DECnet Transport Architecture

The PATHWORKS family of software products includes an implementation of the DECnet
transport protocol to allow Intel-based personal computers access to network resources. This
implementation, the DECnet Network Process (DNP) transport component, provides basic file

and print services, terminal emulation, and application services. The new DNP component for the

version 4.1 release of the PATHWORKS for DOS client software is written in assembly language to
improve performance and reduce memory usage. The DOS and OS/2 versions of the component
contain the same base source code, thus decreasing the development and maintenance costs.

By Mitchell P. Lichtenberg and Jeffrey R. Curless

Introduction

Digital's PATHWORKS family of software prod-
ucts provides the means to integrate personal com-
puters into the Digital network environment. The
PATHWORKS for DOS client software includes de-
vice drivers, network transports, utility programs,
and applications that allow PCs full access to the
resources available in local and wide area networks
(LANs and WANs). Transparent file sharing, elec-
tronic mail, and terminal emulation are examples
of services supported by PATHWORKS client soft-
ware.

The DECnet protocol suite is implemented in Dig-
ital's standard set of software for interconnecting
VAX and reduced instruction set computer (RISC)
systems. DECnet software, which is included in
the PATHWORKS client software, enables PC inte-
gration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing Digital
networks and to provide common utility programs
and network management capabilities.

However, integrating PCs into a network system
presents many design challenges to software devel-
opers. They must provide network access without
limiting the functionality of the PCs and without
compromising the compatibility of the existing PC
software and peripherals. Since the PC architec-
ture has limited memory resources and few built-in
features for networking, PC network software archi-
tectures must be as transparent as possible, reduc-
ing memory usage and emulating local peripherals
and software interfaces.

To implement this transparent architecture, the

PATHWORKS products comply with PC-related in-
dustry standards. Most such standards result from

popular vendor software applications or hardware.

For example, Microsoft's LAN Manager software
product influenced the acceptance of the industry-
standard server message block (SMB) protocol. This
session layer protocol, implemented over a variety of
transports, is used in the LAN Manager redirector
for transparent file sharing and peripheral emula-
tion. Digital licenses the LAN Manager software
in order to provide these services as features of the
PATHWORKS product family. Digital extended the
LAN Manager across a LAN or a WAN system by
using the DECnet transport protocol as the trans-
port layer in its PATHWORKS products.

In this paper we first present our rationale behind
the design of the DECnet transport component in
PATHWORKS for DOS version 4.1, as well as in
PATHWORKS for OS/2 version 2.0. We then de-
scribe the new component’s internal structure, fol-
low a typical network operation through the com-
ponent, and compare this version of the software
component with previous versions.

PATHWORKS Client Software and the
DNP Component

Since its initial release, the PATHWORKS prod-
uct family has implemented the DECnet transport
protocol to provide access to basic file services and
printer sharing, terminal emulation, and applica-
tion services. This network software implementa-
tion is called the DECnet Network Process (DNP)
transport component. Figure 1 illustrates the re-
lationship between the DNP transport component
and the other memory-resident PATHWORKS client
software components.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 1

DECnet Transport Architecture

DOS APPLICATIONS

DECNET
EE;E&fHONS APPLICATIONS
(IOCB INTERFACE)
APPLICATION
PROGRAMS
SYSTEM
PROGRAMS
DOS OPERATING || MICROSOFT LAN
SYSTEM MANAGER
DECNET
NETWORK
| __J—- PROCESS (DNP)
PC TIMER AND SCHEDULER
INTERRUPT =
HARDWARE (SCH) DATA LINK
LAYER (DLL)

LAN HARDWARE

Figure 1 PATHWORKS Client Components

Goals for PATHWORKS Client Software

PC network software products are judged primar-
ily on two criteria: performance, usually measured
with popular benchmark programs, and resident
memory usage, a limited resource that may restrict
other applications. Increasing performance and de-
creasing memory usage are major goals for all new
releases of the PATHWORKS client software. In
the PATHWORKS version 4.1 client software, Dig-
ital sought to double the performance of the DNP
transport component for small data transfers, while
decreasing the size of the code by 50 percent. An-
other goal was to significantly reduce maintenance
costs in order to free engineering resources for fu-
ture project development.

