
The Development of an Optimized PATHWORKS Trans-
port Interface

Digital’s Personal Computing Systems Group developed an optimized transport interface
to improve the performance of the PATHWORKS for VMS version 4.0 server. The

development process involved selecting a transport protocol, designing appropriate
interface test scenarios, and measuring server performance for each transport interface
model. The engineering team then implemented the optimized design in the server and

performed benchmark testing for specified server workloads. Using an optimized
transport interface improved server performance by decreasing the time required
to complete the test while maintaining or decreasing the percent CPU utilization.

By Philip J. Wells

Introduction

The PATHWORKS family of network integration
software products includes file servers that provide
file and print services to personal computers (PC)
in local area networks (LANs). Developed by the
Personal Computing Systems Group (PCSG), the
PATHWORKS for VMS version 4.0 server supports
the Microsoft LAN Manager network operating sys-
tem. This server allows PC clients transparent ac-
cess to remote VMS files. With each new release
of the PATHWORKS for VMS product, the PCSG
engineering team improved server performance and
thus accommodated an increasing number of time-
critical PC applications. In version 2.0, we intro-
duced disk services as an alternative to file services
for read-only files. We included data caching in ver-
sion 3.0 of our file server.

For version 4.0, our goal was to increase file server
performance by optimizing the transport interface
and the data buffering algorithm. To achieve this
goal, we evaluated several transport interface de-
signs and measured server performance for vari-
ous server workloads. We started with the premise
that using the standard buffered interface results
in increased overhead for each transaction and thus
decreases overall CPU availability. Figure 1 illus-
trates this interface design. The server copies a user
data buffer in process context across the kernel ser-
vice interface to a system buffer in system context,
before transferring the data to the network layer.

SERVER

USER
BUFFER

DATA
COPY

SYSTEM
BUFFER

KERNEL
SERVICE
INTERFACE

PROCESS
CONTEXT

SYSTEM
CONTEXT

TRANSPORT

Figure 1 Data Copy with a Buffered I/O
 Interface

Prior analysis of PATHWORKS server perfor-
mance over the DECnet transport protocol revealed
that when the file server request sizes were large,
i.e., 4 to 8 kilobytes (KB), file server performance
met or exceeded the performance of other vendors’
transports. However, when the transfer sizes were
small, i.e., less than 256 bytes, file server perfor-
mance degraded significantly. Also with small re-
quest sizes, our server did not ramp well when
many clients were supported in this environment.
As illustrated in Figure 2, incremental increases in
server workload cause dramatic increases in CPU
utilization once a certain workload is reached, i.e.,
at the knees of the curves, denoted by points A and
B. We wanted our server performance to approach
that represented by the curve containing point B. In
this way, we could support more clients at the same
or less CPU utilization.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 1

The Development of an Optimized PATHWORKS Transport Interface

SERVER WORKLOAD

C
P

U
 U

T
IL

IZ
A

T
IO

N

BA

Figure 2 CPU Utilization as a Function
 of Server Workload

Server Performance Analysis

We based our analysis of PATHWORKS server per-
formance on two initial hypotheses:

• The CPU overhead associated with a buffered
interface significantly degrades server perfor-
mance.

• The variable transaction response times inherent
in using the standard queued I/O (QIO) interface
results in inefficient server performance.

Protocol Selection

To begin our performance analysis, we needed to
choose a transport protocol. We considered the
DECnet and the local area system transport (LAST)
protocols and selected the LAST protocol for the fol-
lowing reasons:

• An advanced development effort on the DOS
client software showed that file and print ser-
vices over the LAST protocol decrease the client
memory usage by one-third.

• The PATHWORKS engineering team maintains
the LAST protocol and thus, can make any re-
quired modifications.

• The VMS operating system implementation of
the LAST transport protocol is called LAST-
DRIVER. LASTDRIVER serves our purpose be-
cause it presents a buffering model that per-
mits the passing of multiple noncontiguous data
buffers as a single, logically contiguous buffer.
Figure 3 shows two physical data buffers, of sizes
N and M, being passed to LASTDRIVER as a sin-
gle message. The second buffer descriptor con-
tains a zero in the next buffer descriptor pointer

word. This value indicates the end of the data
stream.

