE 

Header area 

0,0,8,0%; 
1 ,0 ,8,0%; 
2,0,8,0%; 
3,0,8,0%; 
4,0,16,0%; 
6,0,16,0%; 
6,0,8,0%; 
7,0,8,0%; 
257; 
51 2; 
8,0,0,0%; 
6; 
8,0,16,0%; 
1 0 , 0 ' 1 6 ' 0% ; 
1 2 , 0 ' 1 6 ' 0% ; 
12,0'8 ,0%; 
13,0 '8' 0%; 
14'0, 0' 0%; 
6; 
1 4 ' 0 , 1 6 , 0% ; 
1 6 ' 0 ' 1 6 ' 0% ; 
1 8 ' 0 ' 1 6 ' 0% ; 
18' 0' 8' 0%; 
19,0' 8' 0%; 
20,0,0,0%; 
32; 
52,0,32,0%; 

52, 1 '1 '0%; 
1A2-1A1; 
52, 2' 1 , 0%; 
1A3-1A2; 
52 '3' 1 '0%; 

Ident area 

0,0,0,0%; 
20; 
20,0,16,0%; 
22,0,0,0%; 

462 

ident area offset in words 
map area offset in words 
access control list offset in words 
reserved area offset in words 
file segment number 
file structure level 
file structure version 
principal file structure level 
401 octal = structure level 1 
1000 octal= structure level 2 
file ID 

file number 
file sequence number 
relative volume number 
alternate format RVN 
alternate format file number extension 
extension file ID 

extension file number 
extension file sequence number 
extension relative volume number 
alternate format extension RVN 
alternate format extension file number 
file record attributes 

file characteristics 

reserved 
file is not to be backed up 

file may be write-back cached 

verify all read operations 

file name, type, and version (ASCII) 

revision number (binary) 
creation date and time 



Figure 2 

Dump of a good file header 

Dump of file SYS$SYSDEVICE:[EBINGER.MEMO]CPUMAINT.RN0;5 on 13-FEB-1984 10:32:25 
File ID (1647,10,0) End of file block 9 / Allocated 9 

File Header 

000000 000000 000012 003157 001 001 000000 177777 040446 &A •..... o ...••.. 000000 
000011 000000 000011 000000 000113 001002 000000 000000 ...... K ••....... 000020 
000000 000000 000000 000000 000000 000000 000000 0001 34 \ ..•.•..•••..•.. 000040 
000002 000002 000002 000000 000000 000000 000000 000000 ................ 000060 
046525 050103 000000 000000 000000 000001 001632 175000 .........•.. CPUM 000100 
020040 020040 020040 032473 047516 051056 052116 044501 AI~T.RN0;5 000120 
144342 104637 130300 000214 144342 104560 061540 000001 . . cp .......•.•• 000140 
042542 034417 003100 000000 000000 000000 000000 000214 •••••••••• @ •• 9bE 000160 
000000 000000 000000 000000 000000 004347 043410 000215 ..• G .••....••..• 000200 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000220 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000240 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000260 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000300 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000320 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000340 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000360 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000400 
000000 000000 000000 o'ooooo 000000 000000 000000 000000 ................ 000420 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000440 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000460 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000500 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000520 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000540 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000560 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000600 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000620 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000640 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000660 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000700 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000720 
000000 000000 000000 000000 000000 000000 000000 000000 ................ 000740 
045562 000000 000000 000000 000000 000000 000000 000000 . • • • , ..••.•... rK 000760 

463 



Figure 3 

Dump of a good file header (formated) 

Dump of file SYS$SYSDEVICE:[EBINGER.MEMO]CPUMAINT.RN0;5 on 13-FEB-1984 
File ID (1647,10,0) End of file block 9 / Allocated 9 

File Header 

Header area 
Identification area offset: 
Map area offset: 
Access control area offset: 
Reserved area offset: 
Extension segment number: 
Structure level and version: 
File identification: 
Extension file identification: 
VAX-11 RMS attributes 

Record type: 
File organization: 
Record attributes: 
Record size: 
Highest block: 
End of file block: 
End of file byte: 
Bucket size: 
Fixed control area size: 
Maximum record size: 
Default extension size: 
Global buffer count: 
Directory version limit: 

File characteristics: 
Map area words in use: 
Access mode: 
File owner UIC: 
File protection: 
Back link file identification: 

Identification area 
:B'ile name: 
Revision number: 
Creation date: 
Revision date: 
Expiration date: 
Backup date: 

Map area 
Retrieval pointers 

Count: 9 

Checksum: 

LBN: 

464 

38 
65 
255 
255 
0 
2' 1 
( 1 64 7' 1 0 '0) 
(O,O,O) 

Variable 
Sequential 
Implied carriage control 
75 
9 
9 
92 
0 
0 
0 
0 
0 
0 
<none specified> 
2 
0 
[000002,000002] 
S:RWED, O:RWED, G:RE, W: 
(922,1,0) 

CPUMAINT.RN0;5 
1 
14-JUN-1984 00:20:03.35 
14-JUN-1984 00:20:03.66 
<none specified> 
19-NOV-1984 10:46:28.26 

461 031 

19314 



Figure 4 

READHEAD 

C READHEAD.FOR 
c 
C THIS PROGRAM READS THE ASKED FOR DISK AND PRINTS OUT THE BLOCK 
C NUMBER AND FILENAME OF THE BLOCK. 
c 

c 

INTEGER*4 J 
BYTE B(512), FILEN(24), DISK(24) 
EQUIVALENCE (B(76), FILEN(1 )) 

WRITE (5,1002) 
READ (5,1003, END=10) (DISK(I), I=1,24) 

10 OPEN (UNIT=1, FILE=DISK, STATUS='OLD', FORM='UNFORMATTED') 
OPEN (UNIT=6, FILE='SYS$PRINT', STATUS='NEW') 

c 

c 
c 
c 
c 

c 

DO 100 J=1 , 1000000 
READ (1, IOSTAT=IOST) B 
WRITE (5,1000) ((I-1, B(I), B(I+1 ), B(I+2), 
1 B ( I +4 ) , B ( I +5 ) , B ( I +6 ) , B ( I+ 7 ) , 
2 B ( I +8 ) , B (I +9 ) , B ( I+ 1 0 ) , B ( I+ 1 1 ) , 
3 B(I+12), B(I+13), B(I+14), B(I+15)), 
IF (IOST .NE. 0) THEN 

WRITE (5,1004) J-1, J-1 
WRITE (6,1004) J-1, J-1 
STOP 

END IF 

IF (B(1) .EQ. 38 .AND. B(2) .EQ. 65) THEN 
WRITE (6,1001) J-1, J-1, (FILEN(I), I=1,20) 
WRITE (5,1001) J-1 

END IF 
100 CONTINUE 
c 
1000 FORMAT (1H , 1704) 
1001 FORMAT ( 1H , 01 0, I10, 5X, 20A1) 
1002 FORMAT (30H$ ENTER THE DISK DEVICE NAME 
1003 FORMAT (45A1) 
1004 FORMAT (1HO, 010, I10, 5X, 11HBLOCKS READ 

END 

465 

!LARGE NUMBER 
!READ A BLOCK 

B(I+3), 

I= 1 , 5 96 , 1 6) 
!CHECK FOR ERROR 
!PRINT OUT .. 
! NUMBER READ 
! AND EXIT 

!CHECK FOR HEADER 
!PRINT OUT HEADER 
!TYPE " " 

!END OF LOOP 



Figure 5 

Small portion of the File Name List 

0 
0 

0 
0 

304330 1 00568 PCOFD.FOR;1 
304331 100569 OPERATOR.LOG;88 
304332 100570 STATUS.MEM;2 
304333 1 00571 PVALD.OBJ;1 
304334 1 00572 STATUS.RN0;10 
304335 1 00573 CNVRT. OBJ; 1 
304336 1 00574 CONFIG.OBJ;2 
304337 1 00575 CONFIG.EXE;2 
304340 1 00576 BUFFER. CMN; 1 
304341 100577 CONFIG.FOR;2 
304342 100578 OPERATOR.LOG;70 
304343 100579 CONFIG.FOR;2 
304344 100580 OPERATOR.LOG;90 
304345 1 00581 CNVRT. FOR; 1 

0 
0 

0 
0 

466 



Figure 6 

Dump of Lost File Header 

Dump of device DBAO: on 13-FEB-1984 12:47:50.46 

Logical block number 100572 (000188DC), 512 (0200) bytes 

Header area 
Identification area offset: 
Map area offset: 
Access control area offset: 
Reserved area offset: 
Extension segment number: 
Structure level and version: 
File identification: 
Extension file identification: 
VAX-11 RMS attributes 

Record type: 
File organization: 
Record attributes: 
Record size: 
Highest block: 
End of file block: 
End of file byte: 
Bucket size: 
Fixed control area size: 
Maximum record size: 
Default extension size: 
Global buffer count: 
Directory version limit: 

File characteristics: 
Map area words in use: 
Access mode: 
I!'ile owner UIC: 
File protection: 
Back link file identification: 

Identification area 
File name: 
Revision number: 
Creation date: 
Revision date: 
Expiration date: 
Backup date: 

Map area 
Retrieval pointers 

Count: 77 
Count: 27 

Checksum: 

LBN: 
LBN: 

467 

38 
65 
255 
255 
0 
2, 1 
( 1434, 9 ,0) 
(0,0,0) 

Variable 
Sequential 
Implied carriage control 
79 
104 
104 
184 
0 
0 
0 
0 
0 
0 
<none specified> 
4 
0 
[000030,000011] 
S:RWED, O:RWED, G:RE, W: 
(1221,1,0) 

STATUS.RN0;10 
1 
15-FEB-1984 16:02:18.96 
15-FEB-1984 16:02:23.51 
<none specified> 
<none specified> 

10011 9 
100198 

39282 



Figure 7 

FORMHEAD 
C FORMHEAD.FOR 
C THIS PROGRAM READS A DISK BLOCK TRIES TO FIGURE OUT IF IT IS A 
C HEADER BLOCK. IT THEN OUTPUTS A LISTING OF WHAT IT THINKS THE 
C FILE IS AND WHERE ITS BLOCKS ARE LOCATED. 
c 

INTEGER*2 TEMP, ISIZEN 
INTEGER*4 J, IBLOCK, LENN 
BYTE B(512), FILEN(24), DISK(24), FILE(24), LBN(4), MAP(4) 
BYTE ISIZE(4), TEMP1 (2) 
EQUIVALENCE (B(77), FILEN(1 )) 
EQUIVALENCE (LENN, LBN(1 )) 
EQUIVALENCE (ISIZEN, ISIZE(1 )) 

c 
C GET AND OPEN THE DISK IN QUESTION 

WRITE ( 5, 1 000) 
READ (5,1001, END=10) (DISK( I), I=1 ,24) 

10 OPEN (UNIT=1, FILE=DISK, STATUS='OLD', FORM='UNFORMATTED', 
1 ACCESS='DIRECT') 

c 
C FIND OUT WHAT BLOCK NUMBER THEY WANT AND GO GET IT 

WRITE (5,1002) 
READ (5,1003) IBLOCK 
READ (1, REC=IBLOCK) B !READ A BLOCK 

c 
C DECODE AND LIST HEADER BLOCK 

WRITE (5,1008) 
WRITE (5,1004) IBLOCK, IBLOCK 
WRITE (5,1005) (FILEN(I), I=1,20) 
INDEX=130 

20 LBN(1 )=B(INDEX+3) 
LBN(2)=B(INDEX+4) 
LBN(3)=B(INDEX+2) 

c 

IF (LBN(3) .GE. 64) LBN(3)=LBN(3)-64 
LBN(4)=0 
WRITE (5,1006) LBNN,LBNN 

!OUTPUT HEADER MESSAGE 
!OUTPUT BLOCK NUMBER 
!FILENAME 

!GET THE PHYSICAL 
! BLOCK NUMBER OF THE DATA 
!GET HIGH ORDER NUMBER 
!CLEAR OFF JUNK 
!FINISH UP LONGWORD 
!OUTPUT START OF DATA 

ISIZE(1 )=B(INDEX+1) !GET THE NUMBER OF BLOCKS 
ISIZE(2)=0 ! CAN'T BE THAT BIG 
ISIZEN=ISIZEN+1 !ADD IN THE EXTRA BLOCK 
WRITE (5,1007) ISIZEN, ISIZEN !OUTPUT NUMBER OF DATA BLOCKS 
Il~DEX=INDEX+4 ! MOVE POINTER TO NEXT MAP 
IF (B(INDEX+4) .NE. 0) GOTO 20 !SEE IF THERE'S ANOTHER 

1000 FORMAT (30H$ ENTER DISK NAME ) 
1001 FORMAT (24A1) 
1002 l!10RMAT ( 30H$ ENTER BLOCK NUMBER IN OCTAL 
1 003 l!'ORMAT ( 01 0) 
1004 FORMAT (30HOLIST OF BLOCK , I10, 010) 
1005 FORMAT (15HOFILENAME = , 20A1) 
1006 FORMAT (30HOSTART OF DATA BLOCK , I10, 010) 
1007 FORMAT (30H LENGTH OF DATA , I10, 010) 
1008 FORMAT (1H0,29X, 20H DECIMAL OCTAL) 

END 

468 



Figure 8 

READ FILE 

C READFILE.FOR 
c 
C THIS PROGRAM READS THE DISK AND PUTS THOSE BLOCKS IN A FIXED 
C LENGTH FILE FOR MORE RECOVERY LATER 
c 

c 

INTEGER*4 J, IBLOCK, ISIZE 
BYTE B(512), FILEN(24), DISK(24), FILE(24) 
EQUIVALENCE (B(76), FILEN(1 )) 

WRITE ( 5, 11 04) 
READ (5,1105, END=10) (DISK(I), I=1,24) 

10 OPEN (UNIT=1, FILE=DISK, STATUS='OLD', FORM='UNFORMATTED', 
1 ACCESS='DIRECT') 

c 
WRITE (5,1106) 
READ (5,1105, END=20) (FILE(I), I=1,24) 

20 OPEN (UNIT=2, STATUS='NEW', FILE=FILE, 
1 FORM='UNFORMATTED', ACCESS=' DIRECT', 
2 RECORDTYPE='FIXED', RECORDSIZE=128) 

c 
WRITE (5,1100) 
READ (5,1101) IBLOCK 
WRITE (5,1102) 
READ ( 5, 11 01 ) ISIZE 
DU 1 00 J =1 , ISIZE 
READ (1, REC=IBLOCK, ERR=90) B !READ A BLOCK 
WRITE (2, REC=J) B !WRITE A BLOCK 

90 IBLOCK=IBLOCK+1 
100 CONTINUE 

CLOSE (UNIT=2, DISPOSE='KEEP') 
1 000 .l<'ORMAT ( 1H , I4, 5X, 16A1 ) 
1001 FORMAT (1H, 010, 5X, 20A1) 
1100 PORMAT (30H$ ENTER STARTING BLOCK NUMBER 
1101 PORMAT (I20) 
1102 FORMAT (30H$ ENTER SIZE OF FILE 
1103 PORMAT (1H, 2I20) 
1104 FORMAT (30H$ ENTER CLOBBERED DISK NAME 
1105 FORMAT (24A1) 
1106 FORMAT (30H$ ENTER NEW FILE NAME 

END 

469 



Figure 9 

REFORM 

C REFORM.FOR 
C THIS PROGRAM TAKES THE FIXED LENGTH BLOCK MODE FILE AND 
C 1•1AKES IT INTO THE VARIABLE LENGTH FILE 
c 

c 

INTEGER*4 J, IBLOCK, ISIZE 
BYTE B(1024), FILEI(24), FILE0(24), STRING(133) 
BYTE B1(512), B2(512) 
EQUIVALENCE (B(1), B1(1)) 
EQUIVALENCE (B(513), B2(1 )) 

C GET AND OPEN INPUT FILE 
WRITE (5,1100) 
READ (5,1101, END=10) (FILEI(I), I=1,24) 

10 OPEN (UNIT=1, FILE=FILEI, STATUS='OLD', FORM='UNFORMATTED', 
1 ACCESS='DIRECT') 

c 
C GET AND OPEN OUTPUT FILE 

WRITE (5,1102) 
READ (5,1101, END=20) (FILEO(I), I=1,24) 

20 OPEN (UNIT=2, FILE=FILEO, STATUS='NEW', 
1 FORM='FORMATTED', ACCESS='SEQUENTIAL', 
2 RECORDTYPE='VARIABLE', 
3 CARRIAGECONTROL='LIST') 

c 
ISTART=3 RECORD START 
ILOC=1 RECORD SIZE LOCATION 
IBLOCK=1 START WITH THE FIRST BLOCK 

30 READ (1, REC=IBLOCK, ERR=100) B1 READ A BLOCK TO B1 
READ (1, REC=IBLOCK+1, ERR=35) B2 READ NEXT BLOCK 

35 IBLOCK=IBLOCK+1 POINT TO NEXT BLOCK 
40 ISIZE=B(ILOC) GET RECORD SIZE IN BYTES 

WHITE (2,1002) (B(I), I=ISTART,ISTART+ISIZE-1) !OUTPUT RECORD 
C WRITE (5,1003) (B(I), I=ISTART,ISTART+ISIZE-1) !OUTPUT RECORD 

ILOC=ILOC+ISIZE+2 POINT TO NEXT BYTE COUNT 
I=(ILOC/2)*2 SEE IF WE ARE EVEN 
IF (I .EQ. ILOC) ILOC=ILOC+1 AND CORRECT IF SO 
ISTART=ILOC+2 ADJUST RECORD START POSITION 
IF (ILOC .LT. 512) GOTO 40 GO WRITE NEXT RECORD 
ILOC=ILOC-512 BACK POINTER TO FIRST BLOCK 
ISTART=ILOC+2 ADJUST RECORD START POSITION 
GOTO 30 !GO READ NEXT DATA BLOCK 

1 00 CLOSE ( 1 ) ! CLOSE INPUT FILE 
CLOSE (2, DISPOSE='KEEP') !CLOSE OUTPUT FILE 

1000 FORMAT (133A1) 
1001 FORMAT ( 1H , 133A1 ) 
1002 FORMAT (133A1) 
1003 FORMAT (1H, 133A1) 
1100 FORMAT (30H$ ENTER FILENAME TO OPEN 
1101 FORMAT (24A1) 
1102 FORMAT (30H$ ENTER NEW FILE 
9000 END 

470 



TOllillG RMS FILES 
A CASE STUDY OB VMS IllJEXED FILES 

John K. Beyer 
Database Development Manager 

MarketVision Corporation 
40 Rector Street 

New York. New York 10006 

ABSTRACT 

RMS <Record Management Services) is a 
comprehensive file system that provides MACRO and 
higher level language access to sequential. 
indexed and relative record file organizations. 
An RMS file can be created with an OPEN statement 
in a language like FORTRAN; however. the 
resultant file will usually be far from optimal, 
especially in the case of indexed files. For 
example. indexed files will occupy a sinqle area. 
The index records will be dispersed among the data 
records. resulting in unnecessary disk head 
movements when the index is traversed. Critical 
parameters. such as bucket size. will default to 
less than optimal values. 

DEC provides a utility, the FDL (File 
Definition Lanquaqe) Editor. which assists the 
user in making judicious selections for the values 
of these parameters. An interactive session with 
this editor results in the creation of an FDL 
file. which is used with the CREATE utility to 
create an optimized file structure. For indexed 
files. the first thinq that FDL does is to 
separate index and data areas. This, by itself, 
is a significant improvement over FORTRAN. 
Further, you are prompted to select values for the 
critical parameters. Judicious selections can 
easily result in qains of up to 90% or more in I/O 
efficiency. 

MarketVision's application is I/O intensive. 
After the first blind stab at tuning an indexed 
file with FDL. it was amazinq to see 50% less I/O 
to the file. Since that time, considerable 
research and experimentation have resulted in a 
90% reduction in I/O and an increase in user 
capacity by a factor of 6. 

SCOPE 

The purpose of this paper is twofold: 
l> to describe the critical factors which 
must be considered when tuninq files with 
FDL; and 2> to present and analyze the 
results of an extensive series of 
experiments in which files were tuned using 
a large variety of file parameters and the 
subsequent performance. The discussion 
encompasses the following: 

1. VAX-11 RMS under VMS version 3.7 

2. ISAM files 

3. Pseudorandom access 

Of the three file organizations 
supported. the most interesting, from a 
tuninq standpoint, is the indexed 
sequential file. ISAM was originally an 
IBM acronym for their Indexed Sequential 
Access Method, but the term is now commonly 
used to refer to any ISAM-type file (in 
much the same manner as Coke refers to any 
cola-type soft drink). Sequential files 
are the simplest and don't require 
extensive tuning. They are also the most 
efficient. if your access requirements are 
strictly sequential. Relative files 
provide direct access·by record number, but 
no means for key-sequenced access. ISAM 
files are the most common, since they 
provide for both random and sequential 
access. 

4. Single key files 

5. High level language access 

Proceedings of the Digital Equipment Computer Users Society 471 

Access methods figure prominently in a 
number of tuning decisions. ISAM files can 

New Orleans LA- 1985 



be accessed sequentially, in key sequence, 
or randomly by key. A third method is 
known as pseudorandom access, that is, 
sequential access from some starting point 
for some number of records or until a 
control break occurs. The results 
described below apply to this access 
method, but the analysis applies to random 
and sequential access as well. 

All performance-critical files in the 
application were sinqle key files. 
Performance declines drastically with each 
additional key, since multiple indices must 
be updated and pointers must be followed 
from the data level of the alternate index 
to the data level of the primary index 
during retrieval. Nevertheless, the 
analysis can be extended to tune these 
files as well, with less dramatic results. 

The language used in the application 
was FORTRAN. but the same results can be 
expected using any high level language. 

This paper is aimed at experienced 
users familiar with RMS and the FDL Editor. 
The scope is too detailed to provide a 

Prologue 2 

l. no compression 

2. reorqanization requires a full 
CONVERT (rewrite) of the file 

3. variety of key data types 
supported 

4. alternate keys supported 

The decision as to 
use is based on an 
these features with 
application. 

Compression 

which Proloaue to 
analysis of each of 

respect to the 

The value of compression to the 
application must first be assessed. 
Compression can result in considerable 
space savinas fin MarketVision's 
application, up to 50%1. If disk space is 
the critical resource, compression may well 
be worth the cost. In our application, 
disk space is not critical, and, in most 
cases, compression does not improve 
performance. Compression can also produce 
a "flatter" index (fewer levels, with more 
information at each levell for a given 
bucket size, since more records will fit in 
each bucket. Furthermore, areas can be 
compressed selectively. 

The savings realized through 
compression are largely data dependent. In 

472 

tutorial overview. Additional information 
c•n be found in Volume 7 of VAX/VMS 
documentation (VAX/VMS Ver•ion 3.0), 
although the information in these manual• 
is somewhat incomplete. 

ANALYSIS OF FILE TUNING PARAMETERS 

Prologue Versions 

Each RMS file contains a prologue, 
which contains information such as file 
attributes, key descriptors, etc. Th.ere 
are three versions of the prologue: 
Proloque 1, Proloque 2 and Prolocrue 3. 
Since. there are no user-discernable 
differences between Proloaues 1 and 2 Ca 
file whose keys are all STRINGs will be 
constructed as a Prologue l file), the 
choice of Prologues is narrowed down to 
two: Prologue 1/2 or Prologue 3. For this 
discussion, Proloaue 2 will refer to either 
Proloaue l or Prologue 2. The default 
under VMS Version 3 is the most current 
version. Prologue 3. This version differs 
significantly from the previous two. The 
major differences are summarized below. 

Prologue 3 

key compression, index and 
data record compression 

empty buckets can be RECLAIMed 
without rewriting the file 

keys must be of STRING data 
type 

primary key only 

some cases. it will be profitable to 
compress the index records and not the data 
records, or vice-versa, depending on the 
pattern of repeating characters. Certain 
key distributions lend themselves well to 
key compression while others do not. The 
only way to determine this is to 
experiment. Turn the compression switches 
on throuah the FDL Editor. CONVERT the 
file, and use the ANALYZE/RMS utilitv to 
see the percent of compression realized. 
If the file is compressed by less than 10%, 
the savings realized will probably not 
outweigh the cost. 

In order to compress the file several 
extra bytes are added to each record. If 
there are a small number of repeating 
characters, the cost of the extra bytes may 
be significant <and may even result in a 
negative value for compression>. The most 
significant cost is the CPU time necessary 
to reconstruct the data on retrieval. The 
results of the experiments show that CPU 
time increases si<;mificantly when 
compression is turned on. This can be a 



hiqh price to pay in a CPU intensive 
environment. 

If it can be determined that 
compression offers a siqnificant advantaqe, 
then Proloque 3 must be used. -If 
compression offers no advantaae, then 
either Proloque 3 or Proloque 2 can be used 
without compression. However, a case can 
be made in favor of Proloque 2. The 
ANALYZE/RMS/INTERACTIVE utility is a useful 
means of examininq the structure of a file. 
The index structure can be traversed 
interactively by usinq a few simple 
commands. At each level, the index records 
can be displayed, as well as the value of 
the bucket pointer to the next level. The 
DUMP command can be used to display the 
actual contents of the block in which the 
record is contained. With Proloque 2, the 
bucket pointer associated with each record 
can be examined when the block is DUMPed. 
With Proloque 3, the keys are at the 
beginninq of the bucket, and the associated 
bucket pointers are at the end, making it 
more difficult to examine the bucket 
pointers. Additionally, this situation is 
not likely to improve performance. In 
fact, there is additional CPU overhead at 
run time with Proloaue 3, even with 
compression off. Referrinq to figure 1, it 
can be seen that, with all other factors 
being equal, the CPU time for Prologue 3 
files is about 5-10% areater than for 
Froloaue 2 files. In ·other words, if 
compression 
a.dvantaaeous 
Froloaue 3. 

is not 
to 

used, it is 
use Proloque 2 

more 
than 

To use the compression feature, the 
procedure is to use the FDL Editor 
iteratively. On the first pass, usinq the 
DESIGN script, the user is prompted to 
enter the percentage of key compression and 
index and data compression Cthe percentage 
of compression is the reduction in file 
size due to compression divided by the size 
of the uncompressed filel. But these 
values are not known at this point! The 
purpose of the first pass is to turn on the 
compression switches, so that the file can 
be CONVERTed and these values obtained 
usina the ANALYZE/RMS utilitv for 
subsequent input to the FDL Editor using 
the OPTIMIZE script. The surface plot 
obtained from the first pass is 
meaninaless, since the number of index 
levels.depends on the amount of compression 
CVersion 4 simply asks whether or not you 
want compression). 

CONVERT/RECLAIM 
CONVERT 

ELAPSED TIME 
IMPROVEMENT 

2.1% 
38.0% 

473 

There is nothina maqic about the 
OPTIMIZE script. It- simply eliminates a 
few prompts by automatically takinq the 
values obtained from the .FDL file created 
by ANALYZE/RMS. The same information can 
be entered manually using the DESIGN script 
after obtaining the .FDL file. 

The compression switches are turned 
off by entering a value of zero and are 
turned on by entering a non-zero value. 
Incidently, RMS automatically turns off the 
data compression switch if the non-key part 
of the record is below a certain minimum 
size. For example, data records can not be 
compressed if they are 15 bytes long and 
the keys are 10 bytes. 

CONVERT vs. CONVERT/RECLAIM 

It is characterisic of ISAM files that 
a.re subject to frequent additions/deletions 
that they need to be periodically 
reorganized. This ·is because addina a 
record to a bucket that is full causes a 
bucket split to occur Chalf of the bucket 
is moved to a new bucket, leavinq behind a 
pointer to the new bucketl. Bucket splits 
increase I/O overhead by causina 1dditional 
disk head movement. Additionally, the 
process of splitting a bucket involves CPU 
overhead and a considerable amount of 
bucket and record locking. When a deletion 
occurs, the space occupied by the deleted 
record is not made available for reuse. 
RMS provides the CONVERT utility, which 
rewrites the file in an optimal manner, 
creating a new index structure and 
reclaiming all deleted space. The problem 
is that CONVERT is time comsuming, 
especially for large files. The fact that 
space must be allocated for a new version 
of the file further complicates matters if 
space is at a premium. 

For Prologue 3 files, RMS provides the 
/RECLAIM qualifier for indexed files. 
CONVERT/RECLAIM makes available for reuse 
those buckets that have been completely 
emptied by record deletions. The 
reclaiming is done in place, so no 
additional space is necessary. If there 
are severe space and time constraints, this 
is a useful feature, since the file size is 
kept to manageable levels. However, this 
results in nealiqible performance 
improvement, since- bucket splits are not 
cleaned up. This is substantiated by some 
performance measurements on a file <more 
about the nature of the tests later) with 
the following results: 

CPU TIME 
IMPROVEMENT 

1.8% 
4.2% 

I/O 
IMPROVEMENT 

3.0% 
13.5% 



If performance is a critical issue. then a 
full CONVERT should be performed as often 
as possible. 

Another recourse available to improve 
the performance of frequently updated files 
is to adjust the fill factor. This topic 
will be covered later. 

Since Proloaue 3 does not support 
alternate keys · or keys that are not 
STRINGS, files that have these properties 
must use Prologue 2. 

Bucket Size 

The bucket is the basic unit of I/O in 
RMS ISAM files. The bucket size is 
specified in terms of blocks C512 bytesl, 
ranging from a minimum of 1 to a maximum of 
32 Cin Version 4, the maximum has been 
raised to 631. It is the bucket size. more 
than anything else. which determines the 
shape and size of the index. A small 
bucket size will result in an index with 
many levels, while a large bucket size will 
result in a flatter index. Since each 
level will result in an additional disk 
access for each I/O. it is desirable to 
make the index as flat as practical. The 
flattest index will result when the bucket 
size is 32 blocks. However. there are 
tradeoffs which will make such a large 
bucket size impractical. Since the intent 
is to minimize the amount of time spent 
doing I/O, it is worthwhile to examine the 
components of disk access. 

Components of I/O Access 

The time required to access a record 
on disk is composed of the following: · 

I/O TIME = SEEK + LATENCY + DATA TRANSFER 
+ BUCKET SEARCH 

Seek time is the average time required 
for the disk head to be positioned over the 
desired track C30 ms for an RM05l. Latency 
is the average time required for the 
desired record to pass under the disk head 
after it has been positioned. This is 
about the time required for one half 
rotation of the platter C8.3 ms for an 
RM05l. The data transfer time is the 
number of bytes to be transferred C512 
times the bucket size) divided by the 
transfer rate Cl.2 Mbytes/sec for an RM05l. 
Finally. the bucket search time is the time 
required for the CPU to search through the 
bucket for the desired record once it is in 
memory. 

Most of the I/O time is consumed by 
mechanical motion Cseek +latency). This 
is a property of the hardware and cannot be 
changed. The four components of I/O are 
present for every I/O operation (except. in 
some cases. bucket search time). 

474 

Therefore. 
to reduce 
since this 
of I/O. 

a major objective of tuning i& 
the number of seeks required, 

is the largest single component 

Bucket Size Considerations 

There are four factors which may cause 
a large bucket size to adversely affect 
performance: 

1. data transfer time 

2. bucket search time 

3. memory constraints 

4. bucket locking 

Data transfer time is directly 
proportional to the bucket size. A quick 
calculation for the RM05 yields the 
following table: 

Bucket Seek Transfer 
Size Time Latency Time Total % 

1 30 ms 8.3 ms .4 ms 38.7 ms 1 
10 30 ms 8.3 ms 4.3 ms 42.6 ms 10 
20 30 ms 8.3 ms 8.6 ms 46.9 ms 18 
32 30 ms 8.3 ms 13.7 ms 52.0 ms 26 

The last column is the percentage of 
the total time which is represented by data 
transfer. For small buckets. this is 
insignificant. However, as the bucket size 
is increased, the time spent actually 
transferring the data becomes more and more 
significant. For sequential and 
pseudorandom access. the higher data 
transfer time may be balanced by a smaller 
number of direct I/O's. In this case. the 
hiah data transfer time per I/O is not 
important because most of the bytes that 
are transferred will be used by the CPU, 
whether in one large access or many smaller 
ones. For random access. on the other 
hand. only one record in the bucket will be 
accessed Cunless there are multiple buffers 
set up for cachinql. Therefore. most of 
the data transfer work is pure overhead. 
As a general rule of thumb, it is wise to 
limit the data transfer time to 10-15% of 

the total Cin other words. keep the bucket 
size below about 151. 

Bucket search time is only significant 
in random access applications. Sequential 
access will cause every record in the 
bucket to be read, while with pseudorandom 
access, only the first record in a group of 
records will have to be located in the 
bucket. From that point on, it will look 
like sequential access. For larae bucket 
sizes, decreased I/O resultina ·from a 
flatter index must be balanced ~aainst the 
time required to search throuah the buffer 
for the desired record. The-bucket search 
time is a function of the CPU type and 
record size. 



Another consideration is memory 
constraints. For each file, one or more 
buffers are allocated in memory. One 
bucket of data from the file is transferred 
to a buffer for each I/O. The size of the 
buffer is therefore the same as the size of 
the bucket. For ISAM files, the minimum 
number of buffers is two, so for larae 
bucket sizes. a large amount of memory must 
be allocated. For example, if the bucket 
size is 10, lOK bytes of memory must be 
available. The use of global buffers can 
reduce the total amount of buffer space 
required Cthis topic will be addressed 
later>. 

In a shared file environment, an 
additional tradeoff becomes important. 
When a file is opened for read/write 
access, RMS performs lockina at two levels. 
While the record is initially being 
accessed, the entire bucket in which the 
record is contained is locked. Afterwards, 
the lock on the bucket is released and the 
lock on the record is retained until 
another operation takes place. While the 
time required to initially access a record 
may be short, a large bucket size means 
that vou will be locking out large portions 
of the file for some period of time. If 
there is a great deal of contention, these 
bucket locks may adversely affect 
performance. 

These considerations yield tradeoffs 
which must be evaluated in the context of 
the application before a choice for bucket 
size can be made. If the application is 
I/O bound, the amount of I/O can be reduced 
at the expense of a greater load on the 
CPU. If the application is CPU bound, the 
load on the CPU can be reduced at the 
expense of I/O. If the application is both 
I/O and CPU intensive, the tradeoffs must 
be carefully studied and a compromise 
reached. In the final analysis, it may be 
necessary to experiment to determine the 
optimal bucket size. 

As a further note on bucket size, this 
parameter can be set to a different value 
for each area. Index areas do not need as 
larae a bucket size as do data areas for 
optimal performance. However, the FDL 
editor takes the bucket size selected and 
applies it to all areas. Select the MODIFY 
option of the editor and change the bucket 
size for each individual area before 
exiting. 

The FDL editor assists the user in 
selectina a bucket size by drawina a line 
or surface plot that shows the resulting 
number of index levels for the parameters 
selected. The documentation advises 
selecting a value between the slashes. It 
also indicates that increasincr the bucket 
size generally will not improve performance 
unless the number of index levels 
decreases. This is true for random access. 
but not for sequential and pseudorandom 
access, where performance depends on more 
than just the number of index levels Cas 

475 

noted above) . 

Fill Factor 

To reduce the number of bucket splits 
which will occur with a file that is 
subject to frequent insertions, RMS allows 
you to reserve a certain amount of free 
space in each bucket when the file is 
initially loaded. This is done by 
selecting a fill factor between 50 and 
100%, and is another tradeoff decision. A 
low fill factor will increase file size and 
may adversely affect performance in the 
short term. It is only after a sianificant 
number of bucket splits have been avoided 
that any advantage will be realized. 
Furthermore. if the insertions tend to 
cluster in certain areas of the file, then 
bucket splits will occur anyway. If the 
insertions are expected to be distributed 
evenly over the entire file, and the system 
time constraints are such that you cannot 
afford to CONVERT frequently, then, by all 
means, experiment with low fill factors. 
However, in most cases, optimal performance 
will result from settina the fill factor to 
100% and CONVERTing the file as frequently 
as possible Cthis will depend on the 
expected number of updates). 

Another consideration is the relative 
frequency of inserts versus retrievals. A 
low fill factor will improve performance if 
the frequency of insertions is relatively 
high. However, it is important to consider 
the relationship between record size and 
bucket size. If the record is larae 
compared to the bucket. then reservina even 
a large amount of free space in the bucket 
will not accommodate many insertions. On 
the other hand, with small records and 
large buckets, even a moderate amount of 
free space can reduce the number of bucket 
splits without sicrnificantlv increasing the 
size of the file. - · 

Fixed vs. Variable Length Records 

Variable lenath records contain two 
additional bytes of record length 
information per record. If there are many 
records in the file that are sparsely 
filled, then the overhead bytes may buy 
considerable space savinas Cand a smaller 
index for a given bucket size). Otherwise. 
fixed length records will be processed more 
efficiently. It is necessary to experiment 
to determine the average record size, 
including overhead bytes, of variable 
lencrth records versus fixed lenath. The 
mean data length, in bytes, can be found in 
the ANALYSIS ... OF __ KEY section in an FDL file 
created by the ANALYZE/RMS utility. Unless 
the mean data lencrth of the variable lenath 
record is significantly less than the fixed 
length, performance will be better with 
fixed length records. 



Buffers 

There are two reasons for using 
buffers for disk I/O. For sequential 
processing, buffers are used to minimize 
the disparity between CPU speed and I/O. 
That is, several buffers are loaded 
initially. While the CPU is processing 
from one buffer, another buffer can be 
loadinq with the next group of records in 
anticipation of their need. When the CPU 
is finished, the buffers can be switched, 
so that there is a minimum amount of time 
that the CPU is waiting for I/O. This is 
called anticipatory double buffering, and 
is used with sequential files (read ahead/ 
write behind processing>. For this 
purpose, 
sufficient. 

two buffers are usually 

The second use of buffers is for 
cachinq. For random access applications, 
the idea is to cache the index buckets and 
some of the data buckets. After the first 
access, one bucket from each level is 
retained in a buffer. On the next access, 
it is possible that the record is already 
in the buffer, obviating the need to 
perform actual I/O for that record. For 
trulv random access, it is not likely that 
successive records accessed will be in the 
same bucket. However, it is likely that 
one or more index levels, especially the 
root level, will be cached. When access 
tends to cluster in areas of a file, a 
siqnificant amount of I/O can be eliminated 
Cthe documentation points out that the 
caching algorithm favors the higher index 
levels). 

There are two types of buffers under 
VMS: local process I/O buffers and global 
buffers. Local buffers are allocated by 
the process and only that process can 
access them. You allocate local buffers by 
the SET RMS DEFAULT command. Experiments 
with local buffers with pseudorandom access 
have shown, as would be expected, no 
performance advantage. Consequently, it is 
wise to default to the minimum of two in 
this case. However, if your application is 
random access, you should try using more 
than the minimum. 

Global buffers offer advantacres in a 
shared file environment. The idea here is 
that if you require access to a particula1-
record, it is possible that someone else 
has cached one or more of the levels 
required. Acrain, the caching algorithm 
tries to keep.at least the root level in 
memorv at all times. We have not 
implemented crlobal buffers in our 
application. ·Experiments with them on a 
sincrle user basis have shown that their 
mer~ presence contributes a significant 
amount of CPU overhead. What that suggests 
is that crlobal buffers should only be used 
if there ~re a large number of users that 
tend to access the same area of a file on a 
frequent basis. Also, global buffers will 
offer no advantage in a sequential or 
pseudorandom application. 