Before describing how we went about achieving
these performance, memory, and development cost
goals in PATHWORKS version 4.1, we review of the
functionality of the DECnet DNP implementation.
We also discuss the component in relation to other
PATHWORKS client components to give the context
in which our design decisions were made.

The DNP Component Functionality

Application programs can use DNP transport ser-
vices through one of two software interfaces: the
network basic 1/0 system (NetBIOS) interface and
the 1/0O control block (IOCB) interface. The widely
accepted NetBIOS interface is used by applications
and drivers that comply with industry-standard

2 Digital Technical Journal Vol. 4 No. 1 Winter 1992

specifications to provide peer-to-peer transport ser-
vices on a LAN. The IOCB interface is specific to
Digital's DECnet transport implementation of the
DECnet protocols. IOCB provides a socket interface
similar to the one used by the ULTRIX operating
system. This IOCB interface is used by DECnet-
specific application programs.

To communicate with the network, the DNP trans-
port component calls the data link layer (DLL) soft-
ware interface. The DLL component is used by
all PATHWORKS client components to send and
receive packets on the LAN. This component de-
multiplexes incoming packets based on their pro-
tocol type (e.g., local area transport [LAT], local
area system transport [LAST], or DECnet trans-
port) and delivers these packets to the correspond-
ing PATHWORKS client component. The DLL com-
ponent also transmits packets on the LAN, either
directly or indirectly by calling standards-based net-
work drivers. To reduce memory consumption, the
DLL component provides a global buffer pool that
the DNP and other transport components can use
for building network packets or for storing unac-
knowledged data.

To provide timing and background process ser-
vices, the DNP component calls the PATHWORKS
real-time Scheduler (SCH) component. The SCH
communicates directly with the DOS operating sys-
tem and the PC'’s timer and interrupt hardware to
create a simple cooperative process environment.

This environment includes sleep and wake calls,
and periodic interval timers. The functions of the
SCH component are similar to those performed by
true multitasking operating systems, such as the
0S/2 system, which use preemptive scheduling.

Considerations for a New DNP Component Design

In previous PATHWORKS client software, sepa-
rate teams implemented and maintained the DOS
and OS/2 versions of the DNP transport component.
We decided to use the same base source code for both
versions and thus reduce development and mainte-
nance costs. We then proceeded to consider our de-
sign options.

Originally, the DNP component was written in the
C programming language. The internal architec-
ture remained basically unchanged during the five
years following its release. This stable code should
have been easy to port between operating systems.
However, the internal architecture of the OS/2 sys-
tem was never considered in the original design
because this system was not available until 1988.
Retrofitting the DOS version of the DNP component
for the OS/2 operating system was difficult, and we
were not able to maintain a common source code
base.

To achieve the performance, memory, and develop-
ment cost goals described earlier in this section, we

APPLICATIONS
USER REQUESTS

DECnet Transport Architecture

considered the following three approaches:
1. Rewrite the current DNP transport component
2. Write a new DNP transport component in C

3. Write a new DNP transport component in assem-
bly language

Rewriting the current DNP component would not
have produced a desirable amount of code common
to the DOS and OS/2 versions. In addition, this ap-
proach would have resulted in only minimally im-
proving the maintainability of the code. Writing a
new transport component in C would have yielded a
more portable code, but the performance and mem-
ory usage would not have compared favorably with
other vendors’ transports. We decided to write the
new transport component in assembly language to
make optimal use of the limited memory available
on today’s personal computers.