Test Scenarios

After selecting the LAST transport protocol, we
created four test scenarios to measure server per-
formance. The first scenario, the kernel model, re-
quired developing a VMS device driver that was lay-
ered on top of LASTDRIVER. In this model, when
the driver receives request data, the data is imme-
diately transmitted back to the client. The driver
does not copy buffers and does not schedule a pro-
cess. This model represents the optimum in perfor-
mance, because absolutely no work is performed in
relation to the request.

BUFFER DESCRIPTORS

DATA BUFFERS

N

0

M

MN

Figure 3 LASTDRIVER Buffering Model

2 Digital Technical Journal Vol. 4 No. 1 Winter 1992

The Development of an Optimized PATHWORKS Transport Interface

The second test scenario required that we develop
a user-mode test program. This model performs
similarly to the kernel model in that it loops receive
data directly back to the client without performing
any copy operations. This model differs from the
first model in that the driver schedules a VMS pro-
cess to loop the data back to the client. We then
developed the following variations on this test sce-
nario to accommodate three transport interfaces to
the VMS process:

• A standard VMS QIO interface model. This
model uses the standard interface provided with
the VMS operating system.

The remaining two scenarios represent opti-
mized transport interfaces with regards to two
aspects of a request: the initialization and the
completion.

• A model that incorporates the standard VMS QIO
interface with a process wake-up completion no-
tification. This QIO/WAKE model uses the stan-
dard QIO interface to initiate a transport re-
quest. However, the transport queues I/O com-
pletion notification directly to the receiving pro-
cess by means of a shared queue and a process
wake-up request. The purpose of this optimiza-
tion was to avoid the standard postprocessing
routines of the VMS operating system.

• A model that includes kernel mode initializa-
tion and wake-up completion notification. This
CMKRNL/WAKE model uses the transport com-
pletion technique of the previously described
model. However, we created an entry point into
the driver for the test program to call, thereby
initiating transport requests. The test program
uses the change-mode-to-kernel (CMKRNL) sys-
tem service to call the driver entry point. This op-
timization was made to avoid the standard QIO
interfaces.

To support the optimized transport interfaces, the
test program allocates a buffer in process context
and divides it into two sections: the first contains
shared queues for moving data between process con-
text and system context; the second contains the test
program’s shared data buffers. The driver issues a
system call to double map the shared buffer into
system context. Figure 4 shows this double-mapped
buffer. Since the buffer is contiguous, the difference
between the start of the shared data region in pro-
cess context and the start of the shared region in
system context is a constant, and is used as an off-
set. The test program accesses the shared region by
using a process virtual address (PVA); device drivers
access the region by adding the offset to the PVA to
compute a system virtual address (SVA), as shown
in Figure 5. To accomplish completion notification,

the driver inserts the data into the shared queue
and issues a process wake-up request for the test
program.

SHARED
QUEUES

SHARED
DATA
BUFFERS

PROCESS
CONTEXT
BUFFER

SYSTEM
CONTEXT
BUFFER

Figure 4 Double-mapped Buffer

OFFSET

PROCESS
VIRTUAL
ADDRESS

SYSTEM
VIRTUAL
ADDRESS

Figure 5 Virtual Address Space

Digital Technical Journal Vol. 4 No. 1 Winter 1992 3

The Development of an Optimized PATHWORKS Transport Interface

Performance Measurements

Our hardware platform was a VAXstation 3100
workstation. Wee measured server performance as
the difference between the request arrival time and
the response departure time, as observed on the
Ethernet. Times were measured in milliseconds us-
ing a Network General Sniffer. Table 1 presents the
test results.

Table 1

Server Performance over Various Interfaces

Interface Server Performance
(Milliseconds)

Kernel Model 0.8

Standard VMS QIO Model 2.2

QIO/WAKE Model 1.7

CMKRNL/WAKE Model 1.6

As Table 1 shows, we decreased server response
time by using an optimized transport interface. The
kernel model yields the best possible performance
results. As we move from the standard VMS QIO
interface to more optimized interfaces, there is a
decrease in transaction response time which repre-
sents improved server performance.

Data collected during initial performance testing
supported our decision to optimize the transport in-
terface. Occasionally while testing the interfaces,
server throughput dropped dramatically, i.e., 30 to
50 percent, for a short time interval, i.e., one to two
seconds, and then resumed at its prior rate. Ini-
tially, we thought there was a problem with our
code. However, the anomaly persisted throughout
the development period, so we decided to investi-
gate the cause of the dip in performance.