476 

Global buffers are a system-wide 
resource and their allocation is limited by 
certain system parameters. The 
documentation states that you may be able 
to reduce your total buff er requirements by 
allocatincr a single large global cache 
rather than many small local process 
caches. However, this cache must be large 
enoucrh to cache at least the entire index 
in -order for the ratio of "hits" to 
''misses" to be acceptably high. The FDL 
editor assists the user in determining the 
number of qlobal buffers to allocate. 
However, this number will usually be far 
from optimal. Ve~sion 4 provides a more 
intellicrent calculation of the number of 
pages r~quired to cache_the_index,_but t~e 
bottom line is the hit/miss ratio. This 
information can be accessed in the global 
buff er header by using an undocumented 
command in the System Dump Analyzer as 
follows: 

ANALYZE/SYSTEM <requires CMKRNL privilege> 
SDA> SHOW PROCESS/RMS=GBH 

This will display the contents of the 
global buffer header, which includes the 
current number of hits and misses. If the 
number of hits is not very larqe compared 
with the number of misses, then either an 
insufficient number of global buffers have 
been allocated for the file or file access 
patterns are such that crlobal buffers 
provide no advantage for the application. 

Contiguity 

To minimize disk head movement, a file 
should be maintained as contiguous as 
possible. It is possible to specify, in 
the FDL file, that a file be created 
conticruous. However, if there is 
insufficient space to allocate the file 
contiguously, an error will occur. It is 
better to specify BEST_TRY_CONTIGUOUS. In 
that case, an attempt will be made to 
allocate contiguous space. If there is 
insufficient space, the file will still be 
allocated, but non-contiguously. Each 
individual area should also be allocated 
BEST _TRY .. CONTIGUOUS. 

Allocation 

RMS will calculate a reasonable 
initial allocation based on the answers 
provided in the FDL Editor regarding the 
number of records, record size, etc. An 
extension size of about 10% of the initial 
allocation is also calculated. This value 
can be overridden if necessary. The object 
is to prevent the file from fragmenting 
into non-conticruous extents, if the file 
has to be . extended due to record 
insertions. If the extension size is too 
small, the file may have to be extended 
many times. With too large an extension 
size, there may not be enoucrh conticruous 
space available. If the estimates of 
initial record count and number of 



additional records are correct, extension 
size will not be an important issue. At 
anv rate, the file header should be 
pe~iodically examined and a contiguous copy 
of the file should be made if the number of 
extents becomes excessive. 

CASE STUDIES 

All experiments were performed on a 
VAX 11/750 with 8 Mbytes of memory. The 
disk used was an RM05 256 Mbvte removable 
disk. Test runs were submitted as batch 
iobs in the middle of the niaht, when the 
~vstem was relatively quiescent, to 
eiiminate contention. T~st programs were 
constructed which accessed the files in a 
pseudorandom manner. Data collection was 
effected bv usina the librarv routines, 
LIBSINITTIMER and LIB$SHOWTIMER. Thev were 
set up in the proarams so as to isolate the 
IIO (the non-I/O CPU time was found to be 
negligiblel. 
elapsed time, 
count. A DCL 
for each set of 
the following: 

These routines provided 
CPU time and direct I/O 
procedure was set up which, 
file parameters, performed 

1. the oriainal, untuned file was 
COINERTed, using an FDL file which 
was previously created with 
Edit/FDL 

:!. the FORTRAN test procrram was run 
10 times, with logical assignments 
to the optimized file 

3. ANALYZE/RMS/FDL/STATISTICS was run 
against the optimized file to 
collect further data lindex depth, 
compression percentaaes, etc.l 

The results were averacred over the 10 
runs and assembled into a tables. 

File 1 
Record size: 

Key size: 
Kev data type: 

Initial record count: 

72 bytes 
10 bytes 
STRING 
261,632 

The test procrram performed an initial 
keyed read for 16 randomly selected keys, 
followed by 150 sequential reads per key. 
The results for File 1 are presented in 
graphical form in Ficrures 1 and 2 and in 
tabular form in Table 1. 

Since our application is both CPU and 
I/O intensive, it is required to minimize 
the total elapsed time for I/O lwhich 
includes both CPU and I/O components). The 
fact that there was no contention for 
either CPU time or I/O when the tests were 
run made the variance in the measurement of 
elapsed time reasonably small. In Ficrure 
1, the number of direct I/O's are plotted 
aqainst a reference number which, when used 
as an index into Table 1, yields the file 

477 

attributes. 

t i.-:rut·e 
times f.:n: 

: shows 
the 

the elapsed 
same 5et of 

f...•lc•tted in 

a.nd CPU 
reference 

increasincr numbers. Thev axe 
.:•t:d.er of elapsed time, with the shaded 
portion •:if each bar bein<I the CPU time. 

Several 
apparent. 

points are immediately 

1. All of the files that were tuned 
with FDL resulted in sianificantly 
improved elapsed time and dramatic 
improvements in direct I/O count 
las high as 89%1. 

Z& Prolocrue 3 fi1es with compression 
on actually resulted in an 
increase in CPU time, although the 
elapsed time and I/O count 
improved. 

3. Proloaue 2 files performed better 
than the correspondincr Proloaue 3 
files with compression turned off. 

4. Prolocrue 2 files, in general, 
provided the crreatest improvement 
in both elapsed time and CPU time. 

The obiect of the tests was to 
determine the optimal set of file 
parameters for our application, that is, 
those parameters which resulted in the best 
combination of elapsed time, CPU time and 
I/O count. To that end, the FDL file 
represented bv the first bar in Fiaure 1 
was selected.-with the following results: 

File 2 

Elapsed time improvement: 29% 
18% 
86% 

CPU time improvement: 
Direct I/O improvement: 

Record size: 
Key size: 

Key data type: 
Initial record count: 

496 bytes 
13 bytes 
STRING 
4293 

The test program performed a keyed 
read for 11 randomly selected keys, 
followed by sequential reads until a 
control break occurred, which averaged 39 
records per key. The tests were run in the 
same manner as for File 1. The results for 
File 2 are presented in Table 2. 

The first entry in Table 2 is for the 
unoptimized file. The FDL file represented 
bv reference number 30 was selected, with 
the following results: 

Elapsed time improvement: 61% 
CPU time improvement: 38% 

Direct I/O improvement: 85% 



CONCLUSIONS 

l. Determine if compression can 
the 

2. 

3. 

provide advantages for 
application. 

Determine the expected frequency 
of insertions/deletions. 

Determine if time 
constraints permit a 
on a periodic basis 
CONVERT/RECLAIM. 

and space 
full CONVERT 
rather than 

4. Select a Prologue version based 
the above, keeping in mind that 
Prologue 2 offers a performance 
advantage. Cif alternate keys or 
non-STRING keys are required, use 
Prologue 2.) 

5. Use the line or surface plot in 
the FOL Editor to select a rancre 
of bucket sizes with which to 
experiment. Select a bucket size 
for each area that yields the best 
experimental results. Keep in 
mind that a large bucket size can 
adversely affect performance in a 
shared file environment. 

6. Determine if the mean data length 
can be reduced bv using variable 
length records. 

7. Select a fill factor with 
consideration given 
number 2 Cabove). 
use a fill factor 
CONVERT frequently. 

to conclusion 
If possible, 
of 100% and 

B. Set the local buffer count based 
on the predominant access method. 

9. Determine if the application can 
benefit from global buffers. If 
so, experiment with allocatincr 
global buffers and observe the 
effects on performance. 

10. Try to allocate the files 

11. 

contiguously and maintain 
contiguity as much as possible. 

Use the ANALYZE/RMS utility 
periodically and adjust the FOL 
parameters if the index increases 
in depth. 

BIBLIOGRAPHY 

l. Introduction to VAX-11 Record 
Management Services. 

2. VAX-11 Record Management Services 
Tuning Guide. 

478 

3. VAX-11 Record Management Services 
Utilities Reference Manual. 

4. VAX-11 Record Management Services 
Reference Manual. 

The above references are found in the 
VAX/VMS Documentation, Volume 7, Digital 
Equipment Corporation, Maynard, 
Massachusetts, May, 1982. 

ACKNOWLEDGEMENTS 

The crraphs in the Figures were produced on 
an ORCA 3000 CAD/CAM Workstation with the 
assistance of Bill Waters, MarketVision. 
The hard copy was produced on a SEIKO color 
printer. 

Thanks are in order to Bill Adiletta, 
MarketVision, for his editorial comments. 



1IZIJ 6121 

"...J 51Z! 

40 1"1j 

10J 

1121J .2121 

10.J H'l 

1c:p 1111 <p .(r.. I 11-v~ ~ 1-1-1-1 I-' H-Et- l 

...., 

FIGURE 1 - DIRECT I:O COUHT FOR FILE 1 

On the vertical a.xis is the direct I/O count 
f,:,r a.n a.vera..:re of 10 test runs. The hc•rizontal 
a.xis contains reference numbers, w-hich serve .3.s a.n 
index into TABLE l, where the attributes for each 
test run can be found. 

Immediately appat-ent is the fa.ct that all 
files l:uned ;.;ith FDL showed a sicrnificant 
impr•:)Vement in direct I/O count. The bar on the 
far ricrht represents the "untuned" file, that is, 
the default set of attributes which result when a 
file is created bv a FORTRAN OPEN statement. 

It is interestincr to note that there are a 
number of "plateaus" files with the same I/O 
.:ount. These are files with the same bucket size 
for the data area. and different bucket sizes for 
the index areas. This suacrests that it is the 
bucket size in the data area that has the most 
effect on I/O. 

479 



FIGURE - - EU •. FSED TIME/CPU TIME FOR FILE 1 

l~efer to the text for a desc~iptionl 

480 



350 
r V' ~ *"' ~~j. "' ~ tt ~ 

.. ....... """' ~· II- "'-+-' II-+- p;+. 

'300 

250 

200 

150 

100 
i-i-~ 

...... 
'S0 

.-1-

11111'1812192111"54 71118362 8811SllM51335111731t49lll41814816 4 52948 81112845S! 2 Q:l827e418118125425iil2441582341152231158 I 8152111855 e 

FIGURE 3 - DIRECT r:o COUUT FOR FILE .. 

481 



TABLE 1 - PERFORMANCE ANALYSIS RESULTS 

REF INDEX DATA PRO LOG KEY INDEX DATA EL. CPU DIR. INDEX 
NUMBER BUCKET BUCKET COMPR COMPR COMPR TIME TIME I/O DEPTH 

SIZE SIZE CY/Nl (Y/Nl CY/Nl (SECSl (SECSl COUNT 

1 4 8 2 27.63 24.66 84 2 
2 8 8 2 28.04 25.16 84 2 
3 4 4 2 28.47 24.18 131 2 
4 4 13 2 28.68 26.06 65 2 
5 13 4 2 28.74 24.80 131 2 
6 8 4 2 28.85 24.68 131 2 
7 1 8 2 28.94 25.03 100 2 
8 1 4 3 NO NO NO 29.26 25.64 155 3 
9 13 8 2 29.37 25.59 84 2 

10 1 4 2 29.38 24.16 147 3 
11 13 8 3 NO NO NO 29.43 26.40 87 2 
12 8 13 ,., .... 29.46 26.68 65 ,., .. 
13 1 13 2 30.00 26.30 81 2 
14 4 4 3 NO NO NO 30.13 25.64 139 2 
15 1 8 3 NO NO NO 30.16 26.50 103 3 
16 8 4 3 NO NO NO 30.29 25.73 139 2 
17 13 4 3 NO NO NO 30.41 25.73 139 2 
18 13 13 2 30.82 26.77 65 2 
19 4 8 3 NO NO NO 31. 22 26. 72 87 2 
20 13 1 2 31. 82 25.98 433 2 
21 4 13 3 NO NO NO 31. 84 28.00 65 2 
22 4 1 2 32.28 25.69 449 2 
23 1 1 2 32.40 25.61 449 3 
24 5 3 3 YES YES YES 32.78 30.58 143 2 
25 10 3 3 YES YES YES 32.79 30.55 143 2 
26 3 3 3 YES YES YES 32.82 30.48 143 2 
27 7 3 3 YES YES YES 32.82 30.60 143 2 
28 1 13 3 NO NO NO 33.83 28.23 81 3 
29 8 8 3 NO NO NO 33.91 27.09 87 2 
30 5 1 3 YES YES YES 34.17 28.69 376 2 
31 13 13 3 NO NO NO 34.20 27.82 65 2 
32 7 1 3 YES YES YES 34.25 28.84 376 2 
33 13 4 3 YES YES NO 34.34 30.91 129 2 
34 1 1 3 YES YES YES 34.35 28.74 392 3 
35 12 1 3 YES YES YES 34.52 28.95 376 2 
36 8 4 3 YES YES NO 34.67 30.87 129 2 
37 3 1 3 YES YES YES 34.82 28.87 392 3 
38 1 4 3 YES YES NO 35.24 31. 05 145 3 
39 5 5 3 YES YES YES 35.39 33.62 96 2 
40 1 l 3 YES YES NO 35. 71 28.84 449 3 
41 4 1 3 YES YES NO 36.17 28.74 433 3 
42 1 1 3 NO NO NO 36.20 26.98 449 3 
43 8 13 3 NO NO NO 36.25 28.22 65 2 
44 8 1 3 YES YES NO 36.33 28.95 433 2 
45 13 1 3 YES YES NO 36.40 28.89 433 2 
46 8 1 3 NO NO NO 36.59 27.02 433 2 
47 13 1 3 NO NO NO 36.87 27.08 433 2 
48 1 1 3 NO NO NO 39.05 29.94 596 3 

482 



TABLE 2 - PERFORMANCE ANALYSIS RESULTS 

REF INDEK DATA PROLOG KEY INDEK DATA EL. CPU DIR. INDEX 
NUMBER BUCKET BUCKET COMPR COMPR COMPR TIME TIME IIO DEPTH 

SIZE SIZE <YIN) <YIN> <YIN) <SECS) (SECS> COUNT 

0 2 2 3 NO NO NO 13.45 6.96 343 2 

l 2 5 3 YES YES YES 6.76 5.31 103 2 
2 2 10 3 YES YES YES 6.29 5.18 63 2 
3 2 11 3 YES YES YES 6.77 5.34 59 2 
4 2 13 3 YES YES YES 6.34 5.27 53 2 
5 2 15 3 YES YES YES 6.33 5.31 53 2 
6 2 17 3 YES YES YES 6.50 5.51 44 2 
7 2 20 3 YES YES YES 6.58 5.64 40 2 
8 4 5 3 YES YES YES 7.04 5.29 103 2 
9 4 10 3 YES YES YES 6.33 5.24 63 2 

10 4 11 3 YES YES YES 6.46 5.32 59 2 
11 4 13 3 YES YES YES 6.06 5.25 42 1 
12 4 15 3 YES YES YES 6.17 5.39 35 1 
13 4 17 3 YES YES YES 6.16 5.44 33 1 
14 4 20 3 YES YES YES 6.31 5.57 29 1 
15 6 5 3 YES YES YES 6.82 5.29 103 2 
16 6 10 3 YES YES YES 6.06 5.17 52 1 
17 6 11 3 YES YES YES 6.12 5.23 48 1 
lB 6 13 3 YES YES YES 6.06 5.23 42 1 
19 6 15 3 YES YES YES 6.lB 5.37 35 1 

20 3 25 2 6.77 4.44 3B 2 
21 4 5 2 7.13 4. 71 112 2 
22 4 6 2 7.01 4.69 97 2 
23 4 7 2 6.B4 4.63 Bl 2 
24 4 B 2 6.46 4.52 7B 2 
25 4 9 2 6.50 4.51 73 2 
:Z6 4 10 2 5.47 4.40 65 2 
27 4 11 2 6.34 4.42 65 2 
2B 4 12 2 6.35 4.51 59 2 
29 4 13 2 6.27 4.34 55 2 

/( 30 4 14 2 5.2B 4.33 50 2 
31 4 15 2 6.25 4.45 51 2 
32 4 16 2 6.50 4.43 49 2 
33 4 17 2 6.3B 4.46 47 2 
34 4 lB 2 6.01 4.36 46 2 
35 4 19 2 5.B7 4.36 44 2 
36 4 20 2 6.01 4.40 45 2 
37 4 25 2 6.2B 4.43 3B 2 
3B 5 5 2 7.76 4.Bl 112 2 
39 5 6 2 6.21 4.69 97 2 
40 5 7 2 6.20 4.53 Bl 2 
41 5 B 2 6.00 4.49 7B 2 
42 5 9 2 6.00 4.49 73 2 
43 5 10 2 5.54 4.45 65 2 
44 5 11 2 5.74 4.43 65 2 
45 5 12 2 5.55 4.37 59 2 
46 5 13 2 5.51 4.39 55 2 
47 5 14 2 5.31 4.32 50 2 
4B 5 15 2 5.45 4.32 51 2 
49 5 16 2 5.40 4.32 49 2 
50 5 17 2 5.36 4.33 47 2 

51 5 lB 2 5.44 4.35 46 2 
52 5 19 2 5.42 4.36 44 2 
53 5 20 2 5.47 4.39 45 2 
54 5 25 2 6.12 4.50 3B 2 
55 6 5 2 6.96 4.B2 112 2 
56 6 6 2 6.03 4.63 97 2 
57 6 7 2 6.3B 4.52 Bl 2 
5B 6 B 2 6.62 4.59 7B 2 
59 6 9 2 7 .11 4.52 73 2 
60 6 10 2 6.lB 4.46 65 2 
61 6 ll 2 6.11 4.45 65 2 
62 6 12 2 5.66 4.40 59 2 
63 6 25 2 5.36 4.36 27 2 

483 



In i ti al 

Load 

Fi 11 

Percent 

1001 

901 
I 

ao1 
I 

701 
I 

601 
I 

501 
I 

401 
+-

4 3 3,2 2 2 2 2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3,2 2 2 2 2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3,2 2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3,2 2 2 2 2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3,2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3,2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3,2 2 2 2 2 2 2 2 2'-,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3 3,2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3 3'2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 3 3 3 3 3,2 2 2 2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
5 4 3 3 3 3,2 2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
5 4 3 3 3 3 3'·,2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
5 4 3 3 3 3 3 3'-.2 2 2 2 2 2 2 2'-,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
+ - - - + - + - - + - - - - + - - - - + - - + - + 
1 5 10 15 20 25 30 32 

Bucket Size (number of blocks) 

PV-Prologue Version 2 KT-Key 0 Type String FD-Final Design Phase 
10 KP-Key O Position DK-Dup Key 0 Values No KL-Key 0 Length 

RF-Record Format Fixed RS-Record Size 72 
LM-Load Method Fast_Conv IL-Initial Load 261632 AR-Added Records 

In i ti al 

Load 

Fill 

Percent 

Which File Parameter 

1001 
I 

901 
I 

801 
I 

701 
I 

601 
I 

501 
I 

401 
+-

3 3'-,2 2 2 2 2 
3 3,2 2 2 2 2 
3 3'..2 2 2 2 2 
3 3 3,2 2 2 2 
4 3 3,2 2 2 2 
4 3 3',2 2 2 2 
4 3 3,2 2 2 2 
4 3 3 3',2 2 2 
4 3 3 3,2 2 2 
4 3 3 3',2 2 2 
4 3 3 3 3,2 2 
4 3 3 3 3,2 2 
5 4 3 3 3 3,2 
+ - - - + 
1 5 

(Mnemonic)[refresh] 

2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2',2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2,2 2 2 2 2 2 2 2 

- + - - + - - + -
10 15 20 

Bucket Size (number of blocks) 

2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
- + -

25 

1 1 1 1 
2 1 1 1 
2 2 2 1 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 
- - - + 

30 

PV-Prologue Version 3 KT-Key 0 Type String FD-Final Design Phase 

0 

0 

1 1 
1 1 
1 1 
2 1 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
- + 

32 

DK-Dup Key 0 Values No KL-Key 0 Length 10 KP-Key O Position O 
RC-Data Record Comp 30% KC-Data Key Comp 30% IC-Index Record Comp 30% 
RF-Record Format Fixed RS-Record Size 72 
LM-Load Method Fast Conv IL-Initial Load 261632 AR-Added Records O 

Which File Parameter (Mnemonic) [refresh] 

FIGURE 4 - FDL 3URFACE FLOT FOR FILE 1 

i t<:;p l Prolocrue : 

lbottom) Prolocrue 3 with compression 

484 



Initial 

Load 

Fill 

Percent 

1001 

901 
I 

801 
I 

701 
I 

601 
I 

501 
I 

401 
+-

3 2 2 2 2 2 2 
3 3 2 2 2 2 2 
3 3 2 2 2 2 2 
3 3 2 2 2 2 2 
3 3 2 2 2 2 2 
3 3 2 2 2 2 2 
3 3'\2 2 2 2 2 
333'-.2222 
4 3 3'-.2 2 2 2 
4 3 3'-.2 2 2 2 
4 3 3°',,2 2 2 2 
4 3 3 3'-.2 2 2 
4 3 3 3\.2 2 2 
+ - - - + -
1 5 

2 2 2 2 2'-.1 1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-.1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2'-.1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2'-.1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2\.1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2\.1 1 1 1 1\.1 1 1 1 1 1 1 1 1 
2 2 2 2 2\.2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-.2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2\.2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-.2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-,2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 
2 2 2 2 2 2'-.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
2 2 2 2 2 2'2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

- + - - + - - - - + - - - - + - + 
10 15 20 25 30 

Bucket Size (number of blocks) 

PV-Prologue Version 2 KT-Key 0 Type String FD-Final Design Phase 
13 KP-Key O Position 

496 
DK-Dup Key 0 Values No KL-Key O Length 
RF-Record Format Fixed RS-Record Size 
LM-Load Method Fast_Conv IL-Initial Load 4293 AR-Added Records 

Initial 

Load 

Fill 

Percent 

Which File Parameter (Mnemonic)[refresh] 

1001 
I 

901 
I 

801 
I 

701 
I 

601 
I 

501 
I 

401 
+-

3 2 2 2 
3 2 2 2 
3 2 2 2 
3 2 2 2 
3 2 2 2 
3 2 2 2 
3 3 2 2 
3 3 2 2 
3 3 2 2 
3 3 2 2 
4 3'-.2 2 
4 3 3'-.2 
4 3 3'-.2 
+ -
1 

2 2 2 2 2'-.1 1 1 1 1 1 1 1\.1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-.1 1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2'-.1 1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2'-.1 1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2'-.1 1 1 1 1 1 1\.1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2'-.1 1 1 1 1 1 1'-.1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2'-.1 1 1 1 1 l'-.1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 2'-.1 1 1 1 1 1'-.1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2'-.1 1 1 1 1'-.1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2'-.1 1 1 1 1'-.1 1 1 1 1 
2 2 2 2 2 2 2 2'-.2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2'-.2 2 2 2 2 2 2 2 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2'-.2 2 2 2 2 2 2 2 2 2 2 1 1 1 
+ - - - - + - - + - - + - - - - + 
5 10 15 20 25 

Bucket Size (number of blocks) 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
- - + 

30 

PV-Prologue Versi or1 3 KT-Key 0 Type String FD-Final Design Phase 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
2 1 
- + 

32 

0 

0 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
- + 

32 

DK-Dup Key 0 Values No KL-Key 0 Length 13 KP-Key 0 Position 0 
RC-Data Record Comp 30% KC-Data Key Comp 30% IC-Index Record Comp 30% 
RF-Record Format Fixed RS-Record Size 496 
LM-Load Method Fast_Conv IL-Initial Load 4293 AR-Added Records 0 

Which File Parameter (Mnemonic)[refresh] 

FIGURE 5 - FDL SURFACE FLOT FOR FILE 2 

(top l Ft·olocrue 2 

(bottoml Frolocrue 3 with compression 

485 





RESULTS AND COMPARISONS IN MULTIPROCESSING 
USING VMS 4.0 AND MA780* 

Nancy E. Werner 
Lawrence Livermore National Laboratory 

P.O. Box 808, MS L306 
Livermore, CA 94550 

Abstract 

Experiments using different parallel processing techniques on 
selected parallel algorithms were performed. Relative 
performance of these techniques was observed. fhe hardware was 4 
clustered Vax-780s with 14 to 16 Megabytes each of local memory 
and 4 Megabytes of shared memory (2 MA780s). 

INTRODUCTION 

Parallel processing is the ART of doing multitasking 
on more than one processor, where multitasking is 
the splitting up of a Job into many separate 
Tasks. Normally these Tasks need to communicate 
with each other in order to complete the Job. In a 
tightly coupled system, they will use Shared Memory 
for communication. In a loosely coupled system, 
they will send messages to each other via a common 
bus such as the CI Bus. With the present hardware, 
four clustered Vax-780s with 16 Megabytes, 14 
Megabytes, 14 Megabytes, 14 Megabytes local memory 
respectively and 4 Megabytes shared memory, eitner 
method of communication could be used. Only the 
tightly coupled method has been pursued so far and 
will be discussed here. 

MOTIVATION 

Lawrence Livermore National Laboratory (LLNL) also 
has on site a four processor CRAY computer, the XMP-
48. It would be nice if users could become 
familiar with parallel processing on a cheaper, 
friendlier and more accessible environment than is 
yet offered on the CRAY. The Vax System's main 
purpose is for parallel processing research; there 
are no production jobs to worry about, and dynamic 
debugging tools are available. 

Most potential users at LLNL are not familiar with 
VMS. In order to lure them onto the VAX System, it 
was necessary to imitate the environment of the CRAY 
as much as possible. CRAY users were using a set 
of primitives devised by Cray Research Inc. (CRI) 
which were referred to as the "CRI Multitasking 
Primitives"[1]. These are simply a library of 
routines which were designed to be used for 
implementing parallel processing algorithms. A 
similar library was implemented on the VAX System to 
be as consistent as possible with the CRI library 
[2]. Programs which run on the CRAY, with minor 
modifications, can also run on the VAX System, 
within memory size limitations. Programs have been 
debugged on the VAX System and then successfully 
moved onto the CRAY. 

PARALLEL PROCESSING DEFINITIONS 

There are some basic things one must do for parallel 
processing that are not necessary for sequential 
processing. It must be possible to define Tasks 
which can execute on the available processors. The 
consistency of the shared data must be assured; 
simultaneous updates to the same data must be 
avoided. A section of code that alters shared data 
must be executed by only one processor at a time; 
such a section of code is called a Critical Section. 
The Tasks often must synchronize their activities 
with each other. A place at which Tasks need to meet 
before proceeding with the computation is called a 
Barrier. 

A Logical Processor is a process which has been 
initiated at Job submittal time and is scheduled by 
the Operating System on the VAX on which that 
process resides. A TASK is an instantiation by a 
Logical Processor of a subroutine call with shared 
memory arguments. When the TASK has completed 
(returned), the Logical Processor is free to 
activate another TASK. 

To implement a Critical Section , a LOCK can be 
used. A LOCK is a resource protector; only one TASK 
at a time is allowed to have a specified LOCK. If a 
LOCK is gotten before entering a section of code , 
then anyone else attempting to get that LOCK must 
wait until it is released. When the Critical Section 
of code has been completely executed, the TASK 
should then release the LOCK to allow another TASK 
which has also requested this LOCK to proceed. The 
same LOCK should be used for related Critical 
Sections which affect the same data. 

Barriers can be implemented using EVENTs and/or 
LOCKs. An EVENT is a system wide signal that can be 
set, tested and cleared by all TASKs working on this 
Job. There are many ways to implement a Barrier. 
One example is given in Appendix B. 

PARALLEL PROCESSING LIBRARY 

The library implemented for VMS contains not only 
those subroutines as defined by CRI, but also by 

*This work was performed under the auspices of the U.S. Department of Energy 
by Lawrence Livermore under Contract No. W-7405-Eng-48. 

Proceedings of the Digital Equipment Computer Users Society 487 New Orleans LA- 1985 



necessity ,some special subroutines which must be 
used to map and unmap predefined areas of data to 
the shared memory. To facilitate this mapping, the 
user must place all his shared data into a common 
block named /SHAREDGLOBAL/. The library will also 
map some of its own data to shared memory. Other 
subroutines were added to provide more 
functionality. 

DATA DEFINITIONS 

The data was set up to be compatible with the CR! 
definitions as far as possible. Please note that an 
integer is 32 bits on the VAX and 64 bits on the 
CRAY. 

Taskarray: 2-3 integers used to hold TASK 
information as follows: 

count: number of integers in this 
array (set by user) 

pointer: pointer to library data for 
this TASK (used only by library) 

Taskvalue: optional value associated 
with this Task (set by user) 

Name: subroutine name (entry point for TASK 
instantiation) 

List: argument list for subroutine 
(addresses of arguments {must be in shared 

memory}) 

Taskvalue: user defined value (32 bits) 

Lockdata: integer used to represent a LOCK 
(defined by user, manipulated by 
library) 

Eventdata: integer used to represent an EVENT 
(defined by user, manipulated by 
library) 

First shr: address of the first data item 
-in shared memory 

( %loc(*) where common/sharedglobal/* •••. / 

Last shr: address of the last data item in 
shared memory 

( %loc(*) where common/sharedglobal/ •.•• */ 

Dbug: integer flag which will cause library 
to write tasking information to the 
log file if > O 

SPECIAL SUBROUTINES 

Task_init (First_shr, Last_shr, Dbug) 

Subroutine which maps the shared data 
to shared memory. It must be called 
before any shared data is used. It 
also sets up the Task cleanup 
subroutine as an exit-handler. 

488 

Task_ cleanup 

Subroutine which unmaps the shared 
memory. 

CR! COMPATIBLE SUBROUTINES 

Tskstart (Taskarray, Name [,List]) 

Startup the TASK associated with 
Taskarray by calling subroutine Name 
with arguments List. 

TskWait (Taskarray) 

Wait for the TASK associated with 
Taskarray to complete. 

Logical = Tsktest (Taskarray) 

If the TASK associated with Taskarray 
exists, then set Logical = .true. 

TskValue ( Taskvalue ) 

Retrieve the value for this TASK. 

Lockasgn ( Lockdata ) 

Assign and initialize the LOCK 
associated with Lockdata. 

Lockrel ( Lockdata 

If there are no waiters release the 
LOCK associated with Lockdata 

otherwise set error condition. 

Lockon ( Lockdata 

If the LOCK associated with Lockdata 
is busy then wait, 

otherwise get the LOCK. 

Lockoff ( Lockdata ) 

Relinquish the LOCK associated with 
Lockdata. 

Logical Locktest ( Lockdata ) 

If the LOCK associated with Lockdata 
was already on, 
set Logical .true. and return 

otherwise get the LOCK and 
set Logical = .false. 



EYasgn ( Eventdata ) 

Assign and initialize the EVENT 
associated with Eventdata. 

Evrel ( Eventdata ) 

If there are no waiters, 
release the EVENT associated with 
Eventdata 

otherwise set error condition. 

Evpost ( Eventdata ) 

Post the EVENT associated 
Eventdata. 

EYclear ( Eventdata ) 

with 

Clear the EVENT associated with 
Eventdata. 

Evwait ( Eventdata 

Wait for the EVENT associated with 
Eventdata to be posted. 

Logical = Evtest ( Eventdata ) 

If the EVENT associated with Eventdata 
was posted, Logical = .true. 

otherwise Logical = .false. 

ADDITIONAL SUBROUTINES 

These subroutines can be used to obtain a 
chronological log of what is happening during a 
Job. If the Job is running on more than one VAX , 
the time is not a correct indicator since each VAX 
has a separate clock and they are not synchronized. 

Open_shared ( Unit, Filename, Record_size) 

The file Filename is opened as a 
shared relative file with maximum 
record size = Record size and 
associated with Unit:- If being called 
by Fortran, Unit is also the unit 
number. 

Close shared ( Unit ) 

The file associated with Unit is closed 
and reset. 

Get_nxtrec ( Unit, Record_number, Count) 

The next Count records are reserved on 
the file associated with Unit and the 
first of these record numbers is 
returned to Record_number. 

489 

Another set of subroutines was implemented to 
facilitate dynamic partitioning of the Job's work 
among the TASKS. A unique set of mailboxes may be 
set up with specified message size with which TASKS 
may communicate. Dynamic partitioning is achieved 
by dividing the work up and then putting the pieces 
into a mailbox queue; each TASK that is doing that 
work can then retrieve pieces of the work until the 
work is completed and the mailbox is empty. 

Setup_sr (Mbx_array, Count, Mbx_ size, Code) 

Set up Count mailboxes whose message 
size is Mbx size and whose unique 
identifier will be Code. The channel 
number for each mailbox initialized 
will be placed in 
Mbx_array(1 - Count). 

Send sr ( Mbx_array(I), Buffer, Msg_size) 

Send the message with size Msg size 
which had been placed in Buffer-to the 
mailbox referred to by Mbx_ array(!). 

Receive sr ( Mbx_array(I), Buffer, Msg_size) 

UTILITIES 

Wait for a message from the mailbox 
referred to by Mbx array(!) to be 
read into Buffer-, whose size is 
Msg_size. 

A set of utilities have been implemented to make 
Parallel Processing on the VAX system easier for 
user. These utilities are really command files 
which have had symbols defined for them. 

the 

Cricomplink Program Compiler 

This utility will compile and link 
Program using the compiler indicated by 
compiler, which may include optional 
parameters. It is helpful to use this 
utility because it handles special 
linking problems caused by shared 
memory access. 

Crisetup Program Maxlog 

This utility creates a set of command 
files for setting up the environment of 
this Program and also some debugging 
command files for use with the Parallel 
Debugger which assumes that the maximum 
number of logical processes used will 
be Maxlog. This needs to be executed 
only once for this Program unless the 
Parallel debugger is being used and 
Maxlog needs to be larger. 



Crilogicals Program 

This utility defines the logical names 
necessary to map to the shared 
memory. If this is not executed, local 
memory will be used exclusively. 

Crisubmit Program 
Logcpu Physcpu [After_time] 

This utility starts up Program in 
Logcpu processes (logical cpus) on 
Physcpu processors (physical cpus) at 
time = After time if present, otherwise 
now. In VMS-terms, a command file 
which was setup for this program when 
Crisetup was executed, which in turn 
executes Crilogicals and then runs 
Program, is submitted to a generic 
batch queue Logcpu times. The generic 
queue will alternate the submittal 
amongst queues on Physcpu VAXs. Thus 
there will be Logcpu processes running, 
divided evenly amongst Physcpu 
processors. 

Cricleanup 

This utility needs to be executed only 
if there was an abnormal exit or the 
user wishes to abort the Job. Using a 
command file which was generated when 
Crisubmit was executed, it will remove 
any left over batch processes and 
delete shared memory access for the 
last Job submitted. 

Cridebug Program Logcpu Physcpu 

This utility starts up Program in 
Logcpu processes (logical cpus) on 
Physcpu processors (physical cpus) with 
the Parallel Debugger enabled. 

IMPLEMENTATION 

The implementation of the Parallel Processing 
Library on VMS was done using shared memory to store 
library information and interlocked instructions to 
update this information. Normally, temporary 
mailboxes in shared memory were used , which 
automatically go away when the Job completes. The 
shared memory must be mapped to a permanent global 
section and thus must be specifically deleted by 
the exit handler when the Job completes. 

The root TASK of a parallel processing program is 
the program itself, all other TASKs are subroutines 
within that program. The same copy of the program 
is executed in all of the processes. The first 
process to execute the call to Task_init becomes the 
root TASK. The root TASK creates the necessary 
shared memory global sections , creates the Tasking 
mailbox and associates an exit handler for Job 
cleanup and termination. After the return from 
Task init, it will continue executing the program. 
All other processes become slaves. A slave process 

490 

also executes the call to Task init, but after 
mapping to the shared memory global sections and to 
the Tasking mailbox which had been created by the 
root TASK, it will then perform a read on the 
Tasking mailbox and wait for a message. The slave 
processes will never proceed beyond the call to Task_ 
init except to make subroutine calls requested by 
the Tasking mailbox message. Whenever Tskstart is 
called, a message is placed in the Tasking mailbox 
which indicates the subroutine Name to be called and 
its arguments. One and only one of the slave 
processes will receive that message; if a TASK is to 
be started, it will set up a taskblock for that TASK 
in shared memory, mark it valid, and then generate a 
call to that subroutine with the appropriate 
arguments. Upon returning from that subroutine, it 
will mark the TASK done. In order to wake up any 
other TASKS which might be waiting for this TASK, 
it will create a unique mailbox associated with that 
TASK, write to it, and then delete it. Having 
finished the business of that TASK, it will read the 
Tasking mailbox again to look for another TASK to 
do. When the process receives a DONE message in the 
Tasking mailbox, it will pass the message on and 
then commit suicide. The root TASK will 
automatically place the initial DONE message in the 
Tasking mailbox when it is finished by automatically 
using the exit handler that was set up by the call 
to Task init. 

The EVENT mechanism merely uses the VMS Common Event 
Flag clusters in shared memory. 

The LOCK was implemented two ways. The first 
implementation did not care about the order in which 
the lock was granted. A LOCK was obtained by 
performing an interlocked decrement on the semaphor 
represented by Lockdata. If the LOCK was available, 
the process proceeded, otherwise it waited for an 
Event Flag which had been associated with that LOCK 
by the Lockasgn call. Lockoff did an interlocked 
increment on this semaphor and then set the Event 
Flag associated with this LOCK. Whichever TASK 
reacted the fastest got the LOCK next, there was no 
fairness criteria. This implementation appeared to 
be sufficient for a while. Later, a program, which 
used Locking in its Barrier implementation and 
synchronized on Barriers frequently, displayed 
very erratic behavior when executing on all 4 
processors. This behavior was finally traced to a 
semi "starvation" effect caused by the unfair 
Locking mechanism. Processes were waiting 
excessively long within the Barrier due to lack of 
fair access to the LOCK which was used in that 
Barrier implementation. The Barrier was rewritten 
without the use of LOCKs and the erratic behavior 
disappeared. However, because of the possible 
"starvation" problem, it was decided to re-implement 
the Locking mechanism using an interlocked first 
in, first out (FIFO) queue. In addition to a 
semaphor, an interlocked queue was associated with 
each LOCK , both were represented by Lockdata. If a 
LOCK is not available, the Pid of the process 
requesting the LOCK and the nodename of its 
Processor are placed in the queue. When the LOCK 
becomes available, an entry is removed from the 
queue for that LOCK; if the waiting process resides 
on the same Processor, it is awakened. If the 
waiting process is on a different Processor from the 
process relinquishing the LOCK, a message is 
placed in a permanent shared mailbox associated 



with that Processor. A server process responds to 
this message and wakes up the appropriate process 
on its Processor. The Program was retried with the 
old Barrier implementation and the new Lock 
implementation. The previous erratic behavior was 
not observed. 

In order to allow processes to record their behavior 
in a synchronous manner, a set of subroutines was 
implemented which allows the user to easily write 
ordered records to a shared relative file; which may 
then be printed or otherwise interrogated. The last 
record used is noted in a shared memory array 
indexed into by the Unit number for that file. 