PATHWORKS Version 4.1 DNP Transport
Component Design

Internally, the DNP transport component com-
prises various modules that correspond approxi-
mately to the layers of the DECnet protocol suite, as
shown in Figure 2. Later in this section, we describe
the major DNP modules and how they cooperate.

v

'

|| NETBIOS 10CB
INTERFACE INTERFACE
SCHEDULER | | EXECUTIVE | NETWORK SERVICES PROTOCOL l— NETWORK
TIMER TICKS DISPATCHER | MANAGEMENT
| DECNET PHASE IV ROUTING l—
—| DATA LINK CONTROL |—
DATA LINK LAYER
RECEIVED DATA
PACKETS
Figure 2 Internal Architecture of the DECnet Network Process Component

for PATHWORKS Version 4.1

Digital Technical Journal

Vol. 4 No. 1 Winter 1992 3

DECnet Transport Architecture

Three types of events can cause the DNP compo-
nent to respond or to "wake up": user requests, re-
ceived packets, and timer ticks. All of these events
are asynchronous, since they are generated by hard-
ware interrupts or user actions that are not man-
aged by the operating system. Each time the DNP
component processes an event, variables and data
structures internal to the component change. In de-
signing the component, we had to ensure that the
events would not interrupt one another.

To protect the data structures in a generic way, all
versions of the PATHWORKS DNP component use a
queuing system called the executive. Asynchronous
events are queued to the executive module, where
a semaphore guards the dispatching and processing
routines. The queue and the semaphore guarantee
the following: the receipt of a new event does not
interrupt ongoing processing, and events are pro-
cessed in the order in which they arrive.

Under the DOS operating system, the main loop of
the executive module uses the PATHWORKS SCH
component to "sleep," process pending events, and
sleep again. Events that arrive while the main loop
is executing are simply placed on the queue. Operat-
ing under the DOS system, on which no background
processing services exist, the DNP component uses
the PATHWORKS SCH component. Since the OS/2
operating system does provide a background pro-
cessing environment, the corresponding version of
the DNP component uses the native background
processing and scheduling functions of the OS/2 op-
erating system to perform the same tasks.

Data Structures

The DNP transport component uses three primary
data structures to manage network links and to
transfer data: the request (REQ) data structure, the

REQUEST QUEUE

A

link status block (LSB) data structure, and the large
data buffer (LDB) data structure.

To queue events for processing, the REQ data
structure is allocated from a global pool. Pointers
to a user request or to network data are stored in
the REQ structure and then placed on the executive
dispatcher queue. The REQ structure is also used to
describe unacknowledged data and to store events
in the event log. Using the same pool for different
purposes saved memory and decreased the overall
complexity of the component. Figure 3 illustrates a
typical request queue to the executive dispatcher.

The executive module reads each event, i.e., col-
lection of messages or user requests, from the re-
guest queue and dispatches the event to the appro-
priate handler routine, according to event type. The
routine then further dispatches the event to specific

subroutines to handle the individual messages or
requests. The lowest-level routines keep network

links active and transfer data to and from the re-
mote system.

In previous versions of the DNP component, the
REQ data structure consumed 48 bytes of memory.
We reduced its size to 22 bytes by creating variant
records that contained only those data fields neces-
sary to identify the type of request.

The LSB data structure maintains the current sta-
tus of a logical link. In addition to the network ser-
vices protocol (NSP) variables, the LSB structure
stores other data, including the queue of unacknowl-
edged data and the queue of outstanding transmit
and receive requests. Figure 4 illustrates the con-
tents of the LSB and associated data structures for
an active logical link.

