
DECnet
Digital Network Architecture

!

To order additional copies of this document, contact your local Digital Equipment
Corporation Sales Office.

Maintenance Operations Protocol
Functional Specification

Version V4.0.0

June 1992

This document describes the structure, functions, interfaces, and protocols
needed for the low level maintenance of a DECnet network.

Order Number: EK-DNA11-FS-001

This material may be copied, in whole or in part, provided that the copyright notice below is included in
each copy along with an acknowledgement that the copy describes the Digital Network Architecture de-
veloped by Digital Equipment Corporation.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for errors which may appear in this document.

All rights reserved
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEBNA
DEBNT
DDCMP
DEC
DECconnect
DECnet
DECserver
DECUS
DELNI
DELUA
DELQA
DEMPR

DEQNA
DESQA
DESVA
DEUNA
LANBridge
Massbus
PDP
Q-bus
RSX
RSX11M-PLUS
ThinWire
ULTRIX

UNIBUS
VAX
VAXcluster
VAXstation
VMS

EK-DNA11-FS-001
First Printing, June 1992

Copyright © 1978, 1992 by Digital Equipment Corporation

Preface iii

Preface

This document is one of a series of specifications which describe Phase V of the Digital Net-
work Architecture. Other DNA Phase V specifications may be obtained by ordering one or more
of the following documentation kits:

DIGITAL NETWORK ARCHITECTURE (PHASE V) DOCUMENTATION KIT #1
Order No. EK-DNAP1-DK-001 includes:

Digital Network Architecture (Phase V) General Description, No. EK-DNAPV-
GD

Digital Network Architecture (Phase V) Network Services Protocol Functional
Specification, No. EK-DNA15-FS-001

Digital Network Architecture (Phase V) Open Systems Interconnect Transport
Functional Specification, No. EK-DNA12-FS-001

Digital Network Architecture (Phase V) X.25 Access Functional Specification,
No. EK-DNA17-FS-001

DIGITAL NETWORK ARCHITECTURE (PHASE V) DOCUMENTATION KIT #2
Order No. EK-DNAP2-DK-001 includes:

Digital Network Architecture (Phase V) Session Control Functional Specifica-
tion, No. EK-DNA07-FS-001

Digital Network Architecture (Phase V) Naming Service Functional Specifica-
tion, No. EK-DNANS-FS-002

Digital Network Architecture (Phase V) Network Routing Layer Functional
Specification, No. EK-DNA03-FS-001

Digital Network Architecture (Phase V) Unique Identifier Functional Specifica-
tion, No. EK-DNA16-FS-001

Digital Network Architecture (Phase V) Time Service Functional Specification,
No. EK-DNA04-FS-001

DIGITAL NETWORK ARCHITECTURE (PHASE V) DOCUMENTATION KIT #3
Order No. EK-DNAP3-DK-001 includes:

Digital Network Architecture (Phase V) High-Level Data Link Control Func-
tional Specification, No. EK-DNA08-FS-001

Digital Network Architecture (Phase V) Carrier Sense Multiple Access with Col-
lision Detection Functional Specification, No. EK-DNA13-FS-001

Digital Network Architecture (Phase V) Digital Data Communications Message
Protocol Functional Specification, No. EK-DNA14-FS-001

Digital Network Architecture (Phase V) Modem Connect Functional Specifica-
tion, No. EK-DNA10-FS-001

Digital Network Architecture (Phase V) LAN Node Product Functional Specifi-
cation, No. EK-DNA06-FS-001

iv Preface

DIGITAL NETWORK ARCHITECTURE (PHASE V) DOCUMENTATION KIT #4
Order no. EK-DNAP4-DK-001 includes:

Enterprise Management Architecture (EMA) Entity Model Functional Specifica-
tion, No. EK-EMAEM-FS-002

Digital Network Architecture (Phase V) Common Management Information Pro-
tocol Functional Specification, No. EK-DNA01-FS-001

Digital Network Architecture (Phase V) Event Logging Functional Specification,
No. EK-DNA09-FS-001

Digital Network Architecture (Phase V) Maintenance Operations Protocol Func-
tional Specification, No. EK-DNA11-FS-001

Digital Network Architecture (Phase V) Network Control Language Functional
Specification, No. EK-DNA05-FS-001

Digital Network Architecture (Phase V) Network Management Functional Speci-
fication, No. EK-DNA02-FS-001

v

Table of Contents

Preface iii

Chapter 1 Introduction 1

1.1 Functional Description2
1.2 Design Scope...3
1.2.1 Requirements3
1.2.2 Goals3
1.2.3 Non-goals4

Chapter 2 Models 5

2.1 Relationship to DIGITAL Network Architecture ... 5
2.2 Simplified Network Model ... 7
2.3 Low Level Maintenance Operation Model ... 8

Chapter 3 Management 9

3.1 Client subentity9
3.2 Circuit subentity10
3.2.1 Operation subentity10
3.2.2 Station subentity10
3.3 Support categories10
3.4 Data type definitions10
3.5 MOP Module11
3.5.1 Action Directives12
3.5.1.1 MOP module specific action directives ... 12
3.5.1.2 Create Directive12
3.5.1.3 Delete Directive13
3.5.1.4 Enable Directive13
3.5.1.5 Disable Directive13
3.5.2 Identifier Attribute13
3.5.3 Characteristic Attributes ... 14
3.5.4 Status Attributes14
3.5.5 Counter Attributes14
3.5.6 Event Reports14
3.6 Client subentity14
3.6.1 Action Directives15
3.6.1.1 Create Directive15
3.6.1.2 Delete Directive15
3.6.1.3 Loop Directive15

vi Table of Contents

3.6.1.4 Load Directive17
3.6.1.5 Boot directive18
3.6.1.6 Test Directive18
3.6.1.7 Query Directive19
3.6.2 Identifier Attribute20
3.6.3 Characteristic Attributes ... 21
3.6.4 Status Attributes23
3.6.5 Counter Attributes23
3.6.6 Event Reports23
3.7 Circuit subentity23
3.7.1 Action Directives23
3.7.1.1 Create Directive23
3.7.1.2 Delete Directive23
3.7.1.3 Enable Directive24
3.7.1.4 Disable Directive24
3.7.1.5 Loop Directive25
3.7.1.6 Load Directive26
3.7.1.7 Boot directive27
3.7.1.8 Test Directive28
3.7.1.9 Query Directive29
3.7.2 Identifier Attribute29
3.7.3 Characteristic Attributes ... 30
3.7.4 Status Attributes30
3.7.5 Counter Attributes31
3.7.6 Event Reports31
3.8 Operation subentity32
3.8.1 Action Directives32
3.8.2 Identifier Attribute32
3.8.3 Characteristic Attributes ... 33
3.8.4 Status Attributes33
3.8.5 Counter Attributes33
3.8.6 Event Reports33
3.9 Station subentity33
3.9.1 Action Directives34
3.9.2 Identifier Attribute34
3.9.3 Characteristic Attributes ... 34
3.9.4 Status Attributes34
3.9.5 Counter Attributes35
3.9.6 Event Reports36

Chapter 4 Operation 37

4.1 Notes on the operational model ... 37
4.2 Common definitions38
4.2.1 Architectural constants ... 38
4.2.2 MOP module data type definitions ... 39
4.2.3 Message type definitions .. 42
4.3 Use of the Client database .. 42
4.4 Processing of management directives .. 43
4.4.1 Loop directive43
4.4.2 Load directive45
4.4.3 Boot directive47
4.4.4 Test directive49

Table of Contents vii

4.4.5 Query directive50
4.5 Downline load algorithms .. 51
4.5.1 Downline load client51
4.5.2 Downline load server54
4.5.2.1 Downline load server listener .. 54
4.5.2.2 Downline load data transfer phase... 57
4.6 Upline dump algorithms61
4.6.1 Upline dump client61
4.6.2 Upline dump server63
4.6.2.1 Upline dump server listener ... 63
4.6.2.2 Upline dump data transfer phase ... 65
4.7 Loop algorithms for point to point data links .. 66
4.7.1 Loop requester66
4.7.2 Loop server67
4.8 Loop algorithms for LAN data links .. 68
4.8.1 Loop requester68
4.8.2 Loop server70
4.9 XID and TEST algorithms ... 71
4.9.1 Test requester71
4.9.2 Query requester72
4.10 Console server algorithms .. 73
4.10.1 Periodic System ID transmission.. 74
4.10.2 Build a System ID message .. 75
4.10.3 Response to Request ID.. 75
4.10.4 Response to Request Counters ... 75
4.10.5 Console carrier server ... 76
4.10.6 Received Boot message processing .. 77
4.10.7 Configuration monitor .. 78
4.10.8 Console carrier requester .. 78
4.11 MOP protocol primitives ... 81
4.11.1 Send message...81
4.11.2 Receive message with timeout ... 81
4.11.3 Perform a single request-response exchange attempt 82
4.11.4 “Transact” request-response exchange with retry 83
4.11.5 Request-response with infinite retry for Request Program 83
4.11.6 Enable and disable SAP address for XID/TEST requester 85
4.11.7 Perform an XID or TEST exchange ... 85
4.12 Receive dispatchers87
4.12.1 Receive dispatcher for point to point data links 87
4.12.2 Receive dispatcher for LAN data links .. 88
4.13 DDCMP specific algorithms .. 90
4.13.1 Exclusive maintenance mode ... 90
4.13.2 Open90
4.13.3 Close91
4.13.4 Transmit functions91
4.14 HDLC specific algorithms ... 91
4.14.1 Open92
4.14.2 Close92
4.14.3 Transmit functions92
4.15 LAPB specific algorithms .. 92
4.15.1 Open93
4.15.2 Close93
4.15.3 Transmit functions93

viii Table of Contents

4.16 CSMA/CD specific algorithms .. 94
4.16.1 Open94
4.16.2 Close95
4.16.3 Transmit functions95
4.17 FDDI specific algorithms ... 96
4.18 Miscellaneous data link independent procedures... 96
4.18.1 Resource allocation/deallocation .. 96
4.18.2 Manipulate fields in the buffer contents ... 97
4.18.3 Find a Client record97
4.18.4 Find a Circuit record98
4.18.5 Pick a Source SAP address ... 98

Chapter 5 Messages 99

5.1 Downline Load messages... 101
5.1.1 Request Program102
5.1.2 Assistance Volunteer .. 103
5.1.3 Request Memory Load ... 103
5.1.4 Memory Load with Transfer Address .. 103
5.1.5 Memory Load104
5.1.6 Parameter Load with Transfer Address .. 104
5.2 Upline Dump messages106
5.2.1 Request Dump Service ... 106
5.2.2 Request Memory Dump ... 107
5.2.3 Memory Dump Data ... 107
5.2.4 Dump Complete...108
5.3 Point to Point Loop Test messages .. 108
5.3.1 Loop Data Message for point to point links ... 108
5.3.2 Looped Data Message for point to point links 108
5.4 LAN Loop Test messages .. 109
5.4.1 Forward Data message for LANs ... 109
5.4.2 Looped Data message for LANs .. 109
5.5 Console messages109
5.5.1 Boot110
5.5.2 Request ID111
5.5.3 System ID112
5.5.4 Request Counters115
5.5.5 Counters (CSMA/CD only) .. 116
5.5.6 Counters (other than CSMA/CD) ... 116
5.5.7 Reserve Console116
5.5.8 Console Command and Poll ... 117
5.5.9 Console Response and Acknowledge ... 117
5.5.10 Release Console...118

Appendix A Predefined Values 119

A.1 Communication Devices .. 119
A.2 Data Links121

Appendix B Data Link Specific Information 123

B.1 DDCMP123

Table of Contents ix

B.2 LAPB123
B.3 HDLC123
B.4 CSMA/CD...123
B.5 FDDI125

Appendix C Implementation Specific Dump/Load Characteristics 127

C.1 Secondary Loader127
C.2 Tertiary Loader127

Appendix D LAN Loop Test Examples 129

D.1 Local Control Test Example .. 129
D.2 Remote Control Test Example ... 130

Appendix E Load File Formats 131

E.1 CMIP Script File Format ... 131

Appendix F LAN Frame Formats 133

Appendix G Compatibility with Previous Versions 135

G.1 Support for the previous version of MOP .. 135
G.2 Ethernet and 802 frame formats ... 135
G.2.1 Response to received requests .. 136
G.2.2 Initiation of requests ... 136
G.3 Version handling on point to point data links .. 136
G.4 Request Program message ... 137
G.5 Parameter Load with Transfer Address message ... 137
G.6 System ID message137
G.7 Counters message138

Appendix H Glossary 139

Appendix I Load/Dump Service Implementation Notes 141

I.1 Downline load and upline dump over multi-mode point to point lines 141
I.2 Downline load and upline dump service on diskless servers 142
I.3 Downline load and upline dump in clients with multiple data links 142

Figures
Figure 1: DNA layer model6
Figure 2: Simplified network model ... 7
Figure 3: MOP components8
Figure 4: MOP entity structure9

x Table of Contents

Figure 5: Request Program message format ... 102
Figure 6: Assistance Volunteer message format ... 103
Figure 7: Request Memory Load message format .. 103
Figure 8: Memory Load with Transfer Address message format 104
Figure 9: Memory Load message format .. 104
Figure 10: Parameter Load with Transfer Address message format 105
Figure 11: Parameter Load message Parameter field format 105
Figure 12: Request Dump Service message format .. 106
Figure 13: Request Memory Dump message format .. 107
Figure 14: Memory Dump Data message format .. 107
Figure 15: Dump Complete message format .. 108
Figure 16: Loop Data message format for point to point links 108
Figure 17: Looped Data message format for point to point links 108
Figure 18: Forward Data message format for LAN links ... 109
Figure 19: Looped Data message format for LAN links ... 109
Figure 20: Boot message format ... 110
Figure 21: Software ID field format .. 111
Figure 22: Request ID message format ... 111
Figure 23: System ID message format .. 112
Figure 24: System ID message Info field format .. 112
Figure 25: Request Counters message format ... 115
Figure 26: Counters message format for CSMA/CD link ... 116
Figure 27: Counters message format for links other than CSMA/CD 116
Figure 28: Reserve Console message format .. 116
Figure 29: Console Command and Poll message format .. 117
Figure 30: Console Response message format .. 117
Figure 31: Release Console message format .. 118
Figure 32: NI Frame Formats133

Tables
Table 1: MOP module characteristics attributes .. 14
Table 2: MOP module status attributes .. 14
Table 3: Client entity identifier attribute .. 20
Table 4: Client entity characteristics attributes (part 1) ... 21
Table 5: Client entity characteristics attributes (part 2) ... 22
Table 6: Circuit entity identifier attribute .. 30
Table 7: Circuit entity characteristics attributes ... 30
Table 8: Circuit entity status attribute .. 30
Table 9: Circuit entity counter attributes ... 31
Table 10: Circuit entity event arguments ... 31
Table 11: Operation entity identifier attribute ... 33
Table 12: Operation entity status attributes ... 33
Table 13: Station entity identifier attribute .. 34
Table 14: Station entity status attributes .. 35
Table 15: MOP Architectural Constants .. 39
Table 16: Summary of MOP message codes ... 101

1

Chapter 1

Introduction

Certain maintenance functions need to be performed remotely at a low level in the overall
network architecture. These are functions that cannot depend on high level software being op-
erational in the node (system) being maintained.

In the context of this specification, low level implies direct usage of data link services. High
level means such network functions as routing and end-to-end, virtual circuit type protocols,
both of which are also users of data link services. This specification assumes that only a mini-
mal level of data link services are available to support maintenance operations, and that these
maintenance operations provide a base on which any higher level functions can be built.

This document describes the structure, functions, interfaces, and protocols needed for low
level maintenance. DNA is the model on which DECnet implementations are based. A DECnet
network is a family of software modules, data bases, and hardware components used to tie
DIGITAL systems together for resource sharing, distributed computation or remote system
communication.

This document incorporates the support of the new data links such as HDLC data link,
CSMA/CD (IEEE 802.3) data link, and FDDI (ANSI X3.139–1987) data link. The term Local
Area Network (LAN) used throughout this document applies to all Ethernet data link,
CSMA/CD data link, and FDDI data links.

This document assumes that the reader is familiar with computer communications and
DECnet. The primary audience consists of those who implement DECnet systems or other sys-
tems under different architectures, but requiring the same functions. The following are the
relevant documents (refer to the Preface for the order numbers):

• Digital Network Architecture (Phase V) Digital Data Communications Message Protocol
Functional Specification

• Digital Network Architecture (Phase V) High-Level Data Link Control Functional
Specification

• Digital Network Architecture (Phase V) Carrier Sense Multiple Access with Collision
Detection Functional Specification

• Digital Network Architecture (Phase V) FDDI Data Link Architecture Specification, (to
be published)

• Digital Network Architecture (Phase V) Network Management Functional Specification

2 Introduction

• Digital Network Architecture (Phase V) Common Management Information Protocol
Functional Specification

• Digital Network Architecture (Phase V) LAN Node Product Functional Specification

• Enterprise Management Architecture (EMA) Entity Model Functional Specification

• Digital Network Architecture (Phase V) Event Logging Functional Specification

• Digital Network Architecture (Phase V) Naming Service Functional Specification

• Digital Network Architecture (Phase V) Unique Identifier Functional Specification

• Digital Network Architecture (Phase V) Time Service Functional Specification

The relevant National and International Standards are:

• IEEE Standard 802: Overview and Architecture.

• IEEE Standard 802.1 (Part B) : Addressing, Internetworking, and Network Manage-
ment.

• IEEE Standard 802.2 : IEEE Standards for Local Area Networks: Logical Link Control,
ANSI/IEEE Std 802.2–1985, ISO 8802–2.

• IEEE Standard 802.3 : Carrier Sense Multiple Access with Collision Detect (CSMA/CD),
ANSI/IEEE Std 802.3–1985 ISO 8802–3.

• ANSI Standard X3.139–1987 : Fiber-distributed data interface (FDDI) — token ring
media access control (MAC).

• ANSI X3T9/92-037, Rev 7.1 : Fiber-distributed data interface (FDDI) — Station Man-
agement (SMT).

1.1 Functional Description

Low level maintenance functions are divided into three categories. Operation within any
category depends on the operability of at least part of the preceding category. The categories
are:

• Communications test

• System console

• System load/dump

Each of these functions can be viewed either from the active or passive end. The active end
is the one that is driving the maintenance function and the passive end is the one that is re-
sponding.

Communications test determines if the data link communications path is operative.

System console provides low level access to a system for the functions of:

• Identify

• Read data link

1.2: Design Scope 3

• Boot system

• Console carrier

The console carrier is a general purpose console input/output channel. It provides a common
communication mechanism to allow remote access regardless of console command specifics.

System load/dump copies the contents of processor memory to or from a remote system.

Throughout this document, the term boot is used to mean the process of causing a system to
initialize itself. Initialization may include loading system memory. A boot command is a cause.
The term load is used to mean the process of transferring a system image into processor mem-
ory from some source. This is one potential effect of a boot command. The source of major in-
terest in this specification is a remote system, accessed via a communication channel.

1.2 Design Scope

The low level maintenance operations require certain characteristics to be present, attempt
to meet certain goals, and lack some features that are not within the scope of the design.

1.2.1 Requirements

The maintenance operation architecture must have the following characteristics:

• The communications test function, system console functions, and system load/dump
function previously mentioned must be included in the design.

• Active and passive sides of maintenance operations can be implemented and used inde-
pendently.

• Effects of errors (such as operator errors, protocol errors, and hardware errors) are
minimized, always leaving a system in a well defined state.

• On CSMA/CD data link, the LAN Loop Test Protocol must be compatible with the inter-
company standard Ethernet Loopback Protocol as specified in the DEC STD 134–0
(Digital CSMA/CD (Ethernet) Local Area Network Specification)

• Implementations may select subsets of functions based on particular product need. The
required subsets of functions are defined in the LAN Node Product Architecture Specifi-
cation.

1.2.2 Goals

The maintenance operation design tries to have the following characteristics:

• Functions and protocols are compatible with the DNA Maintenance Operation Protocol
(MOP) version V3.1.0.

• Algorithms, particularly those found in memory-only systems, are processing and mem-
ory efficient. Communications efficiency is a secondary goal. In the specific case of
down-line load and up-line dump, overall speed of operation is an important goal.

• Extensible to accommodate newly developed functions or modification of current func-
tions.

• Operates independently of the underlying communication mechanism (e.g., DDCMP,
Ethernet, CSMA/CD, HDLC, etc.).

4 Introduction

• No complex algorithms or data bases. Minimal state kept in the smallest systems.

1.2.3 Non-goals

The maintenance operation design does not try to have the following characteristics:

• Isolation of components that have failed in a failing system.

• System security in the low level maintenance functions.

5

Chapter 2

Models

This chapter describes the relationship of the low level maintenance operations to other net-
work layers and modules. Although this specification primarily relates the maintenance opera-
tions to DNA, the same relationships can also be applied within other network architectures,
such as the DIGITAL System Communication Architecture.

2.1 Relationship to DIGITAL Network Architecture

The maintenance operations reside in the DNA Network Management Layer. They are di-
rect users of the DNA Data Link Layer. The other DNA layers are not required in the support
of the low level maintenance operations unless such services as remote file access are to be
used.

DNA is a layered structure. Modules in each layer perform distinct functions. Modules
within a single DNA layer (but typically in different computer systems) communicate using spe-
cific protocols. Modules in different layers (but typically in the same computer system) inter-
face using subroutine calls or a system-dependent method. In this document interfaces are de-
scribed in terms of calls to subroutines.

The diagram in Figure 1 below shows the overall layering of DNA. A later diagram (Figure
2) shows the simplified model that is applicable to the low level maintenance operations.

6 Models

Figure 1: DNA layer model

Note:
Horizontal arrows show direct access for control and observation of parameters,
counters, etc. Vertical arrows show interfaces between layers for normal user
operations such as file access, down-line load, and logical link usage.

Each layer in DNA consists of functional modules and protocols. Generally, modules use the
services of the next lower layer. In this document, the service relationship is demonstrated in
the way the interfaces are modeled, as calls to subroutines. Note that the Network Manage-
ment Layer interfaces directly with each of the lower layers. Also, the layers above Session
Control interface directly with it. For this reason the upper three layers are sometimes referred
to as the “end user”.

Modules of the same type in the same layer communicate with each other to provide their
services. The rules governing this communication and the messages required constitute the
protocol for those modules. Messages are typically exchanged between equivalent modules in
different nodes. However, equivalent modules within a single node can also exchange mes-
sages.

A brief description of each layer follows in order from the highest to the lowest layer:

User modules

Network Management modules

Session Control modules

Transport modules

Network layer modules

Data Link modules

Physical Link modules

Network Application modules

2.2: Simplified Network Model 7

• User Layer. The highest layer, the User Layer supports user services and programs.
Programs such as the Network Control Program, which interfaces with the Network
Management Layer, and file transfer programs, which interface with the Network Ap-
plication Layer, reside in the User Layer.

• Network Management Layer. The Network Management Layer is the only one that has
direct access to each lower layer for control purposes. Modules in this layer provide
user control over and access to network parameters and counters. These modules also
perform up-line dumping, down-line loading, and testing functions.

• Network Application Layer. Modules in the Network Application Layer support net-
work functions, such as remote file access and file transfer, used by the User and Net-
work Management Layers.

• Session Control Layer. The Session Control defines the system-dependent aspects of
logical link communication, which allows messages to be sent from one node to another
in a network. Session Control functions include name-to-address translation, process
addressing, and, in some systems, process activation and access control.

• Transport Layer. The Transport Layer defines the system-independent aspects of logi-
cal link communication.

• Network Routing Layer. Modules in the Network Routing Layer route messages, called
packets, between source and destination nodes.

• Data Link Layer. The Data Link Layer defines the protocol concerning data integrity
and physical channel management.

• Physical Link Layer. The Physical Link Layer encompasses a part of the device driver
for each communications device plus the communications hardware itself. The hard-
ware includes interface devices, modems, and the communication lines.

2.2 Simplified Network Model

The diagram in Figure 2 shows a simplified relationship of the maintenance operations to
the rest of the network architecture.

Figure 2: Simplified network model

User

 Maintenance Operations

DDCMP HDLC CSMA–CD FDDI

User layer

Network
Management
Layer

Data Link Layer

LAPB

8 Models

2.3 Low Level Maintenance Operation Model

The diagram in Figure 3 shows the components within the maintenance operation module.

Figure 3: MOP components

Requesters are the processes responsible for initiation of maintenance operations. This can
be done either at higher level user request, or because of information obtained from a lower
level. Requesters are the active side of a maintenance operation.

Servers are the processes that respond to maintenance requesters. They are the passive side
of a maintenance operation. Servers should not try to do more than they are capable of. For
example, it is not acceptable to always volunteer to load every system that requests it and then
take too long to get done because the local resources are overextended. The diagram shows
servers and requesters as separate to represent their functional independence. In an imple-
mentation that supports multiple servers and/or requesters that use the same protocol type,
they may have to be more closely coupled so that messages received through the data link are
properly demultiplexed. Also, servers and requesters that allow multiple users must further
demultiplex messages to the proper user processes.

The Client Data Base contains default information that the Dump/Load Server, Loop Re-
quester, Console Requester, and Test/Query Requester use to fill in necessary values in incom-
plete requests.

Lines to the top of processes indicate flow of the control data that initiates processing. Lines
to the side indicate Network Management control. The dashed lines indicate data base access.

User

Data Link

Console
Server

Console
Requester

Dump/Load
Server

Loop
Requester

Loop
Server

Dump/Load
Requester

Client
Data
base

Test/Query
Requester

9

Chapter 3

Management

The operation of the Maintenance Operations components may be monitored and controlled
using DNA Network Management. There is a single Module entity, called MOP. It has subor-
dinate entities which define the database of MOP clients, and the Data Link circuits to be used.
Figure 4 shows the complete entity structure of MOP.

Figure 4: MOP entity structure

3.1 Client subentity

The Client subentity is used to store default parameters for the Dump/Load Server, Console
Requester, Loop Requester, and Test/Query requester. When a Load, Boot, Loop, Test, or
Query directive is received, any required parameters not supplied with the directive are ob-
tained from the corresponding characteristics of a Client subentity, if one is specified in the di-
rective. Similarly, when a request for Dump or Load service is received by the Dump/Load
Server component from a Data Link, any parameters required to complete the request but not
supplied in the received message are obtained from the characteristics of a Client subentity. In

MOP

Client
Circuit

Operation Station

10 Management

this case, the Client subentity to be used is determined by the Circuit and (for LAN circuits) the
Data Link source address or the Device Type from the received request message.

The set of Client subentities forms the “Client Database”. A lookup in this Database consists
of a search through the set of Client subentities for one that has the specified name, or the
specified Circuit and (if applicable) LAN Address and/or Device Type. A LAN Address match
takes precedence over a Device Type match; apart from that, the result of a search when more
than one Client subentity matches the specified value is undefined.

3.2 Circuit subentity

The Circuit subentity describes a Data Link circuit to be used by MOP. For each defined
Circuit subentity, MOP will use the specified Link Name attribute to open a port in the appro-
priate Data Link module. Thus, each Circuit subentity of MOP corresponds to a Data Link cir-
cuit on which MOP services are available. Another Circuit characteristic defines which of the
possible MOP services are enabled.

3.2.1 Operation subentity

The Operation subentity is created dynamically by the MOP components to allow manage-
ment to observe the state of MOP operations that are in progress.

3.2.2 Station subentity

The Station subentity is created dynamically by the Configuration Monitor component, if
Configuration is set as one of the services enabled for a given circuit. This is applicable only to
LAN circuits. The Station subentity is created in response to a received System ID message,
and records the information contained in that message.

Note that MOP does not relate the Station and Client subentities in any way. They serve
unrelated purposes.

3.3 Support categories

In the description of attributes below, certain directive arguments and entity attributes are
flagged to indicate they are required only for some data links. Any arguments or attributes not
flagged are applicable regardless of data link type.

All directive arguments shall be accepted by all implementations; when an argument is not
applicable, it is ignored. Implementations which do not support a particular data link type at
all must still accept (and ignore) any arguments applicable to the unsupported data link.

Implementations which don’t support a particular data link type may omit any entity attrib-
utes applicable only to those data links. In that case, attempts to access these attributes are
rejected (with the standard GetListError or SetListError CMIP error code).

In this version, the only defined support category is “LAN”, which indicates any Local Area
Network data link, i.e., any of the IEEE 802 family data links, Ethernet, and FDDI.

3.4 Data type definitions

The following are the definitions for the management data types used in this chapter.

FROM Management IMPORT SystemID, P4Address, P4Name;

3.5: MOP Module 11

FROM Management IMPORT LANAddress;
FROM Management IMPORT Octet;
SAPAddress = Octet; (* A more descriptive type name *)
StatType = (Off = 0, On = 1);
HelpType = (None = 0, Transmit = 1, Receive = 2, Full = 3);
OpType = (Loop Requester = 0, Console Requester = 1,

Console Carrier = 2, Load Requester = 3,
Load Server = 4, Dump Requester = 5,
Dump Server = 6, Configuration Monitor = 7,
Test Requester = 8, Query Requester = 9);

FunType = BIT SET OF OpType;
SIDFunType = BIT SET OF (Loop Server = 0, Dump Requester = 1,

Primary Loader = 2, Secondary Loader = 3,
Boot = 4, Console Carrier = 5, Counters = 6);

DLErrType = (Wrong State = 0, Receive Error = 1,
Transmit Error = 2);

ServType = (Load = 0, Dump = 1, Loop = 2, Boot = 3,
Test = 4, Query = 5);

ProgType = (Secondary Loader = 0, Tertiary Loader = 1,
System = 2, Management = 3, CMIP Script = 4,
Diagnostic = 5);

SvErrType = (No Resources = 0, Receive Error = 1,
Transmit Error = 2, File Open Error = 3,
File I/O Error = 4, Operation Aborted = 5,
Unknown Client = 6, Protocol Error = 7,
Timeout = 8);

CircuitType = (CSMA–CD = 0, DDCMP = 1, FDDI = 2, HDLC = 3,
LAPB = 4, Token Ring = 5, Token Bus = 6,
Z–LAN = 7); 1

DevType = (* Enumerated, refer to Appendix A.1 for code assignments.
The name to be used for each code is the 3-character
mnemonic shown there in the “Name” column *);

SoftwareID = String; (* Software ID is encoded as a text string. However, it must
conform to the format restrictions documented in Section
5.5.1. If an invalid value of this data type is supplied to a
directive, it is rejected with the standard CMIP error return
Invalid Argument Value. *)

3.5 MOP Module

The MOP module is registered in the Distributed Systems Management Registry as shown
below.

 Class Name: MOP
 Code: 16
 Superior Class: Node

1 Note that these codes are not the same as the “Data Link Type” codes used in the System ID message, which are
defined in Appendix A.2. To simplify the mapping between these two encodings, new values for Circuit Type and
Data Link Type will be assigned such that the following algorithm applies:

IF DataLinkType " 10
THEN CircuitType := LookupTable[DataLinkType]
ELSE CircuitType := DataLinkType – 5

12 Management

3.5.1 Action Directives

The MOP module implements the usual directives Create, Delete, Enable, and Disable. In
addition, it implements five module-specific directives: Loop, Load, Boot, Test, and Query. If an
implementation does not support some of these functions, the corresponding directive is omitted
and attempts to invoke it yield the standard Directive Not Supported exception.

3.5.1.1 MOP module specific action directives

In order to avoid awkward command language syntax, the five module-specific directives are
not in fact directives of the module. This is because each directive must refer to a Circuit
subentity (to identify the circuit to operate on) or a Client subentity (to refer to for directive
parameters not explicitly specified in the directive) or both. Thus there are actually two sets of
five directives, one associated with the Client subentity, one with the Circuit subentity. Seman-
tically these are equivalent, and the only difference in syntax is that one has an optional Circuit
argument and the other an optional Client argument. If the directive is issued to a Client
subentity, that subentity is in effect an implied argument of the directive; if the directive is is-
sued to a Circuit subentity, that subentity is in effect an implied argument.

In each of these five directives, each argument individually is optional but for any particular
directive enough parameters must actually be supplied to allow the operation to be performed.
One possibility is to supply all necessary parameters directly as directive arguments. The other
possibility is to reference a Client subentity. In that case, the parameters are obtained from the
Client characteristics, unless overridden by a corresponding argument.