To make dynamic load balancing easier, a set of 
subroutines was implemented for setting up, and 
reading and writing to shared mailboxes. The user 
must determine what information is necessary to 
indicate the next work item and must put that 
information into a buffer of appropriate size. 
After the mailbox has been setup, subsequent writes 
and reads to/from this mailbox will enter and remove 
items to/from the work queue represented by this 
mailbox. 

RESULTS 

Using the Parallel Processing Library described 
above, experiments were performed to investigate the 
benefits and the costs of parallel processing. For 
benchmarking purposes, two methods were used to 
implement Barriers ( see Appendix A). These methods 
were implemented in assembly language in order to 
make them as fast as possible. Another method was 
implemented and tested using EVENTS and the Parallel 
Processing Library (see Appendix B); while using 
the other Barrier method, the elapsed time did not 
vary significantly from the first two Barrier 
methods. The first Barrier method, Method E, 
relinquishes the CPU (Processor) when it must wait 
at a Barrier and waits for an Event Flag associated 
with this Barrier to be set. The second Barrier 
method, Method S, spins , testing the shared memory 
location associated with this Barrier until it is 
ready. The difference in CPU time used by the two 
methods is the time that is spent waiting for the 
other Tasks to reach the Barrier. 

The cost of using Barriers can be broken into 
components. There is the cost of the extra 
computations necessary to implement the Barrier; 
there is the cost of waiting within the Barrier due 
to resource contention, and there is the cost of 
waiting for the other TASKs to reach the Barrier. 
The last component can be estimated by using both 
kinds of Barriers and comparing the CPU times used. 
The second component is negligible for Method S , 
since the only resource contention present is a 
single interlocked decrement that occurs for each 
TASK when it first reaches the Barrier. Method E 
will have more resource contention due to its use of 
event flags. The first and second components were 
estimated by timing 100 loops of 60 consecutive 
Barrier calls, for Method E and for Method s. This 
test was run with from 1 to 4 TASKs, each with its 
own Processor. Method S took approximately .0001 

491 

seconds per Barrier, per TASK, no matter how many 
TASKs were running simultaneously. Method E took 
longer due to its use of event flags. As more TASKs 
participated, this become worse due to the added 
resource contention ; its time varied from .0006 
seconds to .002 seconds depending on the number of 
TASKs participating. 

Assuming a UNIT of COST to be the cost of a single 
+,-,* floating point type operation, the COST of a 
Lockon followed by a Lockoff, the COST of an Evpost 
followed by an Evclear, and the COST of the Barriers 
s and E were measured , varying the number of 
participating TASKs, each with its own Processor, 
from 1 to 4. See Table 1 for complete results. The 
COST for Locking varied from 9 to 65 units, 
depending on the number of TASKs, due to LOCK 
contention. The COST of Events varied less, from 33 
to 46 units. The COST of Barrier E varied from 37 
to 106 units, but the COST of Barrier S remained 
fairly constant at 7 units. Even though Barrier S 
appears to be cheaper, further results showed that 
the first two components of cost of a Barrier, which 
this test measures, are not the most important. 
Also, if the Processors are being shared, Barrier S 
would be wasting CPU cycles that others could be 
using. Another interesting side result of this 
experiment was that Barrier S, which uses shared 
memory heavily, did not degrade the performance of 
the System. This would seem to indicate that a 
potential hardware problem, shared memory 
contention, was not a problem in these experiments. 

A standard LLNL benchmarking code named Simple, a 
hydrodynamic calculation with heat conduction, was 
used for further investigations. A grid size of 80 
x 100 was used for 100 time cycles. There were 14 
Barrier synchronizations performed per time 
cycle. Both Barrier methods (S,E) were used. The 
number of TASKs (Processors) working on the problem 
varied from 1 to 4. The number of Logical Processors 
actually working on the problem was never greater 
than the number of Physical Processors. No other 
users were on the System during benchmarks. At 
each Barrier call, for each TASK, data was saved 
indicating when the Barrier was entered and when it 
was exited. Upon termination of the Job, this data 
was processed • All the Barrier delays were summed 
and averaged among the number of TASKs (WTave). 
Also, at each Barrier, the maximum delay amongst the 
participating Tasks was found, and these were summed 
(WTM). From the logs, the CPU usage for Barrier E 
was subtracted from the CPU usage for Barrier S and 
the difference was divided by the number of 
participating Tasks to give the average wait at a 
Barrier (Wave). With complete parallelism, if one 
TASK takes X seconds to complete the Job, then N 
TASKs should take X/N seconds. If T is the time 
that it actually took to run the Job with N TASKs, 
then let D be the Discrepancy, where D = (T - X/N). 
The speedup is usually a measure of how much 
parallelism was actually achieved. Speedup(N) 
Elapsed time for one TASK/ Elapsed time for N TASKs. 

The first experiments were done using fixed 
partitioning of the work load. The work was 
divided up equally amongst the Tasks before starting 
the Job. The time for 1 Task to complete the Job was 
1600 seconds. A Job was run using 4 Tasks and 
bypassing the synchronization; the answers were 
wrong, but the Speedup was = 4! Using the Barrier 
synchronizations, Speedup(2) = 1.95, Speedup(3) = 



2.85, Speedup(4) = 3.7. The Speedup did not vary 
significantly as a function of the Barrier 
implementation method used, including the one in 
Appendix B. For complete results, see Table 2. The 
total cost of the Barriers (first and second 
components) of this Job is approximately = cost of a 
single Barrier X 14 X 100. Therefore, Barrier E 
cost from .8 to 2.8 sec depending on the number of 
Tasks. Barrier S cost approximately .14 sec. In any 
case, the cost is < 1% of the total cost of the 
Job. Then, why isn't the Speedup better? It appears 
that the third component of the Barrier cost, the 
wait at the Barriers for the other TASKs, is the 
primary expense in Barrier synchronization for this 
Job. Even if this Job has exclusive use of the 
System, it still does not have exclusive use of the 
Processors. The Operating System must continue to do 
its work ( cluster management, accounting, error 
logging, etc). Bare in mind that there is not 1 
Operating System, but rather 4 Operating Systems 
involved. If any of these Operating System uses CPU 
cycles, the TASK being run under that Operating 
System will be delayed, and all other TASKs will 
have to wait for the delayed TASK when a Barrier is 
encountered. Figure 1 shows a scatter plot 
showing the distribution of the sizes of the 
maximum waits at the Barriers, looking at all 14 
barriers, but only 20 cycles worth of data. Figure 2 
shows a plot of how the size of the maximum wait at 
a single Barrier varies, using the same 20 cycles 
worth of data. 

Table 1 

COST OF PARALLEL PROCESSING 

Definition: UNIT or COST• one •,-,+ Operation 

FUNCTION COST ( 1 CPU) COST (2 CPUS) COST (3 CPUS) COST ( 4 CPUS) 

LOCK (ON/OFF) 

EVENT (POST /CLEAR) 

3ARRIER (E) 

3ARRIER (S) 

#PROCESSORS 

1 
2 
3 
4 

9 

33 

37 

10 

43 

78 

Table 2 

42 

46 

92 

7 

SIMPLE WITH FIXED EQUAL PARTITIONS 

SPEEDUP ELAPSED D Wave WT ave 
TIME 

1.00 1600 00 00 00 
1.95 820 20 15 20 
2.85 560 27 13 15 
3. 70 430 30 16 21 

4.oo NO SYNCHRONIZATION 

65 

44 

106 

7 

WTM 

00 
38 
30 
45 

492 

SIZES OF MAX WAIT AT BARRIERS 0 4 PROCESSORS!!.. 3 PROCESSORS 
COUNT ~ 2 PROCESSORS © 

>15f~d! 
15~rai.--4--+__;l--+--+--+-+-~+--+---+--1 

14 ~ 

13 l---+--+l~1--+-....,...-+-t---t---+--t-r-~ 

12 O".o.-!'~l\lcA~l--1'---+--t---'P--t--+-t-t--1 'lg 

11 ~l--l-~-+---+-~+--+---+-t--t--+-; 

10'-~~_lli~~-+--<l--+--+--+---+-t--t--+--t 
~ 

9 

8 

7 ...0-0-.4 

6 

5 Ill u1. 

8 9 10 11 >1 
DELAY SIZE (.01 SECONDS) 

figure 1 

If the Barriers are few, with a large amount of work 
being done in between, these delays might 
statistically even out amongst the TASKs, causing 
less delay at the Barriers due to waiting for each 
other. In other words, the larger the granularity 
of the problem between Barriers, the more efficient 
use the Job will make of the Processors. 

SIZES OF MAX WAIT AT BARRIERS 0 4 PROCESSORS !!.. 3 PROCESSORS 
C~~:T 2 PROCESSORS © 

15 t---t---t~+--+~+--t---l~+--+~+--1---1 

14 t---+---t~-t--t-~+---+---l~+--+~+---1----1 

13 t---t--+~t--t--+~+---+--+~+---+---+--l 

12 t---+---t~-t--1-~t--+--,tr---t--t-~+---l----I 

11 

10 t---+--+~t--11+--+~+--~--+~l---l---+--l 

9 

8 

7 

6 

5 

4 

3 

2 

2 3 4 5 8 7 8 9 10 11 >11 
DELAY SIZE (.01 SECONDS) 

flgure2 



Work partitioning was investigated next. The work 
was divided up into Work Queues with a fixed number 
of items in each queue. Each TASK is allowed to 
remove items from the queue until that work is 
completed, at which time a Barrier is usually 
encountered. As items are removed from one Work 
Queue and worked on, they are generally inserted 
into the next work queue. It was found that the 
overhead cost of using Work Queues was approximately 
.003 seconds or 120 COST UNITS per Work Item, per 
Barrier (see Table 3). 

Table 3 

SIMPLE WITH DYNAMIC PARTITIONING 

OVERHEAD OF WORK QUEUES ( 1 PROCESSOR) 

# WORK ITEMS 

01 
20 
40 
60 
80 

ADDED ELAPSED TIME 
(seconds) 

000 
080 
170 
250 
350 

OVERHEAD approximately • 4 seconds per Work rtem, per Job 
• .003 seconds or 120 Cost UNITS 

per Work Item, per- Barrter 

If a Job takes 1600 seconds for 1 Processor to 
complete, the best that can be done with 4 
Processors would be 400 seconds. The Overhead can be 
estimated to be the Actual CPU Usage per Processor -
Best Possible CPU Usage per Processor. The Delay at 
the Barriers is again estimated by comparing the CPU 
usage of the two different Barrier implementations. 
As we can see from Figure 3, as the number of work 
items in the Work Queue increases, the delay at the 
Barriers tends to go down, but the overhead goes 
up. In fact, from Figure 4, it is evident that for 
this Job, the Fixed Partitioning Method is superior 
to the Dynamic Partitioning Method. The Overhead of 
Dynamic Partitioning exceeds any Delays caused by 
the work load imbalance of this Job. 

SIMPLE 
4 PROCESSORS 

TIME 0 delay 
(sec) 

0 overhead 
100 

80 

60 

40 

20 

,t 

~ v= 
~ ~ 
~ .,... ---<~ 

20 40 60 80 #WORK 
ITEMS 

figure 3 

493 

ELAPSED 
TIME 
(sec) 560 

520 

480 

440 

400 

360 

SIMPLE 
4 PROCESSORS 

--- ~ --1 

20 40 60 

figure 4 

_n_ ....- • ic 

..J:i d 
T ~l:i 

80 #WORK 
ITEMS 

The expected Elapsed Time for a Job can be estimated 
to be the average CPU used (per Processor) plus the 
average Delay at the Barriers. We can then guess 
the CPU utilization for this Job when it is 
executing to be the Estimated Elapsed Time divided 
by the Actual Elapsed Time. These results are shown 
in Table 4. The Job was monitored during its 
execution and the estimated CPU utilization numbers 
were actually observed to be true. It is assumed 
that not only was the Job doing more work when using 
Work Queues, but the Operating System was also doing 
more work. Even though Work Queues were not the most 
efficient implementation of this Job in an exclusive 
environment, that does not mean that they won't be 
for another Job which has to deal with greater load 
imbalance problems or even ,perhaps, has to share 
the system with "other" users! 

Table 4 

SIMPLE, FIXED EQUAL PARTITIONING VERSUS DYNAMIC PARTITIONING 

BARRIER ACTUAL EST. 
METHOD I WORK ELAPSED CPU OVERHEAD Wave WTave WTM ELAPSED $CPU 

ITEMS TIME AVE TIME UT!. 

FIXED 430 405 05 16 21 45 421 98 

DYNAMIC 20 520 425 25 80 80 200 505 97 
40 500 445 45 40 40 115 485 97 
60 510 465 65 25 25 55 490 96 
80 540 485 85 30 30 100 515 95 

SUMMARY 

Many things were learned from these parallel 
processing experiments. Mostly, it was learned that 
parallel processing is not easy. The difficulties 
in constructing a "correct" program and knowing that 
it is indeed "correct" were not even discussed. 
Some factors that might influence implementation 
techniques were explored. The efficiency of these 



techniques depends not only on the problem being 
solved, but on the arch tecture of the computer 
being used to solve it. To avoid unnecessary 
overhead and delays, synchronization should be 
minimized whenever possible. New mathematical 
algorithms need to be designed with this in mind. 
General schemes for solving parallel processing 
problems will need to be modified to suit each 
parallel processing environment. At present, the 
programmer is almost totally responsible for finding 
and explicitly declaring the parallel processing 
capabilities of his Job. Eventually compilers will 
assist, if not relieve, the programmer of that 
responsibility. There are still many unknowns 
concerning the suitability of computer 
architectures, computer algorithms, and computer 
software for solving the problems inherent in 
parallel processing. Experimenting with parallel 
processing will give some useful insights into the 
problem. 

REFERENCES 

[1] "Multitasking User's Guide"', Cray Research, 
Inc., Mendota Heights, MN Sn-0222 

[2] Werner, N.E., Van Matre, S.W., "Parallel 
Processing on the Livermore VAX 11/780-4 
Parallel Processor System with Compatibility 
to Cray Research, Inc. (CHI) Multi tasking", 
Version 1, UCRL-92624, May 1985 

DISCLAIMER 

This document was prepared as an account of work 
sponsored by an agency of the United States 
Government. Neither the United States Government 
nor the University of California nor any of their 
employees, makes any warranty, express or implied or 
assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process 
disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein 
to any specific commercial products, process, or 
service by trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply 
its endorsement, recommendation, or favoring by the 
United States Government or the University of 
California. The views and opinions of authors 
expressed herein do not necessarily state or reflect 
those of the United States Government or the 
University of California, and shall not be used for 
advertising or product endorsement purposes. 

494 



DATA: 

Appendix A 

BARRIER METHOD E 

3 pairs of integers, ordered, 
<THIS,NEXT,LAST> 

Synchronization variable 
Event_flag_number 

Number of TASKs number of TASKs 
synchronizing 

INITIALIZATION: 

Set Synchronization_variable(s) to 
Number of TASKS 

Clear event flags = Event flag number(s) 
Initialize the order of the data items 

THIS now 
NEXT next to be used 
LAST last one used before now 

SYNCHRONIZE: 

RESET: 

Decrement (interlocked) 
THIS Synchronization_variable 

If THIS Synchronization variable not = O, 
then wait for THIS Event_flag_number 

Otherwise Post THIS Event_flag_number 

Set LAST Synchronization variable to 
Number of TASKS 

Clear LAST Event flag number -
Rotate the order-of the Data Items 

THIS <-- NEXT <-- LAST 
I + 

495 

DATA: 

BARRIER METHOD S 

3 ordered integers, <THIS,NEXT,LAST> 

Number Of TASKS = number of TASKS 
synchronizing 

INITIALIZATION: 

Set Synchronization variable(s) to 
- Number of TASKS 

the order of the data Ttems Initialize 
THIS 
NEXT 
LAST = 

now 
next to be used 
last one used before now 

SYNCHRONIZE: 

RESET: 

Decrement (interlocked) THIS 
Synchronization_ variable 

Test THIS Synchronization variable 
until THIS SynchronTzation_variable = 0 

Set LAST Synchronization variable to 
- Number of TASKS 

Rotate the order of the Data Items - -

THIS <-- NEXT <-- LAST 
I + 



Appendix B 

BARRIER METHOD USING 
THE PARALLEL PROCESSING LIBRARY 

DATA: 

C Array of 3 ordered event flag numbers for 
C each participating TASK 

Integer Event_numbers( 3, Number of TASKs 

Integer THIS,NEXT,LAST 

Integer Number of TASKs, Task id 
Number of TASKs = nlimber of Tasks 

synchronizing 

Task id = 
where 0 

This TASK's identification number 
< Task id < Number of TASKS + 1 

INITIALIZATION: 

C Clear this TASK's event flags 

DO I= 1, 3 

Call Evclear Event_numbers(I, Task_id)) 

End do 

C Initialize the order of the data items 

THIS 0 
NEXT 1 
LAST 2 

use now 
next to be used 

last one used before now 

SYCHRONIZE: 

C Signal that this Tas'k is ready 

Call Evpost ( THIS, Task id 

C Wait for all Tasks 

RESET: 

Do I= 1, Number of TASKs 
Call Evwait ( THIS,-!) 
End Do 

C Reset appropriate last signal 

Call Evclear ( LAST, Task id 

C Rotate Data Items 

LAST THIS 
THIS !Mod (THIS+ 1, 3) 
NEXT !Mod (THIS+ 1, 3) 

Return 

496 



MICROCOMPUTER EMULATION ON THE VAX 
IMPLEMEllTATION AND MANAGEMENT OF A VIRTUAL MICROCOMPUTER SYSTEM 

John J. Vasconcelos, Supervising Engineer 
and 

Ali T. Diba, Senior Software Engineer 
James M. Montgomery, Consulting Engineers, Inc. 

250 N. Madison Ave. 
Pasadena, California 91101 

ABSTRACT 

Several third party vendors provide plug-in microprocessor 
boards and emulation software for the VAX which enable VAX 
users to run many of the popular CP/M and MS-DOS software 
packages from a terminal. For many VAX installations, this is 
a very cost-effective manner of obtaining microcomputer 
capability. This paper describes our experiences in 
implementing and managing one such system on our VAX network. 
Some of the problems we encountered and their solutions are 
also discussed. Advantages and disadvantages of microcomputer 
emulators are briefly discussed. 

INTRODUCTION 

The large base of user friendly microcomputer 
software can be accessed by VAX users at relatively 
low incremental cost by installation of plug-in 
microprocessor boards creating what amounts to a 
virtual microcomputer on a host VAX. The virtual 
machine has access to all the host machine's 
peripheral devices including large amounts of disk 
storage and has the benefit of regular back-up on 
the host machine. 

James M. Montgomery, Consulting Engineers, Inc. 
(JMM), a consulting environmental engineering firm, 
has dual networked VAXes for running engineering, 
scientific, accounting/billing and data base 
management computing applications. Repeated requests 
from management and accounting personnel for 
microcomputers to run spreadsheet, project 
management, and other user friendly microcomputer 
software packages provided the impetus for 
investigating the implementation of virtual 
microcomputers on the VAX. The conclusion reached 
was that a virtual microcomputer system would be 
more cost effective that dedicated microcomputers 
for most routine applications. 

MICROCOMPUTING NEEDS 

The JMM VAX user community consists of three major 
groups. The engineering and scientific users which 
use Fortran or sophisticated scientific applications 
such as RS-1, the accounting users which use Cobol 
or Datatrieve, and a novice user group which has in 
the past used the computer primarily for sending and 
receiving electronic mail. This last group included 
a large percentage of managers and accounting 
personnel who expressed a need for spreansheet, 
project management, and other financial/management 
software. Their computing needs could most easily be 
satisfied by the user friendly software packages 
available for microcomputers. 

Proceedings of the Digital Equipment Computer Users Society 497 

JMM presently has approximately a dozen 
microcomputers, the majority of which are located in 
domestic and foreign branch offices. The computer 
users in the Pasadena headquarters and several of 
the larger branch offices have direct access to the 
VAX computer network. For these users, the 
alternative of a microcomputer emulator on the VAX 
was considered the most cost effective method of 
providing microcomputing capabilities. 

REVIEW OF AVAILABLE EMULATORS 

There are presently three principal suppliers of 
microcomputer emulators for the VAX. They all 
provide both CP/M and MS-DOS emulation hardware and 
software. One of the first emulators on the market 
was a software emulator. However, software emulators 
have a slower response time which resulted in the 
development of hardware emulators in the form of 
microprocessor boards. Table 1 summarizes the 
attributes of CP/M emulators which are currently 
available. 

Table 1 
CP/M Emulators 

Software Emulators 
Memory: 64 Kbytes 
No. of Virtual Drives: 4 
Maximun Virtual Floppy Size: 4 Mbytes 

Hardware Emulators 
Microprocessors: Z80 or Z80H 
Memory: 64 Kbytes 
No. of Virtual Drives: 4-8 
Maximun Virtual Floppy Size: 4-8 Mbytes 

With the increasing popularity of MS-DOS and the 
widespread availability of MS-DOS software packages 
it was inevitable that MS-DOS emulators become 
available. At least one of these claims PC-DOS 
compatability. Table 2 summarizes the attributes of 
the available 16 bit microcomputer emulators. 

New Orleans LA - 1985 



Table 2 
MS-DOS or CP/M-86 Emulators 

Microprocessors: 8086 or 8088 
Memory: 128 to 768 Kbytes 
No. of Virtual Drives: 4 to 9 
Maximum Virtual Floppy Size: 4 MBytes 

Fairly complete review articles on CP/M and MS-DOS 
emulators have appeared recently (1,2). For more 
details, the reader is referred to these articles. 

ADVANTAGES AND DISADVANTAGES OF EMULATORS 

Microcomputer emulators offer a number of potential 
advantages for an existing VAX installation, the 
most important of which is probaly cost. Below are 
listed the most important advantages of virtual 
microcomputer emulators as compared to stand alone 
microcomputers. 

Advantages of Microcomputer Emulators 
Lower cost per user 
Better file security 
Automatic backup of files 
Sharing of data facilitated by network 
Abundant mass storage 

Our experience at JMM illustrates the potential 
savings which may be realized by implementation of a 
virtual microcomputer system. We presently have 
invested approximately $25,000 in our virtual 
microcomputer system; $16,000 in hardware and $9,000 
in software. Approximately 500 employees have 
accounts on our VAX computer system. Of these, 
approximately 50 use our virtual microcomputer 
system with some regularity with some 10 of these 
being heavy users. We presently have four CP/M and 
four MS-DOS (CPM-86) microprocesssors installed with 
two additional MS-DOS microprocessors to be 
installed shortly. It is rare that more than two of 
the CP/M processors and three of the MS-DOS 
processors are in use simultaneously. For an 
investment equivalent to five stand alone 
microcomputers, the routine microcomputing needs of 
50 users can be satisfied. Software costs are 
reduced since a single copy of a software package 
with a multiple user license can serve the needs of 
many users. 

Since the microcomputer emulation runs as a process 
under VMS, it has the benefit of all the VMS 
utilities and features including password security, 
and regular backup. Virtual floppies are stored as 
RMS files in a VMS directory and as such can be 
further protected from access by unauthorized users. 
It is common for careless users of stand alone 
microcomputers to leave floppy disks with 
confidential data lying about but this is not 
possible with a virtual micocomputer system. 

On the other hand, authorized users have rapid 
access to a central data base via VMS file transfer 
utilities and DECNET bypassing the communications 
headaches experienced by many heavy users of 
microcomputers. Futhermore, the Rainbow office work 
station can be easily integrated into the system via 
its automatic file backup features. 

498 

The virtual microcomputer has acess to all the VAX 
peripherals including printers and winchester disks. 
With virtual floppies as large as 8 Mbytes and VAX 
hard disks available, a microcomputer emulator has 
access to essentially unlimited mass storage by 
microcomputer standards. 

There are, however, disadvantages to virtual 
microcomputers as compared to stand alone 
microcomputers related, in part, to the fact that 
they are operating in a mini/mainframe environment. 
The principal ones are summarized below. 

Disadvantages of Microcomputer Emulators 
Slower execution times 
Inconvenient printout 
Limited software selection 
Excessive dependence on a central facility 

Our experience at JMM has been that microcomputer 
emulators are noticeably slower than stand alone 
microcomputers. Our first software CP/M emulator was 
very slow and could be compared to modem 
communications with a microcomputer at 300 baud. 
Hardware emulators are significantly faster but our 
experience has been that performance is degraded on 
a loaded system. The reason for this is that all I/O 
is hanC:.led by VMS including terminal I/O and screen 
updates. A recent upgrade now allows logging 
directly into the microprocessor board which is said 
improve performance noticeably. 

For microcomputer users accustomed to an attached 
printer, the comparative inconvenience of printing 
out to a lineprinter queue can be disconcerting. 
Lineprinters have fewer options for formatting 
output than most microcomputer printers. Typically, 
print jobs are fed to the user's default printer 
queue by a print spooler. It is possible to print 
out to a graphics printer attached to a terminal 
with a printer port, but the procedure is more 
involved than printing to a microcomputer printer. 

Initially, the selection of software available for 
microcomputer emulators was very limited but 
continues to grow. Generally, it is necessary to 
configure the software package for the emulator 
although one of the vendors claims that their 
emulator runs PS-DOS software. It is safest to 
purchase software pre-configured by the supplier of 
the emulator. 

One of the big advantages of the distributed 
processing concept offered by microcomputers is the 
increased reliabilty that redundancy offers. 
Installing microprocessor boards on a central host 
computer puts all your microcomputing "eggs in one 
basket", so to speak. At JMM we have split our 
microprocessor boards between our two VAXes offering 
a measure of redundancy. A balanced system of 
microprocessor boards on central host computers 
networked with integrated microcomputers offers the 
most cost effective and reliable system. 

SYSTEM IMPLEMENTATION 

Implementation of a virtual microcomputer system 
involves more than installing the microprocessor 
boards and reading the software onto the system. 



There are several distinct and important steps which 
can be identified. These can be catagoized as 
follows: 

Hardware Installation 
Set-up Directory Structure 
Menu Development - DCL Command Files 
Documentation and Help Screens 
User Training 

Installation of the microprocessor boards is a 
relatively straight forward process with vendor 
supplied installation documentation being fairly 
complete. Installation consists basically of 
plugging the board into an available slot, although 
one system comes on two boards and requires adjacent 
slots. All vendors provide hardware diagnostic 
routines which are used to check out the boards 
after installation is complete. 

Once installation of the hardware is complete, 
public directorys are created for storing the 
emulation software which is stored as executable 
images and the command files for running the 
emulation software. The MS-DOS and CP/M operating 
system and applications software is stored as RMS 
files which are structured as read only virtual 
floppies, User data storage virtual floppies are 
stored in CP/M or MS-DOS sub-directories of each 
user's home directory, These sub-directories are 
automatically created the first time the user 
invokes the emulator. Separate CP/M and MS-DOS 
directories were created to keep CP/M and MS-DOS 
virtual floppies separated. 

To serve the needs of a largely novice user 
connnunity, it was decided to develop a user friendly 
interface for invoking and running the microcomputer 
emulator. This was accomplished my developing a menu 
driven interface via DCL command files and a series 
of system logicals and symbols. For instance, to 
invoke the CP/M emulator, the user simply types the 
symbol $ CPM <CR>. He is then presented with a 
series of menus to assist him in loading the desired 
microcomputer application package and data virtual 
floppy. Samples of menus developed for our system 
are appended as Figures 1 - 15. 

One of the big challenges in providing user support 
was the issue of documentation, The software 
applications supplied by the vendors are provided 
with a multiple user license, but multiple copies of 
documentation are not supplied and copying of 
copyrighted documentation is not legal. A two 
pronged approach was adopted to meet this challenge. 
First, help screens were developed for the VAX HELP 
utility to provide general on-line help for the 
user. Next, brief summaries of the more commonly 
used commands were prepared for a number of software 
applications, Sample summaries entitled The JMM 
BRIDGE and TURBO PASCAL are appended. 

Additional training for users in the form of in
house seminars on selected software applications has 
been provided. Classes on PASCAL and MULTIPLAN have 
been presented and have been well attended. A 
MICRO MANAGER has also been designated to which 
users-with problems can send electronic mail 
describing any problems. 

499 

PROBLEMS AND SOLUTIONS 

In the nearly two years that JMM's virtual 
microcomputer system has been in operation, a number 
of problems have been experienced. Some of these 
problems are inherent in the implementation, and 
some are solvable. 

Software Configuration Problems 

None of the microcomputer emulators presently 
available for the VAX are completely PC-DOS 
compatible although at least one claims to be, 
Occasionally, one of our users brings in a diskette 
and asks us to copy it on the system. Most of the 
time it does not run at all and as it usually turns 
out , it is written to run under PC-DOS. The safest 
course to take unless you are proficient in Z80 or 
8088 assembly language is to purchase preconfigured 
applications from the software vendor or obtain 
generic MS-DOS or generic CP/M applications which 
usually come with a configuration module 

Complicated Printout Procedure 

This issue was discussed in detail under emulator 
disadvantages. To simplify print out, a menu driven 
command procedure was developed and is invoked by 
the Getf ile option on the Main Menu. Sample screens 
of a Getfile session are appended (Fig, 13 - 15) • 

High I/O Overhead 

All terminal input and screen updates are handled by 
VMS so, in essence, the VAX is serving as a terminal 
server for the microprocessor. This not only slows 
down the emulator as previously discussed, but 
results in high I/O costs. A recent upgrade allows 
logging directly into a port on the microprocessor 
board and should increase speed and reduce I/O 
overhead significantly 

X-on, X-off Protocol Problems 

When X-on, X-off protocol is enabled, problems occur 
with some applications packages, an example being 
MULTIPLAN. In Multiplan, the Control-Q sequence 
moves the cursor to the home position. It also stops 
terminal scrolling. The alternatives are either to 
use the GoTo command as a work-arround or disable X
on, X-off and accept the attendant risks. 

System Messages Trapped 

During the early stages of system implementation, 
users ocasionally lost data files during emergency 
system shut downs because system messages are 
trapped by the emulator. This problem was resolved 
by implementing a command procedure which displays 
currently logged in Z-board users by typing the 
symbol $ ZUSERS, in a manner similar to the SHOW 
USERS command. This allows the operators to quickly 
determine emulator users who can then be called and 
asked to save open files and log off, 

Emulation Lock-up 

Occasional lock-ups have been experienced by users 
of both the CP/M and MS-DOS emulators which have 



resulted in the loss of data files. It has sometimes 
been necessary to stop the process which corrupts 
the data virtual floppy and results in a loss of all 
work done since the last daily backup. A recent 
upgrade for the MS-DOS emulator allows the user to 
abort the process without corrupting the virtual 
floppy with the result that only work done since the 
last file save is lost. We advise users to save 
files frequently when working in MS-DOS to minimize 
data loss if a lock-up occurs. For CP/M users, we 
recommend making personal back-ups of their current 
virtual floppy frequently when working on important 
projects. This is accomplished by exiting the CP/M 
application and making a duplicate virtual floppy 
under a different name using the VMS COPY command. 

CONCLUSIONS 

We at JMM have found our virtual microcomputer 
system a very cost effective method of providing 
routine microcomputing services with the additional 
advantages provided by the VAX host of better file 
security, automatic file backup, abundant mass 
storage, and ease of sharing data via the network. 

There are, to be certain, disadvantages to the 
system including, slower speed of execution, 
printout inconveniences, limited software selection, 
and excessive dependence on a central computing 
facility. For these reasons as well as for special 
applications and for isolated branch offices, JMM 
has and will continue to acquire stand alone 
microcomputers. 

REFERENCES 

1. Scott, K. and Campbell, P., "Running CP/M Under 
VMS", Hardcopy, Vol. 13, No. 2, Februrary, 1984, 
Pages 50-52. 

2. Slaughter, P.H., "MS-DOS RIDES THE Q-BUS", 
Digital Review, Vol. 2, No. 4, January, 1985, 
Pages 78-82. 

500 



FIGURE ] 

S SET DEFAll.T CU7500:CJJV.(JlllJ 
S Siii DEFAll.T 

CC-17500:CJJV.(lllll 
$ CPll 

A>EXIT 

$SET DEFAULT CC_i7500:CJJV.CPtt861 
$ SHOW DEFAULT 

CC_i7500:CJJV.CPtt861 
$ HICRO CPtt8' 

FIGURE 2 

"·.I I A. I. I I. I. IN. I. I I I I I I I I I I. I. I. I I I. I. I I I ••• I. I I. I I I •• I I. I. I·"· I •• E ••• N. I •• u 

WelcDll! to the Jiit CPtl Applicatie11 ttain ttena 

This M!nl lets 9ou choose between naming CPlt software or 
naming CPtt utilities. 

Tspe H for help if 9ou are a neu user 
for Mire inforaatie11 e11 CPtt. 

(R)un - Run CPtt software 
(U)tilities - Run CPlt utilities 
(H)elp - Obtain help 
(Q)uit - Exit 

Enter 9our choice (R/U/H/Q): I 

501 



FIGURE 3 

R. I I .u. I I .N •• I I I I. I I •• I I I I I I I. I •• I I I I I. I. I I I. I I •• I •• I I ••• I. I I·"· I •• E. I I .N •• I .u 
Specif9 the file to load in DRIVE A 

(")aster 
(B)lcri. 
ff Hie 
(S)oftware 

- To use the ltaster 59sta disk 
- To C"9 and use a blcri. flDflll'J 
- To specif9 a file na1e 

- To see the available softwares 

Enter 9our choice <lt/B/F /S): !I 

FIGURE 4 

Followinf Software pnd1cts are available: 

BASIC 
FPUtlEI 
INVENTIIY 
"ILESTIIE 
11.LTIPLM 
PflDlll 
TALISIMH 

Enter 9our choice: llLTIPLAtt 

502 



FIGURE 5 

R. I I .u .. I .N ••• I •••• I I ••• I I. I I. I ••••• I I I •••• I I •• I I. I •• I. I I ••• I·"· I I.E •••• N. I I .u 
Specif9 the file to load in DRIVE B 

<">aster 
<B>lri. 
<F>ile 
(S)oftuare 

- To use the ttaster s9ste1 disk 
- To cops and use a bliri. fleff! 
- To see the available floppies 
- To see the available softwares 

Enter 9our choice Ot/B/F /S): F 

FIGURE 6 

Fol louing virtual floppies are available: 

BASPROG 
BUDGET 
CLASS 
FDIEPTS 
L.AlltASTER 
MSTERS 
HILESTIE 
tf TEST 
Hltf 
PCBJIJD 
PlAllER 
PLANTEST 
RLA1 
RLA2 

Enter ct11plete file na.e <e.g., "YFIL£>: lflTESl 

503 



FIGURE 8 

A •••• T •••• r .... A •••• c .... H •••••••••••••••••••••••••••••••••••• "····E •••• N •••• u 
A>PUB..PUmT: [alft. 5'FTIIARE. VTIOOltlL TIPLAN. VFL; 
B>CU7500: [JJV .alftltflESr. VFL: 

(S)oftware 
(f)ile 
(R)eturn 
(")ain 

- Attach a software fl"*d 
- Attach a file 
- Go back to CPlt 
- To ~ back to the Nill M!ll 

Enter 9our choice ( S/F /R/lt) : It 

504 



FIGURE 9 

" •••• A ••.• I •.•. N ...........................•..........•.......• H •.•. E •.• N •..• U 

s 1 

Welcme to the Jiit CPll Applicatim ltain tlenl 

This Mnl lets you choose between nminf CPlt softllil'! or 
running CPlt utilities. 

T!fP! H for help if p are a nev user 
for 11111"! infontitiCll m CPlt. 

< R hm - Run CPlt software 
<U>tilities - Run CPlt utilities 
<H>elp - CIJtain help 
(Q)uit - Exit 

Enter your choice (R/U/H/Q): Q 

FIGURE ]O 

S SET DEFAll.T CC_17500:[JJV.ltSDOSl 
S SHOW DEFAll.T 

CC_17500:[JJV.ltSDOSl 
S HICRO ltSDO!I 

A>HOST (OR LOGOUT>I 

505 



FIGURE 11 

"·I I .A. I I I I. I I .N. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I·"· I I.E. I .N. I I .u 

Welcollf! to the Jiit ltSDOS Application ltain ttenu 

This llf!flU lets 900 choose between ruming ltSDOS software or 
ruming ltSDOS utilities. 

Tspe H for help if 900 are a neu user 
for ROre infontation on ltSDOS. 

(R)un - Run software 
(U)tilities - Run utilities 
(H)elp - Obtain help 
(G)etfile - Extract/Print a file 
(0)uit - Exit 

Enter 9our choice (R/U/H/G/0): U 

FIGURE 12 

u .... r .... 1 .... L .... 1 .... T ..•. 1 .... E .•.. s ..................... H •..• E •... N .... u 

(C)op9 - CoP9 virtual floppies 
ffHlelink -

- View the directories of virtual 
floppies w/o loading ltSDOS 

- T rillSfer f ii es between the VAX 
files and the Virtual floppies 

- Create a nev virtual f lopps of ans size 
- Urite-protect or write-enable a virtual flOflP!I 

(T)rillSlate - Translate a file between the VAX and ltSDOS forwats 
(D>isk.link - To transfer files between virtual and flh!lsical floppies 

(P)ol9-XFR - To transfer files between a local CO"flUter and a host 
coRpUter s9ste11 

(H)ain - To 90 back to the 11ain llf!fHl 

Enter 9our choice (C/F/T/D/P/H): "' 

506 



FIGURE 13 

"·I I .A •• I I I •• I .N. I I I I I I I I I I I. I I I I I I I. I I I I I. I I I I I I I I I I I I I I I I I I I·"· I I.E. I .N. I I .u 

UelCOI! to the Jiit ltSDOS Applicatioo ltain lterll 

This 11811 lets sou choose between ruming ltSDOS software or 
ruming ltSDOS utilities. 

Tspe H for help if sou are a new user 
for MJre inf onatioo oo ltSDOS. 

(R)un - Run software 
(U)tilities - Run utilities 
(H)elp - Obtain help 
(G)etfile - Extract/Print a file 
(0)uit - Exit 

Enter sour choice (R/U/H/G/0): GI 

FIGURE 14 

Enter the na.e of sour virtual floPP!f: tfJTEST 
Enter the na.e of the ttSDOS file in tfJTEST: TEST.PRN 
Extracting: TEST.PRN 
TEST.PRN as TEST.PRN 

Translating : TEST.PHH 

Dm1e I I I I I 

Enter <Y>es if 9ou want to print the file: Y 
Enter <Y>es if sou want to save the file after printing: N 

Job 5831 entered on ,aeue TXA2 
Enter <Y>es if sou want to get another file: N 

507 



FIGURE 15 

"·I I .A. I I I I. I I .N. I I I I I I I. I I I I. I I I I I I I I I I I I I. I I I I I I I I I I I I I I I I I I·"· I I.E. I .N. I I .u 

YelCDI! to the Jiit ttSDOS Applicatioo ltain Item 

This IM!flll lets sou choose between running ttSDOS software or 
running ttSDOS utilities. 

T9pe H for help if 9ou are a new 11Ser 
for IKll"I! infontatioo 111 ttSDOS. 

