
DECnet-RSX

Programmer's Reference Manual

Order Number: AA-M098E-TC

DECl1et-RSX

Programmer's Reference Manual

October 1989

This manual describes the DECnet-RSX programming facilities
and provides reference information on network programming
calls.

Supersession/Update Information: Revised for new covers.

Operating System and Version:

Software Version:

Order Number: AA-M098E-TC

RSX-11M V4.5
RSX-11S V4.5
RSX-11 M-PLUS V4.3
Micro/RSX V4.3

DECnet-11 M V4.5
DECnet-11S V4.5
DECnet-11 M-PLUS V4.3
DECnet-Micro/RSX V4.3

October 1989

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no respon
sibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

Copyright © 1982, 1989 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC PDP VAX

DECmate PIOS VAXcluster

DECnet Professional VAXmate

DECUS Rainbow VMS
DECwriter RSTS VT

DIBOl RSX Work Processor

mDmDD~DTN RT

MASSBUS UNIBUS

This manual was produced by Networks and Communications Publications.

Contents

Preface

1 Introduction

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.3.3
1.2.3.4
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12
1.3
1.4
1.5

Intertask Communication Conventions 1-2
Intertask Communication Concepts 1-2

Establishing an Active Network Task 1-3
Establishing a Logical Link 1-4
Building a Connect Block 1-6

Destination Descriptor 1-6
Source Descriptor ... 1-6
Access Control Information 1-7
Optional Data Messages 1-7

Getting Data from the Network Data Queue 1-7
Sending and Receiving Messages 1-8
Sending Interrupt Messages 1-8
Checking Completion Status Information 1-9
Terminating Activity on a Logical Link '.' .. '.' 1-9
Closing a Network Connection '.' 1-10
Using the Wait Option , 1-10
Using the AST and W AITNT Options 1-10
U sing the Flow Control Option .. 1-10

Summary of Intertask Communication Calls. 1-11
DECnet-RSX Remote File Access Operations 1-14
DECnet-RSX Task Control 1-15

iii

2 DECnet-RSX MACRO-11 Programming Facilities

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.5.15
2.5.16
2.5.17

2.5.17.1
2.5.17.2

RSX-ll Network Macro Formats 2-1
BUILD Type Macros .. 2-2
EXECUTE Type Macros " 2-3
STACK Type Macros ... 2-4
Macro Format Examples 2-5

Connect Block Options ... 2-5
Using Connect Block Options 2-6
Receiving Connect Block Information 2-6

Access Control Information 2-7
Conventions Used in This Chapter 2-8
Intertask Communication Macros 2-10

Common Argument Definitions 2-10
ABT$ - Abort a Logical Link 2-12
ACC$ - Accept Logical Link Connect Request 2-14
CLS$ - End Task Network Operations 2-17
CONS - Request Logical Link Connection 2-19
CONB$ $ - Build Connect Block (Short) 2-23
CONL$ $ - Build Connect Block (Long) 2-28
DSC$ - Disconnect a Logical Link 2-34
GLN$ - Get Local Node Information 2-36
GND$ - Get Network Data 2-39
OPN$ - Access the Network. .. 2-54
REC$ - Receive Data over a Logical Link 2-57
REJ$ - Reject Logical Link Connect Request 2-59
SND$ - Send Data over a Logical Link 2-61
SPAS - Specify User AST Routine 2-63
XMI$ - Send Interrupt Message. .. 2-66
MACRO-II Intertask Communication Programming
Examples. .. 2-68

Transmit Example. .. 2-69
Receive Example. .. 2-72

3 FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

3.1 Building a DECnet-RSX Task 3-1
3.2 Establishing a Network Task 3-2
3.3 Examining I/O Status Blocks '" " ., ... 3-2
3.4 Using Event Flags ... 3-3
3.5 Specifying Connect Block Options 3-3
3.5. 1 Receiving Connect Block Information 3-5

iv

3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.8.10
3.8.11
3.8.12
3.8.13
3.8.14
3.8.15
3.8.16
3.8.17
3.8.18
3.8.19

3.8.19.1
3.8.19.2
3.8.20

3.8.20.1
3.8.20.2
3.8.21

3.8.21.1
3.8.21.2
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5
3.9.5.1
3.9.5.2
3.9.5.3
3.9.5.4

Using Access Control Information 3-5
Conventions Used in This Chapter 3-7
Intertask Communication ... 3-9

Common Argument Definitions .. 3- 10
ABTNT - Abort Logical Link 3-13
ACCNT - Accept Logical Link Connect Request. 3-15
BACC - Build Access Control Information Area (Short) 3-17
BACCL - Build Access Control Information Area (Long) 3-20
BFMTO - Build a Format 0 Destination Descriptor 3-23
BFMTI - Build a Format 1 Destination Descriptor 3-25
CLSNT - End Task Network Operations 3-29
CONNT - Request Logical Link Connection 3-31
DSCNT - Disconnect a Logical Link 3-35
GLNNT - Get Local Node Information 3-37
GNDNT - Get Network Data 3-39
OPNNT - Access the Network 3-49
RECNT - Receive Data over a Logical Link 3-52
REJNT - Reject Logical Link Connect Request. 3-54
SNDNT - Send Data over a Logical Link 3-56
W AITNT - Suspend the Calling Task 3-58
XMINT - Send Interrupt Message. 3-59
FORTRAN Intertask Communication Programming
Examples ... " 3-61

Transmit Example. 3-62
Receive Example .. 3-65

COBOL Intertask Communication Programming
Examples. .. 3-68

Transmit Example. .. 3-69
Receive Example .. 3-75

BASIC-PLUS-2 Intertask Communication Programming
Examples. .. 3-80

Transmit Example " 3-81
Receive Example. .. 3-84

Remote File Access .. 3-87
Opening Files .. 3-88
Performing File Operations 3-88
Performing Record Operations 3 -89
Closing Files and Completing Calls 3-89
Setting Task Build Parameters 3-89

Setting Event Flags .. 3-89
Setting Buffering Level. 3-90
Setting Maximum Record Size. .. 3-90
Setting Buffer Space Allocation 3-91

v

vi

3.9.5.5
3.9.6
3.9.7

3.9.8
3.9.9
3.9.10
3.9.11
3.9.12
3.9.13
3.9.14

3.9.15
3.9.16
3.9.17
3.9.18

3.9.19
3.9.19.1
3.9.19.2
3.9.20
3.9.20.1
3.9.20.2
3.9.21

3.9.21.1
3.9.21.2
3.10
3.10.1
3.10.2
3.10.3

3.10.4

3.10.5

3.10.6
3.10.7

Using the Task Build Procedure 3-91
Using ASCII Zero (ASCIZ) Strings 3-93
Common Argument Definitions for Remote File Access
Calls : .. 3-94
ACONFW - Set Access Options. .. 3-96
A TTNFW - Set Extended Attributes 3-98
CLSNFW - Close a File 3-104
DELNFW - Delete a File 3-105
EXENFW - Execute a File 3-106
GETNFW - Read a Single Record 3-107
OPANFW, OPMNFW, OPRNFW, OPUNFW - Open a File
for Appending, Modifying, Reading, Updating Records 3-110
PRGNFW - Discard an Opened File 3-114
PUTNFW - Write a Single Record 3-115
RENNFW - Rename a File 3-118
SPLNFW, SUBNFW, OPWNFW - Create, Write, Print a
File/Create, Write, Execute a File/Create and Open a File
for Writing Records. .. 3-120
FORTRAN Remote File Access Programming Examples 3-124

Append Example ... 3-125
Read/Write Example 3-129

COBOL Remote File Access Programming Examples 3-131
Append Example ... 3-132
Read/Write Example 3-138

BASIC-PLUS-2 Remote File Access Programming
Examples .. 3-144

Append Example ... 3-145
Read/Write Example 3-148

FORTRAN Task Control 3-151
Waiting for Requests .. 3-15 1
RSX Remote Task Control Utility 3-151
ABONCW - Abort an Executing Task or Cancel a
Scheduled Task ... 3-152
BACUSL - Build Account and User ID Information
Area (Long). 3-155
BACUSR - Build Account and User ID Information
Area (Short) ... 3-157
RUNNCW - Execute an Installed Task in a Remote Node .. 3-159
FORTRAN Task Control Programming Example 3-164

4 DLX Ethernet Programming Facilities

4.1
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.5.1
4.3.5.2
4.3.5.3
4.3.6
4.3.6.1
4.3.6.2
4.3.6.3
4.3.6.4
4.3.6.5
4.3.6.6
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.7.1
4.4.7.2

Preparing the System ... 4-2
Including Higher-Level Services 4-2

Using DLX Resources .. 4-3
Using DLX to Access the Ethernet 4-3

Synchronizing D LX Programs 4-4
Using Physical and Multicast Addressing 4-5
Setting Up the Ethernet Address 4-5
Setting Up a Characteristics Buffer 4-7
Processing Ethernet Frames. .. 4-12

Setting Protocol Flags .. 4-12
Specifying Protocol! Address Pairs 4-13
Using Characteristics Blocks " 4-14

Processing IEEE 802.3 Frames 4-14
Specifying the Service Class. .. 4-15
Defining Service Access Points. .. 4-16
Defining SNAP Protocol Identifiers " 4-16
Setting Protocol Flags " 4-17
Specifying Protocol! Address Pairs " " 4-18
Using Characteristics Blocks 4-18

DLX QIOs ... 4-20
IO.XOP-OpenaPort 4-21
IO.XSC - Set Characteristics 4-25
IO.XGC - Get Characteristics " 4-33
IO.XTM - Transmit a Message on the Port 4-41
IO.XRC - Receive a Message on the Port 4-47
IO.XCL - Close the Port 4-53
DLX QIO Programming Examples ... " 4-55

802.3 Example .. 4-56
Ethernet Example ... 4-83

5 DLX Point-to-Point and Multipoint Programming Facilities

5.1 Prerequisites for Tasks Using DLX 5-1
5.2 Writing DLX Programs .. 5-2
5.2.1 DLX Resources ... 5-3
5.3 DLX QIOs , 5-3
5.3.1 IO.XOP - Open a Circuit. 5-4
5.3.2 IO.XIN - Initialize the Circuit. , 5-7
5.3.3 IO.XTM - Transmit a Message on the Circuit 5-9
5.3.4 IO.XRC - Receive a Message on the Circuit ... '" 5-11

vii

5.3.5
5.3.6
5.3.7
5.3.7.1
5.3.7.2

IO.XHG - Hang Up the Circuit 5-14
IO.XCL - Close the Circuit 5-16
Programming Examples. .. 5-18

Transmit Example .. , 5-19
Receive Example. .. 5-27

6 LAT Programming Facilities

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.5
6.3.5.1
6.4
6.4.1
6.4.2

Components of the LAT Environment 6-2
The Local Port ... 6-4
The Remote Port ... 6-6

LA T Application Programming 6-7
Coordinating Available Resources 6-7
Attaching the Terminal. .. 6-8
Setting the LAT Terminal Characteristics 6-9
Establishing the Connection 6-9
Reading and Writing Data , 6-10
Terminating the Connection 6-10
Summary .. , 6-11

Directives for Programming Application Terminals , 6-12
Programming Suggestions. .. 6-13
IO.ORG - Originate Explicit Connection 6-14
Status Codes for LA T Connections , 6-16
LAT Specific Characteristics for SF.GMC 6-16

TC.MAP ... 6-17
TC.QDP ... 6-19

LAT Specific Characteristics for SF.SMC 6-19
TC.MAP ... 6-20

LAT Application Programming Examples 6-22
Explicit Connection Example 6-23
Implicit Connection Example 6-27

A Disconnect or Reject Reason Codes

B Object Types

viii

C Remote File Access Error/Completion Codes

C.l I/O Status Block Error Returns. .. C-l
C.2 Data Access Protocol (DAP) Error Messages C-5
C.2.1 Maccode Field ... C-5
C.2.2 Miccode Field ... C-7

o MACRO-11 Connect Block Offset and Code Definitions

E Network Error/Completion Codes for FORTRAN, COBOL, and
BASIC-PLUS-2

F Network MACRO-11 Error/Completion Codes

G Values for Ethernet and 802.3 Addressing

G.l Multicast Addresses. G-l
G.l.l Ethernet Protocol Types G-2
G.2 SAP Addresses. .. G-3
G.3 SNAP Identifiers G-4

H DLX Characteristics Status Codes

Figures

1-1 Establishing a Logical Link .. 1-5
2-1 Outgoing CONB$$ Connect Block ," 2-27
2-2 Outgoing CONL$$ Connect Block 2-33
2-3 Incoming Connect Block " 2-53
6-1 U sing a LA T Connection .. 6-2
6-2 LAT Components for Applications 6-3
6-3 The LAT Terminal and Local Port. 6-5

ix

Tables

1-1 DEC net Communication Calls 1-12
2-1 Intertask Communication Macros 2-10
2-2 CONB$$ Connect Block Symbolic Offsets 2-25
2-3 CONL$ $ Connect Block Symbolic Offsets. .. 2-31
2-4 Status Block Contents after GND$ 2-44
2-5 Contents of Incoming Short Connect Block 2-46
2-6 Contents of Incoming Long Connect Block. 2-49
3-1 Intertask Communication Calls 3-9
3-2 Incoming Connect Block 3-45
3-3 Remote File Access Calls .. 3-87
3-4 FORTRAN Task Control Calls 3-151
4-1 The First Four Fields in a Characteristics Block 4-8
4-2 Characteristics for Ethernet Frame Format 4-14
4-3 Characteristics for 802.3 Frame Format 4-19
6-1 Steps in a LA T Application. .. 6-11
6-2 Terminal Driver Directive Usage for LAT Terminals 6-12
C-l First Word 110 Status Block Error Codes , C-l
C-2 NSP Error Codes C-4
C-3 DAP Maccode Field Values C-6
C-4 DAP Miccode Values for Use with Maccode Values of2, 10,

and 11 .. C-7
C-S DAP Miccode Values for Use with Maccode Values 0,1,4,5,

6, and 7 ... C-14
C-6 DAP Miccode Values for Use with Maccode Value 12 C-25
H-l Status Codes for DLX Characteristics H-l

x

Preface

The DECnet-RSX Programmer's Reference Manual explains DECnet program
ming concepts and describes the DECnet-RSX calls for the following program
ming functions:

• Intertask communication

• Remote file access

• Task control

• Direct line access (DLX)

The DECnet-RSX software supports intertask communication calls for MACRO-
11, FORTRAN 77, COBOL, and BASIC-PLUS-2 programming; remote file access
calls for FORTRAN 77, COBOL, and BASIC-PLUS-2; task control calls for
FORTRAN 77; and QIO calls for the DLX user interface.

The manual also includes information on writing applications for Local Area
Transport (LAT) application terminals.

Throughout the manual, the term "DECnet-RSX" refers to all the software that
you receive in your DECnet-RSX distribution kit.

Intended Audience

This manual is for users who write network programs that run on DECnet-11M,
DECnet-11M-PLUS, DECnet-11S, and DECnet-Micro/RSX systems.

xi

Structure of This Manual

xii

The manual is organized as follows:

Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

AppendixB

AppendixC

AppendixD

Appendix E

Appendix F

AppendixG

AppendixH

Provides introductory information about intertask communi
cation, remote file access, and task control operations.

Describes the DECnet-RSX MACRO-II programming facili
ties for intertask communication macros.

Describes the DECnet-RSX FORTRAN, COBOL, and BASIC
PLUS-2 programming facilities for intertask communication,
remote file access, and FORTRAN task control.

Describes the DECnet-RSX Direct Line Access (DLX) pro
gramming facilities and QIO calls for tasks using the Ethernet.

Describes the DECnet-RSX Direct Line Access (DLX) pro
gramming facilities and QIO calls for tasks using point-to
point and multipoint lines.

Describes programming facilities for tasks that use Local Area
Transport (LA T) application terminals.

Contains the network disconnect or reject reason codes.

Defines the Digital object type code values.

Summarizes remote file access error/completion codes.

Contains the MACRO-II connect block offset and code defi
nitions.

Contains the FORTRAN, COBOL, and BASIC-PLUS-2 net
work error/completion codes.

Contains the MACRO-II network error/completion codes.

Provides information on multicast addresses, protocol types,
and protocol identifiers to use with Ethernet applications.

Describes DLX completion codes for characteristics opera
tions in Ethernet applications.

Associated Documents

The following manuals are part of the DECnet-RSX documentation set:

• DECnet-RSX Network Management Concepts and Procedures

• DECnet-RSX Guide to Network Management Utilities

• DECnet-RSX Guide to User Utilities

• DECnet-RSX Network Generation and Installation Guide

• DECnet-RSX User's Pocket Guide

• DECnet-RSX Programmer's Pocket Guide

• DECnet-RSX Network Manager's Pocket Guide

• DECnet-RSX Release Notes

The RSX-l1 M documentation set and the appropriate programming language
manuals are also helpful.

For information on LA T, refer to the Local Area Transport (LAT) Network Con
cepts manual.

For information on how to use IEEE 802.3 frame format for DLX programs, refer
to the following two standards:

• Carrier Sense Multiple Access with Collision Detection (CSMAICD) Access
Method and Physical Layer Specifications, ANSI/IEEE Std 802.3-1985, ISO
Draft International Standard 8802/3.

• Logical Link Control, ANSI/IEEE Std 802.2-1985, ISO Draft International
Standard 8802/2.

These standards are published by the Institute of Electrical and Electronics Engi
neers, Inc., and distributed in cooperation with Wiley-Interscience, a division of
John Wiley & Sons, Inc.

xiii

Acronyms

The following acronyms are used in this manual:

AST

CEX

DLX

FCS-ll

MOP

NETFOR.OLB

NETLIB.MLB

NFAR

PSW

QIO

Asynchronous system trap

Communications Executive

Direct Line Access Controller

File Control System

Maintenance Operation Protocol

DECnet high-level language library

DEC net MACRO-II library

Network File Access Routine

Processor status word

Queued input/output call

Graphic Conventions

xiv

Convention

Special type

UPPERCASE

Meaning

This special type shows examples of user input (in
tern output (in black).

) or sys-

Uppercase letters indicate characters to type exactly as
shown. You can type the text in upper- or lowercase. You can
abbreviate uppercase words to the first three or more unique
characters.

lowercase italics Lowercase italics indicate variables for which you specify or
the system supplies the actual values.

[]

{ }

()

Square brackets enclose optional data. If the brackets enclose
a vertical list of options, you can specify only one option. Do
not type the brackets when you enter the call.

Braces enclose options, from which you must choose one and
only one. Do not type the braces when you enter the call.

Parentheses enclose a set of options. You must specify both
or neither of them. Do not type the parentheses when you
enter the call.

Convention

PRST2=5

CALL BFMTl

Meaning

This symbol indicates a key to press. ~ indicates that
you press the CONTROL key and the key represented by x
together.

Ellipses represent an omission. To emphasize the important
information, examples may omit some of the user input or
system output

All values that appear in this manual are decimal unless otherwise noted.

Certain additional conventions apply in specific chapters. Section 2.4 describes
specific conventions for MACRO-II calls. Section 3.7 describes specific conven
tions for FORTRAN, COBOL, and BASIC-PLUS-2 calls.

xv

1

Introduction

DECnet-RSX software extends the RSX operating systems for the PDP-II. With
DECnet-RSX, you can write programs that exchange data with programs on
other DECnet systems in the network that run under RSX or other operating sys
terns. This manual describes the network programming functions that you can use
with the MACRO-II, FORTRAN 77, COBOL, and BASIC-PLUS-2Ianguages.

Programs using DECnet-RSX can have tasks running on different nodes that
exchange data using intertask communication, remote file access, or remote task
control.

• Intertask communication. User tasks on different nodes can exchange
messages and data by issuing a series of DEC net communications calls. DEC
net software lets you perform task-to-task communication, whether or not
both tasks are written in the same programming language or both nodes are
under the same operating system. For example, an RSX FORTRAN 77 pro
gram can communicate with a VMS BASIC-PLUS-2 program.

• Remote file access. Remote file access programs can access sequential
files for reading, writing, and appending records to remote files. They can
also delete remote files.

Programming remote file access operations on a remote RSX node is similar
to programming local I/O operations. For a remote node under another
operating system, your program's access is determined by what functions its
source language provides and the remote file system supports.

• Remote task control. A FORTRAN program can control the execution of
installed tasks on remote RSX or lAS DECnet nodes. The program can cause
immediate execution of a remote task, schedule it for later or periodic exe
cution, abort it, or cancel its scheduling.

1-1

You can perform functions on cooperating local and remote nodes or simply at
the local node. For example, a task can issue MACRO-II DECnet calls to
exchange data with another task on the same node. This lets you debug an RSX
program locally before running it at a remote node.

1.1 Intertask Communication Conventions

To refer to a call common to all four languages that DECnet-RSX supports, this
manual uses the call's first three letters, followed by x. The x represents the part
of the call name that varies by programming language. With MACRO-II, you
replace the x with the $ symbol. With FORTRAN, COBOL, and BASIC-PLUS-2,
you replace the x with the letters NT.

In this manual, the term "macro" refers to MACRO-II calls; the term "call"
refers to FORTRAN, COBOL, and BASIC-PLUS-2 calls.

Example:

OPNx (generic representation)
OPN$ (MACRO-II)
OPNNT (FORTRAN, COBOL, or BASIC-PLUS-2)

OPNx is the first DECnet call a task issues for any DECnet session. A session
includes all intertask communication calls issued between the OPNx call and the
CLSxcall.

Table 1-1, in Section 1.3, provides an alphabetical list of the DEC net intertask
communication calls, and describes the function and expected result of each.

1.2 Intertask Communication Concepts

This section explains the following basic intertask communication concepts:

• Establishing an active network task

• Establishing a logical link

• Building a connect block

• Getting data from the network data queue

• Sending and receiving messages

1-2 DECnet-RSX Programmer's Reference Manual

• Sending interrupt messages

• Checking completion status information

• Terminating activity on a logical link

• Closing a network connection

1.2.1 Establishing an Active Network Task

Before any task can exchange data using intertask communication calls, it must be
an active network task. A task is active if it is running and has issued an open
(OPNx) call. An OPNx call connects the task to the network. It can also establish
the task's network data queue.

Your task requires Logical Unit Numbers (LUNs) assigned to NS:, the network
pseudodevice driver: a network data queue (mailbox) LUN and a LUN for each
logical link.

The network data queue (mailbox) LUN specifies the queue from which your task
retrieves network messages.

You can define the network data queue LUN by including the value as an argu
ment to the OPN$/OPNNT call or you can use the value of the symbol .MBXLU.
You can define the value of .MBXLU at task build time; with MACRO-II, you can
also define it at assembly time. The .MBXLU definition is referenced only if you
omit the LUN argument in the call; so define a particular network data queue LUN
in only one place.

To define .MBXLU at task build time, issue the following task build option:

GBLDEF=.MBXLU:x

This instructs the task builder to define all global references to .MBXLU as the
integer value represented by x.

Using MACRO-II, you can choose to define .MBXLU at assembly time. To define
the LUN locally in your source code to a value represented by x, put the following
in each source module:

.MBXLU=x

To define the LUN globally, include this statement in a single source module:

.MBXLU==x

Introduction 1-3

The task builder will define references to .MBXLU in each source module in your
task to the value of x.

A task can use only one network data queue LUN. In MACRO-II tasks, you can
specify a network data queue LUN with the following calls: SPA$ (specify a user
AST routine), GND$ (get network data), REJ$ (reject a logical link request), CLS$
(end the task's network operations), and GLN$ (get local node information). You
must specify the same LUN that you specified in the OPN$ call, or the macro com
pletes with a privilege error (IE.PRI).

Choose only one of these command techniques for defining .MBXLU. However, if
you do not define .MBXLU, the task builder returns an undefined reference warn
ing message. If you run the task and ignore the warning, the operating system
rejects the macro calls (OPNx, SPA$, GND$, REJ$, CLS$, and GLN$) with a direc
tive status error indicating an invalid LUN. The task builder causes undefined ref
erences to default to zero (0). You cannot define .MBXLU with a value of 0; 0 is an
invalid logical unit number.

Issuing a CLS $ call to terminate network operations for a MACRO-II task frees all
network logical unit numbers and aborts the task's logical links. You can issue the
CLS$ call in any of the three CLS$ formats - CLS[W]$, CLS[W]$E, and CLS[W]$S.

Ifa LUN is not assigned to NS:, any network directive is returned with the "illegal
function code" status.

1.2.2 Establishing a Logical Link

1-4

To exchange data, a logical link must exist between two active network tasks. A
logical link is a logical path between two cooperating tasks that agree to commu
nicate. When the link is established, a user task can send and receive messages.
Figure 1-1 illustrates the flowchart process for establishing a logical link.

DECnet-RSX Programmer's Reference Manual

Figure 1-1 : Establishing a Logical Link

I ntrod uction

NETWORK REJECTS
REQUEST

START TARGET
TASK

TASK ISSUES
REJECT CALL

NETWORK ISSUES
REJECT CALL

LKG-1035-87

1-5

The task requesting the logical link is the source task. The task receiving the
request is the target task. The distinction be!ween source and target task applies
only during the connection sequence. Once the logical link is established, both
tasks have equal access to it.

Tasks at both ends of the link must specify a logical unit number (LUN) for the
link. Each task assigns a link LUN to identify the link to the tasks and network. The
tasks at both ends need not use the same LUN for a link.

1.2.3 Building a Connect Block

Before the source task can issue a request to connect to another task, it must build
a connect block. A connect block contains a destination descriptor, source
descriptor, and optionally, access control information and user-supplied data.

1.2.3.1 Destination Descriptor

The destination descriptor identifies the destination task by task name or object
type number.

When two tasks communicate, they are considered to be two objects. A task can
be set up as a named or numbered object:

• A named object is an installed user-defined task to which you connect by
specifying a name. The object type number for a named object is O.

• A numbered object is an installed user-defined task or DECnet task to which
you connect by specifying an object type number. The object type numbers
for numbered objects range from 1 to 255, with 1 to 127 reserved for DEC
net tasks and 128 to 255 reserved for user tasks.

For information on defining objects, see the DECnet-RSX Network Management
Concepts and Procedures manual.

1 .2.3.2 Source Descriptor

1-6

The source descriptor contains information that the DECnet software on the
source node supplies. The information includes either

• The source node name and task name of a named object or the source node
name and task object number of a numbered object.

• The source node name and the user name of the person running the task.

The target task can use the source descriptor to determine whether it wants to
establish communications.

DECnet-RSX Programmer's Reference Manual

1.2.3.3 Access Control Information

Access control information defines your access rights at the remote node. Each
target system performs access control verification according to its conventions. If
the target node is equipped to verify access control information, it does so before
passing the connect request to the target task. For information on access control
verification, see the DECnet-RSX Network Management Concepts and Proce
dures manual.

1.2.3.4 Optional Data Messages

When the source task issues a connect request, you can include a data message of
up to 16 characters in the connect block. If the connect (CONx) call contains the
location and length of a block of user data, the source node appends that block to
the connect block.

1.2.4 Getting Data from the Network Data Queue

Once a task is connected to the network, it has a network data queue. The soft
ware on the connected task's node places all incoming connect request messages,
interrupt messages, user disconnect messages, user abort messages, and network
abort messages on the task's network data queue. To get these messages, the task
issues a get network data (GNDx) call. A task should begin monitoring its network
data queue as soon as the open call completes successfully.

The get network data call ordinarily returns the first message on the queue on a
first-in, first-out basis. However, the GNDx call has the following options:

• Remove the first message on the queue and place it in the message buffer.

• Remove the first message of a specified type for any logical link and place it
in the message buffer.

• Remove the first message for a specified logical link regardless of the mes
sage type and place it in the message buffer.

• Remove the first message of a specified type for a specified logical link and
place it in the message buffer.

• Determine the type, length, and associated logical link of any message on the
queue without removing it from the queue. This allows you to assign an
appropriate buffer size in a subsequent GNDx call that performs one of the
four options just listed.

Introduction 1-7

1 .2.5 Sending and Receiving Messages

Once a logical link is established between two tasks, both tasks can send and
receive messages. DECnet distinguishes between data and nondata messages.
Data messages go directly to a buffer provided by the receiving task. N ondata
messages go to a task's network data queue. Nondata messages are unsolicited
high priority messages that inform the receiving task of an event, such as an inter
rupt or disconnect request.

To send a data message, a task issues a send (SNDx) call. The send call must specify
the LUN that the connect or accept call assigned. It also specifies the location and
length of the data message buffer. A send call completes when the receiving node
acknowledges to the sending node that it received a message correctly.

To receive a data message, a task issues a receive (RECx) call. The receive call must
specify the LUN that the connect or accept call assigned. It also specifies the loca
tion and length of the data message buffer. A receive call completes when the data
message is placed in the specified data message buffer. If the data message buffer is
not large enough, the receive call completes with a data overrun condition and
the excess data is lost; the 110 status indicates the overrun in such cases. Another
receive call is then required to receive the next data message.

To send a high priority nondata message, a task issues an abort (ABTx), disconnect
(DSCx), or interrupt (XMIx) call. To receive a high priority nondata message, a
task issues a get network data (GNDx) call.

1.2.6 Sending Interrupt Messages

1-8

A task can send interrupt messages to another task. Usually an interrupt message
informs the receiving task of some unusual event in the sending task. An interrupt
(XMIx) message can be up to 16 bytes long. In the interrupt call, specify the LUN
assigned in the connect or accept call. Also specify the location and length of the
message buffer.

An interrupt call completes when the receiving node acknowledges to the send
ing node that it received the message. The receiving node software places the
interrupt message on the receiving task's network data queue. The receiving task
must issue a get network data call to remove the message from the queue and
place it in the task's message buffer.

A task can have only one interrupt message outstanding on a logical link. Until the
call completes, any subsequent attempt to send another interrupt message on that
same link will return an error code in the 110 status word.

DECnet-RSX Programmer's Reference Manual

1.2.7 Checking Completion Status Information

Each macro or call can include an argument that specifies the address of a 2-word
status block. The status block returns the status of a completed call. Include this
argument so that you can check completion status. You can use the same block
for successive I/O requests, but only by one macro or call at a time. If concurrent
I/O requests attempt to use the same status block, unpredictable results occur.

The first status word contains:

• A zero if the called macro or subroutine has not completed

• A positive value if the called macro or subroutine produced the desired
results

• A negative value if the called macro or subroutine did not produce the
desired results

The second status word contains further information about the completion. For
example, in a successful data transmission, it returns the number of bytes trans
mitted.

1.2.8 Terminating Activity on a Logical Link

Any task can terminate activity on a logical link at any time by issuing a discon
nect or abort call:

• A disconnect (nSCx) call terminates transmissions over the logical link after
all data transmissions and interrupts have been sent.

• An abort (ABT x) call disconnects the logical link immediately, even if mes
sages are queued for transmission.

The receiving node software places the termination message on the receiving
task's network data queue. The receiving task must issue a get network data call to
retrieve the message.

Both disconnect and abort calls can specify the location and length of a user data
message of up to 16 bytes for the receiving task.

The disconnect call must specify the logical unit number (LUN) assigned in the
connect or accept call. A disconnect call allows node software to complete all
pending transmits for the issuing task before disconnecting the logical link. Dur
ing this time, the issuing task continues to receive messages. When the last mes
sage is transmitted, however, any remaining receive calls complete with an abort

Introduction 1-9

condition. When the link is disconnected, the LUN is freed. A task can use that
LUN in subsequent connect or accept calls.

The abort call must specify the logical unit number (LUN) assigned in the connect
or accept call. An abort call causes the node software to immediately abort all
pending transmits and receives and disconnect the link. The LUN is freed and a
task can use that LUN in subsequent connect or accept calls.

1.2.9 Closing a Network Connection

To close a task's network connection, issue a close (CLSx) call. The close call
informs the node software that the task no longer requires network services and
purges the task's network data queue. Any active LUNs are deactivated and freed
for use if the task subsequently issues an open (OPNx) call.

If data remains in the terminating task's network data queue when the close call is
issued, the task receives any connect requests that remain in its network data
queue if it subsequently issues an open call within a short period of time. Data of
other types, such as interrupt, disconnect, and abort messages, are discarded.

1.2.10 Using the Wait Option

Many macros and calls allow you to use the wait option. Including W in a call
(such as GNDW$ or GNDNTW) delays execution of the calling task until the call
completes. The calling task then continues at the instruction immediately follow
ing the call. Without the wait option, the call executes asynchronously.

In a MACRO-II call for which you specify the wait option, an event flag is man
datory. If you omit the event flag, the call completes as a normal asynchronous
call.

1.2.11 Using the AST and WAITNT Options

An asynchronous system trap (AST) in a MACRO-II call causes the AST to exe
cute when the call completes. In FORTRAN, COBOL, and BASIC-PLUS-2, the
W AITNT call instead determines when a call completes.

1.2.12 Using the Flow Control Option

1-10

A network program requires buffer space for temporary message storage. For
example, a program keeps a copy of each message that it sends over the link in
buffer space until the receiver acknowledges the message. A program also holds
buffer space for receiving inbound messages.

DECnet-RSX Programmer's Reference Manual

DECnet provides flow control mechanisms that prevent the overflow of available
buffer space. Sending and receiving tasks are synchronized so that a source task
transmits data only if the target task has issued a receive call and has available
buffer space.

With MACRO-II tasks, DECnet-RSX also provides a special NOFLOW option
that disables flow control mechanisms. The NOFLOW option can help in attain
ing a higher level of network performance, but you must use it with caution.
Without flow control, a source task can send data whether or not a buffer is avail
able to receive it. If the target task does not have adequate buffering for the
incoming data, some data segments will be discarded. The software must request
retransmission of each discarded segment, after a timeout. This significantly
degrades network performance. If you choose the NOFLOW option, maintain
adequate buffering at the target task to compensate for the loss of send/receive
synchronization. The communicating programs should be appropriately written.

The NOFLOW option is desirable when:

• A program's User layer protocol already includes control mechanisms or
acknowledgment-signaling mechanisms.

• The flow of data is predictable, and the program can handle the flow.

NOTE

It is inadvisable to use the NO FLOW option in the ini
tial stages of developing a network program. Wait
until after you test the communicating programs and
adequately synchronize the data flow.

You can set either end of the logical link to FLOW or to NO FLOW control inde
pendently. Set the NOFLOW control option within the CONx and ACCx calls.
Flow control is the default.

1.3 Summary of Intertask Communication Calls

Table 1-1 lists the intertask communication calls. The first column of the table
lists the call name. MACRO-II macro call names have the form namS and FOR
TRAN, COBOL, and BASIC-PLUS-2 call names have the form namNT, where
nam represents the specific call. The second column defines the function of the
call. The third column describes the result of the call's successful execution.

I ntrod uction 1-11

1-12

Table 1-1: OECnet Communication Calls

Call

ABT$
ABTNT

ACCS
ACCNT

BACC
BACCL

BFMTO
BFMTI

CLS$
CLSNT

CONS
CONNT

Function

Abort a logical link

Accept a logical
link request

Build access control
information area

Build a format
descriptor block

Close the network
connection - end the
task's network
operations

Request a logical
link connection

Normal Action

Transmits a non data abort message over the
logical link. The DECnet software on the
receiving node delivers the abort message to
the receiving task's network data queue.

Notifies the DECnet software on the target
node that the target task accepts a logical link
request. The DEC net software then sends the
acceptance notification to DECnet software on
the source node. The source node DEC net soft
ware delivers the accept message to the status
block that the source task specified in the
CONS or CONNT call.

Builds the access control information for a
connect block. Use BACC for a short connect
block, and BACCL for a long connect block. A
subsequent CONNT call delivers the contents
of this block to the DECnet software on the tar
get node. This call does not transmit user data
over a logical link.

Builds a destination descriptor for the connect
block. A format 0 destination descriptor
describes the target task by object code. A for
mat 1 destination descriptor describes the tar
get task by name. This call does not transmit
user data over a logical link. A subsequent
CONNT call delivers the contents of this block
to the DECnet software on the target node.

Sends the close request to the DECnet software
on the issuing task's node. This call does not
transmit user data over a logical link.

Sends a high priority nondata connect message
and connect block over a temporary logical
link to the target node's DECnet software. If
the target task is an active network task, the
connect request is delivered to its network
data queue. The connect block is delivered to a
mailbox as a result of a subsequent get network
data call (GND$ or GNDNT).

DECnet-RSX Programmer's Reference Manual

Table 1-1 (Cont.): DECnet Communication Calls

Call

CONB$$

CONL$$

DSC$
DSCNT

GLN$
GLNNT

GND$
GNDNT

OPN$
OPNNT

REC$
RECNT

REJ$
REJNT

Introduction

Function

Build a connect block
(short)

Build a connect block
(long)

Disconnect the
logical link

Get local node data:
node name and
transmission segment
size

Get network data from
tasks's network data
queue

Open the network
connection - create
the task's network
data queue

Request to receive
data over the logical
link

Reject a logical link
request

Normal Action

Builds a connect block that a subsequent CON$
call delivers to the DEC net software on the tar
get task. This connect block accepts a user ID
of up to 16., password of up to 8., and account
number of up to 16. bytes. This call does not
transmit data.

Builds a connect block that a subsequent CON$
call delivers to the DECnet software on the tar
get task. This connect block accepts a user ID,
password, and account number of up to 39.
bytes each. This call does not transmit data.

Transmits a non data disconnect message over
the logical link. The DECnet software on the
receiving task's node delivers the disconnect
message to the task's network data queue.

Delivers local node information to the buffer
that an argument of the call specifies. This call
does not transmit user data over a logical link.

Stores data from the network data queue in the
location that arguments of the call in the issu
ing task specify. This call does not transmit
user data over a logical link.

Delivers the open request to the DECnet soft
ware on the issuing task node. This call does
not transmit user data over a logical link.

Receives a data message that another task's
DECnet send call initiated. When the receive
call completes, the DECnet software on the
issuing task node sends a notification message
to the status block specified in the call. This
call does not transmit user data over a logical
link.

Sends rejection notification over the tempo
rary logical link from the DEC net software on
the target task's node to the DECnet software
on the source node. The source node's DECnet
software delivers the reject notice to the status
block that the source task's CON$ or CONNT
call specified.

(continued on next page)

1-13

Table 1-1 (Cont.): OECnet Communication Calls

Call

SND$
SNDNT

SPA$

WAITNT

XMU
XMINT

Function

Request to send a data
message over the
logical link

Specify the location
of a user-written
asynchronous system
trap (AST) routine

Wait for the completion
of any other DECnet
communications call

Request to send an
interrupt message
over the logical link

Normal Action

Transmits the data message over the logical
link to the DECnet software on the receiving
task node. When the receiving DEC net soft
ware delivers the message to the area specified
in the receiving task's receive call, it returns a
completion status message to the sending
DECnet software, which delivers it to the
status block specified in the send call.

Transfers control to the AST routine when a
nondata message is placed on the task's net
work data queue. This call does not transmit
user data over a logical link.

Suspends task execution until completion of a
previously-issued call that included a wait
option. This call does not transmit user data
over a logical link.

Transmits a high priority non data interrupt
message over the logical link. The DEC net soft
ware on the receiving node delivers the inter
rupt message to the receiving task's network
data queue.

1.4 DECnet-RSX Remote File Access Operations

Using DECnet-RSX remote file access facilities, you can write a FORTRAN,
COBOL, or BASIC-PLUS-2 program that performs the following file access oper
ations for sequential files only:

• Open or create a remote file

• Read and write records to a remote file

• Append records to a remote file

• Close, purge, or delete a remote file

1-14 DECnet-RSX Programmer's Reference Manual

DECnet-RSX file access facilities have similar features to those of DECnet-RSX
intertask communication facilities.

• The file access facilities are implemented by means of calls to subroutines.

• The task that requests file access is called the source task, and the task that
accepts or rejects the request is called the target task.

• Acceptance of a file access request creates a logical link between the source
and target tasks. Then the file access process begins.

Incoming file access requests are translated into calls to the file system at the tar
get node. The resulting file data is sent back to the accessing task. The accessing
task then reformats the data as the system requires. The DECnet software
establishes the logical link for file access operations; much of the connection pro
cess is therefore transparent, in contrast to intertask communication. After com
pleting file access operations, the logical link is disconnected.

Section 3.9 discusses remote file access operations.

1.5 DECnet-RSX Task Control

DECnet-RSX task control lets you write tasks in FORTRAN that:

• Execute an installed task on a remote node according to a set schedule, using
the RUNNCW call

• Abort an executing task on a remote node, using the ABONCW call

• Cancel a scheduled task on a remote node, using the ABONCW call

Section 3. 10 discusses remote task control.

Introduction 1-15

2
DECnet-RSX MACRO-11 Programming

Facilities

DECnet-RSX provides a library of MACRO-II macros to use in network intertask
communication. This chapter:

• Describes the three network macro formats.

• Explains the connect block and access options for your task.

• Lists the graphic conventions for this chapter.

• Describes each intertask communication macro call.

2.1 RSX-11 Network Macro Formats

You can use the following formats to code macros:

• BUILD type macro. Creates a parameter block at assembly time and is
generally used in conjunction with an EXECUTE type macro or a DIR$ direc
tive.

• EXECUTE type macro. References the parameter block that a BUILD
type macro created and executes the requested function. An EXECUTE type
macro lets you override parameters that the BUILD type macro specified.

• STACK type macro. Creates a parameter block on the processor stack
and executes the requested function.

Section 2.1.4 has examples of these three macro format types.

2-1

2.1.1 BUILD Type Macros

2-2

You use the BUILD type macro at assembly time. This macro creates a parameter
block that contains arguments that describe the network function you requested.
A pre-defined parameter block is especially useful for repetitions of the same net
work operation. If you omit an optional parameter from this block, the macro
allocates space for it anyway. Later, you can use an EXECUTE type macro to fill in
the argument. If you plan to use the EXECUTE type macro, however, you must
include all of the BUILD type macro's trailing arguments.

The format for a BUILD type macro is:

label: XXX[W] $ parameter-list[flag]

where

label is a symbolic name associated with the location of the parame
ter block.

xxx is the name of a DECnet-RSX macro.

[W] specifies that this network function will complete synchro
nously. The issuing task waits until the function completes
before continuing. If you omit the W, the call completes asyn
chronously.

parameter-list is a list of arguments that describe particular features of this
call. Each parameter must be a valid argument for a .WORD or
.BYTE MACRO-II directive. Each call description includes a
list of the parameters for the call. The number of arguments
specified must not exceed the number specified in an
EXECUTE type macro that will use this parameter block.

flag is a symbolic name that specifies an optional subfunction of the
network macro.

You can execute a BUILD type macro by issuing an EXECUTE type macro or a
DIR$ macro. A DIR$ macro call pushes the address of the network function
parameter block that you created with the BUILD macro on the processor stack
and then issues an EMT 377 for the Executive to execute the macro . You can write
a DIR$ macro as follows:

DIR$ adr,err

DECnet-RSX Programmer's Reference Manual

where

adr is the address of the parameter block in the format of a source operand
of an MOV instruction.

err is the address of an optional error routine. The C-bit in the processor
status word (PSW) is set whenever an error is encountered.

A DIR$ macro generates less code than a corresponding EXECUTE macro.

2.1.2 EXECUTE Type Macros

The EXECUTE type macro references a network function parameter block that
you create at assembly time with a BUILD type macro. An EXECUTE type macro
lets you enter parameters that override those that you originally defined with a
BUILD macro.

You must include all trailing arguments in a BUILD type macro that an EXECUTE
type macro references.

Once you redefine or specify new parameters for the call, the EXECUTE macro
automatically executes the function that the call requests. The format for an
EXECUTE type macro is:

xxx[W]$E label[,override-parameter-list][flag]

where

xxx

[W]

label

is the name of a DECnet-RSX macro.

specifies that this network function will complete synchro
nously. The issuing task waits until the function completes
before continuing. If you omit the W, the call completes asyn
chronously.

represents one of two values:

• The label of the BUILD type macro that supplies parame
ters for this EXECUTE macro. You can include arguments
immediately following the label to override any parame
ters previously defined in the BUILD parameter block.

DECnet-RSX MACRO-11 Programming Facilities 2-3

override
parameter-list

flag

• The label of an area of memory that will contain the
parameters that you are currently specifying. The parame
ter block is built and the call is executed in the same macro.

is a list of one or more arguments to replace parameters that
you previously defined for this call in a BUILD type macro.
Each argument in this list must be a valid source operand for an
MOV S, label + offset MACRO-II instruction.

You can override the value of a parameter and assign it a null
value. For example, if an AST is not required, specify the
parameter as O.

is a symbolic name that specifies an optional subfunction of the
network macro.

2.1.3 STACK Type Macros

The STACK type macro creates the network function parameter block for the call
on the processor stack and then executes the requested function. You must spec
ify all required parameters when you issue this macro or it will generate assembly
errors.

The format for a STACK type macro is:

xxx[W] $ S parameter-list[flag]

where

xxx

[W]

is the name ofa DECnet-RSX macro.

specifies that this network function will complete synchro
nously. The issuing task waits until the function completes
before continuing. If you omit the W, the call completes asyn-
rhrr.nr.u" hr _.a. ... JL"'a.A"'''-&~.I.] •

parameter-list is a list of arguments that describe particular features of this
call. Each argument must have the form of a valid MACRO-II
MOV instruction source operand. Each call description
includes a list of the parameters for the call.

flag is a symbolic name that specifies an optional subfunction of the
network macro.

2-4 DECnet-RSX Programmer's Reference Manual

2.1.4 Macro Format Examples

The following examples demonstrate the three macro types. The first, a BUILD
type macro, creates a parameter block for the call designated by xxx$:

label: xxx[W]$lun,e/n,status,ast, <pl,p2, ... ,pn>

The first example of an EXECUTE type macro references the parameter block cre
ated for label:

xxx[W] $ E label

The second EXECUTE type macro overrides the parameter list arguments p 1 and
p2:

xxx[W]$E label"", <pl,p2 >

The last example, a STACK type macro, creates a parameter block on the stack,
and executes the call.

xxx[W]$S #lun,#e/n,#status,#ast, < #pl ,#p2 >

2.2 Connect Block Options

As Chapter 1 described, a source task builds a connect block before issuing a con
nect request. This outgoing connect block contains information about the con
nect request's target node and task. It can also specify explicit access control
information that gives the source task access to the target node. Before network
software sends the connect block to the target task, it adds information about the
source task or user. If you have an RSX-IIM-PLUS or Micro/RSX system with
outgoing proxy enabled, network software also adds proxy information (see
Section 2.3). At the target node, the target task retrieves the incoming connect
block from the network data queue.

Your task can use either long or short connect blocks. Using long connect blocks
lets your task support user IDs, passwords, and accounts of 39. characters each.
Using short connect blocks lets your task support user IDs of up to 16. characters,
passwords of up to 8. characters, and accounts of up to 16. characters.

For greatest flexibility, use long connect blocks when writing a new task. How
ever, you can continue to use an existing task that uses short connect blocks with
out modifying the task. If you change an existing task to use long connect blocks,
note the added buffer space requirements. Also note that if the task uses proxy
access, you need not supply values for the access control information fields.

DECnet-RSX MACRO-11 Programming Facilities 2-5

2.2.1 Using Connect Block Options

The connect block size that you choose affects the following macro calls in your
task:

Macro

OPN$

CONB$$

CONL$$

CONS

ACC$
GND$
REJ$

Connect Block Option

Include the NT.LCB flag to specify along connect block.

Use CONB$$ to build a short connect block.

Use CONL$$ to build a long connect block.

Provide the appropriate connect block length in the conblen argument.

Use the mail and mailen arguments to reference the appropriately
sized buffer.

When access verification for your task is on, your node's network software
verifies access rights and removes the access control information before passing
an incoming connect block to your task. For information on enabling verification
for a task, refer to the DECnet-RSX Guide to Network Management Utilities.

2.2.2 Receiving Connect Block Information

2-6

You specify the type of connect block you want to receive by including or omit
ting the long connect block (NT .LCB) flag in the OPN$ (access the network)
macro. If you specify the NT.LCB flag, network software uses long connect block
fields when passing access control information to your task.

In the GND$ macro, which retrieves the connect block from the network data
queue, you specify a buffer to hold the incoming connect block information. The
buffer size that you allocate mayor may not equal the size of the incoming con
nect block, but in writing incoming data to your buffer, network software always
uses the offsets appropriate to the connect block size that your OPN$ macro spec
ified. You receive all information if the source task sends the same size connect
block that you receive, or if you receive long connect blocks and the source task
sends a short connect block. However, if you receive short connect blocks and
the source task sends a long connect block, you may lose some information. Net
work software writes the received information into the appropriate field if the
information fits. Information that does not fit into the receiving field causes a data
overrun error and is lost.

You can choose to allocate a receiving buffer that is smaller or larger than the
expected connect block. For example, you might allocate a smaller buffer to
exclude all but the initial fields, or allocate a larger buffer to receive optional user
data. The GND$ call description describes what happens when the task receives
access control information that is smaller or larger than expected.

DECnet-RSX Programmer's Reference Manual

2.3 Access Control Information

An outgoing connect request sends information to the target node in order to gain
access to an account on the target node. You can specify the access control infor
mation and/or the network software can supply proxy information. Proxy access
is available only with RSX-IIM-PLUS or Micro/RSX.

When you supply explicit access control information for the connect request,
you specify a user ID, password, and, optionally, an account number. These iden
tify the target account on the remote node. You specify the explicit access control
information as arguments to the macro that builds the connect block (CONB$ $ or
CONL$$). When the target system receives the connect request, it grants access
according to what you specified. For information on which access control argu
ments the target system requires, refer to user documentation for that system;
DECnet-RSX nodes require the user ID and password. For more information on
explicit access control information, refer to the DECnet-RSX Network Manage
ment Concepts and Procedures manual.

Proxy access, in contrast, eliminates the need to send passwords across the net
work. The network managers on both nodes must set up the environment for
using proxy. Once your network manager enables outgoing proxy, your node
automatically sends proxy information with all outgoing connect requests. Proxy
information is the user ID under which the source task is executing. If incoming
proxy is enabled on the target node, the system can grant access according to the
proxy information and source node name. For information on how a target sys
tem verifies proxy access, refer to the DECnet-RSX Guide to Network Manage
ment Utilities.

If an incoming connect request contains both explicit and proxy access control
information, the target system uses the explicit information, and not the proxy
information, to verify access.

DECnet-RSX MACRO-11 Programming Facilties 2-7

2.4 Conventions Used in This Chapter

2-8

The following conventions are used in the macro descriptions and examples in
this chapter:

asterisk *

UPPERCASE

lowercase italic

square brackets []

braces { }

flags arguments that you must check for information
after the macro completes. For example, the status argu
ment specifies an array/data item where completion
status information is stored when the macro completes.

indicates characters to type exactly as shown. You can
type the text in upper- or lowercase.

indicate variables for which you specify or the system
supplies the actual values.

enclose optional data. If the brackets enclose a vertical
list of options, you can specify only one option. Do not
type the brackets when you code a macro.

Example:

ABT[W]$ lun, [e/n), [status], [ast][, < out,outlen »

In this macro, the lun argument is required; all other
arguments are optional.

enclose options, from which you must choose one and
only one. Do not type the braces when you code the
macro.

Example:

GND[W]$ lun,[e/n],[status],[ast],

r<ma~mkn> ~
/-s-'IIJ,,;1 ~1.n ~_"..£. 1\.TT T'TTli I

~ ,~;.~~~H"H'"''U'}I'(;''' ,l'i.l . .I I r ~

l < "mask> ,NTLON j
In this example, you must include one of the four argu
ment strings enclosed within the braces when you code
GND$.

DECnet-RSX Programmer's Reference Manual

commas and
angle brackets < >

numbers

must be typed as part of the macro format. Even if you
omit an argument, include the comma that delineates its
field unless no other arguments follow.

Example:

Basic format:

ABT[W]$ lun,[e/n],[status],[ast][, < out,outlen >]

Sample macro:

ABT$ 5, ,status

e/n, ast, out, and outlen have been omitted. A comma
delineates the field for the missing efn argument; no
commas are necessary for the three arguments dropped
at the end of the macro.

are octal unless followed by a decimal point. If the
assembler default radix has been set to octal, you can
designate a decimal radix by placing a decimal point
immediately after a number.

Example:

SND$S #3,#1,#IOSTN,,<#MAUX,#16.>

In this example, 16 is a decimal number.

DECnet-RSX MACRO-11 Programming Facilities 2-9

2.5 Intertask Communication Macros

This section contains descriptions and usage guidelines for the intertask commu
nication calls that Table 2-1 lists. Read the preceding material in this chapter
before using the caqs. If you are unfamiliar with intertask communication con
cepts, also read Chapter 1 carefully.

Table 2-1 : Intertask Communication Macros

Macro Function

ABTS Abort a logical link

ACCS Accept a logical link connect requrest

CLSS End a task's network operations

CONS Request a logical link connection

CONB$ $ Build a short connect block for CONS macro

CONLS $ Build a long connection block for CONS macro

DSCS Disconnect a logical link

GLNS Get local node information

GND$ Get data from network data queue

OPNS Access the network

RECS Receive data over a logical link

REJ$ Reject logical link connect request

SNDS Send data over a logical link

SPAS Specify a user AST routine

XMU Send interrupt message over a logical link

2.5.1 Comm"on Argument Definitions

2-10

This section defines commonly-used arguments for intertask communication
macros.

• label

has the following meanings, depending on the macro type:

BUILD type: label is a symbolic name associated with the location of
the argument block.

DECnet-RSX Programmer's Reference Manual

EXECUTE type: label can represent one of two values:

The label of the BUILD macro that supplies arguments for the current
EXECUTE macro. You can override any arguments that the BUILD macro
defines by reentering them after label in the EXECUTE macro.

The label of an area of memory that will contain the arguments that you
specify in the current EXECUTE macro.

• status

unless noted otherwise, is the address of an optional 2-word status block
that contains completion status information on return from the macro. If
specified, this block will contain the following values when the macro com
pletes:

Word 0: Byte 0 = Error/completion code

Byte 1 = 0

Word 1: 0

Each macro description lists the error/completion codes for that macro.

• out,outlen

define optional user data to send with certain macros. These are optional
arguments, but are always paired; use both or omit both.

out

outlen

is the octal starting address of a buffer that contains optional user
data you can send on some operations.

is the length in decimal bytes of the 1- to 16.-byte message to
send.

DECnet-RSX MACRO-11 Programming Facilities 2-11

ABT$

ABT$
(Abort a Logical Link)

2.5.2 ABT$ - Abort a Logical Link

Use:

Issue ABT$ from either task to abort a logical link. ABT$ immediately aborts all
pending transmits and receives, disconnects the link, and frees the LUN assigned
to the logical link. When you issue ABT$, you can send 1 to 16. bytes of user data
to the task from which you are disconnecting (see the out,outlen arguments).

Formats:

label: ABT[W]$ lun,[e[n], [status], [ast][, < out,outlen >]

ABT[W]$E label, [lun],[e[n], [status],[ast](, < out,outlen >]

ABT[W]$S lun, [e[n], [status],[ast][, < out,outlen >]

Arguments:

•

*

2-12

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link to abort. If you initiated the connection, enter the
LUN you used in the CONS macro. If you accepted the connection, enter the
LUN you used in the ACC$ macro.

e[n

specifies an optional event flag number to set when ABTS completes.

status

specifies completion status information on return from ABT$. See the defini
tion in Section 2.5. 1 .

DECnet-RSX Programmer's Reference Manual

ABT$

ast

is the address of an optional user-written AST routine to execute after ABT$
completes.

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

Error/Completion Codes:

IS.SUC

IE.ABO

IE. BAD

IE.IFC

IE.NLN

IE.NNT

IE.SPC

The macro completed successfully.

The specified logical link has already been aborted or discon
nected.

The optional user data exceeds 16. bytes.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

Invalid buffer argument; the optional user data buffer (out) is out
side the user task address space.

DECnet-RSX MACRO-11 Programming Facilities 2-13

ACCS

ACC$
(Accept Logical Link Connect Request)

2.5.3 ACCS - Accept Logical Link Connect Request

Use:

Issue ACC$ from the target task to establish a logical link with the source task.
When you issue ACC$, you can send 1 to 16. bytes of user data to the source task
(see the out,outlen arguments).

Formats:

label:

ACC[W]$E

ACC[W]$S

ACC[W]$ lun,[ejn], [status], [ast], < mail, [mailen],
[out,outlen] > [,NOFLOW]

label,[lun],[ejn],[status],[ast], < [mail],[mailen],
[out,outlen] > [,NOFLOW]

lun,[ejn],[status],[ast], < mail, [mailen] ,
[out,outlen] > [,NOFLOW]

Arguments:

*

2-14

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

assigns the logical link number. Use this LUN to refer to this logical link in
any subsequent REC$, SND$, XMI$, ABT$, or DSC$ macro.

ejn

specifies an optional event flag number to set when ACC$ completes.

status

specifies completion status information on return from ACC$. See the defini
tion in Section 2.5. 1.

DECnet-RSX Programmer's Reference Manual

Flag:

Aces

ast

is the address of an optional user-written AST routine execute after ACC$
completes.

mail

is the address of the connect block sent by the source task and retrieved by
GND$. Specify the same address for this and the GND$ mail argument. The
connect block information is required to establish the connection.

mailen

is the length of the connect block in decimal bytes. The default value is 98.
bytes (N.CBL), the short connect block length, not including optional data.
For a long connect block, specify 178. bytes (M.CBL), the long connect block
length, not including optional data.

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

NO FLOW

disables flow control for incoming messages addressed to the task that issued
ACC$. Omitting NO FLOW establishes flow control for incoming messages. You
can enable or disable flow control independently at either end of the link. Use the
NOFLOW option with caution (see Section 1.2.12).

Error/Completion Codes:

IS.SUC

IE.ABO

IE.ALN

IE.BAD

IE.IFC

The macro completed successfully.

The task that requested the connection has aborted or requested
a disconnect before the connection could complete.

A logical link has already been established on the specified LUN.

Either the temporary link address in the connect block sent by
the source task is invalid, or the optional user data buffer length
(out/en) exceeds 16. bytes.

LUN not assigned to NS:.

DECnet-RSX MACRO-11 Programming Facilities 2-15

ACC$

IE.NNT

IE.RSU

IE.SPC

2-16

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

System resources needed for the logical link are not available.

Invalid buffer argument; either the pending connect block (mail)
or the optional user data buffer (out) is not word aligned, or one
of them is outside the user task address space.

DECnet-RSX Programmer's Reference Manual

CLS$

CLS$
(End Task Network Operations)

2.5.4 CLS$ - End Task Network Operations

Use:

Issue CLS$ from either task to end that task's network activity, abort its logical
links, and free its network LUNs. If the CLS$ call occurs when data remains in the
task's network data queue, network software:

• Reschedules the task if pending connect requests arrived while the task was
active. The task receives these connect requests when it restarts. There is a
limit of one retry and a timeout period of approximately 15 seconds.

• Rejects connect requests that arrived while the task was inactive.

• Discards interrupt, user disconnect, user abort, or network abort messages.

Formats:

label: CLS[W]$ [lun],[ejn],[status][,ast]

CLS[W]$E label,[lun],[ejn],[status][,ast]

CLS[W]$S [lun], [ejn],[status][,ast]

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

*

lun

identifies the logical unit number of the network data queue. Use the same
LUN you assigned in the OPN$ macro.

ejn

specifies an optional event flag number to set when CLS$ completes.

DECnet-RSX MACRO-11 Programming Facilities 2-17

CLS$

* status

specifies completion status information on return from CLS$. See the defini
tion in Section 2.5. 1 .

ast

is the address of an optional user-written AST routine to execute after CLS$
completes.

Error/Completion Codes:

IS.SUC

IE.IFC

IE.NNT

IE.PRI

2-18

The macro completed successfully.

LUN not assigned to NS:.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network is not accessed on the specified LUN.

DECnet-RSX Programmer's Reference Manual

CONS

CONS
(Request Logical Link Connection)

2.5.5 CONS - Request Logical Link Connection

Use:

Issue CON$ from the source task to request a logical link with the target task.
Before issuing CON$, you must build a connect block (see Section 2.5.6 or 2.5.7)
that CON$ can pass to the target node.

When a remote system receives a connect request, it checks the remote task. If the
task is currently installed and inactive, the system automatically loads and acti
vates it. The target task must issue a GND$ macro call to retrieve the connect
block information. The task evaluates the connect request and either accepts or
rejects it.

You can send 1 to 16. bytes of user data to the target task and/or receive 1 to 16.
bytes of user data from the target task when it accepts/rejects your connect
request.

Formats:

label: CON[W)$ lun,[ejn),[status),[ast], < conbl,[conblen],
[out,outlen),[in,inlen) > [,NOFLOW)

CON[W)$E label,[lun),[ejn),[status),[ast), < conbl,[conblen),
[out,outlen),[in,inlen) > [,NOFLOW)

CON[W)$S lun, [ejn),[status), [ast], < conbl,[conblen),
[out,outlen],[in,inlen) > [,NOFLOW]

Arguments:

label

specifies the location of the argument block. See the definition in Section
2.5.1.

DECnet-RSX MACRO-11 Programming Facilities 2-19

CONS

*

2-20

lun

assigns the logical link number. Use this LUN to refer to this logical link in
any subsequent REC$, SND$, XMI$, ABT$, or DSC$ macro.

efn

specifies an optional event flag number to set when CON$ completes.

status

is the address of an optional 2-word status block that contains completion
status information on return from CON$. If specified, this block will contain
the following values when CON$ completes:

Word 0: Byte 0 = Error/completion code (see the list that follows)

Byte 1 = 0

Word 1: Byte 0 = Contents depend on error completion code in word 0,
byte 0 (see the list that follows)

Byte 1 = 0

This list shows the error/completion codes that you can receive in word 0,
byte 0 and the corresponding contents of word 1, byte 0:

Error/Completion Code
Word 0, Byte 0

IS.SUC
Connection accepted

IS.DAO
Connection accepted with data overrun

IE.DAO
Connection rejected by user with data overrun

IE.UR)
Connection rejected by user

IE.NR)
Connection rejected by DECnet

All other cases

Word 1, Byte 0

Received byte count
(0 if no data is received)

Received byte count
(0 if no data is received)

Received byte count
(0 if no data is received)

Received byte count
(0 if no data is received)

Reason for rejection
(refer to Appendix A)

o

DECnet-RSX Programmer's Reference Manual

Flag:

CONS

ast

is the address of an optional user-written AST routine to execute after CONS
completes.

conbl

is the address of the connect block built using CO NL $ $ or CO NB $ $. This
block must start on an even byte (word) boundary.

conblen

is the length of the connect block in decimal bytes. If you omit this value, the
CONS macro uses the short connect block length, 72. bytes (N.RQL). To use
a long connect block, specify the long connect block length, 152. (M.RQL).

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

in, in len

define the buffer to receive optional user data from the target task. These are
paired optional arguments; use both or omit both. If you omit these argu
ments and the target task sends user data, a data overrun status code (IS.DAO
or IE.DAO) will be returned.

* in is the octal address of the buffer.

inlen is the buffer length in decimal bytes (1 to 16.).

NOFLOW

disables flow control for this end of the link. Omitting NOFLOW establishes flow
control at this end of the link. You can choose to enable or disable flow control
independently at each end of the link. Use the NOFLOW option with caution (see
Section 1.2.12).

DECnet-RSX MACRO-11 Programming Facilities 2-21

CONS

Error/Completion Codes:

IS.SUC

IS.DAO

IE.ALN

IE.BAD

IE.DAO

IE.IFC

IE.NNT

IE.NR]

IE.PRI

IE.RSU

IE.SPC

IE.UR]

2-22

The macro completed successfully.

The macro completed successfully; the target task accepted the
connection. However, the target task sent back some optional
user data when it accepted the connect request, which was lost.

A logical link has already been established on the specified LUN.

Either the optional user data buffer exceeds 16. bytes, or the field
length count in the connect block is too large.

The connection was rejected and some optional user data sent
from the target task when it rejected your connect request was
lost.

LUN not assigned to NS:.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network rejected the connection (see the reject reason codes
in Appendix A).

The local node is shutting down. No logical link can be estab
lished.

System resources needed for the logical link are not available.

Invalid buffer argument; either the connect block (conbl) is not
word aligned, or the optional user data buffers (in or out) are out
side the user task address space.

The remote user task rejected the connection.

DECnet-RSX Programmer's Reference Manual

CONB$$

CONB$$
(Build Connect Block (Short»

2.5.6 CONB$$ - Build Connect Block (Short)

Use:

Issue CONB$$ from the source task to build a 72.-byte connect block. The CONS
macro call passes this outgoing connect block to the target task. The connect
block contains the target node name, destination descriptor, and, optionally,
explicit access control information. The target task can use this information to
determine whether to accept (ACC$) or reject (REJ$) the connect request.

To include explicit access control information, include the rqid, pass, and,
optionally, accno arguments in the macro. You can omit the explicit access con
trol information if you already included it in an alias node name or if you use
proxy access. The target system verifies access control information according to
its system conventions. If the target node uses and has enabled access verifica
tion, it performs verification before passing the connect request to the target task.

For more information on access control verification, refer to the DECnet-RSX
Network Management Concepts and Procedures manual. For more information
on aliases, refer to the DECnet-RSX Guide to User Utilities or the DECnet-RSX
Network Management Concepts and Procedures manual. For more information
on proxy access, refer to the DECnet-RSX Guide to Network Management Utili
ties.

Format:

CONB$$ [node],[obJl,lfmt, < descrip >],[rqid],[<pass>][,accno]

Arguments:

node

is the name of the target node. The name must have 1 to 6 alphanumeric charac
ters, including at least 1 alphabetic character.

The obi, /mt, and descrip arguments comprise the destination descriptor. You
must specify this information in order to access the task.

DECnet-RSX MACRO-11 Programming Facilities 2-23

CONB$$

2-24

obj

is the target task's object type. The object type for a named object is o. The object
type for a numbered object is in the range 1 to 127. for a DECnet task or 12B. to
255. for a user task. Refer to Appendix B for a list of object type codes.

Privileged users can define their own object types; for information, refer to the
DECnet-RSX Network Management Concepts and Procedures manual.

/mt

is the descriptor format type. To connect to a named object, specify 1 for the
descriptor format type and specify the descrip argument. To connect to a num
bered object, specif)Oand omit the descrip argument.

descrip

is the target task name (1 to 16. ASCII characters). Specify this argument only if
you specified!.for the/mt argument.

The rqid, pass, and accno arguments comprise explicit access control informa
tion that specifies an account on the remote node.

rqid

is the user 10 (1 to 16. ASCII characters).

pass

is a 1 to B.-byte password. To enter an ASCII (as opposed to binary) password,
precede each character of the password with an apostrophe (') and separate the
characters with commas. For example, enter the password PAS as 'P,' A, 'So

accno

is your account number at the remote node or process (1 to 16. ASCII characters).

NOTE

During task execution, you can dynamically supply
or modify values for the connect block fields, using
the offsets in Table 2-2. You must use this method to
supply non-ASCII data for a field that normally
requires ASCII data.

You can also choose not to issue CONB$$ and
instead allocate a 72. byte block of storage. Issue the
CRBDF$ call to define the offsets, with which you
fill in the connect block.

DECnet-RSX Programmer's Reference Manual

Connect Block:

Remember that a successful connect request requires
that the connect block contain certain fields,
whether you enter the values as arguments to the
CONB$$ macro or dynamically during task execu
tion.

CONB$$

Table 2-2 describes the connect block's symbolic offsets. Figure 2-1 is an exam
ple of a 72.-byte connect block.

Table 2-2: CONB$$ Connect Block Symbolic Offsets

Symbolic
Offset

N.RND·

N.RFM

N.ROT

N.RIDC·

N.RID·

N.RPSC·

N.RPS·

N.RACC·

N.RAC·

N.RQL=72.

Length
in Bytes

6.

1.

1.

2.

16.

2.

8.

2.

16.

Contents

DESTINATION DESCRIPTOR

Remote node name with trailing blanks

Destination descriptor format type: 0 or 1

Destination object type: 0-255.

Descriptor Fieldfor Format 0

18. Not used

Descriptor Fields for Format 1

N.RDEC· 2. Destination task name length (equal to or
less than 16. bytes)

N .RDE· 16. Destination task name

ACCESS CONTROL INFORMATION

User ID length (equal to or less than 16. bytes)

User ID

Password length (equal to or less than 8. bytes)

Password

Account number length (equal to or less than 16. bytes)

Account number

• These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX MACR -11 Programming Facilities 2-25

CONB$$

2-26

Figure 2-1 illustrates the connect block that the following call builds:

CONB$$ TACOMA,O,l,<RECVR>,BLOGGS,<'P,'A,'S>

The connect block contains the following values:

Field Value

Destination node TACOMA, an RSX node

Object type o (named object)

Descriptor format type

Destination task name length 5

Destination task name RECVR

User ID length 6

User ID BLOGGS

Password length 3

Password PAS

The account number length and account number are omitted because RSX target
systems do not require them.

The call supplies explicit access control information. It could omit that informa
tion when an alias node name contains the user ID and password, or to use proxy
access. The access control fields in the figure would then be empty. The offsets
are in octal notation.

DECnet-RSX Programmer's Reference Manual

Figure 2-1: Outgoing CONBSS Connect Block

DESTINATION

DESCRIPTOR
N.ROT 7

ACCESS

CONTROL 'G' '0'

'8' 'G'

INFORMATION

o N.RND

6 N.RFM
10 N.RDEC

12 N.RDE

32 N.RIDC

34 N.RID

54 N.RPSC

56 N.RPS

66 N.RACC
70 N.RAC

CONBSS

110 N.RQL (72.) LKG-1028-87

DECnet-RSX MACRO-11 Programming Facilities 2-27

CONL$$

CONL$$
(Build Connect Block (Long»

2.5.7 CONL$$ - Build Connect Block (Long)

Use:

2-28

Issue CONL$ $ from the source task to build a 152 .-byte connect block. The CON$
macro call passes this outgoing connect block to the target task. The connect
block contains the node name, destination descriptor, and, optionally, explicit
access control information. The target task can use this information to determine
whether to accept (ACC$) or reject (REJ$) the connect request.

To specify explicit access control information, you call the following associated
macros:

• CNID$$lets you specify a user ID

• CNPS $ $ lets you specify a password

• CNAC$$lets you specify an account number

To omit one or more of the access control fields, simply omit calling the macro.
You need not issue a separate .MCALL directive for each; the .MCALL directive
for CONL$$ calls CONL$$ and the three associated macros. You can omit the
access control information if you already included it in an alias node name or if
you use proxy access. The target system verifies access control information
according to its system conventions. If the target node uses and has enabled
access verification, it performs verification before passing the connect request to
the target task.

For more information on access control verification, refer to the DECnet-RSX
Network Management Concepts and Procedures manual. For more information
on aliases, refer to the DECnet-RSX Guide to User Utilities or the DECnet-RSX
Network Management Concepts and Procedures manual. For more information
on proxy access, refer to the DECnet-RSX Guide to Network Management Utili
ties.

DECnet-RSX Programmer's Reference Manual

CONL$$

Format:

CONL$$ [node], [obJl, Vmt, <descrip>]

CNID$$ [rqid]

CNPS$$ [<pass>]

CNAC$$ [accno]

Arguments for CONL$$:

node

is the name of the target node. The name must have 1 to 6 alphanumeric charac
ters, including at least 1 alphabetic character.

The obi, fmt, and descrip arguments comprise the destination descriptor. You
must specify this information in order to access the target task.

obi

is the target task's object type. The object type for a named object is O. The object
type for a numbered object is in the range of 1 to 127. for a DECnet task or 128. to
255. for a user task. Refer to Appendix B for a list of object type codes.

Privileged users can define their own object types; for information, refer to the
DECnet-RSX Network Management Concepts and Procedures manual.

fmt

is the descriptor format type. To connect to a named object, specify t, for the
descriptor format type and specify the descrip argument. To connect to a num
bered object, specify bnd omit the descrip argument.

descrip

is the target task name (1 to 16. ASCII characters). Specify this argument only if
you specified + for the fmt argument.

DECnet-RSX MACRO-11 Programming Facilities 2-29

CONL$$

Argument for CNID$$:

rqid

is the user 10 (1 to 39. ASCII characters).