The VAXstation 3100 system that we used to per-
form the testing had a graphics controller card
installed, but did not include the graphics moni-
tor. Since the system included a graphics card, the
DECwindows login process frequently tried to dis-
play the initial DECwindows login screen. This at-
tempt failed because there was no monitor. There-
fore, the process was deleted and restarted a few
minutes later. We concluded that the temporary
drop in server performance we had observed was
the effect of the DECwindows start-up process.

The significance of this observation became appar-
ent when we optimized the transport interface, and
the effect of this background process activity de-
creased to less than 10 percent. We concluded that

the optimized interface was less susceptible to con-
current I/O than was the standard QIO interface.

Implementation

Once the initial testing of prototypes was complete,
we decided to implement the double-mapped buffer-
ing algorithm with shared queues. The VAX archi-
tecture provides inherent queuing instructions that
allow the sharing of data across dissimilar address
spaces. It accomplishes this by storing the offset
to the data, rather than the address of the data, in
the queue header. This technique permits us to in-
sert a system virtual address into a queue in system
context and later remove the address in process con-
text as a process virtual address. A second function
that these instructions perform is to interlock the
queue structure while modifying it. This procedure
precludes concurrent access by other code and thus
allows the interface to support symmetrical multi-
processing.

We modified the file server to support this new
optimized transport interface. To ease the imple-
mentation, the QIO interface emulates the DEC-
net interface in all aspects except one. Since the
client-server model is essentially a request/response
model, we developed a transmit/receive (transceive)
operation that allows the server to issue read buffer
and write buffer requests at the same time. This
variation reduces the number of system boundary
crossings. When the server transmits buffers, these
buffers return to the server process by way of a
transmit complete queue. When the server receives
a new request message, the associated buffer is
transferred to the server process via a receive com-
plete queue. To facilitate a transceive operation, we
defined a work element data structure. As shown
in Figure 6, a work element permits the passing of
two distinct data streams: one for transmit and one
for receive.

4 Digital Technical Journal Vol. 4 No. 1 Winter 1992

The Development of an Optimized PATHWORKS Transport Interface

BUFFER
DESCRIPTORS

DATA BUFFERS

N
0
M

A
0
B

TRANSMIT

RECEIVE

WORK
ELEMENT

Figure 6 Work Element Data Structure
 for a Transceive Operation

As development of the client and server software
modules continued, we encountered some interest-
ing problems. The following three sections describe
several of these problems and how we addressed
them.

Microsoft LAN Manager Redirector I/O Behavior

When the Microsoft LAN Manager redirector, i.e.,
the DOS client protocol equivalent of the VMS file
server, generates a read request, it first writes the
request for service to the network. The redirector
then issues a read request and uses a short buffer to
receive only the protocol header of the response mes-
sage. After verifying that the response was success-
ful, the redirector issues a second read request to
receive the data associated with the response mes-
sage.

This behavior requires lower protocol layers to
buffer the response data until the redirector issues
a read request to receive the data. In order to buffer
the response data for the client, the transport layer
needs to allocate an 8KB buffer. An alternative ap-
proach to maintaining a dedicated transport buffer
is to use the inherent buffering capacity of the Eth-
ernet data link software and the Ethernet controller
card, which maintain a cache of receive buffers.
This technique requires the transport layer to re-
tain data link receive buffers while the redirector
verifies the response message protocol header and
posts the actual receive buffer. Once the redirector
issues the second read request, the remaining data
is copied and the Ethernet buffers are released.

One problem with this approach is that each ven-
dor’s Ethernet card has different buffering capaci-
ties. In some cases, the capacity is less than the
size of the maximum read request. To support such
inadequate buffering capability, we inserted a buffer
management protocol (BMP) layer between the file
server and the redirector. The resulting process is
as follows:

The client module communicates its data link
buffering capacity to the server module in the ses-
sion connect message. When the application gener-
ates data requests, the DOS redirector packages a
server message block (SMB) protocol message and
passes it to the BMP layer. This layer adds a small
buffer management header to the message and pass
it to the transport layer to transmit to the server.

To complete the operation, the file server processes
the request, formats an SMB response message, and
passes it to the BMP layer. At this interface, the size
of the response message is indicated by the trans-
mit buffer descriptors, and a protocol header that
describes the response packet is created. If the re-
sponse message is larger than the client’s data link
buffering capacity, the driver software segments the
response packet into smaller messages and passes
these messages to the server transport to transmit
to the client. The client module copies the header to
the redirector’s short buffer and completes the redi-
rector’s read request. The BMP layer then waits for
the second read to copy the remaining data to the
redirector’s buffer and releases the data link buffers.
At this point, the client can request more data from
the server.