<R>un - Run software 
<U>tilities - Run utilities 
<H>elp - Obtain help 
<G>etfile - Extract/Print a file 
<O>uit - Exit 

Enter 9our choice (R/U/H/G/0): 0 

Print job 5831 TEST co.,.leted on 23-ttAY-1985 10:58 
$ 

508 



RMS INDEXED FILE PERFORMANCE 

Harold T. Glaser, P.E. 
Supervising Software Engineer 

Philip A. Haecker, P.E. 
Manager of Information Services 

Pamela A. Valentine 
Senior Software Engineer 

Gary Friedman 
Associate Software Engineer 

.James M. llontgoaery, Consulting Engineers, Inc. 
P.O. Box 7009 

Pasadena, California 91109-7009 

ABSTRAcr 

This paper presents information which can be used for optimization 
of VAX-11 RMS indexed files. Special attention will be paid to 
features available under VMS Version 4 for file design and tuning. 
Parameters which affect file performance will be discussed, 
Alternative approaches for file design and tuning are compared and 
evaluated to show what type of improvement in load time or 
retrieval performance might be anticipated for specific 
applications. Performance data will be presented for alternative 
file sizes and index structures in order to permit comparison to 
user applications, 

INTRODUcrION Certain disadvantages to the use of indexed files 
should be stated: 

There are a number of advantages in using indexed 
files under VAX-11 RMS. These advantages are 
particularly noteworthy when comparing indexed 
files to the more typical sequential file 
structure, especially where random access to 
records and data are desired, 

o Disk space overhead 

Because RMS must maintain an index data 
structure for the primary and any alternate 
keys, additional disk space is required, 
This creates an overhead which is not 
present in sequential files, o Performance 

Random access searches for records are 
significantly faster because of the 
availability of an index which utilizes a 
key for location of the desired record(s), 

o Write sharing 

0 

0 

Applications can be constructed in which 
users can access an indexed file in a 
shared write mode, allowing record locking 
to control concurrency. 

Automatic sorting of records 

Because RMS maintains keyed index data 
structures of the file in sorted order·, the 
records will already be sorted for the 
primary key. 

Variety of datatypes 

A variety of VMS datatypes are now 
available for indexed files which offer 
considerable flexibility in application 
development and use. 

Proceedings of the Digital Equipment Computer Users Society 
509 

o Disk access only 

Indexed files are limited to disk storage 
only, as opposed to sequential files which 
may be stored on tape and disk media. 

o Complex programming 

0 

Programming and maintenance of indexed 
files is more complex than that required 
for sequential files. While the utilities 
and features provided in recent versions of 
VMS, RMS and certain layered products have 
reduced this complexity, one would have to 
argue that indexed files require more work 
than sequential files. 

Organization not obvious 

The organization of indexed files, 
especially those with multiple keys is not 
obvious to the novice user or application 
developer, 

New Orleans LA - 1985 



It has been our experience at JMM that the 
advantages of indexed files far outweigh the 
disadvantages, especially in an environment heavily 
oriented toward interactive applications. Indexed 
files are well-suited to the performance required 
by engineering, scientific and business users in 
conducting random searches, retrievals, on-line 
query and reporting. In addition, several tools 
are available for optimizing the performance of 
indexed files, including new features provided in 
Version 4.0 and later of VMS which significantly 
enhance application development and use, 

The topics covered in this paper include: 

0 

0 

0 

0 

A comparison of indexed and sequential file 
performance in random access searches. 

A comparison of techniques for loading 
indexed files. 

RMS file tuning considerations with an 
emphasis on the file bucket size and RMS 
multibuffer count parameters. 

Key compression and the use of Prolog 3 
files. 

o RMS Run-time Options available under 
Version 4 of VMS. 

A special emphasis has been placed those features 
which are available under Version 4. Every attempt 
has been made to provide data which compares 
Version 4 performance with that under Version 3. 

EXPERIMENTAL PROCEDURE 

Two different databases were used for the 
experiments presented in this paper. The JMM 
personnel database was used for the first set of 
examples and benchmarks. The database for the 
large application discussed at the end of this 
paper is described in detail later. The employee 
database resides in an ISAM (Indexed Sequential 
Access Mode) file with the following attributes: 

JMM Employee Database 

o Fixed Length - 110 byte records 

0 5 keys: 

Primary 
Alternates 

Employee Number 
Last Name 
Computer Initials (VAX 
Username) 
Supervisor Employee Number 
Cost Center 

o 1961 Records Total 

The experiments were conducted on a VAX-11/750 with 
8 MB main memory, RA-81 disk drives and a UDA-50 
controller, Results are shown for tests run under 
both Version 3.6 and Version 4.0 of VMS. VAX-11 
Datatrieve was used to collect the benchmark data 
because it has convenient features for measuring 
performance and because of the overall convenience 
of working with an interactive query language. It 

510 

should be stressed that conclusions drawn for RMS 
file performance observations made using DTR are 
also generally valid for any procedural language 
(for example VAX-11 FORTRAN, COBOL, etc,) which 
utilizes RMS for record management, The following 
DTR procedure was developed for conducting 
henchmarks: 

DTR> 
DTR) 

DTR> 
DTR> 

DTR> 

READY EMPLOYEES 
FIND A IN EMPLOYEES SORTED BY 
LAST NAME, FIRST NAME 
FN$INIT_TIMER -
FOR B IN A PRINT NAME OF EMPLOYEES -
WITH EMPNO EQ B.EMPNO ON NL: 
FN$SHOW_TIMER 

The objective of the procedure is to FIND a 
Datatrieve collection which has been inverted in 
some arbitrary manner with respect to the original 
keyed file. In this case, the employees' name is 
used, which is essentially random with respect to 
employee number, which is used in the retrieval, 
"PRINT NAME OF ••• ". The procedure then loops 
through each record in the collection and 
references records via the key of interest by 
outputting a field to the null device. A schematic 
representation of the random access technique 
invoked by this procedure is shown in Figure 1. 

The DTR FN$INIT_TIMER and FN$SHOW TIMER functions 
are invoked to initialize and then display the 
totals for CPU Time, Elapsed Time, Buffered and 
Direct Input/Output and Page Faults. For most of 
the results in this paper, CPU and Elapsed Time and 
Direct I/O are reported. Rigorously speaking, CPU 
time and Direct I/O units are the most objective 
measures of performance. Elapsed Time figures are 
reported only where experiments were conducted on 
an unloaded system as a subjective, but useful, 
measure of response time, 

It should also be noted that there is an overhead 
associated with the instructions necessary to 
perform the FOR loop and PRINT commands. This 
overhead is incurred regardless of whether the file 
is tuned or not and should be subtracted from the 
performance data because it tends to skew the 
observations. While we have not subtracted the 
overhead for the results in this paper, our tests 
show it is significant. 

FILE DESIGN 

One of the first considerations in file design is 
whether or not to index. Normally, it is 
reasonable to anticipate big performance gains in 
random record retrievals, even for relatively small 
files, by indexing. This should be qualified by 
stating that it is true for applications which 
access records in a random manner. In sequential 
files, the application must search the entire file 
each and every time an arbitrary record is 
requested based on the value of a field. In 
indexed files, an index is used to point to records 
by keyed fields which reduces the sequential search 
to the index. 

The results presented here demonstrate the 
performance advantages of indexed files over 
sequential files for primary and alternate key 
access: 



Comparison of Indexed and Sequential 
File Performance 

CPU Time 
(hh:mm:ss.cc) 

ISAM 
Sequential 

Direct I/O 
(I/O requests) 

ISAM 
Sequential 

Elapsed Time 
(hh:mm:ss.cc) 

ISAM 
Sequential 

Storage Space 
(blocks) 

ISAM 
Sequential 

Random Record Access 
Version 3.6 Data 

Pri11ary 
Key 

1.52.53 
2:39:49.72 

5,341 
56,872 

3:43.76 
3:32:20.58 

716 
422 

Alternate 
Key 

2:57.34 
2:20:32.28 

12,502 
58,900 

7:50.67 
3:44:24.71 

Primary key performance gains of 80:1 and 10:1 were 
observed for CPU Time and Direct I/O, respectively. 
The alternate key performance also showed 
significant gains. One might note, however, that 
the index file occupies more disk space than the 
sequential file because of the need to allocate 
space for the index structures. 

Despite the small cost in space, this is convincing 
data on behalf of indexing where access is random. 
In the sequential file case, RMS had to search the 
entire file for each random access, whereas in the 
indexed case it was only necessary to access the 
desired records through the indexed key. It is 
important to note that record accesses on non-keyed 
fields of an ISAM file are implemented 
sequentially. This means there is no advantage in 
organizing a file using keys if the application 
does not reference those keys. (Datatrieve, 
incidentally, automatically uses keys when it can). 
Furthermore, it should be noted that the advantage 
of indexed files over sequential files improves 
substantially with increasing numbers of records in 
the file. This is because RMS will still be 
required to search the larger files one record at a 
time in the sequential file while the index 
structure is constructed in a multiple level 
fashion for large files which optimizes keyed 
searches. 

In designing files, enough keys should be selected 
to ensure indexed access under most anticipated 
applications. Of course the additional indices 
cost you increased file storage space and/or CPU 
Time to build the indices when records are added, 
but often the trade-off in performance is 
worthwhile. In designing applications, it is 
difficult to anticipate which keys will be accessed 
most frequently. Because ISAM files can be 
restructured with new keys fairly easily, it is 
possible to drop seldom used keys or add new ones 
once the application is in use. Therefore, we 
recommend the designer continue to monitor the 
performance of files, once the application is put 
into use. It has been our experience that the clue 

511 

to a poorly performing application is often 
improper key selection or implementation of a new 
application on an existing file for which the keys 
are inappropriate. 

FILE LOADING 

An important consideration in the design of 
applications using ISAM files is the technique used 
for loading these files. Loading an indexed file 
with new records is required at the beginning of an 
application. It is also a process which may be 
called for periodically as a maintenance item 
during the life of the application. In this paper, 
two methods for loading indexed files will be 
evaluated. The first method utilizes the DTR 
RESTRUCTURE command and the second method utilizes 
VAX-11 RMS CONVERT. 

The technical aspects of the DTR RESTRUCTURE 
commany 2n~ CONVERT utility are covered in other 
papers ' ' as well as the VAX-11 Datatrieve User 
Guide and VAX-11 Guide to File Applications. The 
results from a performance comparison test between 
DTR RESTRUCTURE and CONVERT for loading the same 
indexed file are presented in Figures 2-4 for 
Elapsed Time, CPU Time and Direct I/O for both 
Version 3 and Version 4 of VMS. 

The first observation is that the performance for 
the CONVERT utility is superior to that of the DTR 
RESTRUCTURE command under both Version 3 and 
Version 4. This is because CONVERT utilizes block 
I/O and bypasses some of the layers of RMS. 
Performance is especially better for disk I/O which 
is significant on many VAXes which may be I/O bound 
due to a high load of information management 
applications. 

Interestingly enough, performance comparisons 
between Version 3 and Version 4 due not show 
significant improvement in indexed file loading 
using CONVERT, except in Elapsed Time. In 
examining the data for Direct I/O, almost no change 
in performance is observable. This is a condition 
which will be noted throughout this paper and one 
in which application developers should be aware 
while working under Version 4. A change was 
implemented in Version 4 of VMS to eliminate 
Ancillary Control Processes (ACPs) for disk 
operations. They were replaced by the Extended 
Queue I/O Processor (XQP) which resides in each 
process' program space. As a result, many of the 
costs or resources consumed by the ACP under 
Version 3 now appear under the application's 
process in Version 4. Therefore, processes which 
do not appear to be performing better Version 4 may 
in fact be improved because of the lack of a total 
accounting of the resources consumed under Version 
3. 

For example, no attempt was made in the Version 3 
tests run in these experiments to account for the 
resources utilized (CPU Time, Direct I/O) by the 
ACP in accessing the disk. It is our feeling that 
a true accounting of these costs would result in a 
more equitable comparison of Version 3 to Version 4 
file performance. However, for the purposes of 
this paper, it should suffice to note that the 
condition exists and that the reader is cautioned 



to keep in mind that for many tests where Version 4 
performance is apparently equal to or only slightly 
better than Version 3, the results are biased 
toward Version 3 due to the incomplete accounting. 

Because of the relative ease with which CONVERT can 
be run, we recommend that this be done frequently. 
File maintenance is important where there are 
frequent updates to the primary or alternate keys 
or where many records are added to the file. 
CONVERT will eliminate bucket splits and improve 
contiguity (if adequate contiguous disk space is 
available for the new file). Often CONVERT can be 
run at night or in batch mode with little or no 
impact on interactive users. 

TUNING CONSIDERATIONS 

The next level of sophistication in optimizing 
performance is to tune the indexed file. A more 
detailed discussion of file 2u~ing considerations 
is available in other papers ' as well as the 
VAX-11 Guide to File Applications. However, a 
brief discussion of important file tuning 
parameters is presented here. 

0 

0 

0 

0 

Areas 

One can separate a file into physically 
separated areas on a disk or even different 
disks within the same volume set. The idea 
is to minimize disk head movement in 
accessing index and data structures. For 
larger files, the data levels of a file 
should be placed in an area on one disk 
volume and the index level in an area on 
another disk volume in the same volume set. 

Initial Allocation 

Enough space for the entire file and a 
reasonable estimate of additional space 
requirements should be allocated upon 
initial creation of the file in order to 
reduce the number of times RMS has to 
extend the file each time records are 
added. File extensions into noncontiguous 
areas reduce efficiency by introducing 
additional disk head movements each time 
the application has to access records in 
the extended area. 

Contiguity 

If your file is contiguous, it will require 
fewer disk head movements to traverse the 
file. If separate areas are used for the 
file or if the disk is not compressed 
regularly to consolidate noncontiguous 
space, then the BEST TRY CONTIGUOUS 
attribute should be selected, as a minimum. 

Extension Size 

As stated previously, file extensions 
result in some increase in inefficiency. 
Where extensions are necessary, however, it 
is best to extend the file by a reasonable 
size to minimize the effects. 

512 

0 

0 

0 

Bucket Size 

The file bucket size is one of two 
parameters for which optimization may have 
the largest beneficial impact on indexed 
file performance. In indexed file 
applications, the bucket size affects the 
number of index levels. Fewer index levels 
reduces the number of disk accesses in 
traversing the index structure. In most 
cases, if you can eliminate an index level 
by a small increase in bucket size, then 
you should use the larger bucket size. 

Fill Factor 

This attribute should be set based on the 
anticipated number of random insertions in 
the given application file. Normally, if 
the file is maintained by frequent use of 
the CONVERT utility then this factor should 
be set fairly high (buckets nearly full) to 
conserve disk space. 

Number of RMS Buffers 

Along with the bucket size, optimization of 
this parameter can also significantly 
improve performance of indexed files. In 
random access applications in files with 
multiple levels, buffer count is more 
important. This is because you should try 
to cache the buckets from similar key 
levels in memory as there is a chance the 
successive accesses will refer to the same 
higher level bucket. 

Our initial attemp.ts at tuning the employee 
database involved increasing the target fill factor 
to 100 percent and creating a flatter file. The 
fill factor was increased to 100 percent because 
new records are always added at the end of the 
employee database. This is because new hires are 
assigned employee numbers in increasing integer 
order. On the first day of work, each new employee 
receives an employee number one digit higher than 
the last new hire. Because no records are inserted 
in the primary index between existing records, it 
was felt that a fill factor of 100 percent would 
improve both primary index and data bucket 
utilization. 

The second tuning criteria was to create a flatter 
file. The term "flatter file" means a file which 
has fewer index levels. Basically, levels are used 
because index records are placed in buckets, the 
same as data records. The last index record in a 
bucket always has the high key value for the 
bucket. This last key value is copied to an index 
record on the next higher level until all of the 
index records fit into one bucket. This level is 
then referred to as the Root Level. 

In creating flatter files through tuning, you may 
find a trade-off between CPU time and direct I/O. 
This is because index structures are scanned 
sequentially within a given level. In using a file 
with fewer levels, you may see an increase in CPU 
time for the additional scanning because the 
buckets are larger. At the same time, direct I/O 
may decrease because there will be fewer levels to 
navigate. 



In the first attempt, we increased the bucket size 
from 2 to 3 blocks which produced a file consisting 
only of one level. (The original file had two 
index levels). In addition, the RMS buffer count 
was changed from the default value of 1 buffer to 
an optimized value of 4 buffers. The primary key 
performance results for tuning the JMM employee 
database are presented in Figures 5-7 for Elapsed 
Time, CPU Time and Direct I/O, respectively. 
Alternate key results are presented in Figures 8-
10, in the same order for Elapsed Time, CPU Time 
and Direct I/O. Version 3 and Version 4 results 
are shown on each graph. 

As can be seen from the results, there are 
improvements in performance by file tuning with 
respect to CPU Time, Direct I/O and Elapsed Time. 
In this example, Direct I/O decreased because the 
application did not have to reference more than one 
index level even though CPU Time did not increase. 
In addition, there was improved caching of the 
index buckets due to the availability of more 
buffers. While the alternate key improvements are 
not as high as those for the primary key, they are 
still impressive gains. 

Comparison of the results from Version 3 to Version 
4 were interesting. Version 4 showed less Direct 
I/O and Elapsed Time performance at slightly higher 
CPU Time. Again, the reader should keep in mind 
the previous comments regarding the elimination of 
ACPs in Version 4. These results indicate that 
tuning guidelines which were valid under Version 3 
are likely to be valid under Version 4. Also, the 
guidelines appear to be valid for both primary and 
alternate keys. 

LARGE FILE APPLICATION 

In order to test some of the tuning considerations 
on a larger scale, an application file was built 
with the following attributes: 

o Fixed length - 10 byte records 

o Primary Key Only 

o 100,000 Records Total 

o Prologue 3 

The keys were generated using the FORTRAN RND() 
function in order to distribute them in some random 
order. The file was loaded with RMS CONVERT and 
benchmark procedures similar to the ones developed 
for the employee database tests were used. For the 
large file application, two variables were tuned: 
bucket size and RMS buffer count. Bucket size was 
varied at 2, 5 and 8 blocks with a RMS buffer count 
of 3 in Figures 11-13, for Elapsed Time, CPU Time 
and Direct I/O, respectively under Version 3 and 
Version 4. RMS buffer count was varied from 1 to 6 
buffers with a constant bucket size of 2 blocks in 
Figures 14 and 15, for CPU Time and Direct I/O, 
respectively. 

In the bucket size experiments, you can see the 
trade off between CPU Time and Direct I/O that was 
discussed earlier. As the bucket size was 
increased, the number of levels decreased. As a 

513 

result, the CPU Time increased and the Direct I/O 
decreased for a given random access. For this 
particular file, the Direct I/O performance was 
less sensitive to bucket size than CPU Time, so an 
optimum bucket size of 2 blocks was selected. 
Depending on the competition for resources such as 
CPU Time and I/O bandwidth for your system, you 
should select the file design which best utilizes 
those available resources. 

The results for RMS buffer count show that CPU Time 
tends to be relatively insensitive to number of 
buffers for this particular file, but there is an 
interesting threshold affect in Direct I/O 
performance. In moving from 2 to 3 buffers, a 
dramatic improvement in performance is shown with 
respect to Direct I/O. One additional buffer, at 4 
total, helps performance marginally, although 
additional buffers beyond 4 do not help at all. It 
is felt that for this file, 3-4 buffers were 
sufficient to cache a significant portion of the 
index structure in memory and after that point, 
additional buffers were ineffective because it was 
impossible to cache all of the data. As a result, 
an RMS buffer count of 4 was selected as the 
optimum for this parameter. 

Figure 16 presents a summary of the comparison 
between Version 3 and Version 4 performance at the 
optimum bucket size of 3 blocks and the optimum RMS 
buffer count of 4. The results show improvements 
in CPU and Elapsed Time with little change in 
Direct I/O. However, again it should be pointed 
out that the Version 3 results are biased because 
the resources consumed by the ACPs have not been 
included. Based on this knowledge, it would be 
reasonable to assume that Direct I/O performance 
also improved from Version 3 to Version 4. 
Similarly to the JMM employee database application, 
the optimum conditions valid for Version 3 are 
still valid for Version 4. 

PROLOG 3 FILES 

With the advent of Version 3 of VMS, Prolog 3 files 
were made available which offered some advantages 
over Prolog 1 and 2 file structures. With Prolog 3 
files, the application developer may select 
compression options for the file primary key or 
data. The advantages of compression are that the 
amount of disk space required for the file is 
reduced, I/O buffers theoretically contain more 
data (because of the compression, the buffers 
contain more information; they don't really contain 
more data) and fewer index levels were required. 
The principle disadvantage was that more CPU Time 
was required by the compression algorithm to 
resolve the lookups. 

In Version 4, several extensions were made to the 
Prolog 3 file structure. Version 3 Prolog 3 files 
were permitted to have only one key, of string data 
type. In Version 4, Prolog 3 files allow multiple 
keys of all data types. 

Two sets of experiments were performed to evaluate 
indexed file performance for Prolog 3 files under 
Version 4. In the first set of experiments, 1000 
records were added to the 100,000 record random 
number database set up as three separate files. As 



shown in Figure 17, these databases were set up as 
a Prolog 3 file with key compression turned on, 
Prolog 3 with key compression turned off and Prolog 
2. In this experiment, the Prolog 3 files 
performed better than Prolog 2 files in Elapsed and 
CPU Time, and marginally better in Direct I/O. In 
the case of the second set of experiments, shown in 
Figure 18, a random access search for 1000 records 
were performed on the same three files. In this 
case, the Prolog 3 file without key compression 
clearly out performed the other two files. 

Unfortunately, it is felt that these results are 
not conclusive because of the small record size in 
this file and the relatively limited opportunity 
for key and data compression. Future test results 
will present data and conclusions on Prolog 2 and 3 
indexed files with larger record sizes and bigger 
keys. 

RMS RUN-TIME OPTIONS 

Among the new features implemented in Version 4 are 
the RMS Run-time Options which allow the 
application developer access to the CONNECT options 
of the RMS record access block (RAB). These are 
now available through the File Definition Language 
which obviates the need to program in MACR0-32 or 
otherwise get direct access to the RAB. These 
options offer considerable flexibility in file 
performance tuning by allowing the developer to 
tailor parameters for specific applications. In 
the past, several of these options either were not 
available, were difficult to access or could only 
be tuned on a process by process basis. 

Of particular interest to developers interested in 
performance tuning are: 

o Asynchronous record processing 

0 

0 

0 

This option allows the program to continue 
processing without waiting for I/O 
completion. The I/O request proceeds in 
parallel with the next program steps. 

Deferred write 

The file buffer is written only when needed 
by another application sharing the file or 
when the file is closed. Obviously, 
selecting this option may have an impact on 
file integrity in the event of a system 
crash if buffers have not been written, but 
the potential for performance gains is 
significant. 

Multibuffer count 

The multibuffer count may now be specified 
on a file by file basis for indexed files. 
In Version 3, this was specified as a 
system default or on a process level. It 
is now possible to tailor the buffer 
requirements to the optimum needs of each 
file without directly accessing the RAB. 

Read-ahead/Write-behind (sequential) 

514 

While these do not apply to indexed files, 
they are mentioned anyways. Read-ahead and 
write-behind allow RMS to alternate between 
buffers on sequential read and write 
operations to improve performance. 

o Record retrieval options 

Several record retrieval options are now 
available including "do not lock record," 
"lock read/write," "time out period," and 
"wait if locked." These allow the 
application developer to tailor lock 
management operations for files with 
extensive sharing of data among multiple 
users. 

It should be mentioned that the advent of VAX 
clusters has complicated the process of managing 
record locks. The application developer should 
recognize that there are additional performance 
considerations when dealing with shared access, 
particularly shared write access to indexed files 
among cluster nodes. For example, the first node 
to open a file in a shared mode is designated the 
lock-mastering node. Locks requested applications 
running on the mastering node incur less cost than 
locks from lock-requesting nodes, but it should be 
remembered that the lock-mastering node is still 
required to process all of the other requests. 

Single node file sharing requires no distributed 
locking and therefore incurs the same cost as if 
the file is opened on a non-clustered node. 
However, the application developer should be 
careful to avoid any unnecessary shared write 
access to indexed files because of the additional 
locking overhead cost of locking individual records 
instead of the whole file. This is valid even for 
shared files on a single node. A good rule of 
thumb is to open files with the minimum access and 
minimum sharing necessary to do the desired task. 

While it was not possible to present the results 
from experiments performed on the RMS Run-time 
Options in time for this paper, limited test data 
obtained on a VAX 8600 on the deferred write option 
for indexed files showed a minor improvement in CPU 
Time and a whopping improvement by a factor of 60 
or better in Direct I/O. 

Application developers working with the RMS Run
time Options should be aware that many VAX 
languages or layered products accessing RMS files 
may treat options in unpredictable ways. For 
example, Datatrieve does not permit read-ahead and 
write-behind in any fashion on sequential files. 
Also, Datatrieve does not permit deferred write 
when the file is readied in a SHARED mode or when 
the file is designed with a 100 percent fill 
factor. Each layered product may respond 
differently and it is advised that application 
developers check each product's documentation for 
specific details. 

BIBLIOGRAPHY 

1. Glaser, H.T., "Improving Performance of RMS 
ISAM Files," Wombat Examiner, Datatrieve SIG 
Newsletter, Volume 5, Number 3, January 1984. 



2. Glaser, H.T. and P.A. Naecker, "Optimization of 
Indexed File Performance in the Data Management 
Environment," Proceedings of the Digital 
Equipment Computer Users Society, U.S.A. Spring 
1984, Cincinatti, Ohio, June 1984. 

3. Glaser, H.T. and P.A. Naecker, "Optimization of 
Indexed File Performance in the Data Management 
Environment," Proceedings of the Digital 
Equipment Computer Users Society, U.S.A. Fall 
1984, Anaheim, California, December 1984. 

515 



c 
·.-I 

~ 

., 
~ 

·.-I 

I-

7.l 
81 .. 
'2.. 
Q.I 

w 

GI 
~ 

·.-I 

1-

:J 
0.. 
0 

RandoM Access Procedure 
Search List 1)9tabase 

Last EMplo!jee EMployee Last 
N.aM& NuNber Nufllber Na111e 

Ada111s 8· 1 
Baker 6 2 Corning 
Corning 2 3 

1 4 
4 5 
5 6 Baker 
7 7 
3 8 Ada111s 

FIGURE l 

V3-V4 CoMparison For Loading ISAM Files 
CONVERT vs DTR RESTRUCTURE 

20 

1!5 

10 

5 

0 
RESTRUCTURE CONVERT 

Conversion Utility 

FIGURE 2 

V3-V4 CoMparison For Loading ISAM Files 
CONVERT vs DTR RESTRUCTURE 

6 

5 

RESTRUCTURE 

Conversion Utility 

FIGURE 3 

516 



I 
1~ 

,... 
. 
c ..... 
E 

OI 
f: ..... 
I-

"O 
OJ 
Ul 
IL 
llJ 

w 

Ul 
QI 
~ 

:I 
c 
..... 
E 

OJ 
E. ..... 
I-

::J 
0. 
u 

V3-V4 CoMparison For Loading ISAM Files 
CONVERT vs DTR RESTRUCTURE 

20 

RESTRUCTURE CONVERT 

Convaraion Utilit~ 

FIGURE 4 

~Version 4 j 
fZZJ Version 3 

V3-V4 Indexed File Tuning CoMparison 

4.00 

3.50 

3.00 

2.50 

2.00 

1.50 

1.00 

0.60 

0 

Elapsed TiMe Required for PriMar9 Ke9 

Before Tuning 

FIGURE 5 

~Version 4 
rzZll Version 3 

After Tuning 

V3-V4 Indexed File Tuning CoMparison 
CPU TiMe Required for PriMar9 Ke~ 

2.50 

2.00 

1.50 

1.00 

0.50 

0 
Before Tuning 

FIGURE 6 

517 

000! Version 4 
rzZll Version 3 

After Tuning 



V3-V4 Indexed File Tuning CoMparison 
Direct 1/0 Required for PriMary Key 

6 

0 
5 

' H 4 

~ 
3 0 .. 

S- 2 
-..t 
Q 

0 
Before Tuning 

FIGURE 7 

tlOOI Version 4 
l'ZZLl Version 3 

A+'ter Tuning 

V3-V4 Indexed File Tuning CoMparison 
Elapsed TiMe Required for Alternate Key 

....... 
8 

c 
·--t 7 
:E 

6 

QJ 5 
E 
·--t 4 
r-

3 
"'O ., 2 
di 
Q.. 1 
QI .... 0 
w 

V3-V4 

::::J c 3.00 
·rl 
:E 2.50 

2.00 
II 
E. 1.50 

·--t r- 1.00 

::J 0.60 
CL 

0 0 

Before Tuning 

FIGURE 8 

R5{j.'JI Version 4 
~Version 3 

After Tuning 

Indexed File Tuning CoMparison 
CPU TiMe Required for Alternate Key 

Before Tuning After Tuning 

FIGURE 9 

518 



V3-V4 Indexed File Tuning CoMparison 
Direct I/O Required for Alternate Ke~ 

0 

' H 

+> 
(J 

GI 
S-
·rf 
Q 

14 

12 

10 

8 

6 

:1 
0 

BQfol"a Tuning 

FIGURE 10 

~ Version 4 
fZz.;J Version 3 

AftQr Tuning 

V3 - V4 Elapsed TiMe CoMparison 
Buffer Count = 3 

. 3.50rr=====:;--------------;;:;:;:;:;:;;;-----, 
C 11.l\lil Version 4 
-~ 3,00 1Z!J Version 3 

2.50 
OJ 
£ 2.00 

·..f 

I- 1.50 

"O 1.00 OJ 
Ill 
a.. 0.50 
QI 

0 
w 2 5 8 

Bucket Si:ze 

FIGURE 11 

V3 - V4 CPU TiMe CoMparison 
Buff er Count = 3 

~ 3.00r.;;:;:;;:::::=====;,----------------~-. 
OJ &&l1J Version 4 

+> 1Z!J Version 3 
:I 2.50 

c 
·rf 2. 00 
~ 

1.50 

OJ 
£ 1.00 
·rf 
I-

:l 
0.. 
u 

0.50 

2 

Bucket Si:ze 

FIGURE 12 

519 



3.00 

0 
2.50 

' H 2.00 

+> 1.60 u 
OI 
s.. 1.00 ..... 
A 

0.50 

0 

V3 - V4 Direct I/O CoMparison 
Buff er Count = 3 

5 8 

Bucket Si:ze 

FIGURE 13 

Version 3 PerTOrMance Data 
CPU TiMe Analysis with Bucket Size = 2 

.,. 2.60 
8J lfZZI CPU! 
+> 
:l 2.00 
c 

·..j 

E 1.50 

., 1.00 
E ..... 
1- e.60 

:J 
0.. 
0 

0 

' H 

+> 
u 

°' s.. 
·..j 

A 

4.50 

4.00 

3.60 

3.00 

2.50 

2.00 

1.50 

1.00 

e.t1e 

• 

2 3 4 5 

Bu.f'-f'aY' Count 

FIGURE 14 

Version 3 PerTorMance Data 
Direct I/O Analysis with Bucket Size = 2 

2 3 5 

Bu-f'.f'&Y' Count 

FIGURE 15 

520 

6 

lrIZJ 1101 

6 



V3-V4 OptiMal File Structure CoMparison 
Bucket Size = 2 and Buffer Count = 4 

0 3.00 

' H 

... 2.50 

1:1 
c 2.00 
QI 
UI 1.60 j 
0 
.c 1.00 t-

' GI 0.50 
~ .... 

0 I- Elapsed (Min> CPU (Min) 

FIGURE 16 

r&5!ll Vt!!rsion 4 
IZZ.l1 Version 3 

Direct I/O 

Version 4 Per¥orMance Data 
Analysis for Adding 1000 Records 

0 
' 3.00,--------.~======-===:;---------., 
H I Pro 3 w/ Ke!! C. 

Pro 3 w/o Kay C 
UI 2.50 Pro 2 W/O Ke!! c 

1:1 
c .. 
Ul 
j 
0 
.c 
t-

' ... 
f: .... 
I-

0 

' H 

"' 1:1 
c 
m 
"' j 

0 
.c 
t-

' ... 
~ .... 
t-

2.00 

1.50 

1.00 

0,60 

0 
Elaps;ad (Min) CPU (Min) Direct I/O 

FIGURE 17 

Version 4 Per¥orMance Data 
Analysis for PerforMinS a RandoM Access 

5i;:=::::~==========:;-~~~~~~~~~~~~~~~--, 

~ Pro 3 w/ Keli C. 
Pro 3 w/o Ke!! C 

4 Pro 2 w/o Key C 

3 

2 

1 

Elap&ed !Min> CPU (Min> Dir.ct I/O 

FIGURE 18 

521 





MACVAX CONNECTION 

Bob Wilson 
General Electric Company 

Lanham, MD, 20706 

ABSTRACT 

Bringing the Macintosh to the VAX world makes 
the best of both better. 

General Electric developed a VAX emulator for 
the Macintosh Imagewriter printer, MACVAX. This 
emulator allows the VAX to output Macintosh 
graphics on LXY-lls, REGIS, and VAXSTATION I 
devices. As a result, a VAXSTATION I based 
prototype was created in a fraction of the time 
that traditional methods would have taken. 

Recently, we needed a menu driven operator 
interface for an automatic test equipment (ATE) 

system. But a common problem with text menus 
has been understanding technical instructions 
( i .e •, "jargon"). However, by using Macintosh 
generated artwork, the operator can see exactly 
what is needed to perform an unfamiliar task. 

To see the contrast, read the instructions in 
Figure 1 while hiding the hardware sketch with 
your hand. Removing your hand reveals details 
that are difficult to describe in English. 

. . . . . . . . . . . . . . . . . . 

.... . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . 

Figure 1 

523 



The ability to rapidly make new menu screens 
allowed us to concentrate on WHAT should be in 
the menu rather than HOW to make a screen. As a 
result, we could experiment with menu structure 
to improve operator performance. 

The original menu, a classical hierarchical 
tree (see Figure 2), took only forty lines of 
DCL to implement. But it was too tedious 
because the operator had to pass through the 
branch nodes (blank boxes) to go between 
information screens (filled boxes). Adding a 
horizontal short-cut made it faster but still 
required visiting branch nodes. The last 
version resembles a procedural language and 
consists of just the informatton nodes. 

Figure 2 

Making an emulator requires solving problems 
in physical, electrical and logical connections. 
Unlike VAX RS-232 terminal ports, the Macintosh 
uses a 9-pin, D connector feeding a sub-set of 
RS-422 (see Figure 3). In spite of TTL voltage 
levels and differential signals, my fifty foot 
cable has had no problems with either DZ-11 or 

.Emulex terminal ports at 9600 baud. 

0 
1 (Grid) 

2 (+5V') 

3 (Gnd)'----~ 

4 (Txd+) 

5 (Txd-)----11-+----' 

6 (+12V) 

7 (HS/clk/DTR).-+-+-----' 
8 (Rxd+ ), __ --1 

9 (Rxd-) ___ _, 

Figure 3 

To read the printer data, the emulator sets 
Data Terminal Ready (DTR) which the Macintosh 
uses as printer ready. The Macintosh recognizes 
both DTR and XON/XOFF as flow control to prevent 
over-running the printer. Fortunately, VMS also 
uses XON/XOFF to avoid type-ahead buffer 
overflow. 

The Macintosh sends ASCII data, control 
characters and escape sequences to the 
Imagewriter printer in either draft, standard, 
or high resolution mode. In draft mode, the 
Imagewriter ROMs translate ASCII into dot matrix 
characters like most dot matrix printers. 
Standard mode is 72-bits per inch, one pass, 
bit-mapped. High resolution mode sends 
bit-mapped, interleaved passes to "diddle" the 
bits and reduce the jagged edges of sloping 
lines. To simplify the software, the emulator 
handles only standard mode. 

The Imagewriter graphics code sends 8-bit 
bytes to fire the print head pins (see Figure 
4). Since any ASCII value can appear, you 
should not route the printer data through 
terminal networks that respond to special ASCII 
control characters. 

524 

Graphic Byte 

76543210 

'------+~•• 

'-----+--'!•• 
L----4----· L------+----· L-------+----• 

L------~--'1·· 

Figure 4 

We implemented the emulator as a VAX foreign 
command with the following syntax: 

$ MACPRINT input output /qualifiers 

The "input" is either a terminal or the name 
of a file typed "*.MCI". The "output" is either 
a VAXSTATION I device or the name of a file 
whose type is determined by one of four 
qualifiers: 

/IMAGEWRITER - Record aligned escape 
sequences (*.MCI) 

/LXYll 
(*.LXY) 

Printronix raster lines 



/VT125 - Raster lines translated to 
REGIS (*,REG) 

/VS - VAXSTATION I bit-map (VCAO:) 

/IMAGEWRITER output generates a file type 
"*,MCI" which you can print on an Imagewriter. 
Thus one spooled Imagewriter could service 
multiple Macintoshes. Also, you can use the 
"*.MCI" file to generate the other output 
formats. Furthermore, the file aligns the 
escape sequences on record boundaries to 
simplify writing translation programs for other 
graphics devices (i.e., Versatec, LA-50). 

/LXYll uses Printronix 6-bit, horizontal 
bit-map format. Compared to the Imagewriter, 
printing is almost three times faster and of 
better quality (see Figure 5). In the 
benchmark, the transfer time is the period the 
Macintosh is tied up sending the data to the 
printer. 

Macintosh 
VAX/VMS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Benchmark Ti me 

lmagewriter 
Tnnsf er 80 sec. 
Printing 95 sec. 

Figure 5 

VAX 
35 sec. 
15 sec. 

/VT125 converts the raster lines into an 
"*.REG" file consisting of REGIS line and dot 
commands. The escape sequences to set the 
device into graphics mode are not part of the 
file since different REGIS devices may need 
different startups. To display the output on a 
VT-125, I enter, "$ TYPE START.REG,data.REG". 
Take care since this translation often generates 
a file ten times larger than the original. 

/VS must be used with "VCAO:" to go directly 
to the VAXSTATION display memory. Because the 
VAXSTATION screen has more pixels than a 
standard output page, /NORESET, /XADD and /YADD 
qualifiers allow building a complex screen from 
multiple Macintosh images. Finally, a single 

525 

MacDraw file of two legal size pages can 
completely cover the screen by using /DUAL. 

Standard Macintosh pixels are square at 72 
bits per inch. Many of the DEC devices have 
horizontal, rectangular pixels closer to 60 bits 
per inch causing the images to appear fatter 
(i.e., circles are squished). To compensate, 
just draw the images a little skinnier. 

The emulator does not support direct text 
transfers from the Macintosh to the VAX. To 
up-load text, I normally use MacTerminal to 
insert text into a VAX file. Other alternatives 
include KERMIT and XMODEM protocol systems which 
can be found on user group disks and the DECUS 
tapes. In particular, MACX found in PCS-51 of 
Compuserve works well with MacTerminal's XMODEM. 