Argument for CNPS$$:

pass

is a 1 to 39.-byte password. To enter an ASCII (as opposed to binary) password,
precede each character of the password with an apostrophe C) and separate the
characters with commas. For example, enter the password RADIO as
'R,'A,'D,'I,'O.

Argument for CNAC$$:

2-30

accno

is your account number at the remote node or process (1 to 39. ASCII characters).

NOTE

You can choose to create the entire connect block or
specify any of the CONL$$, CNID$$, CNPSSS, or
CNAC S S arguments dynamically during task execu
tion. In addition, to specify non-ASCII data for an
argument that normally requires ASCII data, you
must do so dynamically. You can also modify any
connect block field this way.

To create the connect block dynamically, reserve a
152.-byte block of storage, which equals the M.RQL
length (see Table 2-3); to specify any connect block
field dynamically, leave the argument blank in the
macro call. Issue the CRBDFS call to define the con
nect block symbolic offsets listed in Table 2-3. Dur
ing task execution, use these offsets to specify or
modify the connect block information.

A successful connect request (CONS) requires all of
the necessary connect block fields, whether you put
them in the macro arguments or enter them dynami
cally during task execution.

DECnet-RSX Programmer's Reference Manual

CONL$$

Connect Block:

Table 2-3 lists the connect block symbolic offsets. Figure 2-2 illustrates a sample
connect block.

Table 2-3: CONL$$ Connect Block Symbolic Offsets

Symbolic
Offset

M.RFM

M.ROT

M.RIDC·

M.RID·

M.RPSC·

M.RPS·

Length
In Bytes

6.

1.

1.

2.

39.

1.

2.

39.

1.

Contents

DESTINATION DESCRIPTOR

Remote node name with trailing blanks

Destination descriptor format type: 0 or 1

Destination object type: 0-255.

Descriptor Field for Format 0

18. Not used

Descriptor Fields for Format 1

M.RDEC· 2. Destination task name length
(equal to or less than 16. bytes)

M.RDE· 16. Destination task name

EXPLICIT ACCESS CONTROL INFORMATION

User ID length (equal to or less than 39. bytes)

User ID

Not used

Password length (equal to or less than 39. bytes)

Password

Not used

M.RACC·

M.RAC·

2.

39.

Account number length (equal to or less than 39. bytes)

Account number

1. Not used

M.RQL= 152.

• These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX MACRO-11 Programming Facilities 2-31

CONL$$

2-32

Figure 2-2 illustrates the connect block that the following call builds:

CONL$$ GROTON, 0, 1, <RECEIVER>
CNID$$ EDGAR
CNPS$$ <'R,'A,'D,'I,'O,'S,'T,'A,'T,'I,'O,'N>
CNAC$$

The connect block contains the following values:

Field Value

Destination node GROTON, an RSX node

Object type o (named object)

Descriptor format type 1

Destination task name length 8

Task name RECEIVER

User ID length 5

UserID EDGAR

Password length 12

Password RADIOSTATION

The account number length and account number are omitted because RSX target
systems do not require account numbers.

The call supplies explicit access control information. If, instead, you have defined
the access control information in an alias node name, or if you use proxy, the
access control information fields in the figure would be empty. The offsets are in
octal notation.

DECnet-RSX Programmer's Reference Manual

Figure 2-2: Outgoing CONL$$ Connect Block

DESTINATION 'R' 'G' o M.RND

'T' '0'

DESCRIPTOR 'N' '0'

M.ROT 7 6 M.RFM

ACCESS

CONTROL

INFORMATION

DECnet-RSX MACRO-11 Programming Facilities

10 M.RDEC
'E' 'R' 12 M.RDE
'E' 'C'

'v' 'I'

'R' 'E'

5.

'0' 'E'

'A' 'G'

'R'

'I' '0'

's' '0'

'A' 'T'

'I' 'T'

'N' '0'

32 M.RIDC

34 M.RID

104 M.RPSC

106 M.RPS

156 M.RACC
160 M.RAC

230 M.RQl (152.)

LKG-1032-R7

CONL$$

2-33

DSC$

DSC$
(Disconnect a Logical Link)

2.5.8 DSC$ - Disconnect a Logical Link

Use:

Issue DSC$ from either task to disconnect the logical link and free the logical unit
number. Unlike ABT$ (Section 2.5.2), DSC$ causes all pending transmits to com
plete before disconnecting the link. While these transmits are completing, the
task continues to receive messages. When the last transmit has completed, each
pending receive is aborted with an IE.ABO status code in the I/O status block.
With DSC$, you can send 1 to 16. bytes of user data to the task from which you
are disconnecting (see the out,outlen arguments).

Formats:

label: DSC[W]$ lun,[efn],[status],[ast][, < out,outlen>]

DSC[W]$E label,[lun], [efn], [status], [ast][, < out,outlen >]

DSC[W]$S lun,[e/n], [status], [as,t][, < out,outlen >]

Arguments:

*

*

2-34

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link to disconnect. If you initiated the connection,
enter the LUN you used in the CONS macro. If you accepted the connection,
enter the LUN you used in the ACC$ macro.

efn

specifies an optional event flag number to set when DSC$ completes.

status

specifies completion status information on return from DSC$. See the defini
tion in Section 2.5. 1 .

DECnet-RSX Programmer's Reference Manual

DSC$

ast

is the address of an optional user-written AST routine to execute after DSC$
completes.

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

Error/Completion Codes:

IS.SUC

IE.ABO

IE.BAD

IE.IFC

IE.NLN

IE.NNT

IE.PRI

IE.SPC

The macro completed successfully.

The specified logical link has already been aborted or discon
nected.

The optional user data exceeds 16. bytes.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network is not accessed on the specified LUN.

Invalid buffer argument; the optional user data buffer (out) is out
side the user task address space.

DECnet-RSX MACRO-11 Programming Facilities 2-35

GLN$

GLN$
(Get Local Node Information)

2.5.9 GLN$ - Get Local Node Information

Use:

Issue GLN$ from either task to place the name and default NSP segment size of the
local node in a specified buffer.

Getting the local node name can be helpful if two tasks on the same node use the
network interface to communicate. Each task can issue GLN$ and use the
returned local node name as the destination in a connect request. A task that dis
plays the local node name can also use GLN$.

The default NSP segment size tells you how NSP segments data transmitted on a
logical link. By knowing the default NSP segment size, you can adjust the length
of message blocks to transmit for most efficient use of transmit buffers (large data
buffers).

Formats:

label: GLN[W)$[lun],[ejn),[status),[ast), < buj,bujlen >

GLN[W]$E label, [lun],[ejn),[status], [ast), < buJ,bujlen >

GLN[W]$S [lun),[ejn],[status),[ast], < buf,bujlen >

Arguments:

*

2-36

label

specifies the location of the argument block. See the definition in Section
2.5.1.

ejn

specifies an optional event flag number to set when GLN$ completes.

DECnet-RSX Programmer's Reference Manual

•

•

GLN$

status

is the address of an optional 2-word status block that contains completion
status information on return from GLN$. If status is specified, the contents
of word 1 depend on the error/completion code returned in word 0, byte 0
(word 0, byte 1 is always 0).

Contents in Word 0, Byte 0

IS.SUC (1) or IE.DAO (-13)

IE.xxx (excluding IE.DAO,
xxx refers to IE. NNT,
IE.PRI, IE.SPC)

ast

Contents of Word 1

Number of bytes transferred to the user
buffer

o

is the address of an optional user-written AST routine to execute after GLN$
completes.

buj

is the address of the buffer to contain the received data. This buffer must
start on an even byte (word) boundary.

buflen

is the length of the buffer to contain the received data. The buffer length
determines the data returned, as follows.

Length

6 bytes

8 bytes

10 bytes

Returned Data

Local node name, left justified and in ASCII. Names with fewer
than 6 bytes are padded with spaces.

Local node name, default NSP segment size.

Local node name, default NSP segment size, node number.

The first six bytes contain the local node name. The next two bytes contain
the default segment size. The last two bytes contain the local node number
in the lower 10 bits and the local area number in the higher 6 bits.

DECnet-RSX MACRO-11 Programming Facilities 2-37

GLN$

Error/Completion Codes:

IS.SUC

IE.DAO

IE.IFC

IE.NNT

IE.PRI

IE.SPC

2-38

The macro completed successfully.

Data overrun. The network data was longer than the specified
buffer. As much data as fits into the buffer is transferred to it; any
remaining data is lost.

LUN not assigned to NS:.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network is not accessed on the specified LUN.

Invalid buffer argument; the buffer specified to receive network
data (buj) is outside the user task address space.

DECnet-RSX Programmer's Reference Manual

GND$

GND$
(Get Network Data)

2.5.10 GND$ - Get Network Data

Use:

Issue GND$ from either task to get data from that task's network data queue and
store it in a mail buffer. You specify the buffer in the mail and mien parameters.
The status block identifies what type of message the call retrieved. The status
block identifies one of the following unsolicited message types in word 0, byte 1:

Connect request
Interrupt message
User disconnect notice
User abort notice
Network abort notice

NT.CON
NT.INT
NT.DSC
NT.ABT
NT.ABO

You can use the SPA $ macro (Section 2.5. 15) to get a count of data items in the
network data queue. If the queue is empty, GND$ completes with an error
(IE.NDA), even if you use the GND[W] form.

If GND$ retrieves a connect request, it writes the accompanying connect block
information to the mail buffer . You can use a long or short connect block,
depending on the length of the user IDs, passwords, and accounts you expect to
receive. For information about the incoming connect block, see the "Connect
Block" section of this call description.

Formats:

label: GND[W]$ [Iun],[ejn],[status],[ast],

{

< mail,mien > }
< mail,mien , mask > ,NT. TYP
,NT.LON
< "mask> ,NT.LON

DECnet-RSX MACRO-11 Programming Facilities 2-39

GND$

GND[W]$E label,[lun],[e/n], [status], [ast],

{

< mail,mlen > }
< mail,mlen,mask > ,NT. TYP
,NT.LON
< "mask> ,NT.LON

GND[W]$S [lun],[e/n],[status],[ast],

{

< mail,mlen > }
<mail,mlen,mask> ,NT.TYP
,NT.LON .
< "mask> ,NT .LON

Arguments:

*

*

2-40

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical unit number assigned to the network data queue. Use
the LUN that you specified in OPN$.

efn

specifies an optional event flag number to set when GND$ completes.

status

is the address of an optional 2-word status block that contains completion
status information on return from GND$. Refer to Table 2-4 for a summary
of the status block contents after GND$.

ast

is the address of an optional user-written AST routine to execute after GND$
completes.

DECnet-RSX Programmer's Reference Manual

•

GND$

mail,mlen

define the task mail buffer to receive the network data or connect block on
return from GND$. You must specify these arguments unless you use the
NT.TYP and NT.LON flags. Refer to Table 2-5 for a list of the snort connect
block contents and to Table 2-6 for a list of the long connect block contents .

mail

is the octal address of the buffer, which must start on an even byte (word)
boundary.

mien

is the length of the buffer in decimal bytes. The incoming data is written to
the buffer according to the offsets of the connect block type that you speci
fied in the OPN$ call.

You can allocate a mail buffer that is equal to, smaller than, or larger than the
expected connect block and optional data. To receive an entire connect
block, allocate space according to the connect block type that you specified
in the OPN$ macro call:

Short connect block
Long connect block

98. bytes (N.CBL)
178. bytes (M.CBL)

You can add space for optional data:

Optional data
Optional data length field

Up to 16. bytes
2. bytes

Network software writes the retrieved information to the buffer field by
field, according to the offsets of the specified connect block type. If the mail
buffer and the incoming connect block are different sizes, the following
results occur.

DECnet-RSX MACRO-11 Programming Facilities 2-41

GND$

2-42

Mail Buffer Size

You allocate a buffer that is larger
than the incoming connect block.

You allocate a buffer that is smaller
than a full connect block.

You allocate a buffer for receiving a
short connect block and instead
receive a long connect block.

mask

Result

No error occurs.

Connect block data is written field by
field into the buffer until no more fits. A
data overrun (IS.DAO) completion status
results, even if all the received data fits
into the buffer.

If the incoming data fits according to the
short connect block offsets, you get all
the data, but a data overrun (IS.DAO)
completion status results.

If the data in any incoming field exceeds
the size of the analogous receiving field,
the data in that field is lost. The length
value for the field becomes 0, and a data
overrun (IS.DAO) completion status
results.

specifies the data type to select from the network data queue. Normally,
GND$ returns items from the network data queue on a first-in, first-out
basis. However, mask lets you select the first item on the queue that matches
a specific message type and/or LUN. Enter one of the following combina
tions for the mask argument.

Message Type
(Byte 0)

NT.CON (connect request)

NT.INT (intermpt)

NT.DSC (user disconnect)

NT.ABT (user abort)

NT.ABO (network abort)

o (Selects any message
type on the specified LUN).

Logical Unit Number
(Byte 1)

o (Selects the first LUN of message type NT.CON)

OorLUN

OorLUN

OorLUN

OorLUN

LUN

DECnet-RSX Programmer's Reference Manual

Flags:

GND$

For example, to select the first disconnect message (NT .DSC) on LUN 3 from
the network data queue, code the mask argument as 3 * 256. + NT .DSC.

Specifying 0 in byte 1 returns the first message of the type specified in byte
0, regardless of LUN.

NT.TYP

indicates a mask argument requesting a specific message type and/or LUN.
Always use NT. TYP when specifying mask with mail and mien.

If you use NT. TYP in a BUILD type GND$, you must also use it in any subsequent
EXECUTE type GND$.

NT.LON

supports dynamic assignment of mail buffer space. Specifying NT.LON with
GND$ returns information about the first message in the network data queue
without removing the message from the queue or placing it in the mail buffer.
With NT.LON, the status block returns the message type in word 0, byte 1 and the
message length in word 1, byte O. You cannot use mail, mien, and NT.TYP with
NT.LON.

If you use NT.LON in a BUILD type GND$, you must also use it in any subsequent
EXECUTE type GND$.

DECnet-RSX MACRO-11 Programming Facilities 2-43

GND$

Table 2-4: Status Block Contents After GND$

If GND$ completes successfully with NT.LON omitted:

Status Word 0

Byte 0 Byte 1

IS.SUC
or
IS.DAO
or
IE.DAO

IS.SUC
or
IE.DAO

IS.SUC
or
IE.DAO

NT.CON
Connect
request

NT.INT
Interrupt
message

NT.DSC
User
disconnect

NT.ABT
User
abort

NT.ABO
Network
abort

Status Word 1

Byte 0

Number of bytes in
connect block.

Number of bytes
(1-16) in optional
message. IfO, no
message was received.

Number of bytes
(1-16) in optional
message. IfO, no
message was received.

Number of bytes
(1-16) in optional
message. IfO, no
message was received.

Reason for network
abort (See codes in
Appendix A).

If GND$ completes successfully with NT .LON specified:

Status Word 0 Status Word 1

Byte 0 Byte 1 Byte 0

IS.SUC NT.xxx Number of bytes in
or (type of first item in network
IE.DAO first item data queue.

in queue)

Byte 1

Access verification (1) and
privileged code:
VS.NPV = Requesting user is
nonprivileged.
VS.PRV = Requesting user is
privileged.
VZ. NVD = Verification was
not done. (2)
VE.FAI = Verification failed.
(3)

LUN over which the inter
rupt message was received.

LUN over which the user dis
connect message was
received.

~>r.f\
LUN over, which the~
abort message was received.

LUN over which the notice
was received.

Byte 1

°

2-44 DECnet-RSX Programmer's Reference Manual

GND$

Table 2-4 (Cont.): Status Block Contents After GND$

If GND$ completes with an error other than IE.DAO (-13):

Status Word 0

Byte 0 Byte 1

IE. xxx o

Status Word 1

Byte 0

o

Byte 1

o

1. If access verification is enabled, the Network Verification Program at the target node
evaluates access control information in the connect request before passing the request
to the target task's network data queue.

2. The verification task was not installed on the target node, it was set to OFF with the
NCP SET EXECUTOR VERIFICATION command, or the proper access control file was
not available.

3. The account is not in the system account file, the password does not match the one in
the file, or the object is set to inspect.

Error/Completion Codes:

IS.SUC

IS.DAO

IE.DAO

IE.IFC

IE.NDA

IE.NNT

IE.PRI

IE.SPC

The macro completed successfully.

The macro completed successfully, but some returned optional
data was lost.

Data overrun. The network data was longer than the mail buffer.
As much data as will fit into the mail buffer is transferred to it; any
remaining data is lost.

LUN not assigned to NS:.

There is no data in the network data queue to return.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network is not accessed on the specified LUN.

Invalid buffer argument; the buffer assigned to receive network
data (mail) is not word aligned or is outside the user task address
space.

DECnet-RSX MACRO-11 Programming Facilities 2-45

GND$

Connect Block:

2-46

This section includes Table 2-5, which lists the contents of the short connect
block, and Table 2-6, which lists the contents of the long connect block. It also
includes Figure 2-3, an example of an incoming connect short block.

The source descriptor differs according to the source system type. If the source is
an RSX system

• and the connect request does not include proxy information, you receive a
Format 1 source desriptor containing the ASCII source task name.

• and the connect request includes proxy information, you receive a Format 2
source descriptor containing the proxy information.

The access control information that GND$ returns differs according to whether
access verification is set to ON or OFF for the task.

Table 2-5: Contents of Incoming Short Connect Block

Symbolic
Offset

N.CTL *

N.SEGZ*

N.DFM

N.DOT

Length in
Decimal
Bytes

2.

2.

1.

1.

Contents

Temporary logical link address (required by the network;
do not modify)

NSP segment size (used by NSP to send message data to
source)

DESTINA liON DESCRIPTOR
(20.-byte total)

Destination descriptor format type: 0,1

Destination object type: 0-255.

Descriptor Field for Format 0

18. Not used

* These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX Programmer's Reference Manual

GND$

Table 2-5 (Cont.): Contents of Incoming Short Connect Block

Symbolic
Offset

N.SND*

N.SFM

N.SOT

Length in
Decimal
Bytes

6.

1.

1.

Contents

Descriptor Fields for Format 1

N.DDEC*

N.DDE*

2. Destination task name length (equal
to or less than 16. bytes)

16. Destination task name

SOURCE DESCRIPTOR
(26.-byte total)

Source node name (name of node requesting the connec
tion; ASCII, with trailing blanks)

Source descriptor format type (format 0, 1, or 2)

Source object type (object type of task or process request
ing the connection: 1-255. for format 0, or ° for format 1)

Descriptor Field for Format 0

18. Notused

Descriptor Fields for Format 1

N.SDEC*

N.SDE*

2. Source descriptor length (equal to or
less than 16. bytes)

16. Source descriptor (ASCII)

Descriptor Fields for Format 2

N.SGRP* 2. Binary VIC group identifier

N.SMEM* 2. Binary VIC member identifier

N.SDRC* 2. Source descriptor length (equal to or
less than 12. bytes)

N.SDR* 12. Source descriptor

* These symbolic offsets are guaranteed to be even (word aligned).

(continued on next page)

DECnet-RSX MACRO-11 Programming Facilities 2-47

GND$

2-48

Table 2-5 (Cont.): Contents of Incoming Short Connect Block

Symbolic
Offset

Length in
Decimal
Bytes Contents

ACCESS CONTROL INFORMATION
(46.-byte total)

If no verification is performed

N.CIDC* 2. User ID length (equal to or less than
16. bytes)

N.CID* 16. UserID

N.CPSC* 2. Password length (equal to or less than
8. bytes)

N.CPS* 8. Password

N.CACC· 2. Account number length (equal to or
less than 16. bytes)

N.CAC* 16. Account number

If verification is per formed

N.CDEV

N.CUNI

N.CUIC

N.CDDS

2.

1.

Default device name

Default device unit number

1. Not used

2. Log-in UIC from account file

11. Default directory string (0 if no
default string)

29. Not used

N.CBL = 98. (not including optional data)

OPTIONAL DATA
(lB.-byte total)

N.CDAC* 2.

N.CDA* 16.

Length of optional user data (equal to or less than 16.
bytes; 0 if no optional data)

Optional user data sent by source task (0 to 16. bytes)

* These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX Programmer's Reference Manual

GND$

Table 2-6: Contents of Incoming Long Connect Block

Symbolic
Offset

M.CTL*

M.SEGZ*

M.DFM

M.DOT

M.SND*

Length in
Decimal
Bytes

2.

2.

1.

1.

6.

Contents

Temporary logical link address (required by the network;
do not modify)

NSP segment size (used by NSP to send message data to
source)

DESTINATION DESCRIPTOR
(20.-byte total)

Destination descriptor format type: 0,1

Destination object type: 0-255.

Descriptor Field for Format 0

18. Not used

Descriptor Fieldsfor Format 1

M.DDEC*

M.DDE*

2. Destination task name length (equal
to or less than 16. bytes)

16. Destination task name

SOURCE DESCRIPTOR
(26.-byte total)

Source node name (name of node requesting the connec
tion; ASCII, with trailing blanks)

"
,'I' ,:.....!

M.SFM, 1.

M.SOT 1.: .

Source descriptor format type (must be either format 0 or
format 1)

Source object type (object type of task or process request
ing the connection: 1-255. for format 0, or 0 for format 1)

Descriptor Field for Format 0

18. Not used

Descriptor Fields for Format 1

M.SDE*

2. Source descriptor length (equal to or
less than 16. bytes)

16. Source descriptor (ASCII)

* These symbolic offsets are guaranteed to be even (word aligned).

(continued on next page)

DECnet-RSX MACRO- 11 Programming Facilities 2-49

GND$

2-50

Table 2-6 (Cont.): Contents of Incoming Long Connect Block

Symbolic
Offset

Length in
Decimal
Bytes Contents

Descriptor Fields for Format 2

N.SGRP* 2. Binary UIC group

N.SMEM* 2. Binary UIC member

N.SDRC* 2. Source descriptor length (equal to or
less than 12. bytes)

N.SDR* 12. Source descriptor

ACCESS CONTROL INFORMATION
(126.-byte total)

,-!.t:.!!§Yerification is performed

M .CIDC * 2. User ID length (equal to or less than
39. bytes plus 1 byte for an even byte
count)

LM.CID*

M.CPSC*

M.CPS*

M.CACC*

M.CAC*

39. User ID

1. Not used

2. Password length (equal to or less than
39. bytes plus 1 byte for an even byte
count)

39. Password

1. Not used

2. Account number length (equal to or
less than 39. bytes plus 1 byte for an
even byte count)

39. Account number

1. Not used

If verification is performed

M.CDEV

M.CUNI

2.

1.

Default device name

Default device unit number

1. Not used

* These symbolic offsets are guaranteed to be even (word aligned).

DECnet-RSX Programmer's Reference Manual

GND$

Table 2-6: (Cont.) Contents of Incoming Long Connect Block

Symbolic
Offset

Length in
Decimal
Bytes Contents

M.CUIC

M.CDDS

2. Log-in UIC from account file

11. Default directory string (0 if no
default string)

109. Not used

M.CBL = 178. (not including optional data)

OPTIONAL DATA
(18.-byte total)

M.CDAC* 2.

M.CDA* 16.

Length of optional user data (equal to or less than 16.
bytes; 0 if no optional data)

Optional user data sent by source task (0 to 16. bytes)

* These symbolic offsets are guaranteed to be even (word aligned).

Figure 2-3 is an example of an incoming connect block. The figure shows the
connect block that the following macro created in the source task:

CONB$$ TACOMA, 0, 1, <RECVR>,BLOGGS,< I P, lA, IS>

The connect block contains the following values:

Field

Destination descriptor format type

Destination object type

Destination task name length

Destination task name

Source node name

Source descriptor format type

Source object type

Source descriptor length

Value

1

o (named object)

5

RECVR

TACOMA

1

o (named object)

6

DECnet-RSX MACRO-11 Programming Facilities 2-51

GND$

2-52

Field Value

Source descriptor SENDR

User ID length 6

UserID BLOGGS

Password length 3

Password PAS

The account number length and account number are omitted because RSX nodes
do not require account numbers.

Because the call supplied explicit access control information (user 10 and pass
word), the incoming connect block contains that information. If outgoing proxy
is enabled on the source node, the source descriptor contains the proxy informa
tion and the source descriptor type is format 2. If verification is on at the target
node, the password is cleared out before the target task receives the connect
block. All byte counts and values are in decimal notation.

This figure illustrates a short connect block. A long connect block has the same
fields, but the access control information fields are longer, and the symbolic off
set names are prefixed with M. instead of N.

DECnet-RSX Programmer's Reference Manual

Figure 2-3: Incoming Connect Block

o N.CTL (not used by user)
2 N.SEGZ

N.DOT 5 4 N.DFM
DESTINATION 6 N.DDEC

DESCRIPTOR

SOURCE

DESCRIPTOR

'E' 'R' 10 N.DDE
'V' 'C'

'R'

'A' 'T' 30 N.SND
'0' 'C'

'A' 'M'

N.SOT 37 36 N.SFM
40 N.SDEC

'E' 'S' 42 N.SDE
'0' 'N'

'R'

6. 62 N.CIDC
'L' 'B' 64 N.CID
'G' '0'

'S' 'G'

104 N.CPSC
106 N.CPS

116 N.CACC
120 N.CAC

DECnet-RSX MACRO-11 Programming Facilities

LKG-1033-87

GND$

2-53

OPN$

OPN$
(Access the Network)

2.5.11 OPN$ - Access the Network

Use:

Issue OPN$ to establish the task as an active network task and create the task's
network data queue. Issue OPN$ before issuing any other intertask communica
tionmacro.

Formats:

label: OPN[W]$ [lun],[e/n],[status],[ast][, < links[,lrp][,NT.LCB] >]

OPN[W]$E label,[lun],[e/n],[status],[ast][, < links[,lrp][,NT .LCB] >]

OPN[W]$S [lun], [e/n], [status],[ast][, < links[,lrp][,NT .LCB] >]

Arguments:

*

*

2-54

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

assigns a logical unit number to the task's network data queue. You can omit
this argument if you have already assigned the LUN to NS: by defining the
symbol .MBXLU in the user program or in a GBLDEF option at task build
time (Section 1.2.1). Use this LUN in any subsequent GND$, SPAS, GLN$,
RE}$, or CLS$ macro.

e/n

specifies an optional event flag number to set when OPN$ completes.

status

specifies completion status information on return from OPN$. See the defi
nition in Section 2.5.1.

DECnet-RSX Programmer's Reference Manual

Flag:

OPN$

ast

is the address of an optional user-written AST routine to execute after OPN$
completes.

links

specifies the maximum number of simultaneous, active logical links within
the task. When the number of active links equals the links value (255. maxi
mum), the network rejects any incoming connect request. A value of 0 sets
no limit as long as network resources are available. Zero is also the default.

To prevent access to your task, specify a links value of 1 and code the rou
tine that processes the GND$ macro to reject all incoming connect requests.
You can still use CON$ to establish outgoing links.

lrp

specifies the link recovery period. The link recovery period is the number of
minutes that elapses from the time of a physical link failure until the network
aborts the associated logical link. The lrp must be in the range of 0 through
32767(decimal).

When specifying an lrp value, remember that unless your task includes
checkpoint capabilities, it is locked in memory until the link recovery period
elapses if it has outstanding I/O when the link fails. This can cause serious
delays for other system users who need to access the occupied area of mem
ory.

NT.LCB

specifies that the task transmits and receives long connect blocks that sup
port 39.-character user IDs, passwords, and accounts. If a connect request
for your task arrives with a short connect block, network software copies
the information in each field to the corresponding field in the long format
before passing it to your task. The NT .LCB value is 1.

DECnet-RSX MACRO-11 Programming Facilities 2-55

OPN$

Error/Completion Codes:

IS.SUC

IE.IFC

IE.PRI

IE.RSU

2-56

The macro completed successfully.

LUN not assigned to NS:.

The network is being dismounted, or the user task has already
accessed the network.

System resources needed for the network data queue are not
available.

DECnet-RSX Programmer's Reference Manual

REC$

REC$
(Receive Data over a Logical Link)

2.5.12 REC$ - Receive Data over a Logical Link

Use:

Issue REC$ from either task to receive message data over an established logical
link and store it in a specified buffer.

Formats:

label: REC[W]$ lun,[ejn],[status],[ast], < buj,bujlen >

REC[W]$E

REC[W]$S

label, [lun],[ejn],[status],[ast][, < buj,bujlen >]

lun,[ejn],[status],[ast], < buf,bujlen >

Arguments:

*

*

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

specifies the logical link over which to receive data. If you initiated the con
nection, enter the LUN you used in the CONS macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

ejn

specifies an optional event flag number to set when REC$ completes.

status

specifies completion status information on return from REC $. See the defini
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of bytes received.

DECnet-RSX MACRO-11 Programming Facilities 2-57

REC$

*

ast

is the address of an optional user-written AST routine to execute after REC$
completes.

but

is the address of the buffer to contain the received message data.

buflen

is the length of the receive buffer in bytes (8128. maximum).

Error/Completion Codes:

IS.SUC

IE.ABO

IE.DAO

IE.IFC

IE.NLN

IE.NNT

IE.SPC

2-58

The macro completed successfully.

The logical link was disconnected during I/O operations.

Data overrun. More message data was transmitted than
requested. As much data as will fit into the receive buffer is trans
ferred to it; any remaining data is lost.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

Invalid buffer argument; either the data buffer (buf) is outside the
user task address space, or the buffer length (buflen) exceeds
8128. bytes.

DECnet-RSX Programmer's Reference Manual

REJ$

REJ$
(Reject Logical Link Connect Request)

2.5.13 REJ$ - Reject Logical Link Connect Request

Use:

Issue REJ$ from the target task to reject a logical link connect request. When you
issue REJ$, you can send 1 to 16. bytes of user data to the requesting task (see the
out,outlen arguments).

Formats:

label: REJ[W]$ [lun],[e/n],[status],[ast], < mail,[mailen][,out,outlen] >

REJ[W]$E label,[lun], [e/n], [status], [ast], < mail, [mailen][,out,outlen] >

REJ[W]$S [lun],[e/n],[status],[ast], < mail, [mailen][,out,outlen] >

Arguments:

•

•

label

specifies the location of the argument block. See the definition in Section
2.5.1.

fun

identifies the logical unit number of the network data queue. Use the same
LUN you assigned in the OPN$ macro .

e/n

specifies an optional event flag number to set when REJ$ completes .

status

specifies completion status information on return from REJ$. See the defini
tion in Section 2.5. 1.

DECnet-RSX MACRO-11 Programming Facilities 2-59

REJ$

ast

is the address of an optional user-written AST routine to execute after REJ$
completes.

mail

is the address of the connect block sent by the source task and retrieved by
GND$. Specify the same address for this and the GND$ mail argument. Con
nect block information is required to reject the connection.

mailen

is the length of the connect block in decimal bytes. The default value is 98.
bytes (N.CBL), the short connect block length, not including optional data.
For a long connect block, specify 178. bytes (M.CBL), the long connect block
length, not including optional data.

out,outlen

define optional user data to send. See the definition in Section 2.5.1.

Error/Completion Codes:

IS.SUC

IE.ABO

IE.BAD

IE.IFC

IE.NNT

IE.PRI

IE.SPC

2-60

The macro completed successfully.

The task that requested the connection has aborted or requested
a disconnect before the rejection could complete.

Either the temporary link address in the connect block is not
valid, or the optional user data buffer exceeds 16. bytes.

LUN not assigned to NS:.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

The network is not accessed on the specified L UN.

Invalid buffer argument; either the connect block (mail) or the
optional user data buffer (out) is outside the user task address
space, or the connect block is not word aligned.

DECnet-RSX Programmer's Reference Manual

SND$

SND$
(Send Data over a Logical Link)

2.5.14 SND$ - Send Data over a Logical Link

Use:

Issue SND$ from either task to send message data over an established logical link.
This macro completes when the other task has actually received the data.

Formats:

label: SND[W]$ lun,[e/n],[status],[ast], < bu/,bu/len >

SND[W]$E label,[lun],[e/n],[status],[ast][, < bu/,bu/len >]

SND[W]$S lun,[e/n],[status],[ast], < bu/,bu/len >

Arguments:

*

*

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical link over which to send the data. If you initiated the
connection, enter the LUN you used in the CON$ macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

e/n

specifies an optional event flag number to set when SND$ completes.

status

specifies completion status information on return from SND$. See the defini
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of bytes sent.

DECnet-RSX MACRO-11 Programming Facilities 2-61

SND$

ast

is the address of an optional user-written AST routine to execute after SND$
completes.

but

is the address of the buffer containing the data to send.

buflen

is the length in bytes (8128. maximum) of the data to send.

Error/Completion Codes:

IS.SUC

IE.ABO

IE.IFC

IE.NLN

IE.NNT

IE.SPC

2-62

The macro completed successfully.

The logical link was disconnected during I/O operations.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

Invalid buffer argument; either the message data buffer (buf) is
outside the user task address space, or the buffer length (buflen)
exceeds 8128. bytes.

DECnet-RSX Programmer's Reference Manual

SPAS

SPAS
(Specify User AST Routine)

2.5.15 SPAS - Specify User AST Routine

Use:

Issue SPAS from either task to specify a user-written AST routine. The AST rou
tine will execute whenever network data arrives in the network data queue.

Issuing SPAS affects only the data items that subsequently arrive in the queue.
However , SPAS returns a count of all data items in the queue to word 1 of its
status block, including those that preceded the macro.

Formats:

label: SPA[W]S [lun],[e/n),[status],[ast), <addr>

SPA[W]SE label,[lun],[e/n],[status],[ast][, <addr>]

SPA[W]SS [lun),[e/n],[status],[ast], <addr>

Arguments:

•

•

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

identifies the logical unit number of the network data queue. Use the same
LUN you assigned in the OPNS macro .

e/n

specifies an optional event flag number to set when SPAS completes .

status

specifies completion status information on return from SPAS. See the defini
tion in Section 2.5.1, but note this exception:

Word 1: Contains number of items in network data queue.

DECnet-RSX MACRO-11 Programming Facilities 2-63

SPAS

ast

is the address of an optional user-written AST routine to execute after SPAS
completes (see the SPAS programming note that follows).

addr

is the address of a user-written AST routine. This argument is required for
executing an AST routine.

You can change the specified AST routine during task execution by specify
ing a different starting address or eliminate it by zeroing the starting address.
When you change the AST during execution, the AST that executes does not
push extra information onto the stack, as a normal completion AST does.
Therefore, you need not remove anything from the stack.

Error/Completion Codes:

2-64

IS.SUC

IE.IFC

IE.NNT

IE.PRI

The macro completed successfully.

LUN not assigned to NS:.

The issuing task is not a network task; OPNS did not execute
successfully.

The network is not accessed on the specified LUN.

The following example demonstrates how an application can process all net
work data at the AST level by using the SPAS completion AST to simulate the
network data AST.

DECnet-RSX Programmer's Reference Manual

SPAS

MAIN CODE

OPN$S

SPA$S

j+

#CMPAST,<§;AAST> Set up SPAAST as the AST entry
for network data

CMPAST - The entry point for completion of the actual SPA directive

SPAAST - The entry point for each arrival of network data
j-

CMPAST:

SPAAST:

10$:

20$:

.ENABLE LSB

MOV
MOV
MOV

CMPB
BNE
MOV
BEQ
BR

MOV
MOV
GNDW$S
BCS
CMPB
BNE

SOB
MOV
ASTX$S

(SP)+,IOSB
RO,-(SP)
#IOSB,RO

#IS.SUC,(RO)
20$
2(RO) ,RO
20$
10$

RO,-(SP)
#l,RO
"",#GNDSB
20$
#IS.SUC,GNDSB
20$

RO,10$
(SP),RO

. DSABL LSB

Save the SPA$ I/O status block address
Save RO
Get the I/O status address

Was the directive successful?
If NE, no - just exit from AST
Else, copy current number of ASTs queued
If EQ, nothing queued, exit from AST
Else, join common code

Save RO
Set the network data queue count to one
Get the network data item
If CS, directive failed
Was the directive successful
If NE, no - exit from AST

•.. do some processing

Continue until
Restore RO
Exit from AST

DECnet-RSX MACRO-11 Programming Facilities 2-65

XMI$

XMI$
(Send Interrupt Message)

2.5.16 XMI$ - Send Interrupt Message

Use:

Issue XMI$ from either task to send an interrupt message over an established logi
cal link. XMI$ places the message on the target task's network data queue. The
target task must issue GND$ to retrieve the message before you can issue another
XMI$ on the same logical link. Note that XMI$ may complete before the target
task issues a GND$ to retrieve the interrupt message.

Formats:

label: XMI[W]$ lun,[e/n],[status],[ast], < int,intlen >

XMI[W]$E label,[lun],[e/n],[status],[ast][, < int,intlen >]

XMI[W]$S lun,[e/n],[status],[ast], < int,intlen >

Arguments:

2-66

label

specifies the location of the argument block. See the definition in Section
2.5.1.

lun

specifies the logical link over which to send the interrupt message. If you ini
tiated the connection, enter the LUN you used in the CONS macro. If you
accepted the connection, enter the LUN you used in the ACC$ macro.

e/n

specifies an optional event flag number to set when XMI$ completes.

status

specifies completion status information on return from XMI$. See the defini
tion in Section 2.5. 1, but note this exception:

Word 1: Contains number of bytes sent in message.

DECnet-RSX Programmer's Reference Manual

XMI$

ast

is the address of an optional user-written AST routine to execute after XMI$
completes.

int

is the address of the buffer that contains the 1- to 16.-byte interrupt message
to send.

intlen

is the length in decimal bytes of the message to send

Error/Completion Codes:

IS.SUC

IE.ABO

IE.BAD

IE.IFC

IE.NLN

IE.NNT

IE.SPC

IE.WLK

The interrupt message has been transmitted successfully. This
code does not ensure that GND$ retrieved the message.

The logical link was disconnected during I/O operations.

The interrupt message exceeds 16. bytes.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute suc
cessfully.

Invalid buffer argument; the interrupt message buffer (int) is out
side the user task address space.

An interrupt message was transmitted before a previous interrupt
message had been received by the target task.

DECnet-RSX MACRO-11 Programming Facilities 2-67

2.5.17 MACRO-11 Intertask Communication Programming Examples

2-68

The following MACRO-II programs are cooperating programs to run on differ
ent nodes in the network. The transmitting program, SENIO, sends messages to
the receiving program, REC 10.

These programming examples are included in your tape or disk kit.

DECnet-RSX Programmer's Reference Manual

2.5.17.1 Transmit Example

The SEN 10 program transmits an interrupt message and 10 data messages to the
·cooperating REC 10 program .

• TITLE SEN10

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
CorporatiOn.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program prompts a user for the text of a message to transmit to
the remote receiving task RECIO. It sends that message as an interrupt
message and sends 10 data messages with the format "This is message n"
to REClO.

To assemble, use the following command string:

MAC SENlO,SENlO/-SP=IN:[lOO,lO]NETLIB/ML,IN:[200,200]SENlO

To task build, use the following command string:

TKB SENlO,SENlO/-SP=SEN10, IN: [130,lO]NETLIB/LB

Note: The IN: device must be the DECnet distribution device
after the PREGEN (if any) has been performed.

,
i*** *********

. MCALL
• MCALL
.MCALL

Data area

MESN: . ASCII
NUM: .ASCII
NN=.-MESN
PRMPT: • ASCII

.EVEN
IOSTN: .BLKW

OPNW$S,CONW$S,SNDW$S,CONB$$,ALUN$C,QIOW$C
EXIT$S,MRKT$C,WTSE$C,CLEF$C,SETFC,QIOC
DSCW$S,XMIW$S,ASTX$S

/This is message / Message to transmit
/0/ Message number

/MSG:/ Prompt for interrupt

2 Completion status for

message

network
BUFF: .BLKB 16. Interrupt message buffer
IOSTB: .BLKW 2 Completion status for buffer
CNT: .WORD 0 Number of chars in interrupt message

DECnet-RSX MACRO-11 Programming Facilities 2-69

ERRCNT:
10SB:

CONBL:

CODE

START:

OKl:

LOOP:

• WORD
.BLKW

• EVEN
CONB$$

• EVEN
CLR
CLEF$C

MOVB
ALUN$C
ALUN$C
OPNW$S
TSTB
BGT
JMP
CONW$S
TSTB
BLE
QIO$C

TST
BLT
MOV
SNDW$S
TSTB
BLE
INCB
SOB

0
1

TACOMA,O,l,<REClO>

ERRCNT
5

#60,NUM
1,NS
2,NS
#l,#l,#IOSTN
IOSTN
OKI
ERRI
#2,#2,#IOSTN,,<#CONBL>
IOSTN
ERR2

Error count
1/0 status

Connect request block

Initialize error count to zero
Clear event flag used to make sure
Interrupt message accepted prior

to exit
Initialize message num to zero
Assign LUN 1 for network data queue
Assign LUN 2 for logical link
Create the network data queue
Test for errors

; Create logical link to "RECIO"
; Test for errors

IO.RPR,5",IOSTB,TRMAST,<BUFF,16."PRMPT,4> ; Accept
interrupt message from terminal

$DSW
ERR3
#10. , RO
#2,#2,#IOSTN,
IOSTN
ERR4
NUM
RO,LOOP

; (use AST)[16 char max]
; Test for errors

; Set loop counter to 10
,<#MESN,#NN> ; Send message

Test for errors

Update message number
Loop if more to send

WTSE$C 5 Make sure terminal message was
entered before exiting

DSCW$S #2,#2,#IOSTN Disconnect network

EXIT$S Exit

Terminal AST routine
;
TRMAST: MOV

MOV
XMIW$S

TSTB
BLE
SETF$C

ASTX$S

Error handling
,
ERR5: INC
ERR4: INC
ERR3: INC
ERR2: INC

2-70

(SP) +, IOSB
IOSTB+2,CNT
#2,#3,#IOSTN,

IOSTN
ERR5
5

; Pop stack
; Obtain number of characters

,<#BUFF,CNT>; Transmit inter~upt message
(Note use of EF 3 instead of
EF 2 - avoid competition)

Test for errors

Set event flag to indicate that
interrupt message sent

AST exit

- a sample debugging technique

ERRCNT Determine
ERRCNT which
ERRCNT error
ERRCNT occurred

DECnet-RSX Programmer's Reference Manual

ERRl: INC ERRCNT
MOV ERRCNT,Rl Rl contains the error number
MOV $DSW,R2 R2 contains the Directive Status Word
MOV IOSTN,R3 R3 contains the first I/O status word
MOV IOSTN+2,R4 R4 contains the 2nd I/O status word
lOT Abort - dump the registers

.END START

DECnet-RSX MACRO-11 Programming Facilities 2-71

2.5.17.2 Receive Example

,

Each time RECtO receives a message from the cooperating program SENtO, it dis
plays THIS IS MESSAGE n on TI:. This is followed by the actual message, which
arrives as an interrupt message .

• TITLE RECIO

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for tbe use or reliability of its
software on equipment which is not supplied by Digital.

This example receives short messages from the sender task "SNDlO,"
prints the messages on TI:, disconnects, and exits gracefully.

To assemble, use the following command string:

MAC REClO,REClO/-SP=IN:[l30,10]NETLIB/ML,IN:[200,200]REC10

To task build, use the following command string:

TKB RECIO ,REClO/-SP=REClO , IN: [130,lO]NETLIB/LB

Note: The IN: device must be the DECnet distribution device
after the PREGEN (if any) has been performed.

Data

• MCALL
• MCALL
NETDF$

area

OPNW$S , SPAW$S , RECW$S ,GNDW$S,ACCW$S ,CLSW$S,NETDF$
QIOW$S,ALUN$C,CLEF$C,WTSE$C,SETF$C,ASTX$S,EXIT$S

BUFl: .BLKB 25. Buffer for user messages
.EVEN

BUF2: .BLKB N.CBL Buffer for network messages
lOST: .BLKW 2 Completion status for network
IOSTl: .BLKW 2 Compo stat. for Get Net Data
IOST2 : .BLKW 2 Compo stat. for Accept Connect
IOSB: .BLKW 1 I/O status
ERRCNT: .WORD 0 Error count
CNT: .WORD 0 User message char count
CNTB: .BLKB 2 Interrupt message char count
FLAG: .WORD 0 Disconnect flag

.EVEN

2-72 DECnet-RSX Programmer's Reference Manual

; Code
,
START:

LOOP:

CLR
clef$c

ALUN$C
ALUN$C
OPNW$S
TSTB
BLE
SPAW$S
TSTB
BLE
WTSE$C

RECW$S
TSTB
BLE
MOV
QIOW$S
TST
BEQ
CLSW$S
TSTB
BLE
EXIT$S
BR

ERRCNT
10.

1,NS
2,NS
#l,#l,#IOST
lOST
ERR1

Initialize error count to zero
Clear event flag used to make

sure connect has occurred
Assign LUN 1 for network data
Assign LUN 2 for logical link
Create the network data queue
Test for errors

#l,#l,#IOST,#CMPAST,<#NETAST> ; Specify AST handling
lOST Test for errors
ERR2

queue

10. ; Wait to make sure connect occurred

#2,#2,#IOST,,<#BUF1,#25.>; Receive up to 25 chars
lOST ; Test for errors
ERR3
IOST+2,CNT ; Obtain character count
#IO.WLB,#5 r #5",,<#BUFl,CNT,#40>; Type message on terminal
FLAG Has disconnect occurred?
LOOP No, post another receive
#1,#1,#IOST2 Close network
IOST2 Test for errors
ERR5

Program exit
LOOP

Error handling - a sample debugging technique
,
ERR6:
ERR5:
ERR4:
ERR3:
ERR2:
ERRl:

INC
INC
INC
INC
INC
INC
MOV
MOV
MOV
MOV
lOT

ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT,R1
$DSW,R2
IOST,R3
IOST+2,R4

Rl Error number
R2 Directive Status Word
R3 I/O status block (1st word)
R4 I/O status block (2nd word)
Abort - dump registers

AST handling for data in network data queue
,
CMPAST: MOV

MOV
MOV
CMPB
BEQ
JMP

OKA: MOV
BNE
JMP

OKB: BR
NETAST: MOV

MOV
GET: GNDW$S

BCS
CMPB
BNE
CMPB

{SP} +, IOSB
RO,-(SP}
IOSB,RO
IS. SUC , {RO }
aKA
OUT
2 (RO) ,RO
OKB
OUT
GET

Save SPAS I/O status block addr
Save RO
Get I/O status block address
Successful?

Get current network data count

RO,-(SP} ; Save RO
#1,RO ; Set network data count to 1
#1,#1,#IOST1,,<#BUF2,#N.CBL> ; Get network data
OUT Carry bit set - error
#IS.SUC,IOST1 Successful?
OUT
#NT.CON,IOSTl+l Check if connect request

DECnet-RSX MACRO-11 Programming Facilities 2-73

BNE
ACCW$S
TSTB
BLE
SETF$C

BR
OTHER: CMPB

BNE
·MOV
BR

OTHR2 : CMPB
BEQ
JMP

OKC: MOVB
QIOW$S

NEXT: NOP
DEC
BEQ.
JMP

OUT: MOV
ASTX$S

.END

2-74

OTHER
#2,#2,#IOST2,,<#BUF2>
IOST2
ERR4
10.

NEXT
#NT.DSC, IOSTl+l
OTHR2
#l,FLAG
NEXT

NT. I NT, lOST 1 + 1
OKC
ERR6
IOSTl+2,CNTB ,

Accept connection
Test for errors

Set event flag to indicate
connect occurred

Check if disconnect request

Set disconnect flag
Go back to main routine

Check if interrupt message

Not a expected command
Obtain character count

#IO.WLB,#5,#3, ,<#BUF2,CNTB,#40> ; Type interrupt message
; (Note use of EF 3

instead of EF 5)

RO Check if more data
OUT
GET
(SP)+,RO Restore RO

AST exit

START

DECnet-RSX Programmer's Reference Manual

3

FORTRAN, COBOL, and BASIC-PLUS-2
Programming Facilities

DECnet-RSX has three types of network subroutines:

• Intertask communication calls

• Remote file access calls

• FORTRAN task control calls

This chapter lists the calls that perform these subroutines in alphabetical order.
The description for each call includes its use, formats, argument definitions, and
error/completion codes. All references to FORTRAN pertain to both FORTRAN
IV and FORTRAN 77. All references to BASIC pertain to BASIC-PLUS-2. Before
issuing these calls, read Chapter 1.

3.1 Building a DECnet-RSX Task

When a FORTRAN, COBOL, or BASIC task uses any DECnet-RSX facility, that
task must be linked to the library [1,1] NETFOR.OLB. For example, a COBOL task
named FILES can be built under RSX-11M with the following task builder com
mand string:

FILES,FILES=FILES,LB: [1, l]NETFOR/LB, LB: [l,l]COBLIB/LB

/

TASK=FILES

PAR=GEN

ACTFIL=2

II
3-1

You need not assign logical unit numbers (LUNs) for calls to the network (NS:) at
task build time or in your program. The OPNNT[W], CONNT[W] ,and ACCNT[W]
calls assign the LUNs to the network at run time. Assigning a LUN to the network
at task build time or in your program will not have an adverse effect on the execu
tion of the program. Be sure that the LUNs you specify in these three calls are used
only for network activity while assigned to NS:.

3.2 Establishing a Network Task

The first DECnet call you issue must be an open call. To access the network, issue
one of the following open calls:

OPNNT

OPNNTW

Establishes your task as an active network task and creates a
network data queue for it.

Performs the same function as OPNNT, but suspends further
task execution until the call completes.

After opening the task to the network, you can establish a logical link by issuing
calls described in this chapter.

To terminate network operations for a task, issue one of the following closing
calls:

CLSNT

CLSNTW

Terminates a task's network activity, aborts its established
logical links, and frees all its network logical unit numbers.

Performs the same function as CLSNT, but suspends further
task execution until the call completes.

3.3 Examining 1/0 Status Blocks

3-2

All calls in this chapter let you include an argument that specifies the address of a
status block. This address contains completion status information when the call
completes.

The status block address is recommended but optional for intertask communica
tion and task control calls. It is required for remote file access calls.

Status blocks are either 1- or 2-element integer arrays/strings. The BACC, BACCL,
BFMTO, and BFMT1 calls use one-element arrays/strings. In these arrays/strings, a
return of -1 indicates that you supplied valid arguments; ° indicates invalid argu
ments.

DECnet-RSX Programmer's Reference Manual

Other calls use 2-element arrays/strings. In these arrays/strings, the first status
word contains an error/completion code for the call, as follows:

• A positive value indicates that the call executed successfully.

• A negative value indicates that the call did not execute properly.

• A null value (0) indicates the call has not yet completed.

Examine the value of the returned error/completion code to determine why a call
failed. Appendix E gives a complete list of error/completion codes for intertask
calls and task control calls.

The contents of the second status word differ according to the call you issue. Each
call therefore defines the contents of the second status word.

3.4 Using Event Flags

The network file access routines (NF ARs) require the exclusive use of two event
flags. The default event flags are 17 (.TREF) and 18 (.RCEF). You can choose to
override these defaults by issuing the following commands in the task builder
command file:

GBLDEF=.TREF:value
GBLDEF=.RCEF:value

The value variable is a decimal integer from 1 to 64. (33. through 64. are global
flags).

3.5 Specifying Connect Block Options

As Chapter 1 described, a source task builds a connect block before issuing a con
nect request. This outgoing connect block contains information about the con
nect request's target node and task. It can also specify explicit access control
information that gives the source task access to an account on the target node.
Before network software sends the connect block to the target task, it adds infor
mation about the source task or user. If you have an RSX-IIM-PLUS or Micro/
RSX system with outgoing proxy enabled, network software also adds proxy
information (see Section 3.6). At the target node, the target task retrieves the
incoming connect block from the network data queue.

Your task can use either long or short connect blocks. Using long connect blocks
lets your task support user IDs, passwords, and accounts of 39. characters each.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-3

3-4

Using short connect blocks lets your task support user IDs of up to 16. characters,
passwords of up to 8. characters, and accounts of up to 16. characters.

For greatest flexibility, use long connect blocks when writing a new task. How
ever, you can continue to use an existing task that uses short connect blocks with
out modifying the task. If you change an existing task to use long connect blocks,
note the added buffer space requirements. Also note that if the task uses proxy
access, you need not supply values for the access control information fields.

The connect block size that you choose affects the following intertask communi
cation calls:

Call

OPNNT

BACC

BACCL

CONNT

ACCNT
GNDNT
REJ$

Connect Block Option

Include the mbxflg argument to specify a long connect block.

Call BACC to build a short connect block.

Call BACCL to build a long connect block.

Specify the size appropriate to your connect block type in the tgtblk
argument.

Use the mailbufargument to reference the appropriately-sized buffer.

The connect block size also affects the following FORTRAN task control calls:

Call

ABONCW
RUNCW

BACUSR

BACUSL

Connect Block Option

Specify the appropriate length for the passwd argument.

Call BACUSR for a short account and user ID information area.

Call BACUSL for a long account and user ID information area.

When access verification for your task is on, your node's network software
verifies access rights and removes the access control information before passing
an incoming connect block to your task. For information on enabling verification
for a task, refer to the DECnet-RSX Guide to Network Management Utilities.

DECnet-RSX Programmer's Reference Manual

3.5.1 Receiving Connect Block Information

You specify the task's connect block type by including or omitting the mbxflg
(mailbox flag) argument to the OPNNT (access the network) call. If you specify
the mbxflg argument, network software uses long connect blocks when passing
access control information to your task.

If the source and target tasks use the same connect block size, incoming connect
block fields map directly to receiving fields. Communicating tasks need not use
the same connect block size, however. In the GNDNT call, which retrieves the
connect block from the network data queue, you specify a buffer to hold the
retrieved information. The buffer that you allocate mayor may not equal the
incoming connect block, but in writing incoming data to your buffer, network
software always uses the offsets appropriate to the connect block size that your
OPNNT call specified.

You receive all information if the source task sends the same size connect block
that you receive, or if you receive long connect blocks and the source task sends a
short connect block. However, if you receive short connect blocks and the source
task sends a long connect block, you may lose some information. Network soft
ware writes the received information into the appropriate field if the information
fits. Information that does not fit into the receiving field causes a data overrun
error and is lost.

You can choose to allocate a receiving buffer that is smaller or larger than the
expected connect block. For example, you might allocate a smaller buffer to
exclude all but the initial fields, or allocate a larger buffer to receive optional user
data. The GNDNT call description describes what happens when the task receives
access control information that is smaller or larger than expected.

3.6 Using Access Control Information

An outgoing connect request sends the target node information in order to gain
access to the target node. You can specify the access control information and/or
the network software can supply proxy information. Proxy access is available
only with RSX-IIM-PLUS or Micro/RSX.

When you supply explicit access control information for the connect request,
you specify a user 10, password, and, optionally, an account number. These iden
tify the target account on the remote node. You specify the explicit access control
information by calling BACC or BACCL. These calls build the connect block's
access control information area. When the target system receives the connect

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-5

3-6

request, it grants access according to what you specified. For information on
which access control arguments the target system requires, refer to user docu
mentation for that system; DECnet-RSX nodes require the user ID and password.
For more information on explicit access control information, refer to the
DECnet-RSX Network Management Concepts and Procedures manual.

You can supply access control information with intertask communication calls,
and remote file access calls.

• Intertask communication calls. A source task supplies access control
information in the BACC or BACCL call.

• Remote file access calls. A source task supplies access control information
in the ident argument.

You can also define an alias node name that includes explicit access control infor
mation. An alias node name is a user-assigned logical name for a network node.
When a source task user defines an alias node name, the task can omit the access
control information; access control information associated with the alias is used
automatically. The DECnet-RSXNetwork Management Concepts and Proce
dures manual has more information on creating and using alias node names.

Proxy access, in contrast, eliminates the need to send passwords across the net
work. The network managers on both nodes must set up the environment for
using proxy. Once your network manager enables outgoing proxy, your node
automatically sends proxy information with all outgoing connect requests. Proxy
information is the user ID under which the source task is executing. If incoming
proxy is enabled on the target node, the system grants access according to the
proxy information and source node name. For information on how a target sys
tem verifies proxy access, refer to the DECnet-RSX Guide to Network Manage
ment Utilities.

If an incoming connect request contains both types of access control information,
the target system uses the explicit information, and not the proxy information, to
verify access.

DECnet-RSX Programmer's Reference Manual

3.7 Conventions Used in This Chapter

The following notation conventions are used in the call and argument descrip
tions and examples for intertask communication, remote file access, and task con
trol calls in this chapter:

asterisk *

UPPERCASE

lowercase italics

commas, periods,
parentheses ()

numbers

square brackets []

flags arguments relating to arrays/character strings that
you must check for information after the call completes.
For example, the status argument specifies an array/data
item that stores completion status information when the
call completes.

indicates characters to type exactly as shown.

indicate variables for which you specify or the system
supplies the actual values.

must be typed where shown as part of the call format.
Even if you omit an argument, include the comma that
delineates its field unless no other arguments follow.

FORTRAN Example:

Basic call format:

CALL BACC ([status],tgtblk,[usersz,user],
fpasswdsz,passwd] [, accnosz,accnoD

Sample call:

CALL BACC (,tgtblk, ,passwdsz,passwd)

The example omits arguments for status, usersz, user,
accnosz, and accno. Commas delineate the fields for the
first three missing arguments, but are unnecessary for
the two arguments dropped at the end of the call.

represent octal numbers in calls and examples unless fol
lowed by a decimal point.

Example:

A 1- to 72.-element character string

enclose optional data. You must specify any argument
not enclosed by brackets. Do not type the brackets
when you code a call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-7

3-8

In COBOL and BASIC, you can omit an optional argu
ment only if you also omit all trailing arguments. How
ever, you can enter 0 for an optional argument that you
want to omit, but that has trailing arguments you want
to include.

COBOL Example:

Basic call format:

CALL "CONNT" USING lun,[status],tgtblk,
[outsize ,outmessage] ,
[insize, inmessage].

This call includes three categories of optional data:

• status

•

•

is optional but cannot be omitted because it is fol
lowed by a required argument, tgtblk . You can enter
o for status to prevent the return of status informa
tion for the call.

outsize ,outmessage

are paired optional arguments that you can omit
only if you also omit the trailing arguments, insize
and inmessage. To omit outsize and outmessage,
but include the arguments that follow, enter null
arguments (0) for outsize and outmessage.

insize, in message

are paired optional arguments that you can omit
without specifying null values since there are no
trailing arguments.

Sample call:

CALL "CONNT" USING lun ,status, tgtblk, 0,0, insize, inmessage.

This call specifies status and insize,inmessage, while
omitting outsize,outmessage by specifying null values
for these optional arguments.

DECnet-RSX Programmer's Reference Manual

3.8 Intertask Communication

This section contains descriptions and usage guidelines for the intertask commu
nication calls that Table 3-1 lists alphabetically.

Read the preceding material in this chapter before using these calls. If you are
unfamiliar with network intertask communication concepts, also read Chapter 1
carefully.

Table 3-1: Intertask Communication Calls

Call Function

ABTNT Abort a logical link

ACCNT Accept a logical link connect request

BACC Build access control information area (short)

BACCL Build access control information area (long)

BFMTO Build a format 0 destination descriptor

BFMT 1 Build a format 1 destination descriptor

CLSNT End a task's network operations

CONNT Request a logical link connection

DSCNT Disconnect a logical link

GLNNT Get local node information

GNDNT Get data from network data queue

OPNNT Access the network

RECNT Receive data over a logical link

REJNT Reject logical link connect request

SNDNT Send data over a logical link

W AITNT Suspend the calling task

XMINT Send interrupt message over a logical link

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-9

Each call description includes the format for each language. The generic formats
for each language are:

FORTRAN: CALL xxxxx (arguments)

COBOL: CALL "xxxxx" USING arguments.

BASIC: CALL xxxxx BY REF (arguments)

3.8.1 Common Argument Definitions

3-10

This section defines the common arguments for intertask communication calls. A
general group defines arguments common to all languages and three individual
groups define arguments specific to FORTRAN, COBOL, and BASIC-PLUS-2.

GENERAL

• outsize,outmessage

define optional user data to send with certain calls. These are paired
optional arguments; use both or omit both.

outsize

EXCEPTION

You cannot omit outsize,outmessage in the CONNT
call in COBOL and BASIC unless you also omit the
insize,inmessage arguments. To include
insize,inmessage without specifying
outsize,outmessage, enter a null value (0) for both
outsize and outmessage. (See the example under the
discussion of square brackets in Section 3.7.)

specifies the length in bytes/characters of the optional user
data you can send on some operations. It must be an integer
variable or constant.

outmessage specifies the array/string containing the user data to send.
This is a 1- to 16.-element byte array for FORTRAN or a 1- to
16.-element numeric data item/character string for COBOL
or BASIC.

DECnet-RSX Programmer's Reference Manual

FORTRAN

• References to integers imply single-precision integer values.

• status

specifies an array containing completion status information on return from
the call. If specified, this 2-element single-precision integer array contains
the following values when the call completes:

status(1)

status(2)

• tgtblk

returns an error/completion code. Refer to the descriptions
of individual calls for a list of the possible codes.

returns a directive error code if status(1) returns a value of
-40. Otherwise, status(2) contains O.

specifies an array where the BACC or BACCL call builds the explicit access
control information area and the BFMTO or BFMT 1 call builds the destina
tion descriptor. A short connect block requires 72. bytes; a long connect
block requires 152. bytes. The array must start on an even byte (word)
boundary. A CONNT call passes this array to the target task.

COBOL

• For a COBOL task using the DECnet interface, logical unit number 1 is a
reserved number and should never be assigned for a lun.

• status

specifies an elementary numeric data item containing completion status
information on return from the call. If specified, this elementary numeric
data item contains the following values when the call completes:

status(1)

status(2)

returns an error/completion code. Refer to the descriptions
of individual calls for a list of the possible codes.

returns a directive error code if status(1) returns a value of
-40. Otherwise, status(2) contains O.

You cannot omit status if there are trailing arguments, but you can specify 0
for status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-11

3-12

• tgtblk

specifies a numeric data item that specifies the area where the BACC or
BACCL call builds the explicit access control information area and the
BFMTO or BFMT 1 call builds the destination descriptor. A short connect
block requires 72. bytes; a long connect block requires 152. bytes. A CONNT
call passes the explicit access control and destination descriptor information
to the target task.

BASIC-PLUS-2

• status%()

specifies an array containing completion status information on return from
the call. If specified, this 2-element integer array contains the following
values when the call completes:

status % (0)

status%(I)

returns an error/completion code. Refer to the descriptions
of individual calls for a list of the possible codes.

returns a directive error code if status % (0) returns a value of
-40. Otherwise, status % (1) contains O.

You cannot omit status if there are trailing arguments, but you can specify 0
for status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

• tgtblk$

specifies a character string that specifies the area where the BACC or BACCL
call builds the explicit access control information and the BFMTO or BFMT 1
call builds the destination descriptor. A CONNT call passes this string to the
target ta·sk. A short connect block requires 72. bytes; a long connect block
requires 152. bytes. To allocate space for tgtblkS, use the STRING function:

tgtblk$=STRING$(152,O)

DECnet-RSX Programmer's Reference Manual

ABTNT

ABTNT
(Abort Logical Link)

3.8.2 ABTNT - Abort Logical Link

Use:

Call ABTNT from either task to abort a logical link. ABTNT immediately aborts all
pending transmits and receives, disconnects the link, and frees the LUNassigned
to the logical1ink. When you call ABTNT, you can send 1 to 16. bytes/characters
of user data to the task from which you are disconnecting (see the outsize,
outmessage arguments).

Formats:

FORTRAN: CALL ABTNT[W] (lun,[status][,outsize,outmessage])

COBOL: CALL "ABTNT[W]" USING lun,[status][,outsize,outmessage].

BASIC: CALLABTNT[W] BY REF (lun%,[status%()]
[,outsize % ,outmessage$])

Arguments:

lun

identifies the logical link to abort. This value must be an integer variable or
constant. If you initiated the connection, enter the LUN you used in the
CONNT call. If you accepted the connection, enter the LUN you used in the
ACCNT call.

status

specifies completion status information on return from ABTNT. See the defi
nition for your language in Section 3.8.1.

outsize ,outmessage

define optional user data to send. See the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-13

ABTNT

Error/Completion Codes:

1

-2

-9

-13

-40

3-14

The call completed successfully.

No logical link has been established on the specified LUN.

The task is not a network task; OPNNT did not execute successfully.

You are using an invalid buffer; the optional outmessage buffer is out
side the user task address space.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

ACCNT

ACCNT
(Accept Logical Link Connect Request)

3.8.3 ACCNT - Accept Logical Link Connect Request

Use:

Call ACCNT from the target task to establish a logical link with the source task.
When you call ACCNT, you can send 1 to 16. byteslcharacters of user data to the
source task (see the outsize, outmessage arguments).

Formats:

FORTRAN: CALL ACCNT[W](lun,[status],mailbuf,[outsize,outmessageD

COBOL: CALL "ACCNT[W]" USING lun,[status],mai1buf
[, outsize, outmessage]

BASIC: CALL ACCNT[W] BY REF (lun%,[status%()],mailbuj$
[, outsize % ,outmessage$])

Arguments:

*

lun

assigns the logical link number. This value must be an integer variable or
constant. Use this LUN when referring to this logical link in any succeeding
RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

status

specifies completion status information on return from ACCNT. See the defi
nition for your language in Section 3.8.1.

mailbuf

specifies a 1- to n-element array/string that contains the connect block. In
FORTRAN, this array must start on an even byte (word) boundary. For more
information, see Table 3-2 and the description of mailbufunder GNDNT
(Section 3.8.12).

outsize ,outmessage

define optional user data to send. See the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-15

ACCNT

Error/Completion Codes:

1

-1

-3

-5

-8

-9

-13

-40

3-16

The call completed successfully.

System resources needed for the logical link are unavailable.

The task that requested the connection has aborted or requested a dis
connect before the connection could complete.

The temporary link address in the mail buffer is not valid.

A logical link has already been established on the specified LUN.

The task is not a network task; OPNNT did not execute successfully.

You are using an invalid buffer; the mailbufor outmessage buffer is out
side the user task address space, or (for FORTRAN) mailbufis not word
aligned.

A directive error has occurred. Directive error codes are defined in the
RSX-IIMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

BACC

BACC
(Build Access Control Information Area (Short»

3.8.4 BACC - Build Access Control Information Area (Short)

Use:

Call BACC from the source task to build an area for explicit access control infor
mation for the outgoing connect block. BACC supports 16.-character user IDs,
S.-character passwords, and 16.-character accounts.

Explicit access control information arguments define your access rights at the
remote node or process. The target system verifies access control information
according to its system conventions. If the target node is equipped to verify the
information, it does so before passing the CONNT call to the target task. For more
information on access control verification, refer to the DECnet-RSX Network
Management Concepts and Procedures manual.

If you have defined an alias node that includes the explicit access control informa
tion, or if you use proxy access, you need not call BACC.

Formats:

FORTRAN: CALL BACC ([status],tgtblk,[usersz,user],
[passwdsz,passwd][,accnosz,accno])

COBOL: CALL "BACC" USING [status], tgtblk, [usersz, user],
[passwdsz,passwd][,accnosz,accno] .

BASIC: CALL BACC BY REF ([status%],tgtblkS,[usersz%,userS],
[passwdsz% ,passwdS][,accnosz% ,accnoS])

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-17

BACC

Arguments:

*

3-18

status

specifies an integer variable containing completion status information on
return from BACC. On return, the variable is set to -1 if the BACC call com
pleted successfully or to 0 if there was an invalid BACC argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

tgtblk

specifies an array/string in which to build the explicit access control infor
mation area. See the definition for your language in Section 3.8.1.

usersz, user

specify the user ID. These are paired optional arguments; use both or omit
both (FORTRAN) or enter 0 for both (COBOL and BASIC). For information
on omitting arguments in COBOL and BASIC, refer to the discussion of
optional arguments (square brackets) in Section 3.7.

usersz

user

specifies the user ID length in bytes/characters. This field is an
integer variable or constant.

specifies the 1- to 16.-element array/string containing the user
ID.

passwdsz,passwd

specify the password that determines your access at the remote node. These
are paired optional arguments; use both or omit both (FORTRAN) or enter 0
for both (COBOL and BASIC). For information on omitting arguments in
COBOL and BASIC, refer to the discussion of optional arguments (square
brackets) in Section 3.7.

passwdsz

passwd

specifies the password length in bytes/characters. This field is
an integer variable or constant.

specifies a 1- to 8.-element array/string containing the pass
word.

DECnet-RSX Programmer's Reference Manual

BACC

accnosz,accno

specify the account number. These are paired optional arguments; use both
or omit both.

accnosz

accno

specifies the account number length in bytes/characters. Do
not use this argument for RSX target systems. This field is an
integer variable or constant.

specifies a 1- to 16.-element array/string containing the
account number.

Connect Block Offsets:

Length
in Decimal
Bytes/Characters

26.

2.

16.

2.

8.

2.

16.

Destination Descriptor

Built by BFMTO or BFMT 1 call

Access Control

User ID length
(16. bytes/characters or less)

User ID

Password length
(8. bytes/characters or less)

Password

Account number length
(16. bytes/characters or less)

Account number

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-19

BACCL

BACCL
(Bu ild Access Control I nformation Area (Long»

3.8.5 BACCL - Build Access Control Information Area (Long)

Use:

Call BACCL from the source task to build an area for explicit access control infor
mation for the outgoing connect block. BACCL supports 39.-character user IDs,
passwords, and accounts.

The explicit access control information arguments define an account at the
remote node. The target system verifies access control information according to
its system conventions. If the target node is equipped to verify the information, it
does so before passing the CONNT call to the target task.

If you have defined an alias node name that includes the access control informa
tion, or if you use proxy access, you need not call BACCL. For more information
on access control verification, refer to the DECnet-RSX Network Management
Concepts and Procedures manual. For more information on using aliases, refer to
the DECnet-RSX Guide to User Utilities or the DECnet-RSX Network Manage
ment Concepts and Procedures manual. For more information on proxy access,
refer to the DECnet-RSX Guide to Network Management Utilities.

Formats:

FORTRAN: CALL BACCL ([status],tgtblk,[usersz,user],
[passwdsz,passwd] [, accnosz, accno])

COBOL: CALL "BACCL" USING [status],tgtblk,[usersz,user],
[passwdsz,passwd][,accnosz,accno] .

BASIC: CALL BACCL BY REF ([status %],tgtblk$,[usersz%,user$],
[passwdsz% ,passwd$][,accnosz% ,accno$])

3-20 DECnet-RSX Programmer's Reference Manual

BACCL

Arguments:

•

status

specifies an integer variable containing completion status information on
return from BACCL. On return, the variable is set to -1 if the BACCL call
completed successfully or to 0 if there was an invalid BACCL argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments .

tgtblk

specifies an array/string in which to build the explicit access control infor
mation area. See the definition for your language in Section 3.8.1.

usersz, user

specify the user 10. These are paired optional arguments; use both or omit
both (FORTRAN) or enter 0 for both (COBOL and BASIC). For information
on omitting arguments in COBOL and BASIC, refer to the discussion of
optional arguments (square brackets) in Section 3.7.

usersz

user

specifies the user 10 length in bytes/characters. This field is an
integer variable or constant.

specifies the 1- to 39.-element array/string containing the user
10.

passwdsz,passwd

specify the password that determines your access at the remote node. These
are paired optional arguments; use both or omit both (FORTRAN) or enter 0
for both (COBOL and BASIC). For information on omitting arguments in
COBOL and BASIC, refer to the discussion of optional arguments (square
brackets) in Section 3.7.

passwdsz

passwd

specifies the password length in bytes/characters. This field is
an integer variable or constant.

specifies a 1- to 39.-element array/string containing the pass
word.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-21

BACCL

accnosz,accno

specify the account number. These are paired optional arguments; use both
or omit both.

accnosz

accno

specifies the account number length in bytes/characters. Do
not use this argument for RSX target systems. This field is an
integer variable or constant.

specifies a 1- to 39.-element array/string containing the
account number.

Connect Block Offsets:

3-22

Length
in Decimal
Bytes/Characters

26.

2.

39.

2.

39.

2.

39.