For each of these five directives, refer to the description below for the list of parameters that
is necessary to complete the function. If all of these are supplied as arguments, it is not neces-
sary to include a Client argument. Otherwise, the Client argument must be supplied. If no
matching Client subentity is found, the request is rejected (Unrecognized Client exception). Oth-
erwise, any parameters not supplied in the directive itself are obtained from the corresponding
characteristics of the Client subentity. After completion of this “merge”, all necessary parame-
ters must now be available; if not, the standard CMIP error Required Argument Omitted is re-
turned.

Note:
Since these necessary parameters can be obtained either from the directive ar-
guments or from the Client database, it is not correct to consider them “required
arguments” in the sense that they are required to be present on the directive.
In particular, as far as director processing is concerned, they have to be consid-
ered as optional arguments.

The Client subentity attribute Addresses is a Set data type. For the directives, an address
can be explicitly supplied; if it is not, then the operation proceeds with each of the addresses in
the Set, until a response is received (except in the case of Boot, which simply loops through the
entire set since no response is expected). If the set is empty, the request is rejected (standard
CMIP error Required Argument Omitted).

3.5.1.2 Create Directive

The Create directive creates the MOP entity. The Characteristics initially take their default
values. The Modula-2+ description follows:

DIRECTIVE Create = 0 : Create; (* Create the MOP entity *)
 REQUEST (* No input arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;

3.5.1.3: Delete Directive 13

 EXCEPTION Already Exists = 2 : (* MOP Module already exists *)
 END Already Exists;
END Create;

PROCEDURE Create ()
 RAISES {InsufficientResources}; (* CMIP common error *)

3.5.1.3 Delete Directive

The Delete directive deletes the MOP entity and reclaims any associated resources. The
Modula-2+ description follows:

DIRECTIVE Delete = 1 : Delete; (* Delete the MOP entity *)
 REQUEST (* No Input Arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Has Children = 1 : (* Subentities must be deleted first *)
 END Has Children;
END Delete;

PROCEDURE Delete ()
 RAISES {};

3.5.1.4 Enable Directive

The Enable directive enables the MOP entity. The Modula-2+ description follows:

DIRECTIVE Enable = 2 : Enable; (* Enable the MOP entity function *)
 REQUEST (* No input arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success; (* No Entity-specific Exceptions *)
END Enable;

PROCEDURE Enable ()
 RAISES {};

3.5.1.5 Disable Directive

The Disable directive disables the MOP entity. The Modula-2+ description follows:

DIRECTIVE Disable = 3 : Disable; (* Disable the MOP entity function *)
 REQUEST (* No input arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success; (* No Entity-specific Exceptions *)
END Disable;

PROCEDURE Disable ()
 RAISES {};

3.5.2 Identifier Attribute

Modules do not have an identifier attribute.

14 Management

3.5.3 Characteristic Attributes

The MOP module has the characteristic attributes shown in Table 1.

Table 1: MOP module characteristics attributes

3.5.4 Status Attributes

The MOP module has the status attributes shown in Table 2.

Table 2: MOP module status attributes

3.5.5 Counter Attributes

The MOP module does not have any counter attributes.

3.5.6 Event Reports

The MOP module does not generate any event reports.

3.6 Client subentity

The Client subentity is registered in the Distributed Systems Management Registry as
shown below.

 Class Name: Client
 Code: 0
 Superior Class: MOP

The Client subentity is used by the Load/Dump Server, Loop Requester, Console Requester,
Test Requester, and Query Requester components of MOP. On systems where none of these are
implemented, the Client subentity is omitted and any attempts to issue directives to it are re-
jected (with the standard No Such Entity exception).

Keyword Code Syntax Value Description
Version 0 VersionNumber V4.0.0 The version of the Maintenance Operations

specification to which the implementation
conforms. This attribute is read-only.

Supported
Functions

1 FunType [System
Specific]

Specifies which MOP components are avail-
able in this system. This can be used by the
Director to avoid issuing directives that use
omitted functions. This attribute is read-
only.

Keyword Code Syntax Description

State 2 StatType The current State of the MOP module.

3.6.1: Action Directives 15

3.6.1 Action Directives

The Client subentity provides action directives for creating and deleting a subentity. These
directives and the procedures they call are described below.

3.6.1.1 Create Directive

The Create directive creates a Client subentity with the specified identifier. The Character-
istics initially take their default values. The Modula-2+ description follows:

DIRECTIVE Create = 0 : Create; (* Create a new Client subentity *)
 REQUEST (* No Input Arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Already Exists = 2 : (* Client subentity already exists *)
 END Already Exists;
END Create;

PROCEDURE Create (Identifier: SimpleName)
 RAISES {InsufficientResources}; (* CMIP common error *)

3.6.1.2 Delete Directive

The Delete directive deletes a Client subentity and reclaims any associated resources. The
Modula-2+ description follows:

DIRECTIVE Delete = 1 : Delete; (* Delete an Client subentity *)
 REQUEST (* No Input Arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success; (* No Entity-specific Exceptions *)
END Delete;

PROCEDURE Delete (Identifier)
 RAISES {};

3.6.1.3 Loop Directive

The Loop directive causes a loop test to be performed with another system.

DIRECTIVE Loop = 4 : Loop; (* Perform a Loop operation with another system *)
 REQUEST

 ARGUMENT Circuit = 1 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Assistant System = 4 : SimpleName;
 ARGUMENT Assistant Address = 5 : LANAddress;
 ARGUMENT Assistance Type = 6 : HelpType;
 ARGUMENT Count = 7 : Integer;
 ARGUMENT Length = 8 : Integer;
 ARGUMENT Format = 11 : Octet

 END;
 RESPONSE Success = 0 : (* No output arguments *)
 END Success;
 RESPONSE Invalid Response = 1 :

 ARGUMENT Count = 7 : Integer; (* Count of messages successfully looped *)
 END Invalid Response;

16 Management

 EXCEPTION Unrecognized Circuit = 1 : (* There is no circuit with the specified identification *)
 END Unrecognized Circuit;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Assistant = 5 : (* No assistant with the specified identification *)
 END Unrecognized Assistant;
 EXCEPTION Invalid Assistant = 6 : (* The Assistant Address is either a multicast address, or

Assistant System was specified but the corresponding Client
subentity has an empty Addresses list *)

 END Invalid Assistant;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Loop;

PROCEDURE Loop (Client, Circuit, Address, AssistantSystem,
 AssistantAddress, AssistanceType, Count, Length, Format)

 RAISES {InvalidResponse,
 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit,
 DataLinkError,
 UnrecognizedClient, (* Does not apply here *)
 RequiredArgumentOmitted, (* CMIP common error *)
 UnrecognizedAssistant,
 InvalidAssistant,
 InvalidArgumentValue, (* CMIP common error *)
 Timeout};

For LAN circuits, if Assistance Type is None, the operation is a Loop-direct; If
AssistanceType is some other value, the operation is Loop-assisted. For Loop-assisted, the de-
fault assistant address is the Loop Assistant multicast address. A different address may be
specified by including the Assistant Address parameter, which specifies the address directly, or
by specifying Assistant System, which specifies a name of a Client subentity. The Addresses
characteristic of the named Client subentity is then used as the assistant address. On non-
LAN circuits, the Assistant Address, Assistant System, and Assistance Type arguments are ig-
nored.

The required parameters are:

• Circuit

• Address (for LAN circuits)

The defaults values for the optional parameters are:

• Assistance Type — None

• Assistant Address — Obtained dynamically: an assistant is found by sending a direct
(non-assisted) Loop request to the Loop Assistance multicast address. If a response is
received, the responding station is then used as the assistant for the rest of the opera-
tion.

• Count — 1

• Length — 40

• Format — %x55

3.6.1.4: Load Directive 17

3.6.1.4 Load Directive

The Load directive causes a down line load to be performed to another system. A Boot is
done first to force the specified system to load.

DIRECTIVE Load = 5 : Load; (* Force load an adjacent system *)
 REQUEST

 ARGUMENT Circuit = 1 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT System Image = 3 : FileSpec;
 ARGUMENT Script File = 4 : FileSpec;
 ARGUMENT Secondary Loader = 5 : FileSpec;
 ARGUMENT Tertiary Loader = 6 : FileSpec;
 ARGUMENT Verification = 7 : OctetString;
 ARGUMENT Management Image = 8 : FileSpec;

 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Unrecognized Circuit = 1 : (* There is no circuit with the specified identification *)
 END Unrecognized Circuit;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Protocol Error = 5; (* A protocol error occurred during the load *)
 END Protocol Error;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Load;

PROCEDURE Load (Client, Circuit, Address, SystemImage, ScriptFile, ManagementImage,
 SecondaryLoader, TertiaryLoader, Verification)

 RAISES {InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit,
 DataLinkError,
 UnrecognizedClient, (* Does not apply here *)
 RequiredArgumentOmitted, (* CMIP common error *)
 ProtocolError,
 InvalidArgumentValue, (* CMIP common error *)
 Timeout};

Required parameters are:

• Circuit

• Address (for LAN circuits)

• System Image

• Script File (if requested by target system)

• Secondary Loader (if requested by target system)

• Tertiary Loader (if requested by target system)

• Management Image (if requested by target system)

The default values for the optional parameters are:

• Verification — %x0000000000000000

18 Management

3.6.1.5 Boot directive

The Boot directive causes a Boot message to be sent to another system.

DIRECTIVE Boot = 6 : Boot; (* Send a Boot trigger to an adjacent system *)
 REQUEST

 ARGUMENT Circuit = 1 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Verification = 7 : OctetString;
 ARGUMENT Device = 8 : String;
 ARGUMENT Software ID = 9 : SoftwareID;
 ARGUMENT Script ID = 10 : SoftwareID;

 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Unrecognized Circuit = 1 : (* There is no circuit with the specified identification *)
 END Unrecognized Circuit;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
END Boot;

PROCEDURE Boot (Client, Circuit, Address, Verification, Device, SoftwareID, ScriptID)
 RAISES {InsufficientResources, (* CMIP common error *)

 UnrecognizedCircuit,
 DataLinkError,
 UnrecognizedClient, (* Does not apply here *)
 InvalidArgumentValue, (* CMIP common error *)
 RequiredArgumentOmitted}; (* CMIP common error *)

Required parameters are:

• Circuit

• Address (for LAN circuits)

The default values for the optional parameters are:

• Verification — %x0000000000000000

Note:
The default value for the Verification parameter is a default only. It is not a
“wild card” value. For any value of the Verification parameter including the de-
fault value, the Console Server (target of the directive) will check the value and
accept the operation only if the value matches the one expected.

3.6.1.6 Test Directive

The Test directive causes the IEEE 802.2 Test to be performed with another system. If ap-
plied to the wrong type of data link (i.e., non-LAN), the standard error Directive Not Supported is
returned.

DIRECTIVE Test = 7 : Test; (* Perform a Test operation with another system *)
 REQUEST

 ARGUMENT Circuit = 1 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Count = 7 : Integer;
 ARGUMENT Length = 8 : Integer;

3.6.1.7: Query Directive 19

 ARGUMENT SAP = 10 : SAPAddress;
 ARGUMENT Format = 11 : Octet;

 END;
 RESPONSE Success = 0 : (* No output arguments *)
 END Success;
 RESPONSE Invalid Response = 1 :

 ARGUMENT Count = 7 : Integer; (* Count of messages successfully looped *)
 END Invalid Response;
 EXCEPTION Unrecognized Circuit = 1 : (* There is no circuit with the specified identification *)
 END Unrecognized Circuit;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Test;

PROCEDURE Test (Client, Circuit, Address, Count, Length, SAP, Format)
 RAISES {InvalidResponse,

 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit,
 DataLinkError,
 UnrecognizedClient, (* Does not apply here *)
 RequiredArgumentOmitted, (* CMIP common error *)
 DirectiveNotSupported (* CMIP common error *)
 InvalidArgumentValue, (* CMIP common error *)
 Timeout);

The required parameters are:

• Circuit

• Address

The defaults values for the optional parameters are:

• Count — 1

• Length — 40

• SAP — 0

• Format — %x55

3.6.1.7 Query Directive

The Query directive causes an IEEE 802.2 XID exchange to be performed with another sys-
tem. If applied to the wrong type of data link (i.e., non-LAN), the standard error Directive Not
Supported is returned.

DIRECTIVE Query = 8 : Query; (* Perform an XID exchange with another system *)
 REQUEST

 ARGUMENT Circuit = 1 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT SAP = 10 : SAPAddress;

 END;
 RESPONSE Success = 0 :

 ARGUMENT LLC Types = 10 : Set of Integer; (* LLC types supported by system *)

20 Management

 ARGUMENT Window = 11 : Integer (* Window size for Type 2 LLC *)
 END Success;
 RESPONSE Invalid Response = 1 : (* Protocol error in response *)
 END Invalid Response;
 EXCEPTION Unrecognized Circuit = 1 : (* There is no circuit with the specified identification *)
 END Unrecognized Circuit;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Query;

PROCEDURE Query (Client, Circuit, Address, SAP, LLCTypes, Window)
 RAISES {InvalidResponse,

 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit,
 DataLinkError,
 UnrecognizedClient, (* Does not apply here *)
 RequiredArgumentOmitted, (* CMIP common error *)
 DirectiveNotSupported, (* CMIP common error *)
 InvalidArgumentValue, (* CMIP common error *)
 Timeout);

The required parameters are:

• Circuit

• Address

The defaults values for the optional parameters are:

• SAP — 0

3.6.2 Identifier Attribute

The identifier attributes for each Client subentity are shown in Table 3.

Table 3: Client entity identifier attribute

Code Syntax Description

Name 0 SimpleName A string which is the Identifier for the Client (tar-
get system) and which is unique among the set of
Clients defined for the MOP module.

Keyword

3.6.3: Characteristic Attributes 21

3.6.3 Characteristic Attributes

The characteristics attributes for each Client subentity are shown in Tables 4 and 5.

Table 4: Client entity characteristics attributes (part 1)

Keyword Code Syntax Default
Value

DescriptionNote

Circuit 1 SimpleName “” The name of the Circuit subentity
(of the MOP module) that corre-
sponds to the data link circuit to
be used for communicating with
this client.

Addresses 2 Set of
LANAddress

{} The Set of LAN addresses for this
client on the circuit specified by
the Circuit characteristic. These
addresses may not be multicast
addresses (see note below).

LAN

System Image 5 Sequence of
FileSpec

() The files to be loaded when the
client requests “Operating Sys-
tem” (i.e., Program Type = Sys-
tem Image, Software ID =
Standard Operating System) dur-
ing a down line load operation.
The file identification is inter-
preted depending on the file sys-
tem of the local system.

Secondary
Loader

3 Sequence of
FileSpec

() The files to be loaded when the
client requests “Secondary
Loader” during a down line load
operation. The file identification
is interpreted depending on the
file system of the local system.

Tertiary
Loader

4 Sequence of
FileSpec

() The files to be loaded when the
client requests “Tertiary Loader”
during a down line load operation.
The file identification is inter-
preted depending on the file sys-
tem of the local system.

Diagnostic Im-
age

6 Sequence of
FileSpec

() The files to be loaded when the
client requests “Maintenance Sys-
tem” (i.e., Program Type = Sys-
tem Image, Software ID =
Maintenance System) during a
down line load operation. The
file identification is interpreted
depending on the file system of
the local system.

22 Management

Table 5: Client entity characteristics attributes (part 2)

Note:
The address values in the Addresses parameters must be individual addresses,
not group (multicast) addresses. The length of the Verification attribute must be
"8. Attempts to set invalid values in these attribute are rejected with the CMIP
standard error Invalid Attribute Value.

Keyword Code Syntax Default
Value

Description

Dump File 13 Sequence of
FileSpec

() The identification of the files to
write to when the client is up line
dumped. The file identification is
interpreted depending on the file
system of the local system.

Note

Management
Image

7 Sequence of
FileSpec

() The files to be loaded when the
client requests “Management Im-
age” during a down line load op-
eration. The file identification is
interpreted depending on the file
system of the local system.

Script File 8 Sequence of
FileSpec

() The files to be loaded when the
client requests “CMIP Initializa-
tion Script” during a down line
load operation. The file identifi-
cation is interpreted depending on
the file system of the local sys-
tem.

Phase IV Host
Name

9 P4Name “” The host name that the client re-
ceives when it is down line
loaded.

Phase IV Host
Address

10 P4Address 0.0 The host address that the client re-
ceives when it is down line
loaded.

Phase IV Cli-
ent Name

11 P4Name “” The client name that the client re-
ceives when it is down line
loaded.

Phase IV Cli-
ent Address

12 P4Address 0.0 The client address that the client
receives when it is down line
loaded.

Dump Address 14 Integer 0 The memory address at which to
begin an up line dump

Verification 16 OctetString %x0000000
000000000

The verification string to be sent
in a Boot message to this client.
See note below.

Device Types 17 SET OF
DevType

{ } The Set of Device Types for this
client on the circuit specified by
the Circuit characteristic.

3.6.4: Status Attributes 23

3.6.4 Status Attributes

The Client subentity does not have any status attributes.

3.6.5 Counter Attributes

The Client subentity does not have any counter attributes.

3.6.6 Event Reports

The Client subentity does not generate any event reports.

3.7 Circuit subentity

The Circuit subentity is registered in the Distributed Systems Management Registry as
shown below.

 Class Name: Circuit
 Code: 1
 Superior Class: MOP

3.7.1 Action Directives

The Circuit subentity provides action directives for creating and deleting a subentity, and for
enabling and disabling the various MOP functions. These directives and the procedures they
call are described below.

3.7.1.1 Create Directive

The Create directive creates a Circuit subentity with the specified identifier. The Character-
istics initially take their default values. The Modula-2+ description follows:

DIRECTIVE Create = 0 : Create; (* Create a new Circuit subentity *)
 REQUEST

 ARGUMENT Type = 0 : CircuitType;
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Unsupported Circuit Type = 1 : (* The specified Type argument value is not supported in

this implementation *)
 END Unsupported Circuit Type;
 EXCEPTION Already Exists = 2 : (* Circuit subentity already exists *)
 END Already Exists;
END Create;

PROCEDURE Create (Identifier: SimpleName, Type: CircuitType)
 RAISES {InsufficientResources, (* CMIP common error *)

 UnsupportedCircuitType};

3.7.1.2 Delete Directive

The Delete directive deletes a circuit subentity and reclaims any associated resources. The
Modula-2+ description follows:

24 Management

DIRECTIVE Delete = 1 : Delete; (* Delete an Circuit subentity *)
 REQUEST (* No Input Arguments *)
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success; (* No Entity-specific Exceptions *)
 EXCEPTION Has Children = 1 : (* Subentities must be deleted first *)
 END Has Children;
END Delete;

PROCEDURE Delete (Identifier)
 RAISES {};

3.7.1.3 Enable Directive

The Enable directive enables a particular MOP function for the specified circuit. The func-
tion to be enabled is supplied as an argument. The Modula-2+ description follows:

DIRECTIVE Enable = 2 : Enable; (* Enable a Circuit subentity function *)
 REQUEST

 ARGUMENT Functions = 0 : FunType;
 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Unsupported Function = 0 : (* The specified function is not supported, either not

at all by the implementation, or not for this particular data
link type. *)

 END Unsupported Function;
 EXCEPTION Nonexistent Data Link = 1 : (* The specified Data Link entity does not exist *)
 END Nonexistent Data Link;
 EXCEPTION Open Port Failed = 2 : (* The Open Port operation failed *)
 END Open Port Failed;
END Enable;

PROCEDURE Enable (Function: FunType)
 RAISES {Unsupported, NonexistentDataLink, OpenPortFailed};

3.7.1.4 Disable Directive

The Disable directive disables a particular MOP function for the specified circuit. The func-
tion to be disabled is supplied as an argument. The argument is optional; the default is to dis-
able all functions (i.e., all that are currently enabled). The Modula-2+ description follows:

DIRECTIVE Disable = 3 : Disable; (* Disable a Circuit subentity function *)
 REQUEST

 ARGUMENT Functions = 0 : FunType;
 DEFAULT = { Loop Requester, Console Requester, Console Carrier, Load Requester,

Load Server, Dump Requester, Dump Server,
Configuration Monitor, Test Requester, Query Requester }

 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success; (* No Entity-specific Exceptions *)
END Disable;

PROCEDURE Disable (Function: FunType)
 RAISES {};

3.7.1.5: Loop Directive 25

3.7.1.5 Loop Directive

The Loop directive causes a loop test to be performed with another system.

DIRECTIVE Loop = 4 : Loop; (* Perform a Loop operation with another system *)
 REQUEST

 ARGUMENT Client = 0 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Assistant System = 4 : SimpleName;
 ARGUMENT Assistant Address = 5 : LANAddress;
 ARGUMENT Assistance Type = 6 : HelpType;
 ARGUMENT Count = 7 : Integer;
 ARGUMENT Length = 8 : Integer;
 ARGUMENT Format = 11 : Octet

 END;
 RESPONSE Success = 0 : (* No output arguments *)
 END Success;
 RESPONSE Invalid Response = 1 :

 ARGUMENT Count = 7 : Integer; (* Count of messages successfully looped *)
 END Invalid Response;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Client = 3 : (* There is no client with the specified identification *)
 END Unrecognized Client;
 EXCEPTION Unrecognized Assistant = 5 : (* No assistant with the specified identification *)
 END Unrecognized Assistant;
 EXCEPTION Invalid Assistant = 6 : (* The Assistant Address is either a multicast address, or

Assistant System was specified but the corresponding Client
subentity has an empty Addresses list *)

 END Invalid Assistant;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Loop;

PROCEDURE Loop (Client, Circuit, Address, AssistantSystem,
 AssistantAddress, AssistanceType, Count, Length, Format)

 RAISES {InvalidResponse,
 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit, (* Does not apply here *)
 DataLinkError,
 UnrecognizedClient,
 RequiredArgumentOmitted, (* CMIP common error *)
 UnrecognizedAssistant,
 InvalidAssistant,
 InvalidArgumentValue, (* CMIP common error *)
 Timeout};

For LAN circuits, if Assistance Type is None, the operation is a Loop-direct; If Assistance
Type is some other value, the operation is Loop-assisted. For Loop-assisted, the default assis-
tant address is the Loop Assistant multicast address. A different address may be specified by
including the Assistant Address parameter, which specifies the address directly, or by specifying
Assistant System, which specifies a name of a Client subentity. The Addresses characteristic of
the named Client subentity is then used as the assistant address. On non-LAN circuits, the
Assistant Address, Assistant System, and Assistance Type arguments are ignored.

The required parameters are:

26 Management

• Address (for LAN circuits)

The defaults values for the optional parameters are:

• Assistance Type — None

• Assistant Address — Obtained dynamically: an assistant is found by sending a direct
(non-assisted) Loop request to the Loop Assistance multicast address. If a response is
received, the responding station is then used as the assistant for the rest of the opera-
tion.

• Count — 1

• Length — 40

• Format — %x55

3.7.1.6 Load Directive

The Load directive causes a down line load to be performed to another system. A Boot is
done first to force the specified system to load.

DIRECTIVE Load = 5 : Load; (* Force load an adjacent system *)
 REQUEST

 ARGUMENT Client = 0 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT System Image = 3 : FileSpec;
 ARGUMENT Script File = 4 : FileSpec;
 ARGUMENT Secondary Loader = 5 : FileSpec;
 ARGUMENT Tertiary Loader = 6 : FileSpec;
 ARGUMENT Verification = 7 : OctetString;
 ARGUMENT Management Image = 8 : FileSpec;

 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Client = 3 : (* There is no client with the specified identification *)
 END Unrecognized Client;
 EXCEPTION Protocol Error = 5; (* A protocol error occurred during the load *)
 END Protocol Error;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Load;

PROCEDURE Load (Client, Circuit, Address, LoadFile, ScriptFile, ManagementImage,
 SecondaryLoader, TertiaryLoader, Verification)

 RAISES {InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit, (* Does not apply here *)
 DataLinkError,
 UnrecognizedClient,
 RequiredArgumentOmitted, (* CMIP common error *)
 ProtocolError,
 InvalidArgumentValue, (* CMIP common error *)
 Timeout};

Required parameters are:

3.7.1.7: Boot directive 27

• Address (for LAN circuits)

• System Image

• Script File (if requested by target system)

• Secondary Loader (if requested by target system)

• Tertiary Loader (if requested by target system)

• Management Image (if requested by target system)

The default values for the optional parameters are:

• Verification — %x0000000000000000

3.7.1.7 Boot directive

The Boot directive causes a Boot message to be sent to another system.

DIRECTIVE Boot = 6 : Boot; (* Send a Boot trigger to an adjacent system *)
 REQUEST

 ARGUMENT Client = 0 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Verification = 7 : OctetString;
 ARGUMENT Device = 8 : String;
 ARGUMENT Software ID = 9 : SoftwareID;
 ARGUMENT Script ID = 10 : SoftwareID;

 END;
 RESPONSE Success = 0 : (* No Output Arguments *)
 END Success;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Client = 3 : (* There is no client with the specified identification *)
 END Unrecognized Client;
END Boot;

PROCEDURE Boot (Client, Circuit, Address, Verification, Device, SoftwareID, ScriptID)
 RAISES {InsufficientResources, (* CMIP common error *)

 UnrecognizedCircuit, (* Does not apply here *)
 DataLinkError,
 UnrecognizedClient,
 InvalidArgumentValue, (* CMIP common error *)
 RequiredArgumentOmitted}; (* CMIP common error *)

Required parameters are:

• Address (for LAN circuits)

The default values for the optional parameters are:

• Verification — %x0000000000000000

Note:
The default value for the Verification parameter is a default only. It is not a
“wild card” value. For any value of the Verification parameter including the de-

28 Management

fault value, the Console Server (target of the directive) will check the value and
accept the operation only if the value matches the one expected.

3.7.1.8 Test Directive

The Test directive causes the IEEE 802.2 Test to be performed with another system. If ap-
plied to the wrong type of data link (i.e., non-LAN), the standard error Directive Not Supported is
returned.

DIRECTIVE Test = 7 : Test; (* Perform a Test operation with another system *)
 REQUEST

 ARGUMENT Client = 0 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT Count = 7 : Integer;
 ARGUMENT Length = 8 : Integer;
 ARGUMENT SAP = 10 : SAPAddress;
 ARGUMENT Format = 11 : Octet;

 END;
 RESPONSE Success = 0 : (* No output arguments *)
 END Success;
 RESPONSE Invalid Response = 1 :

 ARGUMENT Count = 7 : Integer; (* Count of messages successfully looped *)
 END Invalid Response;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Client = 3 : (* There is no client with the specified identification *)
 END Unrecognized Client;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Test;

PROCEDURE Test (Client, Circuit, Address, Count, Length, SAP, Format)
 RAISES {InvalidResponse,

 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit, (* Does not apply here *)
 DataLinkError,
 UnrecognizedClient,
 RequiredArgumentOmitted, (* CMIP common error *)
 DirectiveNotSupported, (* CMIP common error *)
 InvalidArgumentValue, (* CMIP common error *)
 Timeout);

The required parameters are:

• Address

The defaults values for the optional parameters are:

• Count — 1

• Length — 40

• SAP — 0

• Format — %x55

3.7.1.9: Query Directive 29

3.7.1.9 Query Directive

The Query directive causes an IEEE 802.2 XID exchange to be performed with another sys-
tem. If applied to the wrong type of data link (i.e., non-LAN), the standard error Directive Not
Supported is returned.

DIRECTIVE Query = 8 : Query; (* Perform an XID exchange with another system *)
 REQUEST

 ARGUMENT Client = 0 : SimpleName;
 ARGUMENT Address = 2 : LANAddress;
 ARGUMENT SAP = 10 : SAPAddress;

 END;
 RESPONSE Success = 0 :

 ARGUMENT LLC Types = 10 : Set of Integer; (* LLC types supported by system *)
 ARGUMENT Window = 11 : Integer (* Window size for Type 2 LLC *)

 END Success;
 RESPONSE Invalid Response = 1 : (* Protocol error in response *)
 END Invalid Response;
 EXCEPTION Data Link Error = 2 : (* An error was reported by the Data Link layer *)

 ARGUMENT Reason = 0 : DLErrType;
 END Data Link Error;
 EXCEPTION Unrecognized Client = 3 : (* There is no client with the specified identification *)
 END Unrecognized Client;
 EXCEPTION Timeout = 7 : (* No response was received in the timeout period *)
 END Timeout;
END Query;

PROCEDURE Query (Client, Circuit, Address, SAP, LLCTypes, Window)
 RAISES {InvalidResponse,

 InsufficientResources, (* CMIP common error *)
 UnrecognizedCircuit, (* Does not apply here *)
 DataLinkError,
 UnrecognizedClient,
 RequiredArgumentOmitted, (* CMIP common error *)
 DirectiveNotSupported, (* CMIP common error *)
 InvalidArgumentValue, (* CMIP common error *)
 Timeout);

The required parameters are:

• Address

The defaults values for the optional parameters are:

• SAP — 0

3.7.2 Identifier Attribute

The identifier attributes for each Circuit subentity are shown in Table 6.

30 Management

Table 6: Circuit entity identifier attribute

3.7.3 Characteristic Attributes

The characteristics attributes for each Circuit subentity are shown in Table 7.

Table 7: Circuit entity characteristics attributes

3.7.4 Status Attributes

The status attributes for each Circuit subentity are shown in Table 8.

Table 8: Circuit entity status attribute

Code Syntax Description

Name 0 SimpleName A string which is the Identifier for the Circuit and
which is unique among the set of Circuits defined
for the MOP module.

Keyword

Keyword Code Syntax Default
Value

Description

Retransmit
Timer

3 Integer [1..30] 4 The time-out value to use (in seconds) for
retransmitting MOP protocol messages when
no response is received.

Type 1 CircuitType The type of the Circuit, set when the Circuit
subentity is created. This is a read-only char-
acteristic.

Link Name 2 Local Entity
Name

“” The name of the Station subentity in the Data
Link layer module indicated by the Type
characteristic. This is passed to the Data
Link layer module when MOP opens a port
for the circuit.

Known Clients
Only

13 Boolean FALSE TRUE if Load service is to be limited only to
clients listed in the Client database, even if a
Software ID string is supplied by the client.

Keyword Code Syntax Description

Functions 6 FunType The set of functions currently enabled for this cir-
cuit. Only the functions that can be enabled and
disabled are shown; functions required to be ac-
tive at all times are not.

UID 4 UID The UID of this entity, allocated when it was cre-
ated.

3.7.5: Counter Attributes 31

3.7.5 Counter Attributes

The counter attributes for each Circuit subentity are shown in Table 9.

Table 9: Circuit entity counter attributes

3.7.6 Event Reports

The Circuit subentity generates six events. The event arguments are described in Table 10.

Table 10: Circuit entity event arguments

Keyword Code Syntax Description

Load Requests
Completed

7 Counter The number of Load service requests completed
successfully.

Failed Dump Re-
quests

12 Counter The number of Dump service requests that could
not be completed.

Unrecognized Load
Clients

8 Counter The number of Load service requests that could
not be processed because a Client database entry
was required but no matching entry was found.

Failed Load Re-
quests

9 Counter The number of Load service requests that could
not be completed.

Dump Requests
Completed

10 Counter The number of Dump service requests completed
successfully.

Unrecognized Dump
Clients

11 Counter The number of Dump service requests that could
not be processed because a Client database entry
was required but no matching entry was found.

Creation Time 5 Binary Absolute
Time

The time at which the entity was created. This in-
dicates the time at which the associated Counter
attributes were zero.

Keyword Code Syntax Description

Reason 1 SvErrType The reason for the operation failure.

Address 2 LANAddress The Data Link address of the remote system.
Supplied only for LAN Data Links.

Client 4 SimpleName The name of the Client subentity corresponding
to the remote system.
If unavailable, this argument is omitted.

Program Type 5 ProgType The Program Type requested by the remote sys-
tem. Applicable only for Load requests; omitted
otherwise.

File 6 FileSpec The file name of the file being processed. For
Load requests, this is the file being loaded. For
Dump requests, this is the Dump File name.

