
PATHWORKS for VMS File Server

The PATHWORKS for VMS file server integrates industry-standard personal computers with VAX
VMS systems over a communications network. It implements Microsoft’s server message block

(SMB) core protocol, which provides resource sharing using a client-server model. The
server provides transparent network access to VAX VMS FILES-11 files from a PC’s
native operating system. The architecture supports multiple transports to ensure

interoperability among all PCs connected on an open network. Due to the performance
constraints of many PC applications, data caching and a variety of other algorithms and

heuristics were employed to decrease request response time. The file server also
implements a security model to provide VMS security mechanisms to PC users.

By Edward W. Bresnahan and Siu Yin Cheng

Introduction

Coupled with the PATHWORKS for DOS or PATH-
WORKS for OS/2 product, PATHWORKS for VMS
creates a distributed computing environment, based
on a client-server model. This environment al-
lows personal computer (PC) users to access VMS
system resources transparently. PC clients access
the system server from their native operating sys-
tems, typically MS–DOS, as if it were local to the
PC. The VAX VMS system resources to be shared,
i.e., files or printers, are offered as services over
the network to PC clients. The computer systems
providing the shared resources are referred to as
servers; and the PCs requesting the resources as
clients. The SMB protocol from the Microsoft Net-
works/OpenNET (MS-NET) Architecture was cho-
sen to provide file sharing from a VAX VMS sys-
tem to MS–DOS and OS/2 clients.[1] The SMB pro-
tocol is a command/response application-layer pro-
tocol designed to provide file sharing in a PC net-
work. Since SMB is an application-layer protocol,
it is transport independent and thus can be imple-
mented over heterogeneous networks.

Central to this environment is the file server, the
component that processes the SMB requests to pro-
vide file and print sharing along with management
functions. The file server maps SMB file requests
to the appropriate calls for the VAX VMS FILES-11
file system interface and honors applicable security
mechanisms. MS–DOS and VAX VMS systems have
different file systems and security models. To inte-

grate these different environments, mapping poli-
cies, along with an architecture appropriate for the
VMS system, had to be developed and implemented.

This paper describes the design and implementa-
tion of a nondedicated personal computer file server
(PCFS) on a VAX VMS computer system. It details
the PATHWORKS for VMS file system and discusses
its transport layer interface and performance con-
siderations, including data caching effects and disk
space allocation. The paper then explains file shar-
ing among server processes in a cluster environment
and concludes with a discussion of the server con-
figuration and management interface.

File Server Architecture

The file server is implemented as a single, multi-
threaded, nonblocking detached process with an as-
sociated permanent DECnet object. This user-mode
process is privileged and has a high priority. Figure
1 shows the architecture of the server. Only one file
server process exists on any one computer to handle
all client requests. An alternative choice would be to
have multiple processes service the clients. The use
of a single process reduces system resource require-
ments and eliminates the latency that is incurred
from context switches among the multiple server
processes. Also eliminated is the latency that re-
sults from process creation at the time a client con-
nects.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 1

PATHWORKS for VMS File Server

PCFS SERVICE
DATABASE

USER
AUTHORIZATION
FILE DATABASE

VMS LOCK
MANAGER

VMS FILE
SYSTEM

JOB
CONTROLLER

MANAGEMENT
INTERFACE

PERSONAL COMPUTER FILE SERVER

TOKEN
RINGETHERNET

LAST DECNETTCP/IP

Figure 1 Server Architecture

A threads package with multiple independent
threads of execution within a single process sup-
ports multiple clients and periodic operations within
the file server. The file server creates a thread for
a client when it requests establishment of a virtual
circuit to the file server. The thread is deleted when
the client terminates its connections. A client’s
thread carries out the operation specified in the re-
quest SMB without blocking the process. With this
scheme, processing SMB requests is synchronous
with respect to the client, yet asynchronous with
respect to the file server process.