Destination Descriptor

Built by BFMTO or BFMT 1 call

Access Control

User ID length
(39. byteslcharacters or less)

UserID

Password length
(39. bytes/characters or less)

Password

Account number length
(39. bytes/characters or less)

Account number

DECnet-RSX Programmer's Reference Manual

BFMTO

BFMTO
(Build a Format 0 Destination Descriptor)

3.8.6 BFMTO - Build a Format 0 Destination Descriptor

Use:

Call BFMTO from the source task to build a format 0 destination descriptor for the
connect block. Use a format 0 descriptor to connect only to a target task that re
quires specification of an object type.

Object types group DECnet programs according to function and are identified
throughout the network by object type codes (see Appendix B). For example, the
TLK server task, LSN, has an object type code 016 (decimal). Any other program
that provides the same function on another DECnet system also has object type
code 016 (decimal), regardless of its name.

Formats:

FORTRAN: CALL BFMTO ([status],tgtblk,ndsz,ndname,objtype)

COBOL: CALL "BFMTO" USING [status],tgtblk,ndsz,ndname,objtype.

BASIC: CALL BFMTO BY REF ([status %],tgtblk$,ndsz%,ndname$,
objtype%)

Arguments:

* status

specifies an integer variable containing completion status information on
return from BFMTO. On return, the variable is set to .TRUE. (for FORTRAN)
or to -1 (for COBOL and BASIC) if the BFMTO call completed successfully. It
is set to .FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was
an invalid BFMTO argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-23

BFMTO

tgtblk

specifies an array/string in which to build the destination descriptor. See the
definition for your language in Section 3.8. 1.

ndsz

specifies the node name length in bytes/characters. This field must be an
integer variable or constant.

ndname

specifies a 1- to 6-element array/string containing the name of the target
node.

objtype

is the target task's object type. The objtyp argument is an integer variable or
constant. The object type for a named object is O. The object type for a num
bered object is in the range 1 to 127. for a DECnet task or 128. to 255. for a
user task. Refer to Appendix B for a list of object type codes.

Privileged users can define their own object types. For more information,
refer to the DECnet-RSX Network Management Concepts and Procedures
manual.

Connect Block Offsets:

3-24

Length
in Decimal
Bytes/Characters

6.

1.

1.

18.

46.

Destination Descriptor

Destination node name with trailing blanks

Descriptor format type (0 for BFMTO)

Destination object type (1 to 255.)

Descriptor Field for Format 0

Not used

Access Control

Built by BACC or BACCL call

DECnet-RSX Programmer's Reference Manual

BFMT1

BFMT1
(Build a Format 1 Destination Descriptor)

3.8.7 BFMT1 - Build a Format 1 Destination Descriptor

Use:

Call BFMT 1 from the source task to build a format 1 destination descriptor for the
outgoing connect block. Use a format 1 descriptor to connect only to a target task
that requires specification of a task name.

Formats:

FORTRAN: CALL BFMTI ([status],tgtblk,ndsz,ndname,
objtype, namesz, name)

COBOL: CALL "BFMT1" USING [status],tgtblk,ndsz,ndname,
objtype,namesz,name.

BASIC: CALL BFMTI BY REF ([status%],tgtblkS,ndsz%,ndnameS,
objtype% ,namesz% ,nameS)

Arguments:

•

•

status

specifies an integer variable containing completion status information on
return from BFMT 1. On return, the variable is set to . TRUE. (for FORTRAN)
or to -1 (for COBOL and BASIC) if the BFMTI call completed successfully. It
is set to .FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was
an invalid BFMTI argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for
status to prevent the return of status information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

tgtblk

specifies an array/string in which to build the destination descriptor. See the
definition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-25

BFMT1
~~ \ ~"""\ W !~")?>,"fII;.{

ndsz
~-,I.\ ~i,. o~

()-~~~~f~

specifies tofte n()de name lcngrl1Tin5ytestcharacters:"This·"ftetd~nmst be an
iR.te.get:.~iab1e.ot:~COllst;al)t .

ndname

specifies the 1- to 6-element array/string that contains the name of the target
node.

objtype

specifies the object type of the target task. For BFMT 1, objtype must be o.

namesz

specifies the length of the program name in bytes/characters. This field must
be an integer variable or constant.

name

specifies a 1- to 6-element array/string containing the name of the target pro
gram.

Connect Block Offsets:

3-26

Length
in Decimal
Bytes/Characters

6.

1.

1.

2.

16.

46.

Destination Descriptor

Destination node name with trailing blanks

Descriptor format type (1 for BFMT1)

Descriptor object type (0 for BFMT 1)

Descriptor Fields for Format 1

Destination program name length
(16. bytes/characters or less)

Destination program name

Access Control

Built by BACC or BACCL call

DECnet-RSX Programmer's Reference Manual

BFMT1

Examples:

The following language-specific examples show the code for a BFMT 1 call,
including the declaration statements.

FORTRAN Example:

INTEGER*2 IOST(2),NDSIZ,OBJTY,PRSIZ
BYTE NDNAM(6),PRGNAM(5)
BYTE CONBLK(120)

DATA NDNAM/'T' ,'A' ,'C' ,'0' ,'M' ,'A'I
DATA PRGNAM/'R','E','C','V','R'I

OBJTY=O
NDSIZ=6
PRSIZ=5

CALL BFMTl (IOST,CONBLK,NDSIZ,NDNAM,OBJTY,PRSIZ,PRGNAM)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-27

BFMT1

COBOL Example:

WORKING-STORAGE SECTION.

01 STORE-STUFF.

03 NODNAM
03 TSKNAM
03 STAT
03 CONBLK
03 NLENG
03 TLENG
03 DUMMY

PIC X(6) VALUE "TACOMA".
PIC X(6) VALUE "RECVR".
PIC X999 USAGE COMPo
PIC X(120).
PIC 9 USAGE COMPo
PIC 9 USAGE COMPo
PIC X (2).

PROCEDURE DIVISION

* BUILD A FORMAT 1 CONNECT BLOCK. *

MOVE 6 TO NLENG.
MOVE 5 TO TLENG.
CALL BFMT1 USING

STAT
CONBLK
NLENG
NODNAM
DUMMY
TLENG
TSKNAM.

BASIC-PLUS-2 Example:

3-28

40 CONBLK$=STRING(120%,0%)

\ NDNAM.LEN%=6%
\ TSKNAM.LEN%=5%
\ NDNAM$="TACOMA"
\ TSKNAM$="RECVR"

\ CALL BFMT1 BY REF (STAT%,CONBLK$,NDNAM.LEN%,
NDNAM$,DUMMY%, TSKNAM. LEN%,
TSKNAM$)

DECnet-RSX Programmer's Reference Manual

CLSNT

CLSNT
(End Task Network Operations)

3.8.8 CLSNT - End Task Network Operations

Use:

Call CLSNT from either task to end that task's network activity, abort all of its log
icallinks, and free all its network LUNs. If the CLSNT call occurs when data
remains in the task's network data queue, network software:

• Reschedules the task if pending connect requests arrived while the task was
active. The task receives these connect requests when it restarts. There is a
limit of one retry.

• Rejects connect requests that arrived while the task was inactive.

• Discards interrupt, user disconnect, user abort, or network abort messages.

Formats:

FORTRAN: CALL CLSNT[W] [(status)]

COBOL: CALL "CLSNT[W]" USING [status].

BASIC: CALL CLSNT[W] BY REF [(status % ())]

Arguments:

* status

specifies completion status information on return from CLSNT. See the defi
nition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-29

CLSNT

Error/Completion Codes:

1

-9

-10

-40

3-30

The call completed successfully.

The task is not a network task; OPNNT did not execute success
fully.

The network is not accessed on this LUN.

A directive error has occurred. Directive error codes are defined in
the RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

CONNT

CONNT
(Request Logical Link Connection)

3.8.9 CONNT - Request Logical Link Connection

Use:

Call CONNT from the source task to request a logical link with the target task.
Before calling CONNT, you must build a connect block. To build the connect
block's access control area, you call BACC or BACCL; to build its destination de
scriptor, you call BFMTO or BFMT 1.

When a remote system receives a connect request, it checks the remote task. If the
task is currently installed and inactive, the system automatically loads and acti
vates it before passing the connect block to the task. After retrieving the connect
request with a GNDNT call, the task either accepts (ACCNT) or rejects (REJNT)
the request. You can send 1 to 16. bytes/characters of user data to and/or receive
1 to 16. bytes/characters of user data from the remote task when it accepts/rejects
your connect request

Formats:

FORTRAN: CALL CONNT[W](lun, [status],tgtblk, [outsize,outmessage],
[insize, inmessage])

COBOL: CALL "CONNT[W]" USING lun,[status],tgtblk,
[outsize, outmessage],
[insize, in message].

BASIC: CALL CONNT[W] BY REF (lun%,[status%()],tgtblkS,

Arguments:

lun

[outsize% ,outmessage$],
[insize% ,inmessage$])

assigns the logical link number. This value must be an integer variable or
constant. Use this LUN when referring to this logical link in any subsequent
RECNT, SNDNT, XMINT, ABTNT, or DSCNT call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-31

CONNT

3-32

status

specifies an array/data item containing completion status information on
return from CONNT. In COBOL and BASIC, you cannot omit status, but you
can specify 0 for status to prevent the return of status information. See the
discussion of square brackets in Section 3.7 for more information on omit
ting optional arguments. If specified, this 2-element integer array/data item
contains the following values when the call completes:

• The first status word - status % (0) (BASIC) or status(l) (FORTRAN,
COBOL) - contains an error/completion code, as shown in the list that
follows.

• The contents of the second status word-status % (1) (BASIC) or
status(2) (FORTRAN, COBOL) - depend on the error/completion code
in the first status word, as shown in the list that follows.

These are the error/completion codes you can receive in the first status word
and the corresponding contents of byte 0 in the second status word. Byte 1 of
the second status word is always O.

Error/Completion Code
First Status Word

Connection accepted

Connection accepted with data
overrun

Connection rejected by user with
data overrun

Connection rejected by DEC net

Connection rejected by user

Directive error

All other cases

tgtblk

Contents of Byte 0
Second Status Word

Received byte count

Received byte count

Received byte count

Reason for rejection (see Appendix A)

Received byte count

Directive error code

o

specifies an array/string containing the explicit access control information
area and destination descriptor. See the definition for your language in Sec
tion 3.8.1.

DECnet-RSX Programmer's Reference Manual

CONNT

outsize ,outmessage

define optional user data to send. See the definition in Section 3.8.1 but note
the exception.

insize, in message

define user data you can receive from the target task. These are paired
optional arguments; use both or omit both.

insize

* inmessage

specifies the length in bytes/characters of the user data to
receive. It must be an integer variable or constant.

specifies the array/string that stores the user data sent by
the target task. This is a 1- to 16.-element byte array for
FORTRAN or a 1- to 16.-element character string for
COBOL or BASIC.

Error/Completion Codes:

1

2

-1

-4

-5

-7

-8

-9

-12

The call completed successfully.

The call completed successfully; the connection was accepted, but
some returned optional data sent to the target task when you
called CONNT was lost.

System resources needed for the logical link are unavailable.

The connection was rejected and some optional data was lost (the
data sent to the target task when you called CONNT).

Either an optional user data buffer exceeds 16. bytes/characters, or
the field length count in the connect block is too large.

The connection was rejected by the network (see the reject reason
codes in Appendix A).

A logical link has already been established on the specified LUN.

The task is not a network task; OPNNT did not execute success
fully.

The connection was rejected by the remote user task.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-33

CONNT

-13

-40

3-34

You are using an invalid buffer; the tgtblk, inmessage, or
outmessage buffer is outside the user task address space or (for
FORTRAN) tgtblk is not word aligned.

A directive error has occurred. Directive error codes are defined in
the RSX-IIMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

DSCNT

DSCNT
(Disconnect a Logical Link)

3.8.10 DSCNT - Disconnect a Logical Link

Use:

Call DSCNT from either task to disconnect the logical link and free the logical unit
number. This call lets all pending transmits complete. While they are completing,
the task continues to receive messages. When the last transmit has completed, the
task aborts all pending receives and disconnects the link. The I/O status block
gives an abort status for each aborted receive.

When you call DSCNT, you can send 1 to 16. bytes/characters of user data to the
target task (see the outsize,outmessage arguments).

Formats:

FORTRAN: CALL DSCNT[W] (lun,[status][,outsize,outmessageD

COBOL: CALL "DSCNT[W]" USING lun,[status][,outsize,outmessagel

BASIC: CALL DSCNT[W] BY REF (lun% , [status % ()],
[outsize % ,outmessage$D

Arguments:

*

lun

specifies the logical link to disconnect. It must be an integer variable or con
stant. If you initiated the connection, enter the LUN you used in the CONNT
call. If you accepted the connection, enter the LUN you used in the ACCNT
call.

status

specifies completion status information on return from DSCNT. See the defi
nition for your language in Section 3.8. 1.

outsize,outmessage

define optional user data to send. See the definition in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-35

DSCNT

Error/Completion Codes:

1

-2

-5

-9

-10

-13

-40

3-36

The call completed successfully.

No logical link has been established on the specified LUN.

The optional user data exceeds 16. bytes/characters.

The task is not a network task; OPNNT did not execute successfully.

The network is not accessed on this LUN.

You are using an invalid buffer; the outmessage buffer is outside the
user task address space.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

GLNNT

GLNNT
(Get Local Node Information)

3.8.11 GLNNT - Get Local Node Information

Use:

Issue GLN$ from either task to place the name and default NSP segment size of the
local node in a specified buffer.

Getting the local node name can be helpful if two tasks on the same node use the
network interface to communicate. Each task can issue G LN $ and use the
returned local node name as the destination in a connect request. You can also use
GLN$ in a task that displays the local node name.

The default NSP segment size tells you how NSP segments data transmitted on a
10gical1ink. By knowing the default NSP segment size, you can adjust the length
of message blocks to transmit for most efficient use of transmit buffers (large data
buffers).

Formats:

FORTRAN: CALL GLNNT[W] ([status],bujlen,buf)

COBOL: CALL "GLNNT[W]" USING [status],bujlen,buf.

BASIC: CALL GLNNT[W] BY REF ([status % ()],bujlen% ,bu.f$)

Arguments:

• status

specifies completion status information on return from GLNNT. See the defi
nition for your language in Section 3.8.1.

bujlen

specifies an array/string containing the received data length. If you specify 6
bytes/characters, only the local node name is returned. If you specify 8.
bytes/characters, both the node name and the default NSP segment size are
returned. This value must be an integer variable or constant.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-37

GLNNT

* buf

specifies the array/string containing the received data. In FORTRAN, the
buffer must start on an even byte (word) boundary. On return from the call,
the data is stored as follows:

Length
in Bytes/
Characters

6

2

Contents/Meaning

Local node name in ASCII (left justified and filled with
spaces if the name is less than 6 bytes/characters)

Default NSP segment size

Error/Completion Codes:

1

-4

-9

-10

-13

-40

3-38

The call completed successfully.

Data overrun. The network data was longer than the specified buffer. As
much data as fits into the buffer is transferred to it; any remaining data is
lost.

The task is not a network task; OPNNT did not execute successfully.

The network is not accessed on this LUN.

Y <\?u are using an invalid buffer; the buffer specified to receive network
data is outside the user task address space, or (for FORTRAN) it is not
word aligned.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

GNDNT

GNDNT
(Get Network Data)

3.8.12 GNDNT - Get Network Data

Use:

Call GNDNT from either task to get data from that task's network data queue and
store it in the specified mail buffer (see mailbuf). On completion, the variable
specified by the type argument contains a code that indicates what type of mes
sage GNDNT retrieved. The code indicates one of the following unsolicited mes
sage types:

Connect request
Interrupt message
User disconnect notice
User abort notice
Network abort notice

type code 1
type code 2
type code 3
type code 4
type code 5

Only one GNDNT request can be outstanding. If you issue a GNDNT while
another GNDNT is outstanding, your request completes with error code -14.

If GNDNT retrieves a connect request, it writes the accompanying connect block
information to the mail buffer. You can use a long or short connect block depend
ing on the length of the user IDs, passwords, and accounts you expect to receive.
For information about the incoming connect block, see the' 'Connect Block" sec
tion of this call description.

Formats:

FORTRAN: CALL GNDNT[W] ([status],type,[mailsz],[mailbuj],
[ltonly],[immed][,typmsk])

COBOL: CALL "GNDNT[W]" USING [status],type,mailsz,mailbuf,
[ltonly], [immedJ[, typmsk].

BASIC: CALL GNDNT[W] BY REF ([status % ()],type% ,mailsz%,
mailbu.f$, [ltonly %], [immed%]
[,typmsk%])

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-39

GNDNT

Arguments:

*

3-40

status

specifies a 2-element integer array/data item that contains completion status
information on return from GNDNT. In COBOL and BASIC, you cannot omit
status, but you can set its value to 0 to prevent the return of status informa
tion. See the discussion of square brackets in Section 3.7 for more informa
tion on omitting optional arguments. If specified, this 2-element integer
array/data item contains the following values when the call completes:

• The first status word - status % (0) (BASIC) or status(l) (FORTRAN,
COBOL) - contains an error/completion code, as shown in Status
TableA.

• The contents of the second status word - status%(l) (BASIC) or
status(2) (FORTRAN, COBOL) - depend on the error/completion code
in the first status word, as shown in Status Table A.

Status Table A shows the error/completion codes you can receive in the first
status word and the corresponding contents of byte 0 in the second status
word. Byte 1 of the second status word is always O.

Status Table A

GNDNT completes
with an error

GNDNT completes
successfully and
the Itonly flag is
-1 (.TRUE.):

GNDNT completes
successfully and
the Itonly flag is 0
(.FALSE.):

First Status Word

-40
-n (other than -40)

+n

+n

Second Status Word

Directive error code
o
The low-order byte contains
the number of bytes/charac
ters in the first network data
item in the queue.

Depends on the data message
type. For each message type,
Status Table B lists the con
tents of the second status
word.

DECnet-RSX Programmer's Reference Manual

GNDNT

Status Table B shows the contents of the second status word for each type of
message successfully retrieved by GNDNT.

Status Table B

Type
Code

1

2

3

Message
Type

Connect
request

Interrupt
message

User
disconnect

4 User

Low-Order Byte

Number of
bytes/characters in
the connect block.

Number of
bytes/characters in
the message. Zero
indicates that no
message was
received.

diseonne~t A'j,,,) t'/,'

5 Network
abort

Reason for network
abort. Refer to
Appendix A for
information on the
codes.

High-Order Byte

Access verification * and
privilege code:
1 = Nonprivileged requesting
user.
2 = Privileged requesting user.
o = No verification done. *
-1 = Verification failed. * * *

LUN on which the notice was
received.

LUN on which the notice was
received.

If access verification is enabled, the Network Verification Program evaluates
the access control information in the connect request before passing the incoming
request to the task's network data queue.

• • The verification task was not installed on the target node, or it was set to OFF
with the NCP SET EXECUTOR VERIFICATION command, or the proper access con
trol file was not available.
• • • Either the account is not in the system account file or the password does not
match the one in the file.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-41

GNDNT

*

3-42

type

specifies an integer variable indicating a data message type code on return
from GNDNT. The code indicates the type of data message GNDNT placed
in the mail buffer. Status Table B lists the codes and tells what message types
they represent.

mailsz

specifies the size of the task's mail buffer in bytes/characters. In FORTRAN,
you can omit this integer variable or constant if you specify ltonly as .TRUE.
In COBOL and BASIC, you can set it to 0 if you specify ltonly as -1. Other
wise, mailszmust be a value greater than O.

The incoming data is written to the buffer according to the offsets appropri
ate to the connect block type that you specified in the OPNNT call.

You can allocate a mail buffer that is equal to, smaller than, or larger than the
expected connect block and optional data. To receive an entire connect
block, allocate space according to the N.CBL or M.CBL length:

Short connect block
Long connect block

98. bytes (N.CBL)
178. bytes (M.CBL)

You can add space for optional data:

Optional data
Optional data leangth field

Up to 16. bytes
2. bytes

Network software writes the retrieved information to the buffer field by
field, according to the offsets of the specified connect block type. If the mail
buffer and the incoming connect block are different sizes, the following
results occur.

Mail Buffer Size

You allocate a buffer that is
large than the incoming
connect block.

You allocate a buffer that is
smaller than a full connect block

Result

No error occurs.

Connect block data is written field by field
into the buffer until no more fits. A data
(IS.DAO) completion status results.

DECnet-RSX Programmer's Reference Manual

Mail Buffer Size

You allocate a buffer for re
ceiving a short connect block
and instead receive a long
connect block.

mailbuf

GNDNT

Result

If the incoming data fits according to the
short connect block offsets, you get all the
data, but a data overrun (IS.DAO) comple
tion status results.

If the data in any incoming field exceeds
the size of the analogous receiving field,
the data in that field is lost. The length
value for the field becomes 0, and a data
overrun (IS.DAO) completion status
results.

specifies a 1- to n-element array/string containing the network data on return
from GNDNT (see Table 3-2). In FORTRAN, this array must start on an even
byte (word) boundary; you can omit it if you specify ltonly as .TRUE. In
COBOL and BASIC, you can set it to 0 if you specify ltonly as -1.

ltonly

specifies dynamic assignment of mail buffer space. When you specify ltonly
as .TRUE. (FORTRAN) or -1 (COBOL and BASIC), the type variable returns
the type code of the first message in the network data queue, and the low
order byte of the second status word returns its length. The message is not
removed from the queue or placed in the mail buffer.

If you specify the typmsk argument, you must specify ltonly as 0 in COBOL
and BASIC; in FORTRAN, you must omit ltonly or specify it as .FALSE. In
COBOL and BASIC, you can omit ltonly only if you omit all trailing argu
ments. For information on omitting arguments in COBOL and BASIC, refer
to the discussion of square brackets in Section 3.7.

immed

specifies GNDNT action based on data in the network data queue.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-43

GNDNT

3-44

Value of immed

.TRUE. (FORTRAN)
or -1 (COBOL and
BASIC)

.FALSE. (FORTRAN)
or 0 (COBOL and
BASIC) or omitted

Data in
Network
Queue?

Yes

No

Yes

No

GNDNT Action

Completes normally

Completes with error code -6
(no data in queue)

Completes normally

Does not complete until there is data
in the queue

You cannot omit immed in COBOL or BASIC unless you also omit all trailing
arguments. For information on omitting arguments in COBOL and BASIC,
refer to the discussion of square brackets in Section 3.7.

typmsk

specifies the data type to select from the network data queue. Normally,
GNDNT returns items from the network data queue on a first-in, first-out
basis. However, typmsk lets you select the first item on the queue that
matches a specific message type and/or LUN. You specify an integer variable
or constant, as follows:

Message Type
(Byte 0)

1 Connect request

2 Interrupt message
3 User disconnect
4 User abort
5 Network abort
o Selects any message type

on the specified LUN

Logical Unit Number
(Byte 1)

o (Selects the first LUN to request a
connection.)

OorLUN
OorLUN
OorLUN
OorLUN
LUN

For example, to select the first interrupt message (type 2) on LUN 3 from the
network data queue, you use a variable for the typmsk argument, declare it
as an integer, and assign it a value. You code the argument as (3 * 256.) + 2.

DECnet-RSX Programmer's Reference Manual

GNDNT

Specifying ° in byte 1 returns the first message of the type specified in byte
0, regardless of the LUN.

With typmsk, you must also include mailsz and mailbuj. In COBOL and
BASIC, you must also specify ltonly as 0. In FORTRAN, you can omit ltonly
or specify it as .FALSE.

Connect Block:

Table 3-2 lists the contents of an incoming connect block. The access control
fields differ according to the connect block size that you specified in the OPNNT
call.

The source descriptor differs according to the source system type. If the source is
an RSX system

• and the source node did not send proxy information, you receive a Format 1
source descriptor containing the ASCII source task name.

• and the source node sent proxy information, you receive a Format 2 source
descriptor containing the proxy information.

Table 3-2: Incoming Connect Block

Length in
Decimal Bytesl
Characters

2.

2.

Contents

Temporary logical link address
(required by the network; do not modify)

NSP segment size
(used by NSP to send message data to source)

1.

18.

DESTINATION DESCRIPTOR
(20.-byte/character total)

Destination descriptor format type
o for BFMTO, or 1 for BFMTl)

Descriptor Field for Format 0

Not used

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

(continued on next page)

3-45

GNDNT

3-46

Table 3-2 (Cont.): Incoming Connect Block

Length in
Decimal Bytes!
Characters Contents

2.

16.

6.

1.

1.

18.

2.

16.

2.

2.

2.

12.

Descriptor Fields for Format 1

Destination program name length
(equal to or less than 16. bytes/characters)

Destination program name

SOURCE DESCRIPTOR
(26.-byte/character total)

Source node name
(name of node requesting the connection; ASCII,
with trailing blanks

Source descriptor format type
(format 0, 1, or 2)

Source object type
(object type of program requesting connection:
1-255 for format 0, or ° for format 1 or 2)

Descriptor Field for Format 0

Not used

Descriptor Fields for Format 1

Source descriptor length
(equal to or less than 16. bytes/characters)

Source descriptor

Descriptor Fields for Format 2

Binary VIC group identifier

Binary VIC member identifier

Source descriptor length
(12. bytes or less)

Source descriptor

DECnet-RSX Programmer's Reference Manual

GNDNT

Table 3-2 (Cont.): Incoming Connect Block

Length in
Decimal Bytesl
Characters Contents

2.

16.or
39. +

1.

2.

B.or
39. +

1.

2.

16.or
39. +

1.

2.

1.

1.

2.

11.

29.

ACCESS CONTROL
(46.-byte/character total)

If no verification performed

Source program user ID length
(equal to or less than 16. bytes/characters for a short connect
block or 40. characters for a long connect block)

Source program user ID, short connect block
Source program user ID, long connect block
Not used

Source program password length
(16. bytes/characters or less for a short connect block or 40. char
acters or less for a long connect block)

Source program password, short connect block
Source program password, long connect block
Not used

Account number length
(16. bytes/characters or less for a short connect block or 40. char
acters or less for a long connect block)

Account number, short connect block
Account number, long connect block
Not used

If verification performed

Default device name for destination program

Default device unit number

Not used

Log-in VIC from account file
used for destination program

Default directory string
(0 if no default string)

Not used

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-47

GNDNT

Table 3-2 (Cont.): Incoming Connect Block

Length in
Decimal Bytes!
Characters Contents

2.

16.

OPTIONAL DATA
(18.-byte!character total)

Length of optional user data
(16. bytes/characters or less; 0 if no optional data)

Optional user data sent by source program
(0 to 16. bytes/characters)

Error/Completion Codes:

1

2

-4

-6

-9

-10

-13

-14

-40

3-48

The call completed successfully.

The call completed successfully, but some returned optional data was
lost.

Data overrun. The network data was longer than the mail buffer. As
much data as fits into the mail buffer is transferred to it; any remaining
data is lost.

There is no data in the network data queue to return.

The task is not a network task; either OPNNT did not execute success
fully, or CLSNT was issued with this GNDNT pending.

The network is not accessed on this L UN.

You are using an invalid buffer; the mail buffer is outside the user task
address space, or (for FORTRAN) it is not word aligned.

A GNDNT is already pending.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

OPNNT

OPNNT
(Access the Network)

3.8.13 OPNNT - Access the Network

Use:

Call OPNNT to establish the task as an active network task and create the task's
network data queue. Call OPNNT before any other network subroutine.

Formats:

FORTRAN: CALL OPNNT[W] ([lun],[status],[mstat],[count],[lrp][,mbxflgD

COBOL: CALL "OPNNT[W]" USING [lun],[status],[mstat],
[count],[lrp][,mbxflg].

BASIC: CALL OPNNT[W] BY REF ([lun%], [status % ()],[mstat%()],
[count], [lrp %][,mbxflg])

Arguments:

•

lun

specifies a logical unit number for the task's network data queue. This value
must be an integer variable or constant. You can omit this argument if you
have already assigned the LUN to NS: by using the GBLDEF option of
.MBXLU at task build time (Section 1.2.1). When you omit lun in COBOL or
BASIC, you must also omit all trailing arguments. For information on omit
ting arguments in COBOL and BASIC, refer to the discussion of square
brackets in Section 3.7 .

status

specifies completion status information on return from OPNNT. See the def
inition for your language in Section 3.8.1.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-49

OPNNT

3-50

mstat

specifies a 3-element integer array (or elementary numeric data item for
COBOL) to contain current status information for the task's network data
queue. When specified (+), the mstat array/data item is updated whenever
data arrives or is retrieved by GNDNT. Do not use this array/data item for
other purposes while the task is active on the network.

Values returned in this array/data item are:

mstat(l)

mstat(2)

mstat(3)

count

Number of items in the network data queue

Data type of the first data item:

1 - Connect request
2 - Interrupt message
3 - User disconnect
4 - User abort
5 - Network abort

Length of first data item

specifies the maximum number of simultaneously active connections the
task accepts. When the number of active logical links equals the count value,
the network rejects any incoming connect request. This integer variable or
constant must not exceed 255 (decimal). A value of 0 (which is also the
default) sets no limit as long as network resources are available.

To prevent access to your task, specify a count value of 1 so that GNDNT
rejects all incoming connect requests. You can still establish outgoing links
by using CONNT.

lrp

specifies the link recovery period. The link recovery period is the number of
minutes that elapses from the time of a physical link failure until the associ
ated logical link is irrecoverable. This integer variable or constant must be in
the range of 0 through 32767 (decimal).

When specifying an lrp value, remember that your task is locked in memory
until the link recovery period has elapsed if the task has outstanding I/O
when the link fails. This can cause serious delays for other system users who
need to access the occupied area of memory.

DECnet-RSX Programmer's Reference Manual

OPNNT

mbxflg

specifies that the task has a mail buffer that supports sending and receiving
long connect blocks. For a task that uses long connect blocks, set the mbxflg
value to an integer variable or constant with the value 1. For a task that uses
short connect blocks, omit the argument.

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the network data queue are not available.

-10 The network is being dismounted, or the user task has already accessed
the network.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-IIMIM-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-51

RECNT

RECNT
(Receive Data over a Logical Link)

3.8.14 RECNT - Receive Data over a Logical Link

Use:

Call RECNT from either task to receive data over an established logical link and
store it in a specified buffer.

Formats:

FORTRAN: CALL RECNT[W] (lun,[status],insize,indata)

COBOL: CALL "RECNT[W]" USING lun,[status],insize,indata.

BASIC: CALL RECNT[W] BY REF (lun% , [status % ()],insize% ,indata$)

Arguments:

*

3-52

lun

specifies the logical unit number for the logical link over which to receive
data. It must be an integer variable or constant. If you initiated the connec
tion, enter the LUN you used in the CONNT call. If you accepted the connec
tion, enter the LUN you used in the ACCNT call.

status

specifies completion status information on return from RECNT. See the defi
nition for your language in Section 3.8.1 but note this addition: If a positive
value or -4 (data overrun) is returned in the first status word, the second
status word contains the number of bytes/characters of data received.

insize

specifies the receive data buffer length in bytes/characters. This integer vari
able or constant can be a maximum of 8128 (decimal).

indata

specifies the array/string containing the received message data.

DECnet-RSX Programmer's Reference Manual

RECNT

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during 110 operations.

-4 Data overrun. More message data was transmitted than requested. As
much data as fits into the receive buffer is transferred to it; any remain
ing data is lost.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; either the indata array/string is outside
the user task address space, or the buffer size (insize) exceeds 8128.
bytes/characters.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-53

REJNT

REJNT
(Reject Logical Link Connect Request)

3.8.15 REJNT - Reject Logical Link Connect Request

Use:

Call REJNT from the target task to reject a logical link connect request. With
REJNT, you can send 1 to 16. bytes/characters of user data to the requesting task
(see the outsize,outmessage arguments).

Formats:

FORTRAN: CALL REJNT[W] ([status],mailbuj[,outsize,outmessage])

COBOL: CALL "REJNT[W]" USING [status],mailbuf,[outsize,outmessage].

BASIC: CALL REJNT[W] BY REF ([status % ()],mailbujl,
[outsize % , outmessageS])

Arguments:

3-54

status

specifies completion status information on return from REJNT. See the defi
nition for your language in Section 3.8.1.

mailbuj

specifies the 1- to n-element array/string containing information necessary
to reject the connect request. In FORTRAN, this array must start on an even
byte (word) boundary. GNDNT refers to this same array/string.

outsize ,outmessage

define optional user data to send. See the definition in Section 3.8.1.

DECnet-RSX Programmer's Reference Manual

REJNT

Error/Completion Codes:

1 The call completed successfully.

-3 The task that requested the connection has aborted or has requested a
disconnect before the connection could complete.

-5 Either the temporary link address in the mail buffer is not valid, or the
optional user data buffer exceeds 16. bytes/characters.

-9 The task is not a network task; OPNNT did not execute successfully.

-10 The network is not accessed on this LUN.

-13 You are using an invalid buffer; the mailbufor outmessage array/string
is outside the user task address space, or (for FORTRAN) the mailbuf
array is not word aligned.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-55

SNDNT
(Send Data over a Logical Link)

3.8.16 SNDNT - Send Data over a Logical Link

Use:

Call SNDNT from either task to send message data over the logical link.

Formats:

FORTRAN: CALL SNDNT[W] (lun,[status],outsize,outdata)

COBOL: CALL "SNDNT[W]" USING lun,[status],outsize,outdata.

BASIC: CALL SNDNT[W] BY REF (lun% , [status % ()],outsize% ,outdata$)

Arguments:

3-56

lun

specifies the logical unit number for the logical link over which to send data.
This value must be an integer variable or constant. If you initiated the con
nection, enter the LUN you used in the CONNT call. If you accepted the con
nection, enter the LUN you used in the ACNNT call.

status

specifies completion status information on return from SNDNT. See the defi
nition for your language in Section 3.8.1 but note this addition: If 1 is
returned in the first status word, the second status word contains the num
ber of bytes/characters of transmitted data.

outsize

specifies the length in bytes/characters of the data to send. This integer vari
able or constant can be a maximum of 8128 (decimal).

outdata

specifies a 1- to n-element array/string containing the message data to send.

DECnet-RSX Programmer's Reference Manual

SNDNT

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during 110 operations.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; either the outdata array/string is out
side the user task address space, or the buffer size (outsize) exceeds
8128. bytes/characters.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-57

WAITNT

WAITNT
(Suspend the Calling Task)

3.8.17 WAITNT - Suspend the Calling Task

Use:

Call WAITNT from any task to suspend that task's operation until completion of a
call specified by one of the associated status blocks.

Formats:

FORTRAN: CALL WAITNT ([index],statusl, ... ,statusn)

COBOL: CALL "WAITNT" USING [index],statusl, ... ,statusn.

BASIC: CALL W AITNT BY REF ([index%] ,status 1 % (), ... ,statusn %(»

Arguments:

*

3-58

index

specifies an integer variable containing the positional number of the status
block associated with the call that has completed.

In COBOL and BASIC, you cannot omit index, but you can specify 0 for
index to prevent the return of index information. See the discussion of
square brackets in Section 3.7 for more information on omitting optional
arguments.

status 1, ... ,statusn

specify one or more status blocks. W AITNT completes when anyone of the
calls associated with a status block in this list completes.

DECnet-RSX Programmer's Reference Manual

XMINT

XMINT
(Send Interrupt Message)

3.8.18 XMINT - Send Interr.upt Message

Use:

Call XMINT from either task to send an interrupt message over an established logi
cal link. This call places the message you send on the target task's network data
queue. The target task must issue a GNDNT call to retrieve the message before
you can issue another XMINT.

Formats:

FORTRAN: CALL XMINT[W] (lun,[status],intsize,intmsg)

COBOL: CALL "XMINT[W]" USING lun,[status],intsize,intmsg.

BASIC: CALL XMINT[W] BY REF (lun%,[status%()],intsize%,intmsg$)

Arguments:

*

lun

specifies the logical unit number for the logical link over which to send the
interrupt message. This value must be an integer variable or constant. If you
initiated the connection, enter the LUN you used in the CONNT call. If you
accepted the connection, enter the LUN you used in the ACCNT call.

status

specifies completion status information on return from XMINT. See the defi
nition for your language in Section 3.8.1.

intsize

specifies the length in bytes/characters of the interrupt message to send. It
must be an integer variable or constant.

intmsg

specifies a 1- to 16.-element array/string containing the interrupt message to
send.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-59

XMINT

Error/Completion Codes:

1

-2

-3

-5

-9

-11

-13

-40

3-60

The call completed successfully.

No logical link has been established on the specified LUN.

The logical link was disconnected during I/O operations.

The interrupt message exceeds 16. bytes/characters.

The task is not a network task; OPNNT did not execute successfully.

An interrupt message was transmitted before a previous interrupt mes
sage had been received by the remote task.

You are using an invalid array/string; the intmsg array/string is outside
the user task address space.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

3.8.19 FORTRAN Intertask Communication Programming Examples

The following two programs are examples of FORTRAN intertask communica
tion. They are cooperating tasks. FTNTRN is a transmit task; FTNREC is a receiver
task.

These programming examples are included in your tape or disk kit.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-61

3.8.19.1 Transmit Example

C
C

The FTNTRN program accesses the network, connects to FTNREC, transmits
inquiries to FTNREC, and processes responses. When FTNTRN completes send
ing inquiries, it disconnects the link, stops accessing the network, and exits.

C Copyright (C) 1983, 1985, 1986, 1987 by
C Digital Equipment Corporation, Maynard, Mass.
C
C
C
C
C
C
C
C
C
C

'C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability
software ~n equipment which is not supplied by Digital.

FTNTRN - Transmit inquiries to FTNREC and process responses

To task build, use the following command string:

FTNTRN,FTNTRN = FTNTRN
LB:[l,l]NETFOR/LB
LB:[I,l]F4POTS/LB
LB:[I,l]RMSLIB/LB
I
UNITS=lO
ACTFIL=4
EXTTSK=lOOO
II

(if RMS is included)

(if RMS is included)

Note: This task uses a long connect block.

of its

INTEGER
INTEGER
BYTE
BYTE

MLTYP,RECSIZ,SNDSIZ,MESNUM,XMITS,NDLEN,TSKLEN
MBXFLG,NETLUN,LNKLUN,IOST(2),MSTAT(3)
ERRMES(2),TSKNAM(6),NDNAM(6),DEFNOO(6),DEFTSK(6)
CONBLK(152),SNDBUF(50),RECBUF(IO)

LOGICAL*l C::'T'lI.'T' TMlvfl<'f"I - , --
C Specify the default node and task names
C

C

DATA
DATA

DEFNOD I' R' , 'E' , 'M' , , N' , '0' , , D' I
DEFTSK I' R' , 'E' , 'C' , 'V' , , E' , , R' I

C Specify flags for long connect block and immediate mode
C

DATA MBXFLG,IMMED II,.TRUE.I
C

3-62 DECnet-RSX Programmer's Reference Manual

C
C

C
C
C

C
C
C
10

20

30

40

50

60

C
C
C
70

C
C
C

C
C
C
80

90

C
C
C

LUNs for the network mailbox and the logical link

DATA NETLUN,LNKLUN /1,2/

Specify transmit count, send buffer size, and receive buffer size

DATA XMITS,SNDSIZ,RECSIZ /20,50,10/

Get the node and task names

TYPE 2S0 !* Ask for node-name
READ(S,260) (NDNAM(NDLEN),NDLEN=1,6) !* Get the name
DO 20 NDLEN=6,1,-1 !* Loop to find length
IF (NDNAM(NDLEN).NE.' ') GOTO 40!* If not a space, get
CONTINUE

of name
task-name

DO 30 1=1,6
NDNAM(I)=DEFNOD(I)
NDLEN=6

!* Default node name 'MASTER'
!* Length of default name

TYPE 270 !* Ask for the task-name
READ(S,260) (TSKNAM(TSKLEN),TSKLEN=1,6) !* Get it
DO SO TSKLEN=6,1,-1 !* TSKLEN is length of task-name
IF (TSKNAM(TSKLEN).NE.' ') GOTO 70 1* If not space, access network
CONTINUE
DO 60 1=1,6
TSKNAM(I)=DEFTSK(I)
TSKLEN=6

1* Default task name 'RECVER'
!* Length of default name

Access network - MBXFLG indicates that we will use a long connect block'

CALL OPNNTW(NETLUN,IOST,MSTAT",MBXFLG)
IF (IOST(l).NE.l)GOTO 140 1* If failure, just exit

Build a Format 1 connect block

CALL BFMTl(STAT,CONBLK,NDLEN,NDNAM"TSKLEN,TSKNAM)
IF (STAT)GOTO 80 1* If success, go on
TYPE 200 1* Else, type out a failure

1* notification
GOTO 130 !* and exit

Connect to the task on the remote node

CALL CONNTW(LNKLUN,IOST,CONBLK)
IF (IOST(l).EQ.l)GOTO 90 1* If success, confirm it
TYPE 240,IOST 1* Else print status block
GOTO 130 1* Deaccess the network

1* and exit
TYPE 220 1* Print connect confirmation

1* to network and exit

Send and receive messages to and from the remote node

DO 120 MESNUM=l,XMITS

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-63

C
C First get any error messages sent from the other side in interrupt
C messages
C

C
C
C
100

C
C
C
110

120
C
C
C

C
C
C
130
140
C
C
C
200
210
220
230
240
250
260
270

IF

CALL
IF

TYPE

(MSTAT(l).EQ.O)GOTO 100 !* If MSTAT(l)=O no messages
!* are there

GNDNTW(IOST,MLTYP,2,ERRMES"IMMED,2) !* Get the message
(IOST(l).NE.l)GOTO 100 !* If we couldn't get the message,

!* just ignore it
2l0,ERRMES(1) !* Print out the message

Send the inquiry

CALL
IF
TYPE

GOTO

SNDNTW(LNKLUN,IOST,SNDSIZ,SNDBUF)
(IOST(l).EQ.l)GOTO 110 !* If success, continue
2l0,MESNUM !* Otherwise, type out an

!~ error message
120 !* and start a new message

Receive the response from the remote node

CALL
IF
TYPE

CONTINUE

RECNTW(LNKLUN,IOST,RECSIZ,RECBUF)
(IOST(l).EQ.l)GOTO 120 !* If success, continue
210,MESNUM !* Otherwise, type out an

!* error message

Disconnect the link

TYPE
CALL

230
DSCNTW(LNKLUN,IOST)

!* Print out disconnect message

Corne here to close the network and exit

CALL
STOP

CLSNTW
'End of program execution'

FORMAT Statements

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(' Error building connect block')
(' Error on inquiry ',13)
(' Link enabled')
(' Link disabled')
(' Connect fail: lOST = ',216)
('$Node-name <REMNOD>: ')
(6Al)
('$Task-name <RECVER>: ')

3-64 DECnet-RSX Programmer's Reference Manual

3.8.19.2 Receive Example

C
C
C

The FTNREC program receives inqUlfles from FTNTRN. It returns errors to
FTNTRN as interrupt messages, which FTNTRN then displays on the terminal.

C Copyright (C) 1983, 1985, 1986, 1987 by
C Digital Equipment Corporation, Maynard, Mass.
C
C
C
C
C
C
C
C
C
C
C
C
C

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

C Digital assumes no responsibility for the use or reliability
C software on equipment which is not supplied by Digital.

of its

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

FTNREC.FTN - Receive inquiries from FTNTRN and send back responses

To task build, use the following command string:

FTNREC,FTNREC = FTNREC
LB:[1,1]F4POTS/LB
LB:[l,l]NETFOR/LB
LB:[l,l]RMSLIB/LB (if RMS is included)
I
UNITS=10
ACTFIL=4
EXTTSK=lOOO
TASK=RECVER
II

(if RMS is included)

Note: This task uses a long connect block.

INTEGER
INTEGER
INTEGER
BYTE

NETLUN,LNKLUN,MLTYP,INDEX,NUMBER,NDMMES
MBXFLG,RECSIZ,SNDSIZ,INTSIZ
MSTAT(3),IOST(2),IOSTl(2},IOST2(2)
RECBUF(50),SNDDAT(10),MLBX(178),INTMES(2)

C Specify LUNs for the network and the logical link
C

DATA NETLUN,LNKLUN 11,21
C
C Specify sizes for the receive buffer, send buffer, and interrupt buffer
C

C
C
C

DATA RECSIZ,SNDSIZ,INTSIZ 150,10,21

Initialize some variables

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

(continued on next page)

3-65

C

NUMMES = 0
MBXFLG = 1

!* Number of messages received
!* Use long connect block

C Access the network - use the long connect block
C

8

10
20

C
C
C

C

CALL OPNNTW(NETLUN,IOST,MSTAT",MBXFLG}
IF (IOST(l) .EQ. l} GOTO 8
TYPE *, 'Cannot access the network, status
GOTO 100

ISTAT

IF (MSTAT(l) .EQ. 0) GOTO 40

CALL GNDNT(rOST1,MLTYP,178,MLBX)
CALL WAITNT(INDEX, IOST1, IOST2)
IF (INDEX .EQ. 2) GOTO 50

We've received network data

IF (I0STl (1) .NE. 1) GOTO 40

IF (MLTYP .GE. 3) GOTO 40

IF (MLTYP .EQ. 2) GOTO 10

!* If nothing in mailbox,
!* just close and exit

!* Issue Get Network Data
1* Wait for a completion

!* If INDEX=2, a receive

! * If

! * If

1* has been completed

!* If GNDNT failed, close
1* network and exit

MLTYP>=3 the link has
!* been broken

MLTYP=2 we've received
1* an interrupt message
!* issue a new GNDNT

C We've received a connect request - issue an accept
C

C
C
C
30

C
C
C
40

C

CALL
IF

ACCNTW(LNKLUN,IOST,MLBX)
(roST(1) .NE. 1) GOTO 10

Issue a receive to pick up data

!* If failure, issue
!* a new GNDNT

CALL RECNT(LNKLUN,IOST2,RECSIZ,RECBUF)
GOTO 10 !* Issue a new receive and

!* wait for a completion

Come here upon receiving a disconnect or abort

CALL
GOTO

CLSNTW
100

1* Close the network
1* and exit

C Come here if we receive an inquiry
C
50 NUY.MES =NUMMES + 1 1* Update the message count

1* If IOST2(1)-1 all's okay IF (rOST2(1) .EQ. l} GOTO 60
C
C If there was an error, return an interrupt message with message number
c

INTMES(l)=NUMMES !* Send the message number
CALL XMINT(LNKLUN,IOST,INTSIZ,INTMES) 1* Issue a new receive
GOTO 70

C

3-66 DECnet-RSX Programmer's Reference Manual

C
C
C
C
C
60
70

Here the user can look at the data received in RECBUF and respond by
placing the requested information into SNDDAT

Send back the data and issue a new receive

CALL SNDNTW(LNKLUN,IOST,SNDSIZ,SNDDAT)
CALL RECNT(LNKLUN,IOST2,RECSIZ,RECBUF)
GOTO 20 !* Wait for a completion

C
C Exit program
C
100 STOP 'End of program execution'

END
!* Halt the program
!* and exit

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-67

3.8.20 COBOL Intertask Communication Programming Examples

3-68

The following two programs are examples of COBOL intertask communication.
They are cooperating tasks. COBTRN is a transmit task; COBREC is a receiver
task.

These programming examples are included in your tape or disk kit.

DECnet-RSX Programmer's Reference Manual

3.8.20.1 Transmit Example

This program sends inquiries to the cooperating COBREC program on a remote
node.

* * Copyright (C) 1983, 1985, 1986, 1987 by
* Digital Equipment Corporation, Maynard, Mass.
*
* * This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license and with the
* inclusion of the above copyright notice. This software or any other
* copies thereof may not be provided or otherwise made available to any
* other person. No title to and ownership of the software is hereby
* transferred.
* * The information in this software is subject to change without notice
* and should not be construed as a commitment by Digital Equipment
* Corporation.
* * Digital assumes no responsibility for the use or reliability of its
* software ~n equipment which is not supplied by Digital.

*
IDENTIFICATION DIVISION.
PROGRAM-ID. COBTRN.

**
* * * This is the transmit program of the DECnet intertask *
* communication example programs for COBOL. *
*
*
*
*
*
*
*
*
*
*
*
*

To task build, use the following command string:

COBTRN,COBTRN=COBTRN,[l,l]NETFOR/LB,C8lLIB/LB,RMSLIB/LB
I
UNITS=lO
ACTFIL=4
EXTTSK=lOOO (if RMS is included)
II

This task illustrates the use of a long connect block.

*
*
*
*
*
*
*
*
*
*
*
*

**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-1l.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA
FILE
FD

01

SELECT DUMMY-FILE ASSIGN TO "COBTRN.DUM".

DIVISION.
SECTION.

DUMMY-FILE
LABEL RECORD STANDARD.
DUMMY-FILE-REC.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-69

02 FILLER PIC X(132).

WORKING-STORAGE SECTION.
01 MSGS.

03 MSGl.
05 FILLER PIC X(32)

PIC -99999.

VALUE " NETWORK OPEN FAILED,
"lOST (1) = "

05 MSGl-STATl
05 FILLER
05 MSGl-STAT2

PIC X{ll) VALUE" IOST(2)
PIC -99999.

03 MSG2.
05 FILLER PIC X(25) VALUE" CONNECT FAIL, IOST(l)

n = n

PIC -99999. 05 MSG2-STATI
05 FILLER
05 MSG2-STAT2

03 MSG3.

PIC X{ll} VALUE" IOST{2}
PIC -99999.

05 FILLER
05 MSG3-ERRI

03 MSG4.

PIC X(20) VALUE" ERROR ON INQUIRY # ".
PIC X(2}.

05 FILLER PIC X(31) VALUE" ERROR ON INQUIRY DURI

05 MSG4-NUMI
03 MSG5.

05 FILLER

PIC 99.

PIC X(34)

05 MSG5-NUMI PIC 99.
01 ARRAYS.

03 lOST.

"NG SEND: ".

VALUE " ERROR ON INQUIRY DURI
"NG RECEIVE: "

05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo
03 MSTAT.

05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo
01 STORE-STUFF.

03 MBXFLG PIC 99 COMP VALUE 1.
03 TEN PIC 99 COMP VALUE 10.
03 OPNLUN PIC 99 COMP VALUE 2.
03 RESULT-REC PIC X(SO).
03 IN-FILE PIC X(6).
03 NODNAM PIC X(6).
03 TSKNAM PIC X(9).
03 FILLER PIC X.
03 STAT PIC S999 USAGE COMPo
03 CONBLK PIC X(72).
03 NLENG PIC 9 USAGE COMPo
03 TLENG PIC 9 USAGE COMPo
03 CONLUN PIC 99 COMP VALUE 3.
03 XMITS PIC 99 COMP VALUE 20.
03 MESNUM PIC 99.
03 MLTYP PIC 9.
03 FILLER PIC 9.
03 MLBXSZ PIC 99 COMP VALUE 2.
03 ERRMES PIC X(2).
03 DUMMY PIC X(2).
03 IMMED PIC S COMP VALUE -1.
03 TYPMSK PIC S99999.

3-70 DECnet-RSX Programmer's Reference Manual

03 FILLER PIC 9.
03 SNDSIZ PIC 99 COMP VALUE 50.
03 SNDBUF PIC X(50) .
03 RECSIZ PIC 99 COMP VALUE 10.
03 RECBUF PIC X(10).

PROCEDURE DIVISION.
AIOO-START.

**
*
*
*
*

Input node name and receiver task name from
terminal.

*
*
*
*

**

DISPLAY "ENTER NODE-NAME <MASTER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO NODNAM.
DISPLAY "ENTER TASK-NAME <RECVER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO TSKNAM.

* *
*
*
*

Access the network. If the access is unsuccessful,
print an error message and exit.

*
*
*

CALL "OPNNTW" USING
OPNLUN
lOST
MSTAT
TEN
o
MBXFLG.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSGI-STATI
MOVE IOSTAT (2) TO MSGI-STAT2
DISPLAY MSGI
GO COOO-END.

*
*
*
*
*

Build a FORMAT 1 connect block. If the call did
not complete successfully, print an error message
and deaccess the network.

*
*
*
*
*

MOVE 6 TO NLENG.
MOVE 6 TO TLENG.
CALL "BFMTl" USING

STAT

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-71

3-72

CONBLK
NLENG
NODNAM
DUMMY
TLENG
TSKNAM

IF STAT NOT = a
ELSE

NEXT SENTENCE

DISPLAY "ERROR BUILDING CONNECT BLOCK"
GO BIOO-CLOSE.

* *
* Connect to the task on the remote node. If the *
* call completes unsuccessfully, print an error message *
* and close the network. Otherwise, print "Link *
* enabled" message. *
* *

CALL "CONNTW" USING
CONLUN
lOST
CONBLK.

I F lOS TAT (l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE IOSTAT(l) TO MSG2-STATI
MOVE IOSTAT(2) TO MSG2-STAT2
MOVE MSG2 TO RESULT-REC
DISPLAY RESULT-REC
GO BIOO-CLOSE.

DISPLAY "LINK ENABLED".

* *
*
*
*
*

Send and receive messages from the remote node.
If there is something on the network data queue
(MSTATS (1) > D), get the message.

*
*
*
*

LOOP.
PERFORM LOOP VARYING MESNUM FROM 1 BY 1 UNTIL MESNUM = XMITS.

IF MSTATS(1) = a

ELSE
NEXT SENTENCE

CALL "GNDNTW" USING
lOST
MLTYP
MLBXSZ
ERRMES
DUMMY

DECnet-RSX Programmer's Reference Manual

IMMED
TYPMSK

IF IOSTAT(l) 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE ERRMES TO MSG3-ERRl
MOVE MSG3 TO RESULT-REC
DISPLAY RESULT-REC.

* * * Send a message to the task on the re~ote node. If *
* unsuccessful, print an error message and start the *
* next transmission. *
* *
~**

CALL "SNDNTW" USING
CONLUN
lOST
SNDSIZ
SNDBUF.

IF IOSTAT(1) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG4-NUMl
MOVE MSG4 TO RESULT-REC
DISPLAY RESULT-REC
GO LOOP.

*
*
*
*
*
*

Receive a message from the remote node. If
unsuccessful, print an error message and start
the next transmission. If successful, simply
start the next transmission.

*
*
*
*
*
*

CALL "RECNTW" USING
CONLUN
lOST
RECSIZ
RECBUF.

IF IOSTAT (l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG5-NUMl
MOVE MSG5 TO RESULT-REC
DISPLAY RESULT-REC.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-73

* * * Deaccess the network. *
* *

BOOO-ENDLOOP.
DISPLAY "LINK DISABLED".
CALL "DSCNTW" USING

CONLUN
lOST.

*
*
*

Close the network and exit.
*
*
*

BIOO-CLOSE.
CALL "CLSNTW".
DISPLAY "END OF EXECUTION".

COOO-END.
STOP RUN.

3-74 DECnet-RSX Programmer's Reference Manual

3.8.20.2 Receive Example

The COBREC program receives inqulfles from COBTRN. It returns errors to
COBTRN as interrupt messages, which COBTRN then displays on the terminal.

* * Copyright (C) 1983, 1985, 1986, 1987 by
* Digital Equipment Corporation, Maynard, Mass.

*
* * This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license and with the
* inclusion of the above copyright notice. This software or any other
* copies thereof may not be provided or otherwise made available to any
* other person. No title to and ownership of the software is hereby
* transferred.
* * The information in this software is subject to change without notice
* and should not be construed as a commitment by Digital Equipment
* Corporation.
* * Digital assumes no responsibility for the use or reliability of its
* software ~n equipment which is not supplied by Digital.
*
IDENTIFICATION DIVISION.
PROGRAM-ID. COBREC.

**
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This is the receive program of the DECnet inter task
communication example programs for COBOL.

To task build, use the following command string:

COBREC,COBREC=COBREC,[1,1]NETFOR/LB,C81LIB/LB,RMSLIB/LB
I
UNITS=lO
ACTFIL=4
EXTTSK=lOOO (if RMS is included)
II

This program illustrates the use of a long connect block.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA
FILE
FD

01

SELECT DUMMY-FILE ASSIGN TO "COBREC.DUM".

DIVISION.
SECTION.

DUMMY-FILE
LABEL RECORD STANDARD.
DUMMY-FILE-REC.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-75

3-76

02 FILLER PIC X(l32).

WORKING-STORAGE SECTION.
01 ARRAYS.

03 lOST.
05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo

03 MSTAT.
05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo

03 IOSTI.
05 IOSTATI OCCURS 2 TIMES PIC S9999 USAGE COMPo

03 IOST2.
05 IOSTAT2 OCCURS 2 TIMES PIC S9999 USAGE COMPo

01 STORE-STUFF.
03 OPNLUN PIC 99 COMP VALUE 2.
03 MBXFLG PIC 99 COMP VALUE 1.
03 MLTYP PIC 9 USAGE COMPo
03 MLSIZ PIC 99 COMP VALUE 98.
03 MLBOX PIC X(98) •
03 INDX PIC 99 USAGE COMPo
03 ACCr..UN PIC 99 COMP VALUE 3.
03 RECSIZ PIC 99 COMP VALUE 50.
03 RECBUF PIC X(50) •
03 NUMMES PIC 99 COMP VALUE O.
03 INTSIZ PIC 9 COMP VALUE 6.
03 INTMES PIC X(6) .
03 SNDSIZ PIC 99 COMP VALUE 10.
03 SNDDAT PIC X(10) •

PROCEDURE DIVISION.

* *
*
*
*

Access the network. If the call completes
unsuccessfully, exit.

*
*
*

AlOO-START.
CALL "OPNNTW" USING

OPNLUN
lOST
MSTAT
o
o
MBXFLG.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
GO GlOO-END.

IF MSTATS (1) = 0 GO ClOO-CLOSNET.

*
*
*
*

Check to see if there is anything on the task's
data queue.

1(

*
*
*

DECnet-RSX Programmer's Reference Manual

B100-NETDAT.
CALL "GNDNT" USING

IOSTl
MLTYP
MLSIZ
MLBOX.

~~*********

*
*
*
*
*
*
*
*
*
*

Wait for completion of a GNDNT or RECNT call. If a
RECNT call completes (INDEX = 2), process a receive.
If a GNDNT call completes unsuccessfully, close the
network and exit. If the type of data message in
the mailbox is not a connect request or an interrupt
message, close the network and exit. If an interrupt
message is in the mailbox (MLTYP = 2), simply issue
a new GNDNT.

*
*
*
*
*
*
*
*
*
*

BllO-WAIT.
CALL "WAITNT" USING

INDX
IOSTl
IOST2.

IF INDX = 2 GO DlOO-INQREC. .
IF IOSTATl (1) NOT = 1 GO ClOO-CLOSNET.
IF MLTYP NOT < 3 GO C100-CLOSNET.
IF MLTYP = 2 GO BlOO-NETDAT.

*
*
*
*
*

A connect request is in the mailbox. Accept the
request to establish a logical link. If the call
completes unsuccessfully, issue a new GNDNT.

*
*
*
*
*

CALL "ACCNTW" USING
ACCLUN
lOST
MLBOX.

IF IOSTAT (1) NOT = 1 GO BlOO-NETDAT.

*
*
*
*

Pick up the data from the transmitting task. Issue
a new GNDNT and wait for completion.

*
*
*
*

CALL "RECNT" USING
ACCLUN

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-77

IOST2
RECSIZ
RECBUF.

GO BlOO-NETDAT.

* *
*
*
*

A disconnect or abort was received. Deaccess the
network and exit.

*
*
*

ClOO-CLOSNET.
CALL "CLSNTW".
GO GlOO-END.

* * * An inquiry was received. Increment the message *
* couot. If the call completed unsuccessfully, send *
* an interrupt message containing the message number *
* in which the error occurred. *
* *

DlOO-INQREC.
ADD 1 TO NUMMES.
IF IOSTAT2 (1) = 1 GO ElOO-SEND.
MOVE NUMMES TO INTMES.
CALL "XMINT" USING

ACCLUN
lOST
INTSIZ
INTMES.

GO FIOO-REC.

* *
*
*

Send data to the task. *
*

ElOO-SEND.
CALL "SNDNTW" USING

ACCLUN
lOST
SNDSIZ
SNDDAT.

*
*
*

Issue a new RECNT and wait for completion.
*
*
*

3-78 DECnet-RSX Programmer's Reference Manual

FIOO-REC.
CALL "RECNT" USING

ACCLUN
IOST2
RECSIZ
RECBUF.

GO BIIO-WAIT.
GIOO-END.

DISPLAY "COBREC -- END OF EXECUTION".
STOP RUN.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-79

3.8.21 BASIC-PLUS-2 Intertask Communication Programming Examples

3-80

The following two programs are examples ofBASIC-PLUS-2 intertask communi
cation. They are cooperating tasks. BASTRN is a transmit task; BASREC is a
receiver task.

These examples are included in your tape or disk kit.

DECnet-RSX Programmer's Reference Manual

3.8.21.1 Transmit Example

10

\
\
\
\

20

\

The following program, BASTRN, accesses the network, connects to BASREC,
transmits inquiries to BASREC, and processes responses from BASREC. When the
program completes sending inquiries, it disconnects the link, stops accessing the
network, and exits.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

!! !
!! !
!! !
!! !
!! !
!! !
!! !
!! !
I! !

BASTRN.B2S - Transmit inquiries to BASREC and
process responses

To task build, edit the task build command file
and the ODL file created by the build.

>Add the line
ACTFIL=4

to the task build command file.

>Append
-NETLIB

to the USER: line of the ODL file.

>Add the line
NETLIB: .FCTR LB:[l,l]NETFOR/LB

to the ODL file.

I!! Define array constants!!!
DIM IOST%(1%),MSTAT%(2%)
ERRMES$=STRING$(2%,0%)
CONBLK$=STRING$(72%,0%)
RECBUF$=STRING$(lO%,O%)
SNDBUF$=STRING$(50%,0%)

!Define array elements
!Define max string length
!STRING$(LENGTH,ASCII VALUE)

INPUT "Node-name <MASTER>";NDNAM$ \ IF NDNAM$="" THEN
NDNAM$="MASTER" ELSE IF LEN(NDNAM$»6% THEN
PRINT "Node-name too long, please re-enter"
PRINT \ GOTO 20

!!! &
! !! &
! !! &
!!! &
!!! &

!! &
!! &
! I &

&
&
&
&
&

.! &
!! &
! !. &
!!! &
! !! &

&
&
&
&
&

&
&
&

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-81

30

\

40

\
\
\

\

\

\
\

50

\

\

INPUT "Receive task-name <RECVER>";TSKNAM$ \ IF TSKNAM$=""
THEN TSKNAM$="RECVER" ELSE IF LEN(TSKNAM$»6% THEN
PRINT "Task-name too long, please re-enter"

&
&
&

PRINT \ GOTO 30

I!! Define constants I!!
IMMED%=-l%
OPNLUN%=l%
CONLUN%=2%
XMITS%=20%

SNDSIZ%=50%

RECSIZ%=10%

NDNAM.LEN%=LEN(NDNAM$)
TSKNAM.LEN%=LEN(TSKNAM$)

!!!·Access the network I!!

&
!Set IMMED% to true for GNDNTW &
!Network OPNNT LUN &
!CONNT LUN for the logical link &
!The number of inquiries &
! to send to the remote node &
!The size of the messages to &
! send to the remote node &
!The size of the messages to &
! receive &
!Length of the node-name &
!Length of the task-name

CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%(»
&
&
&
&
&
&

IF IOST%(O%)=l% THEN 60 !If successful, build the
! connect block

ELSE PRINT "Network OPEN failed, IOST=";IOST%(O%);IOST%(I%)
GOTO 160 !Open failed. Print the status

! block and exit

60 ! !! Bui ld a Format 1 connect block !!! &
CALL BFMTI BY REF(STAT%,CONBLK$,NDNAM.LEN%,NDNAM$ &

,DUMMY%,TSKNAM.LEN%,TSKNAM$) &
\ IF STAT% THEN 70 ELSE !If success go on &

PRINT "Error building connect block" &
!Else type out an error message &

\ GOTO 150 ! and exit

70

\

\

80

90

100

\

3-82

I!! Connect to the task on the remote node I!!
CALL CONNTW BY REF(CONLUN%,IOST%(),CONBLK$)
IF IOST%(O%)=l% THEN 80 !If success, tell it
ELSE PRINT "Connect Fail: IOST=";IOST%(O%);",";IOST%(l%)

!Else print status block
GOTO 150 !Else print status block and

PRINT "Link enabled" !Print connect confirmation
to network

I!! Send and receive messages to and from the remote node!!!
FOR MESNUM%=l% TO XMITS%

!!l First get any error messages sent from the other
!!l side via interrupt messaqes !l!

&
&
&
&
&

exit

&

&

! ! !&
&

IF MSTAT%(O%)=O% THEN 110 !If MSTAT%(O%)=O% no
are there

messages &

ELSE CALL GNDNTW BY REF(IOST%(),MLTYP%,2%,ERRMES$
,DUMMY%,IMMED%,2%) !Get the message

IF IOST%(O%)<>l% THEN 110 !If we couldn't get message

&
&
&
&

DECnet-RSX Programmer's Reference Manual

110

\

\

120

\

130

140

\

150

160
\

just ignore it &

NEXT

ELSE PRINT "Error on inquiry #";ASCII(LEFT(ERRMES$,I%»
!Print out the message

I!! Send the inquiry!!!
CALL SNDNTW BY REF(CONLUN%,IOST%(),SNDSIZ%,SNDBUF$)
IF IOST%(O%)=l% THEN 120!If success continue
ELSE PRINT "Error on inquiry during send: ";MESNUM%

GOTO 130
!Otherwise type out an error
!message and start a new message

I!! Receive the response from the remote node!!!
CALL RECNTW BY REF(CONLUN%,IOST%(),RECSIZ%,RECBUF$)
IF IOST%(O%)=l% THEN 130!If success continue

r

ELSE PRINT "Error on inquiry during receive: ";MESNUM%
!Otherwise type out an
! error message

MESNUM% !End of loop

I!! Disconnect the link I!!
PRINT "Link disabled" !Print out disconnect message
CALL DSCNTW BY REF(CONLUN%,IOST%(»

I!! Come here to deaccess the network and exit I!!
CALL CLSNTW

PRINT
END

"End of execution"

&
&
&
&

&
&
&
&
&

&
&

&

&

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-83

3.8.21.2 Receive Example

BASREC receives inquiries from BASTRN. It returns any errors to BASTRN as
interrupt messages, which BASTRN displays on the terminal.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software On equipment which is not supplied by Digital.

10 ! ! ! !! ! &
!!! BASREC.B2S - Receive inquiries from BASTRN and !! ! &
!!! send back responses !! ! &
!! ! !! ! &
!!! To task build, edit the task build command file !! ! &
I!! and the.ODL file created by the build. !! ! &
!! ! !! ! &
! ! ! >Add the line !! ! &
!!! ACTFIL=4 !! ! &
!!! to the task build command file. !! ! &
!! ! !! ! &
I!! >Append !! ! &
!!! -NETLIB !! ! &
!!! to the USER: line of the ODL file. !! ! &
!! ! !! ! &
!!! >Add the line !! ! &
!!! NETLIB: .FCTR LB:[l,l]NETFOR/LB !! ! &
!!! to the ODL file. !! ! &

I!! Initialize constants I!! &
DIM MSTAT%(2%),IOST%(i%),IOSTl%(l%),IOST2%(l%) &

\ INTMES$=STRING$(2%,O%) !Define max length of strings &
\ MLBX$=STRING$(98%,O%) !STRING$(LENGTH,ASCII VALUE) &
\ RECBUF$=STRING$(50%,O%)
\ SNDDAT$=STRING$(lO%,O%)

20

\
\

\

3-84

I!! More constants II!
OPNLUN%=l%
ACCLUN%=2%
RECSIZ%=50%

INTSIZ%=2%

&

&
!Network OPNNT LUN &
!Accnt LUN for logical link &
!Size of data buffer to be &

received &
!Size of interrupt data buffer &

to send &

DECnet-RSX Programmer's Reference Manual

\
\
\

30

\

40

50

\

60

70

\

80

\

90

\

100

\

110

\
\

120

NUMMES%=O%
INDEX=O%
SNDSIZ%=10%

I!! Access network !!!

Number of messages received
Receive completion flag
Number of bytes to send back

CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%(»
IF IOST%(O%)<>l% THEN 140 !If failure just exit
ELSE IF MSTAT%(O%)=O% THEN 90!If nothing on mailbox

! just close and exit

CALL GNDNT BY REF(IOSTl%(),MLTYP%,98%,MLBX$)
!Issue Get Network Data

CALL WAITNT BY REF(INDEX%,IOSTl%(),IOST2%(»
!Wait for a completion

IF INDEX%=2% THEN 100 !If INDEX%=2% then a receive
has been completed

!!!,Network data has been received I!!
IF IOSTl%(O%)<>l% THEN 90 !If GNDNT failed, just

! close and exit
ELSE IF MLTYP%>=3% THEN 90 !If MLTYP%>=3% then link has

! been broken
ELSE IF MLTYP%=2% THEN 40 !If MLTYP%=2% we've received

an interrupt message, Just
issue a GNDNT

I!! We've received a connect request - issue an accept!!!
CALL ACCNTW BY REF(ACCLUN%,IOST%(),MLBX$)
IF IOST%(O%)<>l% THEN 40 !If failure issue a new GNDNT

I!! Issue a receive to pick up data!!!
CALL RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
GOTO 40 !Issue a new GNDNT and

wait for the completion

I!! We come here upon receiving a disconnect or abort!!!
CALL CLSNTW !Deaccess the network
GOTO 140 and exi t

I!! We come here if we receive an inquiry!!!
NUMMES%=NUMMES%+l% !Increment the message count
IF IOST2%(0%)=1% THEN 120 !If IOST2%(0%)=1 all's okay

I!! If there was an error, send back an interrupt message!!!
I!! with message number !!!
INTMES$=CHR$(NUMMES%)+CHR$(O%) !Send the message number
CALL XMINT BY REF(ACCLUN%,IOST%(),INTSIZ%,INTMES$)
GOTO 130 !Go issue a new receive

I!! Here the user can look at the data received in RECBUF$!!
I!! and respond by replacing the requested information !!
! !! into SNDDAT$! !
I!! Send back the data and issue a RECNT !!
CALL SNDNTW BY REF(ACCLUN%,IOST%(),SNDSIZ%,SNDDAT$)

&
&

&
&
&
&

&

&
&
&

&
&
&
&
&
&
&

&
&

&
&
&

&
&

&
&

&
&
&
&
&

&
&
&
&

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-85

130
\

140

\

3-86

CALL
GOTO

RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
50 !Wait for a completion

I!! Exit program I!!
PRINT "End of program execution"
END

&

&
&

DECnet-RSX Programmer's Reference Manual

3.9 Remote File Access

This section contains descriptions and usage guidelines specific to the remote file
access calls listed alphabetically in Table 3-3.

Table 3-3: Remote File Access Calls

Can Function

ACONFW Set record and file access options

A TTNFW Set extended attributes

CLSNFW Close a file

DELNFW Delete a file

EXENFW Execute a file

GETNFW Read a single record

OP ANFW Open and append a sequential file

OPMNFW Open and modify a sequential file

OPRNFW Open and read a sequential file

OPUNFW Open and update a sequential file

OPWNFW Create, open, and write a sequential file

PRGNFW Discard an open file

PUTNFW Write a record to a file

RENNFW Rename a file

SPLNFW Open, write, and print a file

SUBNFW Open, write, and execute a file

These calls are implemented by subroutines. The network open call, OPNNT[W],
and the network close call, CLSNT[W], are also used in remote file access opera
tions. You must always issue OPNNT[W] first because OPNNT[W] lets your task
access the network. Issue CLSNT[W] last to close your task's access to the net
work.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-87

3.9.1 Opening Files

The following nine subroutines open files:

ACONFW

ATTNFW

OPRNFW

OPANFW

OPMNFW

OPUNFW

OPWNFW

SPLNFW

SUBNFW

Specifies record and file access options before performing a spe
cific file operation.

Specifies extended attributes before performing OPWNFW,
SPLNFW, SUBNFW, OPRNFW, OPANFW, and RENNFW calls.

Opens an existing file for reading, beginning with the first record.

Opens an existing file and appends records to the end of the file.

Opens an existing file for record modification.

Opens an existing file for record update.

Creates and opens a file, then writes records to it, beginning with
the first record position.

Performs the same function as OPWNFW and then prints the file.

Performs the same function as OPWNFW and then executes the
file.