The Macintosh does a fine job of emulating a 
VT-100 (see Figure 6) with MacTerminal. The 
smaller foot-print saves desk space and I like 
the Selectric style keyboard over the new 
"ergomatic" style. Sad to say but at 9600 baud, 
the internal buffering leads to a ten to twelve 
line delay before XOFF halts the screen. 
Furthermore, DELETE and the ARROW keys require 
two finger operation (i.e., CONTROL and a second 
key) • 

rr> > 1 n1·<1 
:-::·:::::::::::;:::·::::::::.:::·:;: ·. . . . . . . . ·. 
: : -: : . . . . 
:::::: ....... ·.·.- . .::::::::::::::: 

Figure 6 

I have received two types of complaints about 
the Macintosh screen. The most common is the 



small screen size (see Figure 7). I don't find 
this to be a problem since the active area is 
the same width as a line of text on standard 
typewriter paper with margins. The second 
problem which the VAXSTATION I shares, is the 
sensitivity some people have to the black on 
white display. 

VT-125/VT-240 
screens 

8.5 x 11 
paper 

Figure 7 

Macintosh 
screens 

Traveling frequently, the Macintosh passes as 
carry on luggage in a large nylon bag. On all 
except early 727s and DC-9s, it fits in the 
overhead storage. Though weighing less than 
twenty-five pounds, the shoulder strap helps to 
carry the weight when hiking to a connecting 
flight. 

The Macintosh is one of the best, a PLC 
(Proper Little Computer) with excellent graphics 
editors. Likewise, the VAX is a superb, 
multi-user, development system. Combining the 
two makes a symbiotic relationship where the VAX 
world gains easily generated artwork graphics 
and the Macintosh world gains high speed, high 
quality, output devices. Together, they 
accomplish more than the simple sum of their 
parts. 

BIBLIOGRAPHY ------
1. Imagewriter User's Manual, 1983, Apple 

Computer, Inc.-- ·---

2. "The Imagewriter and Beyond", Daniel 
Farber and Adrian Mello, MACWORLD, 
September/October 1984, pp 76-83, 
Volume 1, Number 4. 

3. The Apple Macintosh Book, Cary Lu, 
1984, Microsoft Press 

526 



VAX/VMS Security Considerations 

Robert R. Wells 
Technology Development Corporation 

621 Six Flags Drive 
Arlington, Texas 76011 

(817) 461-1242 

ABSTRACT 

Some level of security is necessary on almost all 
computer systems: Whether it's just a microcomputer 
sitting around the office or the biggest mainframe 
deep in the bowels of those super secret research 
centers; security is important. This paper addresses 
some general security issues applicable to many 
brands of computers with some specific comments aimed 
at those sites using the DEC VAX. 

General Background 

As demonstrated quite dramatically by several 
recently well publicized news stories, there are 
indeed individuals taking advantage of other 
people's computers. The debate rages on whether 
these individuals are looking for some sort of 
emotional challenge, something to vandalize, or 
simply desire some extra computer time. Regardless 
of the reason, if someone has access to some of 
your computer resources, that shouldn't, you could 
be asking for it. An important thing to be learned 
is knowing your defenses. In the following tale of 
woe, recognize that the most effective defense 
mechanism is rendered useless, essentially breached 
by the person most responsible for security, the 
owner of the account. 

You're logged-in to the system manager's account, 
it's 3pm, you're thirsty: A soda would sure taste 
great. You get up, leaving your office in search 
of the closest vending machine, hoping that it 
won't rob you of 50 cents this time. It's only a 5 
minute walk and you don't think twice about leaving 
your terminal logged on for such a short while. 
In the meantime, somebody walks into your office, 
notices the vacant terminal and decides to 
"explore." The visitor intends to give the 
command: 

DIR *.*;* 

Oops, instead the fingers somehow remember another 
neural pattern and type: 

DEL *·*;* 

It doesn't matter if he stays around to tell you 
about the accident or attempts to cover things up 
and run (although the latter may avoid hazardous 
blows to facial areas), the damage has been done. 
Time to find the backup tapes. (a small note, be 
sure employees are reminded to log-out during 
company fire-drills) 

Security begins with educating your user community; 
many don't realize the potential damage that might 
be caused if someone acquires access to the 

Proceedings of the Digital Equipment Computer Users Society 
527 

corporate computers. Most companies have sensitive 
data on their systems that if divulged beyond their 
premises could have some serious consequences upon 
their ability to do business. Make your users stop 
and think about what kind of data lives in their--
no, the company's--files. Point out some 
specifics; for instance: the accounting 
department's pay rates and salaries, the legal 
department's text of upcoming contract proposals, 
the management staff's company portfolio, the 
personnel department's employee records, the 
engineering department's classified material, etc. 

Managers need to be kept aware of all this too. 
Get their support. 

If possible, develop a formal company-wide policy 
concerning who has access to the computers, what 
level of access, consequences for being negligent, 
etc. BUT! Be sure that everyone knows that such a 
document exits. (When you develop one of these, or 
if you already have one, the author would greatly 
appreciate seeing it.) 

We've mentioned a need for security, but what are 
we really trying to be secure from? DEC identifies 
two categories of illicit computer activity: 

o Probing 
o Penetrations 

Probing occurs when you, as a system manager, 
haven't made use of the available security 
mechanisms and a user actively exploits parts of 
the operating system that aren't adequately 
protected. Users that engage in probing may or may 
not be knowledgeable about the computer system, 
they may simply be seeking a "challenge" or "just 
casually browsing" as a guilty user once said. 
This kind of activity, though less serious than a 
penetration may grow into a bigger problem. Don't 
downplay its significance. Probing generally 
starts with a user trying to see whose directories 
he can see, what mail he can read, or possibly what 
accounting data he can access. Systems on which 
considerable probing exists indicate a lack of 
security commitment or training on the part of the 
users or a lack of enforcement from the system 
manager. 

New Orleans LA - 1985 



Penetration is a successful circumvention of all 
existing security controls and usually indicates a 
more sophisticated user. The potential for damage 
is extremely high if the person is malicious. In 
this situation, the blame falls more to the 
software and the security mechanisms than to any 
system manager failure. 

Who will probe, penetrate? 

o Software analysts 
o Programmers 
o Managers 
o Engineers 
o Data entry personnel 

And don't forget. 

o Former users and employees 
o Competition 
o Hackers 

Gaining Access 

There are 2 broad categories of users on a VAX, 
each has differing methods of access: 

1. Local 
2. Remote 

Under the category of "local" we'll include those 
users gaining access via terminals that are 
directly wired to the VAX and those dialing up 
through a modem. For those sites that must deal 
with port-selectors, terminal servers, and whatever 
other complicating devices, I'll cover that subject 
as somewhat of a combination of direct wire and 
modem. "Remote" users are those that are making 
use of DEC's networking software, DECnet. Remote 
users and networks will be covered in a later 
section. 

Whether one simply walks up to a terminal, or 
dials-in via a modem, the first and most obvious 
aspect of VMS security is the username and password 
prompts we see at login time. Not so apparent is 
the fact that this is the strongest and most 
critical deterrent to unauthorized computer usage. 

At most sites, users wanting access to a VAX, hit 
return on a terminal and are greeted with something 
similar to: 

Username: 

Froboz Magic Robot Company 
VAX/VMS Version V3.7 

This kind of welcome has some good points and some 
bad, but mostly bad. If it's only 2 lines long, 
how did we already get off to a bad start? Glad 
you asked. Depending upon what level of security 
your site is aiming for, just this simple message 
may be giving away too much information. 

For your authorized users, the announcement message 
is not so important or enlightening, they most 
likely already know the company name, and if they 

528 

wanted could easily find out what operating system 
is being used and its version. Your users should 
be bound by some kind of moral or ethical conduct 
as employees or clients; they should not want to 
create problems for their company and thereby to 
themselves. If this is not the case, you do have a 
strong computer usage policy in place to discourage 
indiscriminate computer conduct or "exploring", 
don't you? 

More to the problem is what extra information 
you're providing to those coming in through your 
modems who might or might not be employees or 
authorized users. In this age of cheaper modems 
and wider communications, such a message probably 
tells more about your system than you think and to 
more people than you really want to know. (Have 
you seen the latest modem sales statistics?) 
Telephone lines provide a convenience for employees 
or clients to dial-in to your computer system; 
unfortunately, in addition to being a convenience, 
these same telephone lines provide ample anonymity 
for those spreading mischief. 

Back to the 2 line announcement, here are some 
things a potential outsider (dialing-in by modem) 
might surmise from the message and be thinking 
while developing a plan of "attack" on your 
machine. 

0 I've reached a working computer 
0 It's a VAX (oh boy!) 
0 It's running VMS (Good, I know some VMS 

tricks). 
0 It's at VMS v3.7 (fewer security mechanisms 

than V4.x) 
0 Froboz is just down the street, I'll go 

rummage through their trash looking for 
computer printouts and passwords. 

Probably this is more than you want to give out to 
just anyone. If you want to welcome your users to 
the machine, save it until after they've proved 
they're worthy by letting them supply a valid 
username and password. 

Usernames 

On to the next line of the display, the "Username:" 
prompt. Much like a password, a username is 
required as part of the login sequence; the 
difference being a username is less sensitive, but 
still company-private. An obvious point but worth 
repeating, the username works in conjunction with 
the password. Without the answer to that first 
question that VMS asks in the login sequence, no 
password will do any good. 

Unlike passwords, it's generally not practical (or 
desirable) to keep usernames a secret from those 
that you work with; they have a genuine need to 
know, after all that's what makes MAIL and PHONE so 
nice. You might, however, consider not using 
employee last names as the username: After all, is 
there a company in the world that doesn't have a 
SMITH, JONES, or WILSON? As a suggestion, some 
sites concatenate the last name with the first 2 or 
3 characters of the first name, so that employee 



"LARRY JONES" has the user name JONESLA. This has 
the added advantage of resolving the standard 
problem of multiple users named JONES. Unless you 
already have a better directory naming scheme, use 
the concatenated name for the directory as well. 

Passwords 

It would be easy to write an entire paper just on 
the proper selection and management of passwords. 
Here are some guidelines we try to follow: 

o Passwords MUST be a minimum of 6 and 
preferably 8 characters in length. 

Although VMS provides A-Z, 0-9, and $ as 
candidate password characters, I suggest 
restricting passwords to only the "alpha" (A-Z) 
symbols, because for most typists, the finger reach 
to the number and special symbol keys is quite 
distinct, awkward, and slow. Unless they're fast, 
you can easily watch the hands of most people 
typing numbers: If their password is only 8 
characters long and you see them type the first 4 
as numbers you might conceivably "guess" what the 
remaining symbols are regardless of composition. 
VMS V4.x allows you to enforce a minimum password 
length on a user by user basis, set it! In VMS 3.x 
the same can be accomplished with various patches 
available from various sources (the usual caveat 
about messing with DEC's code though). If your 
users squawk, ask them for a reasonable explanation 
why they should be allowed to jeopardize the 
system! 

o Don't select passwords associated with the 
user. 

This means no husband's or wife's name, no 
children's or pet's names, no hobbies (like STAMPS, 
COINS), no phone numbers, no department names (like 
ENGINEERING), etc. Of course, no initials. 

o Don't allow any word that might be found in a 
dictionary (the Webster's variety) as a 
password. 

The dictionaries that come with most spell checking 
software can be readily adapted to throwing words 
at a password prompt until a valid one is found. 
The advent of these programs on microcomputers 
heightens the importance of this guideline. 

o Do use nonsense phrases for passwords. 

We often suggest such things as FORCEBEWITHYOU, 
TENFOUR, BORN2BEFREE, ITSMILLERTIME, well you get 
the point. Impress upon your users that this is 
their chance to be as profound (or profane) as they 
wish. 

o Don't use the same password on multi-vendor 
hardware. 

Just because VMS has an adequate password hashing 
algorithm, don't assume that the vendor of XYZ 
computer does too. That manufacturer may simply 
store the password as plain-text in a file. Use 
different passwords on different machines. 

529 

o Do change passwords regularly. 

How often should passwords be changed? You might 
just as well ask "How long is a piece of string?" 
The nature of the data in a particular account 
usually governs the frequency of change. The more 
confidential the data, the more often the password 
should be changed. The same applies to those 
accounts with more than the standard privileges. 
For privileged accounts, consider changing the 
password every month; otherwise, for non-privileged 
accounts every 3 or 4 months. This too can be 
enforced under VMS V4.x. 

o Don't use company wide default passwords for 
new accounts. 

When you create new accounts for users, you presume 
they're going to use them. Not always sol 
Sometimes these new users may not log-in for 
months, leaving the account with nothing more than 
a public password. Along the same lines, don't 
make the new password a predicable format like 
JONES123, etc. Pick something random. 

o Don't include passwords in text or command 
files. 

I can almost guarantee that at some point, some 
how, that file will get printed and exposed to 
everyone. (Murphy's law supports me on this.) An 
old hacker's trick is to scan all command files on 
a disk for the occurrence of the symbols 11 :: 

indicating an explicit DECNET access control string 
that follows an account password. 

o Do change the passwords to the standard 
accounts: FIELD, SYSTEM, SYSTEST. 

New VMS systems have preset passwords for these 
accounts. Since these accounts are present on 
almost every VMS system in the world they are 
likely candidates for people trying to break into 
your system. If you have a VMS source license, 
change the password to that standard account as 
well. 

Don't let your field service engineers set their 
own password to the FIELD account. They're only 
human (believe it or not) and if given the chance 
they would probably select the same password for 
every machine at every site in their service area. 

o Do explain to users that VMSCAI, EDTCAI, etc 
DO NOT require their VMS log-in password. 

New users are easily intimidated. If the software 
asks for a secret word or password, you guessed it, 
9 out of 10 times they'll enter their VMS log-in 
password. 

Just in case your users have lulled you into 
believing they know how to select a password and 
don't need your recommendations or guidelines, I 
present to you: 

Over the last 
authorization 

couple 
files at 

years, I've "analyzed" the 
several VAX sites and 



determined that, on the average, 40% of all user 
passwords could be found in a large spelling 
dictionary or by searching through all possible 3 
character strings (the success range was 27% to 
74%). To emphasize this point even further, 
remember it only takes one password on one machine 
for someone to "break-in." You should recognize 
this as the weakest link theory. Incidentally, 
I've never failed to "crack" at least one 
privileged account. 

Dial-ins 
Dial-up lines are one of the 
login process. Not only is 
keeping unwanted outsiders 
what about making sure your 
logged-out. Consider what 
following scenario: 

soft-spots in the VAX 
there the problem of 

from logging-in, but 
authorized users have 
might happen in the 

It's 2 am, Sandy the 3rd-shift computer operator is 
having problems with the nightly backup and would 
like you to dial-in to give a hand (operators 
always call at 2 am). You grumble, get out of bed 
and dial-in to your machine. You solve the problem 
and just before you log-out, you get a phone 
glitch. Your modem throws garbage on the screen 
and hangs up. Fine, you were done anyway and go 
back to sleep. Across town, a hacker has a 
microcomputer with an auto-dial modem sequentially 
going through all the phone numbers in your 
exchange, (555-1234, 555-1235, etc). The modem 
gets to 555-2341 and viola it displays the message 
"CONNECT, FOUND ONE" on the terminal. Now when the 
return key is hit there's no Froboz announcement 
message, but instead: 

$ 

Wow! The persistent hacker says. No username to 
guess and no password to break. (again) OH BOYi 

The story could take several turns here, that's not 
important. Realize that the person now has access 
to your privileged account. Why? Because the 
modem on the VAX side did not hang up when your 
modem did. 

Modems should always be configured (on the computer 
end) to hangup when they detect a loss of carrier. 
On a VAX the minimal configuration of a modem port 
should include: 

SET TERM Txxx /MODEM/HANGUP/PERM 

You may of course need to add other site-dependant 
qualifiers (/AUTOBAUD, /DISCONNECT, etc). 

In addition to telling VMS about the modem port 
configuration, don't forget or omit reviewing the 
modem hardware configuration. Read the 
documentation from the modem manufacturer, the 
modem itself may require some DIP switch or jumper 
changes. Pay particular attention how the modem 
controls the RS232 signal "data carrier detect." 

Depending upon what kind of terminal I/O card the 
modem is connected to on the VAX (DZ, DMF, DMZ, 
etc), there may be other problems too; for example, 

530 

DMF ports 2-7 (zero based) do 
"hangup" control signals, DON'T 
THESE PORTS (get the message?), 

not support modem 
CONNECT MODEMS TO 

Those sites with port-selectors, etc, this 
discussion of modems is very important to you 
because you tend to have all your terminals routed 
through these gizmos. These devices, almost 
universally, appear to the VAX as fast modems, 
meaning they require the same kind of RS232 control 
signals. As a bonus, or finally to resolve some 
long standing confusion, VMS V4.x allows port
selectors, terminal servers, etc to be 
differentiated from modems with a 11 /DIALUP" 
qualifier applied to the latter on a "SET TERMINAL" 
command. Alternately, prior to V4.x, the work
around was to check the terminal speed, 1200 baud 
and below indicated a real modem and not a port
selector. 

Just like passwords, the telephone numbers to your 
dial-in lines should be protected, handed out only 
on a request and need-to-know basis. One 
particular site, through some mis-communication or 
accident, had their dial-in telephone numbers 
published in the local phone directory. (For some 
strange reason log-fail numbers over those ports 
shot up quickly.) This isn't advised. If 
practical, consider changing the telephone number 
to all of your dial-in lines at least once a year, 
remember the bill the phone company will send you 
for this will be small compared to the possible 
consequences. 

Keep a close eye on your modems, especially the 
newer models with n number storage and auto-redial 
of last number. They often, for the simple command 
of simply hitting return, will show you the last 
number dialed (DEC's DF112 for example). If you've 
just used VAXNET, VMODEM, KERMIT or some other 
terminal emulator to dial-out of your VAX into 
another computer, many modems will retain that 
number for whomever comes along later. Worse yet 
are those modems that will for another simple 
command will list 15 or so telephone numbers stored 
in an internal table. Before you purchase modems, 
check around, there are some that provide the same 
function but hide the phone list requiring the user 
to enter, instead, a number from 1-15 corresponding 
to a telephone number in the list. (The users 
never see the list, they're just told that AERO-VAX 
is number 3 or DELTA-PDP is number 11.) These 
modems also don't display the last number dialed. 
If you already have a big investment into a certain 
brand of modem, check with the manufacture, often 
there is a simple and low cost fix (new PROMs for 
instance). 

One of the big security features not all sites take 
advantage of are the access hours/days. AUTHORIZE 
will allow the setting of primary and secondary 
hours of the day and days of the week during which 
a user may log-in. If certain users don't need 
access after 5 pm or before 8 am or they need the 
machine only during the week, then use this 
feature. All the times and days can be set on a 
user by user basis and can be overridden with the 
"SET DAY" command at any time. 



Along the same idea, if another group of accounts 
never log-in over the dial-in lines, then note that 
too with AUTHORIZE. By reducing the number of 
accounts that can dial-in, you've limited the 
number of security soft-spots. 

While logged on 

UIC based protection has been around for a long 
time. Now, in addition, VMS V4.x has many, many 
new enhancements in this area (ACLs won't be 
covered here). I won't go into details except to 
point out that: 

o System directories do not require world read 
access. 

Protect the SYSEXE, SYSLIB, SYSMAINT, SYSMGR, 
SYSTEST, SYSHLP, SYSUPD so that they only have 
world execute access (W:E). This prevents users 
from using wildcard file specifications (for 
instance they won't be allowed to issue a "DIR 
SYS$SYSTEM" command). 

o User's don't need to be able to run system 
manager utilities (AUTHORIZE, SYSGEN). Remove 
world execute privilege from these images. 

o The 000000 directory should be protected the 
same as system directories or better yet, 
remove world access altogether. This helps 
eliminate some of the probing. 

o ACLs can be placed on certain items, like 
files, and will describe all sorts of 
attempted operations on those files by users. 

This is a really good way to monitor probing. If 
your system directories are protected adequately 
and you setup or install ACLs properly, any action 
on files within those directories can be logged. 
For instance, if a user repeatedly tries to DUMP or 
COPY the SYSUAF.DAT file, you should suspect that 
something is wrong (plus you have the proof right 
in the operator's log). 

o Devices can and 
protections too. 

should have stringent 

In your system startup command file, protect all of 
your terminals with a command like "SET PROTECTION= 
(W) Txxx:/DEVICE. 11 (Modem ports and other certain 
public devices may need to have a more relaxed 
protection such as W:RWPL). Terminal protections 
should reduce the likelyhood of something called a 
grabber program. A grabber program is a small 
user-written routine that allocates a terminal and 
simulates the login sequence. It waits for some 
unsuspecting user to hit return and types the 
message specified in SYS$ANNOUNCE then the phrase 
"Username:". Guess what. The user enters their 
username; the program prompts for "Password:"; the 
user enters their password; finally the program 
writes both the username and password to a 
"recording" file for later reference. Now, because 
the grabber program can't really perform a log-in 
sequence it simply displays the message (which 
we've ALL seen ourselves) "user authorization 

531 

failure" and exits. No big deal, the user simply 
tries again thinking he fumbled the password. 

Device protections alone can't prevent a grabber 
program, they can only help curb them. Under VMS 
V4.x, if you've had any log-fail attempts since you 
were last logged on, you'll get a message similar 
to: 

Welcome to VAX/VMS version V4.x 
Last login on Tuesday, 2-JUL-1985 13:25 
Last batch on Tuesday, 2-JUL-1985 09:49 

5 failures since last successful login 

You should instruct your users to pay attention to 
this display and report any excessive log-fails 
that they can't account for. Just as important, if 
they do get a log-fail message they should verify 
that it is reported as above (if it's not, chances 
are there's a grabber program running around). 

While on the subject of log-fails, check-out the 
new sysgen parameters LGI RETRY LIM, LGI RETRY TMO. 
They specify maximum numbers of log-fails within a 
certain time frame before an account will be 
rendered temporarily disabled. 

Although VMS allows it, don't disable this feature. 

Privileges 

If ever there was a poorly chosen word for 
anything, "privileges" has to rank at the top. 
Users somehow feel that it's share and share alike: 
"If the system manager has SETPRV privilege, so 
should I". Some users are a little more crafty 
(usually the system programmers), they'll come 
with their manager and exclaim they just can't 
finish their current project without just one 
little privilege... Which one? No, not SETPRV 
(that's to blunt) just CMEXEC. (CMEXEC allows one 
to get into kernel mode unchecked and mess with the 
system data structures. With CMEXEC they can do 
anything on the system they please including giving 
themselves any other privilege they desire.) You 
must know what privileges allow what; otherwise, 
you're at the mercy of the first knowledgeable 
programmer that comes along. Read the descriptions 
of the privileges closely (refer to the security 
manual) when assigning anything more than just the 
standard TMPMBX or NETMBX to an account. If a 
request arrives for anything else, make them 
justify it in gory detail. 

Even when users have justifiable needs for heavy
duty privileges, monitor their actions. The CMKRNL 
privilege, for example, allows the running of 
"ANALYZE/SYSTEM." With this utility it's a simple 
matter to look at terminal typeahead buffers and 
observe other user's passwords as they log-in. 
Including yours. 

One way of avoiding issuing privileges is to create 
a captive account. Someone logs-in to a particular 
account and is restricted, by means of a CAREFULLY 
written command procedure, to only a few commands. 
An example might include the need to run the 
INSTALL utility to install a shared global section. 



(INSTALL requires CMKRNL privilege.) Rather than 
give someone CMKRNL, create an account, suitably 
privileged, that has as its only function, the 
execution of a command procedure that performs the 
required installation. WARNING! Read the DEC 
security manual regarding captive accounts. Here 
are some things to watch out for concerning captive 
accounts: 

0 Limit mail usage. Someone might try to invoke 
mail with the "/EDIT" qualifier and include 
some sensitive files from other directories. 
With mail they might also create some unwanted 
files (like a new LOGIN.COM maybe). 

o Don't allow the use of the TECO editor. There 
is a command within TECO that will permit 
exiting any command procedure. 

o Be sure to create the account as CAPTIVE and 
disable control-Ya. DEC also recommends 
setting DISWELCOME and LOCKPWD. 

I'll illustrate this point with another tale of woe 
close to me. A particular site (remaining 
nameless) had created a particularly well endowed 
captive account (having CMKRNL privilege), called 
INSTALLGLBS, but had failed to add the CAPTIVE 
flag. Imagine our (oops, someone's) surprise when 
the user logged in as: 

Username: INSTALLGLBS/DISK=CSA9: 

Well, very few systems have 9 CS: devices. Sure, 
VMS complained about not finding CSA9 but it still 
allowed the log-in. The biggest reason for CAPTIVE 
is to ensure that the command file specified in the 
AUTHORIZE field LGICMD is execute. Our (oops, 
someone's) special, CAREFULLY written command file 
was ignored and egg was all over my (oops, 
someone's) face. 

The more you read about privileges the more it 
seems like they all have a certain air of doom 
about them. Well it's true, they do. Here are 
some I would be extremely suspicious about: 

0 SETPRV 
0 CMEXEC or CMKRNL 

Wary about: 

0 LOG_IO 
0 PHYS_IO 

Those in the above list have "sneaky" or additional 
side effects that might not be readily apparent 
from reading their description. I'm sure the 
others might too, I just haven't worked out any 
really neat tricks with them yet. Among the others 
to look out for, include: BYPASS, READALL, SYSPRV, 
OPER, PFNMAP, SECURITY, SYSNAM, and WORLD. The 
descriptions of these are pretty good, you'll know 
what you're getting yourself into. 

Another way of not granting privileges to someone 
is through the use of installed images. Images can 
be installed with privilege just like accounts. 

532 

So, if you want to write a "WHO IS ON THE SYSTEM" 
(Aren't V4 filenames neat?) program-for everyone's 
use, but don't want to grant WORLD privilege to 
everyone (good for you) then create the program and 
use the INSTALL utility to grant just the image, 
the WORLD privilege. The command looks something 
like: 

INSTALL> SYS$PUBLIC:WHO.EXE/PRIV=WORLD 

If you're not running VMS V4.x yet, then there's 
another thing you've got to (MUST) look out for. 
You MUST link privileged images with a command 
like: 

$ LINK/NOTRACEBACK WHO 

The 11 /NOTRACEBACK" qualifier prevents someone from 
running the image in debug mode with a "RUN/DEBUG 
SYS$PUBLIC:WHO" command. Running a privileged 
image with the debugger is a pretty easy way to 
inherit the privileges of the installed image. 
This is fixed in VMS V4.x, you can't install images 
with privileges if they were not linked properly. 
(Don't worry, if you don't have object modules, DEC 
has available a command procedure that will 
properly patch the image to prevent the debugger 
from running. ) 

Daily Operations 

How many sites out there receive a new piece of 
software and without thinking, type RUN or @ to see 
what it does? Don't! At the very least give the 
thing a quick look to see "how" it does "what." 

We recently purchased a word processing package 
that initializes itself at each use with a command 
file. We looked at the command file and it 
included the command: 

$ SET PROT=(S:RWE,O:RWED,G:RWE,W:RWE)/DEFAULT 

I find it somewhat unsettling to discover that 
these software packages go about changing such 
things as my default file protection, especially 
without me knowing it. Get the picture? 

Be careful of software you don't control. Don't 
run programs out of directories you don't control. 
Here's yet another story (it's called a Trojan 
Horse): 

Good ol' Joe, he's always writing this really neat 
code. He's just finished an amazing "SET DEFAULT" 
utility; you simply type SD and it reads your 
thoughts about what you would like your default 
directory to be. Good ol' Joe tells everyone it's 
finished and that it lives in the [GOODOLJOE] 
directory (his directory, of course). Everyone 
begins to use it, you included. 

SD and it puts you at SYSEXE, good 
SD and it puts you at SYSUPD, good 

Then, 

SD ••• it pauses ••• it puts you at SYSMGR, good 



What you didn't realize was that SD detected it was 
running with privileges (your account) and the 
pause was really SD busy copying the company's 
financial data to one of Good ol' Joe's 
subdirectories. SD finished it's original task of 
changing your default and exited. Nobody the 
wiser. 

Enough said, except to say be careful of updates 
and new releases. What was harmless today, may not 
be harmless tomorrow. 

On the topic of software, examine incoming and 
outgoing tapes, disks, etc. Don't let somebody get 
you into trouble by bringing in or carrying out 
purloined software. If you do a show process and 
see somebody running Ada, and you know you don't 
have an Ada license, illegal software is rummaging 
about your system and it probably came in by 
magtape. Tapes that you loan or give to users for 
their use, degauss them first. Initializing a tape 
with the VMS "INIT" command is not sufficient (INIT 
only writes on the very first part of a tape). 

Limit access to the operator's console. Beyond 
just having information printed on it that users 
don't really need to see, it's quite a powerful 
little device. Ready for another story? 

Yet another famous site... Programmers were 
allowed into a certain computer room at any time, 
that's were the magtape drives were located that 
they needed. The only terminal in the area was, by 
design, the operator's console. One of programmers 
logged on, fumbled a few control characters and 
found the 11 >» 11 prompt (LSI monitor prompt). 
Curious about what utility prompted with ">»" he 
resorted to what he always did, typing "H" for 
HELP. Well, no doubt you've guessed what happened 
(for you non-VAX folks "H" is also short for Halt 
and the VAX complied). 

The brave user given access to the console might 
even attempt to re-boot the machine. There are all 
kinds of potential security problems when someone 
else is able to re-boot, don't allow this. At 
re-boot time the VAX is at its very most naked, 
vulnerable state. It comes to no surprise to you, 
I'm sure, that all older VAX cabinet keys are 
standard and identical. Everyone hoped that with 
the new FCC cabinets we'd all get new and different 
locks. Well what do you know, we did! Now the bad 
news, check your keys. We have a particular brand 
of magtape cabinet that's pretty popular, it too 
has a key lock. In fact it has the same key as the 
master cabinet key for the VAX! 

In no particular category, here are some other 
operational tips: 

o Re-define the logical SYS$SYLOGIN to a file 
with some other name than SYLOGIN.COM. Users 
don't really need to see what's in that file 
and if you rename it you may slow or deter 
some probing. 

o Re-define the logical SYSUAF for the same 
reason. 

o When users leave a company or lose access to 
their account, don't remove it from the 
authorization file. Better to just inactivate 
the account with the 11 /DISUSER" qualifier. 
That way if they secretly come back and try to 
gain access to the old accounts, you'll be 
able to determine that with the accounting 
utility. On the other hand, if you remove 
the account, log-fail attempts show up as 
simply <login>. If you leave the account 
you'll get the name. 

Backups are critical for numerous reasons, be aware 
of their security though. Remember that backups 
have a complete copy (or should) of all your disk 
files, programs, data, on and on. Unlike disk 
packs/drives, magtapes can easily be fitted into a 
briefcase; don't let people walk out of your site 
with last week's complete image save. Protect 
them. In addition to the physical security of the 
media, there is a need for a logical volume 
protection. When you perform your backups, use the 
"/PROTECT" qualifier to prevent others from 
mounting the tape and gaining access to otherwise 
protected files. NOTE! NOTE! NOTE! Somewhere 
around the upgrade from VMS V3.4 to V3.5 BACKUP's 
default for the "/REWIND" qualifier changed from 
11 /REWIND" to 11 /NOREWIND", not all sites caught the 
implication of this. BACKUP only records the 
volume protection when it's allowed to initialize 
the tape. The only time BACKUP initializes a tape 
is when "/REWIND" is included. Get it? If you 
just use 11 /PROTECT" without 11 /REWIND", BACKUP 
ignores the protection qualifier. A good number of 
sites have command files to perform all of their 
backups. If the command files aren't updated to 
include the change, all those tapes are left with 
whatever the previous volume protection is. 

Networks 
I'm only going to 
concerning DECNET. 

pass along a few points 

533 

o All DECNET nodes not under your control should 
be considered hostile. That is, the 
information passing between nodes should be 
considered public domain. 

o Ethernet networks are especially susceptible 
to eavesdropping by other nodes. 

o Protect all files [SYSEXE]*NET*.DAT to 
disallow world access. 

o Use proxy log-ins wherever possible to 
eliminate the need for explicit access control 
strings. 

o The need for privileged DECNET default 
accounts has just about been eliminated. 



Conclusion 

In conclusion, I'd like to emphasis that there is a 
tremendous amount of information to be found in 
DEC's new security manual, be sure to read at least 
chapters 1-8 and the appendices A-C. 

Don't wait until it's too late to find out that you 
have security problems, by then you may just be the 
next sensational wizkid-cracks-computer news event 
we hear about. 

Acknowledgements 

This paper has drawn upon the expertise and opinion 
of several people, among them in no particular 
order: 

Eric Zipp (TDC, Arlington, Texas), 
James Fischer (xxxxxxxxxxxxxxx), 
Doug Brown (Sandia National Labs, Albuquerque, 
New Mexico) , 
Stephen Thor (NYU, NY, NY), 

Gentlemen, my thanks. 
thank Mark Pilant (DEC, 
his review of a draft 
helpful suggestions. 

I would especially like to 
Nashua, New Hampshire) for 

of this paper and for his 

I also extend my appreciation to DEC and its 
writers for their manual ~G_u_id_e-'--_t~o"--V~A~X~/~V~M~S--"S~y~s~t~e~m 
Security. 

As always, although I've taken great care to avoid 
any mis-information, I take sole responsibility for 
any errors appearing in this text. 

534 



1 INTRODUCTION 

THE INSTRUCTION UNIT OF THE VAX 8600 
A PIPELINE IMPLElMENTATION OF THE VAX ARCHITECTURE 

Fernando c. Colon Osorio, Steve Ching, Mario Troiani 
John Bloem, and Nii Quaynor 

High Performance Systems and Clusters 
Digital Equipment Corporation 
Marlboro, Massachusetts 01752 

ABSTRACT 

The instruction and operand fetch unit (IBOX) of a 
High Performance Implementation of the VAX 
architecture, the VAX 8600, is described in this 
paper. The VAX 8600 delivers a performance 
speed-up over previous implementations by the use 
of HIGH SPEED ECL technology, and an internal 
organization that consists of a four stage 
pipeline. In this four stage pipeline, up to four 
simultaneous instructions can be in several stages 
of execution at any time. This parallelism 
contributes to an overall performance improvement 
of more than four times over the VAX 11/780. 
Furthermore, under favorable conditions, the IBOX 
can deliver to the Instruction Execution Unit 
(EBOX) one instruction every 80 nsecs, which means 
this high performance implementation is capable of 
executing instructions at a peak rate of 12.5 mips. 
In this paper, special attention is given to the 
internal organization of the VAX 8600 IBOX as it 
differs from previous VAX implementations. 

Keywords: VAX instruction set, pipelined 
architecture, global control, local control, 
register log, scoreboard, stall conditions, data 
dependency, control dependency, resource 
dependency, elasticity, rigidity 

THE VAX 8600 Computer System is the first 
pipelined implementation of the VAX 
architecture [1]. Like its non pipelined 
predecessors, the VAX 8600 implements the 
full VAX instruction set and runs under 
the VMS (or UNIX/ULTRIX) operating system. 
In addition, the primary goal for the 
VAX 8600 was to provide higher performance 
and reliability than its predecessor, the 
VAX 11/780. In this context, the 
performance speed up factor needs to be 
clearly defined if we are to avoid the 
confusion that usually arises when 
discussing performance. First, let us 
define a given program's speedup factor as 
the time it takes to execute on the 
VAX 11/780 divided by the time to execute 
on the VAX 8600. The VAX 8600 "ideal" or 
"true" measure of performance improvement 
is then the average over all programs of 
such speedup factor. Since the universe 
of all programs is too large, one selects 
a proper subset of favorite benchmarks for 
the comparison. This subset of benchmarks 

can be iabelled as the constant unit of 
work (CUW), and its selection is often the 
reason for conflicting reports in the 
literature. The execution time of this 
constant unit of work in our model, is the 
product of three quantities: the number 
of instructions, the average number of 
cycles per instruction, and the cycle time 
of the machine under evaluation. 

The performance aim of the VAX 8600 was to 
reduce the average number of cycles per 
instruction from 10 in the VAX 11/780 to 
6, and also to reduce the cycle time of 
the machine from 200 nsecs in the case of 
the VAX 11/780 to 80 nsecs. In order to 
achieve the goal of reducing the cycle 
time of the machine, custom ECL gate 
arrays and standard lOK ECL logic was 
utilized throughout the design. This 
technology provided the 2 1/2 times 
performance improvement that was required. 
The rest of the performance gain was 
contributed by achieving the goal of 
reducing the average number of cycles per 
instruction through the use of a four 
stage pipeline. This four staqe pipeline 

Proceedings of the Digital Equipment Computer Users Society 535 New Orleans LA- 1985 



is capable of overlapping the fetching of 
instruction stream data, with the decode 
of instructions, the prefetch of operands 
from memory, and the execution of 
instructions, see Figure 3c. In the 
VAX 11/780, on the other hand, the operand 
address calculation, operand fetch, and 
operand write stages are all merged into 
the execution stage (EBOX), see Figure 3b. 
In the VAX 8600 up to four simultaneous 
instructions can be in several stages of 
execution at any time. 

The remainder of this paper is organized 
as follows. In section 2, a limited 
description of the VAX instruction set is 
presented. Section 3, provides an overall 
description of the VAX 8600 internal 
organization with special emphasis on the 
~ajar b~sses that support the flow of 
intructions and data between stages. 
Section 4 introduces an abstract model of 
pipelines, and describes the VAX 8600 in 
terms of the major components of the 
model. Section 5 describes in detail the 
internal organization of the instruction 
unit (IBOX) and its associated control 
structure. Finally, in section 6 our 
conclusions are presented. 

2 VAX INSTRUCTION SET 

The VAX Architecture [l] has a rather rich 
and powerful instruction set. Each 
instruction, in general, consists of one 
byte of opcode, optionally followed by one 
to six operand specifiers. These 
specifiers represent the accessing scheme 
for an operand, or the displacement in a 
branch instruction, or the target address 
in a call type of instruction. The data 
type and usage of each specifier is 
derived from the opcode. There are also 
two bytes long opcodes for multi-precision 
floating point operations, instruction set 
extension, and user defined operations. 
The instruction set is standardized so 
that each VAX implementation is able to 
execute the same software image as well as 
the same operating system environment. 
This compatibility is the basic goal for 
all VAX implementations, including the 
VAX 8600. 

3 VAX 8600 STRUCTURE 

Functionally, the CPU (see Fig. 1) 
consists of four separate microcoded units 
for memory and I/0 (MBOX), instruction 
fetches and preparations (IBOX), execution 
(EBOX), as well as a co-processor for high 
speed. f~oating point execution (FBOX). A 
~escription of these subsystems and the 
interconnecting busses follows. 

536 

Cmso/e 

£box 

Fbox 

I/O 

3.1 System Susses 

There are a number of internal busses that 
are key to the organization of the 
VAX 8600. These include: 

IVA - the IBOX Virtual Address bus, which 
carries virtual addresses from the IBOX to 
the MBOX during instruction fetch, operand 
fetch and IBOX Write operations. 

MOBUS- the Memory Data bus, a data bus for 
both reads and writes to MBOX memory. 

OPBUS - the Operand 
operands from the 
units. 

bus, which carries 
IBOX to the execution 

WBUS the Write bus, which contains 
execution unit results to memory via the 
IBOX or to General Purpose Registers 
(GPR' s). 

EVA - the EBOX Virtual Address, which 
contains virtual addresses from the EBOX 
to the MBOX during EBOX operand references 
and certain memory management routines. 