32 Management

The events definitions are as follows:

 EVENT Load Request Completed = 0; (* A Load service requested by a remote Dump/Load
requester has completed successfully *)

 COUNTED AS Load Requests Completed;
 ARGUMENTS Address, Client, Program Type, File;
END Load Request Completed;
EVENT Unrecognized Load Client = 1; (* A Load service requested by a remote Dump/Load

requester was not accepted because a Client database entry
was needed but no matching entry was found *)

 COUNTED AS Unrecognized Load Clients;
 ARGUMENTS Address, Program Type;
END Unrecognized Load Client;
EVENT Load Request Failed = 2; (* A Load requested by a remote Dump/Load requester has

failed. Note that the case of unrecognized client (where the
request was never started due to insufficient information) is
reported using the event above. *)

 COUNTED AS Failed Load Requests;
 ARGUMENTS Reason, Address, Client, Program Type, File;
END Load Request Failed;
EVENT Dump Request Completed = 3; (* A Dump service requested by a remote Dump/Load

requester has completed successfully *)
 COUNTED AS Dump Requests Completed;
 ARGUMENTS Address, Client, File;
END Dump Request Completed;
EVENT Unrecognized Dump Client = 4; (* A Dump service requested by a remote Dump/Load

requester was not accepted because a Client database entry
was needed but no matching entry was found *)

 COUNTED AS Unrecognized Dump Clients;
 ARGUMENTS Address;
END Unrecognized Dump Client;
EVENT Dump Request Failed = 5; (* A Dump requested by a remote Dump/Load requester has

failed. Note that the case of unrecognized client (where the
request was never started due to insufficient information) is
reported using the event above. *)

 COUNTED AS Failed Dump Requests;
 ARGUMENTS Reason, Address, Client, File;
END Dump Request Failed;

3.8 Operation subentity

The Operation subentity is registered in the Distributed Systems Management Registry as
shown below.

 Class Name: Operation
 Code: 0
 Superior Class: Circuit

3.8.1 Action Directives

The Operation subentity does not have any action directives.

3.8.2 Identifier Attribute

The identifier attributes for each Operation subentity are shown in Table 11.

3.8.3: Characteristic Attributes 33

Table 11: Operation entity identifier attribute

3.8.3 Characteristic Attributes

The Operation subentity does not have any characteristic attributes.

3.8.4 Status Attributes

The status attributes for each Operation subentity are shown in Table 12.

Table 12: Operation entity status attributes

3.8.5 Counter Attributes

The Operation subentity does not have any counter attributes.

3.8.6 Event Reports

The Operation subentity does not generate any event reports.

3.9 Station subentity

The Station subentity is registered in the Distributed Systems Management Registry as
shown below.

 Class Name: Station

Code Syntax Description

Name 0 SimpleName A string which identifies the operation and is
unique among the set of Operation subentities for
this circuit. The suggested way to generate this
identifier is to use the external (user visible) rep-
resentation of the Data Link address for the client
system, with a suffix to distinguish it from other
concurrent operations involving the same system.

Keyword

Keyword Code Syntax Description

Operation 1 ServType The operation being performed.

Address 2 LANAddress The Data Link address for the client system.
Client 3 SimpleName The Client name of the client system, if available.

If a Client Database reference was necessary to
process the operation, this attribute will be non-
null. If not (i.e., all required parameters were
supplied) the implementation may optionally look
for a matching Client Database entry anyway and
provide the Client name, if a match was found.
Otherwise, this attribute will be a null Simple
Name.

34 Management

 Code: 1
 Superior Class: Circuit

The Station subentity is created by the Configuration Monitor component, to report stations
observed on the network.

3.9.1 Action Directives

The Station subentity does not have any action directives.

3.9.2 Identifier Attribute

The identifier attributes for each station subentity are shown in Table 13.

Table 13: Station entity identifier attribute

3.9.3 Characteristic Attributes

The Station subentity does not have any characteristic attributes.

3.9.4 Status Attributes

The status attributes for each Station subentity are shown in Table 14.

Code Syntax Description

Name 0 SimpleName A string which identifies the station and is unique
among the set of Station subentities for this cir-
cuit. The suggested way to generate this identi-
fier is to use the external (user visible)
representation of the Data Link address for this
station, i.e., the source address of the System ID
message from which this Station subentity was
created.

Keyword

3.9.5: Counter Attributes 35

Table 14: Station entity status attributes

3.9.5 Counter Attributes

The Station subentity does not have any counter attributes.

Keyword Code Syntax Description

DSDU Size 11 Integer The DSDU size for the circuit on which the Sys-
tem ID was sent by the system. That is, the maxi-
mum length of the message passed between MOP
and the Data Link layer module, excluding any
Data Link envelope.

Last Report 1 Binary Absolute
Time

The time at which the most recent System ID
message was received from this system.

MOP Version 2 Version The MOP Protocol version received from the sys-
tem.

Functions 3 SIDFunType The set of functions implemented by this system.
Note that the “Console Carrier Reserved” bit from
the System ID message is not reflected here, but
rather in the Console User status.

Console User 4 LANAddress The Data Link address of the system that cur-
rently has the console reserved, or the Null ad-
dress if the console is not reserved.

Reservation Timer 5 Integer The Console reservation timer, in seconds, or zero
if not applicable.

Command Size 6 Integer The maximum Console command size, in bytes,
or zero if not applicable.

Response Size 7 Integer The maximum Console response size, in bytes, or
zero if not applicable.

Hardware Address 8 LANAddress The hardware address (default data link address)
for the circuit on which the System ID message
was sent by the system.

Device Type 9 DevType The communication device type for the circuit on
which the System ID was sent by the system. Re-
fer to Appendix A.1 for the current list of codes
assigned for this data type.

Data Link 10 CircuitType The data link protocol for the circuit on which the
System ID was sent by the system. The code as-
signments for type data type are shown in Section
3.4.

Node ID 14 LANAddress The node ID of the node, or the null address (00–
00–00–00–00–00) if not reported by the remote
node.

Node Name 13 FullName The node name of the node. Null if not reported
or if reported as null by the node.

36 Management

3.9.6 Event Reports

The Station subentity does not generate any event reports.

37

Chapter 4

Operation

This chapter presents the MOP algorithms in detail. The description is mostly pseudo-code
in Modula-2-Plus, with some portions described in English where this is clearer. The structure
of the algorithms is intended to facilitate understanding; there is no requirement that actual
implementations structure their algorithms in a similar way, only that the externally visible
behavior (i.e., protocol messages, network management output) is the same.

The algorithms shown include support for compatibility with MOP V3. Refer to Appendix G
for more information.

The definitions and algorithms in this chapter are organized as follows:

• Common definitions: constants, datatypes, etc.

• Top level management directive processing

• Top level algorithms for the MOP client and server functions

• Common low level protocol primitives

• Data link dependent protocol primitives

• Miscellaneous low level procedures

4.1 Notes on the operational model

As can be seen from the MOP component model (as shown in Chapter 2), MOP consists of a
number of fairly independent protocol entities. In addition, many of these components may be
engaged in more than one operation at a time.

In a practical implementation, MOP will need to have a number of threads for its various
functions (and, in cases such as load/dump servers, multiple threads for multiple instances of
the same function).

The algorithmic description in this chapter glosses over some detail in an attempt to reduce
the amount of unnecessary clutter. These include:

• Thread creation, scheduling, and deletion is not shown. However, the Operation record
type declaration does show (approximately) the per-thread state needed to describe each
operation thread.

38 Operation

• The description of each thread assumes that there is a receive dispatcher that sorts out
the received messages and passes to each thread only those messages that concern it
(see Section 4.12).

• Parsing and validation of incoming messages is generally not shown. The general rule
is that any unexpected or invalid message should be treated as if it had not been re-
ceived at all. Note that this means that timers and retry counters should not be reset
when such a message is received. In a few cases this rule is called out explicitly with
the pesudo-statement « quietly ignore the message ».

Note:

Note that this means that unexpected, erroneous, malformed, or otherwise ille-
gal messages are normally not cause for aborting the operation with a “Protocol
error” result. The few exceptions to this rule are called out explicitly in the al-
gorithms below.

• In a number of cases, the algorithms have to attempt request/response exchanges with
several possible addresses and/or version numbers. The algorithms below try each com-
bination sequentially. An implementation may instead do some or all of the possible
combination in parallel for efficiency. For some protocol exchanges (e.g., Loop) care
must be taken not to confuse the replies; the receipt number in the message can be used
to do this.

4.2 Common definitions

4.2.1 Architectural constants

Table 15 below lists the MOP architectural constants with the name by which they are re-
ferred to in this chapter.

4.2.2: MOP module data type definitions 39

Table 15: MOP Architectural Constants

4.2.2 MOP module data type definitions

The following are definitions of the data types used in this chapter. Since Modula-2-Plus
does not have a “Sequence of” type constructor (as in CMIP), the ARRAY OF constructor is used
instead when needed.

FROM System IMPORT Port, Timer, Time, Byte;
FROM System IMPORT Random; (* Function to return a pseudo-random number 0<x<1 *)
FROM System IMPORT Wait; (* Procedure to wait for some amount of time *)
FROM System IMPORT StartTimer, StopTimer, Expired;
FROM Management IMPORT BinaryAbsoluteTime, LocalEntityName, P4Name, P4Address,
 FileSpec, LANAddress, SAPAddress;
FROM Names IMPORT SimpleName, FullName;
FROM CSMACD IMPORT FormatAndMux, LLCService;

TYPE MOPVersion = (V3, V4, Unknown);
CONST Infinite = « a time-out value to wait indefinitely »;
 FiveMinutes = « a time-out value equal to 5 minutes »;
 OneMinute = « a time-out value equal to 1 minute »;
 NullAddress = « the null (48 bits of zero) LANAddress »;
 LANTypes = { CSMACD, FDDI }; (* The set of Circuit Data Link types that are LANs *)
 LLCTEST = 0E3H; (* LLC Ctrl field code for TEST message *)

Retransmit Max 15 Maximum number of retries before giving up, for the
“Transact” operation

Load Protocol Type 60–01 Ethernet Protocol Type for Load and Dump protocol

Console Protocol
Type

60–02 Ethernet Protocol Type for Remote Console protocol

Loopback Protocol
Type

90–00 Ethernet Protocol Type for Loopback protocol

Load Protocol ID 08–00–2B–60–01 IEEE 802.2 SNAP Protocol ID for Load and Dump
protocol

Console Protocol ID 08–00–2B–60–02 IEEE 802.2 SNAP Protocol ID for Remote Console
protocol

Loopback Protocol ID 08–00–2B–90–00 IEEE 802.2 SNAP Protocol ID for Loopback protocol

Load Assistance AB–00–00–01–00–00 Assistance multicast address for Load and Dump pro-
tocol

Console Multicast AB–00–00–02–00–00 Multicast address for Remote Console protocol (for pe-
riodic SYSID announcements)

Loopback Assistance CF–00–00–00–00–00 Assistance multicast address for Loopback protocol

MOP Protocol ID 01–01 HDLC Protocol ID for MOP messages

Burst Size 4 Number of retries per “burst” in the BackoffTransact
operation

Max Backoff 300 Maximum value of the backoff timer, in seconds (i.e.,
5 minutes)

40 Operation

 LLCXID = 0AFH; (* LLC Ctrl field code for XID message *)

TYPE Buffer = RECORD
 LANFormat: FormatAndMux; (* LLC format and SAP *)
 Destination, Source: LANAddress; (* LAN address fields *)
 Length: INTEGER;
 Data: ARRAY [0..length–1] OF Byte
END;

TYPE Circuit = RECORD
 Name: SimpleName; (* Identifier of this Circuit entity *)
 DataLink: CircuitType; (* Type of data link *)
 LinkName: LocalEntityName; (* Name of data link entity used *)
 DataLinkAddress: LANAddress; (* This circuit’s LAN address *)
 SDUSize: INTEGER; (* Datalink SDU size (MOP PDU size)1 *)
 RetransmitTimer: Integer;
 KnownClientsOnly: Boolean; (* TRUE if only serving registered clients *)
 CircUID: UID.UID;
 CreateTime: BinaryAbsoluteTime; (* Creation time of this Circuit entity *)
 Functions: Funtype; (* Enabled MOP functions *)
 ConsoleUser: LANAddress; (* Console user — if Console Carrier supported *)
 ReservationTimer: Timer; (* Console reservation timer — if C.C. supported *)
 ConsoleSeq: INTEGER; (* Console Command sequence number *)
 LoadRequestsCompleted, UnrecognizedLoadClients,

 FailedLoadRequests, DumpRequestsCompleted,
 UnrecognizedDumpRequests, FailedDumpRequests: Counter

 mopport, loopport, LLCport: POINTER TO Port; (* Data link ports *)
END;

TYPE Client = RECORD
 Name: SimpleName; (* Identifier of this client entity *)
 CircPtr: POINTER TO Circuit; (* Circuit used for this client2 *)
 Addresses: SET OF LANAddress; (* Set of client data link addresses *)
 DevTypes: SET OF DevType; (* Set of client device types *)
 SecondaryLoader, TertiaryLoader,

 SystemImage, DiagnosticImage,
 ManagementImage, ScriptFile: ARRAY OF FileSpec;

(* Actually, SEQUENCE *)
 PhaseIVHostName: P4Name; (* Four MOP V3 style parameter values *)
 PhaseIVHostAddress: P4Address;
 PhaseIVClientName: P4Name;
 PhaseIVClientAddress: P4Address;
 DumpFile: ARRAY OF FileSpec; (* Actually, SEQUENCE OF FileSpec *)
 DumpAddress: INTEGER;
 Verification: OctetString;
END;

TYPE Operation = RECORD
 Name: SimpleName; (* Identifier of this Operation entity *)
 Addresses: SET OF LANAddress; (* Set of client data link addresses to try *)
 Address: LANAddress; (* Address of remote station, if on LAN *)
 ClientName, CircName: SimpleName; (* Name of Client and Circuit to use *)
 CircPtr: POINTER TO Circuit; (* Circuit being used for this operation *)

1 In data links where the maximum SDU sizes differ for transmit and receive, the smaller of the two values is used.
2 The POINTER type is used here for descriptive convenience in the pseudocode. Note that the network manage-

ment interface uses a SimpleName to refer to the Circuit; this allows Client and Circuit entities to be created in
any order.

4.2.2: MOP module data type definitions 41

 ClientPtr: POINTER TO Client; (* Client entity for this operation, if known *)
 Version: MOPVersion; (* Protocol version used by target *)
 Timeout: Timer; (* Receive timer for this operation *)
 CASE Op: OpType OF (* Operation being performed *)

 LoopRequester:
 AssistantSystem: SimpleName; (* Name of assistant (i.e., of its Client entity) *)
 AssistantAddresses: SET OF LANAddress; (* Set of assistant data link addresses to try *)
 AsisstantAddress: LANAddress; (* Selected data link address of assistant *)
 AssistanceType: HelpType; (* Type of assistance to use, if any *)
 Count, Length: INTEGER; (* Number of messages and length of each *)
 Data: [0..255] | (* Byte value to load buffer with *)

 LoopServer: | (* Nothing special *)
 ConsoleRequester: (* For “Boot” directive *)

 Verification: OctetString; (* Boot verification string (“password”) *)
 Device: String; (* Device name, if booting “specified device” *)
 SoftwareID,

 ScriptID: SoftwareID | (* Value to use for Software ID of System and Script *)
 ConsoleServer: | (* Nothing special *)
 LoadRequester:

 ProgramType: ProgType; (* Type of program being loaded *)
 Sequence: [0..255] | (* Next load sequence number wanted *)

 LoadServer:
 ProgramType: ProgType; (* Type of program requested by client *)
 SecondaryLoader, TertiaryLoader,

 SystemImage, DiagnosticImage,
 ManagementImage, ScriptFile: ARRAY OF FileSpec;

(* Actually, SEQUENCE *)
 Verification: OctetString; (* Boot verification string (“password”) *)
 SDUSize: Integer | (* MOP receive buffer size supported by station *)

 DumpRequester: | (* Nothing specific to dump client *)
 DumpServer:

 DumpFile: ARRAY OF FileSpec; (* Actually, SEQUENCE *)
 DumpAddress: INTEGER; (* Address to dump next *)
 DumpCount: INTEGER; (* Amount left to dump (memory size) *)
 SDUSize: Integer | (* MOP receive buffer size supported by station *)

 ConfigurationMonitor: | (* Nothing specific to the configuration monitor *)
 TestRequester:

 Count, Length: INTEGER; (* Number of messages and length of each *)
 Data: [0..255]; (* Byte value to load buffer with *)
 SAP: SAPAddress | (* Destination SAP address to send to *)

 QueryRequester:
 SAP: SAPAddress (* Destination SAP address to send to *)

 END
END;

TYPE Station = RECORD
 Name: SimpleName; (* Identifier of this Station entity *)
 LastReport: BinaryAbsoluteTime; (* Time last heard from station *)
 Version: MOPVersion; (* Version of the station *)
 Functions: SIDFunType; (* Supported functions *)
 ConsoleUser: LANAddress; (* Console user, or null address if none *)
 ReservationTimer, CommandSize,

 ResponseSize: INTEGER
 HardwareAddress: LANAddress; (* ROM Address for the station *)
 Device: DevType; (* Device type of the station *)
 DataLink: CircuitType; (* Type of data link *)
 DSDUSize: Integer; (* MOP receive buffer size supported by station *)
 NodeName: FullName; (* Name of the node, if known *)

42 Operation

 NodeID: LANAddress; (* Node ID of station, if known *)
 CircPtr: POINTER TO Circuit; (* Circuit to which this Station record applies *)
END;

4.2.3 Message type definitions

CONST MemLoadTA = 0; DumpComplete = 1;
 MemLoad = 2; Assistance = 3;
 RequestDump = 4; RequestID = 5; Boot = 6; SysID = 7;
 RequestProgram = 8; RequestCounters = 9;
 RequestLoad = 10; CSMACDCounters = 11;
 RequestDumpService = 12; ReserveConsole = 13;
 DumpData = 14; ReleaseConsole = 15;
 ConsoleCommand = 17; ConsoleResponse = 19;
 ParameterLoad = 20; OtherCounters = 21;
 LoopData = 24; LoopedData = 26; (* These two codes are for point to point circuits *)
 Reply = 1; ForwardData = 2; (* These two codes are for LAN loop protocol *)

4.3 Use of the Client database

Client database records contain parameters that MOP will use to satisfy requests related to
a particular client. In general, request parameters can be supplied with the request. In the
case of requests that are management directives, it is possible to supply all the needed parame-
ters as directive arguments. In the case of requests that arrive via MOP protocol messages
(e.g., Dump requests) the protocol message may not be able to encode all the necessary informa-
tion. In either case, the requester may omit some of the parameters; such omitted parameters
are filled in from the client database.

Management directives may refer to a Client by name. In that case, the Client subentity
with the supplied name is looked up, and its attributes are used as defaults for the directive
parameters. Any parameters explicitly supplied with the directive override the defaults from
the Client entry.

If a management directive does not specify a Client name, no reference to the Client data-
base is made and all required parameters must be included with the directive.

Dump protocol requests always require a search of the Client database; Load protocol re-
quests also require a search, unless the request includes a Software ID string and the Circuit
attribute Known Clients Only is False. This is a search by circuit (see Section 4.18.3). If a
matching Client entry is found, its parameters are used as defaults for the processing of the
request. A Software ID string in a Request Program message, if present, overrides the file
names in the client entry. If no entry is found, the result depends on the request:

• A Dump request from an unknown client generates an Unrecognized Dump Client event,
and is otherwise ignored.

• For a Load request, the result also depends on the Known Clients Only attribute of the
Circuit:

- If Known Clients Only is True, then a Load request from an unknown client gener-
ates an Unrecognized Load Client event, and is otherwise ignored.

- Otherwise, if the Request Program message contains a Software ID string, the
load server maps that string to a file name and attempts to open the file. If the
open fails due to “File not found”, this generates an Unrecognized Load Client
event, and the load request is ignored.

4.4: Processing of management directives 43

- Otherwise (no Software ID string included in the Request Program message), this
generates an Unrecognized Load Client event, and the load request is ignored.

4.4 Processing of management directives

This section defines the operation of the action directives which are invoked via the manage-
ment interface defined in Chapter 3.

In the algorithms below, directive parameters that are not supplied with the directive are
defaulted from the Client database, if a Client name was supplied with the directive. If the
Client name supplied with the directive does not match the name of an entry in the Client data-
base, the exception UnrecognizedClient is generated.

4.4.1 Loop directive

The Loop directive is processed as follows:

• Get defaulted Circuit and Address from the Client database, if a Client name was given.

• Get defaulted Assistant Address from the Client database, if an Assistant Name was
given.

• On a LAN, if assistance was specified, select an assistant address by trying a direct loop
to each of the assistant addresses. (If no specific assistant was specified, the loop is
done to the Loopback Assistance multicast address.) The source address from the first
received reply is the assistant address.

• Perform the Loop exchange Count times. If the response has the wrong data, or the ex-
change times out, abort the Loop operation.

Special case: if the first exchange times out on a LAN, try the next target address. If all
addresses have been tried, switch to the other MOP version format, and repeat the en-
tire process (including assistant selection). If both versions time out for all addresses,
the Loop fails with a Timeout error.

Since the purpose of a Loop operation is to look for network problems, all the re-
quest/response exchanges are done as single attempts, not with the usual “Transact” multiple
retries. This ensures that intermittent errors are not masked.

PROCEDURE DLI.Loop (clientsn, circuitsn: Names.SimpleName; target: LANAddress;
 assistantsn: Names.SimpleName; assistant: LANAddress; help: HelpType;
 loopcount, looplength: INTEGER; loopdata: INTEGER)

 RAISES {InvalidResponse, InsufficientResources, UnrecognizedCircuit, DataLinkError,
 UnrecognizedClient, RequiredArgumentOmitted,
 UnrecognizedAssistant, InvalidAssistant, InvalidArgumentValue, Timeout);

VAR op: POINTER TO Operation;
 assistantptr: POINTER TO Client;
 buff: POINTER TO Buffer;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Version := Unknown;
 op^.Op := LoopRequester;
 op^.Count := 1; op^.Length := 40; op^.Data := 55H; (* Default values *)
 op^.AssistantAddresses := { LoopbackAssistance }; (* Default value *)
 op^.ClientPtr := NIL; (* Default value *)
 IF « clientsn supplied »

44 Operation

 THEN
 op^.ClientName := clientsn;
 op^.ClientPtr := FindClientByName (op^.ClientName)

 END;
 op^.CircuitName := circuitsn; (* if supplied as directive argument *)
 op^.Addresses := target; (* if supplied as directive argument *)
 IF target[0] = 1 (* Multicast bit set in supplied target address? *)
 THEN

 RAISE (InvalidArgumentValue)
 END;
 op^.AssistantSystem := assistantsn; (* if supplied as directive argument *)
 op^.AssistantAddresses := assistant; (* if supplied as directive argument *)
 IF assistant[0] = 1 (* Multicast bit set in supplied assistant address? *)
 THEN

 RAISE (InvalidAssistant)
 END;
 op^.AssistanceType := help; (* if supplied as directive argument *)
 op^.Count := loopcount; (* if supplied as directive argument *)
 op^.Length := looplength; (* if supplied as directive argument *)
 op^.Data := loopdata; (* if supplied as directive argument *)
 IF « circuitsn not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.CircuitName := op^.ClientPtr^.CircPtr^.Name
 END

 END;
 IF op^.CircuitName = ""
 THEN

 RAISE (RequiredArgumentOmitted)
 END;
 op^.CircPtr := FindCircuitByName (op^.CircuitName)
 IF « target not supplied » AND op^.CircPtr^.DataLink IN LANTypes
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.Addresses := op^.ClientPtr^.Addresses;
 END;
 IF op^.Addresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF op^.AssistantSystem # ""
 THEN

 TRY
 assistantptr := FindClientByName (op^.AssistantSystem)

 EXCEPT
 | UnrecognizedClient: RAISE (UnrecognizedAssistant)
 END;
 IF « assistant not supplied »
 THEN op^.AssistantAddresses := assistantptr^.Addresses;

 IF op^.AssistantAddresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (InvalidAssistant)

 END
 END;
 IF op^.CircPtr^.DataLink IN LANTypes
 THEN

 LAN.LoopRequester (op, buff)
 ELSE

 PTP.LoopRequester (op, buff)

4.4.2: Load directive 45

 END
 FINALLY

 DLI.Free (op, buff)
 END
END DLI.Loop;

4.4.2 Load directive

The Load directive is processed as follows:

• Get defaulted parameters from the Client database, if a Client name was given.

• Send Boot messages to the target. For a point to point circuit, one message is sent. For
a LAN, two messages are sent to each address, one in each version format. The mes-
sages have Control = 1, indicating “Load server = requesting system”. This instructs
the target to send its Request Program message back to the node sending the Boot mes-
sages.

• Wait for a Request Program message from the target. On a LAN, the Request Program
may come from any of the target addresses, in either version format. The recommended
timeout is 60 seconds.

• If a Request Program message is received, proceed with load service requested by that
message.

Note: if a System Image and/or Script File argument was included in the directive, that
file name overrides any Software ID string in a Request Program message for the corre-
sponding Program Type..

PROCEDURE DLI.Load (clientsn, circuitsn: Names.SimpleName; target: LANAddress;
 loadfile, script, management, secondary, tertiary: FileSpec; ver: Octetstring)

 RAISES {InsufficientResources, UnrecognizedCircuit, DataLinkError, UnrecognizedClient,
 RequiredArgumentOmitted, ProtocolError, InvalidArgumentValue, Timeout};

VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Version := Unknown;
 op^.Op := LoadServer;
 op^.ClientName := clientsn; (* if supplied as directive argument *)
 op^.CircuitName := circuitsn; (* if supplied as directive argument *)
 op^.Addresses := target; (* if supplied as directive argument *)
 IF target[0] = 1 (* Multicast bit set in supplied target address? *)
 THEN

 RAISE (InvalidArgumentValue)
 END;
 op^.SystemImage := loadfile; (* if supplied as directive argument *)
 op^.DiagnosticImage := op^.SystemImage; (* Use it also if target asks for diagnostic image *)
 op^.ScriptFile := script; (* if supplied as directive argument *)
 op^.ManagementImage := management; (* if supplied as directive argument *)
 op^.SecondaryLoader := secondary; (* if supplied as directive argument *)
 op^.TertiaryLoader := tertiary; (* if supplied as directive argument *)
 op^.Verification := ver; (* if supplied as directive argument *)
 op^.ClientPtr := NIL; (* Default value *)
 IF « clientsn supplied »
 THEN

 op^.ClientName := clientsn;

46 Operation

 op^.ClientPtr := FindClientByName (op^.ClientName)
 END;
 IF « circuitsn not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.CircuitName := op^.ClientPtr^.CircPtr^.Name
 END

 END;
 IF op^.CircuitName = ""
 THEN

 RAISE (RequiredArgumentOmitted)
 END;
 op^.CircPtr := FindCircuitByName (op^.CircuitName)
 IF « target not supplied » AND op^.CircPtr^.DataLink IN LANTypes
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.Addresses := op^.ClientPtr^.Addresses;
 END;
 IF op^.Addresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF « loadfile not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.SystemImage := op^.ClientPtr^.SystemImage

 op^.DiagnosticImage := op^.ClientPtr^.SystemImage
 END;
 IF op^.SystemImage = { } (* Check for no System Image in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF « script not supplied » AND op^.ClientPtr # NIL
 THEN op^.ScriptFile := op^.ClientPtr^.ScriptFile
 END;
 IF « management not supplied » AND op^.ClientPtr # NIL
 THEN op^.ManagementImage := op^.ClientPtr^.ManagementImage
 END;
 IF « secondary not supplied » AND op^.ClientPtr # NIL
 THEN op^.SecondaryLoader := op^.ClientPtr^.SecondaryLoader
 END;
 IF « tertiary not supplied » AND op^.ClientPtr # NIL
 THEN op^.TertiaryLoader := op^.ClientPtr^.TertiaryLoader
 END;
 IF « ver not supplied » AND op^.ClientPtr # NIL
 THEN op^.Verification := op^.ClientPtr^.Verification
 END;
 DLI.SendBoot (op, buff, 1); (* Send Boot msg with Boot Server = Requesting System *)
 DLI.Receive (op, buff, OneMinute, Unknown); (* Wait 1 minute for a Request Program message *)
 op^.ProgramType := buff^.Data[3]; (* get program type from Request Program message *)
 IF op^.ProgramType = System
 THEN

 IF « Request Program message indicates request for Diagnostic Image »
 THEN op^.ProgramType := Diagnostic
 END

 END
 IF « Data Link Buffer Size present in message »
 THEN op^.SDUSize := « Data Link Buffer Size from message »

4.4.3: Boot directive 47

 ELSE op^.SDUSize := 262
 END;
 DLI.PerformLoad (op, buff)

 (* Note that Software ID string is overridden by directive arguments if specified *)
 FINALLY

 DLI.Free (op, buff)
 END
END DLI.Load;

4.4.3 Boot directive

The Boot directive is processed as follows:

• Get defaulted parameters from the Client database, if a Client name was given.

• Send Boot messages to the target. For a point to point circuit, one message is sent. For
a LAN, two messages are sent to each address, one in each version format. The mes-
sages have Control = 2, indicating “Load device = specified device” if the Device argu-
ment was present on the directive, and Control = 0, indicating “Load server = system
default” otherwise.

PROCEDURE DLI.Boot (clientsn, circuitsn: Names.SimpleName; target: LANAddress;
 ver: Octetstring; dev, swid, scrid: SoftwareID)
 RAISES {InsufficientResources, UnrecognizedCircuit, DataLinkError,
 UnrecognizedClient, RequiredArgumentOmitted, InvalidArgumentValue);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 ctrl: INTEGER;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Version := Unknown;
 op^.Op := ConsoleRequester;
 op^.ClientName := clientsn; (* if supplied as directive argument *)
 op^.CircuitName := circuitsn; (* if supplied as directive argument *)
 op^.Addresses := target; (* if supplied as directive argument *)
 IF target[0] = 1 (* Multicast bit set in supplied target address? *)
 THEN

 RAISE (InvalidArgumentValue)
 END;
 op^.Verification := ver; (* if supplied as directive argument *)
 op^.Device := dev; (* if supplied as directive argument *)
 IF « dev argument supplied »
 THEN ctrl := 2 (* Control = “Boot device = specified device” *)
 ELSE ctrl := 0 (* Control = “Boot server = system default” *)
 END;
 op^.SoftwareID := swid; (* if supplied as directive argument *)
 op^.ScriptID := scrid; (* if supplied as directive argument *)
 IF NOT (DLI.ValidID (swid) AND DLI.ValidID (scrid))
 THEN RAISE (InvalidArgumentValue)
 END;
 IF « circuitsn not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.CircuitName := op^.ClientPtr^.CircPtr^.Name
 END

 END;
 IF op^.CircuitName = ""

48 Operation

 THEN
 RAISE (RequiredArgumentOmitted)

 END;
 op^.CircPtr := FindCircuitByName (op^.CircuitName)
 IF « target not supplied » AND op^.CircPtr^.DataLink IN LANTypes
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.Addresses := op^.ClientPtr^.Addresses;
 END;
 IF op^.Addresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF « ver not supplied » AND op^.ClientPtr # NIL
 THEN op^.Verification := op^.ClientPtr^.Verification
 END;
 IF LENGTH(op^.Verification) > 8
 THEN RAISE (InvalidArgumentValue)
 END;
 DLI.SendBoot (op, buff, ctrl) (* Send Boot messages *)

 FINALLY
 DLI.Free (op, buff)

 END
END DLI.Boot;

PROCEDURE DLI.ValidID (id: SoftwareID) : Boolean
BEGIN
 « return TRUE if id meets the Software ID validity criteria described in Section 5.5.1 »
END DLI.ValidID;

PROCEDURE DLI.SendBoot (op: POINTER TO Operation; buff: POINTER TO Buffer; ctrl: INTEGER);
VAR target: LANAddress;
BEGIN
 buff^.Data[0] := Boot;
 « store op^.Verification in buffer data bytes 1 through 8, pad with trailing 0 bytes if necessary »;
 buff^.Data[9] := 0; (* System processor *)
 buff^.Data[10] := ctrl; (* Control byte as specified *)
 IF ctrl = 2
 THEN « store op^.Device in buffer starting at byte 11 »
 END;
 IF op^.SoftwareID = ""
 THEN « store byte of 0 in buffer » (* No software ID string supplied *)
 ELSE « store op^.SoftwareID string in buffer »
 END;
 IF op^.ScriptID # ""
 THEN « store op^.ScriptID string in buffer »
 END;
 IF op^.CircPtr^.DataLink IN LANTypes
 THEN

 LOOP
 IF op^.Addresses = { }
 THEN EXIT
 END; (* Done if no more addresses *)
 target := « select and remove an address from op^.Addresses »;
 buff^.Destination := target;
 DLI.Send (op, buff, V4); (*Send V4 format Boot message *)
 IF op^.ScriptID = ""
 THEN (* Skip V3 if asking for a V4-only function *)

4.4.4: Test directive 49

 DLI.Send (op, buff, V3) (*Send V3 format Boot message *)
 END

 END
 ELSE

 DLI.Send (op, buff, V4); (*Send Boot message on point to point link *)
 END
END DLI.SendBoot;

4.4.4 Test directive

The Test directive is processed as follows:

• Get defaulted parameters from the Client database, if a Client name was given.