Since a server process may be processing the re-
quests of hundreds of clients simultaneously, the
server operates in real-time. The threads pack-
age contributes to these goals by providing an en-
vironment in which the process never enters a
wait state and a client thread is safe from CPU
starvation. Preventing the process from blocking
is accomplished by performing all file I/O asyn-
chronously and by calling operating system routines
asynchronously when possible. Starvation is pre-
vented by scheduling clients using a nonpreemptive
first-in, first-out (FIFO) scheduling algorithm. With
this policy, a thread executes until it voluntarily
yields, usually due to an I/O operation or an operat-
ing system call. Using a nonpreemptive scheduling
algorithm also eliminates the latency that would re-
sult from a thread switch in a preemptive environ-
ment.

Pathworks File System

A file server needs to provide transparent file ac-
cess to a VMS file system and ensure file accessibil-
ity between DOS and VMS users. Since these op-
erating systems have different file systems, PATH-

WORKS for VMS must store the files in VAX VMS
FILES-11 format and provide a mapping algorithm
to bridge the two operating systems. Because the
OS/2 and DOS systems use the same file system, the
mappings performed to address the difference be-
tween the DOS and VMS systems can be applied to
support transparent file access from an OS/2 client.

File Name Mapping

DOS and VMS FILES-11 support different naming
syntaxes. DOS supports 8.3 naming format; that is,
the file name is composed of a maximum of eight
characters with a maximum of three characters as
the extension. In contrast, the VMS FILES-11 file
name supports 39.39 format and includes a third
component, the file generation number. In addition,
the legal character set for a file name is larger in
DOS than it is in the VMS system.

The PATHWORKS file server does not include a
mapping algorithm to convert a 39.39 VMS file nam-
ing syntax to be accessible to DOS. Any VMS file
that DOS system users need to share must be cre-
ated with a file name that conforms to DOS 8.3 for-
mat. Since the 8.3 naming format maps directly
to the 39.39 format, no mapping algorithm is re-
quired to guarantee a VMS system user access to
files named by a DOS system user.

To overcome the difference in character sets, a
comprehensive mapping algorithm was written to
ensure shareability and transparency. Since neither
operating system is case sensitive, the file server
changes the file name to uppercase before any opera-
tion is performed on the file. The legal character set
for VMS FILES-11 file names includes uppercase al-
phanumerics, dollar sign, hyphen, and underscore.
The character set in DOS includes all noncontrol
characters with the exception of a few special signs.

2 Digital Technical Journal Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Server

The PATHWORKS server maps the character sets
based on the following rules:

• All alphanumeric characters are changed to up-
percase letters; any character that is valid in a
VMS file name is passed through unchanged.

• All other characters are changed to two under-
scores, followed by two hexadecimal digits that
represent the ASCII code of the character being
mapped.

VMS FILES-11 allows multiple versions of a file to
be generated and stored in a directory. These files
are identified by the numeric component, which rep-
resents the version number, of a file name. There
is no equivalent concept in the DOS system. The
PATHWORKS server maps the highest version (or
most recent generation) to be accessible to DOS.
Similarly, the server, when creating a file on behalf
of a DOS client, generates the file with a version
limit of 1. To preserve and honor the version limit
information for the VMS environment, the server
preserves the VMS file attributes of previous ver-
sions of the file. Consequently, if the file is created
by a VMS user, and is later updated by a DOS user,
a new version of the file is generated, and the ver-
sion limit information is preserved.

Directory Mapping

The VMS system requires a directory name to end
with "dir" as an extension, but the DOS system does
not post any restriction in this area. PATHWORKS
maps directory names in DOS by including the ".ext"
characters as part of a directory name. Since the
period is not a legal character for a DOS directory,
it is mapped using the double underscore followed
by the hex digit rule. Any directory name in DOS
that conforms to the VMS directory naming syntax
is passed through untouched.

DOS File Attribute Mapping

Both file systems associate a set of attributes to
the files, but the file attributes on a DOS file do
not have a one-to-one correspondence with those on
a VMS file. A DOS file has four types of file at-
tributes: archive, system, hidden, and read-only.
The concepts of archive, system, and hidden are not
recognized in the VMS file system. PATHWORKS
software stores the DOS file attributes in an appli-
cation access control entry when creating a file on
behalf of a PC workstation. Furthermore, the read-
only attribute of a DOS file is mapped to the read-
only bit of the record management services (RMS)
protection field for system, owner, and group.