EVENT-HANDLER ROUTINES

USER
—> DATA F— DATA —> REQUEST
NETWORK NETWORK NCB OR
PACKET PACKET 10CB

—>| PROCESS I0CB REQUESTS |

—>| PROCESS NETBIOS REQUESTS |

EXECUTIVE
DISPATCHER —>| PROCESS RECEIVED DATA PACKETS I

—>| PROCESS TIMER TICKS I

—>| PROCESS CONTROL MESSAGES |

Figure 3 DNP Executive Dispatcher Module and Incoming Request Queue

4 Digital Technical Journal Vol. 4 No. 1 Winter 1992

DECnet Transport Architecture

USER DATA NCB USER

USER DATA NCB USER

BUFFER REQUEST BUFFER REQUEST
APPLICATION
MEMORY 1))
SYSTEM
MEMORY LINK STATUS BLOCK (LSB)
TRANSMIT TRANSMIT
TRANSMIT QUEUE REQUEST (REQ) REQUEST (REQ)
RECEIVE QUEUE
UNACKNOWLEDGED DATA REQUEST DATA REQUEST
DATA (REQ) (REQ)
RECEIVED DATA
I
NETWORK SERVICES LARGE DATA LARGE DATA
PROTOCOL STATE BUFFER (LDB) BUFFER (LDB)
VARIABLES

Figure 4 Link Status Block and Associated Data Structures

The user requests are attached to queues on the
logical link. For storage of unsent or unacknowl-
edged data, the DNP component uses a REQ data
structure to point to an LDB data structure. The
LDB structures belong to the Ethernet or token ring
data link component and are shared by other pro-
tocols. Before transmitting data, the DNP compo-
nent allocates first an LDB data structure and then
a REQ data structure that points to the LDB. The
REQ structure is placed on the outgoing message
queue of the LSB structure, and the NSP layer even-
tually transmits the REQ data.

Internal DNP Modules

The DNP transport component consists of various
modules. We now describe the data link control
(DLC) module, the NSP module, and the NetBIOS
and 10CB modules.

The DLC module is responsible for communication
with the Ethernet or token ring data link compo-
nent. Only the DLC module calls the data link, and
the differences between the DOS and OS/2 versions
are hidden in the DLC module to present a consis-
tent software interface to the rest of the DNP com-
ponent.

To make the NSP and DECnet Phase IV routing
modules as operating-system independent as possi-

ble, we developed a simplified software interface to
communicate with the Ethernet or token ring DLC
module. The DLC module calls the data link that
is specific to the operating system. Providing the
software interface allowed us to use common code
for all of the modules that do not directly access the
data link.

The NSP module manages the transport proto-
col, including the buffering, flow control, and er-
ror recovery mechanisms. In PATHWORKS version
4.1, we changed the buffering and flow control al-
gorithms to match more closely the types of traffic
that PC network applications are likely to generate.

Most users of the NetBIOS interface post receive
requests before transmitting a request for data from
a server. Some implementations of the NetBIOS in-
terface do not buffer received or transmitted data in-
side the transport component, so applications must
prepare to receive before requesting data from the
server. To best manage the incoming data, the DNP
component of PATHWORKS version 4.1 uses XON
IXOFF flow control for NetBIOS logical links and
segment flow control for logical links that use the
IOCB interface. The previous version used segment
flow control for both the NetBIOS and IOCB inter-
faces. XON/XOFF flow control causes fewer mes-
sages to be transmitted on the wire, especially in

Digital Technical Journal Vol. 4 No. 1 Winter 1992 5

DECnet Transport Architecture

request/response session layer protocols, and is most
successful when the receiving node has a buffer
ready to accommodate the incoming data. Segment
flow control is more robust and allows the DNP com-
ponent to better regulate the rate of incoming data.
This method of flow control can be especially use-
ful for non-request/response protocols such as those
used in the DECwindows software.

The NetBIOS and I0CB modules form the session
layers for the DNP component. In previous ver-
sions of the DNP component, the NetBIOS module
was layered on top of the IOCB interface. However,
as we mentioned earlier in the paper, most popu-
lar network applications use the NetBIOS interface.
We decided to increase the performance of those ap-
plications by designing the new DNP component in
such a way that the NetBIOS module directly calls
the NSP module.

We recognized another element of the DNP de-
sign that could be improved. Earlier DNP versions
copied the user’s NetBIOS request into a local data
structure for easy access. The extra resources re-
quired to store and copy the user requests dimin-
ished the overall performance of the DNP compo-
nent. To improve performance, the DNP component
now stores a pointer to the original user’s request
and manipulates the request directly.