• Select a suitable Source SAP address (see Section 4.18.5 below).

• Perform the TEST exchange Count times. If the response has the wrong data, or the
exchange times out, abort the Test operation.

Special case: if the first exchange times out, try the next target address. If all addresses
time out for all addresses, the Test fails with a Timeout error.

Since the purpose of a Test operation is to look for network problems, all the re-
quest/response exchanges are done as single attempts, not with the usual “Transact” multiple
retries. This ensures that intermittent errors are not masked.

PROCEDURE DLI.Test (clientsn, circuitsn: Names.SimpleName; target: LANAddress;
 loopcount, looplength: INTEGER; loopdata: INTEGER; dsap: SAPAddress)

 RAISES {InvalidResponse, InsufficientResources, UnrecognizedCircuit, DataLinkError,
 UnrecognizedClient, RequiredArgumentOmitted, DirectiveNotSupported,
 InvalidArgumentValue, Timeout);

VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Version := Unknown;
 op^.Op := TestRequester;
 op^.Count := 1; op^.Length := 40; (* Default values *)
 op^.Data := 55H; op^.SAP := 0; (* Default values *)
 op^.ClientName := clientsn; (* if supplied as directive argument *)
 op^.CircuitName := circuitsn; (* if supplied as directive argument *)
 op^.Addresses := target; (* if supplied as directive argument *)
 IF target[0] = 1 (* Multicast bit set in supplied target address? *)
 THEN

 RAISE (InvalidArgumentValue)
 END;
 op^.Count := loopcount; (* if supplied as directive argument *)
 op^.Length := looplength; (* if supplied as directive argument *)
 op^.Data := loopdata; (* if supplied as directive argument *)
 op^.SAP := dsap; (* if supplied as directive argument *)
 IF op^.SAP[0] = 1
 THEN (* Group SAP is invalid *)

 RAISE (InvalidArgumentValue)
 END;
 IF « circuitsn not supplied »
 THEN

 IF op^.ClientPtr # NIL

50 Operation

 THEN op^.CircuitName := op^.ClientPtr^.CircPtr^.Name
 END

 END;
 IF op^.CircuitName = ""
 THEN

 RAISE (RequiredArgumentOmitted)
 END;
 op^.CircPtr := FindCircuitByName (op^.CircuitName)
 IF « target not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.Addresses := op^.ClientPtr^.Addresses;
 END;
 IF op^.Addresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF op^.CircPtr^.DataLink IN LANTypes
 THEN

 LAN.TestRequester (op, buff)
 ELSE

 RAISE (DirectiveNotSupported)
 END

 FINALLY
 DLI.Free (op, buff)

 END
END DLI.Test;

4.4.5 Query directive

The Test directive is processed as follows:

• Get defaulted parameters from the Client database, if a Client name was given.

• Select a suitable Source SAP address (see Section 4.18.5 below).

• Perform the XID exchange. If it times out, try the next target address until all have
been tried. If all addresses time out, the Query fails with a Timeout error.

PROCEDURE DLI.Query (clientsn, circuitsn: Names.SimpleName; target: LANAddress;
 dsap: SAPAddress; VAR LLCTypes; SET OF INTEGER; VAR Window: INTEGER)

 RAISES {InvalidResponse, InsufficientResources, UnrecognizedCircuit, DataLinkError,
 UnrecognizedClient, RequiredArgumentOmitted, DirectiveNotSupported,
 InvalidArgumentValue, Timeout);

VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Version := Unknown;
 op^.Op := QueryRequester;
 op^.SAP := 0; (* Default value *)
 op^.ClientName := clientsn; (* if supplied as directive argument *)
 op^.CircuitName := circuitsn; (* if supplied as directive argument *)
 op^.Addresses := target; (* if supplied as directive argument *)
 IF target[0] = 1 (* Multicast bit set in supplied target address? *)
 THEN

 RAISE (InvalidArgumentValue)

4.5: Downline load algorithms 51

 END;
 op^.SAP := dsap; (* if supplied as directive argument *)
 IF op^.SAP[0] = 1
 THEN (* Group SAP is invalid *)

 RAISE (InvalidArgumentValue)
 END;
 IF « circuitsn not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.CircuitName := op^.ClientPtr^.CircPtr^.Name
 END

 END;
 IF op^.CircuitName = ""
 THEN

 RAISE (RequiredArgumentOmitted)
 END;
 op^.CircPtr := FindCircuitByName (op^.CircuitName)
 IF « target not supplied »
 THEN

 IF op^.ClientPtr # NIL
 THEN op^.Addresses := op^.ClientPtr^.Addresses;
 END;
 IF op^.Addresses = { } (* Check for no addresses in Client database *)
 THEN RAISE (RequiredArgumentOmitted)
 END

 END;
 IF op^.CircPtr^.DataLink IN LANTypes
 THEN

 LAN.QueryRequester (op, buff, LLCTypes, Window)
 ELSE

 RAISE (DirectiveNotSupported)
 END

 FINALLY
 DLI.Free (op, buff)

 END
END DLI.Query;

4.5 Downline load algorithms

This section defines the major algorithms used for down line load.

4.5.1 Downline load client

This section shows the Load Client algorithm.

In the case of a LAN load, the server address is normally not known. In that case, the first
step is a Request Program message to the Load Assistance multicast address. These initial re-
quests are sent both in V4 and V3 format, unless the request is one that is defined only in MOP
V4. The first server that responds is used as the server for the rest of the load. However, if the
load was initiated by a Boot message with Control = 1 (“Load server = Requesting system”), or if
for some other reason the client knows which server should be used, then that server is used for
the load and the multicast to the Load Assistance address is skipped.

The algorithm shows a timeout of one minute on each transaction once the load is underway.
The load client does not have to do retransmissions at that stage, since the load server does
them, but it does need some sort of timeout to handle the case where the network is partitioned

52 Operation

or the load server has crashed. The load server does 15 retries at (by default) 4 second inter-
vals, so a one minute load client timeout is appropriate.

There are some special rules relating to the Secondary Loader. This fits in a single Memory
Data message. A request for a Secondary Loader is answered with that data, not with an Assis-
tance Volunteer message. To ensure that subsequent load steps (for example Tertiary Loader
or Operating System) do not terminate prematurely due to receiving another copy of a secon-
dary loader, the load client ignores any Memory Data with Transfer Address messages that con-
tain load data whenever it is loading anything other than Secondary Loader. Similarly, the
load client ignores any Memory Data with Transfer address messages that contain no data
when it is loading a Secondary Loader. The load sequences for other program types terminate
either with a Parameter Load message or with a Memory Load with Transfer Address message
that contains no data.

The amount of memory data in each Memory Load message may vary; the client must not
assume that it will receive a full size message each time. The memory data may be null, for
example if the load server does not have the next segment of memory data available yet but
wants to keep the client from timing out. In all cases, the client transfers the memory data in
the message (if any) and responds with a request for the next higher sequence number.

PROCEDURE DLI.LoadClient (circ: POINTER TO Circuit; server: LANAddress;
 prog: ProgType; swid, scrid: SoftwareID)

 RAISES {InsufficientResources, DataLinkError, Timeout}
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 msgtyp, seq, rseq, ldaddr: INTEGER;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 op^.CircPtr := circ;
 op^.Op := LoadClient;
 op^.Version := Unknown;
 op^.Address := server;
 op^.ProgramType := prog;
 IF prog = CMIPScript
 THEN op^.Version := V4 (* CMIP Script is a V4 only function *)
 END;
 TRY

 IF op^.CircPtr^.DataLink IN LANTypes AND server = NullAddress
 THEN (* LAN and server not selected yet *)

 DLI.BuildReqProg (op, buff, prog, swid, scrid);
 buff^.Destination := LoadAssistance;
 DLI.BackoffTransact (op, buff, buff);
 op^.Address := buff^.Source; (* Whoever answers is our server *)
 IF prog = SecondaryLoader (* For Secondary the answer is the data *)
 THEN

 IF buff^.Data[0] # MemLoadTA (* If it isn’t the right message type *)
 OR buff^.Length " 10 (* ...or message has null data *)

 THEN op^.Address := NullAddress; (* No server yet after all *)
 « quietly ignore this message and keep requesting »

 END
 ELSE (* for others, ask selected server again *)

 DLI.BuildReqProg (op, buff, prog, swid, scrid);
 buff^.Destination := op^.Address;
 DLI.Transact (op, buff, buff);

 END
 ELSE (* We know the server we want, talk to it *)

 DLI.BuildReqProg (op, buff, prog, swid, scrid);
 buff^.Destination := op^.Address;

4.5.1: Downline load client 53

 DLI.BackoffTransact (op, buff, buff);
 END
 seq := 0; (* Start with sequence number zero *)
 (* Note: on entry to the loop we have just received the first Memory Load message *)
 LOOP

 msgtyp = buff^.Data[0];
 IF msgtyp = MemLoadTA AND buff^.Length > 10 AND prog # SecondaryLoader
 THEN « quietly ignore this message »
 END;
 rseq := buff^.Data[1]; (* Get sequence number from received message *)
 IF rseq = seq (* If it matches the sequence number we want *)
 THEN

 ldaddr := DLI.GetLong (buff, 2); (* Get memory address to load *)
 IF msgtyp = ParameterLoad
 THEN « store the received parameters »
 ELSEIF (msgtyp = MemLoad AND buff^.Length > 6)

 OR (msgtyp = MemLoadTA AND buff^.Length > 10)
 THEN

 IF prog IN { Management, CMIPScript } AND ldaddr = 0
 THEN « begin a new management file or CMIP script record »
 END;
 « store data at specified ldaddr »

 END;
 seq := (seq + 1) MOD 256; (* Look for the next consecutive sequence number *)
 IF msgtyp IN { MemLoadTA, ParameterLoad }
 THEN

 EXIT (* Leave the loop, done with the load *)
 END

 END;
 DLI.BuildReqLoad (buff, seq);
 DLI.ReqResp (op, buff, buff, OneMinute, op^.Version);

 END;
 IF msgtyp = ParameterLoad (* If system or diagnostic image load *)
 THEN

 DLI.BuildReqLoad (buff, seq);
 DLI.Send (op, buff, op^.Version); (*Send one more request to ACK the last message *)

 END;
 FINALLY

 DLI.Free (op, buff)
 END
END DLI.LoadClient;

The procedures below show how the Load protocol messages are constructed. Note that the
Format Version byte (third byte) of the Request Program message should be set to reflect what
protocol version is being sent; the V3 requests have the value 1 in Format Version, and the V4
requests have the value 4.

PROCEDURE DLI.BuildReqProg (op: POINTER TO Operation;
 buff: POINTER TO Buffer; prog: ProgType; swid, scrid: SoftwareID);
VAR idlen: INTEGER;
 idstring: SoftwareID;
BEGIN
 buff^.Data[0] := RequestProgram;
 buff^.Data[1] := « Device Type code of data link being used »;
 buff^.Data[2] := « Format Version, see above »;
 IF prog = Diagnostic
 THEN buff^.Data[3] := System
 ELSE buff^.Data[3] := prog (* Program Type *)

54 Operation

 END;
 IF prog = System THEN idstring := swid
 ELSEIF prog = CMIPScript THEN idstring := scrid
 ELSE idstring := ""
 END;
 idlen := LENGTH (idstring);
 IF idlen > 0
 THEN

 buff^.Data[4] := idlen;
 « store idstring starting at buff^.Data[5] »

 ELSEIF prog = System
 THEN buff^.Data[4] := –1 (* Standard operating system *)
 ELSEIF prog = Diagnostic
 THEN buff^.Data[4] := –2 (* Diagnostic system *)
 ELSE buff^.Data[4] := 0 (* No ID string *)
 END;
 buff^.Data[5 + idlen] := 0 (* System processor *)
 (* Store TLV entry for Data Link Buffer Size *)
 DLI.PutInteger (buff, 6 + idlen, 401);
 DLI.PutInteger (buff, 8 + idlen, 2);
 DLI.PutInteger (buff, 10 + idlen, op^.CircPtr^.SDUSize);
 buff^.Length := 12 + idlen
END DLI.BuildReqProg;

PROCEDURE DLI.BuildReqLoad (buff: POINTER TO Buffer; seq: INTEGER);
BEGIN
 buff^.Data[0] := RequestLoad;
 buff^.Data[1] := seq; (* Next sequence number we want *)
 buff^.Data[2] := 0; (* obsolete/reserved *)
 buff^.Length := 3
END DLI.BuildReqLoad;

4.5.2 Downline load server

The following sections show the load server algorithms.

4.5.2.1 Downline load server listener

This section shows the operation of the load server listener. It listens for load requests initi-
ated by load clients, and uses the Request Program message and information in the Client data-
base to decide whether and how to process the request. This process is active only if Load serv-
ice is enabled for the circuit. The outline of the algorithm is as follows:

• A client database lookup is performed first.

- First look for a client entry by circuit and (if a LAN) data link address.

- If no match is found and this is a LAN, look for a client entry by circuit and de-
vice type.

• If Known Clients Only is False, and a syntactically valid Software ID string was included
in the request, then the load can proceed whether or not an entry is found in the client
lookup. Otherwise, if no entry is found, this is an Unrecognized Client.

If an entry is found, the file names it specifies are used as the load files for this load
operation unless the load client supplied a Software ID string.

4.5.2.1: Downline load server listener 55

• If the request specified a Software ID string, map the ID string to a file name and see if
that file exists. If not, this is a File Open Error if a client entry was found previously,
and an Unrecognized Client otherwise. (Note that the Software ID string overrides cli-
ent database load file information.)

• If this is a LAN and the original request was addressed to the Load Assistance
multicast address, send an Assistance Volunteer message and wait for a directed Re-
quest Program message (indicating this node was selected). If none is received, quietly
go back to listening for other requests. (This condition is not an error and no event
should be logged in this case.)

Note: as shown here the Assistance Volunteer is sent before any files are opened, except
where Software ID strings are involved. An implementation may instead open files
first, and not volunteer until it has sucessfully done the open. This will avoid volunteer-
ing when the client database points to non-existent or inaccessible files.

The secondary loader is a special case: the entire secondary loader is sent in a single
message. No Assistance Volunteer is sent in this case; the response to the Request Pro-
gram message is simply a message containing the secondary loader.

• Load the client according to the received request, with load file as determined above.

PROCEDURE DLI.LoadServer (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 device: DevType;
 prog: ProgType;
 idstring: SoftwareID;
 loadok: Boolean; (* True if we can load this client *)
 i: INTEGER;
EXCEPTION Quit;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ;
 op^.Op := LoadServer;
 LOOP

 TRY
 op^.Address := NullAddress; (* We’ll listen to any remote station address *)
 op^.Version := Unknown; (* Accept any version *)
 DLI.Receive (op, buff, Infinite); (* Wait for a message, however long it takes *)
 IF buff^.Data[1] = 31 (* Special case *)
 THEN

 device := 37 (* 37 is LQA, 31 is alternate code for LQA *)
 ELSE

 device := buff^.Data[1] (* Get requester’s device type *)
 END
 IF buff^.Length < 3
 THEN prog := SecondaryLoader (* Default if no program type in message *)
 ELSE prog := buff^.Data[3]; (* Get program type *)

 IF prog = System
 THEN

 IF « Request Program message indicates request for Diagnostic Image »
 THEN prog := Diagnostic
 END

 END
 END;
 op^.ProgramType := prog;
 idstring := « ID string from Request Program message, or null if no string supplied »;

56 Operation

 IF NOT DLI.ValidID (idstring)
 THEN idstring := "" (* If supplied ID isn’t valid, pretend none was supplied *)
 END;
 IF « Data Link Buffer Size present in message »
 THEN op^.SDUSize := « Data Link Buffer Size from message »
 ELSE op^.SDUSize := 262
 END;
 loadok := FALSE;
 op^.Client := DLI.FindClientByCircAddr (circ, buff^.Source);
 IF circ^.DataLink IN LANTypes AND op^.Client = NIL
 THEN

 op^.Client := DLI.FindClientByCircDev (circ, device)
 END;
 IF op^.Client # NIL
 THEN

 loadok := TRUE;
 op^.SecondaryLoader := op^.Client^.SecondaryLoader;
 op^.TertiaryLoader := op^.Client^.TertiaryLoader;
 op^.SystemImage := op^.Client^.SystemImage;
 op^.DiagnosticImage := op^.Client^.DiagnosticImage;
 op^.ManagementImage := op^.Client^.ManagementImage;
 op^.ScriptFile := op^.Client^.ScriptFile;
 IF idstring # ""
 THEN (* ID string supplied, override database filename *)

 loadok := DLI.MapIDString (op, idstring)
 END

 ELSEIF NOT KnownClientsOnly (* No client entry found *)
 IF idstring # ""
 THEN (* ID string supplied, map to filename *)

 loadok := DLI.MapIDString (op, idstring)
 END

 END;
 IF loadok
 THEN

 IF circ^.DataLink IN LANTypes
 AND buff^.Destination[0] = 1 (* multicast request requires volunteer response *)
 AND op^.ProgramType # SecondaryLoader (* except secondary loaders *)

 THEN
 FOR i := 1 TO RetransmitMax
 DO

 LAN.SendVolunteer (op, buff); (* Volunteer to serve *)
 TRY

 DLI.Receive (op, buff, OneMinute);
 EXCEPT
 | Timeout: RAISE (Quit)
 END;
 « received Request Program message should be the same as the multicast request
 that initiated the lookup. If not, quit and report a Load Request Failed event,
 Reason = Protocol Error. »
 IF buff^.Destination[0] = 0
 THEN EXIT (* Request Program direct to us, carry on *)
 ELSEIF i = RetransmitMax
 THEN RAISE (Quit) (* Volunteer isn’t being heard, quit *)
 END

 END
 END;
 DLI.PerformLoad (op,buff); (* Go perform the actual load with these parameters *)
 « report a Load Request Completed event »

4.5.2.2: Downline load data transfer phase 57

 ELSE
 IF op^.Client = NIL
 THEN (* Couldn’t load because no matching client entry *)

 « report an Unrecognized Load Client event »
 ELSE (* Couldn’t load because of bad Software ID *)

 « report a Load Request Failed event, reason = File Open Error »
 END

 EXCEPT
 | Quit: (* Quit load attempt quietly *)
 | ELSE « report a Load Request Failed event, Reason as indicated by the exception »
 END;
 DLI.ReceiveDone (buff)

 END
END DLI.LoadServer;

PROCEDURE DLI.MapIDString (op: POINTER TO Operation; idstring: SoftwareID) : Boolean
VAR filename: FileSpec;
 exists: Boolean;
BEGIN
 filename := « map idstring to file name »;
 CASE op^.ProgramType OF

 SecondaryLoader: op^.SecondaryLoader := filename |
 TertiaryLoader: op^.TertiaryLoader := filename |
 System: op^.SystemImage := filename |
 Diagnostic: op^.DiagnosticImage := filename |
 Management: op^.ManagementImage := filename |
 ScriptFile: op^.ScriptFile := filename

 END;
 exists := « True if file named by filename exists »;
 RETURN (exists)
END DLI.MapIDString;

PROCEDURE LAN.SendVolunteer (op: POINTER TO Operation, buff: POINTER TO Buffer);
BEGIN
 buff^.Destination := op^.Address;
 buff^.Length := 1;
 buff^.Data[0] := AssistanceVolunteer;
 DLI.Send (op, buff, op^.Version)
END LAN.SendVolunteer;

4.5.2.2 Downline load data transfer phase

This section shows the algorithm for the actual data transfer phase of the downline load
process.

This procedure is given as input an Operation record, which specifies the address and MOP
version of the client, as well as a load file name or possibly sequence of file names. This infor-
mation was determined either from management directive parameters (in the case of a Load
directive) or from a Request Program message (in the case of a load initiated by a load client);
in either case the Client database may have been used to supply additional information.

The general flow of the load is

• Attempt to open load file; try next in sequence if failure, until end of list or success. If
failure, abort the load.

• If program type is Secondary Loader, transfer the entire loader in a Memory Data with
Transfer Address message.

58 Operation

Otherwise, transfer the data in multiple messages:

$ Send each piece of load data in a Memory Data message. Increment the load ad-
dress by the amount sent.

$ If program type is Management Image or Script File, the data is organized in re-
cords. Each new record begins in a new Memory Data message, and for each new
record the load address is reset to zero.

$ After all data was sent, a load of System Image or Diagnostic Image is terminated
with a Parameter Load message. Other program types are terminated with a
Memory Data with Transfer Address message that has no load data in it. For the
Management Image or Script file, the transfer address is –1.

• Once the load is complete, an implementation should wait for another Request Program
message from the same client. In this way the server will handle a multi-step load
without having to do multiple client database lookups. In the case of a load initiated by
the Load directive, waiting for another request ensures that all the steps of a multi-step
load are done in the context of that directive, i.e., with load parameters as supplied with
the directive.

The recommended timeout when waiting for another Request Program is 60 seconds.

PROCEDURE DLI.PerformLoad (op: POINTER TO Operation; buff; POINTER TO Buffer)
 RAISES { DataLinkError, Timeout, FileOpenError }
VAR prog: ProgType;
 files: ARRAY OF FileSpec;
 ldaddr, segsiz, seq, rseq, maxdatasize: INTEGER;
BEGIN
 CASE op^.ProgramType OF

 SecondaryLoader: files := op^.SecondaryLoader |
 TertiaryLoader: files := op^.TertiaryLoader |
 System: files := op^.SystemImage |
 Diagnostic: files := op^.DiagnosticImage |
 Management: files := op^.ManagementImage |
 ScriptFile: files := op^.ScriptFile

 END;
 LOOP

 IF files = { }
 THEN RAISE (FileOpenError) (* Ran out of files to try *)
 END;
 « select and remove a filespec from files »;
 TRY

 « open the selected filespec »;
 EXIT (* Got the file we wanted *)

 EXCEPT
 ELSE (* Keep going on any error *)
 END

 END;
 seq := 0;
 IF op^.Version = V3
 THEN (* Check and correct erroneous buffer size values *)

 IF op^.SDUSize > 1498
 THEN op^.SDUSize := 1498
 ELSEIF op^.SDUSize = 1030
 THEN op^.SDUSize := 1010
 END

 END;
 IF op^.ProgramType = SecondaryLoader

4.5.2.2: Downline load data transfer phase 59

 THEN
 maxdatasize := MIN (op^.SDUSize, op^.CircPtr^.SDUSize) – 10;

(* Max image data in a Memory Load with TA message *)
 ELSE

 maxdatasize := MIN (op^.SDUSize, op^.CircPtr^.SDUSize) – 6;
(* Max image data in a Memory Load message *)

 END;
 ldaddr := « base load address of image »;

 IF op^.ProgramType = SecondaryLoader
 THEN

 « read entire secondary loader image, must fit in maxdatasize »;
 DLI.BuildMemLoadTA (op, buff, 0, ldaddr, « secondary loader data »)

 ELSE
 LOOP

 « read another segment of load data, " maxdatasize bytes long »;
 IF « no more data »
 THEN EXIT
 END;
 segsiz := « length of load data segment »;
 IF op^.ProgramType IN { Management, CMIPScript }

 AND « segment is the start of a new record »
 THEN ldaddr := 0
 END;
 DLI.BuildMemLoad (op, buff, seq, ldaddr, « load data segment »);
 LOOP

 DLI.Transact (op, buff, buff);
 IF buff^.Data[0] = RequestProgram (* Another RequestProgram from client? *)
 THEN « quietly ignore this message »
 ELSE

 rseq := buff^.Data[1]; (* Get sequence number requested by client *)
 IF rseq = ((seq + 1) MOD 256)
 THEN EXIT (* asking next segment, go on *)
 ELSEIF rseq # seq
 THEN « quietly ignore this message »
 END

 END
 END;
 seq := (seq + 1) MOD 256;
 ldaddr := ldaddr + segsiz;

 END;
 IF op^.ProgramType IN { System, Diagnostic }
 THEN DLI.BuildParameterLoad (op, buff, seq)
 ELSE DLI.BuildMemLoadTA (op, buff, seq, ldaddr, "")
 END

 END;
 (* Send the closing message of the load *)
 LOOP

 TRY
 DLI.Transact (op, buff, buff)

 EXCEPT
 | Timeout: EXIT (* Timeout means we’re done but not an error here *)
 END;
 IF buff^.Data[0] = RequestProgram (* RequestProgram (for next load phase)? *)
 THEN EXIT (* done — and go process that request *)
 END;
 rseq := buff^.Data[1]; (* Get sequence number requested by client *)
 IF rseq = ((seq + 1) MOD 256)
 THEN EXIT (* asking next segment (ACK), done *)

60 Operation

 ELSEIF rseq # seq
 THEN « quietly ignore this message »
 END

 END;
 IF buff^.Data[0] # RequestProgram (* If we didn’t already receive the next Req Prog *)

 AND (op^.ProgramType IN { SecondaryLoader, TertiaryLoader }
 OR (op^.ProgramType IN { System, Diagnostic }

 AND (op^.ManagementImage OR op^.ScriptFile # { })))
 THEN (* Another request from this client is expected *)

 « wait for another Request Program from this client »
 END;
 IF buff^.Data[0] = RequestProgram
 THEN

 « repeat to process new received Request Program »
 END
END DLI.PerformLoad;

PROCEDURE DLI.BuildMemLoad (op: POINTER TO Operation, buff: POINTER TO Buffer;
 seq, ldaddr: INTEGER; data: STRING);
BEGIN
 buff^.Destination := op^.Address;
 buff^.Data[0] := MemLoad;
 buff^.Data[1] := seq;
 DLI.PutLong (buff, 2, ldaddr);
 « move data into buffer starting at byte 6 »;
 buff^.Length := 6 + LENGTH(data)
END DLI.BuildMemLoad;

PROCEDURE DLI.BuildMemLoadTA (op: POINTER TO Operation, buff: POINTER TO Buffer;
 seq, ldaddr: INTEGER; data: STRING);
BEGIN
 buff^.Destination := op^.Address;
 buff^.Data[0] := MemLoadTA;
 buff^.Data[1] := seq;
 DLI.PutLong (buff, 2, ldaddr);
 « move data into buffer starting at byte 6 »;
 IF op^.ProgramType IN { Management, CMIPScript }
 THEN DLI.PutLong (buff, 6 + LENGTH(data), –1)
 ELSE DLI.PutLong (buff, 6 + LENGTH(data), « transfer address from load file »)
 END;
 buff^.Length := 10 + LENGTH(data)
END DLI.BuildMemLoadTA;

PROCEDURE DLI.BuildParameterLoad (op: POINTER TO Operation, buff: POINTER TO Buffer;
 seq: INTEGER);
BEGIN
 buff^.Destination := op^.Address;
 buff^.Data[0] := ParameterLoad;
 buff^.Data[1] := seq;
 IF op^.ClientPtr # NIL
 THEN

 IF op^.ClientPtr^.PhaseIVHostName # ""
 THEN « move Phase IV host name into buffer »
 END;
 IF op^.ClientPtr^.PhaseIVHostAddress # 0.0
 THEN « move Phase IV host address into buffer »
 END;
 IF op^.ClientPtr^.PhaseIVClientName # ""

4.6: Upline dump algorithms 61

 THEN « move Phase IV client name into buffer »
 END;
 IF op^.ClientPtr^.PhaseIVClientAddress # 0.0
 THEN « move Phase IV client address into buffer »
 END;
 (* optionally: *)

 IF op^.ClientPtr^.PhaseIVHostName # ""
 OR op^.ClientPtr^.PhaseIVHostAddress # ""
 OR op^.ClientPtr^.PhaseIVClientName # ""
 OR op^.ClientPtr^.PhaseIVClientAddress # ""

 THEN « move V3 format host system time into buffer »
 END

 (* End option *)
 END;
 (* optionally: *)

 IF op^.Version = V4
 THEN « move V4 format host system time into buffer »
 END;

 (* End option *)
 buff^.Data[2 + «length of parameters»] := 0; (* end marker *)
 DLI.PutLong (buff, 3 + «length of parameters», « transfer address from load file »)
 END;
 buff^.Length := 7 + «length of parameters»
END DLI.BuildParameterLoad;

4.6 Upline dump algorithms

This section defines the major algorithms used for upline dump.

4.6.1 Upline dump client

This section shows the Dump Client algorithm.

In the case of a LAN upline dump, the server address is often already known; for example, it
may be the load server used to load the client, or the “host” identified in the Parameter Load
message from the load. If no dump server address is known, the first step is a Request Dump
Service message to the Load Assistance multicast address. The first server that responds is
used as the server for the rest of the dump. However, if the address of the dump server has
already been chosen, then that server is used for the dump and the multicast to the Load Assis-
tance address is skipped. For example, an implementation may elect always to dump to its
“Supporting Host”.

Unlike downline load, it is usually not desirable to wait indefinitely for dump service. In-
stead, the Request Dump Service is tried for some period of time; if no response is received, the
dump is aborted and the system proceeds (typically with a restart). The algorithm below shows
a DLI.Transact for the Request Dump Service message (15 tries, 60 seconds total); other similar
approaches are acceptable. If the dump client does want to wait indefinitely for a dump server,
it should use the DLI.BackoffTransact procedure to transmit the Request Dump Service mes-
sage.

The algorithm shows a timeout of one minute on each transaction once the dump is under-
way. The dump client does not have to do retransmissions at that stage, since the dump server
does them, but it does need some sort of timeout to handle the case where the network is parti-
tioned or the dump server has crashed. The dump server does 15 retries at 4 second intervals,
so a one minute dump client timeout is recommended.

62 Operation

The dump algorithm resembles the load algorithm in its general form, but there are some
significant differences:

• There are no sequence numbers; each Request Dump Data message specifies a start ad-
dress, and the client responds with data from that address.

• There is no acknowledgement to the Dump Complete message.

PROCEDURE DLI.DumpClient (circ: POINTER TO Circuit; server: LANAddress)
 RAISES {InsufficientResources, UnrecognizedCircuit, DataLinkError, Timeout}
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 msgtyp, memadr: INTEGER;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 op^.CircPtr := circ;
 op^.Op := DumpClient;
 op^.Version := Unknown;
 op^.Address := server;
 TRY

 IF op^.CircPtr^.DataLink IN LANTypes AND server = NullAddress
 THEN (* LAN and server not selected yet *)

 DLI.BuildReqDumpServ (op, buff);
 buff^.Destination := LoadAssistance;
 DLI.Transact (op, buff, buff);
 op^.Address := buff^.Source; (* Whoever answers is our server *)

 END;
 DLI.BuildReqDumpServ (op, buff); (* Ask the selected server for dump service *)
 buff^.Destination := op^.Address;
 DLI.Transact (op, buff, buff);
 (* Note: on entry to the loop we have just received the first Request Memory Dump message *)
 LOOP

 msgtyp = buff^.Data[0];
 IF msgtyp = DumpComplete
 THEN EXIT (* Dump complete message — all finished *)
 END;
 memadr := DLI.GetLong (buff, 1); (* address to be dumped *)
 buff^.Data[0] := DumpData; (* Respond with Dump Data message *)
 DLI.PutLong (buff, 1, memadr); (* Indicate base address of data *)
 « store data (if available) starting at byte 5 »;
 buf^.Length := 5 + « length of memory data »;
 DLI.ReqResp (op, buff, buff, OneMinute, op^.Version);

 END
 FINALLY

 DLI.Free (op, buff)
 END
END DLI.DumpClient;

The procedures below show how the Dump protocol messages are constructed. Note that the
Format Version byte (third byte) of the Request Dump Service message should be set to reflect
what protocol version is being sent; the V3 requests have the value 1 in Format Version, and
the V4 requests have the value 4.