File Organization

A DOS file is organized as a byte stream, but a
VMS file is organized as collections of records. Al-
though the VMS system supports a form of stream
file, most VMS files are stored in record format. Fur-
thermore, a VMS file with a stream record format
does not map directly to a DOS stream format. This
poses an interesting problem in integrating VMS
and DOS file systems.

Since PATHWORKS software provides transpar-
ent access to the VMS host system, a DOS client
views all files on file services as streams of bytes,
just as if these files were stored locally. When the
server creates a file on behalf of a PC, it specifies the
file organization as sequential with stream record
format. Thus, the byte stream characteristic of the
DOS system is preserved.

The more complex part of the problem is to re-
solve the shareability issues between VMS and DOS
applications. The PATHWORKS server is imple-
mented to provide the necessary conversion between
VMS and DOS file organization on stream files. The
file server views a file as stream if it can read and
write the file without regard to any record bound-
aries. This includes any files with file organization
as sequential and record format as stream, stream_
cr, stream_lf, and undefined, as well as fixed. If
a sequential file has fixed record format, it must
conform to record size and attributes as follows:
even with no record attribute; 512 with no block_
span; and power of 2 with no block_span. Thus, an
RMS overhead in reading and writing these files is
avoided.

Any file that does not meet the criteria of the
stream category is said to be nonstream. The PATH-
WORKS server provides read-only access to any
VMS nonstream file. This is achieved by using a
VAX C run-time library call that provides stream file
semantics and a conversion algorithm to properly
map any carriage return and line feed information.
The file server cannot support writing to these files
because the SMB protocol does not preserve record
boundary information. Thus, the protocol makes it
impossible for the file server to guarantee data in-
tegrity when updating a nonstream file.

Byte Range Locking

The MS-NET architecture allows for concurrent
access to server-based files by multiple clients. PC
applications acquire this functionality through the
MS–DOS byte range locking calls. These calls al-
low PC applications to lock and unlock ranges of
bytes in a file and to detect conflicts. Conflicts occur
when part or all of a range specified to be locked
has been locked from a previous call. In contrast,
the approach taken by RMS provides locking on a
record basis. RMS uses the VMS distributed lock

Digital Technical Journal Vol. 4 No. 1 Winter 1992 3

PATHWORKS for VMS File Server

manager to implement this functionality. Unfortu-
nately, the lock manager is not well suited to imple-
menting byte range locks because the byte range is
represented in a form that allows the lock manager
to arbitrate access. Therefore, the file server imple-
ments its own lock database and arbitrates access
to shared files. Internally, the server process main-
tains a list of locks for each file the server has open
and arbitrates access based on these lock structures.
Files opened by the file server cannot be shared with
other VMS processes because the file server has an
exclusive mode lock on each file it has open through
the VMS lock manager. The exclusive mode lock
guarantees protection from other VMS processes.

Open Mode Mapping

The DOS file system defines open access modes
to allow applications to synchronize shared access
to a file. The open modes are deny_none, deny_
read, deny_write, deny_read_write, and compatibil-
ity. Each provides a different level of file sharing
capability. Although these modes do not map di-
rectly to the VMS file system, no mapping is needed
to handle the differences.

The PATHWORKS server opens a file that is be-
ing accessed by a client with exclusive access on the
VMS system. It assumes the responsibility to ar-
bitrate shared access among multiple clients. The
server supports DOS open access modes by imple-
menting the shared access resolution algorithm de-
scribed in the SMB protocol specification.

Pathworks Transport Layer Interface

The PATHWORKS for VMS product supports mul-
tiple transports through a common transport layer
interface. These include the local area system
transport (LAST), the transmission control protocol
/internet protocol (TCP/IP), and the DECnet trans-
port protocol over Ethernet and token ring net-
works. This well-defined, uniform mechanism dy-
namically adds support for network transports and
protocols. By conforming to this specification, trans-
ports can be added to a server platform without up-
grading or changing the existing file server.