Response Buffering

The LAST protocol does not acknowledge the re-
ceipt of messages because it relies on the integrity
of the underlying LAN to deliver datagrams with-
out error. Consequently, the BMP layer must buffer
all response data transmitted to the client to pro-
tect against packets that are lost or discarded. In
such a case, the BMP layer transmits the original
response message back to the client without sending
the message to the server process.

For instance, consider the two cases shown in Fig-
ures 7 and 8. In Figure 7, a client generates a read
request at time T1. The server processes the re-
quest and generates a response at time T2. The
response is lost due to congestion, so the client re-
quests the same data again, as indicated at time T3.
The server rereads the file and generates a new re-
sponse. Since the read operation is naturally idem-
potent, i.e., it can be repeated without changing the
result, the operation completes successfully.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 5

The Development of an Optimized PATHWORKS Transport Interface

CLIENT SERVER

T1

T2

T3

T4

SUCCESSFUL READ,
UNSUCCESSFUL RESPONSE—
PACKET LOST

SUCCESSFUL READ,
SUCCESSFUL RESPONSE

READ BLOCK 1

READ BLOCK 1

Figure 7 Idempotent Request

CLIENT SERVER

T1

T2

T3

T4

SUCCESSFUL DELETE,
UNSUCCESSFUL RESPONSE—
PACKET LOST

UNSUCCESSFUL DELETE,
SUCCESSFUL RESPONSE
(EVEN THOUGH THE FILE
WAS DELETED)

DELETE FILE 1

DELETE FILE 1

Figure 8 Nonidempotent Request

In the case depicted in Figure 8, we changed the
operation from a disk read to a delete file. Here,
the client makes the delete request at time T1, and
the server successfully deletes the file at time T2.
The response message is again lost. When the client
reissues the delete file request at time T3, the server
fails in its attempt to perform the operation because
the file no longer exists. The delete operation is not
idempotent; thus, repeating the operation yields a
different outcome.

We cannot determine in advance the actual idem-
potency of any given request. Therefore, the BMP
layer must cache all response buffers. If a response
message is lost, the server transmits the original
response message instead of retrying the entire op-
eration. If, as in the second example, the server is
able, at time T4, to transmit the actual buffer used
at time T2 to store the response message, the oper-
ation can complete successfully.

To facilitate the buffering of response data, the
transport provides a transaction identifier for re-
quest and response messages. This identifier is set
by the client BMP layer whenever a new request

is received from the redirector. The server stores
this identifier and verifies it against the identifier
of the next request. If a received request has a du-
plicate identifier, the request must be a retransmis-
sion and the server transmits the message in the
cached response buffer. If the identifier is unique,
the cached buffer is returned to the server by means
of the shared queues, and a new request is created.
The client’s single-threaded nature ensures that the
transaction identifier method is successful in detect-
ing a retransmission.

NetBIOS Emulation

The PATHWORKS transport interface implemen-
tation relies on the request/response behavior of the
DOS redirector. However, the redirector uses the
standard DOS network basic I/O system (NetBIOS)
interface to communicate with transports, and this
interface does not exhibit request/response behavior.
Therefore, our implementation is not a true Net-
BIOS emulation and can prevent common NetBIOS
applications from operating correctly.

To resolve this problem, we developed a common
NetBios interface between the DECnet and LAST
transports. After receiving a request, the client
first tries to connect over the LAST transport. If
the connection attempt fails, the request passes to
the DECnet transport. Thus, standard NetBIOS ap-
plication requests operate over the DECnet trans-
port; only redirector requests are processed over the
LAST transport.

Final Benchmarks

At the completion of the project, we performed
benchmark tests to measure server performance for
varied workloads and for a directory tree copy. Table
2 shows the results for varied workloads. The first
column of the table describes the test performed.
ALL I/O represents a raw disk I/O test in which
the measured client issues read and write requests
of various buffer sizes ranging from 128 bytes to
16KB. TP represents a transaction processing test
that measures random read and write requests of
small units of data. This test emulates a typical
database application. The workload value indicates
the number of client systems used in the test to pro-
duce a background workload. As one might expect,
as the workloads increase, the performance of the
measured client degrades.