PROCEDURE DLI.BuildReqDumpServ (op: POINTER TO Operation; buff: POINTER TO Buffer);
BEGIN
 buff^.Data[0] := RequestDumpService;
 buff^.Data[1] := « Device Type code of data link being used »;
 buff^.Data[2] := « Format Version, see above »;

4.6.2: Upline dump server 63

 DLI.PutLong (buff, 3, « size of memory to be dumped »);
 buff^.Data[7] := 2;
 (* Store TLV entry for Data Link Buffer Size *)
 DLI.PutInteger (buff, 8, 401);
 DLI.PutInteger (buff, 10, 2);
 DLI.PutInteger (buff, 12, op^.CircPtr^.SDUSize);
 buff^.Length := 14
END DLI.BuildReqDumpServ;

4.6.2 Upline dump server

The following sections show the dump server algorithms.

4.6.2.1 Upline dump server listener

This section shows the operation of the dump server listener. It listens for dump service re-
quests initiated by dump clients, and uses the Request Dump Service message and information
in the Client database to decide whether and how to process the request. This process is active
only if Dump service is enabled for the circuit. The outline of the algorithm is as follows:

• First look for a client entry by circuit and (if a LAN) data link address.

• If no match is found and this is a LAN, look for a client entry by circuit and device type.

If no entry is found, this is an Unrecognized Client. If an entry is found, the file names
it specifies are used as the dump files for this dump operation.

• If this is a LAN and the original request was addressed to the Load Assistance
multicast address, send an Assistance Volunteer message and wait for a directed Re-
quest Dump Service message (indicating this node was selected). If none is received,
quietly go back to listening for other requests. (This condition is not an error and no
event should be logged in this case.)

Note: as shown here the Assistance Volunteer is sent before any files are opened. An
implementation may instead open files first, and not volunteer until it has sucessfully
done the open. This will avoid volunteering when the client database points to inacces-
sible files.

• Dump the client according to the received request, with dump file and other parameters
as determined above.

After dump completion, the dump server simply goes back to waiting for more requests. The
dump client will presumably attempt to restart, but this does not involve the dump server. In
particular, the dump server should not send a Boot message or otherwise interfere with the re-
start of the client.

PROCEDURE DLI.DumpServer (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 client: POINTER TO Client;
 buff: POINTER TO Buffer;
 device: DevType;
 count: INTEGER;
 i: INTEGER;
EXCEPTION Quit;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ;
 op^.Op := DumpServer;

64 Operation

 LOOP
 TRY

 op^.Address := NullAddress; (* We’ll listen to any remote station address *)
 op^.Version := Unknown; (* Accept any version *)
 DLI.Receive (op, buff, Infinite); (* Wait for a message, however long it takes *)
 IF buff^.Data[1] = 31 (* Special case *)
 THEN

 device := 37 (* 37 is LQA, 31 is alternate code for LQA *)
 ELSE

 device := buff^.Data[1] (* Get requester’s device type *)
 END
 count := DLI.GetLong (buff, 3); (* Memory Size field *)
 IF « Data Link Buffer Size present in message »
 THEN op^.SDUSize := « Data Link Buffer Size from message »
 ELSE op^.SDUSize := 262
 END;
 op^.Client := DLI.FindClientByCircAddr (circ, buff^.Source);
 IF circ^.DataLink IN LANTypes AND client = NIL
 THEN

 op^.Client := DLI.FindClientByCircDev (circ, device)
 END;
 IF op^.Client # NIL
 THEN

 op^.DumpFile := op^.Client^.DumpFile;
 op^.DumpAddress := op^.Client^.DumpAddress;
 op^.DumpCount := count – op^.DumpAddress;

(* make count = memory size – start address *)
 IF circ^.DataLink IN LANTypes

 AND buff^.Destination[0] = 1 (* multicast request requires volunteer response *)
 THEN

 FOR i := 1 TO RetransmitMax
 DO

 LAN.SendVolunteer (op, buff); (* Volunteer to serve *)
 TRY

 DLI.Receive (op, buff, OneMinute);
 EXCEPT
 | Timeout: RAISE (Quit)
 END;
 « received Request Dump Service message should be the same as the multicast
 request that initiated the lookup. If not, quit and report a Dump Request Failed
 event, Reason = Protocol Error. »
 IF buff^.Destination[0] = 0
 THEN EXIT (* Request Program direct to us, carry on *)
 ELSEIF i = RetransmitMax
 THEN RAISE (Quit) (* Volunteer isn’t being heard, quit *)
 END

 END
 END;
 DLI.PerformDump (op,buff); (* Go perform the actual dump with these parameters *)
 « report a Dump Request Completed event »

 ELSE
 « report an Unrecognized Dump Client event »

 EXCEPT
 | Quit: (* Quit dump attempt quietly *)
 | ELSE « report a Dump Request Failed event, Reason as indicated by the exception »
 END;
 DLI.ReceiveDone (buff)

 END (* loop until told to stop *)

4.6.2.2: Upline dump data transfer phase 65

END DLI.DumpServer;

4.6.2.2 Upline dump data transfer phase

This section shows the algorithm for the actual data transfer phase of the upline dump proc-
ess.

This procedure is given as input an Operation record, which specifies the address and MOP
version of the client, as well as a dump file name or possibly sequence of file names and other
dump parameters. This information was determined from a Request Dump Service message
received from a dump client and from information in the Client database.

The general flow of the dump is

• Attempt to open dump file; try next in sequence if failure, until end of list or success. If
failure, abort the dump.

• Send Request Dump Data messages for each piece of the dump. As data is received,
increment the dump address and decrement the count. Repeat until the dump count
has been satisfied.

• End the dump by sending the Dump Complete message once.

The amount of data sent by the Dump Client in each Dump Data message can vary. The
client may send as much data as will fit in the data link buffer size (as reported in the Request
Dump Service) message. The client may also send less data. There is no requirement to send
the same amount of data all the time. In particular, if a client needs to “delay” the dump server
(for example because it has not finished gathering up all the data yet) it may respond to a re-
quest with a Dump Data message containing no image data. In that case the server will simply
repeat the request. There is no limit to the number of times the client may use this option.

PROCEDURE DLI.PerformDump (op: POINTER TO Operation; buff; POINTER TO Buffer)
 RAISES { DataLinkError, Timeout, FileOpenError }
VAR memadr, count, segsiz, recadr, maxdatasize: INTEGER;
BEGIN
 LOOP

 IF op^.DumpFile = { }
 THEN RAISE (FileOpenError) (* Ran out of files to try *)
 END;
 « select and remove a filespec from op^.DumpFile »;
 TRY

 « open the selected filespec »;
 EXIT (* Got the file we wanted *)

 EXCEPT
 ELSE (* keep going on any error *)
 END

 END;
 memadr := op^.DumpAddress;
 count := op^.DumpCount;
 IF op^.Version = V3
 THEN (* Check and correct erroneous buffer size values *)

 IF op^.SDUSize > 1498
 THEN op^.SDUSize := 1498
 ELSEIF op^.SDUSize = 1030
 THEN op^.SDUSize := 1010
 END

 END;

66 Operation

 maxdatasize := MIN (op^.SDUSize, op^.CircPtr^.SDUSize) – 5;
(* Max image data in a Memory Dump Data message *)

 LOOP
 segsiz := MIN (maxdatasize, count); (* use what’s left to dump if that’s less than what fits *)
 DLI.BuildReqDump (op, buff, memadr, segsiz);
 LOOP

 DLI.Transact (op, buff, buff);
 recadr := DLI.GetLong (buff, 1); (* Get start of data returned by client *)
 IF recadr = memadr
 THEN EXIT (* that’s what we asked for, handle it *)
 ELSE

 « quietly ignore this message »
 END

 END;
 segsiz := buff^.Length – 5; (* Length of received dump data *)
 « write received dump data, if any, to dump file »;
 memadr := memadr + segsiz;
 count := count – segsiz;
 IF count " 0
 THEN EXIT (* Nothing left to dump *)
 END

 END;
 (* Send the closing message of the dump *)
 buff^.Destination := op^.Address;
 buff^.Length := 1;
 buff^.Data[0] := DumpComplete;
 DLI.Send (op, buff, op^.Version)
END DLI.PerformDump;

PROCEDURE DLI.BuildReqDump (op: POINTER TO Operation, buff: POINTER TO Buffer;
 memadr, segsiz: INTEGER);
BEGIN
 buff^.Destination := op^.Address;
 buff^.Data[0] := ReqDumpData;
 DLI.PutLong (buff, 1, memadr);
 DLI.PutInteger (buff, 5, segsiz);
 buff^.Length := 7
END DLI.BuildReqDump;

4.7 Loop algorithms for point to point data links

4.7.1 Loop requester

Unlike most other MOP functions, the loop requester is intentionally not tolerant of prob-
lems on the link. Instead of retrying a number of times, it performs each request-response ex-
change once. If it succeeds, the loop continues; if it fails, the loop is finished (and in error).

PROCEDURE PTP.LoopRequester (op: POINTER TO Operation; buff: POINTER TO Buffer)
 RAISES {InvalidResponse, DataLinkError, Timeout};
VAR i, j: INTEGER;
BEGIN
 FOR i := 1 TO op^.Count
 DO

 buff^.Data[0] := LoopData; (* Function code *)

4.7.2: Loop server 67

 DLI.PutInteger (buff, 1, i); (* Use sequence counter for receipt number. Note: any other
receipt number that is different for each consecutive message
may also be used. *)

 FOR j := 0 to op^.Length – 1
 DO

 buff^.Data[j + 3] := op^.Data (* Load the test data pattern into the buffer *)
 END;
 buff^.Length := op^.Length + 3; (* Buffer length = loop data length + 3 byte header *)
 DLI.ReqResp (op, buff, buff, op^.CircPtr^.RetransmitTimer, V4);
 IF buff^.Length # op^.Length + 3 (* If wrong length response *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END;
 j := DLI.GetInteger (buff, 1); (* Receipt number of response *)
 IF NOT (buff^.Data[0] IN { LoopData, LoopedData })

 OR j # i
 THEN (* If wrong function code or receipt number *)

 RAISE (InvalidResponse, op^.Count – i)
 END;
 FOR j := 0 TO op^.Length – 1
 DO

 IF buff^.Data[j + 3] # op^.Data (* Check test data pattern *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END

 END
 END
END PTP.LoopRequester;

4.7.2 Loop server

There is always one Loop Server active for each point to point circuit. It keeps a receive
pending at all times. When a message comes in (which will have function code LoopData), the
message is modified appropriately and sent back to the sender.

Note that the Loop Server is required to support the full range of valid message sizes for
each data link.

PROCEDURE PTP.LoopServer (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ;
 op^.Op := LoopServer;
 LOOP

 DLI.Receive (op, buff, Infinite); (* Wait for a message, however long it takes *)
 buff^.Data[0] := LoopedData; (* Change the message code *)
 DLI.Send (op, buff, V4); (* Send it back (version is not applicable, actually) *)
 DLI.ReceiveDone (buff) (* Done using the receive buffer *)

 END (* Repeat that forever *)
END PTP.LoopServer;

68 Operation

4.8 Loop algorithms for LAN data links

4.8.1 Loop requester

The procedures below define the algorithm for the Loop Requester.

The LAN loopback protocol uses two message codes, “Forward Data” and “Reply”. Forward
Data specifies that the message is to be sent onwards to another station. Reply indicates that
the message terminates at this station and should be delivered to a Loop Requester. The mes-
sage sent by the requester in effect consists of a Reply, enveloped in a number of Forward Data
envelopes. This provides the mechanism needed to do “loop assistance”.

If assisted loopback is desired, the caller will often supply the data link address of the sta-
tion to use as assistant. If no assistant address is supplied, then the Loop Requester attempts
to find an assistant. Stations willing to be assistant listen to the Loopback Assistance multicast
address. To find an assistant, the requester sends a loop message to that multicast address,
and uses the source address from the first received response as the assistant address for the
remainder of the operation.

Note that all Loop messages (except for the one used to find a loop assistant) are sent as sin-
gle attempts. Since the purpose of the Loop directive is to look for network problems, no retries
are done during the operation. Otherwise soft errors would be obscured.

PROCEDURE LAN.LoopRequester (op: POINTER TO Operation; buff: POINTER TO Buffer)
 RAISES {InvalidResponse, DataLinkError, Timeout};
VAR i, j, offset, buflen: INTEGER;
 addresses: SET OF LANAddress;
 target: LANAddress;
BEGIN
 op^.Version := V4; (* Initially use V4 format *)
 addresses := op^.Addresses;
 FOR i := 1 TO op^.Count
 DO

 IF i = 1
 THEN (* For first one we have to select the address *)

 LAN.FindAssistant (op, buff); (* Select assistant if we need one *)
 LOOP

 IF addresses = { }
 THEN (* No target addresses left to try *)

 IF op^.Version = V4
 THEN (* V4 didn’t work, try it with V3 *)

 op^.Version := V3;
 addresses := op^.Addresses;
 LAN.FindAssistant (op, buff); (* Find a V3 assistant if we need one *)

 ELSE RAISE (Timeout) (* Both versions received no response *)
 END

 ELSE
 target := « select and remove an address from addresses »;
 LAN.BuildLoopMsg (buff, target, op^.AssistanceType, op^.AssistantAddress, op, i,

buflen);
 TRY

 DLI.RequestResponse (op, buff, buff, op^.Version);
 op^.Address := target; (*If we get an answer, that’s the address to use *)
 EXIT (* Leave the address search loop *)

 EXCEPT
 | Timeout: (* If no answer, keep on trying addresses *)
 END

4.8.1: Loop requester 69

 END
 END (* end of target address search loop *)

 ELSE (* Not first message *)
 LAN.BuildLoopMsg (buff, target, op^.AssistanceType, op^.AssistantAddress, op, i, buflen);
 DLI.ReqResp (op, buff, buff, op^.Version)

 END;
 IF buff^.Length # buflen (* If wrong length response *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END;
 offset := DLI.GetInteger (buff, 0); (* Get skip count *)
 j := DLI.GetInteger (buff, offset + 2); (* Receipt number of response *)
 IF j # i (* If wrong receipt number *)

 OR offset + 4 + op^.Length # buflen (* or wrong offset *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END;
 FOR j := 0 to op^.Length – 1
 DO

 IF buff^.Data[j + offset + 4] # op^.Data (* Check test data *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END

 END
 END
END LAN.LoopRequester;

The following procedure builds a LAN Loopback message. The message consists of a Reply
message (containing the data), preceded by one or more Forward headers. These headers list
the addresses on the path the message is to take. For example, if Transmit assistance is being
used, the Loopback message destination address is the assistant address; the first Forward
header contains the target station address, and the second forward header contains the station
address for our circuit.

PROCEDURE LAN.BuildLoopMsg (buff: POINTER TO Buffer; target: LANAddress; help: HelpType;
 assistant: LANAddress; op: POINTER TO Operation; receipt: INTEGER; VAR buflen: INTEGER);
VAR offset: INTEGER;
BEGIN
 DLI.PutInteger (buff, 0, 0); (* Initial skip count = 0 *)
 IF help IN {Transmit, Full} (* If first hop is to assistant *)
 THEN

 buff^.Destination := assistant; (* Set first hop destination address *)
 LAN.Forward (buff, 2, target); (* First Forward header points to target *)
 offset := 10

 ELSE (* Receive assistance or no assistance, first hop to target *)
 buff^.Destination := target;
 offset := 2

 END;
 IF help IN {Receive, Full} (* If assistant used on the way back *)
 THEN

 LAN.Forward (buff, offset, assistant);
 offset := offset + 8

 END;
 LAN.Forward (buff, offset, op^.CircPtr^.DataLinkAddress);

(* Last forward header points back to us *)
 offset := offset + 8;
 DLI.PutInteger (buff, offset, Reply); (* Put in Reply header *)
 DLI.PutInteger (buff, offset + 2, receipt);

70 Operation

 FOR j := 0 to op^.Length – 1
 DO

 buff^.Data[j + offset + 4] := op^.Data (* Load the test data pattern into the buffer *)
 END;
 buflen := op^.Length + offset + 4; (* total loop message length *)
 buff^.Length := buflen
END LAN.BuildLoopMsg;

PROCEDURE LAN.Forward (buff: POINTER TO Buffer; offset: INTEGER; address; LANAddress);
BEGIN
 DLI.PutInteger (buff, offset, ForwardData);
 DLI.PutAddress (buff, offset + 2, address)
END LAN.Forward;

PROCEDURE LAN.FindAssistant (op: POINTER TO Operation; buff: POINTER TO Buffer);
VAR assistants: SET OF LANAddress;
BEGIN
 IF op^.AssistanceType # None (* Need to select an assistant? *)
 THEN

 assistants := op^.AssistantAddresses; (* Initialize the list of addresses to try *)
 LOOP

 IF assistants = { }
 THEN (* No assistant addresses left to try *)

 IF op^.Version = V4
 THEN (* V4 didn’t work, try it with V3

 op^.Version := V3;
 assistants := op^.AssistantAddresses

 ELSE RAISE (Timeout) (* Both versions received no response *)
 END

 ELSE
 target := « select and remove an address from assistants »;
 LAN.BuildLoopMsg (buff, target, None, NullAddress, op, –1);
 TRY

 DLI.Transact (op, buff, buff); (* Do a “direct” loop to the selected address *)
 op^.AssistantAddress := buff^.Source; (* Whoever responds is the assistant *)
 EXIT (* Leave the assistant search loop *)

 EXCEPT
 | Timeout: (* If no answer, keep on trying addresses *)
 END

 END
 END

 END
END LAN.FindAssistant;

4.8.2 Loop server

There is always one Loop Server active for each LAN circuit. It keeps a receive pending at
all times. When a message comes in (which will have function code ForwardData), the message
is modified appropriately and sent onwards. Invalid messages are quietly ignored.

Note that the Loop Server is required to support the full range of valid message sizes for
each data link.

PROCEDURE LAN.LoopServer (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 offset: INTEGER;

4.9: XID and TEST algorithms 71

 nexthop: LANAddress;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ;
 op^.Op := LoopServer;
 LOOP

 op^.Address := NullAddress; (* We’ll listen to any remote station address *)
 op^.Version := Unknown; (* Accept any version *)
 DLI.Receive (op, buff, Infinite); (* Wait for a message, however long it takes *)
 offset := DLI.GetInteger (buff, 0); (* Get the offset value from message *)
 IF buff^.Length % offset+10 (* Must have our header plus next guy’s msgtype *)
 THEN

 nexthop := GetAddress (buff, offset+2); (* Get address to send to *)
 IF nexthop[0] = 0 (* Must not be a multicast address *)
 THEN

 buff^.Destination := nexthop; (* Forwarding address is our destination *)
 DLI.PutInteger (buff, 0, offset+8); (* Update Offset in message buffer *)
 DLI.Send (op, buff, op^.Version)

 END
 END;
 DLI.ReceiveDone (buff) (* Done using the receive buffer *)

 END (* Repeat that forever *)
END LAN.LoopServer;

4.9 XID and TEST algorithms

This section describes the operation of the Test and Query Requesters. These are function-
ally quite separate from the remainder of MOP, for example because they do not use the normal
LLC data transfer services of the data link. Note that the corresponding server (responder) al-
gorithms are not shown here; they are defined in the IEEE 802.2 (LLC) standard.

4.9.1 Test requester

PROCEDURE LAN.TestRequester (op: POINTER TO Operation)
 RAISES {InvalidResponse, DataLinkError, Timeout};
VAR i, j: INTEGER;
 buff: POINTER TO Buffer;
 target: LANAddress;
 ssap: SAPAddress;
BEGIN
 ssap := LAN.SelectaSAP (op); (* Pick a source SAP to use *)
 LAN.EnableSAP (op^.CircPtr^.LLCport, ssap); (* Enable that SAP for the duration *)
 buff := op^.buff;
 TRY

 FOR i := 1 TO op^.Count
 DO

 buff^.Data[0] := op^.SAP; (* Destination SAP address *)
 buff^.Data[1] := ssap; (* Source SAP address = system specific, Command *)
 buff^.Data[2] := LLCTEST; (* Frame Control = TEST, P/F = 0 *)
 DLI.PutInteger (buff, 3, i); (* Use sequence counter for receipt number. Note: any other

receipt number that is different for each consecutive message
may also be used. *)

 FOR j := 0 to op^.Length – 1
 DO

 buff^.Data[j + 5] := op^.Data (* Load the test data pattern into the buffer *)
 END;

72 Operation

 buff^.Length := op^.Length + 5; (* Buffer length = loop data length + 5 byte header *)
 IF i = 1 (* Have to select an address *)
 THEN

 LOOP
 IF op^.Addresses = { }
 THEN RAISE (Timeout) (* No response from anything *)
 END;
 target := « select and remove an address from op^.Addresses »;
 buff^.Destination := target;
 TRY

 LAN.LLCReqResp (op, buff, LLCTEST);
(* Do a request/response, looking for TEST response *)

 op^.Address := target; (* If it works, that’s the target address *)
 EXIT

 EXCEPT
 | Timeout: (* If no answer, keep on trying addresses *)
 END

 END (* End of target address search loop *)
 ELSE (* Not first message *)

 LAN.LLCReqResp (op, buff, LLCTEST);
(* Do a request/response, looking for TEST response *)

 END;
 IF buff^.Length # op^.Length (* If wrong length response *)

 OR buff^.Data[1] # op^.SAP + 01H (* Must be a response frame from the right SAP *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END;
 j := DLI.GetInteger (buff, 3); (* Receipt number of response *)
 IF j # i (* If wrong receipt number *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END;
 FOR j := 0 to op^.Length – 1
 DO

 IF buff^.Data[j + 5] # op^.Data (* Check test data *)
 THEN

 RAISE (InvalidResponse, op^.Count – i)
 END

 END
 END

 FINALLY
 LAN.DisableSAP (op^.CircPtr^.LLCport, ssap) (* Done with the SAP) *)

 END
END LAN.TestRequester;

4.9.2 Query requester

PROCEDURE LAN.QueryRequester (op: POINTER TO Operation;
 VAR LLCTypes: BITSET; VAR Window: INTEGER)
 RAISES {InvalidResponse, DataLinkError, Timeout};
VAR buff: POINTER TO Buffer;
 target: LANAddress;
 ssap: SAPAddress;
BEGIN
 ssap := LAN.SelectaSAP (op); (* Pick a source SAP to use *)
 LAN.EnableSAP (op^.CircPtr^.LLCport, ssap); (* Enable that SAP for the duration *)
 buff := op^.buff;

4.10: Console server algorithms 73

 buff^.Length := 6; (* 3 bytes LLC header, 3 bytes info *)
 buff^.Data[0] := op^.SAP; (* Destination SAP address *)
 buff^.Data[1] := ssap; (* Source SAP address = system specific, Command. *)
 buff^.Data[2] := LLCXID; (* Frame Control = XID, P/F = 0 *)
 buff^.Data[3] := 81H; (* IEEE basic format XID *)
 buff^.Data[4] := 01H; (* We say we do LLC class 1 only *)
 buff^.Data[5] := 00H; (* No window size *)
 TRY

 LOOP
 IF op^.Addresses = { }
 THEN RAISE (Timeout) (* No response from anything *)
 END;
 target := « select and remove an address from op^.Addresses »;
 buff^.Destination := target;
 TRY

 LAN.LLCTransact (op, buff, LLCXID);
(* Do a request/response, looking for XID response *)

 op^.Address := target; (* If it works, that’s the target address *)
 EXIT

 EXCEPT
 | Timeout: (* If no answer, keep on trying addresses *)
 END

 END;
 IF buff^.Length # 6 (* If wrong length response *)
 THEN

 RAISE (InvalidResponse)
 END;
 IF buff^.Data[1] # op^.SAP + 01H (* Must be a response frame from the right SAP *)

 OR buff^.Data[3] # 81H (* ... and format = IEEE Basic Format *)
 THEN

 RAISE (InvalidResponse)
 END;
 LLCTypes := buff^.Data[4] MOD 20H; (* Get bitmask for supported LLC types *)
 Window := buff^.Data[5] DIV 2 (* ... and window size *)

 FINALLY
 LAN.DisableSAP (op^.CircPtr^.LLCport, ssap) (* Done with the SAP) *)

 END
END LAN.QueryRequester;

4.10 Console server algorithms

There is always one Console Server active for each LAN circuit. It keeps a receive pending
at all times. The messages it can receive are Request ID, Request Counters, and, if supported
and enabled, Boot and Console Carrier messages. It checks the message type, and dispatches
appropriate to build the response.

PROCEDURE LAN.ConsoleServer (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 function: Byte;
 timeout: Time;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ;
 op^.Op := ConsoleServer;
 LOOP

 op^.Address := NullAddress; (* We accept requests from any source *)

74 Operation

 op^.Version := Unknown; (* Accept any version *)
 IF circ^.ConsoleUser = NullAddress
 THEN (* Console not currently reserved *)

 DLI.Receive (op, buff, Infinite) (* Wait for a message, however long it takes *)
 ELSE

 timeout := « time remaining before circ^.ReservationTimer expires »;
 TRY

 DLI.Receive (op, buff, timeout); (* Wait for a message, up to reservation timeout *)
 EXCEPT
 | Timeout:

 circ^.ConsoleUser := NullAddress; (* Cancel reservation *)
 DLI.Receive (op, buff, Infinite) (* Wait for a message, however long it takes *)

 END
 END;
 function := buff^.Data[0]; (* Get the function code from the buffer *)
 IF function = RequestID (* Do the right thing given the function code *)
 THEN LAN.SysIDResponse (op, buff)
 ELSEIF function = RequestCounters
 THEN LAN.CountersResponse (op, buff)
 ELSEIF function IN { ReserveConsole, ReleaseConsole, ConsoleCommand }
 THEN LAN.ConsoleCarrierResponse (op, buff)
 END
 ELSEIF function = Boot AND « Boot supported »
 THEN DLI.ReceiveBoot (op, buff);
 DLI.ReceiveDone (buff) (* Done using this receive buffer *)

 END
END LAN.ConsoleServer;

4.10.1 Periodic System ID transmission

For each LAN circuit, there is one Periodic System ID transmitter process. Strictly speak-
ing, this is part of the Console Server, but it is simpler to show it as a separate process. It has a
very simple task: every 5 minutes ± 20% it sends a System ID message. The first is sent in V4
format, the next in V3 format, and so on alternating the format.

PROCEDURE LAN.PeriodicSysID (circ: POINTER TO Circuit);
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 tmo: Time;
BEGIN
 NEW (op); (* Get an Operation record *)
 op^.CircPtr := circ; (* Initialize what we need *)
 NEW (buff); (* Allocate a buffer *)
 buff^.Destination := ConsoleMulticast; (* Send periodic messages to this address *)
 LOOP

 op^.Version := V4; (* First we send a V4 format System ID *)
 LAN.SendSysID (op, buff, 0); (* Send a System ID with receipt number of zero *)
 tmo := FiveMinutes * (0.8 + 0.4 * Random ()); (* Compute the delay time *)
 System.Wait (tmo); (* ... and wait for that long *)
 op^.Version := V3; (* Next we send a V3 format System ID *)
 LAN.SendSysID (op, buff, 0); (* Send a System ID with receipt number of zero *)
 tmo := FiveMinutes * (0.8 + 0.4 * Random ()); (* Compute the delay time *)
 System.Wait (tmo) (* ... and wait for that long *)

 END (* Repeat all this indefinitely *)
END LAN.PeriodicSysID;

4.10.2: Build a System ID message 75

4.10.2 Build a System ID message

This procedure builds a System ID message and sends it. Depending on the version number
of the intended recipient (given by the Version field of the Operation record that is passed), cer-
tain fields are included or omitted; refer to the description of the System ID message in Sections
5.5.3 and G.6. The receipt number to be used is passed as an argument. For periodic System
ID transmissions, the value is zero; for responses to requests, the value is what was sent in the
Request ID message.

PROCEDURE LAN.SendSysID (op: POINTER TO Operation; buff: POINTER TO Buffer;
 receipt: INTEGER);
BEGIN
 buff^.Data[0] := SysID; (* Function code *)
 buff^.Data[1] := 0; (* Reserved byte *)
 DLI.PutInteger (buff, 2, receipt); (* Put in the 16-bit receipt number *)
 « now put in the other fields. »;
 DLI.Send (op, buff, op^.Version)
END LAN.SendSysID;

4.10.3 Response to Request ID

PROCEDURE LAN.SysIDResponse (op: POINTER TO Operation; buff: POINTER TO Buffer);
VAR receipt: INTEGER;
BEGIN
 IF buff^.Length % 4 (* Make sure request is long enough to be valid *)
 THEN

 receipt := DLI.GetInteger (buff, 2); (* Get receipt number *)
 buff^.Destination := buff^.Source; (* Response goes to sender of request *)
 LAN.SendSysID (op, buff, receipt) (* Now construct the response and send it *)

 END
END LAN.SysIDResponse;

4.10.4 Response to Request Counters

The specifics of the counters response depend somewhat on which datalink is being used, but
the whole algorithm is shown here anyway for simplicity. In particular, the CSMA/CD counters
are sent with a different response message than for other datalinks, and only the CSMA/CD
counters response can be sent to a V3 MOP implementation.

PROCEDURE LAN.CountersResponse (op: POINTER TO Operation; buff: POINTER TO Buffer);
VAR counterblock: ARRAY OF Counter;
 receipt: INTEGER;
BEGIN
 IF buff^.Length % 3 (* Make sure request is long enough to be valid *)
 THEN

 receipt := DLI.GetInteger (buff, 1); (* Fetch receipt number from request *)
 buff^.Destination := buff^.Source; (* Response goes to sender of request *)
 IF op^.CircPtr^.DataLink = CSMACD
 THEN

 buff^.Data[0] := CSMACDCounters; (* Response message code *)
 DLI.PutInteger (buff, 1, receipt); (* Store receipt number in response *)
 counterblock := CSMACD.Get (op^.CircPtr.LinkName, "COUNTERS");
 IF op^.Version = V4
 THEN

 « move counters into buffer starting at byte 3 »;
 buff^.Length := 203 (* Length of V4 format CSMA/CD counters *)

76 Operation

 ELSE
 « convert counters to V3 form »;
 « move converted counters into buffer starting at byte 3 »;
 buff^.Length := 57 (* Length of V3 format CSMA/CD counters *)

 END;
 DLI.Send (op, buff, op^.Version)

 ELSEIF op^.CircPtr^.DataLink = FDDI (* Only other alternative currently is FDDI *)
 THEN

 IF op^.Version = V4
 THEN

 buff^.Data[0] := OtherCounters; (* Response message code *)
 DLI.PutInteger (buff, 1, 5); (* Store data link code (5 = FDDI) *)
 DLI.PutInteger (buff, 3, receipt); (* Store receipt number *)
 counterblock := FDDI.Get (op^.CircPtr.LinkName, "COUNTERS");
 « move counters into buffer starting at byte 4 »;
 buff^.Length := 260; (* Length of counter message for FDDI counters *)
 DLI.Send (op, buff, op^.Version)

 END (* If V3 requester, ignore the request *)
 END

 END
END LAN.CountersResponse;

4.10.5 Console carrier server

This section shows the algorithms for the Console Carrier portion of the Console Server.

For Console Command messages, there is a one-bit sequence number to deal with lost mes-
sages. If a retransmitted Console Command message is received, the previously sent response
is resent. Note that this is the same message as before, even if additional console response data
is available at this time. New console response data is considered only when a new Console
Command message is received.

The circuit reservation timer ensures that the console is released if no console carrier mes-
sage is received from the console carrier requester for the timeout period. The timeout should
be long enough to allow for message loss and recovery by retransmission, but not so long that
the console remains unavailable for an extensive period of time. The recommended value for
the reservation timeout is 60 seconds. (This corresponds to the 15 retries done by the requester
at the default 4 second retransmit interval, so the client and server would give up at about the
same time if communication is lost.)

The purpose of the console carrier is to provide the common ASCII local console function via
a simple low level network protocol. Character stream data is sent by the console carrier re-
quester and any console output is returned in a character stream by the console carrier server.
The server should echo input (characters received from the requester) in the same manner as it
would echo local console data.