The performance goals of the file server had an im-
pact on the development of the transport layer inter-
face. The file server utilizes an optimized transport
layer interface that reduces buffer copies and elim-
inates some of the standard VMS I/O paths. This
optimized interface is used with the LAST trans-
port and is described in detail in "The Development
of an Optimized PATHWORKS Transport Interface"
paper in this issue.[2]

Performance Considerations

Achieving an acceptable level of performance from
a nondedicated file server layered on a general-
purpose operating system proved to be a challenging
task. One of the performance goals for the file server
was that it perform tasks within 10 to 20 percent of
the speed of a dedicated PC file server running on
a similarly sized CPU performing the same tasks.
This goal was achieved by employing a variety of
caches, algorithms, and heuristics. Many of these
heuristics were based on the analysis of the SMB
messages passed between the server and the client
for typical PC applications. As discussed in this sec-
tion, the response time of the server is improved if
the memory contains the information necessary to
satisfy a request when it arrives.

Data Caching

An obvious approach to implementing the read and
write functions in the file server is to issue these op-
erations to the FILES-11 file system, wait for their
completion, and then send a response to the client.
This method is simple and persistent, but does not
perform well due to the bottleneck formed at the
FILES-11 interface and disk. The file server im-
plements a software write-behind data cache to re-
duce this bottleneck and to eliminate waiting for
disk writes to complete before returning a response
to the client. Caching is a technique used to de-
crease access time to information by using a faster
intermediate medium to store the most commonly
accessed pieces of information. The caching algo-
rithm implemented by the server is a logical block
cache. The cache is a region of memory that is seg-
mented into fixed-sized buffers. Each file opened by
the server has a dynamic set of buffers that increase
and decrease based on a least recently used (LRU)
algorithm.

Effects on Client Read Requests. Although it is an
optimal environment for servicing read requests, re-
serving data in memory to satisfy all read requests
is not practical. A number of mechanisms were im-
plemented to approach the ideal. The data cache
retains recently accessed data in memory with the
expectation that it will be referenced again soon.
This is based on the concept of locality of reference,
both spatial and temporal. Once the server receives
a read request, it determines if the buffers associ-
ated with the read request are in the cache by using
a hashing algorithm for the lookup function. If the
data to satisfy the read request is in memory, it is
immediately returned to the client, and the file sys-
tem access is eliminated. If some of the data needed
to satisfy the request is not in the cache, then reads
are started on each of the cache buffers needed to
satisfy the request. Once all of the data is read into

4 Digital Technical Journal Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Server

cache memory, a response is formed and returned to
the client.

Effects on Client Write Requests. When a client
write request is received by the server, three pro-
cesses are performed. The cache buffers needed for
the specified write range are located, the client data
is copied to the cache buffers, and a response is sent
to the client. The data copied to the cache is writ-
ten to the disk at a later time. This write-behind
scheme allows write requests to be serviced quickly
because the response is returned to the client be-
fore the write to disk completes. By not synchroniz-
ing on-disk write completions before returning a re-
sponse, the turnaround time of client write requests
is greatly reduced. The cache is also optimized when
a client write request is received and a disk read op-
eration is in progress for the range. In this case, the
data being written to the cache is copied into an in-
termediate buffer and merged with the data from
disk after the read operation completes. These in-
termediate buffers are known as ghost buffers, since
they are not visible from the buffer hash table.

Writing Data to Disk. Since the file server ac-
knowledges write requests before performing the
write operation, a mechanism is needed to write
the cache buffers to disk and ensure data integrity.
The file server implements a permanent thread,
the flush thread, dedicated to this task. The flush
thread starts disk write operations on buffers that
contain modified data. Flushing data to disk oc-
curs (1) periodically, based on a user-configurable
interval; (2) when a file is closed; (3) when the ra-
tio of dirty to free cache buffers reaches a user-
configurable threshold; and (4) when cache buffers
are not available to support the current request.