Each open subroutine creates a DECnet logical link to the node where the file
resides and then creates and opens the file. You must use the same LUN to open,
write, and close the file. This LUN must not be in use.

Issue an ATTNFW or ACONFW call immediately before OPRNFW, OPANFW, and
RENNFW calls to specify additional attributes to be returned after the open opera
tion completes.

3.9.2 Performing File Operations

The following subroutines perform file operations:

EXENFW Executes a remote file.

DELNFW Deletes a remote file.

RENNFW Renames a remote file.

3-88 DECnet-RSX Programmer's Reference Manual

3.9.3 Performing Record Operations

The following subroutines perform record operations:

GETNFW Reads a record from a remote file.

PUTNFW Writes a record to a remote file.

3.9.4 Closing Files and Completing Calls

When you complete a file access operation, use CLSNFW to close the file. To
clean up errors before closing the file, use PRGNFW for your close operation.
Both CLSNFW and PRGNFW disconnect the logical link and free the logical unit
number for use. If you do not perform a close operation before attempting a
CLSNT[W] to stop accessing the network, or if a network abort occurs while the
file is open, the network closes the file. However, all data may not have been
transferred successfully.

Remote file access calls are synchronous and do not return to the user until an
operation completes.

3.9.5 Setting Task Build Parameters

DECnet-RSX uses network file access routines (NFARs) as the local node interface
to access remote files for user applications. At task build time you can override
defaults to tailor these NFARs for a particular application. You can set the follow
ing task build parameters:

• Event flags .TREF and .RCEF. (The defaults are 17 and 18, respectively.)

• Buffering level. (The default is 2.)

• Maximum record size. (The default is 256. bytes.)

• Buffer space allocation. (There is no default.)

3.9.5.1 Setting Event Flags

The network file access routines (NF ARs) require the exclusive use of two event
flags. The default event flags are 17(.TREF) and 18(.RCEF). To override these
defaults, issue the following commands in the task builder command file:

GBLDEF=.TREF:value

GBLDEF=.RCEF:value

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-89

The value variable specifies an event flag and must be in the form of an octal inte
ger from 1 to 200 (octal). Event flags 33. through 64. are global flags.

3.9.5.2 Setting Buffering Level

The NFARs can be configured for multibuffering to improve throughput. This
requires more internal buffering space than the default buffering level of 2. To
override this default, issue the following command in the task builder command
file:

GBLDEF=$NFNMB : buffering-level

The buffering-level variable specifies an integer from 1 to 4. For an RSX or lAS
remote system, use the buffering level that the remote system uses. Ask the sys
tem manager for the information.

3.9.5.3 Setting Maximum Record Size

The internal buffers used by the NF ARs must be large enough to hold the largest
data record in the remote file. The default maximum record size is 256 bytes. To
override this default, include the following command in the task builder com
mandfile:

GBLDEF=$NFRSZ : record-size

The record-size variable specifies an octal value. For an RSX or lAS remote sys
tem, use the record size that the remote system uses.

In calculating the maximum record size, note that certain file types require extra
bytes, as follows:

• ASCII files require 2 extra bytes for carriage return and line feed characters
that are appended to each ASCII record.

• Sequenced variable length records require 2 extra bytes for the sequence
number included with each record.

• ASCII files with sequenced variable length records require 4 extra bytes.

3-90 DECnet-RSX Programmer's Reference Manual

3.9.5.4 Setting Buffer Space Allocation

The NFARs allocate buffer space from the file storage region used by the File Con
trol System (FCS-ll). This space is allocated in the P-section $$FSRI. Your task
must include the module NFAFSR from the NET FOR object library. Be sure to
enter the following line in the task build command as an input file:

[l,l]NETFOR/LB:NFAFSR

Use the following formula to calculate the required buffer space for performing
remote file access:

«($NFRSZ + 14.)*($NFNMB + 1» + 64.)* (max-rem-files) + (space. * < max-loc-files»

where

space

max-rem-files

max-loc-files

is the space overhead per local file.

is the maximum number of remote files that can be open con
currently.

is the maximum number of local files that can be open con
currently.

The space variable for local file overhead value is 512. if your language uses FeS-
11. If your language uses a different file system, refer to its documentation for the
exact value.

At task build time, use the value that you calculated with the formula to extend
the file storage region. Include the following command in the task builder com
mand file, entering the value in octal bytes:

EXTSCT=$$FSR1:value

3.9.5.5 Using the Task Build Procedure

A task must link to NETFOR.OLB to use the DECnet-RSX remote file access capa
bilities. Edit the ODL file that the compiler created. The following example shows
a task using the CMD and ODL files. This task uses the defaults for the buffer size
($NFRSZ), the number of buffers ($NFNMB), and only one link. The underlined
items indicate the required edits for the task builder to include remote file access
capabilities in the task. Boldface items are required for network access.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-91

3-92

FORTRAN Example:

FILES.CMD {.B SY:FILES,SY:FILES/-SP=SY:FILES.LB:[1,1]F4pOTS
LB:[l,l]NETFOR/LB,NETFOR/LB:NFAFSR

I
EXTSCT=$$FSR1:2700
II

You enter:

MCR>

COBOL Example:

FILES.CMD
-SY:FILES,SY:FILES/-SP=SY:FILES/MP
EXTSCT=$$FSR1:2700
II

FILES.ODL

jMERGED ODL ~ILE CREATED ON 26-FEB-82 AT 16:54:32
jCOBOL STANDARD ODL FILE GENERATED ON 26-FEB-82 16:46:29
jCOBOBJ=FILES.OBJ
jCOBMAIN
LIBR1:
CBOBJ$:
CBOTS$:
OBJRT$:

You enter:

MCR>

. FCTR

. FCTR

. FCTR

. FCTR

. ROOT

. END

LB:[l,l]NETFOR/L8-NETFOR/LB:NFAFSR
SY:[200,200]FILES
LB:[l,l]COBLIB/LB
CBOBJ$-CBOTS$-LIBRl
OBJRT$

BASIC-PLUS-2 Example:

FILES.CMD
SY:FILES/CP/FP,FILES/-SP=SY:FILES/MP
UNITS = 14
ASG = TI:13
ASG = SY:5:6:7:8:9:10:11:12
EXTSCT = $$FSR1:2700
II

FILES.ODL

USER:
.ROOT BASIC2-RMSROT-USER,RMSALL
. FCTR SY:FILES-NETLIB

LIBR: . FCTR LB:[1,1]BP20TS/LB
NETLIB: . FCTR LB:[l,l]NETFOR/LB-NETFOR/LB:NFAFSR

/P LB: [1,1]BP2IC1
/P LB: [l,l]RMSllX

. END

You enter:

MCR>

DECnet-RSX Programmer's Reference Manual

3.9.6 Using ASCII Zero (ASCIZ) Strings

Some of the network file access subroutines require that you provide one or more
arguments in the CALL statement as ASCIZ strings. An ASCIZ string is a string of
ASCII characters terminated by a binary (0).

You can create an array/numeric data item, store the string in the array/numeric
data item, and then set the last element to zero (0).

FORTRAN Example:

DIMENSION IFILE (12)
DATA IFILE/'DK','O:','[l',',4',']C',
'N', 'TR', 'OL',' .A', 'LG',' ;2' /
IFILE(12)=0

You then specify the array name in the CALL statement:

CALL OPRNFW (lun,status,node" IFILE)

COBOL Example:

01 NULL1 PIC 9 COMP VALUE O.

01 NULLS REDEFINES NULL1.

03 NULL OCCURS 2 TIMES PIC X(l).

01 IFILE PIC X(23) VALUE "DKO:[200,200,]NAME.CBL;1"

STRING IFILE
NULL (1)

INTO IDENT.

You then specify the string in the CALL statement:

CALL "OPRNFW" USING lun,status,node,tdent.

BASIC-PLUS-~_Example:

IFILE$="DKO:[200,200]NAME.B2S;1"+CHAR$(0%)CHAR$(O%)

You then specify the array name in the CALL statement:

CALL OPRNFW BY REF (lun%,status%() ,node $, tdent$, i/ile$)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-93

3.9.7 Common Argument Definitions for Remote File Access Calls

3-94

This section defines the common arguments for remote file access calls. The gen
eral group defines arguments common to all languages, and three individual
groups define arguments specific to FORTRAN, COBOL, and BASIC-PLUS-2.

GENERAL

• lun

is an integer variable or constant that specifies the logical unit number of the
logical link created for a specific file access operation.

• node

specifies the name of the target node. It is a 1- to 7-element array/string that
ends with a binary 0 and contains a 1- to 6-character ASCIZ string.

• ident

contains three successive ASCIZ strings: the user ID, password, and account
number necessary to access remote node files. It is a 1- to 72.-e1ement ASCIZ
array.

Enter a null value (0) for each item not required by the remote node or each
item previously entered. For example, you may have already entered the
required information in an alias node name block.

• ifile

is a byte array/string containing a variable length ASCIZ string that contains
the file specification for a file access operation. Be sure to use the remote
node's file specification syntax.

FORTRAN

• References to integers imply single-precision integer values.

• status

specifies an array that contains completion status information on return
from the call. This 2-element single-precision integer array contains the fol
lowing values when the call completes:

status(l) returns a completion code. A positive 1 indicates success;
a negative integer indicates an error. Appendix C lists and
describes the error codes.

DECnet-RSX Programmer's Reference Manual

status(2)

COBOL

depends on the contents of the first status word. Refer to
AppendixC.

• For DECnet COBOL, the logical unit number 1 is a reserved number and
should never be assigned for the tun argument.

• status

specifies an elementary numeric data item that contains completion status
information on return from the call. This elementary numeric data item con
tains the following values when the call completes:

status(l)

status(2)

BASIC-PLUS-2

• status%()

returns a completion code. A positive 1 indicates success;
a negative integer indicates an error. Appendix C lists and
describes the error codes.

depends on the content of the first status word. Refer to
AppendixC.

specifies an array that contains completion status information on return
from the call. This 2-element integer array contains the following values
when the call completes:

status % (0)

sta tus % (1)

returns a completion code. A positive 1 indicates success;
a negative integer indicates an error. Appendix C lists and
describes the error codes.

depends on the contents of the first status word. Refer to
AppendixC.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-95

ACONFW

ACONFW
(Set Access Options)

3.9.8 ACONFW - Set Access Options

Use:

Call ACONFW before a specific file operation to specify record and file access
options to apply to that file operation. These options remain in effect until the file
is closed.

Formats:

FORTRAN: CALL ACONFW (lun,status, [fac], [shr), [foP])

COBOL: CALL "ACONFW" USING lun,status,[fac),[shr),[fop].

BASIC: CALL ACONFW BY REF (lun% ,status % (), [fac%],[shr%], [fop % ()])

Arguments:

*

3-96

lun

specifies the logical unit number of the logical link assigned to the file opera
tion for which to set options.

status

specifies completion status on return from ACONFW. See the definitions for
your language in Section 3.9.7. Refer to Appendix C for error code descrip
tions.

fac

specifies the operations to allow during file access. Use this argument only
for open and create operations. Thefac value overrides the type of access
that the OPxNFW call specifies. Valid values are:

1
2
4
10
20

Put access
Get access (default)
Delete record access
Update record access
Truncate file access

OECnet-RSX Programmer's Reference Manual

*

ACONFW

40 Block I/O
41 Block I/O write
42 Block I/O read

shr

specifies the file sharing to be allowed by the remote system. Use this argu
ment only for open and create operations. The actual functioning depends
on the remote system's capabilities. Valid values are:

1 Put access
2 Get access (default)
4 Delete record access
10 Update record access
100 No access to others

foP

specifies a 3-word array for file-processing options that open, create, and
close operations will use. To specify afop value for close operations, first
open the file, and then make the ACONFW call, because the open call over
writes the current value. Valid values are:

First word:

400
1000
4000
10000

Create contiguous file
Supersede existing file
Create temporary file
Create temporary file and mark for delete

Second word:

40
100
400
1000
20000

Maximize version number on create
Spool on close
Execute on close
Delete on close
Truncate on close

Completion of open/create operations returns:

First word:

40 File is a directory (system dependent)
100 File is locked
400 File is contiguous

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-97

ATTNFW

ATTNFW
(Set Extended Attributes)

3.9.9 ATTNFW - Set Extended Attributes

Use:

Call ATTNFW to specify extended attributes to use with a create, open, or close
file operation. You call A TTNFW immediately before the operation; the attri
butes are returned on completion of the operation.

Call A TTNFW with the following operations:

Operation Calls What ATTNFW Does

Create OPWNFW Specifies additional attributes in creating the
SPLNFW file.
SUBNFW

Open OPRNFW Specifies additional attributes to be returned
OPANFW when opening the file.
RENNFW

Close CLSNFW Specifies a change-attributes-on-close
sequence.

Formats:

FORTRAN: CALL A TTNFW (lun,status, [namesize], [name],[atb],
[protblk],[owner],[dateblkD

COBOL: CALL "ATTNFW" USING lun,status,[namesize],[name],[atb],
[protblk], [owner], [dateblk].

BASIC: CALL ATTNFW BY REF (lun% ,status%(), [namesize %],[nameS],
[atb%()],[protblk%()],
[ownerS], [dateblk% ()])

3-98 DECnet-RSX Programmer's Reference Manual

ATTNFW

Arguments:

*

*

*

lun

specifies the logical unit number of the logical link for the file operation.

status

specifies completion information on return from A TTNFW. See the defini
tion for your language in Section 3.9.7. Refer to Appendix C for error code
descriptions.

namesize

specifies the maximum length of the array/string that can be returned to the
resultant file specification. Use this single-word argument for open and cre
ate operations.

name

specifies the array/string containing the resultant file name. This argument
can be used for all operations. The returned file name is an ASCIZ string.

atb

specifies a Files-II user file attributes block. When specifying create opera
tions, the user program is responsible for setting valid values because the
NFARs do not check these values.

NOTE

If atb is specified, the icbar(2), icbar(3), and len
arguments are ignored when used with open or
create calls. Use the fields NFORG, NFRAT,
and NF$MRS, instead.

When specifying create and open operations, atb returns a IO.-word block
in the following format.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-99

ATTNFW

*

3-100

RECORD ATTR. I FILE ORG./REC FMT

LONGEST RECORD LENGTH

HIGHEST VBN ALLOCATED (high word)

- -
(low word)

END-OF-FILE VBN (high word)

~ -
(low word)

FIRST FREE BYTE

FIXED CTR SIZE I BUCKET SIZE

MAXIMUM RECORD SIZE

DEFAUL T EXTEND QUANTITY

LKG-1036-87

For further information on the values of these fields, see the RSX-llMIM
PLUS or MicrolRSX 110 Operations Reference Manual.

protblk

specifies an array containing file protection information to be used as input
for create and close operations, and returns information from create and
open operations. The following format describes a 5-word array.

DECnet-RSX Programmer's Reference Manual

•

FILE OWNER STRING SIZE

SYSTEM PROTECTION MASK

OWNER PROTECTION MASK

GROUP PROTECTION MASK

WORLD PROTECTION MASK

LKG-1037-87

If the file owner size is 0, the owner string is not returned.

The format of the protection masks is as follows:

Bit 0 = Deny read access
Bit 1 = Deny write access
Bit 2 = Deny execute access
Bit 3 = Deny delete access
Bit 4 = Deny append access
Bit 5 = Deny directory list access
Bit 6 = Deny update access
Bit 7 = Deny change protection access
Bit 8 = Deny extend access

If a word is set to -1, that protection is not sent.

owner

ATTNFW

specifies an ASCIZ string/array identifying the file owner to use as input for
create operations and for output from create and open operations. The first
word of the protblk array must specify the maximum size of this string/
array.

dateblk

specifies a 19-word array whose fields contain the file's revision number,
creation and revision date and time, and/or expiration date. The date block
menu specifies the fields in the block that create and close operations can get

FORTRAN, COBOL, and BASIC-PLUS~2 Programming Facilities 3-101

ATTNFW

3-102

values from, and create and open operations can return values to. Date block
menu values are as follows:

Bit 0 = Revision number
Bit I = Revision date and time
Bit 2 = Creation date and time
Bit 3 = Expiration date

The date block fields contain Files-II time stamps. The time stamps are in
ASCII and have the format ddmmmyyhhmmss, where mmm, the month
abbreviation, is in uppercase letters. Leading zeros are included. This is the
format of the date block.

DECnet-RSX Programmer's Reference Manual

ATTNFW

DATE BLOCK MENU

REVISION NUMBER

~ -
REVISION DATE

'-- -

-

~
I

~ REVISION TIME -

-

~ I
i-- -

CREATION DATE

- -

~ -
CREATION TIME

~ -

~ EXPIRATION DATE -

-
(not used) I

LKG-1038-87

For further information on the format of dates in a block, see the
RSX-llM/M-PLUS or Micro/RSX I/O Operations Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-103

CLSNFW

CLSNFW
(Close a File)

3.9.10 CLSNFW - Close a File

Use:

Call CLSNFW to close a remote file. CLSNFW forces completion of all pending file
operations, ensures that the file directory information is valid, and optionally
modifies the attributes that the changeattr argument specifies. The logical unit
number is freed when the CLSNFW call completes.

Note that some systems do not let you change attributes on close.

Formats:

FORTRAN: CALL CLSNFW (lun,status,[changeattrD

COBOL: CALL "CLSNFW" USING lun,status,[changeattr].

BASIC: CALL CLSNFW BY REF (lun%,status%(),[changeattr% D

Arguments:

*

3-104

lun

specifies the logical unit number of the logical link to close. See the defini
tion in Section 3.9.7. Use the same LUN that the previous open call specified.

status

specifies completion status information on return from CLSNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

changeattr

specifies attributes to change when this file closes. A previous ATTNFW call
must specify these attributes either at open time or just before this call. Valid
values are:

2
4

Change protection
Change dates and times

DECnet-RSX Programmer's Reference Manual

DELNFW

DELNFW
(Delete a File)

3.9.11 DELNFW - Delete a File

Use:

Call D ELNFW to delete a remote file.

Formats:

FORTRAN: CALL DELNFW (lun,status,node,ident,i/ile)

COBOL: CALL "DELNFW" USING lun,status,node,ident,ifile.

BASIC: CALL DELNFW BY REF(lun% ,status % (),node$,ident$,i/ile$)

Arguments:

*

lun

specifies the logical unit number of the logical link to delete. See the defini
tion in Section 3.9.7.

status

specifies completion status information on return from DELNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

node

specifies the name of the node for the file to delete. See the definition in Sec
tion 3.9.7.

ident

is an array/string containing explicit access control information. See the defi
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
deleted. See the definition in Section 3.9.7.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-105

EXENFW

EXENFW
(Execute a Fi Ie)

3.9.12 EXENFW - Execute a File

Use:

Call EXENFW to submit an existing remote file to the batch or command file pro
cessor. The remote file is not deleted after this call completes.

Formats:

FORTRAN: CALL EXENFW (lun,status,node , ident,ijile)

COBOL: CALL "EXENFW" USING lun,status,node,ident,ijile.

BASIC: CALL EXENFW BY REF (lun%,status%(),nodeS,ident$,ifileS)

Arguments:

*

3-106

lun

specifies the logical unit number of the logical link to execute. See the defini
tion in Section 3.9.7.

status

specifies completion status information on return from EXENFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

node

specifies the name of the node for the file to execute. See the definition in
Section 3.9.7.

ident

is an array/string containing explicit access control information. See the defi
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
executed. See the definition in Section 3.9.7.

DECnet-RSX Programmer's Reference Manual

GETNFW

GETNFW
(Read a Single Record)

3.9.13 GETNFW - Read a Single Record

Use:

Call GETNFW to read a record from a file. The FORTRAN inarray or the COBOL
or BASIC instring argument specifies the array/string in which to store the
record. Each successive GETNFW call reads the record into the same array/string,
overlaying any previous record. The previous record is no longer available in the
user record storage area.

The optional rae argument specifies the record access mode. If you omit this
argument, the default access mode is sequential file transfer by records. The
records are read sequentially from the first record in the file.

If you include a rae argument specifying random access, you must include the
keyptr argument to specify the record to read.

If an error occurs while a file is being read, the logical link is maintained. You
must call CLSNFW to close the file.

Formats:

FORTRAN: CALL GETNFW (lun,status,inbytes,inarray,
[seqno],[rae],[keyptr],[rop])

COBOL: CALL "GETNFW" USING lun,status,inehars,
instring,[seqno],[rae],[keyptr],[rop].

BASIC: CALL GETNFW BY REF (lun% ,status % (),inehars% ,instring$,
[seqno%],[rae%],[keyptr%()],[rop%()])

Arguments:

lun

specifies the logical unit number of the logical link created for reading your
records. See the definition in Section 3.9.7. Use the same L UN you assigned
in the OPRNFW, OPMNFW, or OPUNFW call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-107

GETNFW

*

*

3-108

status

specifies completion status information on return from GETNFW. The sec
ond word contains the byte count length of the record returned. See the def
inition for your language in Section 3.9.7. Refer to Table C-l in Appendix C
for a complete code list.

in bytes/ inehars

specifies the length in bytes/characters of inarraylinstring. It is an integer
variable or constant. The actual length of the record read is returned in the
second status word.

inarraylinstring

specifies the array/string that contains the record to read from the file. If the
record size is larger than the integer you specified in inbytes/inehars, the
balance of the record is lost.

seqno

specifies the sequence number for the record to read from the file. You must
specify this integer variable for sequenced variable length records. If the
record type is not sequenced variable length (or in RMS terms, variable with
fixed control, VFC) the seqno argument is ignored. Be sure to specify the
record type in the iehar argument of an open call.

rae

specifies the mode to use in accessing the file. If you omit the rae value, the
default access mode is sequential file transfer by records. Sequential file
transfer modes (3 and 5) cause any rae value in a subsequent G ETNFW or
PUTNFW calls to be ignored until you close the file. If the file is open for
record access, the rae argument can be one of the following:

o Sequential by record
1 Random by relative record number (RRN)
2 Random by record file address (RFA)
3 Sequential file transfer by records (default)

If the file is open for block access, the rae argument can be one of the fol
lowing:

4
5

Random blocks by virtual block number (VBN)
Sequential file transfer by blocks

DECnet-RSX Programmer's Reference Manual

GETNFW

keyptr

specifies the record. The length is assumed from the rae argument value.

RAe Key

1 Two-word binary value of RRN
Low-order word first

2 Three-word binary RFA
Low-order word first

4 Two-word binary value of VBN
Low-order word first

rop

specifies record processing options. Valid values are:

1 Position to EOF
4 Update if existing record

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-109

OPANFW,OPMNFW,OPRNFW,OPUNFW

OPANFW,OPMNFW,OPRNFW,OPUNFW
(Open a File for Appending, Modifying, Reading, Updating Records)

3.9.14 OPANFW - Open a File for Appending Records

OPMNFW - Open a File for Modifying Records

OPRNFW - Open a File for Reading Records

OPUNFW - Open a File for Updating Records

Use:

Call one of the following subroutines to open an existing file:

Call OPANFW to open a sequential file for appending records.

Call OPMNFW to open and modify a sequential file.

Call OPRNFW to open a sequential file for reading records.

Call OPUNFW to open and update a sequential file.

For information on OPWNFW (Create and Open a File for Writing Records), refer
to Section 3.9.18.

Formats:

FORTRAN:

COBOL:

BASIC:

3-110

CALL {OPANFW}
OPMNFW
OPRNFW
OPUNFW

CALL {"OPANFW"}
"OPMNFW"
"OPRNFW"
"OPUNFW"

CALL {OPANFW}
OPMNFW
OPRNFW
OPUNFW

(lun,status, node, ident, ijile, ichar,len,
[iblockD

USING lun,status,node,ident,ijile,ichar,
len,[iblock].

BY REF (lun%,status%(),node$,ident$,
ijile$, ichar$,len % , [iblock])

DECnet-RSX Programmer's Reference Manual

OPANFW,OPMNFW, OPRNFW, OPUNFW

Arguments:

*

*

tun

specifies the logical unit number of the logical link created for the 0 P ANFW,
OPMNFW, OPRNFW, or OPUNFW call. Use the same LUN for any succeed
ing PUTNFW, PRGNFW, or CLSNFW call. See the definition in Section
3.9.7.

status

specifies completion status information on return from OPANFW,
OPMNFW, OPRNFW, or OPUNFW. See the definition for your language in
Section 3.9.7. Refer to Table C-l in Appendix C for a complete code list.

node

specifies the name of the node for the file to open. See the definition in Sec
tion 3.9.7.

ident

is an array/string containing explicit access control information. See the defi
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to open.
See the definition in Section 3.9.7.

ichar

is a 3-element array/string. If the values you specify differ from those stored
in the file, the stored values are used. When the open call completes, the
ichar array /string contains the stored values. Check these values to see how
the file was actually opened. Make sure you specify the appropriate ASCII
letter code as defined in the following three fields:

icbar(l) - Mode

Letter Code

A
I

Description

ASCII file
Binary image file

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-111

OPANFW,OPMNFW,OPRNFW,OPUNFW

*

3-112

icbar(2) - Record Format

Letter Code

U
F
V
S
A

Description

Undefined format records
Fixed length records
Variable length records
Sequenced variable length records (VFC)
ASCII stream format

icbar(3) - Carriage Control

Letter Code

F
T
N
p

Description

FORTRAN carriage control
Terminal carriage control
No carriage control
Print file VFC

The following example displays one method for the icbar argument. In this
example, icbar specifies the file to be opened as an ASCII file ('A'), with vari
able length records ('V'), and FORTRAN style carriage control ('F').

Example:

BYTE I CHAR (3)

DATA ICHAR/'A' ,'V','F'/

ICHAR PIC XXX VALUE "AVF". (COBOL)

ICHAR$="AVF" (BASIC)

len

is an integer variable that specifies record length. If the file has variable
length records, enter the maximum record length. A null value (0) implies
there is no maximum record length.

DECnet-RSX Programmer's Reference Manual

*

OPANFW,OPMNFW, OPRNFW, OPUNFW

iblock

is an integer variable that returns the number of blocks currently allocated to
the file. The values are described as follows:

Entry Description

+ n Number of noncontiguous blocks
(where n = number of blocks)

-n Number of contiguous blocks
(where n = number of blocks)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-113

PRGNFW

PRGNFW
(Discard an Opened File)

3.9.15 PRGNFW - Discard an Opened File

Use:

Call PRGNFW to close a remote file because one or more errors occurred in the
transfer. If the file was newly created by an OPWNFW, SPLNFW, or SUBNFW
call, it is deleted. If the file existed previously and was just opened by an
OPRNFW or OPANFW call, it is closed in its current state.

Formats:

FORTRAN: CALL PRGNFW (lun,status)

COBOL: CALL "PRGNFW" USING lun,status.

BASIC: CALL PRGNFW BY REF (lun%,status%(»

Arguments:

*

3-114

lun

specifies the logical unit number of the logical link to close. See the defini
tion in Section 3.9.7. Use the same LUN specified in the previous open call.

status

specifies completion status information on return from PRGNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

DECnet-RSX Programmer's Reference Manual

PUTNFW

PUTNFW
(Write a Single Record)

3.9.16 PUTNFW - Write a Single Record

Use:

Call PUTNFW to write a record to a file. PUTNFW writes the indicated number of
bytes/characters from the array/string you specify in the outarray/outstring
argument.

The optional rae argument specifies the record access mode. If you omit this
argument, the default access mode is sequential file transfer by records. The
records are written sequentially beginning at the first record position unless the
file was opened with an OPANFW call. In that case they are written after the last
record.

If a rae value specifies random access, the keyptr argument must specify the
record position where the record is written.

If a PUTNFW call returns an error, you can close the output file with either a
PRGNFW or CLSNFW call or continue the write (PUTNFW) operation.

Formats:

FORTRAN: CALL PUTNFW (lun,status,outbytes,outarray,
[seqno] , [rae], [keyptr], [rop])

COBOL: CALL "PUTNFW" USING lun,status,outchars,outstring,
[seqno],[rac],[keyptr],[rop].

BASIC: CALL PUTNFW BY REF (lun % ,status % (),outehars% , ou tstring $,
[seqno%],[rac%],[keyptr%()],[rop%()])

Arguments:

lun

specifies the logical unit number of the logical link created for writing a sin
gle record. See the definition in Section 3.9.7. Use the same L UN you
assigned in the OPANFW, OPMNFW, OPUNFW, SPLNFW, SUBNFW, or
OPWNFW call.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-115

PUTNFW

3-116

status

specifies completion status information on return from PUTNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

outbytes/outehars

specifies the number of bytes/characters to be written to the file from the
outarray/outstring argument. This integer variable or constant must be
equal to or less than the maximum record length you specified in the open
call. If data overrun occurs, the remaining bytes are lost.

outarray/outstring

is the name of the array/string that contains the record to be written to the
file.

seqno

specifies the sequence number of the record to be written. You must specify
this integer variable or constant for sequenced variable length records. If the
record type is not sequenced variable length (or in RMS terms, variable with
fixed control, VFC), the seqno argument is ignored. Remember to specify the
record type in the iehar argument of an open call.

rae

specifies the mode to use in accessing the file. If you omit the rae value, the
default access mode is sequential file transfer by records. Sequential file
transfer modes (3 and 5) cause any rae value in a subsequent GETNFW or
PUTNFW calls to be ignored until you close the file. If the file is open for
record access, the rae argument can be one of the following:

o Sequential by record
1 Random by relative record number (RRN)
2 Random by record file address (RFA)
3 Sequential file transfer by records (default)

If the file is open for block access, the rae argument can be one of the fol
lowing:

4
5

Random blocks by virtual block number (VBN)
Sequential file transfer by blocks

DECnet-RSX Programmer's Reference Manual

PUTNFW

keyptr

specifies the record. The length is assumed from the rae argument value.

RAe Key

1 Two-word binary value of RRN
Low-order word first

2 Three-word binary RF A
Low-order word first

4 Two-word binary value of VBN
Low-order word first

rop

specifies record-processing options. Valid values are:

1 Position to EOF
4 Update if existing record

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-117

RENNFW

RENNFW
(Rename a File)

3.9.17 RENNFW - Rename a File

Use:

Call RENNFW to rename a remote file.

To return the new, fully-qualified file specification after the rename operation,
use the set extended attributes (ATTNFW) call. Issue A TTNFW before issuing
RENNFW, and use the name argument to specify a name buffer. On completion
of the RENNFW call, the name buffer will contain the resulting file specification.

Formats:

FORTRAN: CALL RENNFW (lun,status,node,ident,o/ile,n/ile)

COBOL: CALL "RENNFW" USING lun,status,node,ident,o/ile,nfile.

BASIC: CALL RENNFW BY REF (lun % ,status % (),node$, ident$,
o/ile$,n/ile$)

Arguments:

*

3-118

lun

specifies the logical unit number of the logical link over which to rename a
remote file. See the definition in Section 3.9.7.

status

specifies completion status information on return from RENNFW. See the
definition for your language in Section 3.9.7. Refer to Table C-l in Appen
dix C for a complete code list.

node

specifies the name of the node on which to rename the file. See the defini
tion in Section 3.9.7.

DECnet-RSX Programmer's Reference Manual

RENNFW

ident

is an array/string containing explicit access control information. See the defi
nition in Section 3.9.7.

ofile

specifies an ASCIZ array/string containing the current name of the file to
rename.

nfile

specifies an ASCIZ array/string containing the new file specification for the
file to rename.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-119

SPLNFW, SUBNFW, OPWNFW

SPLNFW, SUBNFW, OPWNFW

3.9.18 SPLNFW - Create, Write, and Print a File

SUBNFW - Create, Write, and Execute a File

OPWNFW - Create and Open a File for Writing Records

Use:

Call one of the following subroutines to create a file:

Call SPLNFW

CallSUBNFW

CallOPWNFW

Formats:

FORTRAN:

COBOL:

BASIC:

3-120

CALL

to create, write to, and print a new remote file at the remote
node.

to create, write to, and submit a new remote file to the re
mote batch/command file processor for execution. The file
is deleted after execution. Successful completion of this call
implies that the remote node handled the file properly, but
not that the file ran or ran properly.

to create and open a sequential file for writing records.

{~~~:;}
OPWNFW

(lun ,status,node, ident, ifile, ichar, len ,
[iblockD

CALL {"SUBNFW" }
"SPLNFW"
"OPWNFW"

US IN G lun ,status ,node, ident, ifile,
ichar,len,[iblock].

CALL {SUBNFW}
SPLNFW
OPWNFW

BY REF (lun% ,status%(),node$,ident$,
ifile$,ichar$,len % ,[iblock% D

DECnet-RSX Programmer's Reference Manual

SPLNFW, SUBNFW, OPWNFW

Arguments:

*

lun

specifies the logical unit number of the logical link for the SPLNFW,
SUBNFW, or OPWNFW call. Use the same LUN for any succeeding
PUTNFW, PRGNFW, or CLSNFW call. See the definition in Section 3.9.7.

status

specifies status completion information on return from SPLNFW, SUBNFW,
or 0 PWNFW. See the definition for your language in Section 3.9.7. Refer to
Table C-l in Appendix C for a complete code list.

node

specifies the name of the node for the file to open using SPLNFW, SUBNFW
or OPWNFW. See the definition in Section 3.9.7.

ident

is an array/string containing explicit access control information. See the defi
nition in Section 3.9.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
opened using SPLNFW, SUBNFW, or OPWNFW.

ichar

is a 3-element array /string. If the values you specify differ from those stored
in the file, the stored values are used. When the open call completes, the
ichar array/string contains the stored values. Check these values to see how
the file was actually opened. Make sure you specify the appropriate ASCII
letter code as defined in the following three fields:

ichar(1) - Mode

Letter Code Description

A ASCII file
Binary image file

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-121

SPLNFW, SUBNFW, OPWNFW

*

*

3-122

icbar(2) - Record Format

Letter Code

U
F
V

S
A

Description

Undefined format records
Fixed length records
Variable length records
Sequenced variable length records (VFC)
ASCII stream format

icbar(3) - Carriage Control

Letter Code

F
T
N
p

Description

FORTRAN carriage control
Terminal carriage control
No carriage control
Print file VFC

The icbar array/string specifies values for the new file.

len

is an integer variable that specifies record length. If record lengths vary,
enter the maximum record length. A null value (0) implies there is no maxi
mum record length.

iblock

is an integer variable that specifies the number of blocks to allocate for file
creation. Enter one of the following values:

Entry

o

+n

-n

Description

Dynamic allocation

Number of noncontiguous blocks
(where n = number of blocks)

Number of contiguous blocks
(where n = number of blocks)

When SPLNFW, SUBNFW, or OPWNFW completes, iblock specifies the
number of blocks allocated (if you specified a + n or a -n argument), or 0 (if
you specified dynamic allocation).

DECnet-RSX Programmer's Reference Manual

SPLNFW, SUBNFW, OPWNFW

If the system cannot allocate the number of requested blocks, an error
returns and frees the LUN. If you omit the iblock argument, the system allo
cates space dynamically.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-123

3.9.19 FORTRAN Remote File Access Programming Examples

The following programs illustrate FORTRAN remote file access. The first example
appends a local file to a remote file. The second example reads the contents of one
remote file into another.

These examples are included in your tape or disk kit.

3-124 DECnet-RSX Programmer's Reference Manual

3.9.19.1 Append Example

The FTNAPP program appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program dis
plays an error message.

C
C Copyright (C) 1983, 1985, 1986, 1987 by
C Digital Equipment Corporation, Maynard, Mass.
C
C
C This software is furnished under a license and may be used and copied
C only in accordance with the terms of such license and with the
C inclusion of the above copyright notice. This software or any other
C copies thereof may not be provided or otherwise made available to any
C other person. No title to and ownership of the software is hereby
C transferred.
C
C The information in this software is subject to change without notice
C and should not be construed as a commitment by Digital Equipment
C Corporation.
C
C Digital assumes no responsibility for the use or reliability of its
C software on equipment which is not supplied by Digital.
C

FTNAPP.FTN -- Append a local ASCII file to a remote ASCII file
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

This program illustrates DECnet remote file access support for FORTRAN.

C

To task build, use the following command string:

FTNAPP,FTNAPP = FTNAPP
LB:[l,l]F4POTS/LB
LB:[l,l]NETFOR/LB
LB:[l,l]NETFOR/LB:NFAFSR
LB:[l,l]RMSLIB/LB (if RMS is included)
/
UNITS=lO
EXTSCT=$$FSR1:2700
ACTFIL=4
EXTTSK=lOOO
II

BYTE
BYTE
BYTE
INTEGER
INTEGER
INTEGER
LOGICAL
COMMON

(if RMS is included)

UID(40),PAS{40),ACC{40),NOD(7)
INPFIL(65),OUTFIL(65)
BUFFER(128),IDENT(120),ICHAR(3)
NETLUN,INPLUN,OUTLUN,LNKNUM,MBXFLG
UIDLEN,PASLEN,ACCLEN,NODLEN
INPLEN,OUTLEN,ISTAT(2),MSTAT(3),IDENTL
EOF
IDENTL,IDENT

C Initialize LUNs for the network, input file, and output file
C

DATA NETLUN,INPLUN,OUTLUN 11,2,3/
C
C ASCII files, Variable length records and FORTRAN carriage control
C

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-125

DATA ICHAR/'A','V','F'/
C
C Build a user ID string in the IDENT array
C

C

IDENTL = 0
TYPE 100
ACCEPT 130,UIDLEN,(UID(I), I=l,UIDLEN)
CALL BLDID(UID,UIDLEN)

C Build a password string in the IDENT array
C

C

TYPE 110
ACCEPT 130,PASLEN,(PAS(I), I=l,PASLEN)
CALL BLDID(PAS,PASLEN)

Prompt for UID
Read in a string
Store UID into IDENT array

Prompt for PAS
Read in a string
Store PAS into IDENT array

C Build an account number string in the IDENT array
C

C

TYPE 120
ACCEPT 130,ACCLEN,(ACC(I), I=l,ACCLEN)
CAL~ BLDID(ACC,ACCLEN)

Prompt for ACC
Read in a string
Store ACC into IDENT array

C Build a remote node name string
C

C

TYPE 140
ACCEPT 150,NODLEN,(NOD(I), I=l,NODLEN)
NOD(NODLEN+l) = 0

Prompt for a node name
Read in a string
Terminate nodename string

C Build a local input filename string
C

TYPE 160 t Prompt for input filename
ACCEPT 180,INPLEN,(INPFIL(I), I=l,INPLEN)!Read in a string
INPFJL(INPLEN+l}=O ! Terminate input file string

C
C Build a remote output filename string
C

TYPE 170 t Prompt for output filename
ACCEPT l80,OUTLEN,(OUTFIL(I), I=l,OUTLEN)!Read in a ~tring
OUTFIL(OUTLEN+l)=O ! Terminate output file string

C
C Open access to the network - only one link, use long connect block
C

C

LNKNUM = 1
MBXBLF = 1
EOF = .FALSE.

Allow only one link
! Set long connect block flag
! Clear end-of-file flag

CALL OPNNTW (NETLUN,ISTAT,MSTAT,LNKNUM"MBXFLG)
IF (I STAT (1) . EQ . 1) GOTO 10
TYPE *,'Cannot open network, status = " ISTAT
GOTO 90

Access the network
If success, proceed
Folse, report error

and finish

C Open local input and remote output files
C
10 OPEN (UNIT=INPLUN,NAME=INPFIL,TYPE='OLD' ,READONLY,ERR=50) Open input

CALL OPANFW (OUTLUN,ISTAT,NOD,IDENT,OUTFIL,ICHAR,LENGTH) t Open output
IF (ISTAT(1) .EQ. 1) GOTO 20 ! If OK, proceed

3-126 DECnet-RSX Programmer's Reference Manual

TYPE *,'Cannot open output file, status = " ISTAT ! Else, report error
GOTO 70 ! and finish

C
C Main loop - read record from local file, write to remote file
C
20 READ (INPLUN,190,END=30,ERR=40) ICNT3,(BUFFER(I),I=1,ICNT3)

CALL PUTNFW (OUTLUN,ISTAT,ICNT3,BUFFER) ! Put/write record to output
IF (ISTAT(I) .EQ. 1) GOTO 20 If success, loop
TYPE *,'Write error, status = " ISTAT Else, report error
GOTO 60 and finish

Last read is complete. Print error message if not end of file.
C
C
C
30
40

EOF = .TRUE.
IF (EOF) GOTO 60
TYPE *,'Read error, status
GOTO 60

ISTAT

Indicate normal completion
No read error if end-of-file
Else, print error message

and finish

Process FORTRAN OPEN error
C
C
C
50 TYPE *,'Cannot open local input file' ! Indicate that OPEN failed

GOTO SO ! and finish
C
C
C
60
70
SO
90

Finish - close files, deaccess the network, print status and exit

CALL CLSNFW (OUTLUN,ISTAT)
CLOSE (UNIT=INPLUN)

! Close remote output file
! Close local input file

CALL CLSNTW (ISTAT)
IF (EOF) TYPE *
IF (.NOT. EOF) TYPE *
STOP

! Deaccess the network
'Successful completion'
'Error completion'

C
C Formats
C
100 FORMAT ('$User ID (39 char. max.): ')
110 FORMAT (' $Password (39 char. max.): ')
120 FORMAT ('$Account (39 char. max.): ')
130 FORMAT (Q,39Al)
140 FORMAT ('$Node (6 char. max.): ')
150 FORMAT (Q,6Al)
160 FORMAT ('$Input file (64 char. max.): ')
170 FORMAT (' $Output file (64 char. max.): ')
ISO FORMAT (Q,64Al)
190 FORMAT (Q,12SAl)

END
C
C BLDID (fld,fldlen) - Build an ASCIZ IDENT field
C

C

SUBROUTINE
BYTE
INTEGER
COMMON

DO 10, I = 1 , LEN

BLDID (FLO, LEN)
IDENT(30),FLD(SO)
IDENTL,LEN
IDENTL,IDENT

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities

(continued on next page)

3-127

IDENT(IDENTL+I} = FLD(I)
10 CONTINUE

3-128

IDENTL = IDENTL+I
IDENT(IDENTL} = 0
RETURN

END

DECnet-RSX Programmer's Reference Manual

3.9.19.2 Read/Write Example

C

The FTNRRW program reads the contents of one remote file into another remote
file. When the program encounters an end-of-file character, the last record is
written to the remote file and both files are closed. If a read or write error occurs,
the program displays a message and exits.

C Copyright (C) 1983, 1985, 1986, ~987 by
C Digital Equipment Corporation, Maynard, Mass.
C
C
C This software is furnished under a license and may be used and copied
C only in accordance with the terms of such license and with the
C inclusion of the above copyright notice. This software or any other
C copies thereof may not be provided or otherwise made available to any
C other person. No title to and ownership of the software is hereby
C transferred.
C
C The information in this software is subject to change without notice
C and should not be construed as a commitment by Digital Equipment
C Corporation.
C
C Digital assumes no responsibility for the use or reliability of its
C software on equipment which is not supplied by Digital.
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

FTNRRW.FTN - Read records from one remote file, write to another

This program illustrates DECnet remote file access support for FORTRAN.

To task build, use the following command string:

FTNRRW,FTNRRW = FTNRRW
LB:(1,1]F4POTS/LB
LB:(l,l]NETFOR/LB
LB:(l,l]NETFOR/LB:NFAFSR
LB:(l,l]RMSLIB/LB (if RMS is included)
I
UNITS=10
EXTSCT=$$FSR1:I0000
ACTFIL=4
EXTTSK=lOOO
II

(if RMS is included)

Remote input file: RNODE1"NFAR PRIV 123"::FTNRRW.INP
Remote output file: RNODE2"NFAR PRIV 123"::FTNRRW.OUT

INTEGER
INTEGER
INTEGER
BYTE
LOGICAL

NETLUN,INPLUN,OUTLUN
MBXFLG,LNKNUM
ISTAT(2),RECLEN
IDINFO(14),ICHARS(3),RECBUF{512)
EOF

C Specify LUNs for the network, input file, and output file
C

DATA NETLUN,INPLUN,OUTLUN 17,1,21
C

C Specify ASCIZ IDENT strings: user, password and account
(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-129

C
DAT A I D I NFOI ' N' , ' F' , 'A' , ' R' ,0, ' p' , ' R' , ' I ' , 'V' ,0., ' 1 ' , ' 2 ' , ' 3 ' ,0 I

C
C Image mode, Variable length records and Terminal carriage control
C

DATA ICHARS 1'1' ,'V' ,'T'I
C
C Initialize some flags
C

C

MBXFLG = 1
LNKNUM = 2
EOF = .FALSE.

Set long connect block flag
Set number of links
Initialize end-of-file flag

C Open access to the network - allow two links, use long connect block
C

C

CALL OPNNTW(NETLUN,ISTAT"LNKNUM"MBXFLG)
IF (ISTAT(l) .EQ. 1) GOTO 10
TYPE *, 'Cannot access network, status =' ISTAT
GOTO 80

C Open remote input file
C
10 CALL OPRNFW(INPLUN,ISTAT,'RNODE1' ,IDINFO,

C

1 '[NFAR]FTNRRW.INP',
1 ICHARS,RECLEN)
IF (ISTAT(I) .EQ. 1) GOTO 20
TYPE *, 'Cannot open remote input file', ISTAT
GOTO 70

C Open remote output file
C
20 CALL OPWNFW(OUTLUN,ISTAT,'RNODE2' ,IDINFO,

C

1 '[NFAR]FTNRRW.OUT',
1 ICHARS,RECLEN)
IF (ISTAT(l) .EQ. 1) GOTO 30
TYPE *, 'Cannot open remote output file', ISTAT
GOTO 60

C Main loop - transfer records until end-of-file
C
C Get a record from the input file.
C
30 CALL GETNFW(INPLUN,ISTAT,512,RECBUF)

C

IF (ISTAT(l) .NE. 1) GOTO 40 ! If read error, check for EOF
RECLEN = ISTAT(2) ! Set number of bytes to write

C Put the record to the output file
C

CALL PUTNFW(OUTLUN,ISTAT,RECLEN,RECBUF)
IF (ISTAT(l) .EQ. 1) GOTO 30 ! If write succeeded, loop
TYPE *, 'Write error, status ISTAT
GOTO 50

C
C The last read failed. Print error message if not an end-of-file.
C
40 IF (ISTAT(2) .EQ. '050047'0) EOF = .TRUE.

IF (.NOT. EOF) TYPE *,'Read error, status = ',ISTAT
C

C Finish - close files, deaccess network, print status and exit
C
50 CALL CLSNFW(OUTLUN,ISTAT) ! Close output file
60 CALL CLSNFW(INPLUN,ISTAT) ! Close input file
70 CALL CLSNTW(NETLUN) ! Deaccess the network
80 IF (EOF) TYPE *, 'Successful completion'

IF (.NOT. EOF) TYPE *, 'Execution failure'
STOP
END

3-130 DECnet-RSX Programmer's Reference Manual

3.9.20 COBOL Remote File Access Programming Examples

The following programs illustrate COBOL remote file access. They are included
in your tape or disk kit.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-131

3.9.20.1 Append Example

The program COBAPP appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program dis
plays an error message.

* * Copyright (C) 1983, 1985, 1986, 1987 by
* Digital Equipment Corporation, Maynard, Mass.
*
* * This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license and with the
* inclusion of the above copyright notice. This software or any other
* copies thereof may not be provided or otherwise made available to any
* other person. No title to and ownership of the software is hereby
* transferred.
* * The information in this software is subject to change without notice
* and should not be construed as a commitment by Digital Equipment
* Corporation.
* * Digital assumes no responsibility for the use or reliability of its
* software on equipment which is not supplied by Digital.
*

IDENTIFICATION DIVISION.
PROGRAM-ID. COBAPP.

**
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This program appends the contents of a local ASCII file
to a remote ASCII file and then closes both files.

To task build, use the fo~lowing command string:

COBAPP,COBAPP =-
COBAPP, [l,I]NETFOR/LB,C8ILIB/LB,RMSLIB/LB,NETFOR/LB:NFA FSR
I
UNITS=lO
EXTSCT=$$FSRI:2700
ACTFIL=4
EXTTSK=IOOO (if RMS is included)
II

*
*
*
*
*
*
*
*
*
*
*
*
*
*

**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-II.
OBJECT-COMPUTER. PDP-II.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LOCAL-FILE ASSIGN TO "DBO:".
DATA DIVISION.
FILE SECTION.

FD

3-132

LOCAL-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS LOCAL.

DECnet-RSX Programmer's Reference Manual

01 LOCAL-REC

WORKING-STORAGE SECTION.
01 MSGS.

03 MSGl.
05 FILLER

05 MSG1-STATl
05 FILLER
05 MSG1-STAT2

03 MSG2.
05 FILLER

05 MSG2-STATl
05 FILLER
05 MSG2-STAT2

03 MSG3.
05 FILLER

05 MSG3-STATl
05 FILLER
05 MSG3-STAT2

03 MSG4.
05 FILLER

05 MSG4-STAT1
05 .FILLER
05 MSG4-STAT2

03 MSG5.
05 FILLER

05 MSG5-STAT1
05 FILLER
05 MSG5-STAT2

01 ARRAYS.
03 lOST.

05 IOSTAT
03 MSTAT.

05 MSTATS
01 STORE-STUFF.

03 LOCAL
03 IDENT
03 USERID
03 PASSWD
03 ACCNT
03 REMOTE-FILE
03 FILLER
03 OPNLUN
03 COUNTl
03 APPLUN
03 LENGTHl
03 BLOCK1
03 REC-LENGTH
03 NODE-NAME
03 TEMP-NODE
03 TEMP-REMOTE
03 ICHAR

OCCURS

OCCURS

2

3

PIC X(80).

PIC X(36) VALUE " MAIL BOX CREAT
"ION ERROR, IOST(l) "
PIC -99999.
PIC x(l1) VALUE " IOST(2)
PIC -99999.

PIC X(38) VALUE " CAN NOT OPEN R
"EMOTE FILE. IOST(1) = "
PIC -99999.
PIC x(l1) VALUE " IOST(2)
PIC -99999.

PIC X(42) VALUE" WRITE ERROR FR
"OM REMOTE FILE. IOST(l) = "
PIC -99999.
PIC X(ll) VALUE" IOST(2)
PIC -99999.

PIC X(39) VALUE" CAN NOT CLOSE
"REMOTE FILE. IOST(l) = ".
PIC -99999.
PIC X(ll) VALUE" IOST(2)
PIC -99999.

PIC X(35) VALUE" CAN NOT CLOSE
"NETWORK. IOST(l) = "
PIC -99999.
PIC X(ll) VALUE "IOST(2)
PIC -99999.

TIMES PIC S9999 USAGE CaMP.

TIMES PIC S9999 USAGE CaMP.

PIC X(26).
PIC X(30).
PIC x(l2) .
PIC X(6) .
PIC X(9) .
PIC X(30).
PIC X.
PIC 9 CaMP VALUE 4.
PIC 9 CaMP VALUE 1.
PIC 9 CaMP VALUE 3.
PIC S9999 USAGE CaMP.
PIC S9999 USAGE CaMP.
PIC S99 CaMP VALUE 80.
PIC x(7) •
PIC X(6) .
PIC X(29) •
PIC x(3) VALUE "AVF" .

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-133

01 NULLI PIC 9 COMP VALUE O.
01 NULLS REDEFINES NULLI.

03 NUL OCCURS 2 TIMES PIC X(l).
PROCEDURE DIVISION.

* *
*
*
*
*

Get accounting information for remote node from
terminal and form ASCIZ string with this information
for OPRNFW and OPWNFW.

*
*
*
*

AIOO-START.
DISPLAY" INPUT USER ID: ".
ACCEPT USERID.
DISPLAY n INPUT PASSWORD: ".
ACCEPT PASSWD.
DISPLAY " INPUT ACCOUNT NUMBER: "
ACCEPT ACCNT.
STRING USERID

NULO)
PASSWD
NULO)
ACCNT
NUL(l) DELIMITED BY SIZE
INTO IDENT.

*
*
*

Get.remote node name and form ASCIZ string.
*
*
*

DISPLAY " INPUT REMOTE NODE NAME: "
ACCEPT TEMP-NODE.
STRING TEMP-NODE

NUL(l) DELIMITED BY SIZE
INTO NODE-NAME.

* *
*
*

Get remote file name and form ASCIZ string. *
*

3-134

DISPLAY" ENTER FILE SPEC. OF REMOTE FILE FOR APPEND".
ACCEPT TEMP-REMOTE.
STRING TEMP-REMOTE

NUL(l) DELIMITED BY SIZE
INTO REMOTE-FILE.

DECnet-RSX Programmer's Reference Manual

*
*
*

Get local file name.
*
*
*

DISPLAY" ENTER FILE SPEC. OF LOCAL FILE TO BE APPENDED".
ACCEPT LOCAL.

*
*
*
*

Access the network. If the call completes
unsuccessfully, write an error message and exit.

*
*
*
*

CALL "OPNNTW" USING

OPNLUN
lOST
MSTAT
COUNTI.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSGl-STATl
MOVE IOSTAT (2) TO MSG1-STAT2
DISPLAY MSGl
GO EIOO-END.

*
*
*
*
*

Open the local file. Open the remote file for
append. If unable to open the remote file, write
an error message and deaccess the network.

*
*
*
*
*

OPEN INPUT LOCAL-FILE.
CALL "OPANFW" USING

APPLUN
lOST
NODE-NAME
IDENT
REMOTE-FILE
ICHAR
LENGTHI
BLOCK1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG2-STATl
MOVE IOSTAT (2) TO MSG2-STAT2
DISPLAY MSG2
GO DI00-CLOSE.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-135

* *
*
*
*
*
*

Read a record from the local file and append it to
the remote file until the end-of-file is encountered
in the local file. If an error occurs while writing
to the remote file, print an error message and exit.

*
*
*
*
*

BIOO-READ.
MOVE SPACES TO LOCAL-REC.
READ LOCAL-FILE RECORD

AT END GO CIOO-EOF.
CALL "PUTNFW" USING

APPLUN
IOST
REC-LENGTH
LOCAL-REC.

IF IOSTAT (1) = 1 GO B100-READ.
MOVE IOSTAT (1) TO MSG3-STAT1.
MOVE IOSTAT (2) TO MSG3-STAT2.
DISPLAY MSG3.
GO EIOO-END.

*
*
*
*
*
*

When the end-of-file is encountered in the local
file, close the local and remote files. If unable
to close the remote file, print an error message
and exit.

*
*
*
*
*
*

CIOO-EOF.

3-136

CLOSE LOCAL-FILE.
CALL "CLSNFW" USING

APPLUN
IOST.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELsE
MOVE IOSTAT (1) TO MSG4-STATl
MOVE IOSTAT (2) TO MSG4-STAT2
DISPLAY MSG4
GO E100-END.

DECnet-RSX Programmer's Reference Manual

* *
*
*
*

Deaccess the network. Display an error message
if the call does not complete successfully.

*
*
*

DIOO-CLOSE.
CALL "CLSNTW'" USING

lOST.
IF IOSTAT (1) = 1

NEXT SENTENCE
ELSE

MOVE IOSTAT (1) TO MSG5-STATl
MOVE IOSTAT (2) TO MSG5-STAT2
DISPLAY MSG5
GO EIOO-END.

DISPLAY "APPEND COMPLETE. END COBAPP PROGRAM EXECUTION".
EIOO-END.

STOP RUN.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-137

3.9.20.2 Read/Write Example

The program COBRRW reads the contents of one remote file into another remote
file. When an end-of-file character is encountered, the last record is written to the
remote file and both files are closed.

* * Copyright (C) 1983, 1985, 1986, 1987 by
* Digital Equipment Corporation, Maynard, Mass.
*
* * This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license and with the
* inclusion of the above copyright notice. This software or any other
* copies thereof may not be provided or otherwise made available to any
* other person. No title to and ownership of the software is hereby
* transferred.
* * The information in this software is subject to change without notice
* and should not be construed as a commitment by Digital Equipment
* Corporation.
* * Digital assumes no responsibility for the use or reliability of its
* software on equipment which is not supplied by Digital.
*

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRRW.

**
* * * This program reads the contents of a remote file into
* another remote file. The program reads and writes records
* until it encounters an end-of-file, at which time it writes
* the last record to the remote file and closes both files.
* * To task build, use the following command string:
*

*
*
*
*
*
*
* * COBRRW,COBRRW =- *

* COBRRW,[l,I]NETFOR/LB,C81LIB/LB,RMSLIB/LB,NETFOR/LB:NFAFSR *
* I *
* UNITS=lO *
* EXTSCT=$$FSRl:10000 *
* ACTFIL=4 *
* EXTTSK=IOOO (if RMS is included) *
* II *
* *
**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-II.
OBJECT-COMPUTER. PDP-II.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBRRW.DUM".

DATA DIVISION.

3-138 DECnet-RSX Programmer's Reference Manual

FILE SECTION.
FD DUMMY-FILE

LABEL RECORD STANDARD.
01 DUMMY-FILE-REC.

02 FILLER
WORKING-STORAGE SECTION.
01 MSGS.

03 MSG1.
05 FILLER

05 MSG1-STATl
05 FILLER

03
05 MSG1-STAT2
MSG2.
05 FILLER

05 MSG2-STAT1
05 FILLER

03
05 MSG2-STAT2
MSG3.
05 FILLER

05 MSG3-STAT1
05 FILLER

03
05 MSG3-STAT2
MSG4.
05 FILLER

05 MSG4-STATl
05 FILLER
05 MSG4-STAT2

03 MSG5.
05 FILLER

05 MSG5-STATl
05 FILLER
05 MSG5-STAT2

01 ARRAYS.
03 lOST.

05 IOSTAT
03 MSTAT.

05 MSTATS
01 STORE-STUFF.

03 OPNLUN
03 COUNT1
03 LENGTH1
03 BLOCKl
03 INPLUN
03 OUTLUN
03 I
03 IARRAY-SIZE
03 EOF
03 EOFFG
03 TTRUE
03 FFALSE

OCCURS

OCCURS

2

3

PIC X(l32) .

PIC X(34) VALUE" CAN NOT OPEN N
"ETWORK. lOST (l) = "
PIC -99999.
PIC x(ll)
PIC -99999.

VALUE " IOST(2)

PIC X(44) VALUE" CAN NOT OPEN R
"EMOTE INPUT FILE. IOST(l) = "
PIC -99999.
PIC x(ll)
PIC -99999.

VALUE" IOST(2)

PIC X(45) VALUE" CAN NOT OPEN R
"EMOTE INPUT FILE. IOST(l) = "
PIC -99999.
PIC X(ll)
PIC -99999.

VALUE" IOST(2)

PIC X(24) VALUE " READ ERROR.
"OST (1) = "
PIC -99999.
PIC X(ll) VALUE " IOST(2) = "
PIC -99999.

PIC X(25) VALUE " WRITE ERROR.
"IOST(l) = "
PIC -99999.
PIC x(ll) VALUE " IOST(2) = "
PIC -99999.

TIMES PIC S9999 USAGE COMPo

TIMES PIC S9999 USAGE CaMP.

PIC 9 COMP VALUE 2.
PIC 9 COMP VALUE 2.
PIC S9999 USAGE COMPo
PIC S9999 USAGE COMPo
PIC 9 COMP VALUE 3.
PIC 9 COMP VALUE 4.
PIC 999 USAGE COMPo
PIC 99 COMP VALUE 80.
PIC 99999 COMP VALUE 20519.
PIC S USAGE COMPo
PIC S COMP VALUE -1.
PIC S COMP VALUE o.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-139

03 I DENT PIC X(30) •
03 USERID PIC X (12) •
03 PASSWD PIC X(6).
03 ACCNT PIC X (9) •
03 TEMP-NODE PIC X(6).
03 NODE-NAME PIC x(7) •
03 TEMP-INPUT PIC X(29) •
03 REMOTE-INPUT PIC X(30) •
03 TEMP-OUTPUT PIC X(29).
03 REMOTE-OUTPUT PIC X (30) •
03 I CHAR PIC X(3) VALUE "AVF".
03 I ARRAY PIC X(80) •

01 NULLI PIC 9 COMP VALUE O.
01 NULLS REDEFINES NULLl.

03 NUL OCCURS 2 TIMES PIC X(U.
PROCEDURE DIVISION.

*
*
*
*
*

Get.accounting information for remote node and
form ASCIZ string for DECnet remote file access
subroutines.

*
*
*
*
*

AlOO-START.
DISPLAY "INPUT USER ID:".
ACCEPT USERID.
DISPLAY" INPUT PASSWORD:".
ACCEPT PASSWD.
DISPLAY" INPUT ACCOUNT NUMBER:".
ACCEPT ACCNT.
STRING USERID

NUL (1)
PASSWD
NUL(1)
ACCNT
NUL(l} DELIMITED BY SIZE
INTO IDENT.

*
*
*

Get remote node name and form ASCIZ string.
*
*
*

DISPLAY" ENTER REMOTE NODE NAME:".
ACCEPT TEMP-NODE.
STRING TEMP-NODE

NUL(l} DELIMITED BY SIZE
INTO NODE-NAME.

*
*
*
*

Get remote input and output file names and form
ASCIZ string for each file.

*
*
*
*

3-140 DECnet-RSX Programmer's Reference Manual

DISPLAY" INPUT FILE SPEC. FOR INPUT FILE:".
ACCEPT TEMP-INPUT.
STRING TEMP-INPUT

NUL(1) DELIMITED BY SIZE
INTO REMOTE-INPUT.

DISPLAY" INPUT FILE SPEC. FOR OUTPUT FILE:".
ACCEPT TEMP-OUTPUT.
STRING TEMP-OUTPUT

NUL(1) DELIMITED BY SIZE
INTO REMOTE-OUTPUT.

* *
*
*
*

Access the network. If the call does not complete
successfully, display an error message and exit.

*
*
*

CALL "OPNNTW" USING
OPNLUN
lOST
MSTAT
COUNT1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG1-STATl
MOVE IOSTAT (2) TO MSG1-STAT2
DISPLAY MSGl
GO EIOO-END.

* *
*
*
*

Open remote file for input. If there is an open
error, print an error message and exit.

*
*
*

CALL "OPRNFW" USING
INPLUN
lOST
NODE-NAME
IDENT
REMOTE-INPUT
ICHAR
LENGTH1
BLOCK1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG2-STAT1

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-141

MOVE IOSTAT (2) TO MSG2-STAT2
DISPLAY MSG2
GO EIOO-END.

*
*
*
*

Open remote file for output. If there is an open
error, display an error message and exit.

*
*
*
*

CALL "OPWNFW" USING
OUTLUN
lOST
NODE-NAME
IDENT
REMOTE-OUTPUT
ICHAR
ICHAR
LENGTHl
BLOCK1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG3-STATl
MOVE IOSTAT (2) TO MSG3-STAT2
DISPLAY MSG3
GO DIOO-CLOSE.

*
*
*
*
*
*
*

Transfer records between the remote files. When
the end-of-file is encountered, exit from the loop.
Exit from the loop if a read or write error occurs
and branch to the appropriate routine to display an
error message.

*
*
*
*
*
*
*

LOOP.

3-142

PERFORM LOOP VARYING I FROM 1 BY 1 UNTIL I = 100.

CALL "GETNFW" USING
INPLUN
lOST
IARRAY-SIZE
IARRAY.

IF IOSTAT (1) NOT = 1 AND IOSTAT
GO BIOO-READERR.

MOVE IOSTAT (2) TO LENGTHI.
IF IOSTAT (1) NOT = 1 AND IOSTAT

MOVE TTRUE TO EOFFG
ELSE

MOVE FFALSE TO EOFFG.
IF EOFFG = TTRUE GO DlOO-CLOSE.
CALL "PUTNFW" USING

(2) NOT EOF

(2) EOF

DECnet-RSX Programmer's Reference Manual

OUTLUN
lOST
LENGTHI
I ARRAY

IF IOSTAT (1) NOT = 1 AND IOSTAT (2) NOT EOF
GO CIOO-WRITERR.

*
*
*
*

A read error occurred during file transfer. Print
an error message and exit.

*
*
*
*

BIOO-READERR.
MOVE IOSTAT (1) TO MSG4-STATl.
MOVE IOSTAT (2) TO MSG4-STAT2.
DISPLAY MSG4.
GO DIOO-CLOSE.

*
*
*
*

A write error occurred during file transfer. Print
an error message and exit.

*
*
*
*

CIOO-WRITERR.
MOVE IOSTAT (1) TO MSG5-STATl.
MOVE IOSTAT (2) TO MSG5-STAT2.
DISPLAY MSG5.

*
*
*

Close both remote files.
*
*
*

DIOO-CLOSE.

LOOPI.
PERFORM LOOPI VARYING I FROM INPLUN BY 1 UNTIL I

CALL "CLSNFW" USING
I
lOST.

OUTLUN.

*
*
*
*
*
*

If an error occurred before encountering the
end-of-file, exit. Otherwise the transfer" was
successful, so display a success message and
exit.

*
*
*
*
*
*

END-LOOP1.

IF EOFFG NOT = TTRUE
GO EIOO-END

ELSE
DISPLAY "END OF FILE REACHED. FILES CLOSED.".

EIOO-END.
STOP RUN.

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-143

3.9.21 BASIC-PLUS-2 Remote File Access Programming Examples

The following programs illustrate BASIC-PLUS-2 remote file access. The first
example appends a local file to a remote file. The second example reads the con
tents of one remote file into another.

These programs are included in your tape or disk kit.

3-144 DECnet-RSX Programmer's Reference Manual

3.9.21.1 Append Example

10

20
\
\
\

30

The BASAPP program appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program dis
plays an error message. In the following example, the user ID, the password, and
the account number are entered from the terminal.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software ~n equipment which is not supplied by Digital.

! !
! !
! !
! !
! !
i!
! '

BASAPP.B2S - Append local file to remote file

To task build, edit the task build command file
file and the ODL file created by the build.

1) Add the lines
ACTFIL=4
EXTSCT=$$FSR1:2700

to the task build command file.

2) Append
-NETLIB-NETLB2

to the USER: line of the ODL file.

3) Add the lines
NETLIB: .FCTR LB:[l,l]NETFOR/LB
NETLB2: .FCTR LB:[l,l]NETFOR/LB:NFAFSR

to the ODL file.

ON ERROR GO TO 200 ! Error handler

I!! Define array constants I!!
DIM ISTAT%(1%),JSTAT%(1%),KSTAT%(l%),LSTAT%(1%),MSTAT%(2%)
DIM NSTAT%(l%) ! Define array elements
NULLS = STRINGS(l%,O%) ! Define null char for ASCIZ

I!! Define constants I!!
OPNLUN% = 2% Network open LUN

!!! &
!!! &
! !! &
!!! &
! !! &
!!! &
!!! &
! '! &

! &
&
&
&
&
&
&
&
&

! !! &
! !! &

&
&
&

\
\
\

MBXFLG% = 1%
APPLUN% = 1%
COUNT% = 1%

Long connect block flag
File LUN
Max # of logical links

&
&
&
&
&

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-145

\
\

FLAG% = 0%
ICHAR$ = "AVF"

! End of file flag &
! Mode, type, carriage control

40 INPUT "Remote node. name (6 char. max.)" ; NOONAM$ &
\ IF LEN(NOONAM$}>6% THEN PRINT &

"Node name too long, please re-enter" &
\ PRINT \ GO TO 40

50 NOONAM$ = NOONAM$+NULL$! Create ASCIZ string for OPANFW

60
\

\
70

80
\

\

90
\

\
100

\

\
110

\

\

120
\

INPUT "Remote output file (64
IF LEN(OFIL$»64% THEN PRINT

"Remote output filename too
PRINT \ GOTO 60

char. max.)";OFIL$ &
&

long, please re-enter" &

OFIL$ = OFIL$+NULL$ Create ASCIZ string for OPANFW

INPUT "Local input file (64 char. max)";IFIL$
IF LEN(IFIL$}>64% THEN PRINT

"Local input filename too long, please re-enter"
PRINT \ GOTO 80

INPUT "User 10 (39 char. max.}";UIO$! Get user 10
IF LEN(UIO$»39% THEN PRINT

"User 10 too long, please re-enter"
PRINT \ GOTO 90

INPUT "Password (39 char. max.)";PAS$ Get password
IF LEN(PAS$»39% THEN PRINT

"Password too long, please re-enter"
PRINT \ GOTO 100

INPUT "Account (39 char. max.}";ACC$! Get account number
IF LEN(ACC$»39% THEN PRINT

"Account number too long, please re-enter"
PRINT \ GO TO 110

I!! Create ASCIZ string for IOENT in OPANFW
IDENT$ = UID$+NULL$+PAS$+NULL$+ACC$+NULL$

!! !

&
&
&

&
&
&

&
&
&

&
&
&

&

130 I!! Open access to network - 1 link, long connect block I!! &
\ CALL OPNNTW BY REF (OPNLUN%,LSTAT%(),MSTAT%(),COUNT% &

"MBXFLG%) &
\ IF LSTAT%(O%)=l% THEN 140 ! If OPNNTW succeeded, proceed

ELSE PRINT "Cannot access network" ! Else, print message &
\ PRINT "Status = ";LSTAT%(O%);",";LSTAT%(l%) &
\ GO TO 220 status and exi t

140
\

150
\

\

\
\

3-146

I!! Open local file !! !
OPEN IFIL$ FOR INPUT AS FILE #4

! !! Open remote file for append ! ! !
CALL OPANFW BY REF(APPLUN%,ISTAT%(},NOONAM$,IOENT$,OFIL$,

ICHAR$,LENGTH%,IBLOCK%)
IF ISTAT%(O%)=l% THEN 160 ! If successful, proceed
ELSE PRINT "Cannot open remote file." ! Else, print message,

PRINT "STATUS = ";ISTAT%(O%);",";ISTAT%(l%) ! status
GO TO 180 and exit

&

&
&
&
&
&
&

DECnet-RSX Programmer's Reference Manual

160 ! ! ! Read records from local f i 1e and wri te them to !!! &
\ ! ! ! remote fi le. ! ! ! &
\ FLAG% 1% ! Set flag for eof check &
\ INPUT #4,TEMP$! Read from local file [

\ CALL PUTNFW BY REF(APPLUN%,JSTAT%(),LEN(TEMP$),TEMP$) &
! Append to remote file &

\ IF JSTAT~(0%)=1% THEN 160 ! If successful, loop &
ELSE PRINT "Write error from remote file." ! Else, print msg, &

\ PRINT "Status ";JSTAT%(O%);",";JSTAT%(l%)! status &
\ GO TO 220 ! and exi t

170 I!! EOF found -- close both files and network I!! &
\ FLAG% = 0% ! Clear end of file flag &
\ CLOSE #4 ! Close local file &
\ CALL CLSNF4 BY REF(APPLUN%,KSTAT%(» ! Close remote file &
\ IF KSTAT%(O%)=1% THEN 180 ! If success, deaccess network &

ELSE PRINT" Cannot close remote file." ! If close error, &
\ PRINT "Status = ";KSTAT%(0%);",";KSTAT%(1%) &
\ GO TO 220 ! Print message, status and exit

180
\

\
\

190
\

CALL CLSNT BY REF(NSTAT%(» ! Deaccess network
IF NSTAT%(O%)=l% THEN 190 ! If success, append complete
ELSE PRINT "Cannot close network." ! If error, print

PRINT "Status = ";NSTAT%(O%);",";NSTAT$(l%)
GO TO 220 ! message, status and exit

PRINT "Append complete. End program execution"
GO TO 220

&
&
&
&

&

200 IF ERR <> 11 THEN 210
ELSE IF FLAG%=O% THEN 210

If not EOF, print error &
If EOF and EOF flag not set, &

print error &
ELSE RESUME 170 EOF so close both files

210 PRINT "Error ":ERR:" at line ";ERL ! Print error and line number

220 END

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-147

3.9.21.2 Read/Write Example

10

The BASRRW program reads the contents of one remote file into another remote
file. When the program encounters an end-of-file character, the last record is
written to the remote file and both files are closed.

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

! !
! !
! !
! !
! !
! !
! !

.! !
!! !

I !

. !
! !
! !
! !
! !

BASRRW.B2S - Read records from one remote file
and write them to another

To task build, edit the task build command file
and the ODL file created by the build.

1) Add the lines
ACTFIL=4
EXTSCT=$$FSR1:IOOOO

to the task build command file.

2) Append
-NETLIB-NETLB2

to the USER: line of the ODL file.