PROCEDURE LAN.ConsoleCarrierResponse (op: POINTER TO Operation; buff: POINTER TO Buffer);
VAR function, cflags, seq: INTEGER;
BEGIN
 IF NOT (ConsoleCarrier IN op^.CircPtr^.Functions)
 THEN RETURN (* Ignore message if not enabled or not supported *)
 END;
 function := buff^.Data[0]; (* Get the function code from the buffer *)
 IF function = ReserveConsole
 THEN

 IF op^.CircPtr^.ConsoleUser = NullAddress
 AND « verification field in message is valid »

 THEN

4.10.6: Received Boot message processing 77

 op^.CircPtr^.ConsoleUser := buff^.Source;
 StartTimer (op^.CircPtr^.ReservationTimer, « reservation timeout »);
 op^.CircPtr^.ConsoleSeq := 1 (* Next expected sequence number *)

 END
 ELSEIF function = ReleaseConsole
 THEN

 IF buff^.Source = op^.CircPtr^.ConsoleUser
 THEN

 op^.CircPtr^.ConsoleUser := NullAddress;
 StopTimer (op^.CircPtr^.ReservationTimer)

 END
 ELSE (* It’s a Console Command message *)

 IF buff^.Source = op^.CircPtr^.ConsoleUser
 THEN

 cflags := buff^.Data[1]; (* Get command flags *)
 seq := cflags MOD 2; (* Sequence number *)
 IF seq = op^.CircPtr^.ConsoleSeq (* New message *)
 THEN

 StartTimer (op^.CircPtr^.ReservationTimer, « reservation timeout »);
 IF (cflag DIV 2) MOD 2 = 1 (* Check Command Break flag *)
 THEN « issue Break to console »
 END;
 « issue command data (if any) to console »;
 op^.CircPtr^.ConsoleSeq := seq;
 cflag := seq; (* Sequence number goes into response message *)
 IF « any command data was lost »
 THEN cflag := cflag + 2
 END;
 IF « any response data was lost since last new Console Command message »
 THEN cflag := cflag + 4
 END;
 buff^.Data[0] := ConsoleResponse;
 buff^.Data[1] := cflag;
 « load response data, if any, into buff^.Data starting at byte 2 »;
 buff^.Length := 2 + « length of response data »

 ELSE buff^.Data := « previously sent response »
 END;
 buff^.Destination := buff^.Source; (* Response goes to sender of request *)
 DLI.Send (op, buff, op^.Version) (* Send the response message *)

 END
 END
END LAN.ConsoleCarrierResponse;

4.10.6 Received Boot message processing

The purpose of the Boot message is to terminate whatever the node is doing and force it to
reboot. The Boot message can contain parameters which change the normal reboot actions.

In order to be most effective, recognition of the Boot message should not depend on the cor-
rect operation of system software. This means that recognition of the Boot message should be
done in the data link hardware or in the data link adapter firmware, if possible. When this is
not possible, recognition of the Boot message at a low level in the system software (e.g., in the
device driver at interrupt level) may still provide a useful function.

Since the Boot message aborts normal operation of the node, it is essential that there is a
way to disable recognition of the Boot message. For systems that are usually managed locally,
disabling Boot recognition by default is generally appropriate. In addition, all implementations

78 Operation

must check the Verification field of the Boot message and ignore any message that does not
have the correct value in the Verification field. The expected Verification value must be setta-
ble. Note that settable verification alone is no substitute for being able to disable Boot message
recognition entirely.

Once a Boot message has been validated, the system should be rebooted. If possible, the im-
plementation should preserve the information in the Boot message and pass that to the reboot
process. This gives the sending node control over how the target node will restart. In particu-
lar, support for the Control field value 1 (“Boot Server – Requesting System”) is important for
the Load directive to work reliably. However, implementations that preserve no state and sim-
ply execute the default boot actions are permitted.

If the Control field is 1 (“Boot Server – Requesting System”) the system should execute the
Load Requester to reload the Secondary and/or Tertiary Loader (if required), the Operating
System, and the CMIP Script or Management File (if required). Each of these loads should go
directly to the node sending the Boot message, bypassing the multicast to the Load Assistance
address.

If the System Software ID field is present in the Boot message, its value should be used in
the Software ID field of the Request Program message when requesting the Operating System
load. Similarly, if the Script Software ID field is present in the Boot message, its value should
be used in the Software ID field of the Request Program message when requesting the CMIP
Script load. For other load steps, or when those Software ID fields are omitted from the Boot
message, the system should supply its default value in the Software ID field of the Request Pro-
gram message.

4.10.7 Configuration monitor

The Configuration Monitor is started (for a particular circuit) by the Enable Circuit directive
and stopped by the Disable directive. It receives all System ID messages addressed to the Con-
sole Multicast address. There can be multiple Configuration Monitors, one for each LAN circuit;
these operate independently.

Received System ID messages are identified by their data link source address. If a Station
subentity exists for that address, the information in that subentity is updated. If not, then a
new Station subentity is created (resources permitting) and loaded with information from the
System ID message.

In either case, the attributes of the Station subentity (see Table 14) are loaded, with appro-
priate data type conversions as needed, from the corresponding fields of the System ID mes-
sage. Note that the Node ID attribute is encoded in the System ID message in two parts, which
are concatenated to form the attribute. Any fields for which there is no corresponding attribute
are ignored. The Last Report attribute is updated to reflect the time when the System ID mes-
sage was received.

When the Configuration Monitor is stopped for a circuit, all Station subentities of that cir-
cuit are deleted.

4.10.8 Console carrier requester

The console carrier requester algorithm is shown below.

The central part of the algorithm is a polling loop in which the target station is polled peri-
odically for new console carrier data. New console input is also sent to the target in this loop as
needed.

4.10.8: Console carrier requester 79

Note:
The polling should be done frequently enough to carry console data from the tar-
get to the requester promptly and avoid console response data loss, but not so
often that the target station is overloaded by the polling activity. The minimum
permitted poll interval is 80 milliseconds. Somewhat longer poll intervals are
generally more appropriate (several hundred milliseconds). Adaptive algo-
rithms may be used for increased efficiency; for example, poll at 100 ms inter-
vals until no new data is seen for some time (e.g., 10 seconds); then poll at 1 s
intervals; switch back to 100 ms intervals when new data is seen in either direc-
tion.

The timeout for each poll should be substantially longer than the poll rate (the default time-
out of 4 seconds is appropriate) to ensure that the timeout is longer than the likely packet life-
time in the network. This is necessary because the protocol only has a one bit sequence num-
ber.

The purpose of the console carrier is to provide the common ASCII local console function via
a simple low level network protocol. Character stream data is sent by the console carrier re-
quester and any console output is returned in a character stream by the console carrier server.
The requester should assume that the server will echo input (characters received from the re-
quester) in the same manner as local console data; therefore the requester should not echo char-
acters locally.

PROCEDURE LAN.CarrierRequester (circ: POINTER TO Circuit)
 RAISES {InvalidResponse, DataLinkError, Unavailable, Timeout};
VAR op: POINTER TO Operation;
 buff: POINTER TO Buffer;
 seq, cflags, rseq: INTEGER;
 target: LANAddress;
BEGIN
 DLI.Alloc (op, buff); (* Allocate necessary resources, if available *)
 TRY

 op^.Op := ConsoleCarrier;
 op^.CircPtr := circ;
 op^.Address := NullAddress;
 op^.Version := Unknown;
 LOOP

 IF op^.Addresses = { }
 THEN RAISE (Timeout) (* No response from anything *)
 END;
 target := « select and remove an address from op^.Addresses »;
 LAN.BuildReqID (buff, target);
 TRY

 DLI.Transact (op, buff, buff);
 op^.Address := target; (* If it works, that’s the target address *)
 EXIT

 EXCEPT
 | Timeout: (* If no answer, keep on trying addresses *)
 END

 END;
 IF « console carrier not supported »
 THEN RAISE (Unavailable)
 END;
 FOR i := 1 TO RetransmitMax
 DO

 LAN.BuildReserve (buff, op^.Address); (* Try to reserve console *)
 DLI.Send (op, buff, op^.Version);

80 Operation

 System.Wait (« a few milliseconds »);
(* Wait to allow target to make the reservation and update the
System ID it sends to reflect the reservation *)

 LAN.BuildReqID (buff, op^.Address); (* Check the result *)
 DLI.Transact (op, buff, buff);
 IF « console reserved by circ^.DataLinkAddress »
 THEN EXIT
 ELSEIF « console reserved »
 THEN RAISE (Unavailable) (* Someone else got it first *)
 END;
 IF i = RetransmitMax
 THEN RAISE (Timeout)
 END

 END;
 seq := 1; (* Initial sequence number *)
 LOOP

 IF « user is finished with console carrier »
 THEN EXIT (* Leave the polling loop *)
 System.Wait (« poll delay »); (* See note above *)
 LAN.BuildConsolePoll (buff, op^.Address, seq);
 DLI.Transact (op, buff, buff);
 cflags := buff^.Data[1]; (* Control flags from console response message *)
 rseq := cflags MOD 2; (* Received sequence number *)
 IF rseq = seq
 THEN (* Valid response to our poll *)

 seq := (seq + 1) MOD 2; (* Update the transmit sequence number *)
 « send console response data to user »;

(* This queues the data, it doesn’t wait for it to be handled. If
there is no room for more, discard the data *)

 IF (cflags DIV 2) MOD 2 = 1
 THEN (* Data lost flag(s) set *)

 « send data lost error indication(s) to user »
 END;
 « get new console command data from user »

 END
 END;
 FOR i := 1 TO RetransmitMax
 DO

 buff^.Length := 1;
 buff^.Destination := op^.Address;
 buff^.Data[0] := ReleaseConsole;
 DLI.Send (op, buff, op^.Version) (* Release the console *)
 System.Wait (« a few milliseconds »);

(* Wait to allow target to release the reservation and update
the System ID it sends to reflect the release *)

 LAN.BuildReqID (buff, op^.Address); (* Check the result *)
 DLI.Transact (op, buff, buff);
 IF NOT « console reserved by circ^.DataLinkAddress »
 THEN EXIT (* Leave loop if not reserved, or reserved by another *)
 END

 END
 FINALLY

 DLI.Free (op, buff)
 END
END LAN.CarrierRequester;

LAN.BuildReqID (buff: POINTER TO Buffer; target: LANAddress);
 buff^.Length := 4;

4.11: MOP protocol primitives 81

 buff^.Destination := target;
 buff^.Data[0] := RequestID;
 buff^.Data[1] := 0; (* reserved field *)
 DLI.PutInteger (buff, 2, « a suitable non-zero receipt number »)
END LAN.BuildReqID;

LAN.BuildReserve (buff: POINTER TO Buffer; target: LANAddress);
 buff^.Length := 9;
 buff^.Destination := target;
 buff^.Data[0] := ReserveConsole;
 « load verification value into bytes 1–8 »
END LAN.BuildRereserve;

LAN.BuildConsolePoll (buff: POINTER TO Buffer; target: LANAddress, seq: INTEGER);
 buff^.Destination := target;
 buff^.Data[0] := ConsoleCommand;
 IF « break requested by user »
 THEN buff^.Data[1] := seq+2
 ELSE buff^.Data[1] := seq
 END;
 « load user console command data, if any, into bytes 2 and up »;
 buff^.Length := 2 + « length of command data »
END LAN.BuildConsolePoll;

4.11 MOP protocol primitives

The algorithms presented in this section perform the basic protocol message exchanges:
transmit, request/response with or without retry.

4.11.1 Send message

This procedure is the common interface to the data link dependent transmit function. It
transmits a single message. It returns when the data link is finished with the buffer (which
may or may not imply successful transmission of the message).

PROCEDURE DLI.Send (op: POINTER TO Operation; msg: POINTER TO Buffer, ver: MOPVersion)
 RAISES {DLD.CommonExceptions};
BEGIN
 DLD.Transmit (op, msg, ver) ; (* Issue the Transmit request *)
 LOOP

 TRY
 DLD.TransmitPoll (op, msg); (* Check if transmit has finished *)
 RETURN (* It has... *)

 EXCEPT
 | NotComplete: (* Keep going if not done yet *)
 END

 END
END DLI.Send;

4.11.2 Receive message with timeout

This procedure is the common interface for receiving a message. It attempts to obtain a mes-
sage from the receive dispatcher. If a message is received within the specified timeout period,
that message is returned. Otherwise, an exception is generated when the timeout period has
expired.

82 Operation

This procedure is used by a thread which is processing a particular MOP operation. In the
model used here, the receive dispatcher dispatches received packets, based on data link enve-
lope, protocol ID, remote data link address (for LANs), and MOP message code, to the appropri-
ate operation thread. As a result, this procedure returns only “appropriate” messages. Refer to
the receive dispatcher algorithms (Section 4.12) for more detail.

Note that receipt of a message establishes the remote station address and MOP version
number to be used for the current operation.

PROCEDURE DLI.Receive (op: POINTER TO Operation; VAR msg: POINTER TO Buffer;
 tmo: Time; ver: MOPVersion)
 RAISES {Timeout};
BEGIN
 StartTimer (op^.Timeout, tmo); (* Start the receive timeout *)
 LOOP

 IF Expired (op^.Timeout) (* Check for timer expiry *)
 THEN

 RAISE (Timeout)
 END;
 IF « a message was received from the receive dispatcher »
 THEN

 StopTimer (op^.Timeout); (* Cancel the timer *)
 msg := « pass the buffer pointer »;
 op^.Address := buff^.Source; (* We’re now talking to this address *)
 op^.Version := « version of received message »;
 RETURN (* Return with the message *)

 END
 END
END DLI.Receive;

When the processing of the receive buffer is complete, it is released by a call to the Receive-
Done routine.

PROCEDURE DLI.ReceiveDone (buff: POINTER TO Buffer)
BEGIN
 « return the buffer to the buffer pool »
END DLI.ReceiveDone;

4.11.3 Perform a single request-response exchange attempt

This procedure is used to perform a single attempt at a request-response exchange. If the
response to the request is received within the timeout period, that response is returned; other-
wise an exception is raised.

The basic request-response exchange needs as one of its inputs the MOP version number to
use, which indicates which data link envelope (Ethernet or IEEE 802.2) will be used on LANs.

PROCEDURE DLI.ReqResp (op: POINTER TO Operation; smsg: POINTER TO Buffer;
 VAR rmsg: POINTER TO Buffer; tmo: Time, ver: MOPVersion)
 RAISES {Timeout};
BEGIN
 DLI.Send (op, smsg, ver); (* Send the request *)
 DLI.Receive (op, rmsg, tmo, ver) (* Wait for response or timeout *)
END DLI.ReqResp;

4.11.4: “Transact” request-response exchange with retry 83

4.11.4 “Transact” request-response exchange with retry

This procedure performs a request-response exchange with a limited number of retries. The
retry limit is given by the architectural constant RetransmitMax. The time between retries is
given by the Circuit characteristic Retransmit Timer. If the request does not succeed within the
limit of the number of retries, an exception is raised.

This procedure also selects the appropriate MOP protocol version to use if the version has
not yet been determined. This is done by performing one attempt using version 4, then an at-
tempt using version 3, and so on alternately until either a response arrives or the retry limit is
exceeded. In this case, the retry limit is in effect doubled, i.e., an attempt using version 4 plus
an attempt using version 3 counts for a single retry. Version 4 is normally tried first, but if an
implementation has some reason to expect that version 3 is more likely to be correct, it would
make sense to begin with that version. As an optimization, implementations may try both ver-
sions simultaneously. For some protocol exchanges (e.g., Loop) care must be taken not to con-
fuse the replies; the receipt number in the message can be used to do this.

PROCEDURE DLI.Transact (op: POINTER TO Operation; smsg: POINTER TO Buffer;
 VAR rmsg: POINTER TO Buffer)
 RAISES {Timeout};
VAR tries: INTEGER;
BEGIN
 FOR tries := 1 TO RetransmitMax
 DO

 IF op^.Version = Unknown (* If we don’t know the protocol version yet *)
 THEN

 (* If we don’t know the version, try V4, then V3; do these two steps repeatedly *)
 TRY

 DLI.ReqResp (op, smsg, rmsg, op^.CircPtr^.RetransmitTimer, V4);
 RETURN (* Return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END;
 TRY

 DLI.ReqResp (op, smsg, rmsg, op^.CircPtr^.RetransmitTimer, V3);
 RETURN (* Return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 ELSE (* Version is known, use it *)
 TRY

 DLI.ReqResp (op, smsg, rmsg, op^.CircPtr^.RetransmitTimer, op^.Version);
 RETURN (* If it worked, return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 END
 END;
 RAISE (Timeout)
END DLI.Transact;

4.11.5 Request-response with infinite retry for Request Program

This procedure performs a request-response exchange with unlimited retries similar to the
one shown above for DLI.MustTransact. The one shown here is intended for use with the
Request Program message. Instead of retrying at a fixed rate, the retries are done in short
bursts; within a burst, retries are spaced by the Circuit characteristic Retransmit Timer. If the

84 Operation

protocol version number to be used is not known, then the burst consists of a number of V4 mes-
sages first, followed by V3 messages. This ensures that the Requester will not unintentionally
fall back to V3 protocol if a message is lost or the server is slow in responding. As with the
other request/response exchanges, an implementation may start with V3 and try V4 next if it
has reason to expect V3 to be likely to be the right version. As an optimization, implementa-
tions may try both versions simultaneously.

The bursts in turn are spaced according to a “Backoff” timer, which increases as the number
of retries increases. To help reduce the problem of many clients transmitting requests in lock-
step, the actual delay between bursts has a “random jitter” applied to it, which varies the delay
by ± 25% from the backoff value. The random number generator used to control sending of pe-
riodic SysID messages can be used for this purpose.

The procedure returns only on successful completion of the exchange.

Note:
Since the retransmissions within the burst are separated by Retransmit Timer (4
seconds by default) and the initial value of the backoff timer is equal to that,
each node requesting load service can contribute up to 0.25 packets/second of
load on the load server. Under certain conditions, such as restoration of power
to a significant size LAN, the number of nodes requesting load service may be
substantial. Therefore it is very important for load servers to process Request
Program messages efficiently.

In large networks, there typically will be a number of load servers, each of
which is responsible for loading a subset of all the load clients on the LAN. This
will help performance when there are many requests, but only if the servers can
dismiss requests from clients that they are not set up to load in a very short
time. Therefore, implementations should be designed to be able to dismiss re-
quests within a few milliseconds.

PROCEDURE DLI.BackoffTransact (op: POINTER TO Operation; smsg: POINTER TO Buffer;
 VAR rmsg: POINTER TO Buffer);
VAR backofftime, tries: INTEGER;
 tmo: Time;
BEGIN
 backofftime := op^.CircPtr^.RetransmitTimer;

(* Initialize backoff *)
 LOOP

 IF op^.Version = Unknown (* If we don’t know the protocol version yet *)
 THEN

 (* If we don’t know the version, try a burst of V4, then a burst of V3 *)
 FOR tries := 1 TO BurstSize (* Do a burst *)

 TRY
 DLI.ReqResp (op, smsg, rmsg, op^.CircPtr^.RetransmitTimer, V4);
 RETURN (* Return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 END;
 FOR tries := 1 TO BurstSize (* Do a burst *)

 IF tries = BurstSize
 THEN

 tmo := backofftime * (0.75 + 0.5 * Random ())
(* On last try of a burst, wait the backoff time *)

 ELSE
 tmo := op^.CircPtr^.RetransmitTimer

 END;
 TRY

4.11.6: Enable and disable SAP address for XID/TEST requester 85

 DLI.ReqResp (op, smsg, rmsg, tmo, V3);
 RETURN (* Return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 END
 ELSE

 FOR tries := 1 TO BurstSize (* Do a burst *)
 IF tries = BurstSize
 THEN

 tmo := backofftime * (0.75 + 0.5 * Random ())
(* On last try of a burst, wait the backoff time *)

 ELSE
 tmo := op^.CircPtr^.RetransmitTimer

 END;
 TRY

 DLI.ReqResp (op, smsg, rmsg, tmo, op^.Version);
 RETURN (* If it worked, return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 END
 END;
 backofftime := MIN (backofftime * 2, MaxBackoff)

 END
END DLI.BackoffTransact;

4.11.6 Enable and disable SAP address for XID/TEST requester

The following procedures enables and disable a SAP address on the port used by the Test or
Query Requester. The CSMA/CD and FDDI data link architectures support the sending of XID
and TEST frames only on ports that are opened for User Supplied LLC. A port of that type is
opened when the circuit is enabled (see Section 4.16.1). Only the CSMA/CD data link requests
are shown here; the ones for FDDI are identical.

PROCEDURE LAN.EnableSAP (port: PortID; ssap: SAPAddress);
BEGIN
 CSMACD.EnableSAP (port,ssap); (* Enable the specified SAP address *)
END LAN.EnableSAP;

PROCEDURE LAN.DisableSAP (port: PortID; ssap: SAPAddress);
BEGIN
 CSMACD.DisableSAP (port,ssap); (* Disable the specified SAP address *)
END LAN.DisableSAP;

4.11.7 Perform an XID or TEST exchange

The procedures below handle the data link service interface calls for the Test and Query Re-
quester. For simplicity, only the CSMA/CD calls are shown; if the data link being used is FDDI,
then the corresponding FDDI service interface calls would be used (which take the same set of
arguments).

These procedures are essentially the same as the common MOP Transact and ReqResp pro-
cedures. The only functional difference is that they exchange LLC control messages rather
than data messages. In addition, the receive processing deals with arriving XID and TEST
command frames, since that is required by the IEEE 802.2 LLC standard. (This is normally a
function of the data link layer, but when a port is open in User Supplied LLC mode, those

86 Operation

frames are delivered to the user and need to be handled. The actual processing is not shown;
refer to the IEEE 802.2 standard for details.)

PROCEDURE LAN.LLCTransact (op: POINTER TO Operation; buff: POINTER TO Buffer; LLCFC: Byte)
 RAISES {Timeout};
VAR tries: INTEGER;
BEGIN
 FOR tries := 1 TO RetransmitMax
 DO

 TRY
 LAN.LLCReqResp (op, buff, LLCFC);
 RETURN (* If it worked, return to caller *)

 EXCEPT
 | Timeout: (* Keep going if no answer received *)
 END

 END;
 RAISE (Timeout)
END LAN.LLCTransact;

PROCEDURE LAN.LLCReqResp (op: POINTER TO Operation;
 VAR msg: POINTER TO Buffer; LLCFC: Byte);
 RAISES {Timeout};
VAR i: INTEGER;
 detail: CSMACD.ReceiveErrorDetail;
 src, dest: LANAddress;
 form: CSMACD.FormatAndMux;
 b: BOOLEAN;
 fcs: CSMACD.FCSValue;
BEGIN
 LAN.LLCSend (op, msg); (* Send the request *)
 StartTimer (op^.Timeout, op^RetransmitTimer);
 LOOP

 CSMACD.Receive (op^.CircPtr^.LLCport, FALSE, msg, i)
 LOOP

 IF Expired (op^.Timeout)
 THEN

 CSMACD.ReceiveAbort (op^.CircPtr^.LLCport)
 RAISE (Timeout)

 END;
 TRY

 CSMACD.ReceivePoll (op^.CircPtr^.LLCport, detail, dest, src, form, msg, i, b, fcs);
 EXIT (* Receive completed, handle it *)

 EXCEPT
 | NotComplete: (* Keep going if nothing received yet *)
 END

 END;
 IF msg^.Data[1] MOD 2 = 0 (* If it’s a Command frame *)
 THEN

 CASE msg^.Data[2] OF (* Dispatch on the LLC FC field *)
 LLCTEST: (* TEST *)

 CSMACD.TestResponse (op^.CircPtr^.LLCport, msg)
 | LLCXID: (* XID *)

 CSMACD.XIDResponse (op^.CircPtr^.LLCport, msg)
 | ELSE

 (* Ignore any other frames *)
 END

 ELSEIF msg^.Data[2] = LLCFC
 THEN (* If a response, is this the one we’re waiting for? *)

4.12: Receive dispatchers 87

 StopTimer (op^.Timeout); (* Cancel the receive timeout *)
 RETURN (* ... and we’re done *)

 END
 END
END LAN.LLCReqResp;

PROCEDURE LAN.LLCSend (op: POINTER TO Operation; msg: POINTER TO Buffer);
VAR form: CSMACD.FormatAndMux;
BEGIN
 form.format := IEEE;
 CSMACD.Transmit (op^.CircPtr^.LLC, op^.Address, op^.CircPtr^.DataLinkAddress, form, msg);
 LOOP

 TRY
 CSMACD.TransmitPoll (op^.CircPtr^.LLC, msg);
 EXIT

 EXCEPT
 | NotComplete: (* Keep going if not done yet *)
 END

 END
END LAN.LLCSend;

4.12 Receive dispatchers

The receive dispatcher examines packets received from the data link layer and dispatches
them to the appropriate processing thread. The rules by which the correct thread is chosen de-
pend on the data link type. The sections below define the receive dispatcher algorithms in de-
tail.

4.12.1 Receive dispatcher for point to point data links

In the case of point to point data links, the dispatching decision is based simply on the MOP
message function code (the first byte of the MOP message). If there is a processing thread wait-
ing for the message (i.e., it is in the DLI.Receive routine) then it is given the message. If not,
then the message is ignored.

The dispatching rules are as follows:

1. If the message is a Looped Data message, it goes to the loop requester.

2. If the message is a Loop Data message, and the loop requester is active on the circuit,
the message goes to the loop requester. If not, it goes to the loop server. (The reason for
this peculiar rule is that Loop Data messages may be sent out by a loop requester and
be looped back by a passive loopback connector. For that case they have to be treated as
responses.)

3. If the message is a Memory Load, Memory Load with Transfer Address, or Parameter
Load with Transfer Address message, it goes to the load requester.

4. If the message is a Request Program or Request Memory Load message, it goes to the
load server.

5. If the message is a Boot message, it goes to the console server.

6. If the message is a Request Dump Data or Dump Complete message, it goes to the
dump requester.

88 Operation

7. If the message is a Request Dump Service or Memory Dump Data message, it goes to
the dump server.

8. Any other message, including a message with undefined message function codes, is qui-
etly ignored.

4.12.2 Receive dispatcher for LAN data links

In the case of LAN data links, the dispatching decision can be based on a number of factors:

• MOP message function code (the first byte of the MOP message)

• Protocol Identifier (Protocol Type for Ethernet format messages), or DSAP address in
the case of XID and TEST responses

• Source address

• MOP version (as implied by the data link envelope: Ethernet format packets are V3,
802.2 format packets are V4)

If there is a processing thread waiting for the message (i.e., it is in the DLI.Receive routine)
then it is given the message. If not, then the message is ignored.

When the message pertains to an operation that is in progress (as opposed to one just being
initiated), the search for a matching processing thread includes a comparison of the message
source address with the operation’s remote station address. In those cases the version number
of the message is also checked against what was expected; if the two do not match the message
is quietly ignored.

When the message pertains to an operation that is just being initiated, reception of a re-
sponse establishes the remote station address and version for this operation. (See DLI.Receive,
Section 4.11.2).

The dispatching rules are as follows:

1. If the Protocol Identifier is the Loop Protocol ID:

a. If the message is a Reply message, it goes to the loop requester.

Note: it is not correct to check the message source address against the address of
the loop target in this case, since the last hop of the loop may have been an assis-
tant. One solution is to check against either the target address or the assistant
address depending on the assistance type; another approach is not to permit multi-
ple concurrent loop requester operations on the same circuit.

b. If the message is a Forward Data message, it goes to the loop server.

2. If the Protocol Identifier is the Load Protocol ID:

a. If the message is an Assistance Volunteer message, it goes to the load requester or
the dump requester.

(Presumably the load requester and dump requester are never simultaneously ac-
tive, otherwise it would be impossible to decide which of the two receives the Assis-
tance Volunteer message.)

b. If the message is a Memory Load, Memory Load with Transfer Address, or Pa-
rameter Load with Transfer Address message and the message source address
matches, the message goes to the load requester.

4.12.2: Receive dispatcher for LAN data links 89

Special case: if a load of the Secondary Loader is being requested from the Load
Assistance multicast address, then the address check is omitted. (For the Secon-
dary Loader, the server sends the data immediately rather than sending an Assis-
tance Volunteer message first.)

c. If the message is a Request Program, it goes to the load server. If there is a load
server thread waiting for a Request Program message from this remote station
(i.e., because it is processing a Load directive addressed to that station) the mes-
sage is delivered to that thread.

d. If the message is a Request Memory Load message and the message source ad-
dress matches, the message goes to the corresponding load server.

e. If the message is a Request Dump Data or Dump Complete message and the mes-
sage source address matches, the message goes to the dump requester.

f. If the message is a Request Dump Service message, it goes to the dump server.

g. If the message is a Memory Dump Data message and the message source address
matches, it goes to the corresponding dump server.

3. If the Protocol Identifier is the Console Protocol ID:

a. If the message is a Request System ID, Request Counters, Reserve Console, or
Boot message, it goes to the console server.

b. If the message is a Console Command or Release Console message and the mes-
sage source address matches the circuit console user address, the message goes to
the console server.

c. If the message is a System ID, CSMA/CD Counters, Other Counters, or Console
Response message and the message source address matches, the message goes to
the corresponding console requester.

d. If the message is a System ID message, it goes to the configuration monitor.

Note:
The two rules above are somewhat in conflict since a System ID message
could pass both checks (if it comes from the console carrier target and the
configuration monitor function is active). In that case, the message could
be passed to both functions, or alternatively the periodic System ID mes-
sage (which is sent to the Console multicast address and has a receipt
number of zero) could go to the configuration monitor and the other to the
Console Requester.

4. If the message is an 802.2 TEST response message and the message source address
matches, the message goes to the corresponding Test requester.

5. If the message is an 802.2 XID response message and the message source address
matches, the message goes to the corresponding Query requester.

6. Any other message, including a message with an undefined message type code, is qui-
etly ignored.

Note that MOP has two open data link ports per circuit (or more when doing a Test or Query
directive), due to the way the data link layer abstract service interface is defined. The distinc-
tion of which port carried the message is ignored in the rules above.

90 Operation

4.13 DDCMP specific algorithms

The following procedures specify the data link dependent details of using DDCMP data links
with MOP.

The DDCMP architecture does not have a formal service interface definition as the other
data link architectures do. The code below is written as if such interfaces did exist. The intent
of each interface call is clarified by context and comments.

4.13.1 Exclusive maintenance mode

The DDCMP data link is unique among the data links supported by MOP in that it has “ex-
clusive maintenance”. This means that the data link service needed by MOP is available from
DDCMP only when the normal (sequential, connection oriented) service is not active. All other
data links allow both services to be used concurrently. Because of this property, additional
steps are needed in the DDCMP specific algorithms to force the data link into the proper state.

Since the DDCMP spec does not have a formally defined service interface, the algorithms be-
low use an assumed set of services. In particular:

• The type of service desired (in this case, maintenance mode) is stated on the Open call.

• Open and Close work independent of the current mode.

• The receive calls work independent of the current mode, but the receive will not com-
plete until the data link is in maintenance mode and a maintenance mode message is
received. Any normal mode traffic is invisible.

The DDCMP data link layer enters maintenance mode for two reasons:

1. A request is made to enter maintenance mode via the client interface. Subsequent
transmit requests by that client are done as DDCMP Maintenance format messages.

2. A DDCMP Maintenance Mode message is received.

When DDCMP enters maintenance mode, normal (connection oriented) service is termi-
nated. To restore normal mode service, a client using that service (e.g., the Routing layer) must
close and reopen its port.

Synchronization between MOP and any normal mode DDCMP client is not shown here in
detail. In outline, the necessary steps are:

1. When initiating a request (e.g., from the Dump Client), MOP must tell DDCMP to enter
maintenance mode. The circuit remains in maintenance mode until the operation is fin-
ished, at which time it can be restarted in normal mode.

2. When responding to a requests (e.g., in the Load Server), DDCMP has entered mainte-
nance mode due to the receipt of a Maintenance format message. The circuit remains in
maintenance mode until the operation is finished. It may then be restarted in normal
mode.

4.13.2 Open

The Open procedure opens a port for MOP on the circuit, and sets up all the necessary oper-
ating parameters.