On the VMS system, RMS also employs a write-
behind algorithm similar to the one used by the file
server. RMS is not used by the file server for disk
reads and disk writes for performance reasons. The
crossing of the VMS architectural boundary that oc-
curs during RMS calls adds an unacceptable amount
of processing time to the read and write paths. The
file server uses the VMS queued I/O (QIO)/extended
QIO processor (XQP) interface, which is below the
RMS layer, to read and write data to disk.

Disk Space Allocation

Sufficient disk space must be available for any
write operation that is performed as a background
operation. To allow sufficient space, any disk allo-
cation must be completed when the write request is
received. This restriction slows down write opera-
tions which, in turn, results in file expansion. Per-
formance testing in this area shows that such ex-
pansion operations can reduce the server’s response

time in the overall operating environment. To al-
leviate this problem, the PATHWORKS server pre-
allocates a fixed amount of disk space, often much
greater than required, to complete the current write
request, in anticipation of further file expansion.
This mechanism greatly reduces the system over-
head incurred in disk allocation; thus it improves
the overall response time to write operations.

Read Ahead

Another mechanism used by the file server to im-
prove the turnaround time of read requests is read
ahead. As with data caching, the goal is to in-
crease the probability that data referenced in the
near future will be in the cache. Read ahead is the
process of prefetching previously unreferenced data
from the disk into the cache. Data is prefetched
into cache memory under several conditions. When
a file is opened, the first two cache buffers of the
data are read from the disk into the cache. Data
is also prefetched when the server detects that the
file is being accessed sequentially. The SMB proto-
col also supports read ahead. The protocol provides
a field in the read request that specifies the amount
of data that the client intends to read in the future.
This advisory field is used by the server to initiate
prefetches.

Directory Search-ahead Cache

A DOS directory operation can translate to multi-
ple exchanges of request and response operations
between the server and client. This behavior is
inherent to the SMB protocol definition. The file
server initiates a search-ahead thread when the first
request is received. While the PC is processing the
first response, the search-ahead thread accumulates
directory information in a circular buffer. Thus, this
information is available in memory for subsequent
requests.

Open-file Cache

Operations, such as create, open, and close, im-
pact performance in the VMS system. Benchmark
tests show that these operations become blocking
factors for a fast performance server. This problem
is compounded by the inherent behavior of many PC
applications because they often use the result of an
open operation as a deterministic tool on file acces-
sibility. Frequently, files are opened and closed and
reopened in consecutive requests. To minimize the
overhead incurred for these operations, the PATH-
WORKS server implements a cache to store opened
file information. This open-file cache maintains the
file header information after the file has been closed
by the user for a short duration. If a user requests
to open a file that is already cached, no request to

Digital Technical Journal Vol. 4 No. 1 Winter 1992 5

PATHWORKS for VMS File Server

VMS FILES-11 system is required. This greatly re-
duces the response time of the server on the second
open request.

Furthermore, many DOS database applications
use index files to synchronize data access. These
files are frequently accessed by many DOS users
when working in an networked office environment.
Open-file caching is beneficial to this environment
because it incurs a minimal amount of open requests
to the VMS file system.

Byte Range Locking Back-off Algorithm

The file server implements an algorithm to im-
prove overall performance of the server and network
when PC applications are sharing files and using
byte range locking to arbitrate access. The anal-
ysis of many networked PC database applications
revealed that a client typically entered a tight retry
loop when it detected a lock conflict. This spinning
produces an excessive amount of lock-related net-
work traffic, especially for very fast clients. The
server also has to spend a significant amount of
time processing these numerous lock requests. The
server attempts to regulate this lock traffic and re-
duce its lock processing time by deferring the return
of the response when a lock conflict is detected. If
a request to lock a range conflicts with a previous
lock, the server makes repeated attempts to access
the range using a pseudorandom exponential back-
off algorithm to determine the retry interval. If the
lock conflict is not resolved after a user-configurable
time period, the server returns a response indicat-
ing a lock conflict. By deferring this response to the
client, the server exercises flow control over clients
spinning on locked regions of the file. The imple-
mentation of the pseudorandom exponential back-
off algorithm prevents the server from using an ex-
cessive amount of CPU time to determine if the
locked byte range has been unlocked.