NetBIOS compatibility is one problem that many
vendors face when writing network transport com-
ponents. The NetBIOS software interface is defined
in several different specifications, and many appli-
cations depend on quirks and bugs in the design.
The PATHWORKS NetBIOS interface must emu-
late these bugs completely for certain applications
to work properly. We paid careful attention to the
bug reports from customers in previous versions of
the PATHWORKS software when rewriting the Net-
BIOS layer to provide complete compatibility.

A Typical Network Opeation

To illustrate the sequence of events through the
DNP component for a typical network operation,
consider the transmission of 64 kilobytes (KB) of
data through the NetBIOS interface. The applica-
tion that wishes to send the data constructs a Net-
BIOS control block (NCB) data structure and sub-
mits it to the NetBIOS software interface. The DNP
component receives control, creates a queue entry
for the NCB structure, and then wakes the SCH
component. Waking the SCH component causes the
main loop of the DNP component to begin execution.
The executive module checks the request type and
dispatches the entry to the NetBIOS module where
the transmit request is placed on the logical link’s

6 Digital Technical Journal Vol. 4 No. 1 Winter 1992

transmit request queue. The transmit request ini-
tially points to the user’s NCB and the beginning of
the user’s data buffer.

The NSP module copies data into the LDB data
structures and queues these LDBs onto the unac-
knowledged data queue. The amount of data copied
depends on the size of the transmit pipeline, which
is a network management parameter. Each time
data is copied into an LDB data structure, the
pointer advances in the transmit request queue.
When all of the data is copied into the LDBs, the
user’s transmit request is completed, allowing the
application to continue execution while the DNP
component transmits the queued data.

If the flow control mechanism permits sending
data, the NSP module calls the routing layer to add
routing headers. The data link control module then
transmits the packets on the LAN. The remote net-
work system responds with acknowledgment mes-
sages, which are placed on the request queue and
processed when the DNP component returns to the
main loop. An acknowledgment message causes
the LDBs to be returned to the data link control
module and makes space available on the transmit
pipeline. The NSP module can then refill the trans-
mit pipeline by copying more user data into the LDB
data structures and restart the transmit process.

Results

We achieved our project goals for the DNP trans-
port component in PATHWORKS version 4.1 client
software. As a result of the new design, we reduced
memory usage, improved performance, and reduced
maintenance cost.

Memory Usage

We reduced the resident size of the DNP com-
ponent from 53KB to 33KB. The reduction in the
size of the internal data structures freed up enough
memory resources to allow the DNP component to
handle over 200 concurrent network links. Previ-
ously, the DNP component was limited to 64 links.

Performance

By coding in assembly language, and optimizing
the path for sending data messages to the net-
work, performance was nearly doubled for small
data transfers. Small data transfers account for the
majority of transfers in database applications.

The graph shown in Figure 5 represents DECnet
performance, measured in messages transferred per
second, as a function of message size, ranging from
64 to 65,500 bytes. We include data for versions 4.0
and 4.1 of the DNP component. As the message size

increases, the curves converge because the Ethernet
adapter’s performance becomes the limiting factor
for throughput. Smaller message sizes are typical in
many industry-standard PC benchmark programs
and applications.

600
5001
4001
3001

200

MESSAGES PER SECOND

100}

O3 1t 512 ' 2048 | 8192 | 32,768 !
64 256 1,024 4006 16,384 65500

MESSAGE SIZE (BYTES)
KEY:

B DNP COMPONENT IN PATHWORKS VERSION 4.1
O DNP COMPONENT IN PATHWORKS VERSION 4.0

Figure 5 DECnet Network Process
Component Throughput

The benchmark program used to calculate DEC-
net performance transfers data from one PC to an-
other as fast as possible, using fixed message sizes.
The hardware used in these tests consisted of 20-
megahertz Intel 80386 microprocessors with 16-bit
DEC EtherWORKS Turbo (DE200) adapters run-
ning on a private Ethernet segment.