ABUS - the I/0 bus, which interfaces the 
CPU to the outside world. 

3.2 MBOX The 
Conununication 

Heart Of System 

The primary purpose of the MBOX is to tie 
together the main memory, the physical 
cache, the cpu ports and the I/O 
subsystem. In this capacity it is the 
conununication center at the system level. 

The MBOX contains a cache for instructions 
and data, a virtual address Translation 
Buffer (TB), and the physical memory. 
These resources are accessed by an I/0 
port and three other fixed priority cpu 
ports, as shown in Fig. 2. The MBOX being 
a system conununication center must contend 
with several concurrent activities 
r~quiring conununication services. To cope 
with these numerous state requirements the 



IVA 

HBOX 

PllRAY DATA 
EVA 

PllRAY ADDR 

111) 

Fig. 2. Port Organization 

MBOX is heavily microcoded and also calls 
upon EBOX microcode on occasions to assist 
with some memory management functions. 
The MBOX has the capability of queuing a 
number of memory requests f rorn both the 
instruction fetch and execution units. 
Both the IBOX and EBOX can request MBOX 
service through their own memory ports and 
busses (IVA and EVA). A common MOBUS 
provides interface for both read and write 
data. Input/Output data are handled via 
adapters that interface to the ABUS. 
A more detailed description of the MBOX 
can be found in [2]. 

3.3 IBOX - The Heart Of The Pipeline 

The primary purpose of the IBOX is to 
continuously feed microcode dispatch 
addresses and operands to the execution 
units (EBOX and FBOX), so that the latter 
may execute the VAX instruction set. In 
order to do so, the IBOX must prefetch the 
instruction stream from the MBOX and then 
interpret it: parse the specifiers, fetch 
the operands and build the dispatch 
address for the EBOX. Three pipeline 
stages, including a microcoded operand 
address calculation engine, are used to 
implement this functionality at high 
throughput. This results in extensive 
control logic needed to synchronize the 
flow of data and control through the 
pipeline. Furthermore, the IBOX contains 
the logic to maintain the many program 
counters representing the different 
instructions executing concurrently in the 
pipeline. 
The virtual ownership of the pipeline, 
including the critical EBOX dispatch 
interface, the almost exclusive MBOX 
interface, and the maintenance of the PC's 
make the IBOX the heart of the pipeline. 
It is thus the target of much of the 
complexity of the VAX 8600. 

3.4 EBOX And FBOX - The Heart Of The VAX 
Architecture 

In general, EBOX and FBOX consume the 
dispatch address and operands setup by the 

537 

!BOX and perform only the operations as 
specified in a macro instruction. In this 
mode, they are isolated from memory access 
and freed from specifier evaluation and 
operand fetching. They can thus be 
optimized for high speed execution. The 
EBOX also performs the secondary function 
of the management of the boundary 
conditions for both hardware (machine 
checks such as single and double bit 
memory errors and parity errors) and of 
the VAX architecture (interrupts and 
exceptions). In particular, memory 
management is almost totally performed 
here: TB misses, page faults and access 
violations, page crossings and unaligned 
EBOX memory references are detected by the 
MBOX but are all serviced by the EBOX. In 
this respect, the execution units are the 
heart of the VAX architecture. 

4 THE VAX 8600 PIPELINE 

Pipelined computers are not new: from the 
early days of the IBM Stretch [3] and the 
IBM 360/91 [4] to the scalar units of the 
CDC [5] and CRAY [6] machines, pipelining 
has been a proven if expensive method for 
performance enhancement. 

In most Von Neumann processors the 
instruction fetch and decode functions are 
performed sequentially in the only 
"stage", the execution unit, which is also 
the entire cpu. A typical example is the 
PDPll, where the concurrency is 
microprogrammed (see Fig. 3a). 

Most existing VAX implementations have 
added the stage for instruction prefetch, 
thus reducing the instruction fetch 
latency, the primal example being the 
VAX 11/780 (see Fig. 3b). 

The VAX 8600 is the first implementation 
of the VAX Architecture that separates 
instruction preparations, e.g. effective 
address calculation and operand fetches, 
from instruction execution itself (see 
Fig. 3c). 

The significance of the VAX 8600 design 
lies in the successful resolution of the 
implementation difficulties which stern 
from the combined complexities of the VAX 
Architecture and the pipeline approach: 
the more complex an architecture, i.e. 
the more the control and data 
dependencies, the more difficult it is to 
pipeline it. 

While the basis and fundamentals for such 
designs can be found in [7,8], and a more 
recent pipeline model is discussed in [9], 
we present here a simplified model for the 
purpose and scope of this paper. Then we 
show the VAX 8600 pipeline using such 
model. 



INSTR 
FETCH 

INSTR 
ilOORESS 

[~ 

INS'm CPERANJ OPERIW INSTR RESU.T 
OECCDE AOORESS FETCH EXECUTil:t< STORE 

Fig, 3a. PC4'11 Instn..ictiO"l E.x:ec:ution 

INSTR 
FETCH 

INSTR 
DECODE 

OPERANl CPERAl-0 INSTR RESlL T 
AOORESS FETCH EXECUTil:t< STalE 

Fig. 3b. The VAX 11/79) Instruction Pipeline 

INSTR 
FETCH 

INSTR 
OECOOE 

CPERANl 
AOORESS 

CfERANl 
FETCH 

INSTR 
EXECUTI(}-j 

RESU.T l 
STCJlE 

Fig. 3c. The VAX 8600 Instruction Pipeline 

4.1 A Pipeline Model 

Let's define a pipeline stage, 
with 

see 
four Fig. 4a, as an entity 

fundamental attributes: 

STAGE := (FUNC, HW, PREC, PMC) 

where: 

FUNC := the "function" of the stage, 
usually an INPUT BUFFER, an OUTPUT 
BUFFER and a MAPPING between the 
two. 
For example the function of the 
Operand Access Unit stage (OAU) is 
to compute an operand effective 
address and then to fetch it from 
the MBOX and to load it into the 
output buffer (!MD the IBOX 
Memory Data register). 

538 

HW := the "hardware.residency" of the 
stage. For example the OAU stage 
resides in the IBOX hardware. 

PREC 

PMC 

:= the "precedence" of the stage 
in the sequence of stages. This 
precedence is fixed and means that 
the Instruction Decode stage, for 
example, is a successor of the 
PREFETCHER stage. Note that the 
precedence relation is a logical 
concept and not a physical one. 
Thst is, although the memory write 
function of the EBOX stage is the 
last stage of the pipe, it shares 
resources with the Operand Access 
Unit stage. 

:= the number of "physical machine 
cycles" needed to execute a 
stage's "logical cycle". 
Conceptually then, an item gets 
processed and goes through the 
stage in a single logical cycle. 
The reason for this distinction 
between logical and physical 
cycles will become apparent with 
the examples below: 

Example.l: consider the OAU stage 
processing of simple specifier, 
such as register mode. In this 
case, one logical cycle equals two 
physical cycles. 

Example 2: consider again the OAU 
stage processing of a complex 
specifier, such as longword 
displacement deferred indexed, 
@LD(Rn)[Rx], with a cache miss in 
the indirect reference. In such a 
case one logical cycle will equ~l 
N physical cycles, where N is 
directly dependent on the state of 
various system resources. 

A stage may consist of one or more 
"units", each consuming a minimum of one 
physical cycle. A "pipeline" is a 
sequence of stages connected by 
"transport" mechanisms, which move an item 
from the output buffers of a stage to the 
next one. Except for the first and last 
stage, such a structure can be partitioned 
into a "current" stage, all its 
"precedent" stages, and all its 
"subsequent" stages. One can also define 
the "predecessor" stage as the immediately 
precedent one, and the "successor" 
likewise. 

What has been described so far can be 
considered the "data path" of a pipeline. 

4.2 Control Of The Ideal Pipeline 

While the data path of a pipeline mo~el 
just discussed is a simpler concept'. its 
control is more difficult. In the. 1d~al 
case shown in Fig. ~a, the synchron1zat1on 



is relatively simple and is based on 
"local control". 

LOCAL CONTROL := the "stop and go" of the 
pipeline is controlled by 
flags which are transported 
together with the items. 
These are the "valid flags" 
of the input and output 
buffers. The following two 
basic operations can give 
them the values of either 
"empty" or "full": 

LOAD 

DRAIN -

at the completion of a 
logical cycle, a stage 
writes an item into its 
output buffer and sets the 
buffer's valid flag to 
II full" o 

at the beginning of a 
logical cycle, a stage 
reads an item from its 
input buffer and sets the 
buffer's valid flag to 
"empty". 

Depending on the operation 
and on certain values of 
these flags, one of these 
conditions can occur: 

INPUT STALL := the input buffers 
valid flags are "empty" 
and the stage wants to 
drain them. Then the 
stage must not load the 
output buffers. 

OUTPUT STALL := the output buffers 
valid flags are "full" and 
the stage wants to load 
them. The stage must then 
stall to avoid data 
overrun. 

Even in the case of an ideal pipeline, an 
important performance issue is that of 
"elasticity" of the pipe. That is, the 
ability of the pipe to deliver results at 
full bandwidth in spite of its 
"irregularity". Irregularity usually 
refers to the fact that different stages 
in the pipe have different PMC's ad hence 
the time to process an item in each stage, 
its logical cycle duration, is variable. 
"Rigidity", the reciprocal of elasticity, 
measures the dependence of a stage on the 
stalled state of another stage. In other 
words, the rigidity is related to the 
speed with which the stall flags ripple 
through the stages, in either direction. 
Rigidity is counterproductive in that it 
stifles concurrency. For that reason, 
extra buffering is sometimes used: it 
allows a stage to execute even if some 
output buffers are already full, thus 
relieving output stalls. This also means 
that the successor's input buffers will be 
able to be "preloaded", thus relieving 
input stalls as well. 

539 

llt011Hlt011Hlt<;81r 
STAGE 

Rnourct 
Dependlnc~ 

lll'UT 
llll'FERS 

y 
MPIJT 
lll.fFERS 

"RAW "F!NIS1£D 
HATERIALS" PRODUCT" 

y 
STAGE 
FlKTIIJI 

Fig. 41. An Ideal Pipeline Hodel 

Fig. 4b. Pipeline ~in 

y 
TRANSPIJIT 

~ PREFETCl£R ~ DECODE *""- DAU ---!)E-(-- EJOX ~ 

[ :TI'][ 
WBlJS WllJS 

c---rvJ v v w ... t-- - R 
I 
F I L 

~ v /'T"I I ll'DE\ 0 ?"':\ ~ ~~ r. 
A 

·~ it- ~H ~I- v ~H 1-e ~ ~ 
ACU AJ~ ~ 

EJOX 
I~ A F t-- v l'i-11 H 

D I H 

~] 
. ..., 

u 
~tl. x 

~ :r 
IVA KD IVA KD EVA KD IVA KD 

[ H_l_G_X J 

Fig. 4c. Simplified Vl\X 8600 Pipeline Model 

However, simple minded FIFO extra 
buffering may introduce the negative 
effect of increasing the pipeline 
"latency", i.e. the number of physical 
cycles needed by an item to travel through 
the entire pipeline. This effect can be 
minimized by the use of "bypass" 
circuitry, as described in [9], at the 
cost of a very significant amount of 
control complexity. 
To minimize such complexity, one can 
reduce the number of buffers to just one. 
In this case, the stage buffer functions 
both as the output buffer of a stage and 
as the input buffer of its successor 
stage. The VAX 8600 design is very close 
to such model, see Fig. 4c. 

4.3 Dependencies 

While any pipeline model has embedded the 
"trivial" dependency of a stage on the 



predecessor stage, a more realistic 
pipeline model (see Fig. 4b) must inc~ude 
nontrivial data and control dependencies. 
These two factors make the implementation 
of the pipeline more difficult. 
Such dependencies can be grouped into two 

type 
direction 

dimensions. These are: 
(data/control) and 
(forward/backward). 

DATA: dependency of a stage on data 
values produced by other than the 
predecessor stage. . 
Example: the OAU stage must wait 
until the EBOX has updated a GPR 
before it can use it in the 
address calculation, see Fig. 4c. 

CONTROL: dependency of a stage on control 
produced by other than the 
predecessor stage. 
Example: the OAU stage, which 
also processes branches, must 
wait until the EBOX has generated 
the condition codes for the 
instruction preceding the branch 
before it can resolve it, see 
Fig. 4c. 

Each of the above dependencies can operate 
in either direction: 

BACKWARD: a piece of a data or control 
item affects a precedent stage. 
Example: either example above. 

FORWARD: a piece of a data or control 
item affects a subsequent stage. 
Example: the ·IBOX Write address 
dependency, which is described 
later in Section 4.4. 

are 
stage 

many 
for 
of 

Separate from the above, there 
"resource" dependencies, when a 
needs to use a resource shared among 
stages. The memory in the MBOX, 
example, is a resource shared by three 
the VAX 8600 stages. 
All of these dependencies sometimes allow 
a more efficient control of the pipeline 
via "global control". 

GLOBAL CONTROL := the "stop and go" of 
certain stages is 
controlled by key flags 
which are broadcast to them 
by another stage. Note 
that this mechanism 
operates in conjunction 
with the local control. 

In the next section the concepts just 
introduced will be used to represent the 
VAX 8600 in terms of a simple pipeline 
abstract model. 

540 

4.4 A Simplified VAX 8600 Model 

A simplified model of the data path 
portion of VAX 8600 pipeline is shown in 
Fig. 4c. In this model the FBOX is not 
shown, as its locus of control is very 
similar to that of the EBOX. This four 
stage design has two critical resource 
dependencies: the MBOX, which is used by 
the the Instruction Pre fetch stage 
(PREFETCHER) and sometimes by the Operand 
Access Unit (OAU) and EBOX stages; and the 
GPR's, which are used normally by the OAU 
and EBOX stages. 

Before discussing the simplified model, 
let's follow an instruction as it goes 
through the pipe. 
At the beginning of instruction 
processing, assume that all the IBOX 
buffers are invalid. In this case the 
EBOX dispatches the instruction prefetcher 
at the new instruction stream address. 
The PREFETCHER stage starts prefetching 
and loading instructions into the 
Instruction Buffer (IBUFFER). This is 
actually a simplification; the detailed 
mechanism is described in Section 5.1. 
The Instruction Decode stage (DECODE) 
drains the !BUFFER, and from the opcode 
generates a microcode dispatch address 
(not shown) for the EBOX. The Operand 
Address Calculation unit (ACU) in the OAU 
stage parses the operand specifiers and 
computes their effective address, in the 
process reading and possibly modifying the 
GPR's (e.g. autoincrement mode, (Rn)+). 
The Operand Fetch unit (OPFETCH) fetches 
these operands at that effective address 
and passes them to the EBOX. The EBOX 
then executes the instruction it was 
dispatched to; in doing so it drains the 
operands and writes the result into the 
GPR's, in case of register destination. 
In case of memory destination (and only in 
that case), the Memory Write unit (MEM 
WRITE) is used: it takes the result data 
from the EBOX and writes to memory via the 
Operand Port (see Fig. 2) at the address 
forwarded by the ACU unit. Such mechanism 
is called "IBOX Write". 

Let's now look at each stage of the pipe 
of Fig. 4c more in detail. 

The Instruction Pre fetch stage 
(PREFETCHER) is composed of the 
Instruction Address Calculation unit 
(IADDR) and the Instruction Fetch 
unit (IFETCH). The IADDR unit 
computes the next value of the 
Virtual Instruction Buffer Address 
register (VIBA) and issues an IBUFFER 
Request. The IFETCH unit fetches a 
longword from the VIBA register and 
loads it into the IBUFFER. This 
stage resides in both the IBOX and 
the MBOX. Its logical cycle lasts 
two physical cycles in the case of a 
cache hit, or N physical cycles 



otherwise, where N depends on the 
memory access delay. 

The Instruction Decode stage {DECODE) 
is composed of only one unit and 
always executes in one physical 
cycle. It decodes opcodes and 
specifiers from the IBUFFER and loads 
control data into the IFORK buffer 
and instruction stream data into the 
DMUX buffer. The DECODE stage 
resides entirely in the IBOX. 

The Operand Access Unit stage {OAU) 
is composed of the ACU unit and the 
OPFETCH unit. The ACU unit computes 
an operand effective address, loads 
it into the Virtual Address register 
(VA), and issues an Operand Request. 
The OPFETCH unit fetches the operand 
from the MBOX and loads it into the 
the IBOX Memory Data register (IMD). 
The OAU stage also forwards VA to the 
MEM WRITE unit. Note that this stage 
can contain two instructions at any 
given time. The OAU stage resides in 
both the IBOX and the MBOX. Its 
logical cycles lasts a minimum of two 
physical cycles. 

The EBOX stage is composed of the 
EBOX unit and the MEM WRITE unit. 
The EBOX unit executes instructions 
and stores results either into the 
GPR's or into the Write Latch for 
memory writes. In this case it 
initiates an IBOX Write command. The 
MEM WRITE unit actually performs the 
write operation at the VA address 
forwarded by the OAU stage. The EBOX 
stage resides in the EBOX, FBOX, 
MBOX and partially in the !BOX for 
memo~y writes. Its logical cycle 
lasts a minimum of one physical cycle 
for non !BOX Write instructions. It 
lasts at least three for IBOX Write 
instructions. 

In the simplified model each stage has 
only one output buffer, which functions 
also as the input buffer.of the su~cess?r 
stage. Thus a. drain ope:ati?n is 
implemented as an interstage drain.s7gnal. 
Note that in this case the elasticity of 
the pipe is reduced to a minimum. In the 
worst case, if the pipe is full and the 
last stage stalls, then all the stages in 
the pipe will stall. . . 
Also since a stall condition must be 
dete~ted before loading the output 
buffers in certain cases the stall 
conditi~ns may become more forgiving: 

INPUT STALL := the input buffers valid 
flags are "empty" and the 
stage wants to drain them, 
AND the predecessor stage 
"doesn't intend" to load 
them. 

541 

OUTPUT STALL := the output buffers valid 
flags are "full" and the 
stage wants to load them, AND 
the successor stage "doesn't 
intend" to drain them. 

In such a model there are some interesting 
examples of control dependencies: 

a) the PREFETCHER stage issues an !BUFFER 
request to the MBOX on the basis of the 
number of valid bytes in the !BUFFER, 
on the validity of the DECODE stage's 
output buffers, and on the "intention" 
of the OAU stage to drain them. 

b) the OAU stage must wait for the EBOX to 
complete the instruction preceding a 
branch in order to resolve it and start 
prefetching at the target address. 

c) in the case of an !BOX Write, the OAU 
stage forwards to the MEM WRITE unit 
the destination address (hardware-wise, 
it stays in the VA register). MEM 
WRITE then waits for the EBOX unit to 
provide the data. The reverse can 
occur: the EBOX may have to wait for 
disposing of the data when the ACU unit 
takes a long time to compute the 
effective address. 

5 IBOX 

The three pipe stages residing in the 
!BOX are physically composed of: 

a) An instruction prefetch stage 
(PREFETCHER in Fig. 4c), which 
prefetches the instruction stream for 
the !BUFFER. It is also used to 
fetch string data in string 
instructions. 

b) Decoding logic which produces 
dispatch addresses based on opcode 
and its specifiers for the operand 
address calculation unit micromachine 
and the EBOX. This is the DECODE 
stage as defined in the pipeline 
model. 

c) A micromachine, called the ACU 
micromachine, which implements the 
functionality of the OAU stage and 
part of the MEM WRITE unit. ~his 
includes operand address calculation, 
operand fetches, and result writes. 

Notice that the part of the MEM.WRI~E unit 
resides in the IBOX. It maintains the 
memory write address for result operands 
and shares responsibility with th~ EBOX 
unit to perform the actual result write. 

In addition, the IBOX maintains: 

a) a number of program counters for 
tracking different instructions being 



executed at different stages in the 
pipe, 

b) a local copy of the GPR's for 
operand effective address 
calculations and operand sourcing, 

c) a register scoreboard for 
resolving register access conflicts, 

d) a Register Log(RLOG) for register 
state restoration during exceptions 
and interrupts, 

e) a branch decision mechanism, and 

f) a number of control mechanisms to 
synchronize the pipeline. 

The importance of the VAX 8600 !BOX lies 
in the many functions it has to perform, 
and the extensive controls required to 
correctly synchronize all four stages of 
the pipe. 

Figure 5 depicts the datapath of the !BOX. 
The following sections describe the 
function of many features in the !BOX. 

+ 4 

VA 

Fig. 5. VAX B6ee !BOX Block Diag..111 

5.1 Instruction Prefetch 

ESA 

ISA 

CPC 

The pref etcher has an eight bytes wide 
!BUFFER and an associated addressing and 
control logic. It attempts to initiate a 
prefetch whenever an empty byte is 
detected inside the !BUFFER. The Virtual 
Instruction Buffer Address(VIBA1 :egister 
contains the next address in the 
instruction stream to be fetched from. 
Prefetch request addresses share the IVA 
bus with the ACU unit (see Figure 2). 
Since operand fetch is a result of 
executing an already decoded instruction 
it has a higher priority in using the IVA 
bus. Prefetches, on the other hand, can 
be postponed and thus have lower priority. 

542 

The memory subsystem queue can accept a 
second prefetch even if a previous 
prefetch is still in progress. This 
mechanism results in better utilization of 
the available memory bandwidth. Data 
received through the MOBUS is loaded into 
the appropriate location inside the 
!BUFFER. The VIBA is updated to form the 
next address whenever a prefetch request 
is accepted by the MBOX. 

During a cold start, after an exception, 
or for certain branches, such as the CASE 
type of instruction, the prefetch sequence 
must start fresh from a new instruction 
address. In this case, the EBOX places 
the new address on the WBUS and dispatches 
the ACU micromachine to an IBOX startup 
sequence. Instead of loading the address 
to VIBA and starts prefetching, the ACU 
micromachine initiates two consecutive 
requests before handing off prefetching to 
the prefetch unit. 

For some instructions requiring stream 
data or a stream of operands to be read 
consecutively from memory in its 
execution, the !BUFFER becomes a high 
speed data buffer supplying operands to 
the EBOX through the OPBUS. 

5.2 Instruction Decode 

Instruction decoding in the VAX 8600 is 
similar to that in the VAX 11/780, in the 
sense that the operand specifiers are 
decoded sequentially one at a time. When 
the I BUFFER contains pref etched 
instructions, byte zero contains the 
opcode of the current instruction, and 
byte one the first byte of the specifier 
currently being decoded. An instruction 
is decoded by looking up from a decoding 
RAM(DRAM), which is organized as an array 
of 512 sections, each of which has eight 
entries. Each entry is addressed by its 
section and entry index. The opcode byte 
plus the fact of whether the instruction 
has an extended opcode will address the 
section. The Execution Point 
Counter(EPC), which essentially is a 
pointer indicating the position of the 
specifier in the instruction will select 
the particular entry. The output of the 
DRAM consists of information specifying 
the data context (byte, word, long, etc), 
data type(address, integer and different 
floating point formats), and accessing 
mode (such as read, write or modify) for 
each specifier. It also provides the 
dispatch address (EFORK) to the EBOX. 

After each specifier decode, the !BUFFER 
shifts out the consumed specifier and 
shifts into the decoding position the next 
~pecifier. The DECODE stage also 
increments the EPC so that the new decode 
points to the next DRAM entry. The output 
of the DRAM plus data extracted from the 
specifier, such as GPR information and 
literal value, is buffered for the OAU 



stage. 

During decoding, using the specifier byte, 
a dispatch generation mechanism creates a 
dispatch address(IFORK) for the ACU 
~icromachine. This process will continue 
until the last specifier of the 
instruction is decoded and consumed. A 
bit in the DRAM output will indicate such 
occurrence. When this happens, the 
IBUFFER shifts out byte zero and the last 
specifier, thus allowing a new instruction 
to be shifted in. 

5.3 The ACU Micromachine 

With reference to the simplified pipeline 
model(Figure 4c), the ACU, OPFETCH, and 
MEM WRITE units are described here 
together. In this way, their 
functionality and synchronization 
mechanisms can be appreciated better. The 
IFORK saved in the DECODE stage provides 
the entry to the proper microsequence 
routine in the ACU micromachine. Using 
the buffered DRAM and specifier data, the 
ACU micromachine performs the necessary 
computations to calculate the effective 
virtual address and initiate operand reads 
from memory or from the GPR's if 
necessary. A copy of the GPR's is 
maintained in the IBOX so that register 
access can be done locally i.e. faster. 
This allows also register accesses (reads) 
by the IBOX, EBOX and FBOX simultaneously. 

For an operand which comes from a register 
source, data read from GPR file, after 
passing through the ACU adder, will be 
loaded to the instruction data(ID) 
register. Immediate data, which comes 
from a buffer in the DECODE stage, takes a 
similar route through the unpack logic to 
the same ID register. The operand data is 
then ready for the EBOX through the OPBUS. 
The unpack logic is used to convert fixed 
point short literals to a floating point 
format. 

For an operand fetch from memory, the ACU 
micromachine loads the operand effective 
virtual address from the adder into the VA 
register and issues an operand fetch 
request through the IVA bus. The IMD 
register holds any operand data returned 
from MBOX before forwarding it to the EBOX 
through the OPBUS. If the addressing mode 
is indirect(e.g. autoincrement deferred) 
then the returned data in IMD is the final 
virtual address of the operand. The ACU 
micromachine loads IVA with IMD data and 
issues another operand fetch request. The 
EBOX Memory Data register(EMD) serves a 
similar function, but holds memory data 
returned as a result of EBOX requests. 
Placing the EMD physically in IBOX 
eliminates the need for the EBOX to 
interface with the MOBUS directly. 

The ACU micro sequences for many simple 
and frequently used specifiers take one 

543 

cycle, so that one specifier can 
potentially be processed in each cycle. 
Some examples of such specifiers are: the 
register mode, Rn; the register deferred, 
(Rn); byte, word, and long displacement 
modes, BAD(Rn), WAD(Rn), and LAD(Rn). 
The successful processing of an operand 
specifier in the OAU stage also loads the 
earlier buffered EFORK into a register 
accessible by the EBOX. 
The completion of an operand fetch may 
take many cycles if the source is in 
memory. Here, the execution unit may have 
already started executing the EFORK 
microsequence, and attempt to read and use 
the source operand which is not yet 
available. To resolve this the OAU stage 
provides additional operand data valid 
flags. 

The ACU micromachine also issues the 
actual operand write request for most 
instructions. In this case, the 
micromachine saves the calculated 
destination address and waits until 
operand results are ready from the EBOX. 
When the results are ready, the EBOX 
writes them, via the WBUS, into a register 
internal to the IBOX, the WR LATCH. It 
also releases the ACU micromachine to 
issue the appropriate operand memory write 
request. 

5.4 Multiple Program Counters 

The VAX 8600 CPU maintains a number of 
program counters for each of the 
instructions under execution in the pipe. 
This is necessary so that instruction 
restart after exception fixup is possible. 
The program counters are: 

a) Program Counter(PC) which follows 
the opcode, operand specifier, and 
immediate data or addresses as they 
are decoded. 

b) Current Program Counter (CPC) 
which points to the instruction to be 
executed next in the OAU stage. 
Normally, this is the instruction 
currently being decoded. 

c) iBOX Starting Address (ISA) which 
points to the instruction being 
executed in the OAU stage. 

d) EBOX Starting Address (ESA) which 
points to the current instruction 
being executed in EBOX and FBOX. 

The pref etcher maintains 
instruction stream address 
VIBA register, for requests 
I BUFFER. 

its 
pointer, 

to fill 

own 
the 
the 

The updating of the CPC, ISA, and ESA 
happens when an instruction enters the 
DECODE, OAU, and EBOX stages respectively. 
In general, CPC will be loaded with the 
address of the beginning of the 



instruction to be decoded. ISA will be 
loaded with CPC when the OAU has started 
processing with that instruction. 
Similarly, ESA will be loaded with ISA 
when the EBOX begins to execute that same 
macro instruction. 

5.5 Instruction Backup And Unwinding 

In the VAX architecture, an exception may 
occur during the execution of an 
instruction. An example of an exception 
will be a page fault on a memory read. 
For most instructions, the VAX 
architecture requires that the program 
state be restored to that prior to the 
execution of the instruction, so that 
after a fix up sequence, the same 
instruction can be restarted. For some 
types of instructions, such as the string 
instructions, total program state 
restoration is impossible. The constraint 
here is that those instructions must be 
able to continue after exception 
processing. 

In the VAX 8600, the program state that is 
required to be restored are those GPR's 
which have been modified during address 
calculation, and the instruction starting 
address. Those addressing modes, such as 
the autoincrement and autodecrement, will 
modify GPR's and such information is kept 
in the RLOG. During instruction 
unwinding(also called instruction backup), 
the ACU micromachine will restore from the 
RLOG those affected GPR's. Since a number 
of instructions can be residing in 
different stages of the pipe 
simultaneously, the RLOG has enough 
entries allowing register restoring for 
multiple instructions. The PC for the 
instruction in question will also be 
restored from either CPC, ISA, or ESA 
depending on the state of the pipe stages. 
This mechanism is also used to handle 
interrupts. 

5.6 Branch Instruction Processing 

The IBOX also calculates the branch target 
addresses, and performs branch decision 
for most branches. This includes those 
conditional( e.g. BEQL, BNEQ), 
unconditional(e.g. BRB) branches, as well 
as the computed branches(e.g. ACBL, 
SOBGTR). Such decisions are made by 
looking at the appropriate bits in the 
condition code result from an execution 
prior to the branch. The branch 
prediction scheme used here is biased 
towards branch taken. Figure 6a and b 
shows an example of the microinstruction 
sequence for a branch instruction. 

During a conditional 
micromachine holds 
address in the VA 

branch, the ACU 
the branch target 

register, and will 

544 

attempt to initiate an instruction fetch 
from that address prior to when a decision 
can be made. A condition code 
synchronization signal (CCSYNC) from the 
EBOX signifies that the condition code 
will be ready in the next physical cycle. 
In cycle 3, when CCSYNC is received, the 
ACU micromachine issues the first request 
of the branch target instruction stream. 
In the next cycle, when it receives the 
condition codes, it uses them to decide on 
whether the branch is to be taken. 
Because of signal delay, the decision will 
not be known early enough to inhibit the 
instruction fetch issued in cycle 3, in 
the case the branch is not to be taken. 
In that case, correction must be performed 
in cycle 4. 

A branch taken decision(Figure 6a) means 
that the instruction prefetch request is 
correct, and additional requests can be 
issued. The IBOX then flushes the 
PREFETCHER and DECODE stages, which still 
hold the old instruction data, and allows 
the new instruction stream to be loaded 
and decoded. 

A branch not taken decision(Figure 6b), on 
the other hand, causes an abort of the 
prefetch request initiated earlier in 
cycle 3 from the target address, therefore 
allowing the pref etcher and decoder to 
resume the processing of the current 
instruction stream. There is no penalty 
for branch not taken here if the current 
instruction stream is already in the 
!BUFFER, and the cost of starting a new 
instruction stream is also kept at a 
minimum. This scheme gives a simple but 
yet effective mechanism to handle 
branches. 

CYCLE 

!BOX 

FLUSH PIPE 

A~T 

CC SYNC 

COO) CODE 

EBOX 

CYCLE 

!BOX 

FLUSH PIPE 

ABORT 

CC SYNC 

COO) CODE 

EBOX 

1 2 • 4 I 
TSTL BEIJL FETCH FETCH 

FR1l1 VA FROH VA 
VA <- TA 'IA - VA VA <- VA+4 

VIBA <- VA+4 

\'-.-

1-
'-

ACCESS EXECUTE 
TSTL TSTL 

Figure 6a. Branch Instruction Taken Sequence 

1 2 3 4 

TSTL BEIJL FETCH FETCH 
FR!J1 VA FR!J1 VA 

VA <- TA VA <- VA VA <- VA+4 
VIBA <- VA+4 
<Instruction 
No Oped) 

I'-

ACCESS EXECUTE 
TSTL TSTL 

F igur• 6b. Branch Not Taken Se<luence 



The EBOX \s responsible to handle the 
remaining types of branches and other 
instructions which can alter intstruction 
flow. This includes: CASE instructions, 
subroutine calls, and returns. The 
mechanism used is the same as that 
described for cold start in Section 5.1. 

5.7 Data Dependency Resolution 

The use of pipelining in the VAX 8600 IBOX 
requires additional mechanisms to resolve 
data dependency among instructions. Data 
dependency can happen in many situations, 
two key examples are: 

a) Register conflicts when a source 
operand uses a register which is also 
the destination register of the 
previous instruction. For example, 
in 

MOVL RO,Rl 
MOVL (Rl),R2 

Sourcing of Rl by the ACU unit in the 
second instruction must be inhibited 
until the first instruction is 
completed in the EBOX. 

b) Memory conflicts if out of order 
memory access is allowed. For 
example, in 

MOVL RO,(Rl) 
MOVL ( R2 ) , R3 

If Rl equals R2, then operand read 
for the second instruction must be 
postponed until the write in the 
first instruction is issued. This 
also mandates additional collision 
detection logic exists. 

The VAX 8600 IBOX uses a register 
scoreboard and a single operand port to 
resolve both problems. The scoreboard 
provides a simple reservation table 
mechanism to accomplish this resolution. 
The ACU unit will enter the GPR number to 
the scoreboard for every register 
destination specifier it processes. For 
every subsequent ACU sourcing from a GPR, 
the scoreboard is looked up to detect any 
conflict. If such a conflict exists then 
the sourcing operation is temporarily 
inhibited via a scoreboard stall. A write 
to the GPR by the EBOX will remove it from 
the scoreboard thus allowing the 
previously stalled sourcing operation to 
resume. In the VAX 8600, the scoreboard 
can be looked upon as a two entry 
associative memory structure. 

Figure 7 shows an example of the functions 
of the scoreboard for the instruction 
sequence described in a). 

Cycle 1: The ACU unit is processing 
the MOVL RO,Rl instruction. The 
scoreboard at this time is assumed to 

545 

CYCLE l 2 J 4 !5 
llM. Rt,Ri llM. <Rll ,R2 

IBOX READ Rt VA<- Rt VA <- Rt VA <- Rt 
ID<- Rt READ VIRTUM. READ VIRTUM. READ VIRTUM. 
SB R1 SB R2 SB R2 SB R2 

<CYCLE !CYQ.E 
STlUEDl ST111.LED> 

~ ~ ~ ~ - [±] 
SB HIT 

RESlL T READY 

EllDX 
EXECUTE 
llM. Rt,Ri 

1' ./ 

WAIT f'lll WAIT f'lll 
1£11 INST, 1£11 INST, 

be empty. The ACU unit reads RO and 
loads ID, the cycle is completed 
without problem. 

Cycle 2: The scoreboard is loaded 
with Rl. Since cycle 2 requires 
using Rl as address source, the IBOX 
control discovers that there is a 
scoreboard hit on Rl, and the cycle 
can not be completed. In this case 
the ACU micromachine will attempt to 
execute the same microinstruction 
again next cycle. 

Cycle 3: EBOX can execute the first 
MOVL instruction and the result is 
not available until the beginning of 
cycle 4. Just the same as in cycle 
2, the ACU micromachine still stalls 
in cycle 3. 

Cycle 4: The ACU unit 
and finish the 
instruction. 

can continue 
second MOVL 

Cycle 5: The scoreboard is now 
loaded ~ith R2. Similar to those 
earlier stalled cycles, the ACU 
micromachine will not be able to 
complete if the next instruction uses 
R2 in operand evaluation. In that 
case, the ACU micromachine stalls 
until write to R2 is completed. 

Memory conflicts will not happen in the 
VAX 8600 because the ACU micromachine 
controls both operand read and write for 
most instructions via the operand port. 
The micromachine is sequenced in such a 
way that out of order memory access from 
IBOX is impossible. 

Certain instructions whose operand address 
may not be known at the time of 
decoding(e.g. bit field instructions) 
will be handled by the EBOX. Operand 
fetch is done directly by the EBOX via the 
EBOX port(see Figure 2). In those 
instructions, the IBOX suspends itself 
after the completion of the address 
calculation of all specifiers. An IBOX 
suspension will prohibit any new operand 
fetch requests from the operand port. 
This prevents the potential memory 
conflict from occurring when IBOX attempts 



to read operands for the next instruction, 
while the current operand result has yet 
to be written by the EBOX. 

5.8 Instruction Optimizations 

The IBOX generat~s a number of 
optimizations to give better performance 
to the CPU. For instructions using GPR as 
result destination, the DECODE stage will 
consume also the GPR specifier during the 
decoding of the specifier immediately 
before, and present only a single dispatch 
address to the execution unit. In 
addition to the source operand, the IBOX 
also supplies to the EBOX the destination 
GPR address, which the EBOX will use to 
access its local GPR file. This 
optimization essentially cuts away one 
dispatch to the EBOX. 

Another form of optimization eliminates 
scoreboard stalls when the source operand 
is in the same GPR to be updated in the 
future by the previous instruction. In 
this case, the ACU unit will ignore the 
scoreboard stalling situation, and present 
a modified dispatch address to the EBOX 
signaling to this fact. The EBOX will 
access the correct updated GPR value from 
its own local copy subsequently. 

5.9 Pipeline Stage Synchronization 

As described earlier in the section on the 
VAX 8600 pipeline, interstage 
communication in the VAX 8600 is done 
through a number of drain signals, as well 
as a few global flags. Here each stage of 
the pipe set the valid flags of the output 
buffer to "full" when data is ready. The 
drain signal returns the fact that the 
buffer is going to be consumed by the 
successor stage. This will make the valid 
flag "empty". The global flags are 
generally broadcast to most other stages. 
This interlock mechanism provides the 
basis for the synchronization among pipe 
stages. 

Since each stage of the pipe may take a 
varying number of physical cycles to 
complete, there are, at times, empty or 
full conditions in a pipe stage. An empty 
condition occurs in a pipe stage when it 
wants to drain its input buffer but it is 
empty. This condition will cause an input 
stall or idling. A full condition occurs 
in a pipe stage when it wants to load its 
output buffer but it is full. This 
condition will cause an output stall. 
Other reasons, such as resource 
contention, will also cause the idling and 
stalling condition. 

Each stage uses a different scheme to 
handle such conditions. In both the 
PREFETCHER and the DECODE stages, internal 

546 

flags are maintained to indicate empty or 
full conditions. The PREFETCHER keeps 
track of the number of valid bytes in the 
IBUFFER and initiates a new prefetch if 
necessary. Data removed from the IBUFFER 
by the DECODE stage will decrease the 
number of valid bytes, whereas new 
prefetched data will increase the number. 
When the IBUFFER is full the PREFETCHER 
will have an output stall, i.e. no new 
prefetch requests will be issued. The 
DECODE stage loads the output buffer valid 
flags after each decode. It will assume 
an output stall if the buffer is not 
drained by the ACU unit. The ACU unit, in 
turn, can drain such buffer during its 
execution and clears the valid flags, 
therby allowing decoding to be resumed. 

The ACU micromachine contains the more 
complicated stalling and idling mechanism. 
This is where most resource contention, 
dependency conflicts as well as full and 
empty condition can occur. 