3) Add the lines
NETLIB: .FCTR LB:[l,l]NETFOR/LB
NETLB2: .FCTR LB:[l,l]NETFOR/LB:NFAFSR

to the ODL file.

! !! &
! !! &
!!! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
! !! &
!! !

20 !!! Define array constants !!! &
DIM IARRAY%(255%),ISTAT%(l%),MSTAT%(2%) &

! Define maximum string lengths &
\ NULL$ STRING$(l%,O%) Define maximum string lengths &

30

\
\

3-148

I!! Define constants I!!
ICHARS$ = "AVF"
OPNLUN% = 7%
COUNT% = 2%

&
Mode, type, carriage control &
Network OPEN LUN &
Max. # of active logical links&

DECnet-RSX Programmer's Reference Manual

\
\
\
\
\
\

40
\

\

50
\

\
60

\

\
70

\

\

80
\

MBXFLG% = 1
INPLUN% = 1%
OUTLUN% = 2%
EOF% = 20519%
FALSE% = 0%
TRUE% = -1%

Long connect block flag
Input file LUN

&
&
&
&
&

Output file LC~
End of file status return
Flag indicating FALSE
Flag indicating TRUE

INPUT "Remote node name {6 char. max.)";NODNAM$
IF LEN(NODNAM$»6% THEN PRINT

"Node name too long, please re-enter"
PRINT \ GO TO 40

&
&
&
&

ELSE NODNAM$ = NODNAM$+NULL$ Form ASCIZ nodename

INPUT "User ID (39 char. max.)";UID$
IF LEN(UID$»39% THEN PRINT

"User ID too long, please re-enter"
PRINT \ GOTO 50

INPUT "Password (39 char. max.)";PAS$
IF LEN(PAS$»39% THEN PRINT

"Password too long, please re-enter"
PRINT \ GOTO 60

INPUT "Account number (39 char. max.)";ACC$
IF LEN(PAS$»39% THEN PRINT

"Account number too long, please re-enter"
PRINT \ GOTO 70

! Get user ID &
&
&

Get password &
&
&

Get account &
&
&

!!! Form ASCIZ IDENT string for remote file opens
IDENT$ = UID$+NULL$+PAS$+~ULL$+ACC$+NULL$

!! ! &

90 INPUT "Input file (64 char. max.)";IFIL$ Get inp file &
\ IF LEN(IFIL$»64% THEN PRINT &

"Input filename too long, please re-enter" &
\ PRINT \ GOTO 90 &

100
\

\

ELSE IFIL$=IFIL$+NULL$ Form ~SCIZ filename

INPUT "Output file (64
IF LEN(OFIL$»64% THEN

"Output filename too
PRINT \ GOTO 100

ELSE OFIL$=OFIL$+NULL$

char. max.)";OFIL$
PRINT
long, please re-enter"

! Get out file

! Form ASCIZ filename

&
&
&
&

110 !!! Open access to network - 2 links, long conr.ect block!!! &
CALL OPNNTW BY REF(OPNLUN%,ISTAT%(),MSTAT%(),CCUNT% &

, ,MBXFLG) &
\ LOCl = 1 ! Origin of CALL for subroutine &
\ GOSUB 250 ! Check status

120 !!! Open remote file for input. !!! &
CALL OPRNFW BY REF{INPLUN%,ISTAT%(),NODNAM$,IDE~T$,IFIL$, &

ICHARS$,LNTH%,BLOCK%) Open remote file for input &
\ LOCl = 2 ! Origin of CALL for subroutine &
\ GOSUB 250 ! Check status

130 !!! Open remote file for output. !!!
CALL OPWNFW BY REF(OUTLUN%,ISTAT%(),NODNAM$,IDENT$,OFIL$,

&
&

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-149

\
\

140

ICHARS$,LNTH%,BLOCK%)
LOCI = 3
GOSUB 250

Open remote file for output &
Origin of CALL for subroutine &
Check status

!! !
!! !

MAIN LOOP - read from input file !! !
!! !

&
& and write to output file

FOR 1%=1% TO 100%

150 CALL GETNFW BY REF(INPLUN%,ISTAT%(),256%,IARRAY%(» &
! Read a record from input file

160 IF ISTAT%(O%)<>l% AND ISTAT%(l%)<>EOF% THEN 210 &
If error, print message &

ELSE LNTH%=ISTAT%(l%) ! Save no. of bytes transferred

170 ! !! Check for eof ! ! ! &
IF ISTAT%(O%)<>l% AND ISTAT%(l%)=EOF% THEN EOFFG%=TRUE% &

ELSE EOFFG%=FALSE% ! Set flag if end of file

180 IF EOFFG%=TRUE% THEN 230!IF END OF FILE, CLOSE FILES &
ELSE CALL PUTNFW BY REF(OUTLUN%,ISTAT%(),LNTH% &

,IARRAY%(» ! Write record

190 IF ISTAT%(O%)<>l% AND ISTAT(l%)<>EOF% GO TO 220 &
ELSE A%=l% ! If unsuccessful, print message

200 NEXT 1% ! Terminate loop

210

\

220

I!! Read error occurred
PRINT "Read error. Status
GO TO 230

I!! Write error occurred
PRINT "Write error. Status

";ISTAT%(O%);",";ISTAT%(l%)
! Close both files

";ISTAT%(O%);",";ISTAT%(l%)

!! !

!! !

&
&

&

230 I!! Close files I!! &
FOR J%=l% TO 2% Close files 1 and 2 &

\ CALL CLSNFW(J%,ISTAT%(» Close each file &
\ NEXT J% Terminate loop &
\ IF EOFFG%<>TRUE% THEN 240 If flag not true, transfer not&

! successful &
ELSE PRINT "End of file reached. File closed" &

Indicate transfer successful

240 GOTO 270 Branch to end

250 I!! Subroutine to check status on completion of OPEN calls!!! &
IF ISTAT%(O%)=l% THEN 260 ! If success, just return &
ELSE PRINT "Open error. Status = ";ISTAT%(0%);",";ISTAT%(1%) &

\ PRINT "Loc = ";LOCI ! Origin of call &
\ GO TO 270 Quit if unsuccessful

260 RETURN Exit from subroutine

270 END End execution

3-150 DECnet-RSX Programmer's Reference Manual

3.10 FORTRAN Task Control

This section contains descriptions and usage guidelines for the FORTRAN task
control calls summarized in Table 3-4. Task control allows you to run or abort
specific tasks according to time schedules that you define in a DECnet call.

Before you issue any of these calls you must access the network by issuing an
OPNNTW call. When you complete task control operations, you must issue the
ClSNTW call to stop accessing the network.

3.10.1 Waiting for Requests

All calls are synchronous and pass control back to the user task only after the
operation completes.

Table 3-4: FORTRAN Task Control Calls

Call Function

ABONCW Abort an executing task or cancel a schedule task

BACUSR Build account and user ID information area

RUNNCW Execute an installed task in a remote node

3.10.2 RSX Remote Task Control Utility

In order for these calls to execute successfully, the RSX Remote Task Control util
ity (TCl) must be installed on the remote node. If TCl is not installed, the call
completes with an error.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-151

ABONCW

ABONCW
(Abort an Executing Task or Cancel a Scheduled Task)

3.10.3 ABONCW - Abort an Executing Task or Cancel a Scheduled Task

Use:

Call ABONCW to abort an executing task or cancel a scheduled task.

Format:

CALL ABONCW (lun, [status],ndsz, ndnm,passwdsiz,passwd,
tsksiz, tsknam, [ident], [mask])

Arguments:

*

3-152

lun

specifies an integer variable or constant and must be a logical unit number
not currently in use.

status

specifies an integer array containing the following completion status infor
mation on return from ABONCW:

status(l)

status(2)

ndsz

Returns an error/completion code

If the error code in status(l) indicates a network reject (-7),
status (2) contains the disconnect or reject reason code. Refer
to Appendix A. Otherwise, status(2) contains a directive error
code (if status(l) is -40) or null value (0).

specifies an integer variable or constant containing the node name length in
bytes.

ndnm

specifies a 1- to 6-element byte array containing the name of the target node.

DECnet-RSX Programmer's Reference Manual

•

ABONCW

passwdsiz

specifies an integer variable or constant containing the password length in
bytes.

passwd

specifies an array containing a user password with which to gain access to
the remote system. Specify an array size consistent with the connect block
size that you specified in the OPNNT call. The password can have 1-8. bytes
in a short connect block, or 1-39. bytes in a long connect block.

A privileged password lets a user abort any task running on the remote node
without specifying the ident parameter. A nonprivileged password lets a
user abort a task only by specifying the correct ident parameter.

tsksiz

specifies the remote task name length in bytes.

tsknam

specifies a 1- to 6-element byte array containing the name of the remote task
to abort or cancel.

ident

specifies an integer variable containing the negated task control block
address of the remote task. This value is returned to the ident parameter of
the RUNNCW call when the RUNNCW call completes. This argument is
optional for a user with a privileged password .

mask

indicates how ABONCW is used. This argument is optional.

Omitting the mask argument or specifying a value of 0 aborts only the exe
cuting task that the call specifies. Specifying the value 1 cancels the resched
uling of the specified task and continues execution of the current active task.
Specifying a value greater than 1 aborts the executing task and cancels the
rescheduling of the task.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-153

ABONCW

Error/Completion Codes:

1

-1

-7

-8

-9

-21

-23

-24

-25

-40

3-154

The call completed successfully.

System resources needed for the logical link are not available.

The connection was rejected by the network. Refer to Appendix A.

A logical link has already been established using this LUN.

The task is not a network task: OPNNT did not execute successfully.

The requested task is not installed on the remote node.

An ABONCW was issued for a task that was not active.

A privileged violation has occurred. You are not a privileged user, and
you are attempting an ABONCW for a task with improper identification.

An ABONCW was issued for a task that either was being loaded into or
was exiting from the remote node.

A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

DECnet-RSX Programmer's Reference Manual

BACUSL

BACUSL
(Build Account and User 10 Information Area (Long»

3.10.4 BACUSL - Build Account and User 10 Information Area (Long)

Use:

Call BACUSL in the source task to build the user ID and account areas of the out
going connect block for task control programming.BACUSL supports 39.-charac
ter user IDs and accounts.

BACUSL's function is similar to BACCL's, but you do not specify a password with
BACUSL. Instead, you include the password with the ABONCW or RUNNCW call.

If you have defined an alias node name that includes explicit access control infor
mation, or use proxy access, you need not call BACUSL.

Format:

CALL BACUSL ([status], [usersz, user], [accnosz,accno])

Arguments:

* status

specifies an integer variable. On return from BACUSL, this optional argu
ment is set to .TRUE.(-I) if the call completed successfully. It is set to
.FALSE.(O) if one of the arguments to BACUSL is invalid.

usersz

specifies an integer variable or constant containing the user ID length in
bytes.

user

specifies a 1- to 39.-byte array containing the user ID. The arguments usersz
and user are paired optional arguments. Include both or omit both.

accnosz

specifies an integer variable or constant containing the length in bytes of the
account number. RSX target systems do not use this argument.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-155

BACUSL

3-156

accno

specifies a 1- to 39.-byte array containing the account number. The accnosz
and accno arguments are paired optional arguments. Include both or omit
both.

DECnet-RSX Programmer's Reference Manual

BACUSR

BACUSR
(Build Account and User 10 Information Area (Short»

3.10.5 BACUSR - Build Account and User 10 Information Area (Short)

Use:

Call BACUSR in the source task to build the user ID and account areas of the out
going connect block for task control programming. BACUSR supports 16.-charac
ter user IDs and accounts.

BACUSR's function is similar to BACC's, but you do not specify a password with
BACUSR. Instead, you include the password with the ABONCW or RUNNCW
call.

If you have defined an alias node name that includes access control information,
or use proxy access, you need not call BACUSR.

Format:

CALL BACUSR ([status], [usersz, user], [accnosz,accno])

Arguments:

• status

specifies an integer variable. On return from BACUSR, this optional argu
ment is set to . TRUE.(-1) if the call completed successfully. It is set to
.FALSE.(O) if one of the arguments to BACUSR is invalid.

usersz

specifies an integer variable or constant containing the user ID length in
bytes.

user

specifies a 1- to 16.-byte array containing the user ID. The arguments usersz
and user are paired optional arguments. Include both or omit both.

accnosz

specifies an integer variable or constant containing the length in bytes of the
account number. RSX target systems do not use this argument.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-157

BACUSR

3-158

accno

specifies a 1- to 16.-byte array containing the account number. The accnosz
and accno arguments are paired optional arguments. Include both or omit
both.

DECnet-RSX Programmer's Reference Manual

RUNNCW

RUNNCW
(Execute an Installed Task in a Remote Node)

3.10.6 RUNNCW - Execute an Installed Task in a Remote Node

Use:

RUNNCW allows you to execute an installed task in a remote node using any or all
of the following options:

• Execute the task immediately.

• Schedule the task for execution at some future time.

• Schedule the task for periodical execution based on predefined time sched
ules.

Format:

CALL RUNNCW (lun, [status),ndnm,passwdsz,passwd,tsksz,tsknam, [ident],
[uic), [smg,snt), [rmg,rnt))

Arguments:

*

lun

specifies an integer variable or constant and must be a logical unit number
not currently in use.

status

specifies an integer array containing the following completion status infor
mation on return from RUNNCW:

status(l)

status(2)

Returns an error/completion code

If the error code instatus(l) indicates a network reject (-7),
status (2) contains the disconnect or reject reason code. Refer
to Appendix A. Otherwise, status(2) contains a directive error
or is not used.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-159

RUNNCW

*

3-160

ndsz

specifies an integer variable or constant containing the node name length in
bytes.

ndnm

specifies a 1- to 6-element byte array containing the name of the target node.

passwdsiz

specifies an integer variable or constant containing the password length in
bytes.

passwd

specifies an array containing a user password with which to gain access to
the remote node. Specify an array size consistent with the connect block size
that you specified in the OPNNT call. The password can have 1-8. bytes in a
short connect block, or 1-39. bytes in a long connect block.

A privileged password lets you run a task under any user identification code
on the remote node. A nonprivileged password lets you run a task under
only the DIC assigned to you.

tsksiz

specifies an integer variable or constant containing the remote task name
length in bytes.

tskname

specifies a 1- to 6-element byte array containing the name of the remote task
to execute.

ident

specifies an integer variable containing the negated task control block
address of the remote task when RDNNCW completes. ABONCWuses this
value. If you do not plan to cancel or abort this task later, you can omit this
argument.

uic

specifies a 2-byte array containing the group and user codes under which the
task runs on the remote node. The first element of the array contains the
user member code; the second element contains the user group code. This
argument is optional with a privileged password. If a privileged user omits
this argument, the task runs under its default DIC on the remote node.

DECnet-RSX Programmer's Reference Manual

RUNNCW

smg

specifies an integer variable or constant containing the schedule delta magni
tude. The value of this optional argument is the difference in time from the
issuance of the call to the time the task is to run at the remote node.

This argument is used with the following argument, snt, which specifies the
unit of time used to schedule the task (in hours, minutes, seconds, or ticks).
In no case can the magnitude exceed 24 hours.

snt

specifies an integer variable or constant containing the schedule delta unit.
This argument is a code identifying the time unit specified with the smg
argument. The time unit codes are as follows:

Code

1

2

3

4

rmg

Description

Ticks: A tick occurs for each clock interrupt and depends on the type
of clock installed in the system.

Line frequency clock: The tick rate is either 50 or 60 per second and
corresponds to the power line frequency.

Programmable clock: A maximum of 1000 ticks per second is avail
able. The exact rate is determined at system generation.

Seconds

Minutes

Hours

specifies an integer variable or constant containing the reschedule delta mag
nitude. The reschedule interval is the difference in time from task initiation
to the time the task is to be reinitiated on the remote node. The task is exe
cuted each time the elapsed time equals the reschedule magnitude specified
in this argument. If this time interval elapses and the task is still active, no
reinitiation request is issued. However, a new reschedule interval is started.

This argument is used with the following argument, rnt, which specifies the
unit of time used to reschedule the task (in hours, minutes, seconds, or
ticks). In no case can the magnitude exceed 24 hours.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-161

RUNNCW

rnt

specifies an integer variable or constant containing the reschedule delta unit.
This argument is a code identifying the time unit to use with the delta magni
tude specified in the rmg argument.

NOTE

• If you omit the smg, snt, rmg, and rnt argu
ments, the task is executed immediately.

• If you specify smg and snt, but omit rmg and
rnt, the task is executed once at the scheduled
time.

• If you specify rmg and rnt, but omit smg and
snt, the task is executed immediately and again
each time the reschedule delta time has elapsed.

• You can specify all four arguments. For exam
ple:

CALL RUNNCW (lun,status,ndsz,tsksiz,tsknam,
uic,I,4,4,4)

specifies that the task runs for the first time in
one hour and then every four hours after that.

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the logical link are not available.

-7 The connection was rejected by the network. Refer to Appendix A.

-8 A logical link has already been established using this LUN.

-9 The task is not a network task: OPNNT did not execute successfully.

-20 There is insufficient dynamic memory on the remote node.

-21 The requested task is not installed on the remote node.

3-162 DECnet-RSX Programmer's Reference Manual

RUNNCW

-22 RVNNCW has an invalid time parameter.

-23 An RVNNCW call was issued without scheduling parameters for a task
that is already active.

-24 A privileged violation has occurred. You are not a privileged user, and
you are attempting to issue a RVNNCW under a VIC different from the
VIC to which you are assigned on the remote node.

-26 A RVNNCW was issued under an invalid VIC (for example, (1,0] or
[0,1 D.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llMIM-PLUS Executive Reference Manual.

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-163

3.10.7 FORTRAN Task Control Programming Example

C

The RUNABO.FTN program uses DECnet task control calls to run or abort a task
on a specified local or remote node. After executing your task control request, the
program prompts you to enter another request to run or abort the associated task.
When you finish entering task control requests, press ~ to exit from the
request-prompting loop and stop the program.

Before running RUNABO.FTN, you must install the TCL task on the target node.

This programming example is included in your tape or disk kit.

C RUNABO.FTN - Run or abort a task installed on remote node
C
C
C Copyright (C) 1983, 1985, 1986, 1987 by
C Digital Equipment Corporation, Maynard, Mass.
C
C
C This software is furnished under a license and may be used and copied
C only in accordance with the terms of such license and with the
C inclusion of the above copyright notice. This software or any other
C copies thereof may not be provided or otherwise made available to any
C other person. No title to and ownership of the software is hereby
C transferred.
C
C The information in this software is subject to change without notice
C and should not be construed as a commitment by Digital Equipment
C Corporation.
C
C Digital assumes no responsibility for the use or reliability of its
C software on equipment which is not supplied by Digital.
C
C
C This program illustrates the DECnet RSX task control routines.
C
C To task build, use the following command string:
C
C >TKB RUNABO,RUNABO=RUNABO,LB:[l,1]NETFOR/LB,F4POTS/LB
C
C Note: The TCL task must be installed on the specified node.
C
C

3-164

LOGICAL*l ANSWER,RUN,ABO,TARTSK(6),TARNOD(6),PASSWD(8),USERID(16)
LOGICAL*l ACCNT(16)
INTEGER STATUS(2),STAT
INTEGER*2 MSTAT(3),IDENT
DATA RUN/'R'/,ABO/'A'/

(continued on next page)

DECnet-RSX Programmer's Reference Manual

C
C Create the network data queue
C

CALL OPNNTW(l,STATUS,MSTAT)
IF (STATUS(1) .NE. 1) WRITE(5,S)STATUS(1)

C
C Prompt for target node and target task
C

C

10 WRITE(5,1)
1 FORMAT(5X,$'Enter target node: ')

READ(5,2,END=999) ICNTl,TARNOD
2 FORMAT(Q,16Al)

WRITE(5,3)
3 FORMAT(5X,$'Enter target task: ')

READ(5,2,END=999)ICNT2,TARTSK
C
C Prompt for access control information
C

WRITE(5,50)
50 FORMAT(5X,$'Enter target user ID:

READ (5,2,END=999)ICNT4,USERID
C

WRITE(5,4)

')

4 FORMAT(5X,$'Enter target password: ')
READ (5,2,END=999)ICNT3,PASSWD

C
WRITE (5,11)

11 FORMAT(5X,$'Enter target account number:
READ (5,2,END=999)ICNT5,ACCNT

C
WRITE(5,6)

')

6 FORMAT(5X,$'Enter RUN (R) or ABORT (A) : ')
READ(5,7,END=999)ANSWER

7 FORMAT(A1)
C
C Decide whether to call BACUSR
C

IF (ICNT4 .EQ. 0 .AND. rCNT5 .EQ. 0) GO TO 70
CALL BACUSR (STAT, ICNT4,USERID,ICNT5,ACCNT)
IF (STAT .EQ .. TRUE.) GO TO 70
WRITE(5,80)STAT

SO FORMAT (' Error building connect block ')
GOTO 10

C
C Decide whether to run or abort the task
C

C

70 IF (ANSWER .EQ. ABO) GOTO 20
IF (ANSWER .EQ. RUN) GOTO 30
GOTO 999

C Abort the task and print status
C

20 WRITE (5,100)
100 FORMAT (5X,$' IDENT of task to abort (0 if password is privileged): ')

READ (5,110)IDENT
110 FORMAT(I6)

CALL ABONCW (2.STATUS. ICNTl.TARNOD. ICNT3.PASSWD.ICNT2,TARTSK, IDENT)

(continued on next page)

FORTRAN, COBOL, and BASIC-PLUS-2 Programming Facilities 3-165

C
WRITE(5,8)STATUS(I)

8 FORMAT(' Status = ',17)
GOTO 10

C
C Run the task and print status.
C

30 CALL RUNNCW(2,STATUS,ICNTl,TARNOD, ICNT3,PASSWD, ICNT2,TARTSK ,IDENT)
WRITE (5,S)STATUS(I)
IF (STATUS(1) .EQ. 1) WRITE (5,90) IDENT

90 FORMAT (' The IDENT is ',16)
GOTO 10

999 STOP
END

3-166 DECnet-RSX Programmer's Reference Manual

DLX

Insert tabbed
divider here.
Then discard
this sheet

4

DLX Ethernet Programming Facilities

The Direct Line Access Controller (DLX) gives application programs a direct
interface to the data link, bypassing the standard DEC net user interface. With
DLX, you can communicate with DECnet or non-DEC net based systems. Because
DLX does not offer higher-level DECnet services, such as routing and guaranteed
delivery, it can give high performance in network applications. DLX also lets you
build customized user-level protocols that best suit your applications.

To use DLX, you issue queued input/output (QIO) calls to the NX: device. Your
DLX program uses the Ethernet and/or IEEE 802.3 standard. It can communicate
with a DLX program or the equivalent data link function on an adjacent DECnet
RSX or non-DECnet node. Your DECnet-RSX node can simultaneously run multi
ple DECnet and DLX tasks, each possibly communicating with different remote
nodes.

DLX is automatically built for DECnet-RSX-11M-PLUS and DECnet-Micro/RSX
systems; it is optional for DECnet-RSX-11M. It is also optional for RSX-11S sys
tems, but is required on a host for down-line loads and up-line dumps from RSX
lIS systems. You can use DLX to communicate over all devices that DECnet-RSX
supports. For information on programming for point-to-point and multipoint
lines, refer to Chapter 5.

Throughout this chapter, the term "the Ethernet" refers to the physical transmis
sion media (cables and controllers) and data link level software that provides
access to the physical media according to a Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) protocol. The physical channel may be broad
band or baseband. The Ethernet can transmit frames in formats that conform to
either the Ethernet standard or the IEEE standards.

4-1

4.1 Preparing the System

Before your system runs a DLX program, the DLX process must be loaded and the
line set.

The person in charge of network or system management installs the network,
usually by executing a command file that contains the command for loading DLX.
When DLX is loaded, it resides in the common partition NT.DLX.

The network manager also sets the line, either by answering Yes to the NETGEN
question that asks about marking the line for load, or by issuing the Network Con
trol Program (NCP) SET LINE command. For information on using NCP to set the
line, refer to the DECnet-RSX Guide to Network Management Utilities.

4.2 Including Higher-Level Services

4-2

DLX programming requires a thorough knowledge of MACRO-II assembly lan
guage and experience in writing real-time application programs.

Since DLX bypasses the higher levels of DECnet you lose the services at those
levels and must, therefore, include them in your application. Your programs must
provide the following:

Flow control

Error recovery

Data segmentation

DLX does not support flow control for data transfer. The
DLX programs that run on different nodes must therefore
synchronize with each other before transferring data. If
the tasks are unsynchronized, data can be lost.

The DLX software reports errors, but your program must
include error recovery procedures.

When transmitting data, your program must segment it;
the buffer size must be appropriate to the controller
devices on the communicating systems. For information
on appropriate buffer sizes, consult your network man
ager.

Note that all incoming and outgoing DLX and DECnet messages are buffered in a
shared network buffer pool. Your network manager can increase the size and/or
number of buffers to maintain good throughput performance, if necessary. For
information on displaying and setting buffer sizes, refer to the DECnet-RSX net
work management documentation.

Also note that you must use the /PR:O switch to task build your DLX programs.

DECnet-RSX Programmer's Reference Manual

4.2.1 Using DLX Resources

DLX provides macros and QIOs to use in your application.

The DECnet macro library, NETLIB.MLB, defines the offsets and macros that DLX
QIOs use. During NETGEN, this library is transferred to your system. The defini
tion macro 0 LXD F $ contains definitions for offsets and macros.

Your program must issue an .MCALL statement and explicitly invoke the defini
tion macro, as in the following example:

.MCALL DLXDF$; extract from macro library

DLXDF$; define DLX symbols

You can use the following QIO functions in Ethernet programming:

IO.XOP Open a port on the Ethernet device. This lets your program
treat the Ethernet as a device that your QIOs control.

IO.XSC Set characteristics for your Ethernet port. You can set such port
characteristics as the frame format to use, the addresses from
which you want to receive messages, and so forth.

IO.XGC Get characteristics of the port.

IO.XTM Transmit a message.

IO.XRC Ready the port to receive a message.

IO.XCL Close the port and relinquish use of the controller.

4.3 Using DLX to Access the Ethernet

An Ethernet data link on a single Ethernet controller supports multiple concur
rent users. Each station represents an available port onto the Ethernet channel.

Because multiple users simultaneously access the Ethernet channel, your program
must use addressing mechanisms that ensure delivery of messages to the correct
recipient. Any message that you transmit on the Ethernet must include an
Ethernet address that identifies the target node. The message must also include an
additional identifier that directs the message to the correct user on the target
node; this identifier varies according to the frame format you choose to use. DLX
lets you choose to build frames according to the Ethernet or IEEE 802.3 standard,
or both.

DSX Ethernet Programming Facilities 4-3

The Ethernet format is a proprietary standard that belongs to Digital Equipment,
Intel, and Xerox corporations. The IEEE 802.3 format, in contrast, is a standard
for multi-vendor networking. To communicate with other Digital nodes, you
might have applications that use the Ethernet frame format, and to communicate
with non-Digital nodes, you might use the 802.3 frame format. Any single appli
cation can send and receive both types of frames. Later sections of this chapter
describe how to set up the Ethernet address and use each frame format.

This chapter covers the following topics:

• Synchronizing D LX programs

• Using physical and multicast addressing

• Setting up the Ethernet address

• Using characteristics buffers

• Processing Ethernet-format frames

• Processing 802.3-format frames

• DLXQIOs

References throughout the chapter to the IEEE standard are to the information in
two publications listed in the Preface to this manual: Carrier Sense Multiple
Access with Collision Detection (CSMAICD) Access Method and Physical Layer
Specifications (802.3), and Logical Link Control (802.2).

4.3.1 Synchronizing DLX Programs

In writing your D LX application, you must synchronize the programs on both
nodes to ensure that they can cooperate. Both communicating nodes must do the
following:

• Open the line, specifying the same frame format (Ethernet or 802.3).

• Specify what frames you want the port to send and receive. For Ethernet
frame format, both nodes must enable the port to send and receive frames
with the same protocol type. For 802.3 frame format, both nodes must
enable the port to send and receive frames with the same Subnetwork Access
Protocol (SNAP) identifier, or to receive frames with each other's Service
Access Point (SAP). Later sections explain how you use protocol types,
SNAPs, and SAPs. '

4-4 DECnet-RSX Programmer's Reference Manual

• The nodes must then coordinate their transmission and reception. The
receiving node must have a receive QIO pending before the sending node
transmits.

4.3.2 Using Physical and Multicast Addressing

You can transmit and receive messages over the Ethernet in physical or multicast
address mode. Physical addressing sends messages to a single destination node.
Multicast addressing sends messages to a group of nodes. If each node in the
group enables reception of messages with a given multicast address, a single trans
mission to that address can reach all nodes in the group.

To send messages in physical mode, you specify the destination address in a trans
mit request. If the target node is a non-DECnet node, you send messages to its
Ethernet hardware address. If the target node is a DEC net node, you send mes
sages to its Ethernet physical address. The Ethernet physical address is derived
from the node address. The next section explains how to set up the Ethernet
address for remote DEC net nodes. You receive any physical mode messages that
other nodes address to your Ethernet hardware address on a non-DEC net node,
or to your Ethernet physical address on a DECnet node. You need not specially
enable these addresses.

To send multicast messages, you simply specify the Ethernet multicast address as
the destination on a transmit operation. Any node can send messages to any
multicast address. To receive messages sent to a multicast address, you specify the
address when setting port characteristics with IO.XSC. You can receive any num
ber of multicast addresses.

The multicast address for Digital Equipment Corporation customer use is 09-00-
2B-00-OO-OF. In a Digital-only environment, you can use other numbers that
fall outside the range of those reserved for internal Digital use. In a multi-vendor
environment, other multicast addresses might conflict with the other vendors'
conventions. For more information on multicast addresses, refer to Appendix G.

For a further description of Ethernet addressing, refer to DECnet-RSX Network
Management Concepts and Procedures.

4.3.3 Setting Up the Ethernet Address

All messages on an Ethernet channel have one 48-bit Ethernet address that
specifies the destination node and one that specifies the source node. While you
need not supply your own (source) address when you transmit, you must always
supply the destination address.

DLX Ethernet Programming Facilities 4-5

4-6

When sending messages to a DECnet node, you can derive the Ethernet address
from the node address. The DECnet destination consists of 6 bytes. The first four
bytes are standard, and contain the following octal values:

Byte 0
Byte 1
Byte 2
Byte 3

252
o
4
o

For bytes 4 and 5, use an octal version of the area number and node number, and
format them as follows:

Bits 10 to 15
Bits 0 to 9

DECnet area number (The default area number is 1.)
DECnet node number

For example, you convert DECnet node addresses of 1.154 and 4.153 to destina
tion addresses as follows:

Node Address
(Decimal)

1.154

4.153

Destination Address
(Octal)

252,0,4,0,4,232

252,0,4,0,20,231

Hexadecimal Equivalent

AA-00-04-00-04-9A

AA-OO-04-00-10-89

To send messages to a non-Digital node, you must know the destination hardware
address. Be sure to program the address into the correct bytes. For example, if the
destination address, in hexadecimal notation, is 08-00-AB-OO-AF-FE, enter the
hexadecimal values as follows:

00 08 o

3 00 AB 2

5 FE AF 4

LKG-1039-87

DECnet-RSX Programmer's Reference Manual

4.3.4 Setting Up a Characteristics Buffer

Most of the DLX QIOs let you specify or read characteristics for the QIO. Some
characteristics affect the Ethernet port; others affect a specific transmit or receive
operation. You can set characteristics for the port when you issue IO.XOP to
open the port and by issuing the Set Characteristics QIO. You can read the port
characteristics by issuing the IO.XGC (get characteristics) QIO. You can also set
certain characteristics for each transmit (IO.XTM) and receive (IO.XRC) QIO.

Some characteristics are required for a QIO; others are optional. A transmit QIO,
for example, always requires that you supply the destination Ethernet address
characteristic .

To set or read characteristics, you create a characteristics buffer and enter the
buffer's address and length as QIO parameters. One or more characteristics
blocks in the buffer specify the characteristics to set or read. This chapter
describes the various characteristics blocks for Ethernet programming in the sec
tion about processing Ethernet frames, and the characteristics for 802.3 program
ming in the section about processing 802.3 frames. In addition, each QIO descrip
tion includes a description of the characteristics to use with that QIO.

For example, you can specify that a port opens in Ethernet or 802.3 frame format
when you issue the Open Port (IO.XOP) directive. You create a buffer that
includes the frame format characteristics block, CC.FMO, into which you enter
the frame format value. You then reference the buffer's address and length in the
QIO. Once you have specified the frame format (Ethernet format is the default),
you can then specify other format-specific characteristics. For 802.3 format, you
can specify the 802.3 service class; for Ethernet format, you can specify the
Ethernet protocol type. You append the blocks for these characteristics to the
frame format block in the buffer. An example later in this section illustrates how a
program opens a port for 802.3 format and specifies the service class.

A characteristic that affects the port affects all data that the port handles, unless
you override the characteristic on a specific transmit or receive QIO. In contrast,
a characteristic that affects a transmit or receive request affects only the specific
transmit or receive QIO.

Characteristics blocks have a standard format in the first four fields. Table 4-1
describes these fields.

DLX Ethernet Programming Facilities 4-7

Table 4-1: The First Four Fields in a Characteristics Block

Word Name Contents Use

0 C.TYP Characteristics Identifies what characteristic
type the block contains information

about. For example, CC.ADR in
this field specifies a destination
address block, CC.MCT
specifies a multicast address
block, and so on.

C.DATI Size of Identifies the length, in bytes,
data input of the characteristics data in the

C.CHRL field. For example, if a
CC.MCT block contains one 6-
byte multicast address, this field
contains a 6.

2 C.DATO Reserved for Gives the length, in bytes, of
size of any returned data on comple-
data output tion of characteristics process-

ing. Always put a zero (0) in
this field.

3 C.STAT Reserved for Contains a code indicating COffi-

characteristics pletion status after characteris-
status tics block processing. Always

put a zero (0) in this field.

4-8 DECnet-RSX Programmer's Reference Manual

The characteristics block for a single characteristic looks like this:

CHARACTERISTICS
BLOCK

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

RESERVED

CHARACTERISTICS STATUS

CHARACTERISTICS DATA

· .. · ..

· .. · ..
· .. · ..

· .. · ..

C.TYP

C.DATI

C.DATO

C.STAT

C.CHRL

LKG-1040-87

The fifth field, C.CHRL, contains the specific characteristics information.

DLX Ethernet Programming Facilities 4-9

4-10

You can append multiple characteristics blocks in a single characteristics buffer as
follows:

CHARACTERISTICS
BUFFER

BUFFER ADDRESS
~

CHARACTERISTICS TYPE C.TYP

SIZE OF DATA INPUT C.DATI

RESERVED C.DATO

CHARACTERISTICS STATUS C.STAT
-

CHARACTERISTICS DATA C.CHRL
· .. · ..
· .. · .. ~

· .. · ..
· .. · ..

CHARACTERISTICS TYPE C.TYP

SIZE OF DATA INPUT C.DATI

RESERVED C.DATO

CHARACTERISTICS STATUS C.STAT
-

CHARACTERISTICS DATA C.CHRL
· .. · ..

-· .. · ..
· .. · ..
· .. · ..

CHARACTERISTICS TYPE C.TYP

SIZE OF DATA INPUT C.DATI

RESERVED C.DATO

CHARACTERISTICS STATUS C.STAT
-CHARACTERISTICS DATA C.CHRL

· .. · ..
-· .. · ..

· .. · ..
· .. · ..

BUFFER
LENGTH

LKG-1041-87

DECnet-RSX Programmer's Reference Manual

The following program fragment uses a characteristics buffer in opening an
Ethernet port. Before issuing the IO.XOP QIO, the program creates a characteris
tics buffer with two characteristics blocks. As an example, the first block requests
802.3 frame format. With 802.3 frame format, the data link provides certain ser
vices if you request Class I service. The second block requests Class I service. The
IO.XOP QIO then references the buffer that contains these characteristics blocks.

. MCALL

DLXDF$

PRTLUN = 1
PRTFLG = 1
DEVNM: . ASCII
DEVLN = .-DEVNM

. EVEN
IOSB: .BLKW

DLXDF$

\UNA-O\

2

Define DLX I/O codes and symbols

Logical unit number of port
Event flag for all port I/O
Address of device name
Length of device name

; I/O status block

Characteristics buffer for open

This buffer contains a pair of characteristics blocks - one to
open the port for handling 802.3 frames and the other to
request Class I service for the 802.3 port.

OPNCHB:
Define frame format for open

. WORD CC.FMO
• WORD 2
. WORD 0
. WORD 0
. WORD NX$802

Define Class I service for open

C.TYP Characteristic type
C.DATI Frame format takes 2 bytes
C.DATO To be returned
C.STAT To be returned
C.CHRL 802 frame format

. WORD CC.SCO C.TYP Characteristic type

. WORD 2 C.DATI Service class takes 2 bytes

. WORD 0 C.DATO To be returned

. WORD 0 C.STAT To be returned

. WORD NX$CLI C.CHRL 802 Class I service
OPNCHL =.-OPNCHL Size of characteristics buffer

; Directive parameter blocks

OPNDPB QIOW$
IO.XOP,PRTLUN,PRTFLG"IOSB,,<DEVNM,DEVNML,OPNCHB,OPNCHL>

In the line containing the IO.XOP call, OPNCHB specifies the address of the char
acteristics buffer and OPNCHL specifies its length.

The order in which your program references the characteristics can be important.
DLX processes the characteristics buffer sequentially, and some characteristics
create prerequisite conditions that are prerequisites for other characteristics. For
instance, if the previous example attempted to request Class I service without
first requesting 802.3 frame format, an error would occur.

DLX Ethernet Programming Facilities 4-11

The DECnet-RSX Network Management Concepts and Procedures manual has
more information on using Ethernet devices. For detailed information on 802.3
frame formats, refer to the IEEE standard. The next sections describe special pro
cedures for processing Ethernet and 802.3 frame format.

4.3.5 Processing Ethernet Frames

This section describes special considerations for using Ethernet frame format on
the Ethernet channel.

All Ethernet frames contain a 16-bit identification number called an Ethernet pro
tocol type. When a message arrives at the controller, the protocol type identifies
which port receives the frame. DLX applications that communicate across the
Ethernet must always enable the same Ethernet protocol type.

You enable the port to receive the protocol type by issuing an IO.XSC to set the
port characteristics. You specify the protocol type in a CC.DST characteristic
block, which IO.XSC references. Enable the protocol type after opening the port,
but before receiving or transmitting messages with the protocol type. Specify an
enabled protocol type in every transmit QIO and read it in every receive QIO.

The protocol type for Digital Equipment Corporation customer use is 60-06. For
more information on protocol type values, refer to Appendix G.

When enabling an Ethernet protocoltype, you can add the following information
to the CC.DST characteristics block to further specify how the port handles the
protocol:

• Protocol flags that specify modes for receiving and sending messages with
the protocol type.

• Specific remote addresses to and from which the port will process messages
with the protocol type.

4.3.5.1 Setting Protocol Flags

The characteristic block that you use to enable a protocol type has a field for pro
tocol flags. Protocol flags can do the following:

• Set the receipt mode for the protocol type to exclusive or default

• Request padding support for frames with the protocol type

• Disable the protocol type

4-12 DECnet-RSX Programmer's Reference Manual

Your Ethernet port can receive messages with a given protocol type in exclusive,
default, or normal usage mode:

Exclusive
LF$EXC

Default
LF$DEF

Normal

The application receives all messages with the protocol type.

The application receives messages with the protocol type
from any address that another application does not receive in

The application specifies the addresses from which to receive
messages with the protocol type.

For exclusive or default mode, you set the appropriate flag in the CC.DST charac
teristics block. Normal mode requires that you omit the flag and specify
addresses in the characteristic block, as the following section describes.

To request padding support, you can set the LF$PAD flag. Padding is a highly rec
ommended option for ensuring data integrity. On transmit operations, the device
driver software pads each frame to the minimum Ethernet size; the actual data in a
frame may therefore be less than the frame's physical length. With padding sup
port, however, the data link will prefix the actual data with a 2-byte length field
on transmit and read the length field on receive. On receive, it strips the padding
from the message before passing the message to your application. You must set
the flag to get padding support when you enable a protocol.

To disable a protocol type, set the LF$DIS flag.

4.3.5.2 Specifying Protocol/Address Pairs

To instruct the port to process the protocol type to and from certain addresses
only, add the addresses to the characteristics block that enables the protocol type
(CC.DST). To ensure communication among DLX programs on different nodes,
each program enables the same protocol type. Each program pairs the protocol
with the remote nodes' physical or multicast Ethernet addresses or sets the proto
col flag to receive in exclusive mode.

Two or more users on a node can enable the same protocol or the same addresses,
but only one user can enable any protocol/address pair. This prevents two pro
grams on a node from competing for the same frames.

DLX Ethernet Programming Facilities 4-13

4.3.5.3 Using Characteristics Blocks

Table 4-2 lists the characteristics for Ethernet frame format according to the DLX
function and QIO with which you use them. Within each function, the character
istics are listed alphabetically. Each QIO description later in this chapter has
detailed information on the related characteristics.

Table 4-2: Characteristics for Ethernet Frame Format

Symbol &
Value What It Does

Open the Port (IO.XOP)

CC.FMO
(103)

Defines a single frame format for the port.

Set and Get Port Characteristics (IO.XSC and IO.XGC)

CC.DST
(200)

CC.FRM
(202)

Enables the port to send and receive messages with a specified pro
tocol type and pairs the protocol with addresses on a set character
istics operation; returns the protocol type and addresses on a get
characteristics operation.

Specifies a second frame format for the port on a set characteristics
operation; returns the second frame format on a get characteristics
operation.

Transmit and Receive (IO.XTM and IO.XRC)

CC.ADR
(100)

CC.DAD
(102)

CC.FMM
(105)

CC.PRO
(101)

Sets the destination node address on transmit; returns the source
node address on receive.

Returns the destination address to which a received message was
sent.

Sets the frame format of a message on transmit; returns the frame
format on receive.

Sets the protocol type of a message on transmit; returns the proto
col type on receive.

4.3.6 Processing IEEE 802.3 Frames

4-14

The Institute of Electrical and Electronics Engineers (IEEE) has defined the 802.3
frame format for communicating over the Ethernet. You may choose to use
802.3 frame format, especially for inter-vendor communications. Using 802.3
format, a DLX program on a Digital node can communicate with a similar pro
gram on a Digital or non-Digital node. To use 802.3 frame format, familiarize
yourself with the IEEE standard.

DECnet-RSX Programmer's Reference Manual

When you use 802.3 format, you must choose the 802.3 service class and address
ing mode to use. The next sections explain your choices.

4.3.6.1 Specifying the Service Class

The service class determines the level of service that the data link provides to
your application. DECnet-RSX supports two 802.3 service classes: Class I and
user-supplied service.

Class I service lets your program perform IEEE 802.3 Type I operations and it sup
ports three frame types:

UI Unnumbered information

TEST Test

XID System identification

UI frames contain data to send and receive. TEST and XID frames verify that a
node with which you want to communicate is up and running the correct soft
ware. The IEEE standard fully describes these frame types.

With Class I service, the data link:

• Filters out all extraneous types of messages.

• Handles unsolicited XID and TEST messages from other nodes.

• Builds and strips frames, letting your program handle just the data in the
frame without supplying or reading headers.

Class I service also provides a group addressing capability described in a follow
ing section.

With user-supplied service, your application can use any IEEE 802.3 frame types,
but your application must build and strip them. Your program must also include
routines for filtering out unwanted types of messages.

You can specify Class I service when you open the port or set port characteristics
for 802.3 format. The default service type is user-supplied.

You must also choose to use either Service Access Points (SAPs) or Subnetwork
Access Protocols (SNAPs) to identify your 802.3 frames. The next two sections
describe SAPs and SNAPs.

DLX Ethernet Programming Facilities 4-15

4.3.6.2 Defining Service Access Points

Service Access Points (SAPs) identify each application that accesses the Ethernet
in 802.3 format. The destination Ethernet address identifies the target node for
the message, and then the Destination SAP (DSAP) and Source SAP (SSAP) identify
the destination and source application at the port. All 802.3 frames contain SAPs,
which are therefore helpful in multi-vendor programming environments.

With SAPs, you must define at least one Individual SAP (ISAP) for each 802.3
application. The application's ISAP must be unique and exclusive. You then use
IO.XSC to set the port characteristics to receive messages with the specified ISAP.
On transmit, you supply the Destination SAP and Source SAP; on receive, you
read the DSAP and SSAP.

Each ISAP on a node identifies only one application, but each application can
enable multiple SAPs. You might use different SAPs, for example, to identify dif
ferent functions that the application performs.

With Class I service only, your application program can also enable one or more
Group SAPs in addition to its individual SAPs. Group SAPs (GSAPs) let you send
messages to a group of programs on a remote node. To define a program as a
member of a group, the program sets the port characteristics to enable receipt of
the GSAP. Any other application can then address messages to the entire group at
once, simply by specifying the GSAP as the Destination SAP in a transmit. An
application must enable at least one ISAP before receiving frames addressed to its
GSAP.

Each 802.3 frame has a control (CTL) field that specifies what type of data the
frame contains. With SAPs, you must specify the contents of the CTL field on
every transmit and read them on every receive. With Class I service, the control
field can contain the value that specifies a VI, a TEST, or an XID frame. With user
supplied service, the field can contain a value that specifies any type of 802.3
frame.

4.3.6.3 Defining SNAP Protocol Identifiers

4-16

Subnetwork Access Protocol (SNAP) identifiers provide an alternate identifica
tion mode for 802.3 frames. SNAP identifiers consist of 5 bytes. Because they are
larger than SAPs, they let you address many more users on a single node, offering
flexibility for uniquely identifying applications in a very large environment.
SNAP identifiers might be preferable in an environment that consists only of
Digital nodes.

DECnet-RSX Programmer's Reference Manual

To use SNAPs, you assign identical SNAP identifiers to communicating programs.
You set characteristics to enable the port to transmit and receive messages with
that SNAP identifier, using the CC.SNP characteristic with IO.XSC. Then you
specify a message's SNAP identifier on transmit and read it on receive, using the
CC.SNM characteristic with IO.XTM and IO.XRC. You need not specify the Desti
nation SAP, Source SAP, or CTL fields, as you would in simple SAP addressing.
DLX automatically builds these fields with standard values when you specify a
SNAP identifier. When the data link receives a frame with these standard DSAP,
SSAP, and CTL values, it automatically proceeds to processing the SNAP identi
fier.

When enabling a SNAP identifier, you can add the following information to the
CC.SNP characteristics block to further specify how the port handles the proto
col:

• Protocol flags that specify modes for receiving and sending messages with
the protocol type.

• Specific remote addresses to and from which the port will process messages
with the protocol type.

4.3.6.4 Setting Protocol Flags

The characteristics block that you use to enable a SNAP identifier has a field for
protocol flags. Protocol flags can do the following:

• Set the receipt mode for the protocol type to exclusive or default

• Disable the protocol type

Your Ethernet port can receive messages with a given SNAP identifier in exclu
sive, default, or normal usage mode:

Exclusive
LF$EXC

Default
LF$DEF

Normal

The application receives all messages with the SNAP identifier.

The application receives messages with the SNAP identifier from
any address that another application does not receive in normal
mode.

The application specifies the addresses from which to receive
messages with the SNAP identifier.

DLX Ethernet Programming Facilities 4-17

For exclusive or default mode, you set the appropriate flag in the CC.DST charac
teristics block. Normal mode requires that you omit the flag and specify
addresses in the characteristic block, as the following section describes.

To disable a SNAP identifier, set the LF$DIS flag.

4.3.6.5 Specifying Protocoll Address Pairs

To instruct the port to process the SNAP identifier to and from certain addresses
only, add the addresses to the characteristics block that enables the protocol type
(CC.SNP). To ensure communication among DLX programs on different nodes,
each program enables the same SNAP identifier. Each program pairs the protocol
with the remote nodes' physical Ethernet addresses or sets the protocol flag to
receive in exclusive mode.

Two or more users on a node can enable the same SNAP identifier or the same
addresses, but only one user can enable any protocol/address pair. This prevents
two programs on a node from competing for the same frames.

Appendix G has information on the available SNAP identifiers.

4.3.6.6 Using Characteristics Blocks

4-18

Table 4-3 lists the characteristics for 802.3 frame format according to the DLX
function and QIO with which you use them. Within each function, the character
istics are listed alphabetically. Each QIO description later in this chapter has
detailed information on the related characteristics.

DECnet-RSX Programmer's Reference Manual

Table 4-3: Characteristics for 802.3 Frame Format

Symbol &
Value What It Does

Open the Port (IO.XOP)

CC.FMO
(103)

CC.SCO
(104)

Defines a single frame format for the port.

Requests Class I service for the 802.3 port.

Set and Get Port Characteristics (IO.XSC and IO.XGC)

CC.FRM
(202)

CC.GSP
(205)

CC.ISP
(204)

CC.MCT
(201)

CC.SNP
(206)

CC.SRV
(203)

With IO.XSC, enables or disables a second frame format; with
IO.XGC, returns the second frame format.

With IO.XSC, enables or disables the port's processing of a specified
group SAP; with IO.XGC, returns information on enabled GSAPs.

With IO.XSC, enables or disables the port's processing of a specified
individual SAP; with IO.XGC, returns information on enabled
ISAPs.

With IO.XSC, enables the port to receive messages with the speci
fied multicast address; with IO.XGC, returns the enabled multicast
address.

With IO.XSC, enables or disables the port's processing of the speci
fied SNAP protocol identifier; with IO.XGC, returns information on
enabled SNAP protocols.

With IO.XSC, requests Class I service; with IO.XGC, returns the
value for Class I service.

Transmit and Receive (IO.XTM and IO.XRC)

CC.ADR
(100)

CC.CTM
(107)

CC.DAD
(102)

CC.FMM
(105)

CC.SNM
(110)

CC.SPM
(106)

Sets a destination node address on transmit; returns the source node
address on receive.

Specifies the contents of the control field (CTL) on transmit; returns
the contents of the control field on receive.

Returns the destination address of an incoming frame on receive.

Specifies the frame format of a message on transmit; returns the
frame format of a message on receive.

Specifies the SNAP protocol identifier for a message on transmit;
returns the SNAP protocol on receive.

Specifies the Destination SAP /Source SAP pair for a message on
transmit; returns the DSAP/SSAP on receive.

DLX Ethernet Programming Examples 4-19

4.4 DLX QIOs

4-20

DLX requests conform to normal standards for RSX-II QIOs, including logical
unit numbers (LUNs), event flags, I/O status blocks, asynchronous system traps
(ASTs), and parameter lists. According to RSX-II standards, you can use anyone
of the three macro formats (see Chapter 2). You can use the QIO wait option
(QIOW$) to suspend execution of the program until the call completes.

The rest of this chapter describes the DLX QIOs. The descriptions are in the order
in which you will probably use the QIOs. Note that the QIO descriptions include
lists of codes for two distinct types of completion status:

• QIO completion status

• Characteristics completion status

QIO completion status codes tell you that the QIO executed successfully or that a
specific error occurred during execution. DLX returns the completion status to
the 2-word status block that you specify as the status parameter in the QIO's for
mat. IS.SUC (I) is the standard success code. The codes for execution errors have
an IE. prefix and three letters that represent a specific error. Each QIO description
includes any QIO completion status codes you may get.

Characteristics status codes tell you that the characteristics block was success
fully processed or that a specific error occurred during processing. DLX returns
the status code to the characteristics block's status field, C.STAT. CS.SUC (I) is
the code for success. The other codes have a CEo or CS. prefix and three variable
letters representing specific status. Each characteristic description lists the status
codes you can receive for that characteristic, and Appendix H provides more
detailed information on each code.

Note that the QIO can succeed even if the characteristics function encounters an
error. For full completion status, check the contents of both the status block and
C.STAT field.

DECnet-RSX Programmer's Reference Manual

IO.XOP

IO.XOP
(Open a Port)

4.4.1 IO.XOP - Open a Port

Use:

Issue this QIO to create a port for DLX transmission and reception. The port is an
I/O access path to the controller whose device ID you specify in arguments p4
and p5. In response to this QIO, DLX scans the controller's port data base and
associates an available port with the logical unit number (LUN) that you specify.

The port will open for Ethernet frame format unless you use the p4 and p5 param
eters to specify 802.3 format.

Format:

QIO$ IO.XOP ,lun,[efn],,[status],[ast], <pl,P2,PJ, [P4,P5] >

Arguments:

IO.XOP

is the function code that opens a port.

lun

is the logical unit number associated with the port.

efn

is an optional event flag number set when the QIO completes.

status

is the address of an optional 2-word status block that contains the QIO's comple
tion status in the low-order byte of the first word (see under "QIO Completion
Status").

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-21

IO.XOP

pl

is the address of an ASCII string that identifies the controller on which to open the
port. The string has the form dev-ctl, where dev is a device name, such as UNA or
QNA, and ctl is the decimal value for the controller number.

p2

is the length of an ASCII string that identifies the controller on which to open the
port. The string has the form dev-ctl, where dev is a device name, such as UNA or
QNA, and ctl is the decimal value for the controller number.

P3

is a word argument that specifies the timeout value and port mode. The timeout
value specifies how long to wait to receive a transmitted message. The low-order
byte of the word designates the receive timeout value as follows:

timeout = 0 for no receive timer.
timeout = < n>

where n is the timer value in seconds. (The timer value n causes the timeout to
have a range of n-l to n.)

p4

is the address of the characteristics buffer.

p5 is the length of the characteristics buffer.

Characteristics Buffer:

4-22

The characteristics buffer can contain the following blocks:

CC.FMO
CC.SCO

Frame Format for Open
Class I Service for Open

The blocks must be in sequential order in the buffer; that is, the frame format
characteristic must precede the service class characteristic.

Refer to Appendix H for more information on the characteristics status codes.

DECnet-RSX Programmer's Reference Manual

IO.XOP

CC.FMO (103) = Frame Format for Open

This characteristic specifies a frame format for opening the port. You can
specify one format. To use both Ethernet and 802.3 frame format, specify one
when opening the port, and the other when setting port characteristics with
IO.XSC.

The C.CHRL field consists of 2 bytes:

• The low byte can contain NX$ETH (1) for Ethernet format or NX$802
(2) for 802.3 format.

• The high byte is reserved.

RESERVED FRAME FORMAT

CC.FMO returns the following status codes in the C.STAT field:

CE.FMI
CE.FMC
CS.SUC

Illegal frame format.
Frame usage conflict.
Success.

CC.SCO (104) = Class I Service for Open

C.CHRL

LKG-1233-87

This characteristic requests 802.3 Class I service for your application. You
must use CC.SCO to get Class I service; Class II (user-supplied) service is the
default.

The C. CHRL field consists of 2 bytes:

• The low byte must contain NX$CLI (4).

• The high byte is reserved.

RESERVED SERVICE CLASS C CHRL

LKG-1234-87

DLX Ethernet Programming Facilities 4-23

IO.XOP

CC.SCO returns the following characteristics status codes in C.STAT:

CE.FMC
CE.SRI
CS.SUC

Frame usage conflict.
Illegal service class.
Success.

010 Completion Status:

4-24

IS.SUC
(1)

177736
IE.ALN
(-34.)

177776
IE.lFC
(-2.)

177646
IE.NSF
(-26.)

177760
IE.PRI
(-16.)

177757
IE.RSU
(-17.)

The port successfully opened.

The LUN you specified is already in use.

The LUN is not assigned to NX:.

You specified a non-existent line.

The port you specified is not available for use by DLX.

The port you specified is already in use.

DECnet-RSX Programmer's Reference Manual

IO.XCS

IO.XSC
(Set Characteristics)

4.4.2 IO.XSC - Set Characteristics

Use:

Use this QIO to set various port characteristics. The characteristics can include a
second frame format, multicast addresses, and protocols.

For a description of the fields in characteristics blocks, refer to Section 4.3.4.
Always put a zero (0) in the C .DA TO field.

Format:

QIO$ IO.XSC,lun,[e!n],,[status],[ast], <pl,p2>

Arguments:

IO.XSC

is the function code whose parameters specify the location and length of the char
acteristics buffer.

lun

is the logical unit number associated with the port.

efn

is an optional event flag number set when the call completes.

status

is the address of a 2-word status block that contains completion status. On com
pletion, the second word of the I/O status block indicates how much of the char
acteristics block was processed.

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-25

lo.xes

pI

is the address of the characteristics buffer.

p2

is the length of the characteristics buffer. The buffer can contain multiple charac
teristics blocks.

Characteristics Buffer:

4-26

This section has information on the characteristics blocks to use with IO.XSC.
The blocks are in alphabetical order.

You can use the following blocks with Ethernet frame format:

CC.DST
CC.FRM
CC.MCT

Ethernet Protocol Type for Port
Frame Format for Port
Multicast Address for Port

You can use the following blocks with 802.3 frame format:

CC.FRM
CC.MCT
CC.GSP
CC.ISP
CC.SNP
CC.SRV

Frame Format for Port
Multicast Address for Port
Group SAP for Port
Individual SAP for Port
SNAP Identifier for Port
Service Class for Port

Enter the characteristics blocks in sequential order in the buffer. For example,
specify the frame format before the characteristics that depend on a particular
frame format.

Use the data input size field (C.DATI) to indicate how many bytes of data you are
supplying.

Refer to Appendix H for more information on characteristics status codes.

CC.DST (200) = Protocol Type for Port

This characteristic contains a protocol type and may include other instruc
tions about the use of the protocol type. It can optionally set protocol flags
and specify Ethernet addresses to which to send and from which to receive
messages with the protocol type. Unless you set the DFSDIS flag, the charac
teristic enables the protocol type.

DECnet-RSX Programmer's Reference Manual

lo.xes

The protocol type must have a value greater than 1500. Store the low byte of
the protocol in the high byte of C. CHRL and the high byte of the protocol in
the low byte of C. CHRL.

You can use the following protocol flags:

• LF$DIS disables the protocol type.

• LF$EXC causes the port to receive the protocol type in exclusive mode.

• LF$DEF causes the port to receive the protocol type in default mode.

• LF $ PAD requests padding support for frames with the protocol type.

You can add the Ethernet addresses of remote nodes to the protocol type
characteristic, but not with exclusive or default mode.

The C.DATI field equals 4 + 6 n bytes, where n is the number of addresses
that you include.

I

PROTOCOL I TYPE
I

RESERVED I PROTOCOL FLAGS

ADDRESS 1

--- -- -- -- -- -- -

ADDRESS n

DLX Ethernet Programming Facilities

C.CHRL

n ADDRESSES
(6 BYTES EACH)

LKG-1236-87

4-27

lo.xes

CC.DST returns the following characteristics status codes to the C.STAT
field:

CE.ACN
CE.IUN
CE.PCN
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SUC

Address usage conflict.
Illegal use of multicast address.
Protocol usage conflict.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

CC.FRM (202) = Frame Format for Port

4-28

CC.FRM enables or disables a frame format for the port. Use it to enable a for
mat other than the one in which you opened the port.

The C.CHRL field consists of 2 bytes:

• The low byte specifies the format. The low byte can have the value
PF$ETH (2) for Ethernet format or PF$802 (4) for 802.3 format.

• The high byte specifies whether to enable or disable the format. A value
of zero (0) disables the format; any other value enables it.

ENABLE/ DISABLE FORMAT C.CHRL

LKG-1235-87

CC.FRM returns the following characteristics status codes to the C.STAT
field:

CE.FMI
CE.FMC
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SUC

Illegal frame format.
Frame usage conflict.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

DECnet-RSX Programmer's Reference Manual

lo.xes

CC.GSP (205) = Group SAP for Port

This characteristic enables or disables a specified GSAP for the port. You must
first enable Class I service and an Individual Sap. The C. CHRL field consists of
two bytes:

• The low byte is the GSAP value, in the range 0 to 255., where bit zero (0)
must equal 1.

• The high byte specifies whether to enable or disable. A value of zero (0)
disables the GSAP; any other value enables it.

ENABLE / DISABLE GSAP C CHRL

LKG-1237-87

CC.GSP returns the following characteristics status codes to the C.STAT field:

CE.FMC
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SUC

Frame usage conflict.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

CC.ISP (204) = Individual SAP for Port

This characteristic enables or disables a specified Individual SAP. The
C.CHRL field consists of two bytes:

• The low byte is the SAP value, in the range 0 to 255., where bit 0 must
equalO.

• The high byte specifies whether to enable or disable. A value of zero (0)
disables the ISAP; any other value enables it.

ENABLE / DISABLE ISAP C CHRL

LKG-1238-87

DLX Ethernet Programming Facilities 4-29

lo.xes

4-30

CC.ISP returns the following characteristics status codes to the C.STAT field:

CE.FMC
CE.SPU
CE.RES
CE.RTL
CE.RTS
CE.UDG
CS.SUC

Frame usage conflict.
SAP in use.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

CC.MCT (201) = Multicast Address for Port

CC.MCT enables the port to receive messages with the specified multicast
address. The C. CHRL field consists of 6 bytes.

1 0 C.CHRL

3 2

5 4

LKG-1239-87

CC.MCT returns the following characteristics status codes in the C.STAT
field:

CE.MCE
CE.NMA
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SUC

Multicast address already enabled.
Not a multicast address.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

CC.SNP (206) = SNAP Identifier for Port

This characteristic specifies a SNAP identifier and may include other instruc
tions about the use of the protocol. It can optionally set protocol flags and
specify Ethernet addresses to which to send and from which to receive mes
sages with the SNAP identifier. Unless you set the LF$DIS flag, the character
istic enables the port to send and receive messages that have the protocol.

DECnet-RSX Programmer's Reference Manual

lo.xes

The C.CHRL field consists of the following:

• Bytes zero (0) through 4 contain the SNAP identifier.

• Byte 5 is reserved.

• Byte 6 contains any flags to set (LF$EXC for exclusive mode, LF$DEF for
default mode, or LF$DIS to disable the SNAP identifier).

• Byte 7 is reserved.

• Successive 6-byte groups contain any Ethernet addresses to pair with the
protocol. You cannot add addresses with exclusive or default mode.

The C.DATI field equals 8 + 6 n bytes, where n is the number of addresses
that you include.

PROTOCOL 10 (1) PROTOCOL 10 (0) C.CHRL

PROTOCOL 10 (3) PROTOCOL 10 (2)

RESERVED PROTOCOL 10 (4)

RESERVED PROTOCOL FLAGS

ADDRESS 1

I--- - -- -- -- -- -- -

n ADDRESSES
ADDRESS n (6 BYTES EACH)

LKG-1240-87

DLX Ethernet Programming Facilities 4-31

lo.xes

CC.SNP returns the following characteristics status codes in the C.STAT field:

CE.FMC
CE.RES
CE.RTL
CE.RTS
CE.SNU
CE.UDF
CS.SUC

Frame usage conflict.
Resource allocation failure.
Request too large.
Request too small.
SNAP in use.
Undefined function.
Success.

CC.SRV (203) = Service Class for Port

4-32

This characteristic specifies 802.3 Class I service. In the buffer, this character
istics block precedes SAP or SNAP identifiers. Use it in conjunction with
CC.FRM. C.CHRL has two bytes:

• The low byte specifies the service class and has the value PF$CLI (10).

• The high byte specifies whether to enable or disable. A value of zero (0)
disables Class I service; any other value enables it.

ENABLE/ DISABLE SERVICE CLASS C.CHRL

LKG-1241-87

CC.SRV returns the following characteristics status codes in the C.STAT field:

CS.IGN
CE.SRI
CE.RES
CE.RTL
CE.RTS
CE.UDF
CS.SUC

Ignored.
Illegal service class.
Resource allocation failure.
Request too large.
Request too small.
Undefined function.
Success.

DECnet-RSX Programmer's Reference Manual

IO.XGC

IO.XGC
(Get Characteristics)

4.4.3 IO.XGC - Get Characteristics

Use:

Use this QIO to return information on various characteristics of a port. The char
acteristics to return include the port's frame format, enabled multicast addresses,
enabled protocols, and so forth.

For more information on characteristics, refer to section 4.3.4.

Format:

QIO$ IO.XGC,lun,[ejn],,[status],[ast] , <pl,p2 >

Arguments:

IO.XGC

is the function code whose parameters specify the location and length of a charac
teristics buffer that returns port characteristics.

lun

is the logical unit number associated with the port.

ejn

is an optional event flag number set when the QIO completes.

status

is the address of a 2-word status block that contains the QIO completion status.
On completion, the second word of the I/O status block indicates how much of
the characteristics block was processed.

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-33

IO.XGC

pI

is the address of the characteristics buffer.

p2

is the length of the characteristics buffer. The buffer can contain multiple charac
teristics blocks.

Characteristics Buffer:

4-34

This section has information on the characteristics blocks to use with IO.XGC.
The blocks are arranged alphabetically.

You can use the following blocks with Ethernet frame format:

CC.DST
CC.FRM
CC.MCT

Ethernet Protocol Type for Port
Frame Format for Port
Multicast Address for Port

You can use the following blocks with 802.3 frame format:

CC.FRM
CC.GSP
CC.ISP
CC.MCT
CC.SNP
CC.SRV

Frame Format for Port
Group SAP for Port
Individual SAP for Port
Multicast Address for Port
SNAP Identifier for Port
Class I Service for Port

For characteristics with multiple occurrences, append multiple blocks. Each sub
sequent block returns the next occurrence of the characteristic. For example,
CC.MCT returns an enabled multicast address; for multiple multicast addresses,
append multiple CC .MCT blocks in the buffer. If no more occurrences of the char
acteristic exist, the C.STAT field returns an IE.IGN (ignored) error.

For variable-length fields, such as a protocol that mayor may not be paired with a
number of addresses, check the contents of the C.DATO field for the size of the
returned data.

Refer to Appendix H for more information on characteristics status codes.

DECnet-RSX Programmer's Reference Manual

IO.XGC

CC.DST (200) = Ethernet Protocol Type for Port

This characteristic returns information on the enabled Ethernet protocol
type, including the protocol flags and any Ethernet addresses you may have
paired with the protocol. A recurrence of the characteristics block returns
information on the next enabled protocol type.

The protocol type and flags consist of 2 bytes each, and each address consists
of 6 bytes. The high byte of C.CHRL returns the low byte of the protocol and
the low byte of C. CHRL returns the high byte of the protocol.

PROTOCOL: TYPE
,

PROTOCOL I FLAGS
I

ADDRESS 1

--- -- --

ADDRESS n

-- -- ---

C.CHRL

n ADDRESSES
(6 BYTES EACH)

LKG-1242-87

The value in the C.DATO field equals 4 + 6 n bytes, where n is the number of
addresses for the protocol type.

DLX Ethernet Programming Facilities 4-35

IO.XGC

4-36

CC.DST returns the following characteristics status codes in the C.STAT
field:

CE.DAO
CE.RTS
CS.SUC

Data overrun.
Request too small.
Success.

CC.FRM (202) = Frame Format for Port

This characteristic returns the current frame format(s) for the port.

The C.CHRL field consists of 2 bytes:

• The low byte returns PF$ETH (2) for Ethernet format, PF$802 (4) for
802.3 format, or PF$ETH!PF$802 (6) for both formats.

• The high byte is reserved.

RESERVED FORMAT C.CHRL

LKG-1243-87

CC.FRM returns the following characteristics status codes in the C.STAT
field:

CE.RTL
CE.RTS
CS.SUC

Request too large.
Request too small.
Success.

CC.MCT (201) = Multicast Address for Port

This characteristic returns a multicast Ethernet address currently enabled for
the port. A recurrence of the characteristics block returns the next enabled
multicast address.

The C. CHRL field consists of 6 bytes. For more information on Ethernet
addresses, refer to section 4.3.3.

DECnet-RSX Programmer's Reference Manual

IO.XGC

1 I 0 C.CHRL
MULTICAST

3 I 2
ADDRESS

5 I 4

LKG-1244-87

CC.MCT returns the following characteristics status codes in the C.STAT
field:

CE.RTL
CE.RTS
CS.SUC

Request too large.
Request too small.
Success.

CC.GSP (205) = Group SAP for Port

This characteristic returns information on enabled Group SAPs. The C.CHRL
field has two bytes:

• The high byte returns the number of currently -enabled Group SAPs for
the port.

• The low byte returns the first enabled Group SAP for the first occur
rence of the block. The next occurrence of the block returns the next
enabled Group SAP.

TOTAL GSAPs GSAP C.CHRL

LKG-1245-87

CC. GSP returns the following characteristics status codes in C. ST AT:

CE.FMC
CE.RTL
CE.RTS
CS.IGN
CS.SUC

Frame usage conflict.
Request too large.
Request too small.
Ignored.
Success.

DLX Ethernet Programming Facilities 4-37

IO.XGC

CC.ISP (204) = Individual SAP for Port

This characteristic returns an enabled Individual SAP. A recurrence of the
characteristics block returns the next Individual SAP.

The C.CHRL field consists of two bytes:

• The low byte is the SAP, which is in the range zero (0) to 255, where bit
zero (0) equals O.

• The high byte returns the number of currently-enabled Individual SAPs
for the port.

TOTAL ISAPs ISAP C.CHRL

LKG-1246-87

CC.ISP returns the following characteristics status codes in the C.STAT field:

CE.FMC
CE.RTL
CE.RTS
CS.SUC

Frame usage conflict.
Request too large.
Request too small.
Success.

CC.SNP (206) = SNAP Identifier for Port

This characteristic returns information about the SNAP identifiers currently
enabled for the port. The first occurrence of the block returns information on
the first SNAP; subsequent occurrences of the block each return the next
SNAP.

The C.CHRL field consists of 8 bytes:

• Bytes 0-4 contain the SNAP identifier.

• Byte 5 returns the number of currently-enabled SNAP identifiers for the
port.

• Byte 6 contains any protocol flags.

• Byte 7 returns the number of ports currently using this SNAP identifier.

4-38 DECnet-RSX Programmer's Reference Manual

IO.XGC

• Successive 6-byte groups contain any Ethernet addresses associated with
the protocol.

PROTOCOL ID (1)

PROTOCOL ID (3)

TOTAL SNAPs

TOTAL PORTS

1-----

PROTOCOL ID (0)

PROTOCOL ID (2)

PROTOCOL ID (4)

PROTOCOL FLAGS

ADDRESS 1

ADDRESS n

C.CHRL

n ADDRESSES
(6 BYTES EACH)

LKG-124 7-87

CC.SNP returns the following characteristics status codes in the C.STAT field:

CE.FMU
CE.RTL
CE.RTS
CS.SUC

Frame usage conflict.
Request too large.
Request too small.
Success.

DLX Ethernet Programming Facilities 4-39

IO.XGC

4-40

CC.SRV (203) = Class I Service for Port

This characteristic returns the value for 802.3 Class I service when 802.3 is a
second frame format. Use it in conjunction with CC.FMM.

The C.CHRL field has two bytes:

• The low byte returns PF$CLI (10) if Class I service is enabled.

• The high byte is reserved.

RESERVED SERVICE CLASS C.CHRL

LKG-1248-87

CC. SRV returns the following characteristics status codes in the C . STAT field:

CE.RTL
CE.RTS
CS.SUC

Request too large.
Request too small.
Success.

DECnet-RSX Programmer's Reference Manual

IO.XTM

IO.XTM
(Transmit a Message on the Port)

4.4.4 IO.XTM - Transmit a Message on the Port

Issue this QIO to transmit a message on an open port. In entering the QIO, you
specify the address and length of a buffer that contains the data that you want to
transmit. When the QIO executes, it transfers that data to a network buffer.

You can set a number of characteristics for the transmit operation, including the
destination address, frame format, protocol, and so forth.

Format:

QIO$ IO.XTM,lun,[e/n],,[status],[ast] , <pl,p2,[p3,p4] >

Arguments:

IO.XTM

is the function code for transmitting a message.

lun

is the logical unit number associated with the port.

e/n

is an optional event flag number set when the call completes.

status

is the address of a 2-word status block that contains completion status. The status
block contains the QIO completion status in the low-order byte of the first word
(see under "QIO Completion Status").

ast

is the entry point into an optional user-written AST routine to execute after the
QIO completes.

pI

is the address of the user buffer that contains the message to transmit.

DLX Ethernet Programming Facilities 4-41

IO.XTM

p2

is the length of the message to transmit.