Security

The VMS operating system offers a well-defined
security architecture, but DOS has no comparable
security scheme. Since the PATHWORKS file server
is implemented as a privileged process, it is neces-
sary to control file access on the VMS host system
from a DOS client. There is no one-to-one correspon-
dence between a DOS user and a VMS user. That
is, in the PATHWORKS environment, each network
client, much like a terminal in this respect, can be
multiple VMS users. The problem is to ensure max-
imum shareability among PC clients and maintain
the desired level of VMS security.

The PATHWORKS file server implements two
types of securities: share and user. It makes use of

the PCFS$SERVICE_DATABASE to control access
to a share area; and the VMS user authorization
file (UAF) database to control access to directories
and files based on a VMS user account. A share,
referred to as file service, is a VMS directory that
can be accessed by PATHWORKS clients. PATH-
WORKS software defines three types of file services:
system/application, common, and personal. Access
to file services is based on VMS user account in-
formation. A privileged system manager must ex-
plicitly grant user access to system/application and
common services. The system manager must also
specify the types of access: read, write, or create.
This information is stored in the PCFS$SERVICE_
DATABASE. Access to personal service is implicit
with the existence of a user account.

To provide maximum shareability among PC clients,
PATHWORKS software includes a default user ac-
count. When accessing a file service that has been
granted to the default account, each PC assumes
the identity of the default account. Thus the access,
though it might be issued by different PC users, is
viewed as the same user. This mechanism provides
a "share level" of security.

A more restrictive environment is achieved by pro-
viding access to a share area based on individual
user account. When a PC client establishes ac-
cess to a service, it presents a user account and
its corresponding password. This information is au-
thenticated based on information returned by the
sys$getuai system service call. The PATHWORKS
server then verifies that this user has been granted
access to the service.

Access to a file service does not necessarily im-
ply access to any individual files. In order to pre-
serve the desired level of VMS security, PATH-
WORKS honors access control entries. The server
ensures access to a share area as defined in the
database by mapping the access types to two identi-
fiers: pcfs$read and pcfs$update. These identifiers
are added to the root directory of a share area, and
to any files that are created, when appropriate. As
the server impersonates the user, the appropriate
identifier is associated when access privilege to files
and directory is checked. This security implemen-
tation is not applicable when servicing a personal
area. Access to files stored in a personal area is
based on RMS protections mask.

To ease system management tasks, PATHWORKS
software implements "group" support. A group is
a collection of users. A PATHWORKS group has no
dependency on user group identification code. When
a share is granted to a group, each member of the
group gains access. Note that authentication is still
performed based on an individual user account.

6 Digital Technical Journal Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Server

Since a DOS client can gain access to the VMS en-
vironment, it is imperative that the file server sup-
port the VMS system’s break-in evasion mechanism.
The server honors the login-related system param-
eters. These parameters are read at the file server
start-up, and the values are in effect for the dura-
tion of the server process. The server tallies any
failed or unsuccessful login attempts. When the file
server receives a connection (login) request to ser-
vice, the file server extracts the related counter in-
formation from the UAF and adds it to its internal
counter to determine whether evasive action is to
take place. When a break-in is detected, the server
takes the appropriate evasive action and signals the
condition in the server log file.

Printing Support

The server process also implements the printing
functionality specified in the SMB protocol. The file
server implements the print-related commands by
using $SNDJBC and $GETQUI system services to
communicate with the VMS job controller. Each
print service available to clients has a VMS print
queue associated with it.

The VMS system has a much richer printing envi-
ronment than the one provided to the PC clients
through the SMB protocol. The PATHWORKS
server provides VMS printing features to the clients
by extending the SMB protocol to accommodate
PATHWORKS needs. These protocol extensions are
described in the section Digital Protocol Extensions.