There are essentially three 
stalling and idling in 
micromachine 

types 
the 

of 
ACU 

1. Resource contention and busy, and 
dependency conflict stalls Resource 
contention includes simultaneous update of 
GPR by the instruction and execution unit, 
and use of certain bus by two resources at 
the same time, etc. This is best 
exemplified by the register dependency 
conflict detection in the scoreboard. 
Another form of this kind of stalls can be 
resulted from memory requests not being 
accepted due to memory busy. A full 
condition which prevents any further 
progress of execution is also another 
example. In general, for this type of 
stalls, the micromachine will suspend the 
execution of the current instruction, and 
resume when such stall condition is 
removed. 

2. Idling and No ops - Empty conditions 
happen in the ACU unit, for example, when 
the instruction decoder cannot provide a 
dispatch address due to not enough valid 
bytes in the IBUFFER. Another no op 
condition is microtraps due to unaligned 
data references, and flushing of the pipe. 
In both cases, the micromachine will 
execute the instruction, but none of the 
pertinent machine state will be modified. 
In the next cycle the micromachine will 
normally execute a fresh new instruction 
generated through traps or the 
availability of the next dispatch address. 

3. Special stalls In certain cases 
where the purpose of the execution is only 
to supply dispatches to the EBOX, the 
micromachine will stall to prevent 
modification of most of the state. A few 
states such as EFORK loading is still 
allowed. This kind of stall occurs most 
often for single byte instructions without 
any specifier. Here, a superfluous 
dispatch address to the ACU is generated, 
and should not be executed to modify any 



state unintentionally. But, the 
dispatch must be loaded and 
appropriate program counter updated. 

EBOX 
the 

6 AN EXAMPLE 

In order to get a more global view of the 
whole process of executing a piece of code 
on the VAX 8600 pipeline, an example is 
given in this section in Fig. 8. The 
program segment, shown in the box in 
Fig. 8, employs two key mechanisms of the 
design: a branch and an IBOX Write. The 
primary purpose of this example is to show 
the following aspects: 

I 
ADllR 

I 
FETCH 

DECODE 

ACU 

OP 
FETCH 

E!OX 

1£K 
llUTE 

a) the flow of many instructions 
through the pipe, including their use of 
the stages, units and resources. 

b) the state of the pipe at any given 
physical cycle, snapshot-like, in order 
to appreciate the interaction among the 
various instructions active in the pipe. 

2 3 4 11 12 13 14 15 16 

.......__ 

ltM. CRU,Re 
ADDl.2 16,R3 
CIFI. R7,R3 
BEil. A 

ltM. 
A: INCL CR6l 
ltM. R1,R2 

2 4 5 6 9 9 18 11 15 16 
Fig. 8. fin ExaMple of the VAX 86ee Pipeline. 

Figure 8 shows how simple instructions, 
such as the first three in the example, 
flow through the pipe in a straightforward 
way, using only one physical cycle per 
unit. All pipe units are then kept busy 
constantly, thus achieving the VAX 8600 
peak throughput of 12.5 mips, which 
corresponds to the pipe executing one 
macro instruction per physical cycle. 
Notice that in this case results are 
written to the GPR's, so that the 
MEM WRITE unit is not utilized. Also, 
simple memory reads do not stall the pipe, 
but are performed in only one cycle in t~e 
OPFETCH unit. Moreover, the ACU unit 
immediately starts processing the next 
specifier after having issued a memory 
read request: related memory problems, if 
any exist, will be handled by the EBOX. 

The branch instruction which follows in 
the example is one in which the branch is 
taken. It is therefore processed 

547 

according to the mechanism described in 
Section 5.6 and in Fig. 6a. At the 
beginning of cycle 8 the CMPL instruction 
in the EBOX sends CCSYNC to the ACU unit, 
which in turn issues an IBUFFER request, 
"ibf" in Fig. 8, from the branch target 
address, "TA" in Fig. 8. This request 
will result in the IFETCH unit fetching 
the INCL instruction in cycle 9. Also in 
cycle 9, the condition codes, "cc" in 
Fig. 8, computed by the CMPL instruction 
arrive at the ACU unit, where they 
determine that the branch is to be taken. 
The ACU then issues a "flush" command to 
the PREFETCHER and DECODE stages to make 
room for the new instruction stream. 
Notice that instruction execution will 
resume in the EBOX four physical cycles 
after the branch: this is a relatively 
small penalty for a branch, given that the 
pipeline latency is normally six physical 
cycles. 

The INCL instruction which was prefetched 
by the branch mechanism arrives in 
cycle 11 in the ACU unit, where the 
operand effective address is loaded in the 
VA register. In the same cycle a memory 
read request is issued and the operand 
address is kept in VA until the EBOX is 
ready to do the write. The operand is 
fetched in cycle 12 and passed to the EBOX 
in cycle 13. Then the EBOX performs the 
increment function, sends the result to 
the MEM WRITE unit into the WR LATCH and 
issues an !BOX Write command ("ibwrite") 
to the ACU micromachine. This in turn 
issues the memory write request to the 
MBOX via the Operand Port, see Fig. 2. 
The EBOX waits two extra cycles after 
having issued the IBOX Write in order to 
handle potential memory problems, such as 
a page fault, before the ESA register is 
overwritten by retiring the instruction. 
Execution of the following instruction 
stream resumes normally in cycle 16. 

7 CONCLUSIONS 

In this paper, the instruction and operand 
fetch unit (IBOX) of the VAX 8600 
implementation of the VAX architecture has 
been described. In addition, a simplified 
model of pipeline implementations was 
introduced. In this model, a "pipeline" 
is described as a sequence of stages 
connected by a transport mechanism, which 
moves an item from the output buffers of a 
stage to its successor (i.e., a partial 
ordering). In connection with this model, 
the crucial issues in designing a pipeline 
were discussed in reference to a specific 
implementation, that of the VAX 8600 and 
its IBOX. The most important of such 
issues are: 

1. the hand-off of items from one stage 
to the next, that is, the issue of 
local vs. global control, 



2. buffering, which relates to the number 
of items within a stage, 

3. contention for resources, and the 
associated stall conditions, and 

4. dependency of one stage on the 
activity of another stage (e.g. 
forward and backwards dependencies) 

The significance of this implementation of 
the VAX architecture, and of the design 
presented here, lies in the successful 
resolution of the complex design problems, 
which occur in the pipeline implementation 
of modern architectures, such as the 
VAX-11. Specifically, the use of register 
scoreboard to prevent the use of stale 
register data, a facility to recover in 
the presence of exceptions, and 
synchronization mechanisms to deal with 
VAX-11 specifics, such as unaligned 
references, can be considered a major 
accomplishment. The capabilities of this 
design, i.e. a four times speed 
improvement over the VAX 11/780, and under 
favorable conditions, the ability of the 
IBOX to deliver to the EBOX one 
instruction every 80 nsecs, which means a 
peak execution rate of 12.5 rnips, 
certainly make the VAX 8600 a major 
engineering achievement. 

Acknowledgment 

A project of this magnitude requires 
diligent efforts from a large number of 
people, from the architects and designers, 
to technicians. From different support 
personnel in CAD to manufacturing. To 
name all the people actively involved in 
this project would need many pages. 
However, the authors are particularly 
grateful to the following people: Bob 
Glorioso, Jud Leonard, Al Helenius, Clem 
Liu, John Derosa, Torn Knight, Pete Rado, 
Rich Glackemeyer, Albert Yu, Elaine 
Hanson, Frank McKeen, Tryggve Fossum, Bill 
Bruckert, and Jim Lacy. 

548 

References: 

[l] Digital Equipment Corp. 1981. 
"VAX Architecture Handbook," Digital 
Equipment Corporation, Maynard, 
Massachusetts. 

[2] Bruckert, W., Quaynor, N., Colon 
Osorio, F.C., 1985 "The Virtual 
Memory And Cache Unit Of The 
VAX 8600," Internal Technical Report, 
Digital Equipment Corporation, 
Marlboro, Massachusetts. 

(3] Block, E. 1959. "The 
Engineering Design of the STRETCH 
Computer", Proc. EJCC, pp.48-59. 

[4] Anderson, D.W., Sparacio, F.J., 
and Tomasulo, R.M. 1967. "The IBM 
System/360 Model 91: Machine 
Philosophy and Instruction Handling", 
IBM J. Res. Dev., January, pp. 
8-24. 

(5] Hintz, R.G., and Tate, D.P. 
1972. "Control Data STAR-100 
Processor Design", Proc. COMPCON, 
IEEE No. 72CH0659-3C, pp.1-4. 

[6] Cray Research 
"CRAY-1 Computer 
2240004, Cray 
Bloomington, Minn. 

Inc. 
System, 

Research 

1976. 
No. 

Inc., 

(7] Kogge, Peter M. 1981. "The 
Architecture of Pipelined Computers," 
McGraw-Hill, New York. 

[8] Siewiorek, D., Bell, C.G., 
Newell, A. 1982. "Computer 
Structures: Principles and 
Examples," McGraw-Hill, New York. 

(9] Lampson, B.W., McDaniel, G.A., 
Ornstein, S.M. 1981. "An 
Instruction Fetch Unit For A 
High-Performance Personal Computer," 
XEROX Palo Alto Research Center, Palo 
Alto, California. 



IN SEARCH OF THE VAXINTOSH 
CUSTOMIZING VMS V4.0 FOR DCL WINDOWS 

James G. Downward 
KMS Fusion, Inc. 

Ann Arbor. Michigan 48106-1567 

ABSTRACT 
Inevitably. while in the editor. testing a program. or 
performing some task requiring the deepest concentration. 
an interruption occurs forcing one to terminate the cur
rent activity and start up another. This causes signifi
cant loss of time and efficiency. To ameliorate this situ
ation. a simple method of adding windows to VMS is 
presented which allows single keystroke entry to and exit 
from DCL windows. These windows may be accessed from DCL, 
command procedures. MAIL, and three DEC video editors. 

INTRODUCTION 

Over the years. a hither-to unmentioned law 
governing the art of programming has become 
increasingly obvious to me. Namely, 

During normal working hours, 
interruptions are the rule, 

not the exception. 

Inevitably. while in the editor, or testing a pro
gram. or performing some task requiring the deepest 
concentration. an interruption occurs. The inter
ruption may take the form of a phone call, a direct 
confrontation with an irate user. new VAX mail, a 
brilliant idea which just must be tried out, or 
perhaps yet another fire to be put out. Prior to 
VMS V4.0, there was little one could do to amelio
rate this problem. VMS V4.0, however, has a number 
of features which may be used to help minimize the 
disruptive effects of these interruptions. Speci
fically, DCL "windows" can be implemented which can 
be used to manage each interruption without loosing 
the context of the previous activity. 

This paper will describe methods of implement
ing such windows for 

1. DCL AND MAIL 
2. Command Procedures 
3. The VMS V4.0 editors EDT, LSE and TPU. 

While VMS and a number of utilities have the SPAWN 
command available to the user, the window interface 
to be described has been found in practice to be 
simpler to use because. 

1. Windows are consistently invoked with a single 
key command. 

2. Confusion is minimized because one always knows 
if one is in a window. 

THE DCL WINDOW INTERFACE 

Ideally, each user would have a "VAXintosh"-
1 ike terminal. By pressing a single key. work in 
progress would be interrupted, the application 
context and screen saved, and a fresh, full func
tion window similar to what one might see on a 

Proceedings of the Digital Equipment Computer Users Society 549 

Macintosh or VAXStation would appear. The user 
could switch back and forth between windows without 
loosing context, move them around and resize them 
to meet the particular application needs, and fi
nally close a window returning the the initial work 
in-progress when the interruption occurred. 

Unfortunately. standard DEC VT100/VT200 termi
nals cannot support such bit-mapped graphic windows 
and until either VMS has real virtual terminals or 
all VMS utilities and RMS use the SMG terminal I/0 
interface, process-wide, overlapping, cellular-text 
windows are al so hard to implement. 

Consequently, the various "window" implementa
tions to be discussed here are designed to meet a 
more limited set of goals, namely: 

1. Ease of implementation. 

2. Single keystroke Window activation from DCL or 
application prompt. 

3. Normal user/DCL interaction. 

4. Consistent user interface for windows activated 
from DCL, command procedures, editors, MAIL, 
etc. 

5. Window display identifies currrent window in 
use. 

6. Simple return to the parent process by typing 
Control -Z. 

7. Simple access to sequentially nested windows. 

To meet these goals, DCL "windows" are impl e
mented as subprocesses running a command dispatcher 
procedure which sets up the terminal, prompts the 
user for input, issues the command to DCL and then 
loops back to prompt for more input. Several types 
of window procedures are possible depending on what 
is considered to be an acceptable response time. 

The Basic Window Procedure 

The window procedure shown in Listing 1 is 
fast, simple to implement, and can be adapted to 
work with hardcopy terminals. It reminds the users 

New Orleans LA - 1985 



that a window is active via the prompt string. 
When invoked it first executes the SETUP commands 
which are located at the end of the command proce
dure to optimize response time. During the SETUP 
section, the VTlOO screen is erased and the process 
name is obtained to include as part of the prompt 
string. After the initialization is completed, the 
user is prompted for input and that input is sent 
directly to DCL. If the user types Control-Z on 
input, the command procedure exits back to the 
parent process. Note that throughout the command 
procedure, extreme care is taken to insure that 
SYS$INPUT is always correctly pointing at the 
user's terminal. A second item to note are the 
lines starting with "!***"• These lines should be 
uncommented if the window procedure is to be used 
with EDT or any application image which can keep an 
active subprocess available for possible re-use 
until the image exits. 

The Window With Banner Procedure 

The window procedure shown in Listing 2 works 
with VTlOO compatible terminals. At its core, this 
procedure is quite similar to the first procedure. 
However, it uses numerous VTlOO escape sequences to 
display and maintain the window banner at the top 
of the terminal screen. Specifically, it 

1. Establishes a scroll region below the window 
banner so that the banner will not be overwrit
ten with as each new command is entered. 

2. Uses the ASK utility program (read with time
out) to request cursor location from the VTxx 
terminal • 

3. Restores the cursor to the correct line and 
refreshes the window banner after each command 
is processed. 

4. Saves and restores screen attributes between 
commands. 

5. Establishes an internal typeahead buffer so 
that user input can be separated from cursor 
location requests. 

This procedure uses two non-standard foreign com
mands, PAGE and ASK. The ASK command invokes the 
ASK image and behaves similarly to INQUIRE except 
that it can perform a read with timeout and can 
read escape sequences from a terminal. The PAGE 
command is a command procedure which erases screens 
of VTlxx and VT2xx terminals. Besides erasing ANSI 
terminals, it knows how to erase the graphic over
lays of ReGis graphic terminals such as the VT125. 
Both ASK and PAGE are on recent VAX SIG Symposia 
tapes. 

By extending the second procedure, it is pos
sible to implement even more elaborate window pro
cedures. For example, for VT240 terminals, a task 
to save the screen contents and cursor location to 
a SIXEL file prior to exiting a window could be 
added. On return to the window, the screen could 
be restored to its previous state and the cursor 
repositioned to its previous position. However, 
the save and restore screen operations signifi
cantly slow down window creation and deletion 
ti mes. 

Limitations of the Window Procedures 

While using a procedure to emulate a DCL 
window provides the user with a nearly normal ter
minal environment, user commands with embedded 
single quotes will not work correctly. In prac
tice, this limitation has not been found to be a 
serious problem. 

A second limitation is that it is assumed 
that each window is entered and deleted on a "last 
created, first deleted" basis and that as each 
window is deleted, one returns to the "parent" of 
that window. However, using the ATTACH command it 
is possible for the experienced user to "jump" 
between multiple open windows. If this is done, 
however, it is possible for things to get very 
confused, and exiting a low level window back to 
its parent can either delete an active subprocess 
of the window or worse, leave the subprocess dan
gling unaccessed in the system. 

ADDING WINDOWS TO UCL AND MAIL 

Once one has developed a window procedure, 
providing single keystroke access to DCL is very 
straightforward by usiny the UEFINE KEY command. 

$ DEFINE/KEY/NOLOG/NOECHO/TERMINATE F20 
"SPAWN/NOLOG @DCLWINDOW" 

Unfortunately, one must either be at the DCL prompt 
or interrupt the currently executing image in order 
to start up the new window because the DEFINE KEY 
facility does not allow multiple commands to be 
embedded in the key definition. However, for VT2xx 
terminals one can define a UDK (User defined key) 
to contain both a Control-Y and the above SPAWN 
command. The UDK is then activated by pressing 
SHIFT-F20. The drawbacks of this method are that 
creating a UDK load module is somewhat tedious (it 
must be written in HEX) and that one must remember 
to issue the CONTINUE command to resume the inter
rupted image immediately after exiting the window. 

In a similar fashion, this facility can be 
added to MAIL by creating a file 
SYS$SHARE:MAIL$KEYDEF.INI with the command 

UEF INE/KEY F20/TERMINATE/NOECHO "SPAWN @DCLWINDOW" 

and defining 

$DEFINE MAIL$1NIT SYS$SHARE:MAIL$KEYDEF.INI 

in the system wide LOGIN.COM file. 

ADDING WINDOWS TO COMMAND PROCEDURES 

It is simple to create command procedures 
which allow an exit to a new window at any prompt 
by using the ASK command (mentioned above). In the 
following command procedure code fragment, the ASK 
command is used to prompt the user for a choice. 
If the user presses the F20 key, or any key gener
ating an escape sequence, the escape sequence is 
checked to see if it is a command to create a new 
window. 

550 



$Start: 

$ ASK/UPPER Choice "Choice: " 
$ Option[O,l]:='Choice' 

Get all of input line 
Isolate 1st character 

$ IF Option .EQS. "<ESC>" THEN - If any escape sequence present 
go find which one GOTO Check_Escape_Seq 

$Check Escape Seq: 
$ IF-Choice-.EQS. "<ESC>[34 " THEN - If F20 key pressed 

GOTO New Window 

$New Window: 
$ ~PAWN/NOLOG @DCLW IN DOW" 
$ PAGE 
$ GOTO Start 

ADDING WINDOWS TO EDT, LSE, AND TPU 

Using the basic procedures discussed above, it 
is also possible to add windows to DEC's video 
editors, EDT, LSE, and TPU. Since adding windows 
to EDT is the more difficult than adding them to 
LSE/TPU, the required EDT changes will be discussed 
first. 

Modifying EDT V3.0 for DCL Windows 

Adding windows to EDT requires that a new 
version of EDT be built. This involves creating a 
new EDT mainline to parse the DCL command line to 
set filenames and flags, establish a user XLATE 
subroutine and exit handler, and invoke the calla
ble EDT subroutines in SYS$SHARE:EDTSHR. 

The version of EDT to be discussed here, 
VPWEDIT, behaves identically with EDT V3.0 except 
that it provides access to DCL windows. Two new 
EDT features allowed VPWEDIT to be developed. 
First, EDT is provided as a sharable image which 
may be called as a subroutine from within a user 
program. This functionality is described in Appen
dix D of the RSX EDT V3.0 reference manual or in 
the VAX/VMS Utility Routines Reference Manual. 
Using the callable EDT interface allows one to 
create a program which exactly mimics functionality 
of the EDT editor. Second, EDT provides the 
NOKEYPAD XLATE command which allows the user to 
pass command strings to a user-specified 
subroutine. 

Creating the VPWEDIT is straightforward. A 
mainline program extracts the switches and files 
specified on the DCL command line and calls EDT 
specifying an action subroutine, WINDOW, to call if 
the XLATE command is used. The WINDOW action rou
tine establishes an exit handler to keep track of 
the current subprocess in use so that it can be 
deleted when the editor exits. The WINDOW action 
routine creates or attaches subprocesses as needed 
to provide the DCL window. In the following sec
tions, these program modules will be discussed in 
greater detail. 

The Editor Mainline 

The VPWEDIT editor is designed to be an exact 
replacement for EDT. This replacement is 

551 

A fresh window, please 
Erase the screen (if needed) 
Go back to where we started 

transparently accomplished by inserting a command 
of the form 

$ DEFINE EDT SYS$SYSTEM:VPWEDIT 

in the system-wide login command procedure. Once 
this is done, DCL will invoke the VPWEDIT image 
rather than the EDT image in response to the EDIT 
command. The only function of the editor mainline 
is to find what switches and files are on the DCL 
EDT command line. The code for VPWEDIT is shown in 
Listing 3. The example here was written in BASIC 
but it could just as easily have been implemented 
in any other supported VAX language. BASIC was 
chosen because it handles variable length strings 
automatically. For efficiency, VPWEDIT should be 
installed as /OPEN/SHARE. 

The WINDO\~ Subroutine 

When the NOKEYPAD XLATE command is processed, 
the subroutine specified in the EDT$EDIT call for 
handling the XLATE command is called and any text 
associated with the XLATE command is passed to the 
function subroutine. Since the XLATE collllland is 
not directly accessible when using the keypad 
editor, the window is invoked by control key func
tions which should be defined in the system wide 
EDT initialization file, SYS$SHARE:EUTSYS.EDT. 

DEFINE KEY FUNCTION 34 AS "XLATEWINUOW Z. 11 

DEFINE KEY GOLD V AS "XLATEWINUOW Z." 

The key definitions in this example will cause the 
WINDOW subroutine to be invoked if either the F20 
key on a VT2xx keyboard or GOLD V on a VTlOD key
board is pressed. 

Since creating a subprocess is time consuming, 
the WINDOW function subroutine (Listing 4) keeps 
track of whether or not one is available for use. 
If no subprocess exists, it spawns a subprocess and 
invokes WINDOW.COM. WINDOW.COM is identical to 
either of the two previously discussed versions of 
DCLWINDOW.COM except that the lines with "!***" 
have been unco11111ented. 

The function of WINDOW.COM is to prompt the 
user for input, pass that input on to DCL, and to 
attach back to the main process if a Control-Z is 
entered. When DCLWINDOW.COM is first invoked, it 
acquires the PIO of the parent process so that it 



can be attached back to. If, however, the subpro
cess already exists, the WINDOW function subroutine 
simply attaches back to the subprocess running 
DCLWINDOW.COM, which again accepts the user's input 
and passes it to DCL. In the event that attaching 
to the subprocess fails because the subprocess was 
deleted, the WINDOW function subroutine tries to 
create a new subprocess. 

The WINDOW function calls the subroutine, EXIT 
SPAWN. The EXIT SPAWN routine (Listing 5) is used -
to insure that ally subprocesses created are deleted 
when the image exits. 

MODIFYING LSE/TPU TO SUPPORT DCL WINDOWS 

Modifying LSE/TPU to support windows is very 
simple since LSE/TPU have a SPAWN command Built-In. 
For example, to implement UCL windows for LSE it is 
only necessary to load a TPU procedure, WINDOW.TPU. 
By redefining the LSE command, 

$ LSE*DIT:=LSE/COMMAND=WINDOW.TPU 

every time LSE is invoked, pressing the F20 key on 
a VT2xx terminal will create a DCL window. The TPU 

$ Vfy:='F$VERIFY(O)' 
$! DCLWINDOW.COM 

procedure file required to do this would be 

PROCEDURE NEW WINDOW 
SPAWN ("@DCLWINDOW"); 

ENDPROCEOURE 
DEFINE KEY (I NEW_WINDOW I ,F 20); 

CONCLUSIONS 

DCL windows accessed from command files and 
VPWEDIT have been in use at KMS Fusion for nearly 
two years. Experience has shown that their use has 
significantly aided productivity. In time it is 
hoped that the VMS Screen Management Package will 
allow for more sophisticated displays of multiple, 
overlapped windows. 

The code for VPWEUIT is part of the KMSKIT 
submission to the Spring 1984 VAX Sig Decus 
Symposium tape. 

ACKNOWLEDGMENTS 

This work was performed under DOE Contract 
DE-ACOB-DP-40152. 

$THE START: ! Once only code at end 
$ - GOTO Setup ! Return to Start 
$START: ! 
$ READ/PROMPT="' 'Pre'> "/END=DONE SYS$COMMAND Cmdline 
$ 'Cmdline' 
$Start 1: 
$ -IF Tmp .NES. ""F$LOGICAL("SYS$INPUT")'" THEN - Restore SYS$INPUT if 

$ 
$! 
$Done: 

ASSIGN/USER/NOLOG SYS$COMMAND SYS$INPUT needed 
GOTO START Get next command 

$ WRITE SYS$0UTPUT "<ESC>[m<ESC>[2J" 
Got Z, LOGOUT, etc. 
Erase VTlOO screen 

process which knows the $! Uncomment the next lines for use with a Parent 
$! WINDOW is open and can ATTACH to its child. 
$!*** SET MESSAGE/NOTEXT/NOFACILITY/NOIDENT/NOSEVERITY! 

$!*** 

$!*** 
$!*** 
$ 
$Setup: 
$ 
$ 
$ 
$ 
$ 

$ 

$ 
$ 
$ 

ATTACH/IDE='Parent' 

SET MESSAGE/TEXT/FACILITY/IDENT/SEVERITY 
GOTO Setup 
EXIT 

Parent=F $GET JP I ( 1111 ," OWNER") 
ON CONTROL Y THEN GOTO Start 1 
ON ERROR T"HEN GOTO Start 1 
WRITE SYS$0UTPUT "<ESC>[iii<ESC>[H<ESC>[2J" 
IF .NOT. F$GETDVI("SYS$INPUT";"TRM") THEN -

ASSIGN/USER/NOLOG SYS$COMMAND SYS$INPUT 
TMP:='F$LOGICAL("SYS$INPUT")' 
IF Tmp .NES. "' 'F $LOGICAL ( "SYS$INPUT") "' THEN -

ASSIGN/USER/NOLOG SYS$COMMAND SYS$INPUT 
Pre="' 'F $PROCESS()"' 
ON ERROR THEN GOTO Start 
GOTO Start 

Listing 1. Basic command dispatcher 

552 

Disable attach message 

Back to the main proc. 

Error messages again 
Awake again, do setup 
Done with window 

Establish our parent 
Initialize first time 

only 
Erase VTlxx screen 
Insure we point at 
physical terminal 
Double check in case 
SYS$INPUT is LOGICAL 
not real terminal 

Use with input prompt 
Start over on error 



$ 
$ 
$START: 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

Vfy:='F$VERIFY(O) I 

GOTO Setup Initialize 

ON Control Y THEN GOTO Start 0 Reinit on Y 
ASK Cmdl ine "<ESC>[lOD<ESC>[2K$ ' 'Ovfl ow"' Get new command 
IF Cmdl ine .EQS. " Z" THEN GOTO Done If Z, just exit 
IF Cmdl ine .EQS. "<ESC>[3 " THEN Ovflow="" If catch cursor posit 
IF Cmdl i ne .EQS. "<ESC>[3 " THEN Cmdl i ne='"' update, Null command 
Cmdline=Ovflow+Cmdline Tack on any leftover 
L=F$LOCATE("<ESC>",Cmdline) . Any escape seq? 
IF L .LT. F$LENGTH(Cmdline) THEN Cmdline=F$EXTRACT{O,L,Cmdline) 
IF Tmp .NES. ""F$LOGICAL("SYS$INPUT")"' THEN - ! Be sure to point at 

ASSIGN/NOLOG/USER SYS$COMMANO SYS$INPUT real terminal 
$ 'Cmdline' 
$ Ovflow="" 
$Start 0: 
$ - ON Control Y THEN GOTO Done 

$ 
$ 

$ 
$ 
$ 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

WRITE SYS$0UTPUT 111 'Header"' 
IF .NOT. F$GETDVI("SYS$INPUT","TRM") THEN -

ASSIGN/NOLOG/USER SYS$COMMAND SYS$INPUT 
ASK tmp "<ESC>[6n" 
l =f$1 ength( tmp) 
Istrt=F $1 ocate( "<ESC>[" ,tmp) 

Ibeg=Istrt+2 
IF Istrt .EQ. L THEN lstrt=F$LOCATE{"[",Tmp) 
IF Istrt .EQ. L THEN lbeg=Istrt+l 
lend =F $1 ocate( "R" ,F $EXTRACT ( lstrt, 1-Istrt, Tmp)) 
Tmp2="' 'F$EXTRACT{Ibeg,Iend,Tmp) 
ovfl ow=Tmp-"<ESC>"- "[' 'Tmp2'" 
IF Tmp2 .EQS. "2;1R" THEN WRITE SYS$0UTPUT '"' 

$Start 1: 
$ - IF Tmp .NES. "' 'F$LOGICAL{"SYS$INPUT")"' THEN -

$ 
$ 
$Done: 

ASSIGN/NOLOG/USER SYS$COMMAND SYS$INPUT 
X:='F$VERIFY{O)' 
GOTO START 

$ WRITE SYS$0UTPUT "<ESC>7<ESC>[l;24r<ESC>8<ESC>[lA" 
$ PAGE ! 
$ Vfy:='F$VERIFY{Vfy) I ! 

Null out any overflow 

If Y while here, exit 

Refresh banner 
Make sure is terminal 

get screen position 
may have typeahead 
trapped with position 

info, so strip out 
the escape sequence 
{find start and end) 
and pl ace rest of 
command in overflow 
buff er 

If at line 2, <cr><l f> 

Point SYS$1NPUT at 
terminal 

Turn off logging 
get more info 

$! Uncomment the next lines for use with a Parent process which knows the 
$! WINDOW is open and can ATTACH to its child. 
$!*** SET MESSAGE/NOTEXT/NOFACILITY/NOIDENT/NOSEVERITY! Disable attach message 

$!*** 

$!*** 
$!*** 
$ 
$Setup: 
$ 
$ 
$ 
$ 
$ 
$ 

$ 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ 

ATTACH/IDE=' Parent' 

SET MESSAGE/TEXT/FACILITY/IOENT/SEVERITY 
GOTO Setup 
EXIT 

Parent=F $GET JPI ( 1111 , "OWNER") 
ON CONTROL Y THEN GOTO Done 
HELP:=HELP/NOPAGE 
STO*P:=LOGOUT 
ON ERROR THEN GOTO Start 1 
WRITE SYS$0UTPUT - -

"<ESC>[l ;24r<ESC>[ ?8h<ESC>[Om<ESC»" 
IF .NOT. F$GETDVI{"SYS$INPUT","TRM") THEN -

ASSIGN/NOLOG/USER SYS$COMMAND SYS$INPUT 
TMP:='F$LOGICAL{"SYS$INPUT")' 
Pre="' 'F $PROCESS() 111 

Len=F $LENGTH {Pre) 
N={80-Len)/2 
Ovfl ow="" 

Back to the main proc. 

Error messages again 
Awake again, re-setup 

Establish our parent 
xit if Y here 

Redefine symbols 
as needed by screen 

set scroll window, etc 

Be sure pointing at 

terminal 

Get process name 
and stick in middle 
of the banner 

PAGE erase screen 
Headerl="<ESC>[?6l<ESC>[;''N'H<ESC>[lm' 'F$PROCESS()'<ESC>[m"+ 
"<ESC>[;64H{CTRL/Z -> Exit)" 
Header2="<ESC>[A<ESC>7<ESC>[?61 <ESC>[H<ESC>[K<ESC>[;' 'N 'H"+ 
"<ESC>[lm' 'F$PROCESS()'<ESC>[m<ESC>[;64H(CTRL/Z -> Exit)" 

553 



$ 

$ 

$ 
$ 
$ 

$ 
$ 
$ 

$ 
$ 

Meader3="<ESC>[2;H<ESC>)O Nssssssssssssssssssssssssssssssss"+ 
"sssssssssssssssssssssssssssssssssssssssssssssss O<ESC>[3;24r<ESC>[3;H" 
Header4="<ESC>[2;H<ESC>)O Nssssssssssssssssssssssssssssssss"+ 
"sssssssssssssssssssssssssssssssssssssssssssssss O<ESC>[3;24r<ESC>8" 
Header=""Header2'"Header4'" ! Display header 
WRITE SYS$0UTPUT '"'Header!'' 'Header3'" (both parts) 
IF Tmp .NES. '" 'F$LOGICAL("SYS$INPUT")"' THEN - be sure pointing at 

ASSIGN/NOLOG/USER SYS$COMMAND SYS$INPUT real terminal 
IF Pl .EQS. "" THEN GOTO START if input 1 ine not 
'Pl' 'P2' 'P3' 'P4' 'P5' 'P7' 'PB' NULL, repeat 
IF Tmp .NES. ""F$LOGICAL("SYS$INPUT") "' THEN -

ASSIGN/NOLOG/USER SYS$COMMAND SYS$INPUT 
X: ='F $VERIFY (0) I 

GOTO Start back for more 

Listing 2. Command dispatcher with window banner 

1 REM 
VPWEDIT .BAS 

Mainline for the EDT editor with DCL windows. The editor can 
be built by: 
$ BAS VPWEDIT 
$ BAS WINDOW 
$ FOR EXITSPWN 
$ LINK/NOTRACE VPWEDIT,WINDOW,EXITSPWN,SYS$SHARE:EDTSHR/SHARE 

2 EXTERNAL INTEGER FUNCTION CLI$PRESENT, CLI$GET VALUE 
EXTERNAL INTEGER CONSTANT CLI$ PRESENT, CLI$ DE'.F'"AULTED 
EXTERNAL INTEGER CONSTANT CLI$-NEGATED, CLI$-ABSENT 
EXTERNAL INTEGER CONSTANT EDT$'R' RECOVER, EDT$'R" NOCOMMAND 
EXTERNAL INTEGER CONSTANT EDT$M-NOJOURNAL,EDT$M-NOOUTPUT 
EXTERNAL INTEGER CONSTANT EDT$~0CREATE -

EXTERNAL INTEGER EDT$FILEIO 
EXTERNAL INTEGER EDT$WORKIO 
EXTERNAL INTEGER WINDOW 
EXTERNAL INTEGER FUNCTION EDT$EDIT 
DECLARE INTEGER RESULT 
DIM INTEGER PASSFILE(l%) 
DIM INTEGER PASSWORK(l%) 
DIM INTEGER PASSXLATE(l%) 

PASSFILE(O%)=LOC(EDT$FILEIO) 
PASSWORK(O%)=LOC(EDT$WORKIO) 
PASSXLATE(O%)=LOC(WINDOW) 
DECLARE LONG Ret Status 
DECLARE LONG Opt,-ons 

Input File$="" 
Output File$="" 
Journal File$="" 
Command"""'ti 1 e$="" 
ON ERROR GOTO 1000 

Callable EDT subroutines 

XLATE subroutine to invoke 
Callable EDT 

Pass file names to subroutine 

Pass name of subroutine 

Sum of all DCL options 

Initialize file names 

Exit if disaster strikes 

10 IF CLI$PRESENT(' INPUT') AND 1% THEN ! Find what DCL asked for 
CALL CLI$GET VALUE('INPUT',Input File$) 

END IF - -

20 IF CLI$PRESENT ('RECOVER') and 1% THEN If recover switch seen 
OPTIONS=OPTIONS+EDT$M RECOVER set in option word 

END IF -

30 IF CLI$PRESENT('READ ONLY') AND 1% THEN If READ ONLY switch seen 
OPTIONS=OPTIONS+tbT$M NOOUTPUT set in-option word 

END IF -

554 



50 Ret Status=CLl$PRESENT('COMMAND') ! If COMMAND switch seen 
IF TRet Status = CLI$ Present) THEN ! get the command file 

CALL CLI $GET VALUE(' COMMAND' ,Command file$) 
ELSE IF (Ret Status = CLI$ DEFAULTED) TH"'EN 

REM Use default command file ! 
ELSE IF (Ret Status = CLI$ NEGATED) THEN! If NOCOMMAND seen 

Command File$="" - ! 
OPTIONS-;-OPTIONS+EDT$M NOCOMMAND set in option word 

ENO IF -

60 IF CLI$PRESENT('OUTPUT') AND 1% THEN ! If output specified 
CALL CLI$GET VALUE('OUTPUT',Output File$) 

ELSE - - ! 
REM Default to output=input 

END IF 

70 Ret Status=CLl$PRESENT('JOURNAL') If JOURNAL Seen 
IF "R"et Status = CLI$ Present THEN 

80 

90 

CALL CLI$GET VALifE('JOURNAL',Journal File$) 
ELSE IF Ret Status = CLI$ DEFAULTED THE~ 

REM Use-default journat file 
ELSE 

OPTIONS=OPTIONS+EDT$M NOJOURNAL Else show NOJOURNAL 
END IF -

Ret Status=CLl$PRESENT{'CREATE') 
IF "R"et Status = CLI$ Negated THEN 

0Pi"IONS=OPTIONS+EDT$M NOCREATE 

If NOCREATE switch seen 

set in options word 
END IF -

Result=EDT$EOIT(Input File$,Output File$, & 
Command File$-;Journal File"'f,Options, & 
PASSF ILE(O%)BY REF ,PASSWORK(O%)BY REF, & 
PASSXLATE(O%)BY REF) 

Call EDT 
passing file names 
and options 
and xl ate subroutine 

100 IF (RESULT AND 1%) =0% THEN 
PRINT "VPWEDIT -- Call to EDT$EOIT failed, GET HELP" 
CALL LIB$STOP(RESULT BY VALUE) 

ENO IF 
GOTO 32000 

1000 RESUME 32000 
32000 END 

Listing 3. VPWEDIT Editor Mainline 

1 REM 
WINDOW.BAS 

! This subroutine is invoked via the XLATE command and the user command 
! string, CMD$, is passed to it. The command string is established with 
! the EDTSYS.EOT initialization file. 
! 
2 FUNCTION INTEGER WINDOW(CMD$) 

DECLARE INTEGER SUBPROC 
DECLARE LONG !status 
EXTERNAL INTEGER FUNCTION LIB$ATTACH 
COMMON (PIDVAL) LONG Sub Pid 
IF CMD$="" THEN If null, return 

WINDOW=l but show success 
GOTO 100 

END IF 
20 IF CMD$="WINDOW" THEN If "window" wanted 

s 

IF Sub PIO = 0 THEN If no window yet 
Commii"nd$='$ @WINDOW' ! spawn a window 
CALL LIB$SPAWN(Command$,,'TT:',,,Sub_pid,SUBPROC)!with return addr 
CALL EXIT_Spawn(Sub_Pid) ! Establish exit handler 

ELSE 

!status = LIB$ATTACH(Sub PID BY REF) 
IF !status = 2280 - THEN 

Sub PID=O 
GuTO 20 

555 

Else if window exist 

just attach to it 
but if it went 
away, show it 
and make a new one 



90 
100 

C+ 

END IF 
END IF 
CMD$='REF I 

END IF 
SUBPROC=l 
WINDOW=SUBPROC 
F UNCTIONEND 

Listing 4. The WINDOW Function Subroutine 

END IF 
END IF 
Repaint screen on 

return to EDT 
Always show success 

C Here we establish an exit handler to insure that any subprocess is deleted 
C on exit. 
c 
c 
c 
c 
C-

c 

c 
c 
c 
c 

Where 
CALL Exit_Spawn(Sub__PID) 

Sub PID I*4 PID for created subprocess 

SUBROUTINE EXIT SPAWN(Sub PID) 
IMPLICIT -INTEGER*4-(A - Z) 
LOGICAL Is Set 

EXIT STATUS, EXIT BLOCK(5) 
EXIISPAWN2 -

INTEGER*4 
EXTERNAL 
COMMON 
DATA 

/PID/" PID,Is Set 
Is Set I .FALSE./ -

Deel are exit handler 
EXIT BLOCK(2) = %LOC(EXIT Spawn2) 
EXIT-BLOCK(3) = 1 -
EXIT-BLOCK(4) = %LOC(EXIT STATUS) 
PID=Sub PID -
IF (Is Set) RETURN 
STATUS-= SYS$DCLEXH (EXIT BLOCK) 
Is Set=. TRUE. -
IF-(.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS)) 
RETURN 
END 

SUBROUTINE EXIT_Spawn2(EXIT_STATUS) 

Routine not yet called 

Call on exit 

Transmit one argument 

Only declare once 
Requires Implicit 
Light a candle 

INTEGER*4 (A-Z) 
Back to mainline 

This routine is called when the program tries to exit. 
Its function is to delete the current active subprocess 

IMPLICIT INTEGER*4 (A - Z) 
LOGICAL Is Set 
COMMON /PTD/ PID, Is_Set 

IF(PID.NE.O) Istatus=SYS$DELPRC(PID,) 
RETURN 
END 

Listing 5. The VPWEDIT Exit Handler 

556 

(if any) 



DESIGNING RELIABILITY INTO THE VAX 8600 SYSTEM 

BY 

William Bruckert and Ron Josephson 

Digital Equipment Corporation 
Marlboro, Mass. 