P3

is the address of the characteristics buffer.

p4

is the length of the characteristics buffer.

Characteristics Buffer:

4-42

This section has information on the characteristics blocks to use with IO.XTM.
The blocks are described in alphabetical order.

You can use the following characteristics with Ethernet frame format:

CC.ADR
CC.FMM
CC.PRO

Address for Message
Frame Format for Message
Ethernet Protocol Type for Message

You can use the following characteristics with 802.3 frame format:

CC.ADR
CC.CTM
CC.FMM
CC.SNM
CC.SPM

Address for Message
Control Field for Message
Frame Format for Message
SNAP Identifier for Message
Destination and Source SAP for Message

Enter the characteristics blocks into the buffer in sequential order. For example,
specify the frame format before the characteristics that depend on a particular
frame format.

Refer to Appendix H for more information on characteristics status codes.

CC.ADR (100) = Address for Message

This characteristic specifies the Ethernet address to use as a destination for
transmission; it is required on each transmission. The address consists of 6
bytes. For information on setting up the Ethernet address for DECnet nodes,
refer to the introductory sections of this chapter.

DECnet-RSX Programmer's Reference Manual

IO.XTM

1 I 0 C.CHRl
DESTINATION

3 I 2
ADDRESS

5 I 4

LKG-1249-87

CC.ADR returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.CTM (107) = Control Field for Message

This characteristic specifies the value for the 802.3 control (CTL) field. Use
CC.CTM in conjunction with an Individual or Group SAP (ISAP or GSAP)
address to specify the contents of the frame.

For user-supplied service t you can create symbolics to use in the control field
in accordance with the IEEE standard. For Class I servicet you can 1.iSe the fol
lowing symbolics:

Symbolic Message Type

SCSUIF UI

SCSXIF XID

SCSTSF TEST

CTl (1) CTl (0) C.CHRl

LKG-1250-87

DLX Ethernet Programming Facilities 4-43

IO.XTM

4-44

CC.CTM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.FMM (105) = Frame Format for Message

This characteristic specifies the frame format for the message. The character
istic block is necessary only with 802.3 transmissions, since Ethernet is the
default format. The C.CHRL field consists of 2 bytes:

• The low byte contains NX$ETH (1) for Ethernet format or NX$802 (2)
for 802.3 format.

• The high byte is reserved.

RESERVED FRAM E FORMAT C.CHRL

LKG-1251-87

CC.FMM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.PRO (101) = Protocol Type for Message

This characteristic supplies the message's protocol type. You must supply the
protocol type on all Ethernet-format transmissions.

The C.CHRL field contains 2 bytes for the protocol type.

PROTOCOL i TYPE C.CHRL

LKG-1252-87

CC.PRO returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

DECnet-RSX Programmer's Reference Manual

IO.XTM

CC.SNM (110) = SNAP Identifier for Message

This characteristic specifies a message's SNAP identifier. Use six bytes, with 5
bytes for the SNAP and 1 byte reserved, as follows:

SNAP (1) SNAP (0) C.CHRL

SNAP (3) SNAP (2)

RESERVED SNAP (4)

LKG-1254-87

CC.SNM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.SPM (106) = Destination and Source SAPs for Message

This characteristic specifies a message's Destination and Source SAPs. Use it
in conjunction with CC.CTM.

SSAP DSAP C.CHRL

LKG-1253-87

CC.SPM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

DLX Ethernet Programming Facilities 4-45

IO.XTM

QIO Completion Status:

4-46

IS.SUC
(1)

177761
IE.ABO
(-15.)

177777
IE.BAD
(-1)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177772
IE.SPC
(-6.)

The message was successfully transmitted to the remote node.

The transmission was aborted. Close and reopen the port.

You get this code with Ethernet frame format if you omit the
protocol type and/or remote address. You get the code with
802.3 frame format if you omit either a SNAP identifier or a
DSAP /SSAP pair and control field.

The LUN is not assigned to NX:.

No open port has the specified LUN.

The transmit buffer is too large. This status code applies only to
PDP-I 1144 or PDP-I 1170 with extended memory.

DECnet-RSX Programmer's Reference Manual

IO.XRC

IO.XRC
(Receive a Message on the Port)

4.4.5 IO.XRC - Receive a Message on the Port

Issue this QIO to receive a message from a remote node.

Format:

QIO$ IO.XRC,lun,[e/n],,[status],[ast], <pl,p2, 1P3,p4] >

Arguments:

IO.XRC

is the function code for receiving a message.

lun

is the logical unit number associated with the port.

e/n

is an optional event flag number set when the call completes.

status

is the address of a 2-word status block. The status block contains the QIO comple
tion status in the low-order byte of the first word (see under "QIO Completion
Status' ').

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

pI

is the address of a user buffer to receive the message.

p2

is the length, in bytes, of the user buffer to receive the message. The length of the
received message cannot exceed the system buffer, regardless of the length you
specify inp2.

DLX Ethernet Programming Facilities 4-47

IO.XRC

P3

is the address of the characteristics buffer.

p4

is the length of the characteristics buffer.

Characteristics Buffer:

4-48

This section has information on the characteristics blocks to use with 10 .XRC.
The blocks are in alphabetical order.

You can use the following characteristics with Ethernet frame format:

CC.ADR
CC.DAD
CC.FMM
CC.PRO

Source Address of Message
Destination Address of Message
Frame Format of Message
Ethernet Protocol Type of Message

You can use the following characteristics with 802.3 frame format:

CC.ADR
CC.CTM
CC.DAD
CC.FMM
CC.SNM
CC.SPM

Source Address of Message
Control Field of Message
Destination Address of Message
Frame Format of Message
SNAP Identifier of Message
Destination and Source SAPs of Message

Refer to Appendix H for more information on characteristics status codes.

DECnet-RSX Programmer's Reference Manual

IO.XRC

CC.ADR (100) = Address of Message

This characteristic returns the source Ethernet address from which a received
frame was sent. The address consists of 6 bytes.

1
SQUIRCE

0 C.CHRL

3 I 2
ADDRESS

5 I 4

LKG-1255-87

CC.ADR returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.CTM (107) = Control Field of Message

This characteristic returns the 802.3 control (CTL) field's value. The control
field tells what type of data the frame contains in frames with DSAP/SSAP
identifiers.

In frames with Class I service only, the control field value will be one of the
following:

Symbolic Message Type

SCSVIF VI

SCSXIF XID

SCSTSF TEST

CTL (1) CTL (0) C.CHRL

LKG-1256-87

DLX Ethernet Programming Facilities 4-49

IO.XRC

4-50

CC.CTM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.DAD (102) = Destination Address of Message

This characteristic returns the destination address on a received frame; it will
be either your physical address or one of your enabled multicast addresses.
The destination address consists of 6 bytes.

1
DESTIJATION

0 C.CHRL

3 I 2

5
ADDIESS

4

LKG-1257-87

CC.DAD returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.FMM (105) = Frame Format of Message

This characteristic returns the frame format of a received message. The
C. CHRL field consists of 2 bytes:

• The low byte returns NX$ETH (1) for Ethernet format or NX$802 (2) for
802.3 format.

• The high byte is reserved.

RESERVED FRAME FORMAT C.CHRL

LKG-1258-87

DECnet-RSX Programmer's Reference Manual

IO.XRC

CC.FMM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.PRO (101) = Protocol Type of Message

CC.PRO returns the protocol type for an Ethernet-format frame. The
C.CHRL field contains 2 bytes for the protocol type.

PROTOCOL I TYPE C.CHRL

LKG-1252-87

CC.PRO returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

CC.SNM (110) = SNAP Identifier of Message

This characteristic returns the SNAP identifier of a received message. The
SNAP identifier has 5 bytes, formatted as follows:

SNAP (1) SNAP (0) C.CHRL

SNAP (3) SNAP (2)

RESERVED SNAP (4)

LKG-1259-87

CC.SNM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

DLX Ethernet Programming Facilities 4-51

IO.XRC

CC.SPM (106) = SAPs of Message

CC.SPM returns the Destination SAP (DSAP) and Source SAP (SSAP) address of
a received message. The C.CHRL field has two bytes: the low byte stores the
DSAP, and the high byte stores the SSAP.

SSAP DSAP C.CHRL

LKG-1260-87

CC.SPM returns the following characteristics status codes in the C.STAT
field:

CS.IGN
CS.SUC

Ignored.
Success.

010 Completion Status:

4-52

Is.sue
(1)

177761
IE.ABO
(-15.)

177763
IE.DAO
(-13.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177641
IE.TMO
(-95.)

You successfully received a message from the remote node. The
second word of the I/O status block contains the number of
bytes you received.

The receive function was aborted because an unrecoverable
error occurred in the hardware device. Close and reopen the
port.

Some data was lost because a message arrived before the appli
cation issued an IO.XRC directive, or because the user buffer
was too small and truncated the message. The user buffer length
is in the second word of the I/O status block.

The LUN is not assigned to NX:.

No open port has the specified logical unit number.

A timeout condition occurred. The timer interval that you spec
ified in opening the port expired without a message arriving.

DECnet-RSX Programmer's Reference Manual

IO.XCL

IO.XCL
(Close the Port)

4.4.6 IO.XCL - Close the Port

Use:

Issue IO.XCL to close the port.

Format:

QIO$ IO.XCL,lun,[e/n],,[status],[ast]

Arguments:

IO.XCL

is the function code that closes the port.

lun

is the logical unit number associated with the port.

e/n

is an optional event flag number set when the call completes.

status

is the address of a 2-word status block. The status block contains the QIO comple
tion status in the low-order byte of the first word (see under' 'QIO Completion
Status").

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

DLX Ethernet Programming Facilities 4-53

IO.XCL

QIO Completion Status:

4-54

IS.SUC
(1)

177776
IE.lFC
(-2.)

177733
IE.NLN
(-37.)

The port has successfully closed.

The LUN is not assigned to NX:.

No open port has the specified LUN.

DECnet-RSX Programmer's Reference Manual

4.4.7 DLX QIO Programming Examples

The following programs are examples of programming D LX for an Ethernet. The
first example uses 802.3 frame format. The second example uses Ethernet frame
format.

DLX Ethernet Programming Facilities 4-55

4.4.7.1 802.3 Example

4-56

This program is a DLX 802.3 test program. You can run the program on two
nodes to test the nodes' ability to send and receive 802.3 frames on the data link
level. On the transmitting node, the task builds and sends 802.3 XID, TEST, or UI
frames. On the receiving node, the task simply returns the received frames to the
sender .

• TITLE 802TST - 802.3 Test Tool
.IDENT /VOL 00/

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This soft~are is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital a~sumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program tests an 802.2 data link. As a "sender," the
task builds an 802.3 XID, TEST, or UI command frame and transmits it
to the remote responder. As a "receiver," the task transmits the
received frames back to the sender. The sending task then logs the
returned data to the terminal or to a file.

The program is initiated by command line options:

Option

/DEV[ICE]=ddd-n
/DSA[P]=n
/GSA[P]=n
/HAR[DWARE]=nn- ... -nn
/ISA[P]=n
/LOG
/MES[SAGE]=message
/NOD[E]=n.m
/PHY[SICAL]=nn- ... -nn
/RES[PONDER]
/SIZ[E]=n
/USE[R]
/SNA[P]=nn- ... -nn

Default

/DEVICE=UNA-O
/DSAP=4
none
none
/ISAP=4
none
/MES=XID
none
none
none
60.
none
none

Comment

Controller to use
Destination SAP
Group SAP
Remote hardware address
Individual SAP
Log to 802TST.DAT
Build XID, TEST or UI
Remote DECnet address
Remote physical address
Responder mode
Size to transmit
User-supplied service
SNAP protocol identifier

The following con~~nds configure 802TST to respond to frames sent either
to SAP 8 or to SNAP protocol identifier 01-02-03-04-05. The frames will
come from the controller QNA-O on node 55.202:

>INS 802TST
>802 /DEV=QNA-0/RES/ISAP=8/SNAP=01-02-03-04-05

DECnet-RSX Programmer's Reference Manual

The program loops back received 802.3 frames until it is aborted.

The following commands are executed on a different system on the same LAN.
They cause 802TST to send a 60. byte TEST message to the above image of
802TST on node 55.202. They also cause the program to log the response to
the file SY:[current]802TST.DAT:

>INS 802TST
>802 /DEV=QNA-0/ISAP=16/DSAP=S/NOD=55.202/MES=TEST/LOG

The program exits after receiving and logging the response. Note that
the, responder program must be started *before* the sender program transmits
any frames.

To assemble, use the following command string:

MAC S02TST,802TST/-SP/LI:TTM =IN:[130,10]NETLIB/ML,[200,200]802TST

To task build, use the following command string:

802TST/PR:0, 802TST/-SP
802TST
[lOl,124]NETLIB/LB
/
UNITS=4
ASG=TI:l:2:3:4
TASK= ... 802
GBLDEF=$HELP:O
//

Note: the IN: device must be the DECnet distribution device
after the PREGEN (if any) has been performed .

• SBTTL Macros

.MCALL

.MCALL

.MCALL

. MCALL
• MCALL

DIR$,ALUN$S,QIOW$,QIO$,CLEF$S,SETF$S,WTSE$S,EXIT$S,EXST$S
GTIM$S,SREX$S,ENAR$S,DSAR$S,ASTX$S
GCMLB$,GCML$,ISTAT$,STATE$,TRAN$
FCSMC$
DLXDF$,CHRDF$,CSMDF$

FCSMC$
DLXDF$ ",ETHERNET
CHRDF$
CSMDF$

. MACRO

. IRP
MOV
.ENDM
.ENDM

SAVRG list
reg,<list>
reg,-(SP}

SAVRG

.MACRO RESRG list

DLX Ethernet Programming Facilities

Define FCS macros
Define DLX and EPM symbols
Define characteristics
Define CSMA/CD symbols

(continued on next page)

4-57

A:
B:

EQUALS
SPACE
TAB

CMDLUN

4-58

.IRP
MOV
.ENDM
.ENDM

reg, <list>
(SP)+,reg

RESRG

.MACRO TYPE adr,len,vfc
MOV adr,OUTQIO+Q.IOPL
MOV len,OUTQIO+Q.IOPL+2 .
• IF NB,vfc
MOV vfc,OUTQIO+Q.IOPL+4
.IFF
MOV #40,OUTQIO+Q.IOPL+4
.ENDC
DIR$ #OUTQIO
.ENDM TYPE

• MACRO
BIT
BNE
TYP;:
BR
PUTS

.ENDM

• MACRO
MOV
MOV
MOV
CALL
MOV
.ENDM

. MACRO
FORMAT
LOG
.ENDM

LOG adr,len,?A,?B
#OP.LOG,OPTFLG
A
adr,len
B
#LOGFIL,adr,len

LOG

FORMAT adr,fmt
adr,R2
fmt,R1
#FMTBUF,RO
$EDMSG
Rl,FMTL
FORMAT

ERROR adr, fmt
<adr>,<fmt>
#FMTBUF,FMTL
ERROR

code,size • MACRO
.WORD
.WORD
• WORD
.ENDM

CHRGEN
code
size
0,0
CHRGEN

Characteristic type = code
Buffersize = size bytes
Reserved, status

• MACRO
.lIF
.ENDM

OFFSET block, symbol
EQ,<BF-1> 'symbol
OFFSET

.-block'1

.SBTTL Local constants

, =
40
11

1

DECnet-RSX Programmer's Reference Manual

TILUN 2
CHNLUN 3
LOGLUN 4
CMDEFN 1
TIEFN 2
CHNEFN 3
DONE 4

ISAP
DSAP
AREABT
MXAREA
MXNODE
MXCTL
XIDI
XID2
XID3
MAXFRM
BUFSIZ
NUMBUF
TMO

4
o
176000
63.
1023.
377
"BI0000001
"BOOOOOOOI
"BOOOOOOOO
1492.
MAXFRM
4.
5

.SBTTL Impure data

.PSECT $IDATA D,RW

.SBTTL .TPARS action
OPTFLG: .BLKW 1

OP.DEV 1
OP.DSP 2
OP.GSP 4
OP.HDW 10
OP.ISP 20
OP.LOG 40
OP.MSG 100
OP.NOD 200
OP.PHY 400
OP.RSP 1000
OP.SIZ 2000
OP.USR 4000
OP.SNP 10000

MSGFLG: .BLKW 1
OP.TST 1
OP.UIF = 2
OP.XID = 4

.MSADR: .BLKW 1

.MSLEN: .BLKW 1

.NDADR:

.HWADR:

.PHADR: .BLKW 3

.CTL: .BLKW 1

.SIZE: .BLKW 1

.DEVNM: .BLKW 2

.NODID: .BLKW 2

.HXADR: .BLKW 3

.GSAP: .BLKB 1

DLX Ethernet Programming Facilities

Default Individual/Source SAP
Default Destination SAP
Area mask
Area limit
Node limit
Maximum control value
XID message bytes

Maximum frame data
Receive buffer length
Number of receive buffers
Time-out value in seconds

routine state variables
Option flags

/DEV[ICE]
/DSA[p]
/GS'A[p]
/HAR[DWARE ADDRESS]
/ISA[P] -
/LOG
/MES[SAGE TYPE]
/NOD[E] -
/PHY[SICAL ADDRESS]
/RES[PONDER]
/SIZ[e]
/USE[R]
/SNA[P]

Message type flags
TEST
UI
XID

Message address
length

Remote node address (48 bits)
Hardware address
Physical address
CTL field
Size of data block to transmit
Device length, address
Node address (area, node)
Hex address
Group SAP

(continued on next page)

4-59

.ISAP: .BLKB

.DSAP: .BLKB

.SNAP: .BLKB

.HXDIG: .BLKS

.HXBYT: .BLKB
.EVEN

1
1
5
1
1

Individual SAP
Destination SAP
SNAP protocol identifier
Hex digit
Hex byte

OUTQIO:
OPNQIO:
SETQIO:
RCVQIO:
XMTQIO:
CLSQIO:

.SBTTL
QIOW$
QIOW$
QIOW$
QIO$
QIOW$
QIOW$

Directive parameter blocks
IO.WVB,TILUN,TIEFN",,<0,0,40>
IO.XOP,CHNLUN,CHNEFN"CHNSB,,<O,O,O,OPNCHB,O>
IO.XSC,CHNLUN,CHNEFN"CHNSB,,<O,O>
IO.XRC,CHNLUN""RCVAST,<O,BUFSIZ,O,RC.LEN>
IO.XTM,CHNLUN,CHNEFN"CHNSB,,<O,O,O,O>
IO.XCL,CHNLUN,CHNEFN

.SBTTL Log file structures
LOGFIL: FDBDF$

FDAT$A
FDRC$A
FDOP$A
FSR£Z$

R.VAR,FD.CR
,FMTBUF,l32.
LOGLUN"LOGDFN
2 ; Allocate space for 2 files

.SBTTL Channel characteristics buffers

Open characteristics buffer
;
OPNCHB:

Define frame format (=802.3)

CHRGEN CC.FMO,2
.WORD NX$802

OPNCLO =. - OPNCHB

Define service class (Class I)

CHRGEN CC.SCO,2
. WORD NX$CLI

OPNCHL = • - OPNCHB

Set characteristics buffers
,
SETBF1:

Define Individual SAP

CHRGEN CC.ISP,2
SETISP: .BLKB 1

.BYTE 1
SETLNl = .-SETBFl

Define Group SAP

SETBF1:

4-60

Frame format is 802.3
Length for user service

Service class is Class I
Length for Class I service

Individual SAP
Enable flag (O=disable)

DECnet-RSX Programmer's Reference Manual

CHRGEN CC.GSP,2
SETGSP: .BLKB 1

.BYTE 1
SETLN2 = .-SETBF2

;
SETBF3:

Define SNAP protocol identifier

CHRGEN CC.SNP,8.
SETSNA: .BLKB 5

.BLKB 1

.BYTE LF$EXC

.BLKB 1
SETLN3 = .-SETBF3

Group SAP
Enable flag

SNAP protocol identifier
RESERVED
Exclusive use
RESERVED

.SBTTL Message characteristics buffers

Transmit characteristics buffer

XMTBFR:

Define Ethernet address

CHRGEN CC.ADR,6
XMTADR: .BLKW 3

Define frame format (=802.3)

CHRGEN CC.FMM,2
.WORD NX$802

Ethernet address

802.3 frame format

Define Destination SAP and Source SAP

CHRGEN
XMTDSP: .BLKB
XMTSSP: . BLKB

CC.SPM,2
1
1

Define PDU type

CHRGEN CC.CTM,2
XMTCTL: .WORD 0
XMTLNl = .-XMTBFR

Define SNAP protocol identifier

CHRGEN CC.SNM,6
XMTSNA: .BLKW 3
XMTLN2 = .-XMTBFR

.SBTTL

BF
.REPT
BF
.IRP

= 0
NUMBUF
= BF+l
N,<\BF>

Ring buffers

Destination SAP
Source SAP

802.3 message type

(continued on next page)

DLX Ethernet Programming Facilities 4-61

Buffer descriptor block #'n

BDB'n:
.PSECT $IBDB D,RW

; I/O status block
OFFSET BDB,BD.STS
.BLKW 2

OFFSET
.IF
.IRP
• WORD
.ENDM
.IFF
.WORD
.ENDC

OFFSET
.WORD

OFFSET
.WORD

OFFSET
.WORD

OFFSET

; Link to next BDB in ring
BDB,BD.LNK
LT,<BF-NUMBUF>
NEXT,<\BF+l>
BDB'NEXT

BDBI

; Data buffer address
BDB,BD.BUF
BUF'N

; Received chr buffer address
BDB,BD.RCH
RCH'N

; Transmitted chr buffer address
BDB,BD.XCH
XCH'N

; Buffer Descriptor Block length
BDB,BD.LEN

Data buffer #'n

BUF'n:
.PSECT $IBUF

.BLKB

.EVEN
BUFSIZ

D,RW

Received characteristics buffer "n

RCH'n:

4-62

.PSECT $IRCH D,RW

CHRGEN
OFFSET
.BLKW

CHRGEN
OFFSET
.BLKW

CHRGEN
OFFSET
.BLKW

; Destination Ethernet address
CC.DAD,6
RCH,RC.DAD
3

; Source Ethernet address
CC.ADR,6
RCH,RC.SAD
3

; SNAP protocol identifier
CC.SNM,6
RCH,RC.SNM
3

; Destination and source SAPs

DECnet-RSX Programmer's Reference Manual

CHRGEN
OFFSET
.BLKW

CHRGEN
OFFSET
.BLKW

OFFSET

CC.SPM,2
RCH,RC.SPM
1

; Control field
CC.CTM,2
RCH,RC.CTM
1

; Received chr buffer length
RCH,RC.LEN

Transmitted characteristics buffer #'n

XCH'n:

CMDBUF
NUMRCV
EXSTAT
FMTDAT

RCVSB:
CHNSB:
IOSB:
FMTL:
TIMBUF:
TIMOUT:
FMTBUF:

.PSECT $IXCH D,RW

Frame format (802.3)
CHRGEN CC.FMM,2-
• WORD NX$802

CHRyEN
OFFSET
.BLKW

CHRGEN
OFFSET
.BLKW

CHRGEN
OFFSET
.BLKW

OFFSET

CHRGEN
OFFSET
.BLKW

OFFSET

.ENDM

.ENDR

.SBTTL

. BLKB

.BLKW

.BLKW

. BLKW

.BLKW

.BLKW

.BLKW

.BLKW

. BLKW

.BLKW

. BLKW

CC.ADR,6
XCH,XC.ADR
3

Destination Ethernet address

; Destination and Source SAPs
CC.SPM,2
XCH,XC.SPM
1

; Control field
CC.CTM,2
XCH,XC.CTM
1

; Transmit chr buffer length (DSAP!SSAP!CTL)
XCH,XC.LNl

; SNAP protocol identifier
CC.SNM,6
XCH,XC.SNM
3

; Transmit chr buffer length (SNAP protocol)
XCH,XC.LN2

Miscellaneous
134 •
1
1
25 .

2
2
1
1
8 .
1
300 .

local storage
Command buffer
Number of received frames
Exit status
Data buffer for formatting

Receive status
Channel status
Address of receive status block
Length of formatted record
Time buffer
Time-out for receives

(continued on next page)

DLX Ethernet Programming Facilities 4-63

ERRFMl:
ERRFM2:
NSFFMT:
ASNFMl:
ASNFM2 :
ASNFM3:
OPNFMT:
SETFMT:
RCVFMT:
XMTFMT:
DEVDFB:
DEVDFL
GCLERR:
PRSERR:

TIMFMT:

.SBTTL Pure data

.PSECT $PDATA D,RO

.SBTTL Text strings

.NLIST BEX

.ASCIZ \%N802 -- %1, $DSW is %D.\

.ASCIZ \%N802 -- %1, I/O status is %P %p\

.ASCIZ \No such file\

.ASCIZ \Cannot assign LUN to channel\

.ASCIZ \Cannot assign LUN to command terminal\

.ASCIZ \Cannot assign LUN to output terminal\

.ASCIZ \Cannot open line\

.ASCIZ \Error defining ISAP\

.ASCIZ \Receive error\

.ASCIZ \Transmit error\

.ASCII \UNA-O\
=.-DEVDFB
.ASCIZ \%NGet command line error, code = %P\
.ASCII \%NSyntax error: "%VA"\
.ASCII \%N%4S0PTFLG %P MSGFLG %p\
.ASCII \%N%4S.DEVNM "%VA" .NDADR %P %P %p\
.ASCII \%N%4S.ISAP %D. .GSAP %D. .DSAP %D. .CTL %D.\
.ASCIZ \%N%4S.SNAP %5B\
.ASCIZ /%N%Y %3Z/

OPNCHF: . ASC I I
.ASCI I
.ASCIZ

\%NOpen characteristics:\
\%NCC.FMO (=%p) %P %P %P
\%NCC.SCO (=%p) %P %P %P

%p\
%p\

SETCHF: . ASC I I
.ASCII
.ASCII
.ASCIZ
.NLIST

XMTCHF: .ASCII
. ASCII
.ASCII
.ASCII
.ASCII
.ASCIZ

\%NSet characteristics:\
\%NCC.ISP (=%p) %P %P %P
\%NCC.GSP (=%p) %P %P %P
\%NCC.SNP (=%p) %P %P %P
BEX

%p\
%p\
%P %P %p\

\%NTransmit characteristics:\
\%NCC.ADR (=%p) %P %P %P %P %P %p\
\%NCC.FMM (=%p) %P %P %P %p\
\%NCC.SPM (=%p) %P %P %P %p\
\%NCC.CTM (=%p) %P %P %P %P\
\%NCC.SNM (=%p) %P %P %P %P %P %p\

RCVMSl:
RCVLNI
RCVMS2:

.ASCII <12><15>/Destination Ethernet Address:/
= .-RCVMSI

RCVLN2
RCVMS3:
RCVLN3
RCVMS4:
RCVLN4
RCVMS5:

4-64

.ASCII /Source Ethernet Address:/
= .-RCVMS2
.ASCII /Destination SAP, Source SAP and CTL bytes:/
= . - RCVMS3
.ASCII /SNAP protocol identifier:/
= . - RCVMS4
.ASCIZ /Received data, %D. bytes:/
.EVEN

.SBTTL Canned XID, 01 and TEST messages

DECnet-RSX Programmer's Reference Manual

XID message
;
XIDMSG: .BYTE XID1,XID2,XID3
XIDLEN = .-XIDMSG

,

UI and TEST messages

for (i=O; i<MAXFRM; i++)
(bu f (i) = i % 2 5 6)

UIFMSG:
TSTMSG:

$$$1 = 0
.REPT MAXFRM
$$$2 = $$$1/256.
$$$3 = $$$1~<$$S2*256.>
• BYTE S$$3
$$$1 = $$$1+1
.ENDR
• EVEN

$$$3 S$$l mod 256.

.SBTTL Miscellaneous pure data
BDBLST: • WORD
LOGDFN: NMBLK$
GCLBLK: GCMLB$

.SBTTL

.PSECT

TST802: FINIT$
MOV
CALL
BCC
JMP

N:{TCMD:
CLR
CLR
MOV
MOV
MOVB
CLRB
MOV
MOVB
MOV
MOV

CLEF$S

GCML$
MOVB
BCC

CMPB
BNE

BDBl Address of first buffer descriptor
B02TST,DAT"SY,0 ; Log file default filename block
2,B02,CMDBUF,CMDLUN,,132. ; Get command line block

TST802 - Mainline code
$CODE I,RO

#EXSSUC,EXSTAT
ASNLNS
NXTCMD
EXIT

OPTFLG
MSGFLG
#DEVDFL,.DEVNM
#DEVDFB,.DEVNM+2
I SAP, • ISAP
• DSAP
#60., .SIZE
#$CSXIF,.CTL
#XIDMSG, .MSADR
#XIDLEN, .MSLEN

#DONE

#GCLBLK
G.ERR(RO),R5
20$

R5,#GE.EOF
10$

Assume success
Assign channel, command and error LUNs
If CC, proceed

Zero options flag
Zero message type flag
Set default device string

("UNA-O")
Set default individual SAP (4)
Set default destination SAP (NULL)
Set default data block size (60)
Set default message type (XID)
Set default message address

and length

Clear exit flag

Retrieve a command line
pick up error byte
If CC, we're ready to parse

End of file?
If NE,-no

(continued on next page)

DLX Ethernet Programming Facilities 4-65

10$:

20$:

DOCMD:

Fill

10$:

JMP

FORMA'!'
LOG
JMP

MOV
MOV
MOV
BEQ
MOV
MOV
CALL
BCC

CALL
JMP

CALL

CALL
BCS

CALL
BCS

the ring

DSAR$S
MOV
MOV
CLR

MOV
MOV
MOV
DIR$
BCS
SOB

EXIT

R5,#GCLERR
#FMTBUF,FMTL
EXIT

#3*256.,Rl
#KEYTBL,R2
G.CMLD(RO),R3
NXTCMD
G.CMLD+2(RO),R4
#START,R5
• TPARS
DOCMD

PRSDMP
NXTCMD

OPNLOG

OPNCHN
EXIT

SETCHN
EXIT

with receives

BDBLST,RO
#NUMBUF,Rl
NUMRCV

EOF - just exit

Format error status
and report the error

Exit

Abbreviate to three characters
Get address of key table
Get command line length
If EQ, get another command line
Get command line address
Get address of first state
Parse the command line
If CC, ok - proceed

Open log file, if fLOG
(Ignore possible open error)

Open an Ethernet channel
- exit if error

Set the channel characteristics
- exit if error

Disable AST recognition
Get first buffer descriptor addr
Get number of buffers in ring
Zero received frame count

RO,RCVQIO+Q.IOSB ; Set IOSB address
BD.BUF(RO),RCVQIO+Q.IOPL ; Set data buffer address
BD.RCH(RO),RCVQIO+Q.IOPL+4 ; Set receive char address
#RCVQIO Post receive
EXIT If CS, error - all done
Rl,lO$ Loop through the ring

CLEF$S #DONE

BIT
BNE

#OP.RSP,OPTFLG
20$

Are we a passive responder?
If NE, yes - don't send command

Transmit an 802.3 command POU

4-66

MOV
MOV
MOV
MOVB
MOVB
MOVB

.PHAOR,XMTADR

.PHADR+2,XMTADR+2

.PHADR+4,XMTAOR+4

.DSAP,XMTDSP

. ISAP,XMTSSP

.CTL,XMTCTL

Set Ethernet address for transmit

Set DSAP for transmit
Set SSAP for transmit
Set CTL field for transmit

DECnet-RSX Programmer's Reference Manual

12$:

15$:

20$:

XMTERl:
XMTER2 :

EXIT:

MOV
MOV
MOV
MOV

BIT
BEQ

MOV
MOV
MOV
MOVB
SOB
MOV

DIR$
BCS
TSTB
BMI

ENAR$S
SREX$S
WTSE$S

DSAR$S
CLOSES
DIR$
JMP

DIR$
CLOSES
EXST$S
EXIT$S

.MSADR,XMTQIO+Q.IOPL

.MSLEN,XMTQIO+Q.IOPL+2
#XMTBFR,XMTQIO+Q.IOPL+4
#XMTLNl,XMTQIO+Q.IOPL+6

#OP.SNP,OPTFLG
15$

#.SNAP,RO
#XMTSNA,Rl
#5,R2
(RO) +, (Rl) +
R2,12$
#XMTLN2,XMTQIO+Q.IOPL+6

#XMTQIO
EXIT
CHNSB
EXIT

#ABOAST
#DONE

#LOGFIL
#CLSQIO
NXTCMD

#CLSQIO
#LOGFIL
EXSTAT

.SBTTL AST routines

Set adr of message to XMT
Set len of message to XMT
Set adr of XMr char buffer
Set len of XMT char buffer
(Assume using only DSAP/SSAP/CTL)

Use only DSAP/SSAP/CTL for XMT?
If EQ, yes - no SNAP specified

Get address of stored SNAP
Get address of SNAP buffer
Set number of bytes in protocol
Move a protocol byte into buffer
Loop until done
Set len of transmit char buffer to

include SNAP protocol ident

Transmit a command PDU
If CS, directive error
Get an I/O error?
If MI, yes

Enable AST recognition
Specify abort AST
Wait for receive(s)

Disable AST recognition
Close the log file
Close the Ethernet channel

and process the next command

Close the Ethernet channel
Close the log file
Try to exit-with-status
Else, just exit

.SBTTL RCVAST - channel read complete
;+

**-RCVAST - AST for channel read complete

Inputs:
(SP)

Outputs:

address of I/O status block

Message read from channel is formatted and logged

RCVAST:
MOV
MOV
SAVRG

(SP), IOSB
R3, (SP)
<R4,R5>

DLX Ethernet Programming Facilities

Save BDB/status block address
Save R3-rt.5

(continued on next page)

4-67

12$:

15$:

17$:

20$:

30$:

4-68

MOV
TSTB
BMI

INC
MOV
MOV

BIT
BEQ

MOV
MOV
MOV
MOV
MOV

BIT
BEQ.

SAVRG
MOV
ADD
MOV
ADD
MOV
MOVB
SOB
RESRG
MOV

BR

MOV
SWAB
MOV

MOV
MOV
MOV
DIR$
BCS
BR

CALL

MOV
MOV
MOV
MOV
MOV
DIR$
BCC

IOSB,R3
(R3)
90$

NUMRCV
BD.RCH(R3),R4
BD.XCH(R3),R5

#OP.RSP,OPTFLG
20$

Retrieve BDB/status block address
Receive error?
If MI, yes

Count one more buffer filled
Get rcved chr buffer address
Get xmted chr buffer address

Are we a passive responder?
If EQ, no - dop't send response

R3,XMTQIO+Q.IOSB
BD.BUF(R3},XMTQIO+Q.IOPL
BD.STS+2(R3},XMTQIO+Q.IOPL+2
BD.XCH(R3},XMTQIO+Q.IOPL+4
#XC.LNl,XMTQIO+Q.IOPL+6

Set IOSB address
Set data buffer address

and length
Set xmt char address

and length
(Assuming DSAP/SSAP/CTL)

#OP.SNP,OPTFLG
15$

<RO,Rl,R2>
R4,RO
#RC.SNM,RO
R5,Rl
#XC.SNM,Rl
#5,R2
(RO) +, (Rl) +
R2,12$
<R2,Rl,RO>
#XC.LN2,XMTQIO+Q.IOPL+6

17$

RC.SPM(R4},XC.SPM(R5}
XC.SPM(R5)
RC.CTM(R4},XC.CTM(R5}

RC.SAD(R4), XC.ADR(R5)
RC.SAD+2(R4),XC.ADR+2(R5)
RC.SAD+4(R4),XC.ADR+4(R5)
#XMTQIO
90$
30$

LOGRCV

R3,RCVQIO+Q.IOSB
BD.BUF(R3),RCVQIO+Q.IOPL
#BUFSIZ,RCVQIO+Q.IOPL+2
BD.RCH(R3),RCVQIO+Q.IOPL+4
#RC.LEN,RCVQIO+Q.IOPL+6
#RCVQIO
100$

Use only DSAP/SSAP/CTL for XMT?
If EQ, yes - no SNAP specified

Form pointer to received SNAP

Form pointer to transmitted SNAP

Set size of SNAP protocol ident
Copy a protocol byte
Loop until done

Include SNAP in XMT char buffer
(Note: SNAP supersedes DSAP/ ...
Join common code

Get the DSAP/SSAP from receive
and swap them for response

Set the CTL field

Set Ethernet address for transmit

Send response PDU
If CS, directive error
Don't log data while responding

Log received data

Set IOSB address
Set data buffer address

and length
Set receive char address

and length
Hang another receive
If CC, receive is queued

DECnet-RSX Programmer's Reference Manual

90$:

100$:

DSAR$S
SETF$S #DONE

RESRG <R5,R4,R3>
ASTX$S

Disable AST recognition
Wake up mainline for cleanup

.SBTTL ABOAST - Abort AST
ABOAST:

ADD (SP), SP
DSAR$S
SETF$S #DONE
ASTX$S

.SBTTL Utility subroutines

Disable AST recognition
Done

.SBTTL ASNLNS - Assign channel, command, error LUNs

ASNLNS:

Assign LUN to channel

ALmhs
BCC
JSR
. WORD
BR

#CHNLUN,#"NX,O
10$
RO,DIRERR
ASNFMl
40$

Assign LUN to command terminal
,
10$:

ALUN$S
BCC
JSR
• WORD
BR

#CMDLUN,#"TI
20$
RO,DIRERR
ASNFM2
40$

Assign LUN to output terminal

20$:

30$:
40$:

ALUN$S
BCC
JSR
. WORD
BR
TST
SEC
RETURN

#TILUN,#"TI
30$
RO,DIRERR
ASNFM3
40$
(PC)+

.SBTTL OPNLOG- Open a log file

OPNLOG:
.ENABL LSB

BIT
BEQ
OPEN$A
BCC
OPEN$W

#OP.LOG,OPTFLG
20$
#LOGFIL
10$
#LOGFIL

DLX Ethernet Programming Facilities

/LOG requested?
If EQ, no
Append to file if existing
If CC, file is open
Else, create a new file

(continued on next page)

4-69

10$:

20$:

OPNCHN:

5$:

7$:

10$:

20$:

BCC
BIC
BR
GTIM$S
FORMAT
PUTS
SUB
PUTS
RETURN
• DSABL

.SBTTL

MOV
MOV
MOV
BIT
BEQ
CLR
MOV
MOV
BIT
BEQ
MOV
DIR$
BCC
JSR
• WORD
BR

TSTB
CLC
BPL
JSR
.WORD
ERROR
SEC

30$: RETURN

.SBTTL

SETCHN: MOVB
MOV
MOV
DIR$
BCS
TSTB
BMI

4-70

BIT
BEQ
MOVB
MOV

10$
#OP.LOG,OPTFLG
20$
#TIMBUF
#TIMBUF,#TIMFMT
#LOGFIL,#FMTBUF,FMTL
#CMDBUF,R4
#LOGFIL,#CMDBUF,R4

LSB

If CC, file is open
Indicate no log file in use

and return.
Get current time
Format time into ASCII
Store timestamp in log file
Compute length of command

and log the command line

OPNCHN - Open channel

.DEVNM+2,OPNQIO+Q.IOPL

.DEVNM,OPNQIO+Q.IOPL+2
#TMO,TIMOUT
#OP.RSP,OPTFLG
5$
TIMOUT
TIMOUT,OPNQIO+Q.IOPL+4 ,
#OPNCHL,OPNQIO+Q.IOPL+lO;
#OP.USR,OPTFLG
7$,
#OPNCLO,OPNQIO+Q.IOPL+lO;
#OPNQIO
10$
RO,DIRERR
OPNFMT
20$

CHNSB

30$
RO, IOERR
OPNFMT
#OPNCHB,#OPNCHF

Set "xxx-n" address
Set "xxx-n" length
Set timeout in seconds
Are we passively responding?
If EQ, no
No timeout on receives
Set the time-out for open
Assume Class I service
Opening for Class I service?
If EQ, yes
Else get set for user service
Open the line
If, CC, OPEN queued

Did OPEN succeed?
Assume yes
If PL, yes

Indicate failure

SETCHN - Set channel characteristics

.ISAP,SETISP
#SETBFl,SETQIO+Q.IOPL
#SETLNl,SETQIO+Q.IOPL+2
#SETQIO
20$
CHNSB
30$

#OP.GSP,OPTFLG
10$
.GSAP,SETGSP
#SETBF2,SETQIO+Q.IOPL

Store SAP number
Get char buffer address
Get char buffer length
Enable the ISAP
If CC, request got queued
Did we enable an ISAP?
If MI, no

Enabling a group SAP?
If EQ, no
Store group SAP number
Get char buffer address

DECnet-RSX Programmer's Reference Manual

10$:

MOV
DIR$
BCS
TSTB
BMI

#SETLN2,SETQIO+Q.IOPL+2
#SETQIO
20$
CHNSB
30$

#OP.SNP,OPTFLG

Get char buffer length
Enable the GSAP
If CC, request got queued
Did we enable a GSAP?
If MI, no

Enabling a SNAP protocol ID?
Assume not
If EQ, all done

BIT
CLC
BEQ
MOV
MOV
MOV
MOVB
SOB
MOV
MOV
DIR$
BCS
TSTB
CLC.
BPL
BMI

50$
#.SNAP,RO
#SETSNA,Rl
#5,R2

Copy protocol ident to buffer

15$:

20$:

30$:

40$:
50$:

; +

JSR
. WORD
BR
JSR
• WORD
SEC
RETURN

.SBTTL

(RO) + , (Rl) +
R2,15$
#SETBF3,SETQIO+Q.IOPL
#SETLN3,SETQIO+Q.IOPL+2
#SETQIO
20$
CHNSB

50$
30$

RO,DIRERR
SETFMT
40$
RO,IOERR
SETFMT

Get char buffer address
Get char buffer length
Enable the SNAP protocol ID
If CC, request got queued
Did we enable a SNAP?
Assume success
If PL, yes - all done
If MI, no

; Indicate failure

LOGRCV - Log received data

**-LOGRCV - Log received data

Inputs:
R3 is buffer descriptor block address

BD.BUF(R3) contains the buffer address
BD.STS+2(R3) contains the number of bytes received

R4 is received characteristics block address
RC.DAD(R4) contains the received destination address
RC.SAD(R4) source
RC.SPM(R4) DSAP/SSAP
RC.CTM(R4) CTL

Registers modified:
R4,R5

LOGRCV: TST
BNE
JMP

10$: SAVRG

BD.BUF+2(R3)
10$
100$

Any data to log?
If NE, yes
Else, get out

LOG
ADD

<RO,Rl,R2>
#RCVMS1,#RCVLNl
#RC.DAD,R4

Log DST Ethernet address

(continued on next page)

DLX Ethernet Programming Facilities 4-71

20$:

30$:

100$:

DIRERR:

IOERR:

4-72

MOV #6,R5
CALL LOGDAT
SUB #RC.DAD,R4

LOG #RCVMS2,#RCVLN2 Log SRC Ethernet address
ADD #RC.SAD,R4
CALL LOGDAT
SUB #RC.SAD,R4

BIT #OP.SNP,OPTFLG Logging DSAP/SSAP/CTL?
BNE 20$ If NE, no - log a SNAP id

LOG #RCVMS3,#RCVLN3 Log DSAP/SSAP/CTL bytes
MOV #FMTDAT,R2
MOVB RC.SPM(R4),(R2)+
BICB # 1, RC. SPM+ 1 (R4)
MOVB RC.SPM+l(R4),(R2)+
MOVB RC.CTM(R4),(R2)+
MOV #FMTDAT,R4
MOV. #3,R5
CALL LOGDAT
BR 30$

LOG #RCVMS4,#RCVLN4 Log SNAP protocol ID
MOV #FMTDAT,R2
ADD #RC.SNM,R4
MOV #5,R5
CALL LOGDAT

MOV BD.STS+2(R3),R5 Received data, n. bytes
MOV R5,FMTDAT
FORMAT #FMTDAT,#RCVMS5
LOG #FMTBUF,FMTL
MOV BD.BUF(R3),R4
CALL LOGDAT

RESRG <R2,Rl,RO>
RETURN

.SBTTL

.SBTTL

.SBTTL

.ENABL LSB

DIRERR - Report a directive error
IOERR - Report an I/O error

MOV
SAVRG
MOV
ERROR
BR

MOV
SAVRG
MOV
MOV

IOER2 - Report an I/O error (alternate entry)

(RO)+,FMTDAT
<RO,Rl,R2>
$DSW,FMTDAT+2
#FMTDAT,#ERRFMl
10$

(RO)+,FMTDAT
<RO,Rl,R2>
CHNSB,FMTDAT+2
CHNSB+2,FMTDAT+4

DECnet-RSX Programmer's Reference Manual

ERROR #FMTDAT,#ERRFM2
BR 10$

IOER2:
MOV (RO)+,FMTDAT
SAVRG <RO,Rl,R2>
MOVB RCVSB,R1
MOV R1,FMTDAT+2
MOV RCVSB+2,FMTDAT+4
ERROR #FMTDAT,#ERRFM2

10$: MOV #EX$ERR,EXSTAT
RESRG <R2,Rl,RO>
RTS RO
. DSABL LSB

.SBTTL LOGDAT - Log data in hex

HEX 16.
NOSUP 1~1000
BLKFIL 1*2000
FLDWID 2*4000
MASK HEX+FLDWID+NOSUP
NFLDS 16.

LOGDAT: CALL $SAVAL

10$: MOV #FMTBUF,RO
MOV #NFLDS,R3
CMP R3,R5
BLE 20$
MOV R5,R3
BEQ 50$

20$: MOV R3,-(SP)
MOVB #40, (RO) +
MOVB #40,(RO)+
MOVB #40,(RO)+
MOVB #40,(RO)+

30$: DEC R3
BLT 40$

CLR Rl
BISB (R4)+,Rl
MOV #MASK,R2
CALL $CBTA
MOVB #40,(RO)+

BR 30$
40$: SUB #FMTBUF,RO

MOV RO,Rl
LOG #FMTBUF,Rl
SUB (SP)+,R5
BGT 10$

(continued on next page)

DLX Ethernet Programming Facilities 4-73

50$: RETURN

4-74

.SBTTL Parser data base

$RONLY = 1 Make tables read-only
ISTATS STATBL,KEYTBL

.SBTTL

STATES
TRANS

.SBTTL

STATES
TRANS
TRANS
TRANS

STATES
TRANS
TRANS
TRANS
TRANS
TRAN$
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

.SBTTL

STATES
TRANS

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRANS

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRANS

START
SLAMDA

Main states

Options

OPT
$EOS,SEXIT
<, ;>,SEXIT
'I

!DEVOPT,OPT"OP.DEV,OPTFLG
!DSPOPT,OPT"OP.DSP,OPTFLG
!GSPOPT,OPT"OP.GSP,OPTFLG
!HDWOPT,OPT"OP.HDW,OPTFLG
!ISPOPT,OPT"OP.ISP,OPTFLG
!LOGOPT,OPT"OP.LOG,OPTFLG
!MSGOPT,OPT"OP.MSG,OPTFLG
!NODOPT,OPT"OP.NOD,OPTFLG
!PHYOPT,OPT"OP.PHY,OPTFLG
!RSPOPT,OPT"OP.RSP,OPTFLG
!SIZOPT,OPT"OP.SIZ,OPTFLG
!SNPOPT,OPT"OP.SNP,OPTFLG
!USROPT,OPT"OP.USR,OPTFLG

DEVOPT
"DEVICE"

EQUALS

DEVOPT - IDEV[ICE]=ddd-n

!DEVICE,SEXIT,STDEV

DSPOPT
"DSAP"

EQUALS

DSPOPT - IDSAP={n,NULL,SNAP}

!DSPID,SEXIT

GSPOPT
"GSAP"

GSPOPT - IGSA[P]=n

DECnet-RSX Programmer's Reference Manual

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRANS

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRAN$
TRANS

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRANS

.SBTTL

STATES
TRANS

STATES
TRAN$

STATES
TRANS

.SBTTL

STATES
TRANS

STATES
TRANS

STATES
TRANS

.SBTTL

STATES
TRANS

STATES
TRAN$

STATES
TRANS

EQUALS

!GSPID,SEXIT

HDWOPT - /HAR[DWARE]=nn-nn-nn-nn-nn-nn

HDWOPT
"HARDWARE"

EQUALS

!HXADR,SEXIT,STHADD

ISPOPT - /ISAP=n

ISPOPT
"ISAP", ISPOP2
"SSAP"
ISPOP2
EQUALS

!ISPID,SEXIT

LOGOPT
"LOG",SEXIT

MSGOPT
"MESSAGE"

EQUALS

LOGOPT - /LOG

MSGOPT - /MES[SAGE]={XID,TEST,UI}

!MSGT¥P,SEXIT

NODOPT
"NODE"

EQUALS

NODOPT - /NOD[E]=aa.nn

!NODID,SEXIT,

PHYOPT - /PHY[SICAL]=nn-nn-nn-nn-nn-nn

PHYOPT
"PHYSICAL"

EQUALS

!HXADR,SEXIT,STPADD

(continued on next page)

DLX Ethernet Programming Facilities 4-75

.SBTTL

STATE$
TRAN$

.SBTTL

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$

.SBTTL

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$

.SBTTL

STATE$
TRAN$

.SBTTL

.SBTTL

STATE$
TRAN$

STATE$
TRAN$

STATE$
TRAN$

.SBTTL

STATE$
TRAN$
TRAN$
TRAN$

.SBTTL

RSPOPT - /RES[PONSE]

RSPOPT
"RESPONDER",$EXIT

SIZOPT - /SIZ[E]=n

SIZOPT
"SIZE"

EQUALS

!SIZE,$EXIT

SNPOPT - /SNA[P]=nn-nn-nn

SNPOPT
"SNAP"

EQUALS

!SNAP,$EXIT

USROPT - /USE[R]

USROPT
"USER",$EXIT

Utility substates
DEVICE - device string

DEVICE
$RAD50

<'->

$DNUMB,$EXIT

DSPID

DSPID
"SNAP",$EXIT,STSNP
"NULL",$EXIT,STNSP
$DNUMB,$EXIT,STDSP

- destination SAP number

GSPID - group SAP number

STATE$ GSPID
TRAN$ $DNUMB,$EXIT,STGSP

.SBTTL HXADR - hex address

STATE$ HXADR
TRAN$!HXBYT"STHADl

4-76 DECnet-RSX Programmer's Reference Manual

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STHAD2

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STHAD3

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STHAD4

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STHAD5

STATE$
TRAN$

STATE$
TR4N$!HXBYT,$EXIT,STHAD6

.SBTTL HXBYT - hex byte

STATE$ HXBYT
TRAN$!HXDIG"STHXDl

STATE$
TRAN$!HXDIG,$EXIT,STHXD2

.SBTTL

STATE$
TRAN$
TRAN$

.SBTTL

STATE$
TRAN$

.SBTTL

STATE$
TRAN$
TRAN$
TRAN$

.SBTTL

HXDIG - hex digit

HXDIG
$DIGIT,$EXIT,STHXN
$ALPHA,$EXIT,STHXA

ISPID - Individual SAP number

ISPID
$DNUMB,$EXIT,STISP

MSGTYP - message type

MSGTYP
"TEST",$EXIT,STTST,OP.TST,MSGFLG
"UI",$EXIT,STUIF,OP.UIF,MSGFLG
"XID",$EXIT,STXID,OP.XID,MSGFLG

NODID - node id

STATE$ NODID
TRAN$ $DNUMB"STNDA

STATES
TRANS <'. >

STATE$
TRAN$ $DNUMB,$EXIT,STNDN

DLX Ethernet Programming Facilities

(continued on next page)

4-77

STNDA:

STNDN:

4-78

.SBTTL SIZE

STATE$ SIZE
TRAN$ $DNUMB,$EXIT,STSIZ

.SBTTL SNAP

STATE$ SNAP
TRAN$!HXBYT"STSNPI

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STSNP2

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STSNP3

STATE$
TRAN$

STATE$
TRAN$!HXBYT"STSNP4

STATE$
TRAN$

STATE$

- data block size

- SNAP protocol identifier

TRAN$!HXBYT,$EXIT,STSNP5

STATE$

.SBTTL Parser action routines

.PSECT $CODE

.SBTTL

.SBTTL

.ENABL
MOV
TST
BNE
CMP
BHI
MOV
BR
MOV
TST
BNE
CMP
BHI
MOV

BIT
BNE

MOVB
MOVB
MOVB

STNDA - Set node area
STNDN - Set node number

LSB
.PNUMB,RO
.PNUMH
10$
RO,#MXAREA
10$
RO, .NODID
20$
.PNUMB,RO
.PNUMH
10$
RO,#MXNODE
10$
RO, .NODID+2

#OP.PHY,OPTFLG
20$

#252 •. PHADR+O
#0, .PHADR+l
#4, . PHADR+ 2

Get area number
Overflow into high word?
If NE, yes - error
Area in range?
If HI, no - error
Store area number

and return
Get node number
Overflow into high word?
If NE, yes - error
Number in range?
If HI, no - error
Store node number

Already specified physical address?
If NE, yes - use it

DECnet-RSX Programmer's Reference Manual

Set

10$:
.20$:

STDEV:

STSNP:

STNSP:

STDSP:

STGSP:

STISP:

STSIZ:

MOVB
up area

MOV
MOV
SWAB
ASL
ASL
BIS
MOVB
SWAB
MOVB
BR
ADD
RETURN
. DSABL

.SBTTL

.SBTTL

.SBTTL

.SBTTL

.SB1'TL

.SBTTL

MOV
MOV
RETURN

.ENABL
MOVB
BR
CLRB
BR
CALL
BCS
MOVB
BR
CALL
BCS
BIT
BEQ
MOVB
BIS
BR
CALL
BCS
BIT
BNE
MOVB
BR
CMP
BHI
TST
BNE
MOV
BIT

#0, • PHADR+3
and number in .PHADR+4, +5 ••.

.NODID,RO Get area in RO

.NODID+2,R1 Get node number in R1
RO Get area in high byte
RO Move area into <15:10>
RO
RO,Rl
Rl,.PHADR+4
Rl
Rl,.PHADR+5
20$
#2,(SP)

LSB

STDEV
STSNP
STNSP
STDSP
STISP
STSIZ

· PSTCN , . DEVNM
· PSTPT , . DEVNM + 2

- Set
- Set
- Set
- Set
- Set
- Set

LSB
#ABlOlOlOlO,.DSAP
20$
.DSAP
20$
30$
10$
.PNUMB,.DSAP
20$
30$
10$
#l,.PNUMB
10$
• PNUMB, . GSAP
#OP.USR,OPTFLG
20$
30$
10$
#1, .PNUMB
10$
.PNUMB,.ISAP
20$
.PNUMB,#MAXFRM
10$
.PNUMH
10$
· PNUMB, . S I Z E
#OP.TST!OP.JIF,MSGFLG

Form node address word
and store in .PHADR+4,+5

Join common code for return
REJECT TRANSITION

device string
802.3 SNAP SAP as DSAP
802.3 NULL SAP as DSAP
802.3 user-specified SAP as DSAP
802.3 user-specified SAP as ISAP
data block size

Store the SNAP SAP

Store the NULL SAP

Is SAP in range?
If CS, no
Store destination SAP

Is SAP in range?
If CS, no
Valid group?
If EQ, no - it's individual
Store Group SAP
User-supplied service is needed

Is SAP in range?
If CS, no
Is this an Individual SAP?
If NE, no ~ it's a group
Else, store individual SAP

Data block size too large?
I f HI, ,yes
Is it?
If NE, yes
Store data block size
Already parse message type?

(continued on next page)

DLX Ethernet Programming Facilities 4-79

10$:
20$:
,

BEQ
MOV
BR
ADD
RETURN

20$
.SIZE, .MSLEN
20$
#2, (SP)

If EQ, no - .SIZE will get used
Else, stuff size into message len

REJECT TRANSITION

; Check if SAP is in range
,
30$:

40$:

STTST:

STUIF:

STXID:

STSNPl
STSNP2
STSNP3
STSNP4
STSNP5

CMP
BHI
TST
BNE
TST
SEC
RETURN
.DSABL

.SBTTL

.SBTTL

.SBTTL

MOVB
MOV
MOV
RETURN

MOVB
MOV
MOV
RETURN

MOVB
MOV
MOV
RETURN

.SBTTL

MOVB
MOVB
MOVB
MOVB
MOVB
RETURN

.SBTTL

.SBTTL

.ENABL
STPADD: BIT

BNE
MOV
MOV
MOV
RETURN

4-80

.PNUMB,#377
40$
.PNUMH
40$
(PC)+

LSB

STTST
STUIF
STXIF

#$CSTSF, .CTL
#TSTMSG,.MSADR
.SIZE, .MSLEN

#$CSUIF,.CTL
#UIFMSG, .MSADR
.SIZE, .MSLEN

#$CSXIF,.CTL
#XIDMSG,.MSADR
#XIDLEN,.MSLEN

- Set TEST
- Set UI
- Set XID

Is SAP in range?
If HI, no
Is it?
If NE, no
SUCCESS (C=O)

message type
message type
message type

STSNPn - Set SNAP protocol ID (byte #n)

· HXBYT , . SNAP
.HXBYT,.SNAP+l
· HXBYT , . SNAP+ 2
· HXBYT , . SNAP+ 3
• HXBYT, . SNAP+4

STPADD - Set physical address
STHADD - Set hardware address

LSB
#<OP.NOD!OP.PHY>,OPTFLG
10$
.HXADR,.PHADR
.HXADR+2,.PHADR+2
.HXADR+4,.PHADR+4

Already specified remote address?
If NE, yes - all done

DECnet-RSX Programmer's Reference Manual

STHADD: BIT
BNE
MOV
MOV
MOV

10$: RETURN
• DSABL

.SBTTL

STHADI MOVB
STHAD2 MOVB
STHAD3 MOVB
STHAD4 MOVB
STHAD5 MOVB
STHAD6 MOVB

RETURN

.SBTTL

.SBTTL

STHXN: MOVB
SUB
MOVB
RETURN

STHXA: MOVB
CMPB
BLO
CMPB
BLOS

10$: ADD
BR

20$: SUB
MOVB

30$: RETURN

.SBTTL

.SBTTL

.ENABL
STHXD1: MOVB

ASL
ASL
ASL
ASL
MOVB
BR

STHXD2: MOVB
BICB
BISB

10$: RETURN
• DSABL

.SBTTL

#<OP.PHY!OP.NOD>,OPTFLG
10$
.HXADR,.HWADR
.HXADR+2,.HWADR+2
.HXADR+4,.HWADR+4

LSB

Already specified remote address?

STHADn - Set hex address (byte #n)

• HXBYT, . HXADR
• HXBYT , . HXADR+ 1
.HXBYT,.HXADR+2
• HXBYT, . HXADR+ 3
• HXBYT , . HXADR + 4
· HXBYT , • HXADR + 5

STHXN - Convert a digit to hex
STHXA - Convert an alpha to hex

.PCHAR,RO Get digit character
#'O,RO Convert to digit value
RO, .HXDIG and store

.PCHAR,RO Get alpha character
RO,#'A Is it a hex digit?
10$ If LO, no
RO,#'F Is it?
20$ If LOS, yes
#2, (SP) Reject transition
30$ and return
#<'A-lO.>,RO Convert to value
RO, .HXDIG

STHXDl - Set 1st hex digit
STHXD2 - Set 2nd hex digit

LSB
.HXDIG,RO
RO
RO
RO
RO
RO,.HXBYT
10$
.HXDIG,RO
#"'C17,RO
RO, . HXBYT

LSB

PRSDMP - Dump parse data on syntax error

(continued on next page)

DLX Ethernet Programming Facilities 4-81

.:iDMP: CALL $SAVAL
MOV #FMTDAT,RS Point at binary buffer
MOV R3, (RS) + Store unparsed string length
MOV R4, (RS) + address
MOV OPTFLG,(RS)+ Store opt ion flags
MOV MSGFLG,(RS)+ Store message flags

MOV .DEVNM, (RS)+ Store device name length
MOV .DEVNM+2,(RS)+ address
MOV .NDADR,(RS)+ Store destination Ethernet addr
MOV .NDADR+2,(RS)+
MOV .NDADR+4,(RS)+

MOVB • I SAP, (RS) + Store individual SAP
CLRB (RS)+ as a word
MOVB • GSAP , (RS) + Store group SAP
CLRB (RS)+ as a word
MOVB · DSAP , (RS) + Store destination SAP
CLRB (RS)+ as a word
MOV .CTL, (R5) + Store CTL field

MOV #.SNAP,(RS}+ Store SNAP protocol address

FORMAT #FMTDAT,#PRSERR Format data into ASCI I
LOG #FMTBUF,FMTL Log the text
RETURN

.END TST802

4-82 DECnet-RSX Programmer's Reference Manual

4.4.7.2 Ethernet Example

This program uses Ethernet frame format. You can use the program to remotely
trigger a QNA controller.

.TITLE

. IDENT

.NLIST

TRGQNA - Trigger QNA
IXl.011
BEX

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital .

. SBTTL Program Description

This program enables remote triggering of a properly configured
PDP-II Q-bus system with a DEQNA that is running RSX-llS with DECnet.
This enables an operator to load a new system image into a running
system without manually rebooting the system.

If the system hangs or crashes the system will request a reboot
from the network via the DEQNA.

Notes and Cautions:

- The processor board must be either a KDFll-BE/BF with the KDFII-B2
bootstrap ROM update kit installed or a KDJII-B.

- The bootstrap switches (1-8) on the processor board must be set so
that the boot request will be directed to the DEQNA.

Switch
87654 3 2 1

x x a 1 a 1 a a
x x a 1 a 1 a 1
0 x x x x x x x
1 x x x x x x x
x 0 x x x x x x
x 1 x x x x x x

DEQNA unit a
DEQNA unit 1
Console terminal is not an ANSI mode scope
Console terminal is an ANSI mode scope
Loop self test but no memory diagnostics
Loop self test and memory diagnostics

Instructions for building the task:

(continued on next page)

DLX Ethernet Programming Facilities 4-83

STMLN
. WORD 0

.-STMBUF

; DPB for write to terminal
,

;C.CHRL = timer value (Off)
;Length for set characteristics

OUTIO: QIOW$ IO.WVB,TILUN,2",,<0,0,40>

RCVBUF: .BLKB 100
RCVLN = .-RCVBUF

IOSB: .BLKW 2

.SBTTL Text Strings

Information I Error Messages

ASNERR: .ASCIZ ITRG - Unable
OPNERR: .ASCIZ /TRG - Unable
DSTERR: .ASCIZ /TRG - Unable
RCVERR: .ASCIZ /TRG - Unable
STMERR: .ASCIZ /TRG - Unable

to
to
to
to
to

REBOOT: .ASCIZ /TRG - *** Remote

.EVEN

;Receive buffer
;Length of receive buffer

;1/0 status block for QIOs

assign LUN!
open line/
set protocol type or sanity timer on!
request receive datal
set sanity timer off/
trigger received -- system re-booting ***/

LINE:
LINL

.ASCII IQNA-O/
.-LINE

;Line definition for Set Characteristic
;Line definition length

START: :

Open
;
10$:

20$:

.EVEN

.SBTTL Main Line Code

ALUN$S
ALUN$S
BCC
MOV
CALL
BR

the line

MOV
MOV
MOV
QIOW$S
BCS
MOVB
BPL

MOV
CALL
BR

#TILUN,#"CO,#O
#DLXLUN,#"NX,#O
10$
#ASNERR,RO
PRINT
999$

;Assign LUN to terminal
;Assign a LUN to DLX
;If CC, ok
;Print assign LUN error msg
, ...
; and exit

#IOSB,R3 ;Get address of I/O status block
#LINE,RO ;Get address of line to be opened
#LINL,Rl ;Get length of line descriptor
#IO.XOP,#DLXLUN,#1"R3,,<RO,Rl,#400>
20$;If CS, directive error
(R3),Rl ;Get "OPEN" QIO status
30$;Plus, is ok

#OPNERR,RO
PRINT
99$

;Print open error msg
, ...
; and exit

Enable console carrier protocol type and set sanity timer on

4-84 DECnet-RSX Programmer's Reference Manual

Note that the QNA driver will refresh the timer as long as it is running
,
30$:

MOV
MOV
MOV
CALL
BCC
MOV
CALL
BR

#10SB,R3
#DSTBUF,R4
#DSTLN,R5
SETCHR
40$
#DSTERR,RO
PRINT
99$

iGet I/O status block address
iGet address of characteristics buffer
iGet length of characteristics buffer
iSet characteristics
iIf CC, success
iPrint set characteristics error msg

iAnd exit

Hang a receive to look for trigger message
,
40$:

50$:

QIOW$S
BCS
TSTB
BPL

MOV
CALL
BR

#lO.XRC,#DLXLUN,#l,,#IOSB,,<#RCVBUF,#RCVLN>
50$ iIf CC, directive success
10SB iWas the receive successful?
60$

#RCVERR,RO
PRINT
99$

iPrint receive error msg

iAnd exit

Make sure message received is trigger message
,
60$:

MOV
MOV
CMP
BLT
CMPB
BNE
MOV
CALL

#RCVBUF,RO
IOSB+2,Rl
Rl,#5
40$
#6, (RO)+
40$
#REBOOT,RO
PRINT

Set the sanity timer off

MOV
MOV
MOV
CALL
BCC
MOV
CALL
BR

#IOSB,R3
#STMBUF,R4
#STMLN,R5
SETCHR
70$
#STMERR,RO
PRINT
99$

iGet the message address
iGet the message length
iIs the message minimum length?
iIf LT, no - try for another message
iIs this a boot message?
iIf NE, no - try for another messag p

;Print re-boot message

iGet I/O status block address
iGet address of characteristic s buffer
iGet length of characteristics buffer
iSet characteristics
ilf CC, success
iPrint set characteristics er ror msg
, ...
iAnd exit

Switch to system state and jump to system boot
,
70$:

CALL
JMP

$SWSTK,99$
@#l73000

DLX Ethernet Programming Facilities

iSwitch to system state
iActivate system boot

(continued on next page)

4-85

; Error exit
,
99$:

999$:
QIOW$S #IO.XCL,#DLXLUN,#l

EXIT$S

;Close the open line

;Exit the task

Set characteristics routine

SETCHR:

10$:

,

QIOW$S
BCS
TSTB
BMI
CMP
BNE
TST
SEC
RETURN

#IO.XSC,#DLXLUN,#1"R3,,<R4,R5> ;Issue set characteristics
10$;If CS, directive error
(R3) ;Any problem with the QIO?
10$; IF MI, yes
#CS.SUC,6{R4) ;Any problem with characteristics?
10$;If NE, yes
(PC)+ ;Indicate success

;Indicate error
;Return to caller

; Print message routine

PRINT:

5$:

10$:
20$:
,

MOV

TSTB
BNE
DEC
SUB
MOV
DIR$
MOV
RETURN

.END
BEQ
MOV
BR
ADD
RETURN

RO,OUTIO+Q.IOPL

(RO)+
5$
RO
OUTIO+Q.IOPL,RO
RO,OUTIO+Q.IOPL+2
#OUTIO
#40,OUTIO+Q.IOPL+4

START
20$
.SIZE, .MSLEN
20$
#2,{SP)

; Check if SAP is in range
,
30$: CMP .PNUMB,#377

BHI 40$
TST .PNUMH
BNE 40$
TST (PC)+

40$: SEC
RETURN
.DSABL LSB

.SBTTL STTST - Set

.SBTTL STUIF - Set

.SB1'TL STXIF - Set

4-86

;Save message address in DPB

;Search for end of message
; (terminated by null)
; Back up to null
;Compute length of message
; and save in DPB
;Print error message
;Set up carriage control
;Return to caller

If EQ, no - .SIZE will get used
Else, stuff size into message len

REJECT TRANSITION

Is SAP in range?
If HI, no
Is it?
If NE, no
SUCCESS (C=O)

TEST message type
UI message type
XIn message type

DECnet-RSX Programmer's Reference Manual

STTST:

STUIF:

STXID:

STSNPI
STSNP2
STSNP3
STSNP4
STSNP5

MOVB
MOV
MOV
RETURN

MOVB
MOV
MOV
RETURN

MOVB
MOV
MOV
RETURN

.SBTTL

MOVB
MOVB
MOVB
MOVB
MOVB
RETURN

.SBTTL

.SBTTL

.ENABL
STPADD: BIT

BNE
MOV
MOV
MOV
RETURN

STHADD: BIT
BNE
MOV
MOV
MOV

10$: RETURN
.DSABL

.SBTTL

STHADl: MOVB
STHAD2: MOVB
STHAD3 : MOVB
STHAD4: MOVB
STHAD5 : MOVB
STHAD6: MOVB

RETURN

.SBTTL

.SBTTL

#$CSTSF,.CTL
#TSTMSG, .MSADR
.SIZE, .MSLEN

#$CSUIF,.CTL
#U I FMSG, . MSADR
.SIZE, .MSLEN

#$CSXIF,.CTL
#XIDMSG,.MSADR
#XIDLEN, .MSLEN

STSNPn - Set SNAP protocol ID (byte #n)

· HXBYT , . SNAP
.HXBYT,.SNAP+l
.HXBYT,.SNAP+2
· HXBYT , . SNAP+ 3
· HXBYT , . SNAP+ 4

STPADD - Set physical address
STHADD - Set hardware address

LSB
#<OP.NOD!OP.PHY>,OPTFLG
10$
.HXADR,.PHADR
.HXADR+2,.PHADR+2
.HXADR+4,.PHADR+4

#<OP.PHY!OP.NOD>,OPTFLG
10$
.HXADR,.HWADR
.HXADR+2,.HWADR+2
.HXADR+4,.HWADR+4

LSB

Already specified remote address?
If NE, yes - all done

Already specified remote address?

STHADn - Set hex address (byte #n)

• HXBYT, . HXADR
.HXBYT, .HXADR+l
.HXBYT,.HXADR+2
.HXBYT,.HXADR+3
.HXBYT,.HXADR+4
.HXBYT,.HXADR+5

STHXN - Convert a digit to hex
STHXA - Convert an alpha to hex

(continued on next page)

DLX Ethernet Programming Facilities 4-87

STHXN: MOVB .PCHAR,RO Get digit character
SUB #'O,RO Convert to digit value
MOVB RO,.HXDIG and store
RETURN

STHXA: MOVB .PCHAR,RO Get alpha character
CMPB RO,#'A Is it a hex digit?
BLO 10$ If LO, no
CMPB RO,#'F Is it?
BLOS 20$ If LOS, yes

10$: ADD #2, (SP) Reject transition
BR 30$ and return

20$: SUB #<'A-10.>,RO Convert to value
MOVB RO,.HXDIG

30$: RETURN

.SBTTL STHXDI - Set 1st hex digit

.SBTTL STHXD2 - Set 2nd hex digit

.ENABL LSB
STHXDl: MOVB .HXDIG,RO

ASL RO
ASL RO
ASL RO
ASL RO
MOVB RO, .HXBYT
BR 10$

STHXD2: MOVB .HXDIG,RO
BICB #"C17,RO
BISB RO, .HXBYT

10$: RETURN
. DSABL LSB

.SBTTL PRSDMP - Dump parse data on syntax error
T ~DMP: CALL $SAVAL

MOV #FMTDAT,R5 Point at binary buffer
MOV R3, (R5) + Store unparsed string length
MOV R4, (R5) + address
MOV OPTFLG,(R5)+ Store option flags
MOV MSGFLG,(R5)+ Store message flags

MOV . DEVNM, (R5) + Store device name length
MOV .DEVNM+2,(R5)+ address
MOV .NDADR,(R5)+ Store destination Ethernet addr
MOV .NDADR+2,(R5)+
MOV .NDADR+4,(R5)+

4-88 DECnet-RSX Programmer's Reference Manual

MOVB .ISAP,(R5)+ Store individual SAP
CLRB (R5)+ as a word
MOVB .GSAP,(R5)+ Store group SAP
CLRB (R5)+ as a word
MOVB • DSAP , (R5) + Store destination SAP
CLRB (R5)+ as a word
MOV .CTL,(R5)+ Store CTL field

MOV #.SNAP,(R5)+ Store SNAP protocol address

FORMAT #FMTDAT,#PRSERR Format data into ASCI I
LOG #FMTBUF,FMTL Log the text
RETURN

.END TST802

DLX Ethernet Programming Facilities 4-89

5
DLX Point-to-Point and Multipoint

Programming Facilities

The Direct Line Access controller (D LX) gives programs a direct interface to the
data link, bypassing the standard DECnet user interface. With DLX, you can com
municate with DECnet or non-DECnet based systems. Because DLX does not
offer higher-level DECnet services, such as routing and guaranteed delivery, it
can give high performance in network applications. DLX also lets you build cus
tomized user-level protocols that best suit your applications.