File Sharing Among Server Processes

Each node on a VAXcluster system can be a host
for the PATHWORKS server process. One of the
more challenging problems in supporting VAXclus-
ter systems is the synchronization of file access by
multiple server processes. As stated earlier, the
PATHWORKS file server requires exclusive access
to files that are opened by PCs in order to support
byte range locking in DOS. Furthermore, in a clus-
ter, each server process needs the ability to provide
identical access to the same resources.

PATHWORKS software implements its own lock
management algorithm to resolve file access con-
flicts in a VAXcluster system. Although multiple
server processes are allowed in the environment,
only one process can handle the requests to a file
that is accessed by PC clients. By using the VMS
lock manager, the server process that services the
first open request acquires an exclusive mode lock
on the file. It thus becomes the master of the file
and is responsible for synchronizing access requests
to the file. When a server process is requested to

service a file that has another PATHWORKS server
as its master, it makes a network connection to the
master process and forwards the requests. This
process serves as the routing agent. It communi-
cates both requests and responses between the mas-
ter server process and the PC client. The master
releases ownership when no outstanding open file
handles are on the file. File mastering is established
on a per file basis.

The rerouting mechanism uses the DECnet trans-
port because its existence on the remote server host
is guaranteed in a cluster environment. To mini-
mize the number of required DECnet sessions, the
routing agent funnels all forwarding SMBs through
an existing session. The forwarding packets include
information that the master process can use to dif-
ferentiate among the clients’ access requests.

Pathworks Server Configuration

The multithreaded PATHWORKS file server can
be considered a small operating system in which
each PC is a process (or a thread). In addition to the
basic resource requirement that the server be acti-
vated, the server requires a set of process resources
to support each client thread. These resources can
be mapped to VMS process parameters which, in
turn, translate into system parameters.

The amount of VMS system resources which the
file server consumes is a function of the number of
clients and the workload generated by the individ-
ual PC. Mapping the PC resource requirement to the
appropriate VMS process and system parameters
proves to be a complex problem. Since the PC work-
load profile is unknown at the time of server initial-
ization, the amount of required system resources for
the server process can only be estimated.

PATHWORKS system managers include users with
little VMS system management experience. The
level of VMS system expertise required to config-
ure (or set up) a PATHWORKS server is minimized
by the addition of a "configurator." This part of the
management functionality is implemented to gener-
ate information on required system and process re-
sources when the desired configuration is supplied.
During the server start-up phase, the configurator
checks for availability of necessary resources and
provides appropriate run-time parameters for the
launching of the server process.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 7

PATHWORKS for VMS File Server

Management Interface

To provide integration between different file sys-
tems, the file server utilizes PATHWORKS spe-
cific databases (such as the service database), stan-
dard VMS databases (such as the UAF and DECnet
databases), and VMS security mechanisms. These
entities must work in harmony and be consistent
with each other to provide the desired integration.
The PCSA_MANAGER utility was designed to man-
age this environment. It allows users to perform
all management tasks related to PATHWORKS soft-
ware through one utility from a menu-driven user
interface or a command line interface. The PCSA_
MANAGER utility allows system administrators to
manage the following objects: users, services, print
queues, logical user groups, the event logger, and
the server process. The file server uses inter-
faces supported by VMS to manipulate VMS spe-
cific databases, private interfaces to access PATH-
WORKS specific databases, and SMB protocol ex-
tensions to interact with a server process.

Digital Protocol Extensions

Management of a running server requires a method
to send and receive well-defined messages between
the server and other processes. The PCSA_MANAGER
utility sends a management request to the server;
the server processes it, and sends an appropriate
response back to the PCSA_MANAGER. The com-
munication channel used for server management is
a DECnet logical link. The PCSA_MANAGER is-
sues a connection request to the DECnet object as-
sociated with the file server process. The file server
receives this request and creates a virtual circuit
with a corresponding thread to process requests for
this management session. This is similar to a client
session.