PROCEDURE DLD.DDCMP_Open (circ: POINTER TO Circuit)

4.13.3: Close 91

 RAISES {DLD.CommonExceptions}
VAR portname: LocalEntityName; (* Holds returned PortName *)
BEGIN
 DDCMP.OPEN (circ^.Name, (* Use our identifier for “name” *)

 circ^.LinkName, (* “Station” to open *)
 Maintenance, (* Make this a “Maintenance” type port *)
 262, (* Minimum acceptable buffer size *)
 portname, (* Scratch variable to receive port name *)
 circ^.mopport, (* Return port ID here *)
 circ^.SDUsize) (* Buffer size available on this port *)

END DLD.DDCMP_Open;

4.13.3 Close

The Close procedures closes the MOP port on the circuit that was previously opened by the
Open procedure.

PROCEDURE DLD.DDCMP_Close (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
BEGIN
 DDCMP.CLOSE (circ^.mopport); (* Call data link to close the port *)
 circ^.mopport := NIL
END DLD.DDCMP_Close;

4.13.4 Transmit functions

The following are the transmit related data link specific functions for the DDCMP data link.

PROCEDURE DLD.DDCMP_Transmit (op: POINTER TO Operation; msg: POINTER TO Buffer;
 ver: MOPVersion) RAISES {DLD.CommonExceptions}
BEGIN
 DDCMP.Transmit (op^.CircPtr^.mopport, msg)
END DLD.DDCMP_Transmit;

PROCEDURE DLD.DDCMP_TransmitPoll (op: POINTER TO Operation; msg: POINTER TO Buffer)
 RAISES {DLD.CommonExceptions}
BEGIN
 DDCMP.TransmitPoll (op^.CircPtr^.mopport, msg)
END DLD.DDCMP_TransmitPoll;

4.14 HDLC specific algorithms

The following procedures specify the data link dependent details of the operation of MOP
over the HDLC data link. Unlike DDCMP, the HDLC data link supports “concurrent” mainte-
nance operation, i.e., MOP can use the data link independent of other users of the data link.
This is done by using the Unsequenced Data service of HDLC, which offers a datagram commu-
nication mechanism independent of the sequenced (virtual circuit) data service. (If a node
needs only MOP, for example in primitive state, it suffices to implement just the unsequenced
service of the HDLC data link, and omit the sequenced service support entirely.)

Detailed descriptions of the HDLC data link services used in this section may be found in the
HDLC Data Link architecture specification.

92 Operation

4.14.1 Open

The Open procedure opens a port for MOP on the circuit, and sets up all the necessary oper-
ating parameters.

PROCEDURE DLD.HDLC_Open (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
VAR portname: LocalEntityName; (* Holds returned PortName *)
BEGIN
 HDLC.OPEN (circ^.Name, (* Use our identifier for “name” *)

 circ^.LinkName, (* “Station” to open *)
 Unsequenced, (* Ask for unsequenced service *)
 MOPProtocolID, (* Use the HDLC MOP protocol ID *)
 262, (* Minimum acceptable buffer size *)
 portname, (* Scratch variable to receive port name *)
 circ^.mopport, (* Return port ID here *)
 circ^.SDUsize) (* Buffer size available on this port *)

END DLD.HDLC_Open;

4.14.2 Close

The Close procedures closes the MOP port on the circuit that was previously opened by the
Open procedure.

PROCEDURE DLD.HDLC_Close (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
BEGIN
 HDLC.CLOSE (circ^.mopport); (* Call data link to close the port *)
 circ^.mopport := NIL
END DLD.HDLC_Close;

4.14.3 Transmit functions

The following are the transmit related data link specific functions for the HDLC data link.
Note that the Transmit is done using the Unsequenced mode of HDLC.

PROCEDURE DLD.HDLC_Transmit (op: POINTER TO Operation; msg: POINTER TO Buffer;
 ver: MOPVersion) RAISES {DLD.CommonExceptions}
BEGIN
 HDLC.TransmitUnsequenced (op^.CircPtr^.mopport, msg)
END DLD.HDLC_Transmit;

PROCEDURE DLD.HDLC_TransmitPoll (op: POINTER TO Operation; msg: POINTER TO Buffer)
 RAISES {DLD.CommonExceptions}
BEGIN
 HDLC.TransmitPollUnsequenced (op^.CircPtr^.mopport, msg)
END DLD.HDLC_TransmitPoll;

4.15 LAPB specific algorithms

This section describes the data link specific aspects of using the LAPB data link. Since
LAPB is a variant of HDLC, there is a lot of similarity with the HDLC section. There are some
differences to account for the different service interfaces of the two data links.

4.15.1: Open 93

LAPB is normally used as the data link protocol in connections to the X.25 public packet
switched network. MOP obviously has no place in such connections. Therefore, on LAPB cir-
cuits MOP is only used for loop testing; this should only be done when the line has previously
been set into some form of loopback mode or otherwise has been disconnected from the public
network.

4.15.1 Open

The Open procedure opens a port for MOP on the circuit, and sets up all the necessary oper-
ating parameters.

PROCEDURE DLD.LAPB_Open (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
VAR portname: LocalEntityName; (* Holds returned PortName *)
BEGIN
 LAPB.OPEN (circ^.Name, (* Use our identifier for “name” *)

 circ^.LinkName, (* “Station” to open *)
 Unsequenced, (* Ask for unsequenced service *)
 262, (* Minimum acceptable buffer size *)
 portname, (* Scratch variable to receive port name *)
 circ^.mopport, (* Return port ID here *)
 circ^.SDUsize) (* Buffer size available on this port *)

END DLD.LAPB_Open;

4.15.2 Close

The Close procedures closes the MOP port on the circuit that was previously opened by the
Open procedure.

PROCEDURE DLD.LAPB_Close (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
BEGIN
 LAPB.CLOSE (circ^.mopport); (* Call data link to close the port *)
 circ^.mopport := NIL
END DLD.LAPB_Close;

4.15.3 Transmit functions

The following are the transmit related data link specific functions for the LAPB data link.
Note that the Transmit is done using the Unsequenced mode of LAPB.

PROCEDURE DLD.LAPB_Transmit (op: POINTER TO Operation; msg: POINTER TO Buffer;
 ver: MOPVersion) RAISES {DLD.CommonExceptions}
BEGIN
 LAPB.TransmitUnsequenced (op^.CircPtr^.mopport, msg)
END DLD.LAPB_Transmit;

PROCEDURE DLD.LAPB_TransmitPoll (op: POINTER TO Operation; msg: POINTER TO Buffer;
 ver: MOPVersion) RAISES {DLD.CommonExceptions}
BEGIN
 LAPB.TransmitPollUnsequenced (op^.CircPtr^.mopport, msg)
END DLD.LAPB_TransmitPoll;

94 Operation

4.16 CSMA/CD specific algorithms

The following procedures specify the data link dependent details of the operation of MOP
over the CSMA/CD (Ethernet and IEEE 802.3) data link.

The CSMA/CD service procedures called (module name CSMACD) are defined in the services
chapter of the CSMA/CD Data Link architecture. For convenience, we will treat them as proce-
dures that signal any errors (rather than as functions that return a value indicating success or
failure).

4.16.1 Open

This procedure shows how MOP sets up the data link ports for its use. This is done when
MOP begins to perform its tasks. The equivalent setup, such as protocol and multicast address
setup, is also necessary whenever the set of enabled functions is changed (via the Enable and
Disable management directives); that detail is not shown here.

PROCEDURE DLD.CSMACD_Open (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
VAR portname: LocalEntityName; (* Holds returned PortName *)
BEGIN
 CSMACD.OpenPort (circ^.Name, (* Use our identifier for “name” *)

 circ^.LinkName, (* “Station” to open *)
 Class1, (* Use Class 1 LLC service *)
 TRUE, (* Use “padded” form for Ethernet frames *)
 circ^.mopport, (* Return port ID here *)
 portname); (* Scratch variable to receive port name *)

 CSMACD.EnableProtocolType (circ^.mopport, ConsoleProtocolType);
(* Enable protocol type *)

 CSMACD.EnableProtocolID (circ^.mopport, ConsoleProtocolID);
(* and corresponding Protocol ID *)

 IF LoadServer IN circ^.Functions OR (* If the Load/Dump functions are enabled... *)
 LoadClient IN circ^.Functions OR
 DumpServer IN circ^.Functions OR
 DumpClient IN circ^.Functions (* ... then its Protocol Type is enabled *)

 THEN
 CSMACD.EnableProtocolType (circ^.mopport, LoadProtocolType);
 CSMACD.EnableProtocolID (circ^.mopport, LoadProtocolID)

 END;
 IF LoadServer IN circ^.Functions OR (* If the Load/Dump server is enabled... *)

 DumpServer IN circ^.Functions (* ... then enable the assistant multicast address *)
 THEN

 CSMACD.EnableMACAddress (circ^.mopport, LoadAssistant)
 END;
 CSMACD.OpenPort (circ^.Name, (* Use our identifier for “name” *)

 circ^.LinkName, (* “Station” to open *)
 Class1, (* Use Class 1 LLC service *)
 FALSE, (* Do not use “padded” form for Ethernet frames *)
 circ^.loopport, (* Return port ID here *)
 portname); (* Scratch variable to receive port name *)

 CSMACD.EnableProtocolType (circ^.loopport, LoopProtocolType);
(* Enable protocol type *)

 CSMACD.EnableProtocolID (circ^.loopport, LoopProtocolID);
(* and corresponding procol ID *)

 (* optionally: *)
 CSMACD.EnableMACAddress (circ^.loopport, LoopAssistant)

 (* end *)

4.16.2: Close 95

 CSMACD.OpenPort (circ^.Name, (* Use our identifier for “name” *)
 circ^.LinkName, (* “Station” to open *)
 UserSupplied, (* Need user LLC to issue XID or TEST frames *)
 FALSE, (* "padded" is irrelevant for this port *)
 circ^.LLCport, (* Return port ID here *)
 portname); (* Scratch variable to receive port name *)

 (* Note that we enable no SAP (or anything else) at this time, so this port is for the moment unused *)
 circ^.DataLinkAddress := « the MAC address for this data link »;
 circ^.SDUSize := 1492; (* 802.2 SNAP PDU size *)
END DLD.CSMACD_Open;

4.16.2 Close

The Close procedures closes the ports on the circuit that were previously opened by the Open
procedure.

PROCEDURE DLD.CSMACD_Close (circ: POINTER TO Circuit)
 RAISES {DLD.CommonExceptions}
BEGIN
 CSMACD.Close (circ^.loopport); (* Call data link to close the loop port *)
 circ^.loopport := NIL;
 CSMACD.Close (circ^.mopport); (* ... and the other port *)
 circ^.mopport := NIL
END DLD.CSMACD_Close;

4.16.3 Transmit functions

The following are the transmit related data link specific functions for the CSMA/CD data
link. The major issue here is the selection of the correct SNAP Protocol ID or Ethernet Protocol
Type, according to the protocol version being used and the specific message being transmitted.

PROCEDURE DLD.CSMACD_Transmit (op: POINTER TO Operation; msg: POINTER TO Buffer;
 ver: MOPVersion) RAISES {DLD.CommonExceptions}
BEGIN
 IF ver = V4
 THEN (* Set up the correct Protocol ID *)

 msg^.LANFormat.format := SNAP;
 IF op^.OpType IN {LoopRequester, LoopServer}
 THEN msg^.LANFormat.ProtID := LoopbackProtocolID
 ELSEIF msg^.Data[0] IN {MemLoadTA, DumpComplete, MemLoad, Assistance, RequestDump,

RequestProgram, RequestLoad, RequestDumpService,
DumpData, ParameterLoad}

 THEN msg^.LanFormat.ProtID := LoadProtocolID
 ELSE msg^.LanFormat.ProtID := ConsoleProtocolID
 END

 ELSE (* V3 format, set up correct Protocol Type *)
 msg^.LANFormat.format := Ethernet;
 IF op^.OpType IN {LoopRequester, LoopServer}
 THEN msg^.LANFormat.type := LoopbackProtocolType
 ELSEIF msg^.Data[0] IN {MemLoadTA, DumpComplete, MemLoad, Assistance, RequestDump,

RequestProgram, RequestLoad, RequestDumpService,
DumpData, ParameterLoad}

 THEN msg^.LanFormat.type := LoadProtocolType
 ELSE msg^.LanFormat.type := ConsoleProtocolType
 END

 END;
 msg^.Source := op^.CircPtr^.DataLinkAddress;

96 Operation

 IF op^.OpType IN {LoopRequester, LoopServer}
 THEN

 CSMACD.Transmit (op^.CircPtr^.loopport, msg^.Destination, msg^.Source,
 msg^.LANFormat, msg)

 ELSE
 CSMACD.Transmit (op^.CircPtr^.mopport, msg^.Destination, msg^.Source,

 msg^.LANFormat, msg)
 END
END DLD.CSMACD_Transmit;

PROCEDURE DLD.CSMACD_TransmitPoll (op: POINTER TO Operation; msg: POINTER TO Buffer)
 RAISES {DLD.CommonExceptions}
BEGIN
 IF op^.OpType IN {LoopRequester, LoopServer}
 THEN

 CSMACD.TransmitPoll (op^.CircPtr^.loopport, msg)
 ELSE

 CSMACD.TransmitPoll (op^.CircPtr^.mopport, msg)
 END
END DLD.CSMACD_TransmitPoll;

4.17 FDDI specific algorithms

The FDDI specific algorithms are identical to those specified for CSMA/CD, except that the
service interface calls of the FDDI Data Link architecture specification is used. These offer the
same semantics as the service interface calls of the CSMA/CD Data Link. Note that the maxi-
mum data link SDU size is 1492, even though FDDI allows larger frames. This ensures that
communication across LAN bridges will work.

4.18 Miscellaneous data link independent procedures

The procedures in this section are miscellaneous utility procedures used in the Modula-2-
Plus descriptions of the MOP algorithms. These are independent of the data link being used.

4.18.1 Resource allocation/deallocation

These procedures allocate and deallocate resources used by MOP operation threads.

PROCEDURE DLI.Alloc (VAR op: POINTER TO Operation; VAR buff: POINTER TO Buffer)
 RAISES {InsufficientResources};
BEGIN
 NEW (buff);
 NEW (op);
 « insert the new Operation record in the list of active operations »
END DLI.Alloc;

PROCEDURE DLI.Free (op: POINTER TO Operation; buff: POINTER TO Buffer);
BEGIN
 « remove Operation record from the list of active operations »;
 FREE (buff);
 FREE (op)
END DLI.Free;

4.18.2: Manipulate fields in the buffer contents 97

4.18.2 Manipulate fields in the buffer contents

The procedures below are used in the Modula-2-Plus algorithm descriptions to examine or
load fields in message buffers.

PROCEDURE DLI.GetInteger (buff: POINTER TO Buffer; off: INTEGER) : INTEGER;
 « return the value of the 16-bit integer whose low order byte is at the specified offset, and high order byte

at the byte following that in the buffer. »
END DLI.GetInteger;

PROCEDURE DLI.PutInteger (buff: POINTER TO Buffer; off: INTEGER; value: INTEGER);
 « store the 16-bit integer (value), with low order byte at the specified offset and high order byte at the byte

following that, into the buffer. »
END DLI.PutInteger;

PROCEDURE DLI.GetLong (buff: POINTER TO Buffer; off: INTEGER) : INTEGER;
 « return the value of the 32-bit integer whose low order byte is at the specified offset, and higher order

bytes at the 3 bytes following that in the buffer. »
END DLI.GetLong;

PROCEDURE DLI.PutLong (buff: POINTER TO Buffer; off: INTEGER; value: INTEGER);
 « store the 32-bit integer (value), with low order byte at the specified offset and higher order bytes at the 3

bytes following that, into the buffer. »
END DLI.PutLong;

PROCEDURE DLI.GetAddress (buff: POINTER TO Buffer; off: INTEGER) : LANAddress;
 « return the value of the 6-byte LAN address whost first byte is at the specified offset in the buffer. »
END DLI.GetAddress;

PROCEDURE DLI.PutAddress (buff: POINTER TO Buffer; off: INTEGER; value: LANAddress);
 « store the 6-byte LAN address (value), with its first byte at the specified offset, into the buffer. »
END DLI.PutAddress;

4.18.3 Find a Client record

These are the procedures that find a Client record, i.e., an entry in the Client database.
There are three ways to get an entry:

1. By name — this is simply a search for a Client record whose Name attribute matches
the supplied name. This case applies for management requests where the directive
specifies the name of the Client record to use.

2. By circuit — here we know what circuit is to be used, and we need to find the Client
record to use. This case applies to server functions, which use the Client record to find
out how to respond to a received request message.

Note that it is possible to have multiple matches (more than one Client record satisfies
the search criteria). In that case any of the matching Client records may be used. This
is usually undesirable; the network manager should take care to avoid such client data-
base setups.

There are two variants of lookup by circuit:

a. Lookup by circuit and address — this searches for a Client record whose Circuit at-
tribute points to the circuit in question and, for a LAN, with an Addresses attrib-
ute value that contains the specified address. (For point to point circuits the
match is by Circuit only.)

98 Operation

b. Lookup by circuit and device type — this searches for a Client record whose Circuit
attribute points to the specified circuit and a Device Types attribute that contains
the specified device type. (This variant is not used for point to point circuits.)

PROCEDURE DLI.FindClientByName(cl: SimpleName) : POINTER TO Client
 RAISES {UnrecognizedClient}
BEGIN
 « return a pointer to the Client entity whose Name field equals the name in the cl argument »
END DLI.FindClientByName;

PROCEDURE DLI.FindClientByCircAddr (cir: POINTER TO Circuit; addr: LANAddress)
 : POINTER TO Client;
BEGIN
 « return a pointer to a matching Client entity, or NIL if no such entity exists. »
END DLI.FindClientByCircAddr;

PROCEDURE DLI.FindClientByCircDev (cir: POINTER TO Circuit; dev: DevType) : POINTER TO Client;
BEGIN
 « return a pointer to a matching Client entity, or NIL if no such entity exists. »
END DLI.FindClientByCircDev;

4.18.4 Find a Circuit record

PROCEDURE DLI.FindCircuitByName(cir: SimpleName) : POINTER TO Circuit
 RAISES {UnrecognizedCircuit}
BEGIN
 « return a pointer to the Circuit entity whose Name field equals the name in the cir argument »
END DLI.FindCircuitByName;

4.18.5 Pick a Source SAP address

The Source SAP used in Test and XID requests is selected in an implementation specific
fashion. Unfortunately, there is no standard SAP address assigned for the purpose we need
here. Therefore the SSAP has to be a “locally administered” value. We can’t pick one architec-
turally, since locally administered values are selected by the local network manager, not by
Digital architects. Therefore the only way out is for the implementation to select a value dy-
namically.

Any value is acceptable provided that it is:

1. Not currently in use on the circuit, and

2. An individual SAP (low order bit is zero), and

3. A locally administered SAP (second bit zero), and

4. Not the null SAP (i.e., not the all-zero SAP address)

5. It may also be a good idea to avoid SAP address values that other vendors have archi-
tecturally assigned to their proprietary protocols

PROCEDURE LAN.SelectaSAP (op: POINTER TO Operation) : SAPAddress;
BEGIN
 RETURN « a suitable SAP address »
END LAN.SelectaSAP;

99

Chapter 5

Messages

This chapter defines the binary formats of the protocol messages that support the operation
described in the operation chapter. In order to operate correctly on exclusive maintenance
channels, message identification codes are taken from a single space. Values 16 and 18 are re-
served obsolete values. Some data links have a minimum message size and many of the main-
tenance protocol messages are quite small. Padding must be requested from the particular data
link on the assumption that such a service is provided if needed. The actual size of received
messages is also provided by the Data Link Layer, so that messages with a single variable
length data field need not include a size field.

The following notation is used to describe the messages:

FIELD (LENGTH) : CODING =

Description of field

Where:

FIELD is the name of the field being described.

LENGTH is the length of the field expressed as one of the following:

• The number of 8-bit bytes.

• The notation “C–n” meaning counted image field with n being the maximum length in
8-bit bytes of the image. The first byte of the field specifies the number of bytes in the
remainder of the field. Therefore, the minimum total length of the field is one byte.
The first byte of the field may contain information in addition to the count.

Note that the maximum length includes the one byte field that contains the count.
Therefore, the count byte of a C-n field can have a value in the range 0 to n–1, indicat-
ing 0 to n–1 additional bytes of data follow the count byte.

• The notation “J–n” meaning image field with n being the maximum length in 8-bit bytes
of the image. The image is preceded by sufficient information to compute the length of
the field. Image fields are variable length and may be null (length=0). All 8 bits of each
byte may be used as information bits.

• An asterisk (*), indicating that the field consists of the remainder of the message, i.e.,
the total message length less the length of all of the other fields.

CODING is the representation type used, as follows:

100 Messages

• B — Binary

• BM — Bit map (each bit has independent meaning)

• A — ASCII

• Null — Interpretation depends on data representation

Notes:

• All numeric values are shown in decimal unless otherwise noted.

• Fields are transmitted in the order shown, left to right.

• All fields are transmitted low-order or least significant byte first unless otherwise speci-
fied.

• Bits in a field are numbered from 0 to n where 0 is the low-order or least-significant bit.

• In the packet formats shown below, fields shown in dashed boxes are optional or are
present only in certain cases.

A summary of the defined message codes and the associated MOP functional component and
NI Protocol Type (last two bytes of Protocol ID) is shown in Table 16 below.

5.1: Downline Load messages 101

Table 16: Summary of MOP message codes

5.1 Downline Load messages

The messages described in this section relate to the MOP Load/Dump components, for the
Downline Load service. On LANs, they are sent using the Load/Dump Protocol ID (08–00–2B–
60–01).

0 Memory Load with Transfer Address 60–01 Dump/Load

1 Dump Complete 60–01 Dump/Load

2 Memory Load 60–01 Dump/Load

3 Assistance Volunteer 60–01 Dump/Load

4 Request Memory Dump 60–01 Dump/Load

5 Request ID 60–02 Console

6 Boot 60–02 Console

7 System ID 60–02 Console

8 Request Program 60–01 Dump/Load

9 Request Counters 60–02 Console

10 Request Memory Load 60–01 Dump/Load

11 Counters (CSMA/CD only) 60–02 Console

12 Request Dump Service 60–01 Dump/Load

13 Reserve Console 60–02 Console

14 Memory Dump Data 60–01 Dump/Load

15 Release Console 60–02 Console

16 Reserved

19 Console Response and Acknowledge 60–02 Console

20 Parameter Load with Transfer Address 60–01 Dump/Load

24 Point to Point Loop Data N/A Loop Test

26 Point to Point Looped Data N/A Loop Test

1 LAN Loop Reply 90–00 Loop Test

17 Console Command and Poll 60–02 Console

18 Reserved

2 LAN Loop Forward Data 90–00 Loop Test

21 Counters (other than CSMA/CD) 60–02 Console

5.1.4

5.2.4

5.1.5

5.1.2

5.2.2

5.5.2

5.5.1

5.5.3

5.1.1

5.5.4

5.1.3

5.5.5

5.2.1

5.5.7

5.2.3

5.5.10

5.5.9

5.1.6

5.3.1

5.3.2

5.4.1

5.5.8

5.4.2

5.5.6

Message code Message Name Protocol
Type

Protocol Name Section

102 Messages

5.1.1 Request Program

The Request Program message consists of:

Figure 5: Request Program message format

Where:

CODE (1) : B = The number 8.

DEVICE TYPE (1) : B = The device type at the requesting system. Used by the load server to
search for a client database entry by device type. Defined device types
are found in Appendix A.1.

FORMAT VERSION (1) : B = The protocol format version. For version 4.0, the value is 4.

PROGRAM TYPE (1) : B = The generic type of program being requested. The defined values are
as follows:

Value Meaning
0 Secondary loader
1 Tertiary loader
2 System Image
3 Management image
4 CMIP Script file

This field and all the following can be omitted, in which case the default
for this field is 0. A system image is whatever is to end up in the
requesting system, and could be any type of program. A management
image indicates information that is specific to an individual requesting
system, while the system program in this context refers to a generic
software product that can run in any system of a particular type.

SOFTWARE ID (C–128) : = Identification of the software being requested. Omitted if
PROGRAM TYPE is omitted. The format is the same as defined for the
Boot message (Section 5.5.1). Note that Software ID codes of –1
(standard operating system) and –2 (maintenance system) are
meaningful only for Program Type = 2 (System Image)

PROCESSOR (1) : B = The processor to be loaded. This field is used to distinguish a
communications “front end” processor on a system where it is
independent of the main CPU.

Value Meaning
0 System processor
1 Communication processor

OTHER INFO (*) : = Further information to identify the requesting system. Definition is as
described for the Remote Console System ID message (Section 5.5.3).

The primary use of this field is for the DATA LINK BUFFER SIZE
parameter. Implementations are strongly encouraged to supply this

CODE DEVICE
TYPE

FORMAT
VERSION

PROGRAM
TYPE

SOFTWARE
ID PROCESSOR OTHER

INFO

5.1.2: Assistance Volunteer 103

field, since the load server will otherwise assume a buffer size of 262,
resulting in much reduced performance.

Note: some implementations include the Device Type item in this field.
Since that information is provided already in the DEVICE TYPE field,
including it here is redundant. For compatibility with certain existing
implementations that have different values in the two fields, a Load
Server shall use only the DEVICE TYPE field and not any Device Type
item included in the Other Info field. However, conforming
implementations shall send consistent requests. (The recommended
practice is to send the Device Type only in the Device Type field;
optionally, the Device Type may additionally be sent in the OTHER
INFO field, but it must then be the same value in both places.)

5.1.2 Assistance Volunteer

The Assistance Volunteer message consists of:

Figure 6: Assistance Volunteer message format

Where:

CODE (1) : B = The number 3.

5.1.3 Request Memory Load

The Request Memory Load message consists of:

Figure 7: Request Memory Load message format

Where:

CODE (1) : B = The number 10.

LOAD NUMBER (1) : B = The number of the load segment being requested, as defined for the
Memory Load with Transfer Address message (Section 5.1.4).

RESERVED (1) : B = A reserved byte. Send 0; ignore on receipt.

Note: for compatibility with certain existing implementations, load
servers shall accept Request Memory Load messages where this field is
missing. However, all conforming implementations shall send this
field.

5.1.4 Memory Load with Transfer Address

The Memory Load with Transfer Address message consists of:

CODE

CODE LOAD
NUMBER RESERVED

104 Messages

Figure 8: Memory Load with Transfer Address message format

Where:

CODE (1) : B = The number 0.

LOAD NUMBER (1) : B = The load number for multi-segment loads. This message may be
preceded by Memory Load without transfer address messages. The load
number starts at zero and is incremented for each load message sent in
a loading sequence. The load number is modulo 256. After load
number 255 is load number 0.

LOAD ADDRESS (4) : B = The memory load address (physical) for storage of the data image.

IMAGE DATA (*) : = The image to be stored into computer memory. The form sent can be
machine-dependent, to be defined on an as needed basis. Unless
otherwise defined, each byte represents one memory byte.

TRANSFER ADDRESS (4) : B = The starting memory address of the image just loaded.

Note:
IMAGE DATA or LOAD ADDRESS and IMAGE DATA may be omitted. Valid mes-
sage lengths are 6 (LOAD ADDRESS and IMAGE DATA omitted), 10 (IMAGE
DATA omitted), or greater than 10. IMAGE DATA is present only when loading a
Secondary Loader.

5.1.5 Memory Load

The Memory Load message consists of:

Figure 9: Memory Load message format

Where:

CODE (1) : B = The number 2.

LOAD NUMBER (1) : B = As described for Memory Load with Transfer Address (see Section
5.1.4).

LOAD ADDRESS (4) : B = As described for Memory Load with Transfer Address.

IMAGE DATA (*) : = As described for Memory Load with Transfer Address.

Note:
IMAGE DATA may be omitted. Valid message lengths may be 6 (IMAGE DATA
omitted), or greater than 6. Messages without IMAGE DATA cause nothing to be
loaded; however, the LOAD NUMBER value is still incremented for the next
load.

5.1.6 Parameter Load with Transfer Address

The Parameter Load with Transfer Address message consists of:

CODE LOAD
NUMBER

LOAD
ADDRESS

IMAGE
DATA

TRANSFER
ADDRESS

CODE LOAD
NUMBER

LOAD
ADDRESS

IMAGE
DATA

5.1.6: Parameter Load with Transfer Address 105

Figure 10: Parameter Load with Transfer Address message format

Where:

CODE (1) : B = The number 20.

LOAD NUMBER (1) : B = As described for the Memory Load with Transfer Address message
(Section 5.1.4).

PARAMETERS (*) : = Zero or more parameter entries.

A parameter entry consists of:

Figure 11: Parameter Load message Parameter field format

Where:

PARAMETER TYPE (1) : B = A type code for the parameter information. The values are:

Value Parameter
1 PHASE IV CLIENT NAME
2 PHASE IV CLIENT ADDRESS
3 PHASE IV HOST NAME
4 PHASE IV HOST ADDRESS
5 V3 FORMAT HOST SYSTEM TIME
6 HOST SYSTEM TIME

PARAMETER LENGTH (1) : B = The number of bytes in the PARAMETER VALUE field.

PARAMETER VALUE (J–255) : = A value according to PARAMETER TYPE and
PARAMETER LENGTH. Refer to Appendix G.5 for more detail
on parameters 1–5.

Where:

PHASE IV CLIENT NAME (J–16) : A = ASCII system name target system is to
use for itself.

PHASE IV CLIENT ADDRESS (J–2) : B = Binary system address target system is
to use for itself.

PHASE IV HOST NAME (J–16) : A = ASCII system name of host assigned to
system (for example, host for task loading of core only
systems).

PHASE IV HOST ADDRESS (J–2) : B = Binary system address of host.

V3 FORMAT HOST SYSTEM TIME (10) : B = Segmented binary system time of
host, consisting of:
CENTURY YEAR MONTH DAY HOUR MINUTE
SECOND 100TH TDFH TDFM

where:

CODE LOAD
NUMBER

END
MARKPARAMETERS TRANSFER

ADDRESS

PARAMETER
LENGTH

PARAMETER
VALUE

PARAMETER
TYPE

106 Messages

CENTURY (1) : B = the century base for reckoning the absolute
year. Value is a positive integer (0 through
+127).

YEAR (1) : B = the year of the base century. Value is in the
range 0 through 99.

MONTH (1) : B = the month of the year, starting with January =
1. Value is in the range 1 through 12.

DAY (1) : B = the day of the month. Value is in the range 1
through 31.

HOUR (1) : B = the hour of the day. Value is in the range 0
through 23.

MINUTE (1) : B = the minute of the hour. Value is in the range 0
through 59.

SECOND (1) : B = the second of the minute. Value is in the range
0 through 59.

100TH (1) : B = the number of hundredths of a second. Value is
in the range 0 through 99.

TDFH (1) : B = the hours portion of the Time Differential
Factor. Value is in the range -12 through +13.

TDFM (1) : B = the minutes portion of the Time Differential
Factor. Value is in the range -59 through 59.
The sign of this value must be the same as the
sign of the TDFH value.

HOST SYSTEM TIME (16) : B = The host system time, encoded in Binary
Absolute Time format.

END MARK (1) : B = The number 0.

TRANSFER ADDRESS (4) : B = As described for the Memory Load with Transfer Address
message (Section 5.1.4).

5.2 Upline Dump messages

The messages described in this section relate to the MOP Load/Dump components, for the
Upline Dump service. On LANs, they are sent using the Load/Dump Protocol ID (08–00–2B–
60–01).

5.2.1 Request Dump Service

The Request Dump Service message consists of:

Figure 12: Request Dump Service message format

Where:

CODE (1) : B = The number 12.

DEVICE TYPE (1) : B = As described for the Request Program message.

CODE DEVICE
TYPE

FORMAT
VERSION

MEMORY
SIZE

OTHER
INFOBITS

5.2.2: Request Memory Dump 107

FORMAT VERSION (1) : B = As described for the Request Program message (Section 5.1.1).

MEMORY SIZE (4) : B = The size of physical machine memory. Units are as described for
COUNT in the Request Memory Dump message (Section 5.2.2).

BITS (1) : B = The number 2. Present for compatibility only; ignore on receipt.