To use DLX, you issue queued input/output (QIO) calls to the NX: device. Your
DLX program can communicate with a DLX program on an adjacent DECnet-RSX
or non-DECnet node, using the DECnet DDCMP protocol. Your DECnet-RSX
node can simultaneously run multiple DECnet and DLX tasks, each possibly com
municating with different nodes.

DLX is automatically built for RSX-11M-PLUS systems; it is optional for RSX-
11M. It is also optional for RSX-11S systems, but is required for RSX-11S down
line loads and up-line dumps.

5.1 Prerequisites for Tasks Using DLX

Before your system runs a DLX program, the DLX process must be loaded and the
circuit set.

The person in charge of network or system management installs the network,
usually by executing a command file that contains the command for loading DLX.
When DLX is loaded, it resides in the common partition NT .DLX.

5-1

The network manager also sets the circuit, either by answering Yes to the
NETGEN question that asks about marking the circuit for load, or by issuing the
Network Control Program (NCP) SET LINE command. The circuit owner must be
DLX. For information on using NCP to set the circuit, refer to the DECnet-RSX
Guide to Network Management Utilities.

5.2 Writing DLX Programs

5-2

DLX programming requires a thorough knowledge of MACRO-II assembly lan
guage and experience in writing real-time application programs.

Since DLX bypasses the higher levels of DECnet, you lose the services at those
levels and must therefore include them in your application. Your programs must
provide the following:

Flow control

Error recovery

Data segmentation

DLX does not support flow control for data transfer.
The DLX programs that run on different nodes must
therefore synchronize with each other before transfer
ring data. If the tasks are unsynchronized, data can be
lost.

The DLX software reports errors, but your program
must include error recovery procedures.

When transmitting data, your program must segment it;
the buffer size must be appropriate to the controller
devices on the communicating systems. For information
on appropriate buffer sizes, consult your network man
ager.

Note that all incoming and outgoing DLX messages are buffered in a shared net
work buffer pool. DECnet and other DLX tasks also use these buffers. Depending
on the requirements of the tasks sharing the buffers, you may want to increase the
size and/or number of buffers to maintain good throughput performance. For
information on displaying and setting buffer sizes, refer to the DECnet-RSX net
work management documentation.

Also note that you must use the /PR:O switch to task build your DLX programs.

DECnet-RSX Programmer's Reference Manual

5.2.1 DLX Resources

DLX provides macros and QIOs to use in your application.

The DEC net macro library, NETLIB.MLB, defines the offsets and macros that DLX
QIOs use. During NETGEN, this library is transferred to your system. The defini
tion macro DLXDF$ contains definitions for offsets and macros.

Your program must issue .MCALL statements and explicitly invoke the macros, as
in the following example:

.MCALL DLXDF$; extract from macro library

DLXDF$; define DLX symbols

DLX QIO functions perform services your application will require. The QIOs for
multipoint and point-to-point programming are:

IO.XOP

IO.XIN

IO.XTM

IO.XRC

IO.XHG

IO.XCL

5.3 DLX QIOs

Open a circuit for your program. This gives your program
access to the controller.

Initialize the circuit after a device error.

Transmit a message.

Ready the circuit to receive a message.

Hang up the circuit without closing it.

Close the circuit.

DLX requests conform to normal standards for RSX-ll QIOs, including logical
unit numbers (LUNs), event flags, I/O status blocks, asynchronous system traps
(ASTs), and parameter lists. According to RSX-ll standards, you can use anyone
of the three macro formats (see Chapter 2). You can use the QIO wait option
(QIOW$) to suspend execution of the program until the call completes.

The rest of this chapter describes the DLX QIOs. The descriptions are in the order
in which you will probably use the QIOs.

DLX Point-to-Point and Multipoint Programming Facilities 5-3

IO.XOP

IO.XOP
(Open a Circuit)

5.3.1 IO.XOP - Open a Circuit

Use:

Issue this QIO to open a circuit for DLX transmission and reception. This QIO
associates the LUN you specify with the circuit you specify. The circuit is then
implicitly initiated, and the DDCMP protocol is started.

Before your application issues the 10.XOP call, the circuit owner must be set to
DLX; the circuit must be either ON or in SERVICE state, and the LUN must be
assigned to NX:. With devices that implement the DDCMP protocol in software,
such as DL 11, DUP 11, DZ, DHU, and DHV devices, the 10 .XOP function does not
complete until the task at the other end of the circuit also performs an open or ini
tialize function.

Format:

QIO$ 10.XOP ,lun, [e/n]"[status], [ast] , <PJ,P2,P3 >

Arguments:

5-4

10.XOP

is the function code that opens a circuit.

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status' ').

DECnet-RSX Programmer's Reference Manual

IO.XOP

ast

is the entry point into an optional user-written AST routine to execute after the
QIO completes.

pI

is the address of an ASCII string that identifies the circuit to open.

The format is:

dev-ctl[-circuit][. tributary]

where dev is the device mnemonic, ctl is the decimal value for the controller num
ber, circuit is the decimal number of the circuit you are opening, and tributary
defines the decimal number of the multipoint tributary with which to communi
cate.

p2

is the length of an ASCII string that identifies the circuit to open.

P3

is a word argument that specifies the timeout value. This value specifies how long
to wait to receive a transmitted message. The low -order byte of the word desig
nates the receive timeout value as follows:

timeout = 0 for no receive timer.
timeout = < n>

where n is the timer value in seconds. The timer value n causes the timeout to
have a range of n-l to n.

Use a zero (0) in the high-order byte of this word.

DLX Point-to-Point and Multipoint Programming Facilities 5-5

IO.XOP

Completion Status:

5-6

IS.SUC
(1)

177736
IE.ALN
(-34.)

177776'
IE.IFC
(-2.)

177646
IE.NSF
(-26.)

177760
IE.PRI
(-16.)

177757
IE.RSU
(-17.)

The circuit opened successfully.

The specified LUN is already in use.

The LUN is not assigned to NX:.

Either you identified the circuit incorrectly or it is not in the
system.

The circuit you specified is not available for DLX use.

The specified circuit is already in use.

DECnet-RSX Programmer's Reference Manual

IO.XIN

IO.XIN
(Initialize the Circuit)

5.3.2 IO.XIN - Initialize the Circuit

Use:

Issue this QIO to reinitialize a circuit after a fatal device error. When you use this
QIO, you must reset the mode and timer values.

With devices that implement the DDCMP protocol in software, such as DL 11,
DUPll, DZ, DHU, and DHV devices, the IO.XOP function does not complete
until the task at the other end of the circuit also performs an open or initialize
function.

Format:

QIO$ IO.XIN,lun,[e/n],,[status],[ast], <pl >

Arguments:

IO.XIN

is the function code that initializes the circuit.

lun

is the logical unit number that you assigned when you opened the circuit.

e/n

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status").

DLX Point-to-Point and Multipoint Programming Facilities 5-7

IO.XIN

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

pI

is the timer argument. Use the format for the IO.XOP argument P3 (Section
5.3.1).

Completion Status:

5-8

IS.SUC
(1)

177761
IE.ABO
(-15.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

The circuit was successfully initialized.

The initialization attempt was aborted. Either a hardware device
error occurred, a user issued a hang-up QIO, or the circuit was
not hung up.

The LUN is not assigned to NX:.

No open circuit has the specified LUN.

DECnet-RSX Programmer's Reference Manual

IO.XTM

IO.XTM
(Transmit a Message on the Circuit)

5.3.3 IO.XTM - Transmit a Message on the Circuit

Issue this QIO to transmit a message. IO.XTM transfers the data from the buffer
whose address and length you specify inpI andp2 to a network buffer for trans
mission. Before transmitting, you must open the circuit; before transmitting after
a device error, you must initialize the circuit.

Format:

QIO$ IO.XTM,lun,[e/n],,[status],[ast], <pI,p2>

Arguments:

IO.XTM

is the function code for transmitting a message.

lun

is the logical unit number associated with the circuit on which to transmit.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status").

ast

is the entry point into an optional user-written AST routine to execute after this
QIO completes.

pI

is the address of the user buffer that contains the message to transmit.

p2

is the length of the message to transmit, excluding the DDCMP header and
checksum.

DLX Point-to-Point and MultipOint Programming Facilities 5-9

IO.XTM

Completion Status:

5-10

IS.SUC
(1)

177761
IE.ABO
(-15.)

177775
IE.DNR
(-3.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177772
IE.SPC
(-6.)

The message was successfully transmitted.

The transmission was aborted because you or the remote user
issued a hang-up QIO or because an unrecoverable error
occurred in the hardware device. When a message transmission
completes with an IE.ABO code, the circuit is hung up. You
must either initialize or close and reopen the circuit before
using it again.

The hardware device was not ready. The circuit was hung up
and not reinitialized.

The LUN is not assigned to NX:.

No open circuit has the specified L UN.

The transmit buffer is too large.

DECnet-RSX Programmer's Reference Manual

IO.XRC

IO.XRC
(Receive a Message on the Circuit)

5.3.4 IO.XRC - Receive a Message on the Circuit

Issue this QIO to receive a message from the remote node. The circuit must
already be initialized. You must issue IO.XRC to get any data that a remote node
sends. If a remote node sends data, but you have not issued IO.XRC, you get an
error report when you next issue this QIO.

Format:

QIO$ IO.XRC,lun,[e/n], , [status], [ast], <pl,p2 >

Arguments:

IO.XRC

is the function code for receiving a message.

lun

is the logical unit number associated with the circuit on which to receive the mes
sage.

e/n

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status' ').

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

pl

is the address of the user buffer to receive the message.

DLX Point-to-Point and Multipoint Programming Facilities 5-11

IO.XRC

p2

is the length in bytes to allocate for the receive buffer. The length of the received
message cannot exceed the size of the system buffer, regardless of the length that
you specify for p2.

Completion Status:

5-12

IS.SUC
(1)

177761
IE.ABO
(-15.)

177763
IE.DAO
(-13.)

177775
IE.DNR
(-3.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177641
IE.TMO
(-95.)

You successfully received a message from the remote node. The
second word of the 110 status block contains the number of
bytes you received.

The receive function was aborted. Either you or the remote user
issued a hang-up QIO, or an unrecoverable hardware device
error occurred. When a receive is aborted, the circuit is hung
up. You must either initialize or close and reopen the circuit
before using it again.

Either a message was received before a receive QIO was issued
and the data was lost or the user buffer was too small, and the
message was truncated. The user buffer length is in the second
word of the I/O status block.

The hardware device was not ready. The circuit was hung up
and not reinitialized.

The LUN is not assigned to NX:.

No open circuit has the specified logical unit number.

A timeout condition occurred. No message arrived within the
timer interval that you specified when you opened or initialized
the circuit.

DECnet-RSX Programmer's Reference Manual

177774
IE.VER
(-4.)

IO.XRC

An error occurred on the circuit. The second word of the I/O
status block contains the error code. The error codes are as fol
lows:

100361 DDCMP transmit error threshold exceeded

100362 Operation aborted

100363 Message received without receive pending

100364 Start received

100366 Circuit physically disconnected

100370 General error

100374 DDCMP reply timeout threshold exceeded

100376 DDCMP receive error threshold exceeded

DLX Point-to-Point and Multipoint Programming Facilities 5-13

IO.XHG

IO.XHG
(Hang Up the Circuit)

5.3.5 IO.XHG - Hang Up the Circuit

Use:

This QIO stops operations on a circuit. IO.XHG does not close a circuit, but to
resume operations, you must either initialize or close and reopen the circuit.

Format:

QIO$ IO.XHG,lun,[efn],,[status],[ast]

Arguments:

5-14

IO.XHG

is the function code that hangs up the circuit.

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status").

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

DECnet-RSX Programmer's Reference Manual

Completion Status:

IS.SUC
(1)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

This circuit was hung up.

The LUN is not assigned to NX:.

No open circuit has the specified LUN.

DLX Point-to-Point and Multipoint Programming Facilities

IO.XHG

5-15

IO.XCL

IO.XCL
(Close the Circuit)

5.3.6 IO.XCL - Close the Circuit

Use:

Issue the IO.XCL call to close an open circuit and stop the DDCMP protocol. If
you have a dial-up connection, the circuit will hang up only after the close com
pletes.

Format:

QIO$ IO.XCL,lun,[e/n),,[status),[ast)

Arguments:

5-16

IO.XCL

is the function code that closes the circuit.

lun

is the logical unit number associated with the circuit.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block. On completion, the block con
tains the QIO completion status in the low-order byte of the first word (see under
"Completion Status").

ast

is the entry point into an optional user-written AST routine to execute after this
call completes.

DECnet-RSX Programmer's Reference Manual

Completion Status:

IS.SUC
(1)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

The circuit was successfully closed.

The LUN is not assigned to NX:.

No open circuit has the specified LUN.

DLX Point-to-Point and Multipoint Programming Facilities

IO.XCL

5-17

5.3.7 Programming Examples

5-18

The following two programs use DLX to send and receive data. These examples
are also included in your tape or disk kit.

DECnet-RSX Programmer's Reference Manual

5.3.7.1 Transmit Example

The XTS program reads data from a user or an indirect command file and trans
mits the data to the cooperating XTR program on a remote node .

. TITLE XTS - DLX TRANSMITTER

.IDENT IVOl.Oll

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information i~ this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

The XTS program transmits data across an "error free" circuit to a
receiver task. The data can be read in from a user at a terminal or
or from an indirect command file. The receiver task, XTR, echoes the
received data back over the circuit.

You must run this program on a system that supports write break-throughs.

To assemble, use the following command string:

MAC XTS,XTS/-SP/LI:TTM=IN:[130,lO]NETLIB/ML,IN:[200,200]XTS

To task build, use the following command string:

XTS/PR:O,XTS/-SP=XTS,IN:[130,lO]NETLIB/LB:GCL
I
STACK=30
UNITS=4
ASG=TI:l:2:3:4
TASK= ... XTS
1/

Note: The IN: device must be the DECnet distribution device
after the PREGEN procedure (if any) has been performed.

The following is an example of the XTS-XTR dialog:

>XTS
LINE: DMC-O
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

(continued on next page)

DLX Point-to-Point and MultipOint Programming Facilities 5-19

XTS>TESTING
TESTING

XTS>"Z
>

XTR must be running on the remote system in order to receive the message
from XTS and return an echo.

.SBTTL

. MACRO
MOV
CALL
.ENDM

.SBTTL

.MCALL

.MCALL

DLXDF$

.SBTTL

LOCAL MACROS

EPRINT ERRMSG
#ERRMSG,RO
$EPRINT
EPRINT

MACRO CALLS

QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,FSRSZ$,ASTX$S
GCL$,GCLDF$,CALLR,DLXDF$

;Define DLX function codes

CONSTANTS

LUN assignments:

TILUN=l
CHNLUN=2
ERRLUN=3
CMDLUN=4

;LUN for TI
;LUN for errqr free circuit
;LUN for errors
;LUN for command lines

Event flag assignments:

TIEFN=l
CHNEFN=2
ERREFN=3
CMDEFN=4

.SBTTL DATA

;Event flag for termiryal I/O
;Event flag for circuit
;Event flag for error messages
;Event flag for command lines

Define GCL parameters

GCLDF$ CMDLUN,CMDEFN,<XTS>,CMDBUF,80.

Define FSR size

;****
; DPBs
;****
WRITE:

ERDPB:

RECl: '
REC2:

5-20

FSRSZ$

QIOW$

QIOW$

QIO$
QIO$

1 ;Room for 1 file (GCL)

IO.WVB,TILUN,TIEFN",,<O,O,40>

IO.WVB,ERRLUN,ERREFN",,<O,O,40>

IO.XRC,CHNLUN",RlSB,RECAST,<RlBUF,80.>
IO.XRC,CHNLUN",R2SB,RECAST,<R2BUF,80.>

DECnet-RSX Programmer's Reference Manual

CLOSE: QIOW$ IO.XCL,CHNLUN,CHNEFN
,
i Exit-with-status word

EXSTAT: .BLKW 1
i
i Circuit 1/0 status block
,
CHNSB: .BLKW 2

; AST saved 1/0 status block
,
IOSB: .BLKW 1
,
i Circuit receive 1/0 status blocks
,
RISB: .BLKW 2

.WORD RIBUF

iExit status

Status of first receive
Address of buffer

. WORD HNGRCI Address of receive posting routine

R2SB: .BLKW
.WORD

2
R2BUF

Status of second receive
Address of buffer

.WORD HNGRC2 Address of receive posting routine

Buffer for command line

CMDBUF: .BLKB 82 .
. EVEN

,
; Circuit receive buffers
,
RIBUF:
R2BUF:

i****

. BLKB

. BLKB

.EVEN

i TEXT STRINGS:
i****
;

80 .
80 .

; Header for error messages

XTSEM: .ASCIZ IXTS -- I

; Temporary prompt

PROMPT: .ASCIZ <15><12>/LINE: I

Error messages

.ENABL

.NLIST
GCLERR: .ASCIZ
NSFERR: .ASCIZ

DLXERR: • ASC I Z
OPNERR: . ASC I I
BUFOPN: .BLKB
XMTERR: • ASC I I
BUFXMT: .BLKB
RECERR: • ASCI I

LC
BEX
/Command line read error/
INa such command filel

/DLX not loadedl
IUnable to open line -- I
7
IError transmitting data
7
IError receiving data -- I

I

DLX Point-to-Point and Multipoint Programming Facilities

(continued on next page)

5-21

BUFREC: .BLKB 7
.LIST BEX
.EVEN

.SBTTL XTS - XTS MAIN LINE
;+
; XTS -- Main line of XTS code

XTSEP: :

MOV #EX$SUC,EXSTAT

Assign LUN to circuit

ALUN$S
BCC
EPRINT
BR

#CHNLUN,#"NX,#O
10$
OLXERR
EXIT

Prompt user for line 10

10$: MOV
MOV
CALL
MOV
BCS
TST
BEQ

$CLPMT,-(SP)
#PROMPT,$CLPMT
GCL
(SP)+,$CLPMT
EXIT
R5
10$

Open access to the line

;Assume exit with status

; If CC, all okay
;Else, assume OLX not loaded
;and leave

;Save current prompt
;Prompt string
;Get a command line
;Restore prompt
;If CS, assume EOF
;Blank line?
;If EQ, yes - try again

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

#IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>

15$:

15$
CHNSB,Rl
20$
#BUFOPN,RO
R2
$CBOMG
(RO)
OPNERR
EXIT

Hang an asynchronous read on line

20$: CALL HNGRCl
CALL HNGRC2
BCS EXIT

Get command line
,
30$: CALL GCL

BCS EXIT
TST R5
BEQ 30$

Transmit the buffer

CALL XMIT
Bec 30$

5-22

; IF CS, error
;Successful?
;If PL, yes
;Else, get buffer
;Zero suppression
;Convert number
;Make string ASCIZ
;Open error

; If CS, error

;Get command line
;If CS, assume EOF
;Empty line?

address

;If EQ, yes - try again

;Transmit the buffer
;If CC, get next message

DECnet-RSX Programmer's Reference Manual

; Close the line

EXIT: DIR$ #CLOSE

Exit XTS

EXST$S EXSTAT
EXIT$S

.SBTTL GCL - GET
.+

, **-GCL-Get command line

COMMAND LINE

;Try to exit-with-status
;Else, just exit

This routine reads a command line for XTS. The input can be from
TI: or from an indirect command file. Return with carry set for error
or EOF.

Inputs:
None

Outputs:
R4=address of command line
R5=size of command line in bytes
Carry bit set/cleared

Effects:

GCL:

10$:
20$:

30$:

R4,R5 modified

GCL$
MOV
TSTB
BGT

CMPB
BEQ

CMPB
BEQ

CMPB
BNE
EPRINT
CALL

CLR
BR

EPRINT
TSTB
BNE
BR
SEC
BR

$CLIOS,R5
(R5)
40$

IE. EOF , (R5)
30$

#IE.ABO,(R5)
30$

#IE.NSF,(R5)
10$
NSFERR
ECHO

R5
50$

GCLERR
$CLEVL
30$
GCL

50$

Get size and address of command line
,
40$: MOV

MOV
CLC

$CLBUF,R4
2 (R5) , R5

;Get command line
;Point to I/O status block
;Error?
; If GT, no

;End of file?
;If EQ, yes - set C and return

;Was read killed by receive?
;If EQ, yes - return with C-SET

;No such file error?
; If NE, no
;Else, say so
;Echo command line

;Set command line length to a
;and return empty

;Print get command line error
;Terminal input?
;If NE, no - fatal error
;Else, prompt again
;Set carry
;and exit

;Get address of command line
;Get size of command line
;Set success

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-23

50$:

;+

,

RETURN ;Return

.SBTTL HNGRCI - HANG ASYNCHRONOUS READ ON LINE

**-HNGRCI - Hang an asynchronous read on the circuit
**-HNGRC2 -

Inputs:
None

Outputs:
Receive hung on line

.ENABL LSB
HNGRCl:

CALL $SAVAL ;Save all registers
DIR$ #RECI ;Hang receive
BCS 10$;If CS, error
BR 20$;and continue in common

HNGRC2:
CALL $SAVAL ;Save all registers
DIR$ #REC2 ;Hang receive
BCC 20$;If CC, success

10$: EPRINT RECERR ;Receive error
SEC ;Indicate failure

20$: RETURN ;Return
.DSABL LSB

.SBTTL XMIT - TRANSMIT DATA OVER LINE
; +

**-XMIT - Transmit data over line

Inputs:
R4
R5

Outputs:

Address of data
Length of data

Data transmitted

XMIT:
#IO.XMT,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
10$;If CS, error
CHNSB,Rl ;Successful?
20$;If PL, yes

code

QIOW$S
BCS

'MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
SEC
RETURN

#BUFXMT,RO ;Else, get buffer address

10$:

20$:

R2 ;Zero suppression
$CBOMG ;Convert number
(RO) ;Make string ASCIZ
XMTERR ;Transmit error

;Indicate failure

.SBTTL RECAST - AST FOR CHANNEL READ COMPLETE
• +
~ **-RECAST - AST for circuit read complete

Inputs:
(SP)

5-24

Address of I/O status block

DECnet-RSX Programmer's Reference Manual

Outputs:
1. Another read hung on channel (if last receive succeeded)
2. Buffer read from channel is echoed on terminal

RECAST:

10$:

MOV
MOV
MOV
TSTB
BPL
CALLR
MOV
MOV
DIR$
CALL
MOV
ASTX$S

(SP),IOSB
Rl, (SP)
IOSB,Rl
(Rl)
10$
EXIT
2(Rl),WRITE+Q.IOPL+2
4(Rl),WRITE+Q.IOPL
#WRITE
@6(Rl)
(SP)+,Rl

iSave I/O status block address
iSave Rl
iGet I/O status block address
iSuccessful completion?
ilf PL, yes - write it out
iElse, close line and exit
iSet leng:h of buffer to write
iSet buffer address
iWrite buffer to terminal
iHang another receive
iRestore Rl

.SBTTL $EPRINT -- PRINT ERROR MESSAGE
i +

**-$EPRINT- Print error message

Prints the specified error message prefixed by "XTS -- "
Sets the exit-status as "EX$ERR".

Inputs:
RO=Address of message

Outputs:
Error message printed on TI:
EXSTAT = EX$ERR

Effects:

$EPRINT:

PRINT2:
5$:
10$:

No registers modified

.ENABL

MOV
MOV
MOV
MOV
CALL
MOV
MOV

MOV
TSTB
BNE
DEC
SUB
~OV

DIR$
~OV

RETURN
.DSABL

LSB

RO,-(SP)
#EX$ERR,EXSTAT
#44,ERDPB+Q.IOPL+4
#XTSEM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO

RO,ERDPB+Q.IOPL
(RO)+
10$
RO
ERDPB+Q.IOPL,RO
RO,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4

LSB

.SBTTL ECHO - ECHO COMMAND LINE

iSave RO
iSet exit status to "ERROR"
iSet vertical format to prompt
iGet prefix message
iPrint prefix
iSet vert. format to overprint
iGet address of message

iSet address of message
iNull byte?
iIf NE, no - keep looking
iDon't count null
iCalculate length of string
iSet length of string
iIssue directive
iRestore vertical format to normal

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-25

; +
**-ECHO-Echo command line

This routine echoes the current command line if it came from an indirect
command file.

Inputs:
SCLEVL=Indicates command file level
SCLBUF=Pointer to start of ASCIZ command line

Outputs:
LINE FEED appended to command line and command line echoed on TI:

Effects:
RO, Rl modified

ECHO:

10$:

5-26

rSTB
SEQ
~OV

CALL
:\ETURN

.END

$CLEVL
10$
$CLBUF,RO
PRINT2

XTSEP

;Command from terminal?
;If EQ, yes - don't echo
;Point to command line
;Print line on error LUN

DECnet-RSX Programmer's Reference Manual

5.3.7.2 Receive Example

The XTR program uses DLX QIOs to receive data from the cooperating XTS task
on a remote node .

. TITLE XTR - DLX RECEIVER

.IDENT IV01. OIl

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

The XTR program receives and echoes data over a circuit. Use it in
conjunction with the XTS program.

To assemble, use the following command string:

MAC XTR,XTR/-SP=IN:[130,10]NETLIB/ML,IN:[200,200]XTR

To task build, use the following command string:

XTR/PR:O,XTR/-SP=XTR,IN:[130,lO]NETLIB/LB:GCL
I
STACK=30
UNITS=3
ASG=TI:l:2:3
TASK= ... XTR
II

Note: The IN: device must be the DECnet distribution device
after the PREGEN procedure (if any) has been performed.

The following is an example of the XTS-XTR dialog:

>XTS
LINE: DMC-O
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

XTS>TESTING
TESTING

XTS>AZ
>

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-27

Start XTR before starting the remote XTS program. Start XTR as follows:

>XTR
LINE: DUP-O

When you are finished with these programs, abort XTR.

.SBTTL

. MACRO
MOV
CALL
.ENDM

.SBTTL

.MCALL

.MCALL

DLXBF$

.SBTTL

LOCAL MACROS

EPRINT ERRMSG
#ERRMSG,RO
$EPRINT
EPRINT

MACRO CALLS

QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,ASTX$S,WTSE$S
GCL$,GCLDF$,DLXDF$,DLXBUF

:Define DLX function codes and overhead

CONSTANTS

Receive buffer size

BUFSIZ = 90.

LUN assignments:

TILUN=l
CHNLUN=2
ERRLUN=3

;LUN for TI
;LUN for error-free circuit
;LUN for errors

Event ffiag assignments:

TIEFN=l
CHNEFN=2
ERREFN=3
DONE=4

.SBTTL DATA

;Event flag for terminal I/O
;Event flag for circuit
;Event flag for error messages
;Event flag signaling completion

Define GCL parameters

;****
; DPBs
;****

ERDPB:

RECl:
REC2:

5-28

GCLDF$

QIOW$

QIO$
QIO$

TILUN,TIEFN,<LINE>,RlBUF,BUFSIZ

IO.WVB,ERRLUN,ERREFN",,<O,0,40>

IO.XRC,CHNLUN",R1SB,RECAST,<RIBUF,BUFSIZ>
IO.XRC,CHNLUN",R2SB,RECAST,<R2BUF,BUFSIZ>

DECnet-RSX Programmer's Reference Manual

XMT: QIOW$

START: QIOW$

CLOSE: QIOW$

IO.XTM,CHNLUN,CHNEFN"CHNSB,,<O,O>

IO.XIN,CHNLUN,CHNEFN"CHNSB

10.XCL,CHNLUN,CHNEFN

,
i Circuit I/O status block
,
CHNSB: .BLKW 2

; Temporary location to contain 10SB address
,
10SB:
TEMP:

,

.BLKW

.BLKW
I
1

i Circuit receive I/O status blocks
,
RISB: .BLKW 2

• WORD RIBUF
iStatus of first receive
iAddress of buffer

.WORD HNGRCI iAddress of receive posting routine

R2SB: .BLKW
.WORD

2
R2BUF

iStatus of second receive
iAddress of buffer

.WORD HNGRC2 ;Address of receive posting routine

Circuit receive buffers

;****

DLXBUF
DLXBUF
• EVEN

i Text strings:
i****

RlBUF,BUFSIZ
R2BUF,BUFSIZ

iFirst buffer descriptor
iSecond buffer descriptor

Header for error messages

XTREM: .ASCIZ /XTR -- /

Error messages

.ENABL

.NLIST
GCLERR: • ASC I Z
DLXERR: .ASCIZ
OPNERR: • ASC I I
BUFOPN: .BLKB
XMTERR: • ASC I I
BUFXMT: .BLKB

LC
BEX
/Command line read error/
/DLX not loaded/
/Unable to open line -- /
7
/Error transmitting data -- /
7

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-29

RECERR: . ASC I I
BUFREC: .BLKB

.LIST

. EVEN

.SBTTL
i+

/Error receiving data -- /
7
BEX

XTREP - XTR MAIN LINE

XTREP -- Main line of XTR code

Prompt user for line to open and loop all received messages over the same linl

Inputs:
None.

Outputs:
Loop all messages indefinitely.

XTREP: :
CLR' R3

Assign LUN to circuit

ALUN$S
BCC
EPRINT
BR

#CHNLUN,#"NX,#O
10$
DLXERR
99$

If CC, all okay
Else, assume DLX not loaded
and leave

Prompt user for line ID

10$: CALL
BCS
TST
BEQ

GCL
99$
R5
10$

iGet a command line
;If CS, assume EOF
;Blank line?
;IE EQ, yes - try again

Open access to the line

15$:

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

#IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
15$;If CS, error
CHNSB,Rl ;Successful?
20$;If PL, yes
#BUFOPN,RO ;Else, get buffer address
R2 ; Zero suppress ion
$CBOMG ;Convert number
(RO) ;Make string ASCIZ
OPNERR ;Open error
99$

Hang an asynchronous read on line
,
20$:

5-30

CALL
BCS

CALL
BC'S

HNGRCI
99$

HNGRC2
99$

;If CS, error

;Hang second receive
;If CS, error

DECnet-RSX Programmer's Reference Manual

The rest is AST-driven. Pretend we are waiting for something.

WTSE$S #DONE

99$: DIR$ #CLOSE
EXIT$S

.SBTTL GCL - GET COMMAND LINE
;+

**-GCL-Get command line

iWait for completion (never happens)

iClose down the line
iExit

This routine reads a command line for XTR. The input can be from TI:
or from an indirect command file. Return with carry bit set for error or EOF.

Inputs:
NONE

Outputs:
R4=ADDRESS OF COMMAND LINE
R5=SIZE OF COMMAND LINE IN BYTES
C-BIT SET/CLEARED

Effects:

GCL:

10$:
20$:

30$:

R4,R5 MODIFIED.

GCL$
MOV $CLIOS,R5
TSTB (R5)
BGT 40$

CMPS #IE.EOF,(R5)
SEQ 30$

CMPS #IE.ABO, (R5)
SEQ 30$

EPRINT GCLERR
TSTB $CLEVL
BNE 30$
BR GCL
SEC
BR 50$

Get size and address of command line

40$:

50$:

MOV
MOV
CLC

$CLSUF,R4
2 (R5) , R5

iGet command line
iPoint to I/O status block
;Error?
; If GT, no

;End of file?
iIf EQ, yes - set carry and return

;Was read killed by receive?
iIf EQ, yes - return with carry set

iPrint get command line error
;Terminal input?
;If NE, no - fatal error
;Else, re-prompt
;Set carry
;and exit

;Get address of command line
;Get size of command line
iSet success

RETURN ;Global return

.SSTTL HNGRCI - HANG ASYNCHRONOUS READ ON LINE

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-31

.SBTTL HNGRC2 - HANG SECOND ASYNCHRONOUS READ
.+
, **-HNGREC - Hang an asynchronous read on the circuit

**-HNGRC2 - Hang second asynchronous read on circuit

Inputs:
None.

Outputs:
Receive

,
.ENABL

HNGRC1:
DIR$
BCS
BR

HNGRC2:
DIR$
BCC

10$: EPRINT
SEC

20$: RETURN
.DSABL

hung on

LSB

#RECl
10$
20$

#REC2
20$
RECERR

LSB

line

;Hang read
; If cs, error
;And continue in common code

;Hang read
;If CC return
;Receive error
;Indicate failure

.SBTTL XMIT - TRANSMIT DATA OVER LINE
;+

**-XMIT - Transmit data over line

Inputs:
None

Outputs:
Data transmitted

XMIT:

10$:

20$:

MOV
DIR$
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
SEC
MOV
RETURN
.DSABL

Rl,-(SP)
#XMT
10$
CHNSB,Rl
20$
#BUFXMT,RO
R2
$CBOMG
(RO)
XMTERR

(SP)+,Rl

LSB

;Save Rl
;Transmit data
; If CS, error
;Successful ?
; If PL, yes
;Else, get buffer address
;Zero suppression
;Convert number
;Make string ASCIZ
;Transmit error
;Indicate failure
;Restore Rl

.SBTTL RECAST - AST FOR CIRCUIT READ COMPLETE
;+

**-RECAST - AST for circuit read complete

; Inputs:

5-32 DECnet-RSX Programmer's Reference Manual

(SP) = ADDRESS OF I/O STATUS BLOCK

Outputs:
1. Another read hung on circuit
2. Buffer read from circuit is echoed over line

RECAST:

5$:

10$:

20$:

MOV
MOV
MOV
TSTB
BPL
TST
BNE
INC
DIR$
BCC
lOT
TSTB
BPL'
lOT
CLR
MOV
BEQ
MOV
CALL
CALL

MOV
ASTX$S

(SP) ,TEMP
Rl,(SP)
TEMP,Rl
(Rl)
10$
R3
20$
R3
#START
5$

CHNSB
20$

R3
2(Rl),XMT+Q.IOPL+2
20$
4(Rl),XMT+Q.IOPL
XMIT
@6(Rl)

(SP)+,Rl

;Save IOSB address
;Save Rl
'Rl -> lOSB
;successful completion?
;If PL, yes - transmit message
;Been through this code last time?
;Yes - post receive and return
;Mark
;Else, restart the line
;If success, continue
;Else abort
;Success?
;Yes - continue
;Else fatal error - abort
;Clear flag
;Set length of buffer to transmit
;If EQ, no buffer to transmit?
;Set address of buffer
;Echo message back over line
;Hang another receive on circuit
;Ignore any errors
;Restore Rl
;Exit AST

.SBTTL $EPRINT -- PRINT ERROR MESSAGE
; +

**-$EPRINT-Print error message

Prints the specified error message, with an "XTR -- " prefix.
Sets the exit-status as "EX$ERR".

Inputs:
RO=Address of message

Outputs:
Error message printed on TI:

Effects:
No registers modified

,
$EPRINT:

MOV
MOV
MOV
CALL
MOV
MOV

5$: MOV

RO,-(SP)
#44,ERDPB+Q.IOPL+4
#XTREM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO
RO , ERDPB+Q. lOP L

;Save RO
;Set vertical format to prompt
;Get prefix message
;Print prefix
;Set vert. format to overprint
;Get address of message
;Set address of message

(continued on next page)

DLX Point-to-Point and Multipoint Programming Facilities 5-33

10$:

5-34

TSTB
BNE
DEC
SUB
MOV
DIR$
MOV
RETURN

.END

(RO)+
10$
RO
ERDPB+Q.IOPL,RO
RO,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4

XTREP'

;Null byte?
;If NE, no - keep looking
;Don't count null
;Calculate length of string
;Set length of string
;Issue directive
;Restore vertical format to normal

DECnet-RSX Programmer's Reference Manual

6

LAT Programming Facilities

The Local Area Transport (LA T) communications protocol runs on terminal
servers and host systems. It handles communications among local area network
(LAN) devices attached to an Ethernet. Terminal servers are communications
servers to which a number of devices, such as user terminals and printers, are
attached. An application on a host node on the Ethernet can make logical connec
tions to these devices through the terminal server. During communication
between the host node and remote device, the terminal server is almost transpar
ent.

LAT software is available with DECnet-RSX-IIM-PLUS and DEC net-Micro/
RSX. The LAT protocol and DECnet protocol are different, but they coexist on
the same Ethernet.

This chapter is written for programmers who are experienced in using RSX
programming directives to write applications for directly-attached devices. The
chapter describes how to write new applications or modify applications when the
target device is not attached to the host, but to a remote terminal server else
where on the Ethernet. The chapter supplements the full-duplex terminal driver
information in the RSX-llMIM-PLUS 110 Drivers Reference Manual or the
MicrolRSX 110 Drivers Reference Manual.

Throughout the chapter, "device" refers to a hardware terminal device. "Termi
nal" refers to the operating system's data structures for handling the hardware
device.

The chapter covers the following topicS:

• Components of the LA T environment

• Programming steps for applications to LA T terminals

6-1

• Directives for programming LA T terminals

For a thorough introduction to the LA T environment, refer to the Local Area
Transport (LA T) Network Concepts manual.

6.1 Components of the LAT Environment

6-2

The LAT environment consists of components on the terminal server and host,
along with the Ethernet network that lets them communicate. Figure 6-1 illus
trates an application using a LA T connection.

Figure 6-1 : Using a LAT Connection

ETHERNET

"----

RSX
HOST

TERMINAL f
SERVER WRITE! READ

LKG-1232-87

Figure 6-2 gives a more detailed picture of the components that make it possible
for applications to communicate with remote LAT devices.

DECnet-RSX Programmer's Reference Manual

•

Figure 6-2: LAT Components for Applications

YL
CONT'R

o I 1

I USER
APPLICATION

RSX
OPERATING SYSTEM

TERMINAL DRIVER (TTDRV)

YZ LH
CONTROLLER LOGICAL CONTROLLER

21 31 4 I 5 6 7 10 11 12
pORT f-pORT PORT PORT I-PORT

1 2 3 4 5
- - - - -

LAT PROCESS
ETHERNET PROTOCOL

MANAGER

ETHERNET DRIVER

I
HARDWARE
INTERFACE

TO
ETHERNET

ETHERNET DRIVER

HARDWARE
INTERFACE

TO
ETHERNET

I

LA T SERVER SOFTWARE

...... PORT n

HOST
SYSTEM

TT: DEVICES
(TERMINALS)

LOCAL PORTS

ETHERNET CABLE •

TERMINAL
SERVER

LKG-1029-87

The terminal server is a piece of hardware that has a physical connection to the
Ethernet. It also has connections to devices such as user terminals, printers, and
so on. A device attached to the terminal server is the target of your application.

LA T Programming Facilities 6-3

Note that LA T software exists on both the host and terminal server. The LA T pro
tocol is implemented on the host by the LA T process and on the terminal server
by LAT server software. The LAT process on the host provides an interface
between the terminal driver and Ethernet driver. It sends and receives messages
having the LA T protocol.

The LA T Control Program (LCP) is a network management interface to the LA T
process and operating system. This chapter assumes that someone (called a "net
work manager' ') has responsibility for using LCP to set up the host LA T environ
ment. At your site, a system manager or programmer may perform the network
manager function. The DECnet-RSX Guide to Network Management Utilities
includes information on LCP.

When a user and provider of LA T resources have a logical connection, a session
exists. Applications can initiate sessions from the host to the terminal server, and
interactive users can initiate sessions from the terminal server to the host.

Each end point of the LAT session is a port. The figure shows ports on the RSX
host that relate to local terminals (TT: devices) and ports on the terminal server to
which user terminals and printers are attached. In order to perform I/O opera
tions on the device at the remote port, your application must make a connection
between the local (host) port and the remote (terminal server) port. The next sec
tions describe the local port and remote port.

6.1.1 The Local Port

6-4

The local port on the RSX host is a LAT terminal. To create ports, the network
manager uses LCP and creates a number ofLAT terminals. LAT terminals are TT:
devices for use only in LAT sessions. While other TT: devices perform I/O opera
tions to attached devices, the LAT terminals send and receive I/O across a net
work connection. Unlike other TT: devices, which are created by the SYSGEN
procedure, LAT terminals are created after the SYSGEN and NETGEN procedure~
are complete. The numbering of the LAT terminals starts with the first available'~
number after the numbers for hard-wired terminals, in octal notation. For exam
ple, if the system already has 7 terminals with the numbers zero (0) through 6, cre
ating 3 new LA T terminals creates TT7:, TT 10:, and TT 11 :. These terminals
would have local port names of PORT_l , PORT_2, and PORT_3.

A LAT terminal can be an interactive or application terminal. Interactive termi
nals are those that remote interactive users use to log on to the host. Application
terminals are those that local applications use to connect to a remote device.

DECnet-RSX Programmer's Reference Manual

LCP normally creates LAT terminals as interactive terminals. Application termi
nals can be created in several ways. When initially creating LA T terminals, the
network manager can specify a number to reserve for application use. Alterna
tively, after the LA T terminals exist, the network manager or an application can
change an interactive terminal into an application terminal by specifying the tar
get information for the terminal. The target information comprises the name of a
terminal server and a port and/or service on that terminal server to which any
connect request that follows will be directed.

To specify the target information and change an interactive terminal into an
application terminal, the network manager issues the LCP SET PORT command.
An application does this by issuing the Set Multiple Characteristics (SF.SMC) pro
gramming directive, including the appropriate characteristics (Section 6.3.4).

Although the operating system communicates with a TT: device and the LA T pro
cess with a port, both refer to the same logical device, as Figure 6-3 illustrates.
Figure 6-3 uses as examples the same TT: and port numbers as in Figure 6-2.

Figure 6-3: The LAT Terminal and Local Port

RSX
OPERATING

SYSTEM

lit

TT6:
f--------

PORT 1
-

LAT
PROCESS

LKG-1034-87

LAT Programming Facilities 6-5

The MCR command CON DISPLAY FOR * LH lists the LAT terminals on your host
as TT: devices associated with the LH logical controller, as in the following exam
ple:

TTll: LHAO:
TT12: LHA1:
TT13: LHA2:

The LCP SHOW PORT command lists your host's application terminals with the
target information for each. It also lists the interactive terminals currently in use.

6.1.2 The Remote Port

6-6

The target for your application is a device at a remote port. The remote port is a
physical outlet on the terminal server. Each terminal server has multiple ports.
Input- or output-only devices, such as printers or badge readers, or standard
input/output user terminals can be attached to terminal server ports. This chapter
assumes that someone is responsible for the terminal server, and calls this person
the "server manager."

Terminal server ports have names. They can be default names or names that the
terminal server manager created. To specify the target for your application, you
can always choose to specify the name of the port to which the device is attached.

On some terminal servers, the server manager can also designate a service name
for one or more ports. A service is a resource such as a printer, card reader, or
computer, that the terminal server makes available to network users. For exam
ple, Port_3 and Port_4 of the terminal server in Figure 6-2 could have the ser
vice name PRINTER. If the server manager assigns service names, an application
can specify the target by its service name instead of its port. When the terminal
server receives a request for a service, it passes the request to any free port that
offers the service. This frees the application from dependence on a particular con
figuration at the terminal server; the terminal server manager can move and
change devices without causing errors in applications. However, to ensure that
the application connects to both a particular port and service, you can specify
both a port and service name.

For more information on setting up terminal servers, refer to the Local Area
Transport (LAT) Network Concepts manual and the management guide for your
terminal server.

DECnet-RSX Programmer's Reference Manual

6.2 LAT Application Programming

This section describes the basic steps in writing a LA T application:

1. Coordinating available resources

2. Attaching the terminal

3. Setting the terminal characteristics

4. Establishing the connection

5. Performing read and write operations

6. Terminating the connection

6.2.1 Coordinating Available Resources

Before writing your application, you need information about the resources avail
able at your site. If your site includes a terminal server manager and network man
ager, coordinating with them is important. They can ensure that your application
gets the resources it needs and conforms to the existing LAT environment.

First, you need information about the terminal server your application will
access. The following list points out some questions to which you need answers.
If your site has a terminal server manager, ask that person the questions in the first
column; if not, enter the commands in the second column.

Ask the server manager:

What is the terminal server name?

What are the port names?

What service names have been assigned?

Or enter this command:

SHOW SERVER

SHOW PORT ALL

SHOW SERVICES/LOCAL
This command gives a command syntax
error if the terminal does not support ser
vice names.

Next, find out what LA T terminals on the host are available for your application
to use. If a system manager or network manager is available, ask what terminals
you can use. If not, answer the questions in the first column of the following list
by entering the commands in the second column of the list.

LA T Programming Facilities 6-7

Ask the network manager:

What LA T terminals exist on the host?

Which of the LA T terminals are in use
by or reserved for other applications?

Or enter this command:

MCR command:
CON DISPLAY ATTRIBUTES FOR * LH

LCP command:
SHOW PORT lAP PLICATION

You and the network manager must decide whether to specify the application's
target port and/or service from LCP, or through the application.

Coordination with the network manager is important because LCP commands
affect applications. For example:

• CREATE and START are required, before you run the application, to create
the terminals and start the LA T process. Your network manager may also
choose to reserve some terminals for applications at creation time.

• SET PORT lets the network manager specify the target for a LAT terminal,
making that terminal an application terminal. Using LCP in this way readies
the terminal for you and lets you omit a step in the application.

• D~SCONNECT can terminate a connection.

• STOP halts the LAT process, aborting all LAT connections and destroying
the target information for application terminals.

For more information on LCP commands, refer to the DECnet-RSX Guide to Net
work Management Utilities.

6.2.2 Attaching the Terminal

6-8

Attaching the terminal ensures that your application gets exclusive use of the ter
minal and prevents it from receiving 1/0 requests from other applications. It is an
optional step, but is very important and strongly recommended. If you omit this
step, another application can attach the terminal, specify target information that
overrides the information about your target, or perform other disruptive opera
tions.

Attach the terminal by issuing an IO.ATT directive.

DECnet-RSX Programmer's Reference Manual

6.2.3 Setting the LAT Terminal Characteristics

Next, specify the target terminal server port and/or service to which the terminal
will later connect. The terminal server name, port name, and service name are the
LAT terminal characteristics. Issue a Set Multiple Characteristics (SF.SMC) QIO,
and specify these names by including the TC .MAP characteristics block. Section
6.3.4.1 describes the TC.MAP characteristics block.

Setting these characteristics sets the terminal nobroadcast (NOBRO) and slave
characteristics. NOBRO prevents the terminal from receiving broadcasts; SLAVE
prevents it from accepting unsolicited input.

If the terminal is currently an interactive terminal, setting the characteristics to
provide the target information changes it into an application terminal. If the ter
minal is currently an application terminal for which LCP previously specified a
different target, your characteristics directive resets the characteristics to your
target specifications. If the terminal is currently a>·reserved application terminal, it
has no prior target information, but requires this information before you issue a
connect request.

You can set the characteristics only if the terminal is currently available for a ses
sion. If the terminal is engaged in a session on behalf of an interactive user or
another application, the characteristics directive returns an error.

You can omit setting the LA T characteristics in your application if your network
manager has already used the LCP SET PORT command to do so. Using LCP in this
way has some benefits; for example, it lets you designate a terminal for use by a
specific application, whether or not the application is currently in use. Using LCP
also allows you to use an existing application designed for a hard-wired device
with a remote LA T device without modifying the application, as the next section
explains.

6.2.4 Establishing the Connection

The application terminal establishes a network connection in order to exchange
data with a remote LAT device. The LAT protocol includes a master/slave rela
tionship: terminal servers can establish sessions with hosts, but hosts cannot
establish sessions with terminal servers. When your application initiates a con
nection, therefore, it actually sends a request soliciting the connection from the
terminal server. You can request the connection explicitly or implicitly.

An explicit connection starts when an application issues an Originate Explicit
Connection (IO.ORG) directive. This directive solicits a connection between the
application terminal and the terminal server specified in the Set Characteristics or
LCP SET PORT operation. The IO.ORG directive is for LAT terminals only and is
described in Section 6.3.2.

LA T Programming Facilities 6-9

An implicit connection starts when an application immediately issues a Read Vir
tual Block (IO.RVB) or Write Virtual Block (IO.WVB) directive, instead of first
requesting a connection. If the terminal is a LA T application terminal that is not
yet connected to a remote terminal server, the initial read or write request starts a
connection sequence. When the connection completes, the read or write opera
tion is performed.

Implicit connections let you run an application originally written for a hard
wired device in a LAT environment. In most cases, you need not modify the appli
cation if you use LCP to specify the target for the application terminal. Note, how
ever, that the initial 10.RVB or 10.WVB directive will return status messages that
report the success or failure of the connection attempt. Refer to Section 6.3.3 for
the LAT connection status returns.

Some target services, such as printers, have queues. If you make a connection
request to a queued service, the connection does not complete until the service
becomes available. To avoid an indefinite wait, include a time-out routine in your
application.

6.2.5 Reading and Writing Data

The Read Virtual Block (IO.RVB) and Write Virtual Block (IO.WVB) QIO func
tions exchange data with the application terminal. Use them as you do for stan
dard terminals, but remember that if you have not created an explicit connection,
the first read or write request establishes an implicit connection. Use time-out and
error-handling routines with the first read or write request in case connection
problems occur.

6.2.6 Terminating the Connection

6-10

Termination methods for explicit and implicit connections differ.

An explicit connection terminates only in response to a Disconnect Terminal
(IO.HNG) directive. 10.HNG assures a clean, synchronous termination and does
not complete until the disconnect sequence completes. Once the directive com
pletes, the remote device becomes available for I/O from other sources. By not
issuing an 10.HNG directive, an application that exits and restarts can maintain an
available connection.

Implicit connections terminate in response to both the 10.HNG and Detach I/O
Device (IO.DET) directives and at task exit. Both 10.HNG and 10.DET assure
clean, synchronous terminations and, on completion, leave the remote device
available for I/O from other sources. Use 10.DET, however, only if you previ
ously attached the terminal.

DECnet-RSX Programmer's Reference Manual

Although task exit can terminate an implicit connection, avoid using it as a termi
nation method. If an application includes multiple tasks, the connection termi
nates when anyone task exits, and the next read or write request establishes a
new connection. Terminating and reconnecting consumes time and adds over
head. It can also cause you to lose the remote resource if another application is
queued and waiting when yours disconnects. To avoid this, do one of the follow
ing:

• Modify the application to issue an IO.ORG directive.

• Create an initial task that issues an IO.ORG directive and then passes control
to the existing application.

Both IO.HNG and IO.DET allow the application terminal to send outstanding
data to the terminal server before completing a disconnect request.

Also note that any connection can terminate due to unexpected errors such as ter
minal server crash or network errors, or because the network manager has issued
an LCP STOP or LCP TERMINATE command.

6.2.7 Summary

Table 6-1 summarizes the basic steps in a LA T application. The first column lists
the functions to perform. The second and third columns show what you do to
perform that function using explicit and implicit connections, respectively.

Table 6-1: Steps in a LAT Application

Function

Attach the
terminal.

Set LA T terminal
characteristics.

Establish a
connection.

Explicit Connection

Issue IO.ATT.

Issue SF.SMC and include
the TC.MAP characteristic.
Alternatively, use the LCP
SET PORT command prior
to execution.

Issue IO.ORG.

Application executes

Terminate the
connection.

Issue IO.HNG.

LAT Programming Facilities

Implicit Connection

Same.

Same.

Issue an initial IO.RVB or IO.WVB
directive.

Issue IO.HNG or IO.DET. (Use
IO.DET only if you previously
attached the terminal.) Task exit also
terminates the connection.

6-11

6.3 Directives for Programming Application Terminals

6-12

The LAT application terminals use standard RSX terminal driver directives. Table
6-2 notes the special usage of directives that form important steps in a LAT appli
cation and gives the formats of those directives.

Table 6-2: Terminal Driver Directive Usage for LAT Terminals

Directive Use and Format

IO.ATT Attaches the terminal.

IO.DET

IO.HNG

IO.ORG

IO.RVB

IO.WVB

SF.GMC

SF.SMC

QIOW$C IO.ATT,lun,e/n,fpri],[isb],[ast]

Terminates an implicit connection to aLA T terminal that you previously
attached.

QIOW$C IO.DET,lun,e/n,fpri],[isb],[ast]

Terminates any connection to aLA T terminal.

QIOW$C 10. HNG ,lun,e/n, fprt1, [isb], [ast]

Initiates an explicit connection between a LA T application terminal and
the terminal server previously specified in an SF .SMC directive or LCP
SET PORT command.

QIOW$C IO.ORG,lun,e/n,fprt1,[isb],[ast]

Reads data from a LAT application terminal. If the application terminal is
not yet connected to the remote terminal server, this directive first cre
ates the connection and then performs the read operation.

QIOW$C IO.RVB,lun,e/n,fprt1,[isb],[ast], <stadd,size,pn >

Writes data to a LAT application terminal. If the application terminal is
not yet connected to the remote terminal server, this directive first cre
ates the connection and then performs the write operation.

QIOW$C IO.WVB,lun,e/n, fprt1, [isb], [ast], <stadd,size,pn >

Returns the name of the terminal server and port and/or service to which
a LAT application terminal is mapped. Also returns the terminal's connec
tion status.

QIOW$C SF.GMC,lun,e/n,fprt1,[isb],[ast], <stadd,size,pn >

Maps the LA T application terminal to a specified terminal server port and/
or service to which it can later connect.

QIOW$C SF.SMC,lun,e/n,fprt1,[isb],[ast],<stadd,size,pn>

DECnet-RSX Programmer's Reference Manual

The RSX-llM/M-PLUS I/O Drivers Reference Manual and Micro/RSX I/O
Drivers Reference Manual have information on most of the directives you use.
However, the following information applies only to LAT terminals:

• The IO.ORG directive.

• Status codes that result from connection solicitation requests.

• LA T -specific characteristics to use with Set Multiple Characteristics and Get
Multiple Characteristics directives.

6.3.1 Programming Suggestions

The following suggestions may be helpful in writing your application:

• Use the Wait form of the QIO or an AST routine to synchronize the applica
tion with the completion of the connection. Using the Wait QIO form
ensures that connection completes before the application proceeds.

• Check the status block after every read and write request. Because your con
nection to a LA T device is through the network, and not direct, check the
status block to make sure that the write request succeeded.

• Remember in using all RSX directives that LA T devices are remote, not hard
wired.

Occasionally, you might get a Device Not Ready (IE.DNR) error when attempting
to perform a Read, Write, or Set Characteristics operation on a terminal that you
have already attached successfully. This error can occur when a previous applica
tion has issued an IO.DET directive to terminate its connection. Upon receiving
this directive, a terminal can detach and be ready for a new attachment even if the
previous application's connection is completely terminated or its IO.DET direc
tive completed. In this case, your application can attach a terminal whose pre
vious session is not completely finished. To prevent your own application from
causing this type of problem, issue an IO.HNG directive before each IO.DET. The
IO.HNG cleanly breaks the connection before the IO.DET detaches the terminal.

LA T Programming Facilities 6-13

IO.ORG

IO.ORG
(Originate Explicit Connection)

6.3.2 IO.ORG - Originate Explicit Connection

IO.ORG solicits a terminal server to initiate a connection to the LAT terminal. The
directive does not complete until the connection is established or an error occurs.
Ensure that the application waits for the connection by using the Wait QIO form
or an AST routine. The LAT terminal characteristics must be set before you issue a
connection request.

IO.ORG is a control function; it does not cause any data transfer.

Format:

QIOW$C IO.ORG,lun,efn,[pn1,[isb],[ast]

Parameters:

6-14

The following are the IO.ORG parameters. For more information on QIO parame
ters, refer to the RSX-llM-PLUS or Micro/RSX I/O Drivers Reference Manual.

Parameter

lun

efn

pri

isb

ast

Meaning

The logical unit number associated with the physical device that the I/O
request accesses.

The number of the event flag to associate with the QIO operation. An
event flag is required with the Wait macro form.

A priority value for compatibility with lAS. This parameter must have a
value of zero (0) or null.

The address of the I/O status block, a 2-word array that contains the com
pletion status for the I/O request on completion of the operation (see un
der "Status Returns").

The address of an optional user-written routine to execute after this call
completes. When control branches to the specified address, it has the
software priority of the requesting task. For no AST processing, omit the
parameter or enter the value zero (0).

DECnet-RSX Programmer's Reference Manual

IO.ORG

Status Returns:

The I/O status block that isb specifies has the following format:

1~1 ___ E_X_P_L_A_N_AT_I_O_N_C_O_D_E ____ -L ___ C_O_M_P_L_E_T_IO_N __ C_O_D_E __ ~lo
LKG-1261-87

The completion codes are described in the next section.

LAT Programming Facilities 6-15

6.3.3 Status Codes for LAT Connections

The following status codes result from the connection solicitation sequence. The
sequence can be a result of an explicit (IO.ORG) or implicit (IO.RVB or IO.WVB)
connection request.

Symbol Decimal Octal
Name Value Value Meaning

IS.SUC Success.

IE.RSU -17 347 Shared resource in use. The terminal is
connected or busy with a connect request.

IE.DNR -3 375 Device not ready.

A status block that returns IE.DNR in the low byte returns one of the following
in the high byte:

Symbol Decimal Octal
Name Value Value Meaning

0 0 The terminal server or application termi-
nal was unavailable or incorrectly speci-
fied.

IE.PRI -16 360 The terminal server's group access list
does not include your host.

IE.ICE -47 321 Internal corruption error.

IE.NRJ -74 266 Service busy.

IE.FLN -81 251 Terminal server service disabled.

IE.CNR -96 240 Terminal not a LA T application terminal.

IE.UKN -97 237 The specified terminal server port or ser-
vice does not exist.

IE.IRR -102 232 Insufficient resources at the terminal
server.

6.3.4 LAT Specific Characteristics for SF.GMC

6-16

The Get Multiple Characteristics (SF.GMC) directive returns information about
various characteristics. This section describes only the characteristics specific to
LAT application terminals: TC.MAP and TC.QDP. Using TC.MAP returns the
application terminal's associated terminal server, remote port, and/or service
name. Using TC.QDP returns the application terminal's connection status and
queue position. Use this information in conjunction with the information on
SF .GMC in the RSX-llM/M-PLUS or Micro/RSX I/O Drivers Reference Manual.

DECnet-RSX Programmer's Reference Manual

6.3.4.1 TC.MAP

With the TC.MAP characteristic, the SF.GMC directive returns the name of a ter
minal server. It also returns either a service name or port name, or both. The
block has the following format.

where

Length

LENGTH

SERVER NAME
(16 BYTES)

SERVICE NAME
(16 BYTES)

PORT NAME
(16 BYTES)

TC.MAP o

LKG-1262-87

is the length of the characteristics block. The length value 48.
indicates the presence of characteristics data; 0 indicates no
data present.

LAT Programming Facilities 6-17

Server name

Service name

Port name

is the name of a terminal server, in up to 16. bytes, padded
with zeroes.

is a service name, in up to 16. bytes, padded with zeroes.
Either the service or port name must be present; both can be
present. If no service name is returned, the first byte contains
O.

is a port name, in up to 16. bytes, padded with zeroes. Either
the service or port name must be present; both can be pre
sent. If no port name is returned, the first byte contains O.

The following programming fragment shows the format for setting up the
TC.MAP characteristic to use with SF.GMC:

CHRBUE: . BYTE
. BYTE

SERVER: .BLKB

SERVICE: .BLKB

PORT: . BLKB

CHRLEN=.-CHRBUE

IC.MAP
48 .

16.

16.

16 .

Characteristic value
Length of data buffer

Returns the terminal server name.

Returns the service name
or zero (0) for no service name.

Returns the port name or
zero (0) for no port name.

6.3.4.2 TC.QDP

6-18

With the TC.QDP characteristic, SF.GMC returns the status of the connection re
quest. If the connection request is pending at a queued service, SF .GMC also re
turns the queue position. The block has the following format.

11~ ______________ S_T_AT_U_S ____________ L-__________ T_C_.Q __ D_P ____________ ~lo
LKG-1263-87

DECnet-RSX Programmer's Reference Manual

where

Status

o

1

<1

returns one of the following values:

Not connected

Connected

Pending. A value greater than 1 indicates the request's position in
the queue.

6.3.5 LAT Specific Characteristics for SF .SMC

The Set Multiple Characteristics (SF.SMC) directive enables a task to set and reset
the characteristics of a terminal. This section describes only the LA T characteris
tics. For information on other characteristics, refer to the RSX-llMIM-PLUS or
MicrolRSX 110 Drivers Reference Manual.

Using the TC.MAP characteristic, this directive supplies the information on the
target terminal server port and/or service for the application terminal. Specifying
the target of its future connection defines a terminal as an application terminal.

Each SF.SMC directive resets the characteristics. The characteristics you specify
supersede any previous settings, including those specified through LCP.

LAT Programming Facilities 6-19

6.3.5.1 TC.MAP

6-20

The TC.MAP characteristic specifies or clears the terminal server name and the
port and/or service name.

To set the LAT characteristics, enter 48. in the length field and include the termi
nal server name. Also specify the service name or port name, or both. To clear the
LAT characteristics, enter 0 in the length field. Clearing these characteristics re
turns an application terminal to its previous state as a reserved application termi
nal or an interactive terminal.

The block has the following format.

LENGTH

SERVER NAME
(16 BYTES)

SERVICE NAME
(16 BYTES)

PORT NAME
(16 BYTES)

TC.MAP o

LKG-1262-87

DECnet-RSX Programmer's Reference Manual

where

Length

Server name

Service name

Port name

is the characteristics block length. Use 48. to specify charac
teristics; use 0 to clear characteristics.

is the name of the terminal server, in 16. or fewer bytes. End
the name in a zero byte if it is smaller than 16. bytes.

is the name of a service that the terminal server offers. To
omit the service name, allocate 16. bytes and enter 0 in the
first and last bytes of the field. End the name in a zero byte if it
is smaller than 16. bytes.

is the name of a terminal server port. To omit the port name,
allocate the full 16. bytes and enter 0 in the first and last bytes
of the field. End the name in a zero byte if it is smaller than
16. bytes.

Using this directive with TC.MAP to set LAT characteristics:

• Sets the specified terminal to SLAVE and NOBROADCAST.

• Sets the S6.LAT bit in unit status word 6 (U.TST6) in the Unit Control Block
for the terminal. This bit indicates that the terminal is an application termi
nal.

Using this directive with TC.MAP to clear characteristics returns the terminal to
its previous state as a reserved application terminal or an interactive terminal
available to interactive users or applications. If the terminal is connected, when
you issue the directive, however, an IE.RSU error results.

Status Returns:

In addition to the standard SF.SMC status returns, IE.RSU applies only to LAT
application terminals.

Symbol
Name

IE.RSU

Decimal
Value

-17

LAT Programming Facilities

Octal
Value

357

Meaning

Shared resource in use. The terminal is
busy with another session or connection
request.

6-21

The following fragment shows the format for setting up the TC.MAP characteris
tic:

CHRBUF: . BYTE TC.MAP Characteristic value
. BYTE 48 . Length of data buffer

SERVER: .ASCIZ /Server_name/ Server name to 16. bytes
A=.-SERVER Length of service name

.BLKB <16.-A> Pad with zeroes to 16. bytes)

SERVICE: .ASCIZ /Service_name/ Service name to 16. bytes
or zero (0) to omit name

B=.-SRVICE Length of service name
.BLKB <16.-B> Pad with zeroes to 16. bytes)

PORT: .ASCIZ /Port_name/ Port name to 16. bytes
or zero (0) to omit name

C=.-PORT Length of port name
. BLKB <16.-C> Pad with zeroes to 16. bytes .

CHRLEN=.-CHRBUF

6.4 LAT Application Programming Examples

6-22

The following examples show how you can write to and read from a device
attached to a remote terminal server. The first example, LATORG, uses the
explicit connection method. The second example, LATEX, uses the implicit
method.

DECnet-RSX Programmer's Reference Manual

6.4.1 Explicit Connection Example

.TITLE LATORG

.IDENT IY1.01

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program demonstrates the use of LAT application terminals,
using the explicit method for establishing the connection
between the remote device and host terminal.

First the program specifies the application terminal's target.
Next, it issues an IO.ORG QIO to initiate an explicit connection.

If the connection is successful, the program displays a message on the
remote device and prompts the user for input. CTRL/Z terminates the
session.

Data entered at the remote device is printed on the local TI:.

The example uses TT30: as the host terminal. It writes data to a port
named PORT 2 on Terminal Server AUDIO.

Assembly command: MAC LATORG,LATORG=LATORG

To task build, enter the following command at the TKB> prompt:

LATORG/PR:O,LATORG=LATORG
I
TASK= ... LAT
II

.MCALL QIOW$,QIOW$C,ALUNC,DIR,EXIT$S

START: ALUN$C
QIOW$C

1,TT,30
IO.ATT,l,l"IOSB

; Assign LUN 1 to TT30:
; Attach the terminal

(continued on next page)

LA T Programming Facilities 6-23

5$:

DIR$
BMI
TSTB
BPL
MOV
CALL
JMP

#SMC
5$
IOSB
10$
#SMCERR,RO
ERROR
EXIT

Specify the terminal's target
If MI, directive error
Check status
If PL, continue
Get error message text
Call error routine
Exit

NOw, initiate the connection.
,
10$:

20$:

30$:

QIOW$C
BMI
TSTB
BPL
MOV
CALL
JMP
MOV
CALE.

10. ORG, 1,1, ,IOSB
20$
IOSB
30$
#QIOERR,RO
ERROR
EXIT
#SUCMSG,RO
PRINT

Initiate the connection
If MI, directive error
Check status
If PL, connection OK - branch
Get error message text
Call error routine
Exit
Get success message text
Print message

Now the program reads data from the application terminal. The
data is printed (displayed) on the local TI:. The program continues
to read data from the terminal until the user at the remote device
enters the terminating control sequence, CTRL/Z.

,
35$:

40$:

50$:

60$:

EXIT:

DIR$
BMI
TSTB
BPL
CMPB
BEQ
MOV
CALL
BR

MOV
MOV
ADD
DIR$
BR

MOV
MOV
DIR$

QIOW$C
QIOW$C
EXIT$S

#READ
40$
IOSB
50$
IOSB,#IE.EOF
60$
#REAERR,RO
ERROR
EXIT

#INHEAD,WRITE5+Q.IOPL
IOSB+2,WRITE5+Q.IOPL+2
#8.,WRITE5+Q.IOPL+2
#WRITE5
35$

#BYEMSG,WRITE5+Q.IOPL
#BYEMSL,WRITE5+Q.IOPL+2
#WRITE5

IO.HNG,l,l
IO.DET,l,1

Read data from application terminal
If MI, directive error
Check status
If PL, success - branch
Did user type C?RL/Z?
If EQ, yes - not an error
Get error messaoe text
Call err9r rout~ne
And exit

Move output buffer address to DPB
Move the length of received data
Add length of header
Print the data
Loop to read more data

Move end message to DPB
Move length of message
Print terminating message

Disconnect the session
Detach the term:nal
And exit

**-ERROR - Error handling routine. This routine formats an error
message and prints it on the local TI:

INPUTS: RO - Pointer to the error message text (must end in a 0 byte)

6-24

$DSW - Directive status from last directive executed
lOSE - I/O status if $DSW is positive (no error)

Registers altered: RO

DECnet-RSX Programmer's Reference Manual

ERROR:

30$:

EX:

MOV
CALL
CLR
TSTB
BPL
MOV
CALL
BISB
CALL
BR

MOV
CALL
BIS8
CALL
MOV
CALL
CLR
BISB
CALL

MOV
RETURN

Rl,-(SP)
PRINT
Rl
$DSW
30$
#DSWERR,RO
PRINT
$DSW,Rl
CONVRT
EX

#IOSBM1,RO
PRINT
IOSB,Rl
CONVRT
#IOSBM2,RO
PRINT
Rl
IOSB+l,Rl
CONVRT

(SP)+,Rl

Save Rl
Print message
Clear storage for error status
Check for directive error
If PL, no directive error
Point at error text (DSW)
Print error message
Get error status to Rl
Convert and print error message
Branch to common exit

Point at message text
Print IOSB message (first half)
Get low byte of IOSB
Convert and print low byte of IOSB
Point at 2nd half of IOSB message text
Print the message
Clear storage
Get value of 2nd half of IOSB
Convert and print 2nd half of IOS8

Restore register
Back to caller

**-CONVRT - Convert octal to ASCII and print it out

INPUTS: Rl - Byte value to be converted

All registers are preserved

CONVRT: MOV Rl,-(SP) Save Rl
MOV R2,-(SP) Save R2
MOV R3,-(SP) Save R3
CLR R3 Clear storage
MOV #STEMP+4,R2 Point at temporary storage area
CLRB -(R2) Ensure 0 byte at the end

10$: MOV Rl,R3 Get value to R3
BIC #l77770,R3 Clear all but the last 3 bits
ADD #60,R3 Convert to ASCII
MOVB R3,-(R2) Save ASCII in buffer
CMP R2,#STEMP Are we done?
BEQ 20$ If EQ, no
ASR Rl Shift over 3 bits
ASR Rl ***
ASR Rl ***
BR 10$ LOop for more

20$: MOV #$TEMP,RO Point at ASCII
CALL PRINT Print it out
MOV (SP)+,R3 Restore registers
MOV (SP)+,R2 ***
MOV (SP)+,Rl ***
RETURN Back to ca ller

**-PRINT - Print a message on the local TI:

INPUTS: RO - Address of string to print

Note: The ASCII string must end in a 0 byte

All registers are preserved

(continued on next page)

LA T Programming Facilities 6-25

PRINT:

10$:

20$:

QIO:
,
WRITE:
,
WRITE5:

READ:

SMC:
,
CHRBUF:

MOV
CLR
TSTB
BEQ.
INC
BR
MOV
MOV
DIR$
MOV
RETURN

QIOW$

QIOW$

QIOW$

QIOW$

QIOW$

.BYTE

. BYTE

RO,-(SP)
-(SP)
(RO)+
20$
(SP)
10$
(SP)+,QIO+Q.IOPL+2
(SP) ,QIO+Q. IOPL
#QIO
(SP)+,RO

IO.WVB,5,1",,<0,0>

Save pointer
Clear storage
Look for end
If EQ, done
Count a character
Check next
Move length to DPB
Move address to DPB
Print the message
Restore pointer to message
Back to caller

IO.WVB,l,l"IOSB,,<OUTBUF,OUTLEN>

IO.WVB,5,1",,<0,0>

IO.RPR,l,l"IOSB"<INBUF,INLEN,,PROMPT,PROLEN>

SF.SMC,l,l"IOSB,,<CHRBUF,CHRLEN> ;DPB for SMC

TC.MAP
48 .

Characteristic name
Characteristics buffer length

SERVER: .ASCIZ /AUDIO/
A=.-SERVER

Server name (ends in 0 byte)
Actual server name length

.BLKB <16.-A>

SERVIC: .BYTE 0
.BLKB 15.

PORT: .ASCIZ /PORT_2/
A=.-PORT

.BLKB <16.-A>
,
CHRLEN=.-CHRBUF

I OSB: . WORD 0,0
$TEMP: .BLKB 4
INHEAD: .ASCII <12><15>/DATA> /
INBUF: .BLKB 132.
INLEN=.-INBUF
,
PROMPT: • ASC I I
PROLEN=.-PROMPT

<12><15>/Enter data>/

Allocate the full 16. bytes for name

Ensure 0 byte (no service name)
Fill to 16. bytes

Port name
Length of actual port name
Allocate the full 16. bytes for port

Length of entire buffer

IOSB for write and read operations
Temporary storage for error routine
Header for printing data to local TI:
Input buffer

• EVEN
OUTBUF: . ASCI I
OUTLEN=.-OUTBUF
DSWERR: . ASCI Z
IOSBMl: .ASCIZ
IOSBM2: . ASCI Z

<12><15><7>/Application terminal now active/

SMCERR: .ASCI Z
QIOERR: .ASCIZ
SUCMSG: • ASC I Z
REAERR: . ASCI Z
BYEMSG: . ASC I I

.ASCIZ
BYEMSL=.-BYEMSG

.EVEN

.END

6-26

<12><15>/Directive Error code ($DSW) /
<12><15>/IOSB return code - Low byte /
/ High byte = /

<12><15>/Error setting terminal characteristics./
<12><15>/Error establishing .implicit connection./
<12><15>/Connection established to terminal server./
<12><15>/Error reading data from application terminal./
<12><15>/Read terminated by user. Now disconnecting/
/ application terminal./

START

DECnet-RSX Programmer's Reference Manual

6.4.2 Implicit Connection Example

,

.TITLE LATEX

. IDENT IY1.01

Copyright (C) 1983, 1985, 1986, 1987 by
Digital Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Digital assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by Digital.