Maintenance Costs

Debugging the common source code base for the
DOS and OS/2 versions is much simpler than for the
previous version of the DNP component. Since the
0S/2 version uses the memory protection features of
the PC’s Intel microprocessor, invalid memory ref-
erences under the OS/2 version cause system traps
that would not have been detected under the DOS
version. Nearly 90 percent of the code is common to
the DOS and OS/2 versions of the DNP component.
The number of source lines was reduced from 73,000
(the DOS version only) in PATHWORKS version 4.0
to 53,000 (the DOS and OS/2 versions combined)
in PATHWORKS version 4.1. Rewriting the com-
ponent also improved its compatibility with third-
party NetBIOS applications.

Debugging features were added to the DNP com-
ponent in PATHWORKS version 4.1 that allow cus-
tomers to adjust their DECnet configuration easily
and precisely. The DNP component now collects
statistics on the maximum number of REQ, LSB,

DECnet Transport Architecture

and LDB structures allocated, and on the size of
each pool. Using this feature, we found that the ver-
sion 4.0 DNP component allocated nearly twice as
many REQ data structures as it needed under nor-
mal client workloads. As a result, we lowered the
default allocations to further reduce memory con-
sumption.

Conclusion

The DECnet transport component project for the
version 4.1 release of the PATHWORKS client soft-
ware was a success; we came very close to our orig-
inal goals for memory, performance, and software
development costs. In addition, many of the tech-
niques, algorithms, and data structures used for
this effort can be applied to future network trans-
port development.

General References

IBM NetBIOS Application Development Guide (Ar-
monk, NY: International Business Machines Corpo-
ration, 1987).

Microsoft/3Com Network Driver Interface Specifi-
cation, version 2.0.1 (Redmond, WA: Microsoft Cor-
poration, 1990).

PATHWORKS Programmer’s Reference, version
4.1 (Maynard, MA: Digital Equipment Corporation,
1991).

DECnet Phase IV General Description (Maynard,
MA: Digital Equipment Corporation, Order No. AA-
N149A-TC, 1983).

Microsoft MS-DOS Programmer’s Reference (Red-
mond, WA: Microsoft Corporation, 1990).

Microsoft OS/2 Device Driver Reference (Redmond,
WA: Microsoft Corporation, 1989).

Trademarks

The following are trandemarks of Digital Equip-
ment Corporation:
ALL-IN-1, DEC, DECnet, DECwindows, Digital,
the Digital logo,eXcursion, LAT, PATHWORKS, UL-
TRIX, VAX, VAXcluster.

0S/2 is a registered trademark of International
Business Machines Corporation.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 7

DECnet Transport Architecture

Author Biographies

Mitchell P. Lichtenberg Mitch Lichtenberg is a
principal software engineer in the Personal Com-
puting Systems Group. He is responsible for the de-
sign and implementation of the PATHWORKS net-
work client transport architecture and for various
other aspects of Digital's PATHWORKS PC integra-
tion products. Before joining Digital in 1986, he was
employed by the Xerox Palo Alto Research Center
as a software engineer in the Xerox Artificial Intel-
ligence Systems Division. Mitch holds a B.S. (1986)
from Worcester Polytechnic Institute.

8 Digital Technical Journal Vol. 4 No. 1 Winter 1992

Jeffrey R. Curless As a principal software en-
gineer in the Personal Computing Systems Group,
Jeff Curless worked on the OS/2 data link driver
and on the PATHWORKS token ring implementa-
tion. He is currently developing a new configuration
utility to support the future direction of the PATH-
WORKS product set. Since joining Digital in 1986,
he has contributed to the development of PATH-
WORKS software under both the DOS and OS/2
operating systems. Jeff holds a B.S. in computer
science from the University of New Hampshire.