(ABSTRACT] 

The failure rate of a system is directly 
related to the number of components used in its 
design. Therefore, the designers of a large 
CPU must put emphasis on fault avoidance, fault 
tolerance, and fault minimization to ensure 
that the overall system failure rate is 
acceptable. The VAX 8600 system contains many 
features to assure its reliability. 
Conventional approaches, such as parity 
checking, and non-convential ones, such as 
array address checking through ECC codes, were 
used to overcome the higher failure rate 
generated by having more components. This 
paper will cover the most imporatant steps that 
were taken to provide that reliability. 

The c?st of a failure is proportional 
to the size of a system, since more 
~ompute power is lost and more people are 
idled as size increases. Since the 
failure rate is directly related to the 
number of components in the system a much 
greater emphasis must be placed o~ fault 
tolerant designs in larger systems in 
order to keep the costs of failures at an 
acceptable level (1). The VAX 8600 system 
is the largest, most powerful computer 
produced by Digital Equipment Corporation. 
We made customer satisfaction the most 
impo:tant . engi~ee:ing goal, thereby 
placing a high priority on the machine's 
reliability. 

Reliability can be subdivided into 
four areas: fault avoidance, fault 
tolerance, fault minimization and improved 
mean time to repair (MTTR). Fault 
avoidance is realized by reducing the 
system failure rate through improved 
quality of the components, interconnects, 
design and manufacturing. Fault tolerance 
is the negation of the effects of faults 
through correction codes, redundant 
hardwar~ 1 .r~con~igu:ation, and retry (2). 
Fault minimization is the reduction of the 
effects of a fault by tagging corrupted 
data that has damaged the machine state or 
other data. Fault minimization is also 
achieved by having the hardware give 
accurate and detailed fault information. 
T~e M~TR is improved through remote 
diagnosing, the reduction of the time to 
diagnose a fault, and the increase of 
diagnostic accuracy. The application of 
each of these four areas to the VAX 8600 

Proceedings of the Digital Equipment Computer Users Society 557 

design will be discussed in detail in the 
following paragraphs. 

Before these details are presented, 
however, a short explanation of the major 
parts of the 8600 architecture is 
warranted. The components in the VAX 8600 
CPU are contained in four "boxes" that 
control operations and perform various 
functions. The E Box executes and retires 
instructions. The I Box prefetches and 
decodes instructions and pref etches 
operands. The M Box performs page 
translation, cache functions, I/0 
transfers, and memory array access. And 
the F Box performs floating point 
operations. 

FAULT AVOIDANCE 

Our first goal in designing a 
reliable system was to reduce the number 
of failures that occur in the machine. 
This involved getting components, 
interconnects, and power systems with the 
lowest failure rates. Reducing the 
failure rates also involved constantly 
monitoring the failures that were 
experienced and determining their causes. 

A major influence on the IC 
reliability was exercised by specifying 
how the chips were to be stressed and 
tested. The dips and the macrocell arrays 
(MCAs) were required to be burned in 
before testing. Thereafter all chips were 
to be functionally tested. However, in 
debugging the early machines we discovered 
bad dips. We had expected to find only a 

New Orleans LA - 1985 



handful of bad chips since they were all 
burned in. To identify the cause of these 
failures, all defective chips were 
analyzed, and the problem was identified 
as static that was "zapping" our modules. 
Subsequently, the design was changed so 
that all machines come with static 
grounding straps. 

We also examined the designs of 
previous CPUs to determine which problem 
areas were typical. The backplane is an 
example. Wire-wrapped backplanes are 
difficult to build and test. They have 
several failure modes--such as cold flow 
of the insulation, a nicked wire, and 
scraps of wire. They can also be damaged 
during servicing of the machine. All 
these problems often result in 
intermittent faults that slowly but surely 
become more solid. Improving the quality 
control on the wire-wrapping process to 
obtain the desired reliability was a very 
difficult task, since the process is 
comprised of a large number of repetitive 
but not identical operations. Moreover, a 
very small error rate still produces quite 
a large overall failure rate. Therefore, 
early in the project, we decided to 
replace the wire-wrapped backplane with a 
multi-layer printed circuit card, which 
has a much lower failure rate. 

In the power subsystem, fault 
avoidance was pursued by improving the ac 
input-power tolerance, the design testing, 
the manufacturing processes, and the 
environmental monitoring. In particular, 
manufacturing was a key area in which the 
reliability of the power supplies was 
improved. A new power supply tester was 
developed to improve our testing 
capabilities. It contains logic that can 
fully test the characteristics of a power 
supply and store the test data. The data 
includes line and load regulation and 
noise measurements. 

A modular power 
designed to run from 
that all regulators 
sychronization. This 

supply (MPS) was 
a single clock so 

would be in 
synchronization 

allowed us to predict and control the 
output noise of the switching regulators. 
A new high-current connector was also 
developed that allows the regulators to be 
pluggable. 

The power subsystem also contains the 
environmental monitoring module (EMM). 
The EMM was designed to monitor the status 
of the power supply and the environment 
inside the system. The EMM can measure 
the voltage output of every regulator, the 
inlet and outlet air temperatures, the 
air-flow velocity, and the ground-wire 
current in the primary power cord. The 
system protects itself by having the EMM 
monitor these conditions, log any 
deviations, and shut down the system if 
adverse conditions warrant it. 

558 

According to E.J. McCluskey, 
"Improper design of the hardware or 
software can result in a system which does 
not function at all. Such mistakes are, 
of course, quickly discovered and 
corrected. Other, less obvious design 
defects usually remain in any system even 
after it has been in service for a long 
time." [3] The results of design problems 
are logic circuits that either fail 
prematurely or sense signals falsely. The 
number of these types of errors is 
indirectly a measure of the quality of the 
tools used in the system's design. 

At the beginning of a design project, 
rules are established to make sure that 
the goals for signal integrity and 
component failure rates can be achieved. 
It is usually impossible to develop rules 
that are both easy to check and at the 
same time don't overly constrain the 
design engineer. Often this results in 
complex rules. If they are inadvertently 
broken, the usual outcome is a decrease in 
the machine's reliability. The broken 
rules result in components that operate 
with excessive temperatures or signals 
that do not have adequate noise margins. 
A chip that runs too hot will fail sooner 
than anticipated; a signal that doesn't 
have adequate noise margin will sometimes 
be sensed incorrectly. Worse still is the 
fact that the component is blamed rather 
than the true cause, a violated rule. 

As an example consider the operating 
temperature of an IC. There is a tradeof f 
between the maximum and minimum operating 
temperatures and the amount of noise 
margin available. If the temperature of 
an IC exceeds its maximum specified 
temperature, the amount of noise normally 
present from known sources, such as 
adjacent-run crosstalk, may be sufficient 
to produce a false signal. Therefore, it 
is important that all ICs stay within 
their specified operating temperatures. 
To ensure that, we developed a tool for 
use on the 8600 to check for chips that 
were getting too hot. If a chip was 
detected as being too hot, its layout was 
modified to correct the problem without 
changing the total power of the module. 

A new timing analysis tool was also 
developed for the project. This tool 
enabled the designers to do a much more 
thorough job of timing analysis on this 
machine than had been done on previous 
projects. Using it involved running many 
separate programs that built a timing 
model of the machine from the schematics 
and the layouts of the modules, backplane, 
and MCAs. The results of the model were 
then used by a program that performed 
timing analysis of the design based upon a 
set of interbox timing specifications. 

After the layouts of the modules were 
completed, every single run was analyzed 
to ensure that signal integrity had been 
achieved. The program computed the amount 
of noise generated from adjacent runs, 



reflections, and the like. Based on these 
results, we made a number of reroutings to 
increase the integrity of certain signals. 

FAULT TOLERANCE 

All the efforts discussed in the 
previous section improved the machine's 
reliability. However, the logic could 
still fail and therefore it was important 
to have mechanisms to recover from a logic 
fault whenever possible. Fault isolation 
and fault tolerance are highly correlated, 
not separate issues. Data integrity and 
retry operations depend on good fault 
detection. So does the ability to 
reconfigure the system when a fault 
occurs, a situation that requires accurate 
fault isolation as well [4]. It is 
important to know what type of fault was 
made and what processes may or may not 
have been affected by it. To accomplish 
fault isolation, we had to develop an 
effective fault detection and reporting 
scheme. 

The design philosophy for the fault 
system had several major concepts. The 
first was that faults that occur 
synchronously with the program counter 
(PC) should be reported synchronously to 
it. Synchronous faults have a direct 
relationship to the current value of the 
program counter. For example, consider a 
write to an 1/0 register. Only one cycle 
is required for the M Box to accept all 
the information to perform the write 
operation. In the meantime, the E Box 
could continue processing instructions. 
The problem here is that if the I/O write 
has a fault, the current PC of the machine 
would have no fixed relationship to that 
fault, thus making recovery more 
difficult. To solve this problem, the 
microcode will stall the E Box on an 1/0 
write until the confirmation of that write 
is received. 

A similar problem exists with a 
translation buffer (TB) miss on a prefetch 
for the instruction buffer. If a branch 
is ahead of the TB miss in the instruction 
buffer and the branch is taken, the TB 
miss will not be a problem and should not 
be reported. In this case the design 
requires a delay in sending the TB miss 
signal to the E Box (which performs the 
memory management operations) until it 
attempts to execute the instruction whose 
prefetching caused the TB miss. In 
general, synchronous faults are reported 
via E Box microtraps. 

Faults that are asynchronous to the 
program counter are reported 
asynchronously. Asynchronous faults are 
ones for which the value of the program 
counter has no definite relationship and I 
which are usually reported through 
interrupts. Two examples of an 
asynchronous fault are a fault occurring 
on a disk write to memory and a parity 
error on a cache writeback operation. 

559 

At the time a fault is detected, it 
may not be known whether the fault should 
be reported synchronously or 
asynchronously. In that case, both 
fault-logging mechanisms are invoked: a 
microtrap for synchronous and an interrupt 
for asynchronous faults. Consider the 
case of a parity error on an instruction 
prefetch. If the E Box executes a branch 
prior to using the bad data, then the 
synchronization will never be reached and 
the fault will be logged through an 
inte:r~pt .. In this case the microtrap 
cond1t1on will be cleared by the execution 
of the branch. If, however, the E Box 
attempts to execute the pre fetched 
instruction with the parity error, then an 
E Box microtrap will occur and the trap 
routine will clear the interrupt. 

The second major concept used 
throughout the design was that hardware 
faults are considered to be process faults 
only if a process attempts to use or store 
corrupted data. For example, if corrupted 
data is detected during a writeback to 
memory from the cache, a fault will be 
logged. However, the process will not 
experience a fault until it attempts to 
either consume the corrupted data or store 
it on a disk. This logic imposes the 
requirement that corrupted data can be 
marked for later detection, which is done 
with ECC code in memory. This subject is 
discussed in the UNIQUE RELIABILITY 
FEATURES section. 

FAULT MINIMIZATION 

When recovery is not possible, the 
next best thing is to control the amount 
of damage done by a fault. This tactic 
requires fault information that is 
accurate, relevant, and sufficient. 
Whenever a fault occurs, an error stack 
frame will be constructed by the E Box and 
placed in memory. The stack frame format 
is the same for all errors. We made no 
prejudgement as to what would be useful in 
determining which information was 
relevant. 

In the case of damaged data, fault 
reporting alone is not sufficient, since 
it is not possible to determine which 
process will access that data. Therefore, 
when data damage occurs, the logic marks 
it as "bad" and any future user of that 
data will be notified of that fact. 

MEAN TIME TO REPAIR 

There are two kinds of machine 
failures: those in which fault symptoms 
are solid, and those in which fault 
symptoms are intermittent. Of the two, 
solid faults are easier to diagnose. To 
isolate solid faults, the console can 
examine the state of the signals that go 
from one module to another. Diagnostics 
are run to find the first failed test, 
which is then run in a single-step manner 
looking for the first incorrect signal. 
With the exception of multiple-source 



signals, the source of the first incorrect 
signal value is the failing module (since 
all of its inputs have been checked by 
this process). In this way faults can be 
isolated to the field replaceable unit. 

Intermittent faults are much more 
difficult to diagnose and they comprise 
between 80% and 90% of the faults. 
Diagnostics rarely provoke intermittent 
faults. But when they do, the fault 
reporting can often be confusing. This 
confusion occurs because a logic fault 
will usually take place in a circuit after 
it has been tested and wh:le another 
circuit is being tested [5]. The number 
of fault checkers in a machine affect its 
ability to know that a fault has occurred 
and to identify the failing unit. The 
probability of a fault occurring in the 
logic that any given checker has checked 
is not affected by whether the result is 
used or not. If an intermittent fault 
occurs on a path that isn't being used, 
then no real fault has occurred. 
Therefore, the machine's overall 
reliability is increased by ensuring that 
fault checking is performed only on 
networks that are actually being used. 

IN the APPENDIX a detailed list of 
the checkers included in the VAX 8600 
system is available. 

If a failure occurs that requires 
immediate power shutdown, then remote 
diagnosing through the console cannot be 
used. This occurs when the regulators 
detect an overheating condition or the 
power for the EMM is out of tolerance. In 
these cases a magnetic indicator code that 
contains the failing regulator number will 
be displayed on the EMM module. This code 
enables a fiel~ service technician to know 
which regulator to replace. 

UNIQUE RELIABILITY FEATURES IN THE VAX 
8600 CPU 

In addition to the reliability 
features already discussed, the VAX 8600 
design includes some not previously found 
on other Digital machines. These features 
are discussed under the four major areas 
used in the first part of this paper. 

Fault Avoidance 

The F Box executes self-diagnostics 
when it is not performing floating point 
instructions. These tests use "live" 
operands to enhance the detection of 
data-dependent faults. Both the E Box and 
the F Box are connected to a common source 
of instructions and operands. When the F 
Box detects that it cannot perform an 
operation, it will execute a diagnostic 
self-test. Exactly which self-test is 
performed depends upon the instruction. ,; 
The number of machine cycles in the ';~ 
diagnostic routine is chosen to be equal 
to or less than the number of machine 
cycles used by the E Box. This insures 
that the F Box will always be ready for 

560 

the next floating point operation that 
will be passed to it. If a fault is 
detected, the F Box will be turned off and 
the E Box will perform the instruction 
that would have been done by the F Box, 
only at a much slower speed. 

Fault Tolerance 

The 8600 supports instruction retry 
where possible. If a fault occurs that 
causes a niicrotrap during an instruction, 
a set of instruction retry flags will be 
passed along through the various fault 
recovery stages. The flags indicate 
whether or not the CPU has performed an 
operation that would make restarting the 
instruction impossible. An instruction 
retry would be inhibited if an I/0-read, a 
memory-write, a state-modified, or an ~ 
Box abort bit is "on." Otherwise, the 
instruction can be restarted. 

The data cache can recover from 
single-bit errors. A cache data entry 
consists of 32 bits of data, 4 bits of 
byte parity, and 7 bits of ECC. The write 
of the check bits is pipelined and occurs 
in the cycle following the write of the 
data. The parity bits are used for fault 
detection and the ECC bits for error 
correction. The M Box always passes data 
to the E Box or I Box before any checking 
is done. If the data contains a parity 
error, then either the E Box or the I Box, 
as well as the M Box, will detect it. The 
M Box will then block the acceptance of 
any more requests and will execute a data 
correction sequence. The ECC code and the 
data are then sent to the array bus, and 
normal array-to-M Box data correction is 
applied. The "corrected word" is then 
written back into the cache. At some 
point the E Box will discover that it has 
been shipped bad data. The system will 
then retry the instruction if possible. 
The retry will be successful if the 
original fault was correctable. 

An important goal of the power 
subsystem is to increase its tolerance of 
bad ac input power. The power input is a 
true 3-phase input with very low neutral 
current. In previous designs the 
power-storage capacitors had been attached 
to the regulator outputs. The detection 
of power failures was performed by 
monitoring the ac line. In contrast, the 
VAX 8600's power system first converts 
power to 300 Volts de and then sends that 
power to regulators in order to produce 
the final output voltages. Power storage 
is done at the 300 Vdc level. This higher 
voltage allows more energy to be stored, 
since the storage is provided by 
capacitors. Power-failure detection is 
performed by monitoring the voltage level 
on the 300 Vdc power supply. When its 
voltage reaches the level at which there 
is just enough energy remaining to perform 

a power-fail sequence, then a~ ac power 
failure will be declared. This method 



allows continued operation regardless of 
the ac input waveform, as long as the 
machine receives sufficient energy, a fact 
that is especially helpful during brownout 
conditions. 

Fault Minimization 

The 8600 makes good use of the 
unassigned ECC codes (a 7-bit ECC can 
correct up to 57 bits of data). They are 
used to detect array addressing problems 
and to flag any corrupted data. When a 
mem~ry write occurs , the parity of the 
add~ess and an indication of the quality 
of data are sent to the ECC generator. 
The quality of data is good if no faults 
were detected during its transmission to 
the M Box and bad if the machine suspects 
that a fault is present. The address 
parity and quality information are 
inserted into the ECC generator by means 
of bits 32 and 33 of the data. Neither of 
these bits is stored in the array. When 
the data is read back, the computed 
address parity is sent along with a 
good-data signal to the ECC generator. If 
the computed syndrome is zero, the 
transaction is considered to be good. If 
the ECC generator decodes a single-bit 
error pointing to the address bit, then an 
address parity error will be declared. 
When that occurs, it means that the word 
that was just received did not come from 
the address that it should have. Thus, 
the ECC generator can check the address 
lines from the M Box to the MOS array 
chips and detect the control faults that 
caused the M Box to access the wrong data 
word. If the chip thinks the quality bit 
needs correction, then the data word was 
faulty when it was received. The 
requester of this data will then be 
notified that the data is bad. If a 
normal single-bit error occurs on a data 
word that was stored with a code 
indicating bad quality, then the M Box 
will flag an ECC double-bit error. 

Most of the internal busses in the 
VAX 8600 CPU as well as the shifter and 
the arithmetic logic units (ALU) are 
parity checked. The ALUs are checked by 

triplication and parity checking the 
results. The I Box, F Box, and E Box each 
contain a set of general purpose registers 
(GPRs). When writes to the GPRs occur, 
all GPRs are written to simultaneously, 
thus keeping them consistent. If a GPR 
parity error is detected in one box, a 
recovery will be initiated that copies 
correct data from the equivilent GPR in 
another box to the failed GPR. Thus the 
machine can recover from GPR parity 
errors. 

Mean Time To Repair 

The number of microsequencers in the 
VAX 8600 system also adds to its 
reliability. Ordinary combinatorial 
control logic is difficult to check 

561 

without duplication. Using a 
microsequencer is a method of building 
control logic that is easily checked. For 
example, all the microcontrol stores are 
parity checked. The M Box also checks the 
parity of the address, stack underflow and 
overflow, and stack address parity. 
Microparity errors are recoverable in the 
E Box, F Box, and I Box. These faults are 
not recoverable in the M Box since its 
state is modified in an unrecoverable 
manner before the parity computation is 
complete. 

SUMMARY 

The task of making large machines 
reliable requires a continuous effort in 
all phases of the project, from conceptual 
design to manufacturing. In the future, 
machines will continue to get larger. 
Unless some major technology breakthrough 
that significantly changes the reliability 
of components occurs--as did occur when 
transistors replaced tubes--the 
fault-handling capability designed into 
large systems must be improved. This 
improvement is needed to overcome the 
inherently higher failure rate that comes 
with having more components. Based on 
this conclusion, we created many design 
processes, manufacturing processes, and 
fault handling features that increased the 
reliability of the VAX 8600 system. 
Careful monitoring and simulation were 
required to insure that true gains in 

reliability were actually achieved. 

REFERENCES 

(1) Daniel P. Siewiorek 
S. Swarz, The Theory and 
of Reliable System Design 
Digital Press, 1982) 

and Robert 
Practice 

(Bedford: 

(2) Lynne S. Rosenthal, "Planning 
and Implementing System 
Reliability," IEEE Total Systems 
Reliability Symposium (December 12-14, 
1983): 112-118 

(3) Edward J. McCluskey, "Reliable 
Computing Systems", Technial Note No. 
182, Center for Reliable Computing, 
Stanford University (October 1980) 

(4) Vincent A. Cordi, "438l's Error 
Detection Fault-Isolation Speeds Repairs," 
Computer Systems Equipment Design 
(November 1984): 23-29 

(5) George H. Maestri, 
Retryable Processor," IEEE Fall 
Computer Conference (1972): 273-277 

"The 
Joint 



APPENDIX 
FAULT CHECKERS 

IN THE VAX 8600 SYSTEM 

IN THE E BOX 

ALU OUTPUT PARITY CHECK 

SHIFTER PARITY CHECK 

MICROCODE PARITY CHECK PER BOARD 

OTHER RAM STORE CHECK WITH 

SEPARATE ERROR FLAGS 

AMUX PARITY CHECK 

BMUX PARITY CHECK 

GPR COPY WRITE RECOVERY 

INSTRUCTION RETRY 

DIAGNOSTIC FAULT INSERTION 

IN THE M BOX 

MEMORY ADDRESS PARITY CHECK 

ECC ON CACHE AND MOS MEMORY DATA 

WRITEBACK ON SBE 

MICROWORD PARITY CHECK 

MICROADDRESS PARITY CHECK 

MICROSTACK PARITY CHECK 

MICROSTACK UNDERFLOW/OVERFLOW DETECT 

A BUS PARITY CHECK 

ARRAY BUS PARITY CHECK 

CORRUPTED DATA TAG 

CPR PARITY CHECK 

IN THE F BOX 

FBM MICROWORD PARITY CHECK 

FBA MICROWORD PARITY CHECK 

FDRAM PARITY CHECK 

GPRs PARITY CHECK 

SELF-TEST (WHEN NOT EXECUTING 
INSTRUCTIONS) 

562 

IN THE I BOX 

MICROWORD PARITY CHECK 

!BUFFER PARITY CHECK 

DRAM PARITY CHECK 

GPR PARITY CHECK 

OP BUS PARITY CHECK 

W BUS PARITY CHECK 

IMD PARITY CHECK 







IMPLEMENTATION OF A LOCAL AREA NETWORK AT 
LOS ALAMOS MESON PHYSICS FACILITY (LAMPF) 

Anthony M. Gonzales 
Los Alamos National Laboratory 

Los Alamos, New Mexico 

ABSTRACT 

This paper presents a summary of the implementation of a 
Local Area Network at the Los Alamos Meson Physics 
Facility (LAMPF). The network described is unique in 
that LAMPF is a large complex with a broad area dedicated 
to experimental stations. The paper describes some of 
the problems that were encountered and why the ethernet 
topology was finally decided upon. 

INTRODUCTION 

The Los Alamos Meson Physics Facility (LAMPF) is 
part of the Los Alamos National Laboratory, managed 
by the University of California, for the U.S. 
Department of Energy. LAMPF is one of the worlds 
largest and most powerful nuclear science research 
facilities. The facility is primarily a tool for 
atomic, nuclear and particle physics research. The 
installation consists of a half-mile long linear 
accelerator and several experimental areas served by 
simultaneous beams from the accelerator. The base 
facility was completed in 1972 at a cost of $57 
million dollars. A layout of the experimental areas 
as they exist today is shown in Figure 1. Since the 

·'fl,·· ~ ............... ··1f: 

100 0 lOO 400 eoo 
OltAPMIC ICM.I .. 'llT 

CLIMTOll P. ANDERSON 
MllON PHYSICS FACILITY 

(LAMPP) 

·····."""··········.,... .... ·· 
L--..ro!IY-Ol',ICE 

IUILDING 

completion of the base facility, a Weapons Neutron 
Research Facility and a Proton Storage Ring have 
been added to the complex and a Neutrino 
Experimental Tunnel is now under construction. 

The beams from the accelerator include a 1 mA proton 
beam to beam area A, 0.1 mA beam to the proton 
storage ring, and lower intensity beams to lines B 
and C. The accelerator operates in a pulsed mode 
with a duty factor of about 10% so that the peak 
currents are much higher than the averages mentioned 
above. The data acquisition system, Q, was designed 
specifically for the computers and the experiments 
that are peculiar to LAMPF. Data for each 
experiment are typically collected through CAMAC and 
recorded on magnetic tapes with PDP-11 computers. 

LEEP/COMPUTER 
MAINTENANCE 

...... ..,,,. ... _,.,.· ···*''· ... ~ . 

··.......... . 
'> ............. · ......... .,. .... ·· 

:": ! 
·® 
I. · ......... 

.. ,. ...... ., ... ,. .. " 

Fig. 1. LAMPF as it exists today. 

Proceedings of the Digital Equipment Computer Users Society 565 New Orleans LA· 1985 



The data acquisition computers are generally 
PDP-11/45, 11/34, 11/44 and ll/70's. As 
experimental needs increase, upgrades of PDP to VAX. 
computers are planned and VAX.-ll/7SO's are now 
beginning to appear on site. Data rates for 
experiments generally do not permit analysis of all 
events as they are collected. 

Analysis of LAMPF experiments is done for the most 
part at the Data Analysis Center (DAC). The 
analysis center currently houses 4 VAX.-ll/780's and 
2 PDP-ll/70's and in the near future will be adding 
the newly announced VAX 8600. The VAX. computers are 
running VMS Version 4.0 in a cluster and therefore 
share common disks. Data tapes can be replayed on 
the VAXes and the Q programs have been recently 
modified to allow replay of data stored on disk. 
The data tapes can be spooled directly to disk and 
run on any of the computers linked into the cluster. 
DECnet is the protocol used for communication 
between the computers. The DAC also has a broadband 
connection to the Central Computing Facility, which 
at present is one of the largest computing centers 
in the world. 

There are currently over 600 user accounts on the 
VAXes. The number of users on-site varies as 
different experimental programs receive beam time. 
Some users remain based at LAMPF year-round while 
others spend most of their time at home 
institutions. Because of the variable nature of the 
user community, constant updates and retraining are 
required as hardware and software change. 

PROJECT INITIATION 

In the fall of 1983 a committee was formed to assess 
the current status and to recommend directions for 
computing at LAMPF for the near future (Ref 1). 
This study included recommendations for both data 
acquisition and data analysis and emphasized methods 
to make more efficient use of resources in the next 
5 years. One of the priority items to come from the 
Long Range Planning Committee was a recommendation 
for a Local Area Network to connect the experimental 
area computers to each other and to the DAC. 

The benefits derived from such a network would 
include sharing of codes, which would lead to a 
greater amount of communication between experiments 
thus resulting in a high degree of information 
exchange. Also, shared resources would become 
available. For example, peripheral devices, such as 
line printers, could then be used from another 
experiment as need and usage dictated. The ability 
to share resources among the computers could also be 
used to off-load some CPU-bound jobs from DAC 
computers to experimental area computers during 
beam-off time (about six months per year). However, 
the network was not designed to be able to ship data 
from all locations to the DAC for analysis directly. 
Tapes will continue to be the primary method for 
data transfer to the DAC. 

At LAMPF there are presently more than 70 computers. 
These range from micro PDP's to the VAX.-ll/780's. A 
majority of the small computers run RSX-llM systems. 
All of these computers are potential network nodes. 

NETWORK REQUIREMENTS 

A list of requirements was drawn up to specify the 
capabilities required for an experimental area 
network. The requirements include high speed and a 
reliable technology that will be relatively easy to 
maintain. Because the network will include both 
PDP's and VAX.es, a flexible system is needed that 
will provide both hardware and software 
compatibility for the different systems. 
Flexibility of adding or removing systems is needed 
since different experiments run simultaneously but 
not on the same schedule. It is also important that 
computers can be rebooted without affecting the 
network. A single networking system with a uniform 
interface is desirable because maintenance will be 
done by an on-site computer maintenance group. 
Hardware that can use a DECnet protocol is 
attractive because DECnet is used for communication 
between the VAX.es in the DAC and the training 
required for users of the network can be minimized. 
A network that will not quickly become obsolete is 
also a requirement because the investment in both 
time and money will be significant. Finally, the 
network must be cost-effective because one cannot 
prioritize the experiments and decide who will be 
able to take advantage of the network. 

DECIDING ON A NETWORK 

566 

Some technologies now offered on the market were 
explored. Point-to-point and ring networks were 
considered. Because of the layout of the 
experimental areas these networks were found to be 
rather inflexible and difficult to implement. 
Another kind of network that was studied was a 
broadband connection, but this option proved to be 
too expensive for our applications. 

Ethernet is a simple and low-cost network. Ethernet 
protocol, with its high speed bandwidth of 10 
megabit/sec, satisfies the requirements most 
comfortably. Some of the added benefits derived by 
the choice of ethernet are the flexibility of 
addressing nodes, the short delay time, and 
stability under all load conditions. The ability to 
add connections such, as personal computers or local 
area terminal Servers (LATS), or to remove 
connections without interruption to the overall 
network is a big plus. 

DESIGN AND IMPLEMENTATION OF ETHERNET 

Experiments are often mounted in trailers that are 
temporarily connected to the experimental buildings. 
The facility also supports "counting houses" 
equipped with data acquisition computers. Designing 
a single network to cover all the present 
experimental stations and anticipating new additions 
proved to be a project of considerable challenge. 

The accelerator is run on radio-frequency (rf) power 
that can potentially create enough noise to degrade 
data transmission over ethernet. Phase 1 consisted 
of a test of data transmission while the RF power 
was on. A PDP-11/34 located down the beam line was 
connected to a PDP-11/70 located at the DAC with 
teflon-coated coax. After several days of testing, 
no distortion of data was detected. Teflon cable 
was chosen because it is well suited to handle harsh 



--
T I ! T T 
--..••ICT 

BEAM AREA "A" 

LAMPF EXPERIMENTAL AREAS 

WEAPONS NEUTRON 
RESEARCH FACILITY 

~ ~DETECTOR v 11.DG. 

!QB.QH!l!)!p\1 !pl. 4\f!\111!1111!1!)1 
ll!llC!J 11>00,,IO!H "°4\COB.0'11',, 

n.n 4\B.4\lllGlll Lii_ ............. , 

........ ... ~-..... ., .......... 

Fig. 2. Experimental areas showing beam lines. 

environments such as are found in the experimental 
areas; for example, cables are subject to abuse as 
they are moved in cable trays. 

Phase 2 consisted of laying out a plan for the 
network cable throughout the experimental areas. 
Figure 2 is a map detailing the experimental areas 
as they exist today. The map shows that the 
experimental areas are almost as large as they are 
spread out. Cable trays reach to all of the 
experimental areas but are in places difficult to 
access and run along walls near large sources of 
electro-magnetic interference. 

Some special considerations were given to the cable 
layout. For example, active electronics cannot be 
placed in the cable trays. Ethernet repeaters are 
considered active because of the 110 volt circuits 
needed to power them. We purchased 40m transceiver 
cables so repeaters could be mounted along the walls 
of the beam lines. Another potential problem 
involved the cable paths to the neutrino area at the 
east end of Area A. Because the coax runs 
underground, teflon-coated ethernet cable was 
chosen. The conduit will be used for other 
transmission cables and there exists the possibility 
of leakage that could let moisture into the cables. 
Finally, because many computers are located in 

567 

trailers located outside the buildings, the cable 
paths chosen must provide convenient connections for 
those computers. The use of 40m transceiver cables 
provides just enough added distance to reach most of 
these areas and still remain within specifications. 

The cable path chosen for the backbone of ethernet 
runs from the DAC along the accelerator to Area A, 
along the north wall in Area A, and into the Staging 
Area. A local repeater is required at that point to 
extend the network to the neutrino area. A second 
repeater will be connected in the switchyard and a 
section of ethernet cable will be run along the 
outside walls of Area B and around to Area C. 
Another repeater will be attached just inside Area A 
and will extend along tne south side of the 
building. The ethernet cable layout holds the 
maximum distance between nodes to that required by 
the present specifications and requires no more than 
two repeaters between any two nodes. 

After the completion of Phase I, the ethernet cable 
was run out to Area A. The transceiver that had 
been mounted on the cable for testing was removed 
and the tap in the cable was wrapped with electrical 
tape. A time-domain reflectometer (TDR) was used to 
test the cable for damage during the installation. 
Figure 3 shows the signal obtained from the TDR. 



0 500 1000 1500 

DISTANCE (feet) 
Fig. 3. Time Domain Reflectometer pattern. 

The first peak is the signal sent down the cable and 
the final peak is the reflection from the 
unterminated end of the cable in Area A. The total 
length of the cable is 42lm. The small glitch in 
the signal is from the hole left from the tap made 
for the Phase I test. Before many more experiments 
come on-line the effects of removal of taps will be 
investigated. 

One final problem was related to the fact that most 
of the data acquisition computers are PDP-ll/4S's 
with an 18-bit bus structure and memory limited to 
128K. The memory limitation makes it difficult to 
include both DECnet tasks and all tasks usually 
installed in the RSX-llM operating system. An 
attempt to install the Q data acquisition tasks 
brought the computers to a virtual halt for lack of 
pool space. The tentative plan is to connect only 
to 22-bit computers and to the VAXes. 

FUTURE FOR LAMPF AND NETWORKING 

By the time this paper is published most of the 
network connections mentioned will have been made. 
Future expansion will depend on the direction LAMPF 
takes and the ever-changing needs of the user 
community. Additional networks, perhaps to the 
Laboratory Office Building at the other end of the 
accelerator, may be installed in the future. 
Networks will be connected either through a routing 
computer or through some sort of network bridge. 
Fiber optics may be used to serve other sites. 
Certainly the network proposed here will be able to 
handle all of the existing experimental stations and 
will allow for efficient use of a multi-vendor 
environmment. 

ACKNOWLEDGEMENTS 

I would like to thank Genaro Maestas and James 
Wilmarth for helping implement the network and 
especially thank Martha Hoehn for the time and 
effort she spent in helping me throughout the entire 
project. 

1. 

568 

M. V. Hoehn 
Committee for 
Los Alamos 
report-10103-MS 

REFERENCES 

et al., "Long-Range-Planning 
LAMPF Computing Needs Report," 

Scientific Laboratory 
(JUNE 1984). 



Authors Index Page 

Abate, J.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Anderson, John M. . ............................ 145 
Attaya, Steve ................................... 21 9 

Baren, Jill M .................................... 83 
Barnard, Ralston ............................... 393 
Beyer, John W. ................................. 4 71 
Birkelund, J.R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Blinn, Thomas P. . .............................. 249 
Bloem, John .................................... 535 
Brown, G ....................................... 49 
Bruckert, William ............................... 557 

Ching, Steve .................................... 535 
Creel, Larry R. .................................. 1 05 
Curley, Robert F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

Dayton, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
DenTandt, Donald .............................. 211 
Diba, Ali T ....................................... 497 
Doubleday, Raymond J. . . . . . . . . . . . . . . . . . . . . . . . . 3 
Downey, Arthur E ................................ 349 
Downward, James .............................. 549 

Ebinger, Larry W. ............................... 459 

Franklin, Sue Ellen ............................. 271 
Friedman, Gary ................................. 509 
Friesen, R. . ..................................... 329 
Fulton, Richard G. . ............................. 1 75 

Galvin, Peter B. . ........................... 223, 267 
Glasser, Harold T. .............................. 509 
Gonzales, Athony M. . ........................... 565 
Gould, Herbert J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Harenen, Harry ............................ 375, 379 
Hare, Keith W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
Hayashida, Myron K. ............................ 277 
Helton, J ........................................ 329 
Howell, David R ................................. 433 

Jalbert, Jeffery S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
Janik, Charles S ................................. 155 
Jaquith, Elliot F. jr, .............................. 121 
Johnson, B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Johnson, Sharon Linnea ........................ 427 
Josephson, Ronald ............................. 557 
Joy, Michael D .................................. 225 

Kassebaum, Donald A. .......................... 221 
Kopec, Richard L. .............................. 149 
Kramer, William T. . ............................. 331 

Lamaestra, Susan M. . .......................... 215 
Lareau, Jean M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Page 

Lederman, Bart Z. . . . . . . . . . . . . . . . . . . . . . . . . . . 71, 127 
Leonard, Stevan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 
Lockrey, Brian D. . .............................. 111 
Lund, T.S. . ..................................... 33 

Mandley, Donald J. . ............................ 385 
Mansfield, Michael K. ........................... 169 
Mansfield, Patricia K. . .......................... 169 
Mickelson, Carl T ........................... 405, 411 
Moriarty, Leonard J. . ........................... 323 

Naecker, Philip A. .............................. 509 
Naegele, Mary Lou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Nagel, Bernard E. .............................. 39 

Osorio, Fernando C. Colon ...................... 535 

Perkins, Dorothy C. . ............................ 433 
Pflanz, Nancy R. ................................ 287 
Podany, Mark .................................. 419 
Porada, Susan .................................. 24 7 

Quaynor, Nii .................................... 535 

Ramsey, Besty ............................. 201, 217 
Richardson, Robert C. . ......................... 313 
Riviere, Marisia ................................. 441 

Schell, R ........................................ 329 
Schornak, Clifford J. 111 ......................... 1 85 
Shannon, Terry C. . ..................... 55, 361, 367 
Silverstein, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Simmons, A. .................................... 329 
Simon, Denise .................................. 297 
Smith, Theodore J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
Stevens Jack .............................. 205, 213 
Stewart, John N. . ............................... 397 
Szczur, Martha A. ............................... 433 

Tenorio, Ramon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
Toriani, Mario .................................. 535 

Valentine, Pamela A. ............................ 509 
Vasconcelos, John J. . .......................... 497 

Walraven, Robert ............................... 393 
Wang, Ching Po . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Warner, Richard H. . ............................ 445 
Wells, Robert ................................... 527 
Werner, Nancy E ................................ 487 
Wilson, Bob .................................... 523 
Wims, Anderw M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Yochmowitz, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 





[O] 
OECUS 

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY 
249 NORTHBORO ROAD, BP02 
MARLBORO, MASSACHUSETTS 01752 

Special 
Fourth-Class Rate 

U.S. Postage 
PAID 

Permit No. 18 
Leominster, MA 

01453 