This program demonstrates the use of LAT application terminals,
using the implicit method for establishing the connection
between the host terminal and remote device.

First the program specifies the target of the application terminal.
Next, it posts a write request to the terminal to establish the
connection. If the connection completes successfully, the program displays
a message on the remote device and prompts the user for input.
Any data that the user enters at the remote device is printed (displayed)
on the local TI:. The user enters CTRL/Z to terminate the session.

The example uses TT30: as the application terminal. It writes data to
the port PORT_2 on terminal server AUDIO.

Assembly command: MAC LATEX,LATEX=LATEX

To task build, enter the following command at the TKB> prompt:

LATEX/PR:O,LATEX=LATEX
I
TASK= •.• LAT
II

.MCALL QIOW$,QIOW$C,ALUNC,DIR,EXIT$S

START: ALUN$C
QIOW$C

1,TT,30
IO.ATT,l,l"IOSB

Assign L~N 1 to TT30:

DIR$
BMI

#SMC
5$

LAT Programming Facilities

Attach the terminal

Specify its target
If MI, directive error

(continued on next page)

6-27

5$:

TSTB
BPL
MOV
CALL
JMP

IOSB
10$
#SMCERR,RO
ERROR
EXIT

Check status
If PL, continue
Get error message text
Call error routine
And exit

; NOw, write data to the LAT application terminal and initiate
; the implicit connection sequence.
,
10$: DIR$

BMI
TSTB
BPL

20$: MOV
CALL
JMP

30$: MOV
CALL

#WRITE
20$
IOSB
30$
#QIOERR,RO
ERROR
EXIT
#SUCMSG,RO
PRINT

Initiate connection and write data
If MI, directive error
Check completion status
If PL, success - branch
Get error message text
Call error routine
And exit •.
Get success message text
Print message

Now the program reads data from the remote device. The data is
printed on the local TI:. The program continues to read
data until the user at the remote device enters the terminating
control character sequence, CTRL/Z.

,
35$:

40$:

50$:

60$:

DIR$
BMI
TSTB
BPL
CMPB
BEQ
MOV
CALL
BR

MOV
MOV
ADD
DIR$
BR

MOV
MOV
DIR$

#READ
40$
IOSB
50$
IOSB,#IE.EOF
60$
#REAERR,RO
ERROR
EXIT

#INHEAD,WRITE5+Q.IOPL
IOSB+2,WRITE5+Q.IOPL+2
#8.,WRITE5+Q.IOPL+2
#WRITE5
35$

#BYEMSG,WRITE5+Q.IOPL
#BYEMSL,WRITE5+Q.IOPL+2
#WRITE5

Read data from remote device
If MI, directive error
Check status
If PL, success - branch
Did user type CTRL/Z?
If EQ, yes - not an error
Get error message text
Call error routine
And exit

Move output buffer address to DPB
Move the length of received data
Add length of header
Print the data
Loop to read more data

Move end message to DPB
Move length of message
Print terminating message

Now the program detaches the terminal. If the connection sequence
was successful, the detach request terminates the connection.
This is the recommended termination method for implicit connections.

EXIT:

16-28

QIOW$C IO.DET,l,l
EXIT$S

Detach the terminal, disconnect
And exit

.SBTTL ERROR - Error handling routines

DECnet-RSX Programmer's Reference Manual

**-ERROR - Error handling routine. This routine formats an error
message and prints it on the local TI:

INPUTS: RO - Pointer to the error message text (must end in a 0 byte)
$DSW - Directive status from last directive executed
IOSB - I/O status if $DSW is positive (no error)

;
ERROR:

,
30$:

EX:

Registers altered:

MOV RI,-(SP)
CALL PRINT
CLR RI
TSTB $DSW
BPL 30$
MOV #DSWERR,RO
CALL PRINT
BISB $DSW,RI
CALL CONVRT
BR . EX

MOV #IOSBMI,RO
CALL PRINT
BISB IOSB,RI
CALL CONVRT
MOV #IOSBM2,RO
CALL PRINT
CLR RI
BISB IOSB+I,RI
CALL CONVRT

MOV (SP)+,RI
RETURN

RO

Save RI
Print message
Clear storage for error status
Check for directive error
If PL, no directive error
Point at error text (DSW)
Print error message
Get error status to Rl
Convert and print error message
Branch to common exit

Point at message text
Print IOS8 message (first half)
Get low byte of IOS8
Convert and print low byte of IOSB
Point at 2nd half of IOSB message text
Print the message
Clear storage
Get value of 2nd half of IOS8
Convert and print 2nd half of IOSB

Restore register
Back to caller

**-CONVRT - Convert octal to ASCII and print it out

INPUTS: Rl - Byte value to convert

All registers are preserved

CONVRT: MOV
MOV
MOV
CLR
MOV
CLRB

10$: MOV
BIC
ADD
MOVB
CMP
BEQ
ASR
ASR

Rl,-(SP)
R2,-(SP)
R3,-(SP)
R3
#$TEMP+4,R2
-(R2)
Rl,R3
#177770,R3
#60,R3
R3,-(R2)
R2,#$TEMP
20$
RI
RI

LAT Programming Facilities

Save RI
Save R2
Save R3
Clear storage
Point at temporary storage area
Ensure 0 byte at the end
Get value to R3
Clear all but the last 3 bits
Convert to ASCII
Save ASCII in buffer
Are we done?
If EQ, no
Shift over 3 bits

(continued on next page)

6-29

ASR Rl ***
BR 10$ Loop for more

,
20$: MOV #$TEMP,RO Point at ASCI I

CALL PRINT Print it
MOV (SP)+,R3 Restore registers
MOV (SP)+,R2 ***
MOV (SP)+,Rl ***
RETURN Back to caller

**-PRINT - Prints a message on the local TI:

INPUTS: RO - Address of string to print

Note: The ASCII string must end in a 0 byte

All registers are preserved

PRINT:

10$:

20$:

MOV
CLR
TSTB
BEQ
INC
BR
MOV
MOV
DIR$
MOV
RETURN

RO,-(SP)
-(SP)
(RO)+
20$
(SP)
10$
(SP)+,QIO+Q.IOPL+2
(SP) ,QIO+Q. IOPL
#QIO
(SP)+,RO

Save pointer
Clear storage
Look for end
If EQ, done
Count a character
Check next
Move length to DPB
Move address to DPB
Print the message
Restore pointer to message
Back to caller

.SBTTL DATA - Data areas, messages and DPBs

**-DATA - Data areas, messages and DPBs

Directive Parameter blocks (DPBs)

QIO: QIOW$

WRITE: QIOW$
,
WRITE5: QIOW$

READ: QIOW$

IO.WVB,5,1",,<0,0>

IO.WVB,l,l"IOSB,,<OUTBUF,OUTLEN>

IO.WVB,5,1",,<0,0>

IO.RPR,l,I"IOSB"<INBUF,INLEN,,PROMPT,PROLEN>

Set characteristics DPB and characteristics buffer

SMC: QIOW$
,
CHRBUF: .BYTE

• BYTE

6-30

SF.SMC,l,I"IOSB,,<CHRBUF,CHRLEN> ;DPB for SMC

TC.MAP
48 .

; Characteristic name
; Characteristics buffer length

DECnet-RSX Programmer's Reference Manual

SERVER: .ASCIZ /AUDIO/
A=.-SERVER

.BLKB <16.-A>
,
SERVIC: .BYTE 0

.BLKB IS.

PORT: .ASCIZ /PORT_2/
A=.-PORT

.BLKB <16.-A>
,
CHRLEN=.-CHRBUF

Data storage and ASCII Text

IOSB: .WORD
$TEMP: .BLKB
INHEAD: .ASCII
I NBUF : . BLliB
INLEN=.-INBUF

PROMPT: .ASCI I
PROLEN=.-PROMPT

0,0
4
<12><lS>/DATA> /
132.

<12><lS>/Enter data>/

Server name (ends in 0 byte)
Actual server name length
Allocate the full 16. bytes for name

Ensure 0 byte (no service name)
Fill to 16. bytes

Port name
Actual port name length
Allocate the full 16. bytes

Length of entire buffer

IOSB for write and read operations
Temporary storage for error routine
Header for printing data to local TI:
Input buffer

.EVEN
OUTBUF: • ASC I I
OUTLEN=.-OUTBUF
DSWERR: .ASCIZ
IOSBM1: .ASCIZ
IOSBM2: .ASCIZ

<12><lS><7>/Application terminal now active/

SMCERR: .ASCIZ
Q I OERR: . ASC I Z
SUCMSG: . ASC I Z
REAERR: . ASC I Z
BYEMSG: . ASC I I

.ASCIZ
BYEMSL=.-BYEMSG

.EVEN

.END

<12><lS>/Directive Error code ($DSW) /
<12><lS>/IOSB return code ~ Low byte = /
/ High byte = /

<12><lS>/Error setting terminal characteristics./
<12><lS>/Error establishing implicit connection./
<12><lS>/Connection established to terminal server./
<l2><lS>/Error reading data from application terminal./
<12><lS>/Read terminated by user. Now disconnecting/
/ application terminal./

START

LA T Programming Facilities 6-31

A

Disconnect or Reject Reason Codes

The following list contains the error reason codes available at the logical link user
interface. These codes can be returned after either of the following events:

• The network rejected a connect request (IE.NRJ).

• The network aborted a connected logical link (NT.ABO).

The symbols in column 1 are defined in the macro NSSYM$. NSSYM$ is located in
NETLIB.MLB (moved to LB:[1, 1] during network generation). The events in col
umn 5 indicate the condition that occurred. C refers to a connect request and A
refers to a network abort.

Symbol
Name

NE$RES

NE$NOD

Decimal
Value

1

2

Octal
Value

1

2

Standard Message/Explanation

Insufficient network resources

The logical link could not be con
nected because either the local or the
remote node had insufficient net
work resources (for example, insuffi
cient logical links, remote node
counters, or dynamic storage region
(DSR) on RSX systems).

Unrecognized node name

The logical link could not be con
nected because the destination node
name did not correspond to any
known node address.

Event

c

c

A-1

Symbol Decimal Octal
Name Value Value Standard Message/Explanation Event

NE$NSR 3 3 Remote node shutting down C

The logical link could not be con-
nected because the network on the
remote node was in the process of
shutting down and would accept no
more logical link connections.

NE$UOB 4 4 Unrecognized object C

The logical link could not be con-
nected because the object number or
name specified did not exist at the
remote node.

NE$FMT 5 5 Invalid object name format C

The logical link could not be con-
nected because the node did not
understand the object name format.

NE$MLB 6 6 Object too busy C

The logical link could not be con-
nected because the remote object
was too busy handling other logical
links.

NE$ABM 8 10 Abort by network management A

The logical link has been aborted by
an operator or a program using net-
work management.

NE$NNF 10 12 Invalid node name format C

The logical link could not be con-
nected because the remote node
name format was invalid. For exam-
ple, the name contained illegal char-
acters or was too long.

NE$NSL 11 13 Local node shutting down C

The logical link could not be con-
nected because the network on the
local node was in the process of shut-
tingdown.

A-2 DECnet-RSX Programmer's Reference Manual

Symbol Decimal Octal
Name Value Value Standard Message/Explanation Event

NESACC 34 42 Access control rejected C

The logical link could not be con-
nected because the remote node or
object could not understand or
would not accept the access control
information.

NESABO 38 46 No response from object C

The logical link could not be con-
nected because the object did not
respond. For example, the object
responded too slowly or terminated
abnormally.

NESABO 38 46 Remote node or object failed A

The connected logical link was
aborted because the remote node or
the object terminated abnormally.

NESCOM 39 47 N ode unreachable CIA

Either the logical link could not be
connected or the connected logical
link was aborted because no path
existed to the remote node.

Disconnect or Reject Reason Codes A-3

B

Object Types

This appendix lists the object type code values defined by Digital, expressed as
octal and decimal byte values. Digital reserves the right to add object types and to
make changes to the descriptor formats used by the object types. At present, a
descriptor format of 1 indicates a user process (object type 000). All other object
types in the list have a descriptor format of 0, requiring definition by the object
type codes in the first two columns.

Object Type
Octal Decimal

000 000

001 001

002 002

003 003

004 004

005 005

006 006

007 007

010 008

011 009

012 010

013 011

014 012

015 013

Process Type

General task, user process

File Access Listener (F ALIDAP) Version 1

Unit record services (URDS)

Application terminal services (A TS)

Command terminal services (CTS)

RSX-I1M Remote Task Control utility (TCl) Version 1

Operator services interface

N ode resource manager

IBM 3270-BSC Gateway

IBM 2780-BSC Gateway

IBM 3790-SDlC Gateway

TPS application

RT -11 DIBOl application

TOPS-20 terminal handler

8-1

Object Type Process Type
Octal Decimal

016 014 TOPS-20 remote spooler

017 015 RSX-11M Remote Task Control utility (TCL) Version 2

020 016 TLK utility (LSN)

021 017 File Access Listener (F ALiDAP) Version 4 and later

022 018 RSX-11S Host Loader utility (HLD)

023 019 Network Information and Control Exchange (NICE)

024 020 RSTS/E media transfer program (NETCPY)

025 021 RSTS/E-to-RSTS/E network command terminal handler

026 022 Mail listener (DEC net-based electronic mail system)

027 023 Network command terminal handler (host side)

030 024 Network command terminal handler (terminal side)

031 025 Loopback mirror (MIR)

032 026 Event receiver (EVR)

033 027 V AXNMS personal message utility

034 028 File Transfer Spooler (FTS)

035 029 PHONE utility

036 030 Distributed data management facility (DDMF)

037 031 X.25 Gateway access

040-076 032-062 Reserved for DECnet use

077 063 DEC net test tool (DTR)

100-177 064-127 Reserved for DEC net use

200-377 128-255 Reserved for customer use

8-2 DECnet-RSX Programmer's Reference Manual

c
Remote File Access Error/Completion Codes

C.1 1/0 Status Block Error Returns

Each remote file access subroutine returns a 2-word 110 status block. The con
tents of the second word depend on the contents of the first word.

Table C-l describes each code that can be returned in the first word of the status
block. The description of the code tells where to look up the description of the
value returned in the second word.

Table C-1: First Word 1/0 Status Block Error Codes

Error Code Description

177777 (-1) Channel already active.

177776(-2)

177775 (-3)

An attempt was made to open a file on an active channel. Either
use another channel or close the active channel before reusing it.

The second word of the I/O status block is not applicable.

Channel not active

A file operation request was made on an inactive channel. Either
a file open was not issued on this channel or the network link for
this channel was lost.

The second word of the I/O status block is not applicable.

Data Access Protocol error

An error was detected by the remote file system or by the remote
server task. DAP then returns the error to the user.

The second word of the I/O status block contains the file access
error code. Look up this code in Table C-3.

(continued on next page)

C-1

C-2

Table C-1 (Cont.): First Word 110 Status Block Error Codes

Error Code Description

177774 (-4) NSP error (see Table C-2)

177773 (-5)

177772 (-6)

177771 (-7)

177770 (-8)

177767 (-9)

The Data Access Protocol (OAP) utilities use Network Services
Protocol (NSP) as a vehicle for accessing remote files. This code
indicates that a problem was encountered at the NSP level.

The low-order byte of the second word of the I/O status block
contains one of the NSP error codes listed in Table C-2. If the
error is network rejection (-7), the high-order byte of the second
word of the I/O status block contains the reject reason code (see
Appendix A).

Invalid attributes

An invalid character was found in the attributes array (icbar) of
an open command.

Data overrun

The received message or block of messages did not fit into the
user-specified buffer.

The second word of the I/O status block contains the total num
ber of bytes read.

Tasks out of sync

The requesting task and its server (FAL) have lost Data Access
Protocol (OAP) message synchronization. This indicates a serious
internal software problem to report to your system manager.

The second word of the I/O status block is not applicable.

Invalid OAP channel (LUN)

OAP channel numbers must fall in the range of 1 to 255. A value
equal to zero (0) or greater than 255 is invalid.

The second word of the I/O status block is not applicable.

Buffer allocation error for OAP channels

There is no more buffer space available for the DAP channel con
trol blocks. To extend the buffer size, rebuild the FORTRAN pro
gram, increasing the size of $ FSR 1 in the task build.

The second word of the 110 status block is not applicable.

DECnet-RSX Programmer's Reference Manual

Table C-1 (Cont.): First Word 110 Status Block Error Codes

Error Code Description

177766 (-10.) Directive error

Directive error from the executive.

The second word of the I/O status block contains the DSW value.

177765(-11.) Illegal request

An illegal request was made, such as an attempt to read from a
file that was open for write.

The second word of the I/O status block is not applicable.

Remote File Access Error/Completion Codes C-3

C-4

Table C-2 contains the NSP error codes that pertain to the NSP error in Table C-l
(177774). NSP error codes occupy the low-order byte of the second word of the
I/O status block. With the exception of the network rejection (-7), the high-order
byte is undefined.

Table C-2: NSP Error Codes

Error Code Description

-1 Required system resources are unavailable.

-2 A request was issued for a LUN on which there is no established logical
link.

-3 The link was disconnected with the request outstanding.

-4 The data message to be received was truncated because the receive
buffer was too small.

-5 An argument specified in the call was incorrect.

-6 No network data was found in the user's mailbox.

-7 The network (NSP) rejected an attempted connect. The high-order
byte contains the reject reason code (See Appendix A).

-8 A logical link has already been established on the LUN to which the
user attempted to connect.

-9 The issuing task is not part of the network. OPNNT was never called.

-10 The user is attempting to access the network for a second time.

-11 An interrupt message transmission was attempted before the last one
had finished.

-12 The user task to which the connection was attempted issued a connect
reject.

-13 A buffer is outside the user address space or is not word aligned.

-14 The user is attempting to issue a GNDNT[W] when one is already pend-
ing.

DECnet-RSX Programmer's Reference Manual

C.2 Data Access Protocol (DAP) Error Messages

The DAP status code returns status from the remote file system or from the opera
tion of the cooperating process using DAP. The 2-byte status field (16 bits)
occupies the second word of the I/O status block and has two fields:

• Maccode (bits 12-15):

• Miccode (bits 0-11):

C.2.1 Maccode Field

Contains the error type code (see Table C-3 in
Section C.2.l)

Contains the specified error reason code (see
Tables C-4, C-5, and C-6, depending on error
type, as described in Section C.2.2)

The maccode field is in the high-order byte of the second word in an I/O status
block. The value returned in the maccode field describes the functional type of
the error. The miccode field gives the specific reason for the error. The miccode
field is the low-order byte of the same word that contains the maccode field. The
last column of Table C-3 tells which table in this appendix contains the miccode
values that correspond to the maccode values.

Remote File Access Error/Completion Codes C-5

C-6

Table C-3: DAP Maccode Field Values

Field
Value
(Octal)

o

1

2

3

4

5

6

7

10

11

12

13-15

16-17

Error Type

Pending

Successful

Unsupported

Reserved

File open

Transfer
error

Transfer
warning

Access
termination

Format

Invalid

Sync

Reserved

Meaning
Miccode
Table

The operation is in progress.

Returns information that indicates
success.

.~'S-

This implementation of DAP does
not support the specified request.

Errors that occur before a file is ... J."",Y' ~ ('
successfully opened.

Errors that occur after a file is "",E-'~' ",

opened and before it is closed.

For operations on open files, indicates ,'E..;3
that the operation completed, but not
with complete success.

Errors associated with terminating ~E"..3 r~_
access to a file.

Error in parsing a message. Format
is not correct.

Field of message is invalid (that
is, bits that are meant to be mutually
exclusive are set, an undefined bit is
set, a field value is out of range, or an
illegal string is in a field.)

DAP message received out of
synchronization.

e'~

)

User-defined status maccodes

DECnet-RSX Programmer's Reference Manual

C.2.2 Miccode Field

The miccode field is located in the low-order byte of the second word in an 110
status block. The miccode field value identifies the specific reason for the
maccode field error type (see Section C.2.1). Three different tables define the
miccode field values, as follows:

• Table C-4: For use with maccode values 2, 10, 11

• Table C-5: For use with maccode values 0, 1,4,5,6,7

• Table C-6: For use with maccode value 12

Table C-4 follows. The DAP message type number (column 1) is specified in bits
6-11, and the DAP message field number (column 2) is specified in bits 0-5. The
third column describes the field where the error is located.

Table C-4: DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Miscellaneous message errors

00 00
10

Configuration message errors

01 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Field Description

Unspecified DAP message error
DAP message type field (TYPE) error

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
BITCNT field (BITCNT)
Buffer size field (BUFSIZ)
Operating system type field (OSTYPE)
File system type field (FILESYS)
DAP version number (VERNUM)
ECO version number field (ECONUM)
USER protocol version number field (USRNUM)
DEC software release number field (DECVER)
User software release number field (USRVER)
System capabilities field (SYSCAP)

(continued on next page)

Remote File Access Error/Completion Codes C-7

C-8

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Attributes message errors

02 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification (STREAMID)
Length field (LENGTH)
Length extension field (LEN 256)
Bit count field (BITCNT)
Attributes menu field (A TTMENU)
Data type field (DATA TYPE)
Field organization field (ORG)
Record format field (RFM)
Record attributes field (RAT)
Block size field (BLS)
Maximum record size field (MRS)
Allocation quantity field (ALQ)
Bucket size field (BKS)
Fixed control area size field (FSZ)
Maximum record number field (MRN)
Run-time system field (RUNSYS)
Default extension quantity field (DEQ)
File options field (FOP)
Byte size field (BSZ)
Device characteristics field (DEV)
Spooling device characteristics field (SDC); reserved
Longest record length field (LRL)
Highest virtual block allocated field (HBK)
End-of-file block field (EBK)
First free byte field (FFB)
Starting LBN for contiguous file field (SBN)

DECnet-RSX Programmer's Reference Manual

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Access message errors

03 00
10
11
12
13
14
20
21
22
23
24
25
26

Control message errors

04 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Continue message errors

05 00
10
11
12
13
14
20

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Access function field (ACCFUNC)
Access options field (ACCOPT)
File specification field (FILESPEC)
File access field (F AC)
File-sharing field (SHR)
Display attributes request field (DISPLAY)
File password field (PASSWORD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Control function field (CTLFUNC)
Control menu field (CTLMENU)
Record access field (RAC)
Key field (KEY)
Key of reference field (KRF)
Record options field (ROP)
Hash code field (HSH); reserved for future use
Display attributes request field (DISPLAY)
Block count (BLKCNT)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Continue transfer function field (CONFUNC)

(continued on next page)

Remote File Access Error/Completion Codes C-9

C-10

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Acknowledge message errors

06 00
10
11
12
13
14
15

Access complete message errors

07 00
10
11
12
13
14
20
21
22

Key definition message errors

12 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Access complete function field (CMPFUNC)
File options field (FOP)
Checksum field (CHECK)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Key definition menu field (KEYMENU)
Key option flags field (FLG)
Data bucket fill quantity field (DFL)
Index bucket fill quantity field (lFL)
Key segment repeat count field (SEGCNT)
Key segment position field (POS)
Key segment size field (SIZ)
Key of reference field (REF)
Key name field (KNM)

DECnet-RSX Programmer's Reference Manual

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

31
32
33
34
35
36
37
40
41
42
43
44
45

Allocation message errors

13 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31

Field Description

Null key character field (NUL)
Index area number field (IAN)
Lowest level area number field (LAN)
Data level area number field (DAN)
Key data type field (DTP)
Root VBN for this key field (RVB)
Hash algorithm value field (HAL)
First data bucket VBN field (DVB)
Data bucket size field (DBS)
Index bucket size field (IBS)
Level of root bucket field (L VL)
Total key size field (TKS)
Minimum record size field (MRL)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Allocation menu field (ALLMENU)
Relative volume number field (VOL)
Alignment options field (ALN)
Allocation options field (AOP)
Starting location field (LOC)
Related file identification field (RFI)
Allocation quantity field (ALQ)
Area identification field (AID)
Bucket size field (BKZ)
Default extension quantity field (DEQ)

(continued on next page)

Remote File Access Error/Completion Codes C-11

C-12

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Summary message errors

14 00
10
11
12
13
14
20
21
22
23
24

Date and time message errors

15 00
10
11
12
13
14
20
21
22
23
24
25
26
27

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Summary menu field (SUMENU)
Number of keys field (NOK)
Number of areas field (NOA)
Number of record descriptors field (NOR)
Prologue version number (PVN)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Date and time menu field (DA TMENU)
Creation date and time field (CDT)
Last update date and time field (RDT)
Deletion date and time field (EDT)
Revision number field (RVN)
Backup date and time field (BDT)
Physical creation date and time field (PDT)
Accessed date and time field (ADT)

DECnet-RSX Programmer's Reference Manual

Table C-4 (Cont.): DAP Miccode Values for Use with Maccode Values of 2,
10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Protection message errors

16 00
10
11
12
13
14
20
21
22
23
24
25

Name message errors

17 00
10
11
12
13
14
20
21

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Protection menu field (PROTMENU)
File owner field (OWNER)
System protection field (PROTSYS)
Owner protection field (PROT OWN)
Group protection field (PROTGRP)
World protection field (PROTWLD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Name type field (NAME TYPE)
Name field (NAMESPEC)

Access control list message errors (reserved for future use)

20 00
10
11
12
13
14
15
20
21

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)
Access control list repeat count field (ACLCNT)
Access control list entry field (ACL)

Table C-5 follows. The error code number (column 1) is contained in bits 0-11.
Symbolic status codes (column 2, when shown) refer to the corresponding RMS
or FCS status codes. They are included here for ease of reference only, as they
have no meaning for DAP.

Remote File Access Error/Completion Codes C-13

C-14"

Table C-5: DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

o
1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

Symbolic
Status Code

ERSABO

ERSACC

ERSACT

ERSAID

ERSALN

ERSALQ

ERSANI

ERSAOP

ERSAST

ERSATR

ERSATW

ERSBKS

ERSBKZ

ERSBLN

ERSBOF

ERSBPA

ERSBPS

ERSBUG

ERSCCR

ERSCHG

ERSCHK

ERSCLS

ERSCOD

ERSCRE

Error Description

Unspecified error

Operation aborted

FIIACP could not access file

File activity precludes operation

Bad area ID

Alignment options error

Allocation quantity too large or 0 value

Not ANSI D format

Allocation options error

Invalid (synchronous) operation at AST level

Attribute read error

Attribute write error

Bucket size too large

Bucket size too large

BLN length error

Beginning of file detected

Private pool address

Private pool size

Internal RMS error condition detected

Cannotconnect~B

SUPDA TE changed a key without having
attribute of XBSCHG set

Bucket format check-byte failure

RSTS/E close function failed

Invalid or unsupported COD field

F llACP could not create file (STV = system
error-code)

DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0,1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

31 ERSCUR No current record (operation not preceded
by get/find)

32 ERSDAC F llACP deaccess error during close

33 ERSDAN Data area number invalid

34 ERSDEL RFA-accessed record was deleted

35 ERSDEV Bad device, or inappropriate device type

36 ERSDIR Error in directory name

37 ERSDME Dynamic memory exhausted

40 ERSDNF Directory not found

41 ERSDNR Device not ready

42 ERSDPE Device has positioning error

43 ERSDTP DTP field invalid

44 ERSDUP Duplicate key detected; XB$DUP not set

45 ERSENT F llACP enter function failed

46 ERSENV Operation not selected in ORG$ macro

47 ERSEOF End of file

50 ERSESS Expanded string area too short

51 ERSEXP File expiration date not yet reached

52 ERSEXT File extend failure

53 ERSFAB Not a valid FAB (BID does not = FB$BID)

54 ERSFAC Illegal FAC for record operation, or FB$PUT
not set for create

55 ERSFEX File already exists

56 ERSFID Invalid file ID

57 ERSFLG Invalid flag-bits combination

60 ERSFLK File is locked by other user

61 ERSFND FIIACP find function failed

(continued on next page)

Remote File Access Error/Completion Codes C-15

Table C-5 (Cont.): CAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

62 ER$FNF File not found

63 ER$FNM Error in file name

64 ER$FOP Invalid file options

65 ER$FUL Device/file full

66 ER$IAN Index area number invalid

67 ER$IFI Invalid IFI value or unopened file

70 ER$IMX Maximum NUM (254) areas/key XABS
exceeded

71 ER$INI $ INIT macro never issued

72 ER$IOP Operation illegal or invalid for file organiza-
tion

73 ER$IRC Illegal record encountered (with sequential
files only)

74 ER$ISI Invalid lSI value on unconnected RAB

75 ER$KBF Bad key buffer address (KBF = 0)

76 ER$KEY Invalid key field (KEY = 0 or negative)

77 ER$KRF Invalid key of reference ($GET/$FIND)

100 ER$KSZ Key size too large

101 ER$LAN Lowest level index area number invalid

102 ER$LBL Not ANSI-labeled tape

103 ER$LBY Logical channel busy

104 ER$LCH Logical channel number too large

105 ER$LEX Logical extend error; prior extend still valid

106 ER$LOC LOC field invalid

107 ER$MAP Buffer-mapping error

110 ER$MKD F11ACP could not mark file for deletion

111 ER$MRN MRN value = negative or relative key > MRN

C-16 DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): CAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

112 ER$MRS MRS value = 0 for fixed length records and/
or relative files

113 ERSNAM NAM block address invalid (NAM = 0 or is
not accessible)

114 ER$NEF Not positioned to EOF (with sequential files
only)

115 ERSNID Cannot allocate internal index descriptor

116 ERSNPK Indexed file; primary key defined

117 ER$OPN RSTS/E open function failed

120 ER$ORD XABs not in correct order

121 ER$ORG Invalid file organization value

122 ERSPLG Error in file's prologue (reconstruct file)

123 ER$POS POS field invalid (POS > MRS; STY = XAB
indicator)

124 ER$PRM Bad file date field retrieved

125 ERSPRV Privilege violation (OS denies access)

126 ERSRAB Not a valid RAB (BID does not = RB$BID)

127 ERSRAC Illegal RAC value

130 ER$RAT Illegal record attributes

131 ER$RBF Invalid record buffer address (either odd or
not word aligned ifBLK-IO)

132 ERSRER File read error

133 ERSREX Record already exists

134 ERSRFA Bad RFA value (RFA = 0)

135 ERSRFM Invalid record format

136 ERSRLK Target bucket locked by another stream

137 ERSRMV F11ACP remove function failed

140 ERSRNF Record not found

(continued on next page)

Remote File Access Error/Completion Codes C-17

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

141 ER$RNL Record not locked

142 ER$ROP Invalid record options

143 ER$RPL Error while reading prologue

144 ER$RRV Invalid RRV record encountered

145 ER$RSA RAB stream currently active

146 ER$RSZ Bad record size (RSZ > MRS or NOT = MRS
if fixed length records)

147 ER$RTB Record too big for user's buffer

150 ER$SEQ Primary key out of sequence (RAe = RB$SEQ
for SPUT)

151 ERSSHR SHR field invalid for file (cannot share
sequential files)

152 ERSSIZ SIZ field invalid

153 ERSSTK Stack too big for save area

154 ERSSYS System directive error

155 ERSTRE Index tree error

156 ERSTYP Error in file type (extension on FNS is too big)

157 ERSUBF Invalid user buffer address (0, odd, or not
word aligned if BLK-IO)

160 ERSUSZ Invalid user buffer size (USZ = 0)

161 ERSVER Error in version number

162 ERSVOL Invalid volume number

163 ER$WER File write error (STV = system-error-code)

164 ERSWLK Device is write locked

165 ER$WPL Error while writing prologue

166 ER$XAB Not a valid XAB (@XAB = odd; STY = XAB
indicator)

167 BUGDDI Default directory invalid

C-18 DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

170 CAA Cannot access argument list

171 CCF Cannot close file

172 CDA Cannot deliver AST

173 CHN Channel assignment failure (STV = system-
error-code)

174 CNTRLO Terminal output ignored due to (crADo)

175 CNTRLY Terminal input aborted due to (CrAUY)

176 DNA Default file name string address error

177 DVI Invalid device ID field

200 ESA Expanded string address error

201 FNA File name string address error

202 FSZ FSZ field invalid

203 IAL Invalid argument list

204 KFF Known file found

205 LNE Logical name error

206 NOD N ode name error

207 NORMAL Operation successful

210 OK-DUP Inserted record had duplicate key

211 OK-IDX Index update error occurred; record inserted

212 OK-RLK Record locked, but read anyway

213 OK-RRV Record inserted in primary key is okay; may
not be accessible by secondary keys or RF A

214 CREATE File was created, but not opened

215 PBF Bad prompt buffer address

216 PNDING Asynchronous operation pending completion

217 QUO Quoted string error

220 RHB Record header buffer invalid

(continued on next page)

Remote File Access Error/Completion Codes C-19

Table C-5 (Cont.): CAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code Symbolic Status
(bits 0-11) Code Error Description

221 RLF Invalid related file

222 RSS Invalid resultant string size

223 RST Invalid resultant string address

224 SQO Operation not sequential

225 SUC Operation successful

226 SPRSED Created file superseded existing version

227 SYN File name syntax error

230 TMO Timeout period expired

231 ER$BLK FB$BLK record attribute not supported

232 ER$BSZ Bad byte size

233 ER$CDR Cannot disconnect RAB

234 ER$CGJ Cannot get JFN for file

235 ER$COF Cannot open file

236 ER$JFN BadJFN value

237 ER$PEF Cannot position to end of file

240 ER$TRU Cannot truncate file

241 ER$UDF File currently in an undefined state; access is
denied

242 ER$XCL File must be opened for exclusive access

243 Directory full

244 IE.HWR Handler not in system

245 IE.FHE Fatal hardware error

246 Attempt to write beyond EOF

247 IE.ONP Hardware option not present

250 IE.DNA Device not attached

251 IE.DAA Device already attached

C-20 DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code
(bits 0-11)

252

253

254

255

256

257

260

261

262

263

264

265

266

267

270

271

272

273

274

275

276

277

300

301

302

303

304

Symbolic Status
Code

IE.DUN

IE.RSU

IE.OVR

IE.BCC

IE.NOD

IE.IFU

IE.HFU

IE. WAC

IE.CKS

IE.WAT

IE.ALN

IE.BTF

IE.ILL

IE.2DV

IE.FEX

IE.RNM

IE.FOP

IE.VER

IE.EOV

IE.DAO

IE.BBE

IE.EOT

IE.NBF

IE.NBK

IE.NST

IE.ULK

IE.NLN

Remote File Access Error/Completion Codes

Error Description

Device not attachable

Shared resource in use

Illegal overlay request

Block check or CRC error

Caller's nodes exhausted

Index file full

File header full

Accessed for write

File header checksum failure

Attribute control list error

File already accessed on LUN

Bad tape format

Illegal operation on file descriptor block

Rename; two different devices

Rename; new file name already in use

Cannot rename old file system

File already open

Parity error on device

End of volume detected

Data overrun

Bad block on device

End of tape detected

No buffer space for file

File exceeds allocated space; no blocks left

Specified task not installed

Unlock error

No file accessed on L UN

(continued on next page)

C-21

C-22

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code
(bits 0-11)

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

324

325

326

327

330

331

332

333

334

335

336

337

Symbolic Status
Code

IE.SRE

SPL

NMF

CRC

BUGDAP

CNTRLC

DFL

ESL

IBF

IBK

IDX

IFA

IFL

KNM

KSI

MBC

NET

OIL-ALK

OIL-DEL

OIL-LIM

OIL-NOP

OK-RNF

PLY

REF

RSL

RVU

Error Description

Send/receive failure

Spool or submit command file failure

No more files

DAP file transfer checksum error

Quota exceeded

Internal network error condition detected

Terminal input aborted due to ~

Data bucket fill size > bucket size in XAB

Invalid expanded string length

Illegal bucket format

Bucket size of LAN does not = IAN in XAB

Index not initialized

Illegal file attributes (corrupt file header)

Index bucket fill size > bucket size in XAB

Key name buffer cannot be read from or writ
ten to inXAB

Index bucket will not hold two keys for key
of reference

Multibuffer count invalid (negative value)

Network operation failed at remote node

Record is already locked

Deleted record successfully accessed

Retrieved record exceeds specified key value

Key XAB not filled in

Nonexistent record successfully accessed

Unsupported prologue version

Illegal key of reference in XAB

Invalid resultant string length

Error updating RRVsj some paths to data may
be lost

DECnet-RSX Programmer's Reference Manual

Table C-5 (Cont.): DAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code
(bits 0-11)

340

341

342

343

344

345

346

347

350

351

352

353

354

355

356

357

360

361

362

363

364

Symbolic Status
Code

SEG

SUP

WBE

WLD

WSF

SNE

SPE

UPI

ACS

TNS

BES

PES

WCC

IDR

Remote File Access Error/Completion Codes

Error Description

Data types other than string limited to one
segment in XAB

Reserved

Operation not supported over network

Error on write behind

Invalid wildcard operation

Working set full (cannot lock buffers in work
ing set)

Directory listing: error in reading volume set
name, directory name, or file name

Directory listing: error in reading file attri
butes

Directory listing: protection violation in try
ing to read the volume set, directory, or file
name

Directory listing: protection violation in try
ing to read file attributes

Directory listing: file attributes do not exist

Directory listing: unable to recover directory
list after continue transfer (skip)

Sharing not enabled

Sharing page count exceeded

UPI bit not set when sharing with BRO set

Error in access control string

Terminator not seen

Bad escape sequence

Partial escape sequence

Invalid wildcard context value

Invalid directory rename operation

(continued on next page)

C-23

C-24

Table C-5 (Cont.): CAP Miccode Values for Use with Maccode Values 0, 1,
4,5,6,7

Error Code
(bits 0-11)

365

366

6000
to
7777

Symbolic Status
Code

STR

FTM

Error Description

User structure (FABIRAB) became invalid dur
ing operation

Network file transfer mode precludes opera
tion

User-defined errors

DECnet-RSX Programmer's Reference Manual

Table C-6 follows. The message type number is contained in bits 0-11.

Table C-6: DAP Miccode Values for Use with Maccode Value 12

Type Number
(bits 0-11) Message Type

o Unknown message type

1 Configuration message

2 Attributes message

3 Access message

4 Control message

5 Continue transfer message

6 Acknowledge message

7 Access complete message

10 Data message

11 Status message

12 Key definition attributes extension message

13 Allocation attributes extension message

14 Summary attributes extension message

15 Date and time attributes extension message

16 Protection attributes extension message

17 Name message

20 Access control list extended attributes message

Remote File Access Error/Completion Codes C-25

D
MACRO-11 Connect Block Offset and Code

Definitions

The following MACRO-II offset and code definitions refer to connect block off
sets used in network connects and accepts.

0-1

0-2

.TITLE NETDEF - DECnet User Interface Definitions

.IDENT /V02.05/

Copyright (C) 1978, 1979, 1980, 1987 by
Digital Equipment Corporation, Maynard, Mass.

Module Description:

RSX-11M/S/M-PLUS Network Interface Offset and Error Definitions
;+
; Macro to define DECnet MACRO user interface data structures
; and return values.
;-

;+

.MACRO NETDF$,L,B

.MCALL CRBDF$
CRBDF$ L,B
.MCALL CNBDF$
CNBDF$ L,B
.MCALL NSSYM$
NSSYM$ B

.MACRO NETDF$,X,Y

.ENDM NETDF$

.ENDM NETDF$

Request descriptor block

Request pending block

Return symbols

Request Descriptor Block offset definitions for connects.

NOTE: Long connect block offsets are prefixed with M.
Short connect block offsets are prefixed with N.

The figure does not include the offset prefix. If you are using
the long connect block, use M for the offset prefix. If you are
using the short connect block, use N.

OECnet-RSX Programmer's Reference Manual

~.RND --------II}
.ROT .RFM.

FORMAT 0

(UNUSED)

FORMAT 1

.RDEC

.RDE

FORMAT 2
.RGP

.RUS

.RNMC

.RNM

. RIDC

.RID

.RPSC

.RPS

.RACC

.RAC

MACRO-11 Connect Block Offset and Code Definitions

SHORT LONG
CONNECT CONNECT
BLOCI(

000
004

005

BLOCI<

000
004

005

010 010

030 030

010 010

012 012

030 030

010

012

014

015

030

032

034

052

054

055

054

055

070

105

010

012

014

015

030

032 .

034

102

104

105

154

155

150

230

D-3

('
.MACRO CRBDF$,L,B,LST
.iif nb LST .List
.ASECT

Long connect block offsets (support for long passwords, user names and
accounting information)

J .=0
.M.RND: 'L' .BLKB 6 Destination node name

D-4

M.RFM: 'L' .BLKB 1 Destination descriptor format
M.ROT: 'L' .BLKB 1 Destination object type

;******
Format 0 -

• BLKB 18 . ; [UNUSED]
;***

.=.-18. Format 1 -
M.RDEC: 'L' .BLKW 1 Destination process byte count
M.RDE: 'L' .BLKB 16. Destination process

;***

Offsets between N.RND and N.RDE and M.RND and M.RDE for format 1 or N.RGP
and M.RGP for format 2 must be identical in both the short and long
connect blocks. Do not add an offset to one without adding it to the other .

• =.-18. Format 2
M.RGP: 'L' .BLKW 1 Destination group
M.RUS: 'L' .BLKW 1 Destination user
M.RNMC: 'L' .BLKW 1 Destination name byte count
M.RNM: 'L' .BLKB 12. Destination name

;******

M.RIDC: 'L' .BLKW 1 Requesting process ID byte count
M.RID: 'L' .BLKB 40. Requesting process ID
M.RPSC: 'L' .BLKW 1 Requesting password byte count
M.RPS: 'L' .BLKB 40. Requesting password byte count
M.RACC: 'L' .BLKW 1 Accounting information byte count
M.RAC: 'L' .BLKB 40. Accounting information

M.RQL='B' .-M.RND Length of RDB

Short connect block offsets. Included for compatibility with
existing software and versions of DECnet RSX

DECnet-RSX Programmer's Reference Manual

·=0
N.RND:'L' .BLKB
N.RFM:'L' .BLKB
N.ROT: 'L' .BLKB

.BLKB 18.

.=.-18.
N.RDEC:'L' .BLKW
N.RDE:'L' .BLKB

6
1
1

;******

Destination node name
Destination descriptor format
Destination object type

Format 0 -
; [UNUSED]
;***

1
16.
;***

Format 1 -
Destination process byte count
Destination process

Offsets between N.RND and N.RDE and M.RND and M.RDE for format 1 or N.RGP
and M.RGP for format 2 must be identical in both the short and long
connect blocks. Do not add an offset to one without adding it to the other .

• =.-18.
N.RGP: 'L'
N.RUS: 'L'

.BLKW

.BLKW
N.RNMC:'L' .BLKW
N.RNM:'L' .BLKB

N.RIDC: 'L' .BLKW
N.RID: 'L' .BLKB
N.RPSC: 'L' .BLKW
N.RPS: 'L' . BLKB
N.RACC: 'L' .BLKW
N.RAC: 'L' .BLKB

N.RQL='B'.-N.RND

.PSECT

. if nb 1ST

. Nlist

. iff

1
1
1
12. ;
;******

1
16.
1
8 .
1
16.

.MACRO CRBDF$,X,Y,Z

.ENDM CRBDF$

.endc

.ENDM CRBDF$
;+

Format 2 -
Destination group
Destination user
Destination name byte count
Destination name

Requesting process ID byte count
Requesting process id
Requesting password byte count
Requesting password
Accounting information byte count
Accounting information

Length of short RDB

Connect Block offset definitions for received connect requests.

NOTE: Long connect block offsets are prefixed with M (example: M.RND)
Short connect block offsets are prefixed with N.

The offset prefix is not included in the diagram. If you are using
the long connect block, use M for the offset prefix. If you are
using the short connect block, use N.

MACRO-11 Connect Block Offset and Code Definitions 0-5

.CTL

.SEGZ

.DoT I .DFM

FORMAT 0

(UNUSED)

FORMAT 1

.DDEC

.DDE

FORMAT 2

.DGP

.DUS

.DNMC

.DNM

0-6

SHORT
CONNECT
BLoCI<

000

002

006

026

006

010

026

006

010

012

014

026

LONG
CONNECT
BLoCI<

000

002

006

026

006

010

026

006

010

012

014

026

OECnet-RSX Programmer's Reference Manual

.MACRO CNBDF$,L,B,LST

.iif nb LST .List
• ASECT

Incoming short connect block offsets

.=0
M.CTL: 'L' .BLKW

M.SEGZ:'L' .BLKW
M.DFM:'L' .BLKB
M.DOT: 'L' .. BLKB

.BLKB 18.

.=.-18.
M.DDEC: 'L' .BLKW
M.DDE: 'L' .BLKB

.=.-18.
M.DGP: 'L' .BLKW
M.DUS: 'L' .BLKW
M.DNMC: 'L' .BLKW
M.DNM: 'L' .BLKB

M.SND: 'L' .BLKB
M.S'FM:.'L' .BLKB
M.SOT: 'L' .BLKB

. BLKB 18 •

.=.-18.
M.SDEC: 'L' .BLKW
M.SDE: 'L' .BLKB

.=.-18.
M.SGP: 'L' .BLKW
M.SUS: 'L' .BLKW
M.SNMC: 'L' .BLKW
M.SNM: 'L' .BLKB

1

1
1
1

Temporary link address

Segment size
Destination des.criptor format
Destination object type

;******
Format 0 - "

; [UNUSED]
;***

Format 1 -
1 j Destination process byte count
16. ; Destination process
;***

Format 2 -
1
1
1
12. ;
j******

6
1
1

;******

Destination group
Destination user
Destination name byte count
Destination name

Source node name
Source descriptor format rJ I l)'v
Source obj ect type ~ I \

; Format 0 -
; [UNUSED]
;***

1
16.
;***

1
1
1

Format 1, -
; Source process name byte count
;, Source process name

Form~t 2 r

Source' group
Source user

12. ;
j******

Source name byte count
Source name

MACRO-11 Connect Block Offset and Code Definitions 0-7

0-8

$$$=.
M.CIDC: 'L' .BLKW
M.CID: 'L' .BLKB
M.CPSC: 'L' .BLKW
M.CPS: 'L' .BLKB
M.CACC: 'L' .BLKW
M.CAC: 'L' .BLKB
M.CDAC: 'L' .BLKW
M.CDA: 'L'

M.CBL='B'.-M.CTL

.=$$$
M.CDEV: 'L' .BLKW
M.CUNI: 'L' .BLKB

• EVEN
M.CUIC: 'L' .BLKW
M.CDDS: 'L' .BLKB

1
40.
1
40.
1
40.
1

1
1

1
11.

Source task ID byte count
Source task ID
Password byte count
Password
Accounting information byte count
Accounting information
Optional data byte count
Optional data buffer

Length of CNB (without any data)

Default device name (from account file)
Default device unit number

Login UIC from account file
Default directory string (byte 0=0 => none)

Incoming short connect block offsets

.=0
N.CTL: 'L' .BLKW

N.SEGZ: 'L' .BLKW
N.DFM: 'L' .BLKB
N.DOT: 'L' .BLKE

.BLKE 18.

.=.-18.
N.DDEC: 'L' .BLKW
N.DDE: 'L' .BLKB

.=.-18.
N.DGP: 'L' .BLKW
N.DUS: 'L' .BLKW
N.DNMC: 'L' .BLKW
N.DNM: 'L' .BLKE

N.SND: 'L' .BLKE
N.SFM: 'L' .BLKB
N.SOT: 'L' .BLKB

1 Temporary link address

1 Segment size
1 Destination descriptor format
1 Destination object type

;******
Format 0 -

; [UNUSED]
;***

Format 1 -
1 ; Destination process byte count
16. ; Destination process
;***

Format 2 -
1
1
1
12. ;

;******

6
1
1

Destination group
Destination user
Destination name byte count
Destination name

Source node name
Source descriptor format
Source object type

OECnet-RSX Programmer's Reference Manual

. BLKB

.=.-18.
N.SDEC:'L' .BLKW
N.SDE: 'L' .BLKB

.=.-18.
N.SGP: 'L'
N.SUS: 'L'
N.SNMC: 'L'
N.SNM: 'L'

$$$=.
N.CIDC: 'L'
N.CID: 'L'
N.CPSC: 'L'
N.CPS: 'L'
N.CACC: 'L'
N.CAC: 'L'
N.CDAC: 'L'
N.CDA: 'L'

.BLKW

.BLKW

.BLKW

.BLKB

.BLKYl

.BLKB

.BLKYl
• BLKB
.BLKYl
.BLKB
.BLKYl

N.CBL='B'.-N.CTL

.=$$$
N.CDEV:'L' .BLKYl
N.CUNI:'L' .BLKB

. EVEN
N.CUIC:'L' .BLKYl
N.CDDS:'L' .BLKB

.PSECT

18 .

.ENDM CNBDF$

;******
Format 0 -

; [UNUSED]
;***

1
16.
;***

1
1
1

Format 1 -
; Source process name byte count
; Source process name

Format 2 -
Source group
Source user
Source name byte count

12. ; Source name
;******

1
16.
1
8 .
1
16.
1

1
1

1
11

Source task ID byte count
Source task ID
Password byte count
Password
Accounting information byte count
Accounting information
Optional data byte count
Optional data buffer

Length of CNB (without any data)

Default device name (from account file)
Default device unit number

Login UIC from account file
Default directory string (byte 0=0 => none)

MACRO-11 Connect Block Offset and Code Definitions 0-9

E

Network Error/Completion Codes for
FORTRAN, COBOL, and BASIC-PLUS-2

This appendix lists the error/completion codes that can be returned in the first
word of any 2-word I/O status block by certain calls in the FORTRAN, COBOL,
and BASIC-PLUS-2 languages.

1 The request was successful.

2 The request was successful, but some optional data was lost.

-1 Required system resources are not available.

-2 A request was issued for a LUN on which there is no established logical
link.

-3 The link was disconnected with the request outstanding.

-4 The data received was truncated because the receive buffer was too
small.

-5 An argument specified in the call is incorrect.

-6 No network data was found in the user's network data queue.

- 7 The network (NSP) rejected an attempted connect.

-8 A logical link has already been established on the LUN to which the
user attempted to connect.

-9 The issuing task is not part of the network (that is, OPNNT was never
called).

E-1

E-2

-10 The user is attempting to access the network for a second time.

-11 Transmission of an interrupt message was attempted before the last one
finished.

-12 A connect reject was issued by the user task to which the connection
was attempted.

-13 A buffer either is outside the user address space or is not word aligned.

-14 The user is attempting to issue a GNDNT[W] when one is already pend
ing.

-20 A RUNNCW was issued for which there was not enough dynamic mem
ory on the remote node.

-21 A RUNNCW or ABONCW was issued for a task that was not installed on
the remote node.

-22

-23

-24

-25

-26

-40

A RUNNCW was issued with an invalid time parameter.

Either an ABONCW was issued for a task that was not active, or a
RUNNCW without scheduling parameters was issued for a task that
already is active.

There was a privilege violation on an RUNNCW or ABONCW attempt.

An ABONCW was issued for a task that either was being loaded into or
was exiting from the remote node.

An RUNNCW was issued with an invalid UIC.

A directive error; the second word of the status block contains the
actual directive error code.

DECnet-RSX Programmer's Reference Manual

F
Network MACRO-11 Error/Completion

Codes

Applicable Standard RSX Codes

The following MACRO-II error completion codes include all network related
I/O error completion codes for this manual. These codes are defined in the
IOERR$ macro in RSXMAC.SML, which is referenced in the NSSYM$ macro in
NETLlB.MLB.

Symbol
Name

IS.SUC

IS.DAO

IE.BAD

IE.SPC

IE.WLK

IE.DAO

IE.ABO

Decimal
Value

1

2

-1

-6

-12

-13

-15

Octal
Value

1

2

377

372

364

363

361

Meaning

The request was successful.

The request was successful, but some
data was lost.

Invalid buffer parameter, or data length
exceeds 16. bytes.

Invalid buffer parameters: the buffer
may not be word-aligned, may be out
side user address space, or may exceed
8128. bytes.

Transmission of an interrupt message
was attempted before the last one fin
ished.

Data overrun; unstored data was lost.

The link was aborted or disconnected
(see disconnect and reject reason
codes, Appendix A).

F-1

Symbol Decimal Octal
Name Value Value Meaning

IE.PRI -16 360 The network is not accessed on this
LUN.

IE.RSU -17 357 Required system resources are not
available.

IE.ALN -34 336 The specified LUN is already estab-
lished.

IE.NLN -37 333 There is no established logical link on
the specified LUN.

IE.oR) -73 267 The remote task rejected an attempted
connection.

IE.NR) -74 266 The network rejected an attempted
connection (see disconnect and reject
reason codes, Appendix A).

IE.NDA -78 262 There is no data to return.

IE.NNT -94 242 The issuing task is not a network task;
OPN$ was not executed successfully.

F-2 DECnet-RSX Programmer's Reference Manual

G
Values for Ethernet and 802.3 Addressing

This appendix provides information on assigned values for

• Multicast addresses

• Protocol types for Ethernet format

• Service Access Point (SAP) addresses for 802.3 format

• Subnetwork Access Protocol (SNAP) identifiers for 802.3 format

All values are in hexadecimal notation, with nn representing variables in
addresses and protocols.

Note that the protocols and addresses for customer use will not change, but the
assigned cross-company and internal Digital values may increase beyond the list
in this appendix. The IEEE is continuing to assign SAP and SNAP values; the 802.3
information is currently valid but is still changing.

While this appendix includes the assigned multicast and SAP values for broad
casts, you should avoid using them, since broadcasting congests the network.

G.1 Multicast Addresses

Multicast addresses in the following format are reserved for Digital Equipment
Corporation customer use:

AB-00-04-00-nn-nn

G-1

All companies can use the following reserved multicast addresses:

Value

FF-FF-FF-FF-FF-FF

CF-OO-OO-OO-OO-OO

Meaning

Broadcast

Loopback assistance

Digital Equipment Corporation reserves the following ranges for internal use
only:

08-00-2B-nn-nn-nn

09-00-2B-nn-nn-nn

AA-OO-OO-nn-nn-nn
AA-OO-O I-nn-nn-nn
AA-00-02-nn-nn-nn
AA-00-03-nn-nn-nn
AA-00-04-nn-nn-nn

AB-OO-OO-OI-OO-OO
AB-00-00-02-00-00
AB-00-00-03-00-00
AB-00-00-04-00-00

AB-00-04-0 I-nn-nn

In a Digital-only environment, you can use any values that fall outside of the
Digital Equipment Corporation ranges. In a multi-vendor environment, however,
these values might conflict with the system software of the other vendors.
Addresses in the Digital customer range, in contrast, are reserved; they will not
conflict even in a multi-vendor environment.

G.1.1 Ethernet Protocol Types

G-2

The following protocol type is reserved for Digital Equipment Corporation cus
tomer use:

60-06

All companies using the Ethernet protocol use the following protocol type:

Value Meaning

90-00 Loopback

DECnet-RSX Programmer's Reference Manual

Digital Equipment Corporation reserves protocol types in the following ranges
for internal use only:

60-00 to 60-05

60-07 to 60-09

80-38 to 80-42

In a Digital-only environment, you can use values outside of the Digital
Equipment Corporation range. In a multi-vendor environment, however, using
other values could cause conflicts with other vendors' software.

Values in the range 00-00 through OS-DC are reserved for internal use and will
cause data link level errors in an application.

G.2 SAP Addresses

The IEEE has not yet assigned SAPs to Digital Equipment Corporation, but it has
assigned the following for inter-company use:

Value

00

02

03

AA

FF

Name/Meaning

The null SAP: addresses just the data link layer, as in an XID or a TEST mes
sage.

The logical link control sub-layer management function individual SAP:
addresses an individual network management entity on the system.

The logical link control sub-layer management function group SAP:
addresses to all network management entities on the system.

The SNAP SAP: indicates that the next five bytes of a VI frame contain a
SNAP identifier.

The global SAP: broadcasts to all 802 receivers on a node.

The IEEE has not yet assigned SAPs for Digital internal or customer use.

Values for Ethernet and 802.3 Addressing G-3

G.3 SNAP Identifiers

G-4

The following SNAP identifier is reserved for Digital customer use:

08-00-2B-60-06

Digital reserves the following SNAP identifiers for internal use only:

08-00-2B-60-nn
08-00-2B-80-3C
08-00-2B-80-3E

DECnet-RSX Programmer's Reference Manual

H
DLX Characteristics Status Codes

This appendix lists the status codes for DLX characteristics and describes the con
ditions that return each code, noting any conditions unique to specific QIOs or
characteristics blocks.

Error codes have the prefix CEo and a negative 16-bit value. Full or partial success
codes have the prefix CS. and a positive 16-bit value. CS.SUC (1) is the code for
complete success; other CS. codes indicate partial success that may return unex
pected results.

Table H-1: Status Codes for DLX Characteristics

Status
Code Meaning

CE.ACN Address
100012 conflict

CE.FMI Frame
100015 format

invalid

CE.FMC Frame usage
100016 conflict

CEo Codes

Characteristic

CC.MCT

CC.FMOor
CC.FMM

CC.FMOor
CC.FRM

Cc.GSP,
CC.SCO,
CC.ISP,
CC.SNP

Cc.GSP

Explanation

The protocol/address pair is already in
use.

You entered an invalid frame format
value. The value must be NX$ETH or
NX$S02.

You specified both frame formats, but
only one is valid.

The port is not enabled for S02. 3 for
mat.

The port is not enabled for S02. 3 for
mat with Class I service.

(continued on next page)

H-1

Table H-1 (Cont.): Status Codes for DLX Characteristics

CEo Codes (Cant.)

Status
Code Meaning Characteristic Explanation

CE.IUN Invalid use Cc.nST You specified a multicast instead of a
100013 of multicast physical address.

address

CE.MCE Multicast CC.MCT The specified multicast address is
100007 address already enabled.

enabled

CE.NMA Nota CC.MCT The multicast address you entered is
100014 multicast not valid. Check that the least signifi-

address cant bit is 1.

CE.PCN Protocol Cc.nST In attempting to enable a protocol,
100011 conflict your application:

• Attempted to enable itself as the
default protocol user, but a default
user already exists.

• Attempted to enable a protocol but
an exclusive user for the protocol
already exists.

• Attempted to enable an already-
enabled protocol with a padding
status that conflicts with its cur-
rent status. The first request to
enable a protocol type assigns the
padding status to which all subse-
quent uses of the protocol type
conform.

CE.RES Resource Various No memory is available for the charac-
100010 allocation teristics operation.

failure

CE.RTS Request too Various, with You allocated too little space for the
100004 small IO.XGC returned data.

Various, with You supplied too little data.
IO.XSC

CE.RTL Request too Various, with You allocated too much space for the
100003 large IO.XGC returned data.

Various, with You supplied too much data for the
IO.XSC allocated space.

H-2 DECnet-RSX Programmer's Reference Manual

Table H-1 (Cont.): Status Codes for DLX Characteristics

Status
Code

CE.SNU
100021

CE.SPU
100020

CE.SRI
100017

CE.UDF
100001

CS.DAO
000003

CS.IGN
000002

CS.SUC
1

Meaning

SNAP in use

SAP in use

Service class
invalid

Undefined
function

Data overrun

Ignored

Success

DLX Characteristics Status Codes

CEo Codes (Cont.)

Characteristic

CC.SNP

CC.ISP

CC.SCO,
CC.SRV

All

Explanation

Another port has already enabled the
specified SNAP protocol identifier.

Another port has already enabled the
specified SAP.

You entered a value other than PF$CLI
(10).

The value in the C. TYPE field does not
identify a valid characteristic type.

CS.Codes

CC.DST with
IO.XGC

CC.SNP with
IO.XGC

All

All

Returned information exceeded allo
cated space. Ethernet protocol type
information included more addresses
than you allocated space for.

SNAP protocol identifier information
included more addresses than you allo
cated space for.

This code generally indicates that char
acteristics information was inappropri
ate. The code indicates various errors,
including: your existing environment is
incompatible with the characteristic
type (in frame format, for example); the
data you supplied was incomplete or
incorrect for the characteristic; you
already specified the characteristic and
this is a redundant block.

The characteristics block processed
successfully.

H-3

A

ABONCW, 1-15,3-152,3-160
Abort a logical link,

see ABTx, ABTS, ABTNT
Abort a task,

seeABONCW
ABTS, 2-12, 2-34
ABTx,I-9,2-12,3-13
ABTNT,3-13
ACCS,2-14
Access control, 1-7,2-23,2-24,2-45,

2-50,3-5,3-11,3-12,3-17,
3-18,3-20,3-21,3-32,3-41,
3-155

ACCNT, 3-2, 3-15
Alias node names, 3-6
ASCII string, 5-5
ASCIZ strings, 3-93, 3-94
Assigning logical unit numbers, 1-3, 1-8,

1-10,2-12,2-14,2-20,2-40,
3-2,3-95,5-4

AST,I-10,2-63,4-20

B
BACC, 3-7,3-17
BACCL,3-20
BACUSL,3-155

BACUSR, 3-157
BFMTO,3-23
BMFTl,3-25
Buffering level, 3-89, 3-90

Index

Buffer space, 1-10,2-43,3-89,3-91
BUILD type macro, 2-1, 2-2

c
Characteristics status, 4-20
Class I service, 4-15
Closing files, 3-89
Closing the network, 1-10,3-2
CLSS,2-17
CLSNFW, 3-89, 3-104,3-107, 3-115
CLSNT,3-2, 3-89, 3-151
CNACSS,2-28
CNIDSS,2-28
CNPSSS,2-28
CONS, 2-19
CONBSS,2-23
CONLSS,2-28
Connect block, 1-6,2-19,2-21,2-23,

2-24,2-30,2-36,2-41,3-17,
3-20,3-37

contents retrieved by GNDS, 2-44 to
2-45

contents retrieved by GNDNT (table),
3-45 to 3-48

Index-1

Connect block (cont.)
incoming, 2-5, 3-3

and mail buffer size, 2-6
short (table), 2-46, 2-47, 2-48, 2-49,

2-50,2-51
length, 2-5, 2-41, 3-3, 3-42
long, 2-28,2-55
short, 2-23

Connectrequests, 2-17,2-55,3-29
CONNT, 3-2, 3-10, 3-23, 3-31
Controlfield,4-16

o
DAP (Data Access Protocol), C-5, C-25
DECnet,

code definitions, D-l
communication calls (table), 1-12, 1-13,

1-14
macro library (NETLIB.MLB),4-3
message types, 1-8
remote file access operations, 1-14
task control, 1-15
tasks, 1-6

Default mode (D LX), 4-13, 4-17
DELNFVV, 3-88, 3-105
Destination descriptor, 1-6, 2-23,2-28,

3-11,3-12
Direct line access controller,

see DLX
DIR$ macro, 2-2
Disconnect or reject reason codes, A-I
DLX, 4-1

and Ethernet programming, 4-3
characteristics,

block (figure), 4-9
buffer, 4-7 to 4-11
for Ethernet frame format (table),

4-14
for 802.3 frame format (table), 4-18
status, 4-20
status codes, H-l to H-3

data segmentation and buffering, 4-2
error recovery, 4-2
Ethernet address, 4-5
frame formats, 4-4
multicast addressing, 4-5

Index-2

DLX (cont.)
NX: device, 4-1
padding support, 4-13
physical addressing, 4-5
protocol flags, 4-12, 4-17
protocol types, 4-12
QIOs,4-1,4-20,5-3
QIO summary, 5-3
status codes, 4-20
synchronizing programs, 4-4

DLX calls,
IO.XCL, 5-16
IO.XGC, 4-26
IO.XHG,5-14
IO.XIN, 5-7
IO.XOP, 4-21, 5-4
IO.XRC, 4-47,5-11
IO.XSC,4-25
IO.XTM, 4-41,5-9

DLX characteristics,
CC.ADR, 4-42, 4-49
CC.CTM, 4-43, 4-49
CC.DAD, 4-50
CC.DST, 4-26,4-35
CC.FMM, 4-44, 4-50
CC.FMO, 4-22
CC.FRM, 4-28
CC.GSP, 4-29,4-37
CC.ISP, 4-29, 4-38
CC.MCT, 4-30, 4-36
CC.PRO, 4-44, 4-51
CC.SCO, 4-23
CC.SNM, 4-45, 4-51
CC.SNP, 4-30, 4-38
CC.SPM, 4-45, 4-52
CC.SRV, 4-32, 4-40

DSC$,2-34
DSCNT, 3-35

E

Error/Completion codes, 3-3, 3-32
FORTRAN, COBOL, BASIC-PLUS-2, E-3
MACRO-II, F-l
remote file access, C-l

Establishing a network task, 3-2
Ethernet address, 4-5

Event flags, 3-89,4-20, 5-3
Event flags" 3-3
Exclusive mode (DLX), 4-13, 4-17
EXECUTE type macro, 2-1, 2-2, 2-3,2-5
EXENFW, 3-88, 3-106
Explicit connection, 6-2, 6-9

F

Flow control
incoming messages, 2-15
options, 1-10
with DLX, 5-2

Frame format,
Ethernet, 4-12
802.3,4-14

G

GETNFW, 3-89, 3-107
GLN$,2-36
GLNNT, 3-37
GND$, 2-15, 2-19, 2-39

connect block (figure), 2-53
mail buffer size, 2-6

GNDx, 1-8
GNDNT, 3-31, 3-39

mail buffer size, 3-5

Implicit connection, 6-10
Interrupt message,

receiving, 3-44
sending, 1-8,3-59,2-66

Intertask communication,
calls, 1-2, 2-10, 3-1,3-6, 3-9
concepts, 1-2
conventions, 1-2
macros, 2-10

IO.ATT, 6-8
IO.DET, 6-10
IO.HNG,6-10
IO.ORG, 6-2, 6-9
IO.RVB,6-10
I/O status blocks, 3-2,4-20, 5-3
IO.WVB,6-10

IO.XCL, 4-53
IO.XGC, 4-33
IS.DAO, 3-5

L

LAT
definition, 6-1
environment (figure), 6-2
ports, 6-6

LA T applications
and LCP commands, 6-8
attaching the terminal, 6-8
directives (table), 6-12
establishing the connection, 6-9
preparing for, 6-8
reading and writing data, 6-10
setting characteristics, 6-9
summary, 6-11
terminating a connection, 6-10
to queued services, 6-10
see also individual directive names

Libraries,
MACRO-II (NETLIB.MLB), 2-1, 4-3
NETFOR.OLB, 3-1

Links,
data, 4-3
logical, 1-4,2-17,2-55,3-50

Logical unit numbers (LUN),
see Assigning logical unit numbers

M

Mail buffer,
and incoming connect block, 2-6
specifying length, 2-41

mbxf/g, 3-5
MBXLU, 1-3,2-54, 3-49

N

Network data queue, 1-2, 1-3, 1-7, 1-8,
1-10,2-17,2-39

Network File Access Routines (NFARs),
3-89,3-90,3-91,3-99

NO FLOW option, 1-11,2-15,2-21

Index-3

Non-ASCII data in connect block 2-24
2-30 "

NS: pseudodevice driver, 3-2
NSSYM$ macro, A-I
NT.LCB, 2-55
NT.LON, 2-41, 2-43
NT.TYP, 2-41,2-43

o
Object type codes, 3-23, B-1
OPANFW, 3-88, 3-110, 3-114,

3-115
Open calls, 3-2
Opening files, 3-88
OPN$, 2-6, 2-54
OPNNT, 3-2, 3-49, 3-151
OPRNFW, 3-88, 3-110, 3-114
OPWNFW, 3-88,3-114,3-120
Originate explicit connection, 6-9

p

Parameters,
for task build, 3-89
overriding MACRO-II, 2-1, 2-3
required for MACRO-II, 2-4

PRGNFW, 3-89, 3-114, 3-115
Protocol/address pairs, 4-13

for 802.3 format, 4-18
Protocol flags (DLX), 4-17
Proxy access, 3-6, 2-7

with CONB$$ macro, 2-23
with CONL$$ macro, 2-28

/PR switch, 4-2
PUTNFW, 3-89, 3-115

Q

QIO completion status, 4-20

R

Reading a file, 3-88, 3-107, 3-110
REC$,2-57
RECNT, 3-52

Index-4

Records,
writing, 3-115, 3-120

REJ$,2-59
Reject reason codes, A-I
REJNT, 3-54
Remote file access,

argument definitions, 3-94
buffer space, 3-91
calls, 3-1,3-2,3-6
calls (table), 3-87
closing files, 3-89
concepts, 1-1, 1-14, 1-15
opening files, 3-88
task build parameters, 3-91

Remote task control, 1-1, 1-15,3-151
RENNFW, 3-88

s
SAPs, 4-16
Scheduling a task for execution, 1-15,

3-159
Send an interrupt message,

see Interrupt message
Send data,

see SND$, SNDNT
Service Access Points (SAPs), 4-16
Service names, 6-6
SET PORT command, 6-9
SF.GMC, 6-16
SF.SMC, 6-9, 6-19
SNAP identifiers, 4-16
SND$,2-61
SNDNT, 3-56
SOURCE DESCRIPTOR, 2-47
Source descriptor, 1-6, 2-49
SP A$, 2-39, 2-63
SPLNFW,3-88,3-114,3-120
Spool or print a file,

seeSPLNFW·
STACK type macro, 2-1, 2-4, 2-5
Subnetwork Access Protocols (SNAPs), 4-16
SUBNFW,3-88,3-114, 3-120, 3-121

T

Task,

Task, (cont.)
aborting,

seeABONCW
communicating with remote task,

see Intertask communication
scheduling,

see RUNNCW
Task building DLX programs,

/PR switch, 4-2
Task control block, 3-153, 3-160
Task control utility, 3-151
Task-to-task communication,

using DLX, 4-1
TC .MAP characteristic

with SF.GMC, 6-17
with SF.SMC, 6-20

TC.QDP characteristic, 6-18
Terminal servers, 6-6

port names, 6-6
Terminating LA T connections, 6-10

u
User abort,

seeABTS, ABTNT, GNDS, GNDNT
User disconnect,

see names, 1-7

w
WAITNT, 1-10,3-58
Wait options, 1-10

x
XMIS, 2-66
XMINT, 3-59

802.3 frame format,
service class, 4-15

Index-5

HOW TO ORDER ADDITIONAL DOCUMENTATION

I DIRECT TELEPHONE ORDERS I
In Continental USA
call800-DIGITAL

In Canada
call 800-267-6215

In New Hampshire
Alaska or Hawaii
call 603-884-6660

In Puerto Rico
call 809-754-7575 x2012

ELECTRONIC ORDERS (U.S. ONLY)

Dial 800-DEC-DEMO with any VT100 or VT200
compatible terminal and a 1200 baud modem.
If you need assistance, call1-800-DIGITAL.

I DIRECT MAIL ORDERS (U.S. AND PUERTO RICO") I
DIGITAL EQUIPMENT CORPORATION

P.O. Box CS2008
Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

I INTERNATIONAL I
DIGITAL

EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Services Business (SSB)
Digital Equipment Corporation, Westminster, Massachusetts 01473

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575 x2012

READER'S COMMENTS

DECnet-RSX
Programmer's Reference Manual

AA-M098E-TC

What do you think of this manual? Your comments and suggestions will help us to improve the quality
and usefulness of our publications.

Please rate this manual:

Poor Excellent
Accuracy 1 2 3 4 5
Readability 1 2 3 4 5
Examples 1 2 3 4 5
Organization 1 2 3 4 5
Completeness 1 2 3 4 5

Did you find errors in this manual? If so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement:

Name ____________________ Date _________ _

Title ___________________ Department

Company ____________________ Street

City __________ State/Country ________ Zip Code

DO NOT CUT - FOLD HERE AND TAPE

I II II I

BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

~DmDDmDTM

Networks and
Communications Publications
550 King Street
Littleton, MA 01460-1289

DO NOT CUT - FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Printed in U.S.A.