Since the SMB protocol does not provide com-
mands sufficient to manage a PATHWORKS server,
a Digital proprietary protocol was developed to pro-
vide this functionality. This protocol is merely an
extension of the SMB core protocol; that is, the mes-
sages developed for server management have valid
SMB headers with command codes that are mean-
ingful only to a PATHWORKS server. This imple-
mentation allows remote management of the file
server. To manage a server, a management util-
ity only has to establish a virtual circuit and ex-
change these extended SMBs. Protocol extensions
are also used to integrate the VMS print system
with PATHWORKS clients, along with other PATH-
WORKS specific utilities.

Event Logging

The PATHWORKS server includes an event log-
ging mechanism to provide an error and event

reporting facility to assist system management.
Events are categorized based on server operations,
including errors, protocols, security, management,
and file-related functions (open/close, read/write).
The server uses an event code to determine whether
a given event is to be recorded. A Digital ex-
tended SMB command toggles these event codes dy-
namically. The event messages are logged to the
file server log file. The overhead is minimized by
caching the event messages in a data buffer, which
is periodically written out to the log file. A thread
is created at server start-up to handle the log file
update function. The scheduling of this thread is
based on a time interval, with a default value of 60
seconds.

Summary

The PATHWORKS for VMS file server integrates
the DOS, OS/2, and VMS operating system envi-
ronments on a network. The server architecture
achieves transparent integration of PCs connected
on an open network over multiple transports. Data
caching, algorithms, and heuristics were used to in-
crease performance. The PATHWORKS for VMS file
server provides PC users with access to the VMS
system’s resources and security environment.

Acknowledgments

We thank the people, past and present, who
contributed to the design and development of the
PATHWORKS for VMS file server. We specifically
acknowledge Robert Praetorius for his contribution
in the design and implementation of the cache com-
ponent, Phil Wells for his design and implementa-
tion of the network interface and transport support,
and Jon Campbell for his design and implementa-
tion of the network interface. We also acknowledge
Frank Caccavale for his work on performance anal-
ysis, Alan Abrahams for his direction as architect,
and Mark Olson for his leadership of the PATH-
WORKS for VMS project.

References

1. X/Open Developer’s Specification—Protocols for
X/Open PC Interworking: SMB (Reading, U.K.:
X/Open Company Limited, Document No. XO
/DEV/91/010, 1991).

2. P. J. Wells, "The Development of an Optimized
PATHWORKS Transport Interface," Digital Tech-
nical Journal, vol. 4, no. 1 (Winter 1992, this
issue):xx-xx.

8 Digital Technical Journal Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Server

Author Biographies

Edward W. Bresnahan Senior software engineer
Edward Bresnahan has been developing the PATH-
WORKS for VMS software since joining Digital’s
PCSG Server Engineering Group in 1988. He is cur-
rently responsible for the design and development
of a high-performance data cache to be used in fu-
ture PATHWORKS server products. Prior to this,
he was a co-op student at General Electric Com-
pany and at Charles Stark Draper Laboratory. Ed
holds a B.S.C.S. (1988, honors) from Northeastern
University and is pursuing an M.S.C.S. part-time.

Siu Yin Cheng Since joining Digital in 1987, Siu
Yin Cheng has worked on server software in the
Personal Computing Systems Group. As a senior
software engineer, she is responsible for the design
and development of the server configuration util-
ity for future PATHWORKS products. Siu Yin de-

signed and developed the server collector process to
extract performance data from the file server; she
also worked on server development. Prior to this,
she led the system testing of PATHWORKS server
V2.0-2.2. Siu Yin received a B.S.C.S. (1987, honors)
from Brown University.

Trademarks

The following are trademarks of Digital Equip-
ment Corporation: DECnet, Digital, PATHWORKS,
VAX, VAX C, VAXcluster, and VMS.

Microsoft and MS–DOS are registered trademarks
of Microsoft Corporation.

OS/2 is a registered trademark of International
Business Machines Corporation.

Digital Technical Journal Vol. 4 No. 1 Winter 1992 9