6 Digital Technical Journal Vol. 4 No. 1 Winter 1992

The Development of an Optimized PATHWORKS Transport Interface

Table 2

Final Benchmark Test Results for Varied Workloads

LAST Protocol DECnet Protocol

Test
Description

Elapsed Time
(seconds)

CPU Utilization
(percent)

Elapsed Time
(seconds)

CPU Utiliation
(percent)

All I/O 0 Workloads 840 4 961 4

All I/O 2 Workloads 943 69 1074 75

All I/O 4 Workloads 1091 100 1434 100

TP 1 Workload 59 39 79 50

TP 5 Workloads 163 83 212 93

The entries in each row of the table are the elapsed
time and percent CPU utilization for the given test.
We measured server performance over the LAST
protocol using our optimized interface and over the
DECnet protocol using the standard VMS QIO in-
terface. For the All I/O tests, the resultant elapsed
time is the actual time it took to complete the
test. For the TP tests, the performance numbers
are the average of all the PCs tested. As Table 2
shows, we were able to decrease the elapsed time
for each benchmark while maintaining the same or
decreased CPU utilization.

The two graphs in Figures 9 and 10 illustrate these
results. In the ALL I/O test, CPU utilization us-
ing the optimized interface increases steadily as the
workload increases. Using the standard QIO inter-
face, CPU utilization increases at a faster rate once
a specified workload is reached. Although the TP
graph in Figure 10 contains only two data points,
it is evident that CPU utilization is proportionally
higher for five workloads than it is for one. We per-
formed multiple tests to verify that the results could
be reproduced consistently.

The final benchmark test performed was a direc-
tory tree copy using the DOS XCOPY utility. In this
test, the utility copies the directory tree first from
the server to the client and then from the client to
the server. The bottleneck in this test is known to
be the file creation time on the server. Therefore,
we expected a more efficient transport interface to
have no effect on server performance. The test re-
sults in Table 3 support our theory. The I/O rate
and the elapsed time over both the DECnet proto-
col (using the standard transport interface) and the
LAST protocol (using the optimized transport inter-
face) are nearly the same.

1600

E
LA

P
S

E
D

 T
IM

E
 (

S
E

C
O

N
D

S
)

1200

800

400

0 4

NUMBER OF WORKLOADS

KEY:

LAST PROTOCOL WITH OPTIMIZED INTERFACE

DECNET PROTOCOL WITH STANDARD QIO INTERFACE

200

600

1000

1400

2

Figure 9 ALL I/O Test Results

400

E
LA

P
S

E
D

 T
IM

E
 (

S
E

C
O

N
D

S
)

300

200

100

0
5

NUMBER OF WORKLOADS

KEY:

LAST PROTOCOL WITH OPTIMIZED INTERFACE

DECNET PROTOCOL WITH STANDARD QIO INTERFACE

1

Figure 10 TP Test Results

Digital Technical Journal Vol. 4 No. 1 Winter 1992 7

The Development of an Optimized PATHWORKS Transport Interface

Table 3

Final Benchmark Test Results for a Directory Tree Copy

LAST Protocol DECnet ProtocolI

Test Description Elapsed Time (seconds) I/O Rate (KB/sec) Elapsed Time (seconds) I/O Rate (KB/sec)

XCOPY to Client 115 39 15 39

XCOPY to Server 119 38 121 37

Acknowledgements

I wish to thank Jon Campbell for incorporating the
interface design modifications into the file server,
Alpo Kallio for developing the client software, and
Alan Abrahams for designing the combined DEC-
net/LAST NetBIOS interface and for his encourage-
ment and support.

Biography

Philip J. Wells Phil Wells is the PATHWORKS
server architect and is responsible for coordinating
the design and implementation of the PATHWORKS
server products. In previous positions at Digital,
Phil worked for Corporate Telecommunications de-

signing Digital’s internal network, the EASYNET,
and helped support data centers and networks while
in the Internal Software Services Group. Phil joined
Digital in 1976 as a computer operator in the Cor-
porate Data Center.

Trademarks

The following are trandemarks of Digital Equip-
ment Corporation:
ALL–IN–1, DEC, DECnet, DECwindows, Digital,
the Digital logo,eXcursion, LAT, PATHWORKS, UL-
TRIX, VAX, VAXcluster.

Network General and Sniffer are trademarks of
Network General Corporation.

8 Digital Technical Journal Vol. 4 No. 1 Winter 1992