OTHER INFO (*) : = Further information to identify the requesting system. Definition is as
described for the Remote Console System ID message (Section 5.5.3).
The only valid INFO TYPE is DATA LINK BUFFER SIZE (401).

Implementations are strongly encouraged to supply this field, since the
dump server will otherwise assume a buffer size of 262, resulting in
much reduced performance.

5.2.2 Request Memory Dump

The Request Memory Dump message consists of:

Figure 13: Request Memory Dump message format

Where:

CODE (1) : B = The number 4.

MEMORY ADDRESS (4) : B = The starting physical memory address for the dump.

COUNT (2) : B = The number of locations to dump. The meaning of the count can be
machine-dependent, to be defined on an as needed basis. Unless
otherwise defined, the count is in bytes.

Note:
This request results in a single Memory Dump Data message. A dump should
not be requested for more data than can be reliably sent in a single reply on the
link used. The maximum data link message length limits the maximum length
for a given link.

5.2.3 Memory Dump Data

The Memory Dump Data message consists of:

Figure 14: Memory Dump Data message format

Where:

CODE (1) : B = The number 14.

MEMORY ADDRESS (4) : B = As described for the Request Memory Dump message (Section
5.2.2).

CODE MEMORY
ADDRESS COUNT

CODE MEMORY
ADDRESS

IMAGE
DATA

108 Messages

IMAGE DATA (*) : = As described for the Memory Load with Transfer Address message
(Section 5.1.4). The length of this field must not exceed the COUNT
specified in the Request Memory Dump message. Note that the field
may be shorter (and may be null).

5.2.4 Dump Complete

The Dump Complete message consists of:

Figure 15: Dump Complete message format

Where:

CODE (1) : B = The number 1.

5.3 Point to Point Loop Test messages

The messages shown in this section are used by the MOP Loop components. They apply only
to Loop operations on point to point data links.

5.3.1 Loop Data Message for point to point links

The Loop Data message for point to point links consists of:

Figure 16: Loop Data message format for point to point links

Where:

CODE (1) : B = The number 24.

RECEIPT (2) : B = The receipt number for the loop request.

DATA (*) : B = The data to be looped back.

5.3.2 Looped Data Message for point to point links

The Looped Data message for point to point links consists of:

Figure 17: Looped Data message format for point to point links

Where:

CODE

CODE RECEIPT DATA

CODE RECEIPT DATA

5.4: LAN Loop Test messages 109

CODE (1) : B = The number 26.

RECEIPT (2) : B = The receipt number from the Loop Data message.

DATA (*) : B = The data from the Loop Data message.

5.4 LAN Loop Test messages

The messages shown in this section are used by the MOP Loop components. They apply only
to Loop operations on LAN data links. The Protocol ID used is the Loopback Protocol ID (08–
00–2B–90–00).

5.4.1 Forward Data message for LANs

The Forward Data message for LAN data links consists of:

Figure 18: Forward Data message format for LAN links

Where:

SKIP COUNT (2) : B = The number of bytes to skip over preceding the CODE field.

CODE (2) : B = The number 2.

ADDRESS (6) : B = The address to which to forward the message.

DATA (*) : B = The data to be interpreted by the station specified by the ADDRESS
field.

5.4.2 Looped Data message for LANs

The Looped Data message (Reply message) for LAN data links consists of:

Figure 19: Looped Data message format for LAN links

Where:

SKIP COUNT (2) : B = The number of bytes to skip over preceding the CODE field.

CODE (2) : B = The number 1.

RECEIPT (2) : B = The receipt number.

DATA (*) : B = The loop test data supplied by the Loop Requester.

5.5 Console messages

The messages described in this section relate to the MOP Console components. On LANs,
they are sent using the Console Protocol ID (08–00–2B–60–02). Note that the Boot message is

CODE ADDRESS DATASKIP
COUNT skipped

CODE RECEIPT DATASKIP
COUNT skipped

110 Messages

in the category of Console messages, even though it is often used in conjunction with a downline
load operation.

5.5.1 Boot

The Boot message consists of:

Figure 20: Boot message format

Where:

CODE (1) : B = The number 6.

VERIFICATION (8) : B = A verification code that must match before the receiving system can
honor the request. Note that there is no wild card value (the value
%x0000000000000000 is used as a default, but has no other special
significance).

PROCESSOR (1) : B = As described for the Request Program message (Section 5.1.1).

Note:
The intent of this field is to specify which processor is to be booted. The state of
the other processor, if any, shall not be disturbed in the process. This allows a
host to boot one component without in the process forcing a complete reinitiali-
zation of other components.

CONTROL (1) : BM = Instructions to the system as to what device to use for the operation.
Values are:

Bit Meaning Value Meaning
0 Boot server 0 System default

1 Requesting system
1 Boot device 0 System default

1 Specified device

Note:
Settings “Requesting system” (bit 0 = 1) and “Specified device” (bit 1 = 1) are
mutually exclusive.

DEVICE ID (C–17) : = The device to use. Present only if CONTROL<Boot-device> = Specified
Device. Interpretation is specific to the receiving system.

SYSTEM SOFTWARE ID (C–128) : = The System software the system is to load (i.e., the value to
send in the Software ID field of the Request Program message that
requests Program Type = System). Software identification consists of:

CODE

SYSTEM
SOFTWARE IDDEVICE

VERIFICATION PROCESSOR CONTROL

SCRIPT
SOFTWARE ID

5.5.2: Request ID 111

Figure 21: Software ID field format

Where:

FORM (1) : B = The general type of software. Values are:

Value Meaning
0 No software id

>0 The length of the ID field
–1 Standard operating system
–2 Maintenance system

ID (J–127) : A = A specific software ID. Present only if FORM > 0. The
interpretation of this ID is specific to the receiving system.

The ID string is required to consist only of the letters A
through Z (hex values 41 through 5A), digits 0 to 9 (hex values
30 through 39), and underscore (hex value 5F). In addition,
Software IDs assigned by Digital must contain one $ sign (hex
24) preceded by the Facility name for the product. Software
IDs assigned by customers shall not contain a $ sign. A Load
Host receiving a Request Program message with a Software ID
field that does not meet this requirement shall ignore the
message.

As an example, the Software ID string can be interpreted as a
filename, with the device name and directory supplied by the
implementation or host installation. The facility prefix
(terminated by the $ sign) used in Digital-defined Software IDs
could be used to identify a subdirectory. For example, the
following mapping could be done:

FAC$XYZ /sys/mop/images/digital/fac/xyz
XYZ /sys/mop/images/other/xyz

SCRIPT SOFTWARE ID (C–128) : = The Script software the system is to load (i.e., the value to
send in the Software ID field of the Request Program message that
requests Program Type = CMIP Script). The format is the same as that
of the System Software ID field, except that Form = –2 (“Maintenance
system”) is not used.

5.5.2 Request ID

The Request ID message consists of:

Figure 22: Request ID message format

Where:

CODE (1) : B = The number 5.

FORM ID

CODE RESERVED RECEIPT

112 Messages

RESERVED (1) : = A one byte field reserved to Digital for future use. Send 0; ignore on
receipt.

RECEIPT (2) : B = A receipt number to identify the request. The value 0 is reserved for
unsolicited System ID messages (periodically transmission of System
ID, as required by the Auto-configuration).

5.5.3 System ID

The System ID message consists of:

Figure 23: System ID message format

Where:

CODE (1) : B = The number 7.

RESERVED (1) : = A one byte field reserved to Digital for future use. Send 0; ignore on
receipt.

RECEIPT (2) : B = A receipt number to identify the request. The value 0 is used to
indicate an unsolicited System ID message.

OTHER INFO (*) : = Further information to describe the system. Consists of zero or more
entries in any order. Each entry consists of:

Figure 24: System ID message Info field format

Where:

INFO TYPE (2) : B = Is the type of information. When processing the information
elements of this message, implementations shall ignore any
that have an unrecognized value in the INFO TYPE field. Such
fields are processed by skipping the field (using the INFO
LENGTH) and continuing processing with the next field, if any.
The fields shown as “xxx Related” (101–199, 201–299, 402–499)
are qualified by the field they relate to. For example, if field
type 100 has the value 37 (DELQA), then the meanings of field
types 101–199 (if any) is specific to the DELQA, and the code
assignments are found in the specification for that device. The
values are:

Value Information
1 * MAINTENANCE VERSION
2 * FUNCTIONS
3 ** CONSOLE USER
4 ** RESERVATION TIMER
5 ** CONSOLE COMMAND SIZE
6 ** CONSOLE RESPONSE SIZE

CODE OTHER
INFORESERVED RECEIPT PAD

INFO
TYPE

INFO
LENGTH

INFO
VALUE

5.5.3: System ID 113

7 * HARDWARE ADDRESS
8 reserved
9 *** NODE ID
10 SYSTEM TIME
11 *** NODE NAME PART 1
12 *** NODE NAME PART 2
13 § STATION ID

100 * COMMUNICATION DEVICE
101–199 COMMUNICATION DEVICE Related

200 SOFTWARE ID
201–299 SOFTWARE ID Related

400 ¤ DATA LINK
401 DATA LINK BUFFER SIZE

402–499 DATA LINK Related

* Required field (System ID message only).
** Required field if console carrier available. (FUNCTIONS bit 5).
*** Required field when the system is not in Primitive state. Optional in

Primitive state.
§ Required field if Data Link is FDDI.
¤ Required field if Data Link is other than CSMA/CD. Recommended field if

Data Link is CSMA/CD.

INFO LENGTH (1) : B = The number of bytes in the INFO VALUE field. This value shall
be large enough to accommodate the value, i.e., at least as
large as the size shown below for each value. Note that it is
possible for the field to be larger than the minimum required.

INFO VALUE : = The value according to INFO TYPE and INFO LENGTH.

Where:

MAINTENANCE VERSION (3) : B = The MOP version number. The bytes, in
order from low to high, are version, ECO, and user
ECO. The values are 4, 0 and 0.

FUNCTIONS (2) : BM = The maintenance functions currently available through
this link. The bit meanings are:

Bit Function
0 Loop Server (required function)
1 Dump Client
2 Primary loader Client (can only load

secondary loader)
3 Multi-block loader Client (can load

tertiary loader, management data, CMIP
script, or system)

4 Boot (console server)
5 Console carrier Server
6 Data link counters (required function1,

console server)
7 Console carrier reserved

Note that bit 7 (Console Carrier Reserved) indicates the current state of the con-
sole reservation, while all other bits indicate whether the corresponding func-
tion is supported or not.

1 Note: for the FDDI data link this function is required, and should be reported, only when sending System ID mes-
sages in MOP V4 format. When sending in V3 format, this bit should be zero. Refer to Appendix G for more
detail.

114 Messages

CONSOLE USER (6) : B = System address of the system that has the console
reserved. Not present if not applicable. Must be
present if console carrier is available, i.e., FUNCTION
bit 5 is ON. Not valid if the console carrier is not
reserved, i.e., FUNCTION bit 7 is OFF.

RESERVATION TIMER (2) : B = The maximum value, in seconds, of the timer
used to clear unused console reservations. Not present
if not applicable. Must be present if console carrier is
available, i.e., FUNCTION bit 5 is ON.

CONSOLE COMMAND SIZE (2) : B = The maximum size of the console command
buffer. Not present if not applicable. Must be present
if console carrier is available, i.e., FUNCTION bit 5 is
ON.

CONSOLE RESPONSE SIZE (2) : B = The maximum size of the console response
buffer. Not present if not applicable. Must be present
if console carrier is available, i.e., FUNCTION bit 5 is
ON.

HARDWARE ADDRESS (6) : B = The default data link address for the circuit on
which this message is sent, i.e., the value in the MAC
Address ROM of this circuit.

NODE ID (6) : B = The Node ID of this system (i.e., the value of the Node
entity status attribute NodeID). Required when the
system is not in primitive state.

SYSTEM TIME (16) : B = The system time, represented as a Binary Absolute
Time according to the Digital Standard for
Representation of Time.

NODE NAME PART 1 (J–255) : = The Node Name of this node, encoded as a
Name Service FullName. If the node name has not
been set yet, or the ability to set the node name is not
supported in this node, this field may be sent as null, or
may be omitted. If the complete node name is longer
than 255 bytes, the first 255 bytes are sent in this field
and the remainder is sent in NODE NAME PART 2.

NODE NAME PART 2 (J–255) : = The portion of the Node Name of this node,
encoded as a Name Service FullName, beyond the first
255 bytes. If the Node Name does not exceed 255 bytes,
or the node does not support the ability to set a node
name, this argument may be omitted or may be sent as
null.

STATION ID (8) : B = The Station ID of this system FDDI Station (i.e., the
value of the FDDI Data Link entity status attribute
Station ID for this circuit). Required on FDDI circuits
in all node states. Not present for circuits other than
FDDI.

COMMUNICATION DEVICE (1) : B = The hardware device type of the link being
used. Values are in Appendix A.1.

COMMUNICATION DEVICE RELATED : = Information specific to the particular
COMMUNICATION DEVICE. Not present if not
applicable. Length and encoding vary according to the
specific definition of these fields for a given
COMMUNICATION DEVICE value.

5.5.4: Request Counters 115

SOFTWARE ID (C–128) : = The identification of the software the system is
supposed to be running. The format is the same as
defined for the Boot message (Section 5.5.1).

SOFTWARE ID RELATED : = Information specific to the particular SOFTWARE
ID. Not present if not applicable. Interpretation is
specific to the receiving system (e.g., file specification,
which may vary depending on the type of file server).
Length and encoding vary according to the specific
definition of these fields for a given SOFTWARE ID
value.

DATA LINK (1) : B = The type of data link protocol on the link being used.
Values are in Appendix A.2.

DATA LINK BUFFER SIZE (2) : B = The size of the data link buffer. Not present
if not applicable. The default value is 262. This
specifies the length of the data passed from MOP to the
data link layer; it includes the MOP header but not the
data link envelope. A server that does not recognize
this field may ignore this field, so that all requesters
must support 262 byte messages. In both Ethernet and
802 (LLC SNAP) format, it includes only the length of
the LLC Data, i.e., the MOP protocol header and data,
but not any part of the data link envelope.

Note: the use of a buffer size of 262 will result in
drastic loss of performance. The fact that 262 is the
default used by (old) servers that do not recognize the
Data Link Buffer Size field does not mean that any
server may choose to ignore this information. Instead,
servers are expected to use the value supplied by the
client. Furthermore, all clients should use the largest
buffer size allowed for the data link in question
whenever possible.

DATA LINK RELATED : = Information specific to the particular DATA LINK. Not
present if not applicable. Length and encoding vary
according to the specific definition of these fields for a
given DATA LINK value.

PAD (1–3) : B = Possible padding. Conforming implementation shall not pad the
System ID message. For compatibility with certain existing
implementations, stations receiving System ID messages shall accept
up to 3 bytes of padding with 0 at the end of the message.

5.5.4 Request Counters

The Request Counters message consists of:

Figure 25: Request Counters message format

Where:

CODE (1) : B = The number 9.

CODE RECEIPT

116 Messages

RECEIPT (2) : B = A receipt number to identify the request.

5.5.5 Counters (CSMA/CD only)

The Counters message in the case of the CSMA/CD data link consists of:

Figure 26: Counters message format for CSMA/CD link

Where:

CODE (1) : B = The number 11.

RECEIPT (2) : B = A receipt number to identify the request.

COUNTER BLOCK (*) : = A block of counters as defined for the CSMA/CD data link (see
Appendix B.4).

5.5.6 Counters (other than CSMA/CD)

The Counters message for data links other than CSMA/CD consists of:

Figure 27: Counters message format for links other than CSMA/CD

Where:

CODE (1) : B = The number 21.

DATA LINK (1) : B = The type of data link protocol on the link being used. Values are in
Appendix A.2.

RECEIPT (2) : B = A receipt number to identify the request.

COUNTER BLOCK (*) : = A block of counters as defined for the particular data link (see
Appendix B).

5.5.7 Reserve Console

The Reserve Console message consists of:

Figure 28: Reserve Console message format

Where:

CODE (1) : B = The number 13.

CODE RECEIPT COUNTER
BLOCK

CODE RECEIPT COUNTER
BLOCK

DATA
LINK

CODE VERIFICATION

5.5.8: Console Command and Poll 117

VERIFICATION (8) : B = A verification code that must match before the receiving system can
honor the request.

5.5.8 Console Command and Poll

This message is issued by the Console Requester in the command system and is received by
the Console Server in the target system. The Console Command and Poll message consists of:

Figure 29: Console Command and Poll message format

Where:

CODE (1) : B = The number 17.

CONTROL FLAGS (1) : BM = The control flags indicate the state of the console carrier message
streams. They insure that messages are not lost.

Bit Function

0 Message Number — indicates the current message number.
This is a one bit sequence number of the current Console
Requester command message.

1 Command Break Flag — indicates if the (possibly null)
command data is to be preceded by a break condition in the
serial byte stream. This may take on the value of zero,
meaning no break, or one, meaning there is a break.

COMMAND DATA (*) : = This is a (possibly null) sequence of bytes to be provided as input to the
receiving system’s higher level user of the Console Server.

5.5.9 Console Response and Acknowledge

This message is issued by the Console Server in the target system in response to the receipt
of a Console Command and Poll message from the Console Requester in the command system.
The Console Response and Acknowledge message consists of:

Figure 30: Console Response message format

Where:

CODE (1) : B = The number 19.

CONTROL FLAGS (1) : BM = The control flags indicate the state of the console carrier message
streams. They insure that messages are not lost.

Bit Function

CODE CONTROL
FLAGS

COMMAND
DATA

CODE CONTROL
FLAGS

RESPONSE
DATA

118 Messages

0 Message Number — indicates the current message number.
This is a one bit sequence number of the current command
message being acknowledged.

1 Command Data Lost Flag — indicates if some console
command data was lost. This may take on the value of zero,
meaning acceptance of the command data, or one, meaning
that some command data was lost.

Note that the requester should not resend the command
data, since part of the data may have been accepted. In
that case, resending will produce unpredictable results.
Instead, the error should simply be reported to the user.

2 Response Data Lost Flag — indicates if remote console
response data was lost due to data overrun. This may take
on the value of zero, meaning no detection of lost data, or
one, meaning there was lost data.

RESPONSE DATA (*) : = This is a (possibly null) sequence of bytes to be provided as input to the
receiving system’s higher level user of the Console Requester.

5.5.10 Release Console

The Release Console message consists of:

Figure 31: Release Console message format

Where:

CODE (1) : B = The number 15.

CODE

119

Appendix A

Predefined Values

This appendix contains the predefined values for various maintenance operation parameters.
These values are referenced in the interfaces and in the message definitions. Each parameter
has a description to be used in the interface calls and an actual value to be used in protocol
messages.

The values shown here reflect the state of the MOP Registry as of the publication date of this
specification. New values are defined on an as needed basis. Any values not shown are re-
served for use by Digital.

A.1 Communication Devices

Value Name Device

1 UNA DEUNA UNIBUS CSMA/CD communication link
2 DU DU11-DA synchronous line interface
3 CNA DECNA Professional CSMA/CD communication link
4 DL DL11-C, -E or -WA asynchronous line interface
5 QNA DEQNA Q-bus CSMA/CD communication link
7 CI Computer Interconnect interface
8 DA DA11-B or -AL UNIBUS link
9 PCL PCL11-B UNIBUS multiple CPU link

10 DUP DUP11-DA synchronous line interface
11 LUA DELUA UNIBUS CSMA/CD communication link
12 DMC DMC11-DA/AR, -FA/AR, -MA/AL or -MD/AL synchronous link
13 LNA MicroServer Lance CSMA/CD communication link
14 DN DN11-BA or -AA automatic calling unit
16 DLV DLV11-E, -F, -J, MXV11-A or -B asynchronous line interface
17 LCS LANCE/DECserver100 CSMA/CD communication link
18 DMP DMP11 UNIBUS multipoint synchronous link
20 DTE DTE20 PDP-11 to KL10 interface
21 DBT DEBET CSMA/CD communication link
22 DV DV11-AA/BA UNIBUS synchronous line multiplexer
23 BNA DEBNT BI CSMA/CD communication link
24 DZ DZ11-A, -B, -C, or -D UNIBUS asynchronous line multiplexer
25 LPC VAXmate (LANCE) CSMA/CD communication link
26 DSV DSV11 Q-bus synchronous link
27 CEC 3Com 3C501, IBM-PC CSMA/CD adapter
28 KDP KMC11/DUP11-DA synchronous line multiplexer
29 IEC Micom/Interlan 5010, IBM-PC CSMA/CD adapter

120 Predefined Values

30 KDZ KMC11/DZ11-A, -B, -C, or -D asynchronous line multiplexer
31 LQA DELQA CSMA/CD communication link, alternate assignment. See note

below.
33 DS2 LANCE/DECserver 200 CSMA/CD communication link
34 DMV DMV11 Q-bus synchronous link
35 DS5 DECserver 500 CSMA/CD communication link
36 DPV DPV11 Q-bus synchronous line interface
37 LQA DELQA CSMA/CD communication link. See note below
38 DMF DMF-32 UNIBUS synchronous line unit
39 SVA DESVA Microvax-2000, 3100, 3300 CSMA/CD communication link
40 DMR DMR11-AA, -AB, -AC, or -AE UNIBUS interprocessor link
41 MUX MUXServer 100 CSMA/CD communication link
42 KMY KMS11-PX UNIBUS synchronous line interface with X.25 level 2

microcode
43 DEP DEPCA PCSG/IBM-PC CSMA/CD communication link
44 KMX KMS11-BD/BE UNIBUS synchronous line interface with X.25 level 2

microcode
45 LTM LTM (911) Ethernet monitor
46 DMB DMB-32 BI synchronous line multiplexer
47 DES DESNC Ethernet Encryption Module
48 KCP KCP Professional synchronous/asynchronous comm port
49 MX3 MUXServer 300 CSMA/CD communication link
50 SYN MicroServer Synchronous line interface
52 DSB DSB32 BI Synchronous Line Interface
53 BAM DEBAM LANBridge-200 Data Link
54 DST DST-32 TEAMmate Synchronous Line Interface (DEC423)
58 3C2 3COM Etherlink II (part number 3C503)
59 3CM 3COM Etherlink/MC (part number 3C523)
60 DS3 DECServer 300 CSMA/CD communication link
61 MF2 MicroVAX 3300 CSMA/CD communication link
63 VIT Vitalink TransLAN III/IV (NP3A) Bridge
64 VT5 Vitalink TransLAN 350 (NPC25) Bridge, TransPATH 350 BRouter
65 BNI DEBNI BI CSMA/CD communication link
66 MNA DEMNA XMI CSMA/CD communication link
67 PMX DECstation-3100 CSMA/CD communication link
72 DP2 DECserver-250 (parallel printer server) CSMA/CD communication link
73 ISA Pele SGEC-based CSMA/CD communication link
74 DIV DIV-32 Q-bus ISDN (2B+D) adapter
75 QTA DEQTA (DELQA-YM) CSMA/CD comm link
76 B15 LANbridge-150 CSMA/CD comm link
86 DR2 DECrouter-250 CSMA/CD comm link
87 SCC DECrouter-250 DUSCC serial comm link (DDCMP or HDLC)
90 FBN DECbridge-5xx CSMA/CD comm link
91 FEB DECbridge-5xx, -6xx FDDI comm link
92 FCN DECconcentrator-500 wiring concentrator FDDI comm link
93 MFA DEMFA XMI — FDDI comm link
94 MXE MIPS workstation family CSMA/CD comm links

(3MAX/KN02 system board; PMAD option board)
101 DSF DSF-32 2 line synchronous comm link for Cirrus
104 KFE VAXft-3000 KFE52 CSMA/CD comm link
105 RT3 rtVAX-300 SGEC-based CSMA/CD comm link
112 L20 LPS20 print server CSMA/CD comm link
114 DWT VT-1000 DECwindows terminal
115 WGB DEWGB Work Group Bridge CSMA/CD comm link
118 MNE 3MIN (KN02-BA) integral CSMA/CD comm link
119 FZA DEFZA TurboChannel FDDI comm link
120 90L DS90L terminal server CSMA/CD comm link
135 TRN DEQRA token ring (802.5) comm link

A.2: Data Links 121

139 ISE Network Integration Server 600 (Hastings) CSMA/CD line card
140 IST Network Integration Server 600 (Hastings) T1 sync line card
141 ISH Network Integration Server 600 (Hastings) 64 kb HDLC line card
142 ISF Network Integration Server 600 (Hastings) FDDI line card
145 FB3 DECbridge-6xx CSMA/CD (3 port) comm link

Note:
Note on the assignment for the DELQA: the primary assignment is 37. Device
code 31 is used in early DELQA devices when used on PDP-11 systems, in the
“Request Program” message only. Later revisions of the DELQA use code 37
throughout. Software shall treat codes 31 and 37 as equivalent.

Note on the assignment for MicroVAX 3300 integral CSMA/CD comm link:
there is a specific assignment for this device (61, mnemonic “MF2”). This code is
used by the boot ROMs. Operating system drivers treat it as equivalent to the
MicroVAX 2000 integral CSMA/CD comm link and use the code assigned to that
device (39, “SVA”).

A.2 Data Links

The data link type values are:

Value Meaning
1 CSMA–CD
2 DDCMP
3 LAPB (frame level of X.25)
4 HDLC
5 FDDI
6 Token-passing Ring (IEEE 802.5)

7–10 Reserved
11 Token-passing Bus (IEEE 802.4)
12 Z–LAN 4000: Zenith 4 Megabit/second broadband CSMA/CD LAN

Note that these codes are not the same as the “Circuit Type” codes used in the management
interface, which are defined in Section 3.4. To simplify the mapping between these two encod-
ings, new values for Circuit Type and Data Link Type will be assigned such that the following
algorithm applies:

IF DataLinkType " 10
THEN CircuitType := LookupTable[DataLinkType]
ELSE CircuitType := DataLinkType – 5

123

Appendix B

Data Link Specific Information

This appendix contains information necessary to relate specific data link types to the main-
tenance operations.

B.1 DDCMP

The Digital Data Communication Message Protocol (DDCMP) Data Link is a point-to-point
link and allows exclusive maintenance operation in its maintenance mode. It does not require
message padding.

B.2 LAPB

The LAPB Data Link is the frame level of X.25. It is a point-to-point link and allows exclu-
sive maintenance operation for loopback only. It does not require message padding.

B.3 HDLC

The HDLC Data Link is a point to point link. It supports concurrent maintenance operation
(MOP protocol messages are carried via the Unsequenced Information service of HDLC). It
does not require message padding.

The HDLC protocol ID is 01–01; it is used for all MOP protocol messages (unlike the LAN
case where multiple protocol IDs or protocol types are used).

B.4 CSMA/CD

The CSMA/CD Data Link is the Digital Equipment Corporation implementation of the inter-
company Ethernet Data Link and the IEEE 802.3 Data Link. It allows concurrent maintenance
operation and is a LAN (multi-access) data link. As such it has specific protocol types and
multicast addresses that go with it. It requires message padding when Ethernet frame format
is used, except for the Loop protocol.

Refer to the the LAN Node Product Architecture Specification and the DNA CSMA/CD Data
Link Architectural Specification for specific functions and requirements.

The protocol types are:

124 Data Link Specific Information

Value Protocol
90–00 Loopback
60–01 Dump/Load
60–02 Remote Console

The IEEE 802 SNAP SAP Protocol Identification are :

Value Protocol ID
08–00–2B–90–00 Loopback
08–00–2B–60–01 Dump/Load
08–00–2B–60–02 Remote Console

The multicast addresses are:

Address Group
CF–00–00–00–00–00 Loopback assistance
AB–00–00–01–00–00 Dump/Load assistance
AB–00–00–02–00–00 Remote Console

CSMA/CD data link counters can be read through the Remote Console. The counters are
defined in the DNA CSMA/CD Data Link specification. The counters are a fixed format block
with each value as indicated below. All fields must be included in the order specified. If a
counter is not implemented, the corresponding field is still included, with a value of zero. Note
that MOP V3 omitted the last field (Collision detect check failure), and used counters of a differ-
ent width. In V4, all counters are 64 bits (8 bytes) long. The “time since counter creation”
value is a Binary Relative Time. Systems that request Data Link counters using MOP can use
the length of the received counters block to distinguish the two versions.

Note:
Unlike the MOP V3 counter block, the “Time since counter creation” field is not
in seconds. It is encoded as a Binary Relative Time according to the encoding
rules specified in the Time Representation specification.

Length Counter Value
16 Time since counter creation

8 Bytes received
8 Bytes sent
8 Frames received
8 Frames sent
8 Multicast bytes received
8 Multicast frames received
8 Frames sent, initially deferred
8 Frames sent, single collision
8 Frames sent, multiple collisions
8 Send failure — Excessive collisions
8 Send failure — Carrier check failed
8 Send failure — Short circuit
8 Send failure — Open circuit
8 Send failure — Frame too long
8 Send failure — Remote failure to defer
8 Receive failure — Block check error
8 Receive failure — Framing error
8 Receive failure — Frame too long
8 Unrecognized frame destination
8 Data overrun
8 System buffer unavailable
8 User buffer unavailable
8 Collision detect check failure

B.5: FDDI 125

B.5 FDDI

The FDDI Data Link is the Digital Equipment Corporation implementation of the ANSI
standard FDDI (Fiber Distributed Data Interface) Data Link. It allows concurrent mainte-
nance operation and is a LAN (multi-access) data link. It supports the IEEE 802.2 LLC service.

Refer to the the LAN Node Product Architecture Specification and the DNA FDDI Data Link
Architectural Specification for specific functions and requirements.

The FDDI Data Link uses the same SNAP Protocol Identification and multicast address as-
signments as the CSMA/CD Data Link. In addition, it also uses the same Protocol Type assign-
ments for use with the Mapped Ethernet packet service of the FDDI Data Link architecture.
(This service sends IEEE 802.2 SNAP format packets with Protocol ID values recognized by
LAN Bridges. When such packets are forwarded onto CSMA/CD links, they are converted into
Ethernet format. MOP uses this service to communicate with MOP V3 implementations on
Ethernet links.)

FDDI Data Link counters can be read through the Remote Console. The counters are de-
fined in the DNA FDDI Data Link specification. The counters are a fixed format block with
each value as indicated below. All fields must be included in the order specified. If a counter is
not implemented, the corresponding field is still included, with a value of zero. This counter
block is returned in the “Counters (other than CSMA/CD)” message (Section 5.5.6). Since that
message did not exist in MOP V3, MOP will ignore requests for counters in V3 format.

Length Counter Value
16 Time since counter creation

8 Octets received
8 Octets sent
8 Frames received
8 Frames sent
8 Multicast octets received
8 Multicast octets sent
8 Multicast frames received
8 Multicast frames sent
8 Transmit underruns
8 Transmit failures
8 Block check errors
8 Frame status errors
8 Frame alignment errors
8 Frames too long
8 Unrecognized individual frame destinations
8 Unrecognized multicast frame destinations
8 Receive data overruns
8 Link buffers unavailable
8 User port buffers unavailable
8 Frame count
8 Error count
8 Lost count
8 Ring initializations initiated
8 Ring initializations received
8 Duplicate address test failures
8 Duplicate tokens detected
8 Ring purge errors
8 Bridge strip errors
8 Traces initiated
8 Link selftest failures

127

Appendix C

Implementation Specific Dump/Load

Characteristics

This appendix documents characteristics of PDP–11 dump/load programs existing as of the
date of this specification.

C.1 Secondary Loader

The secondary loader is sent as a single Memory Load with Transfer Address message as
normally required. In addition to this requirement, it must be loaded and started at location 6.
Current secondary loaders are between 400 and 600 bytes in length, depending upon the device
type used. They use the stack address set up by the primary loader. For current loaders this
will be between 17400(octal) and 17776(octal). The secondary loader assigns its buffer space
below the stack. The secondary loader accepts Memory Load with and without Transfer Ad-
dress messages. It is, therefore, capable of doing multi-block loads into absolute addresses
without memory management. It requests a tertiary loader to be loaded.

The DMP-11 and DMV-11 do not set up the stack pointer or R1 as described. For those de-
vices, R1 contains the device unit number.

C.2 Tertiary Loader

The tertiary loader is loaded by the secondary in a multi-block load starting at location
10000(octal). It will run with memory management on if it exists on the system. The tertiary
loader moves itself to the top of physical memory and assigns its stack and buffer space just
below itself. It is, therefore, capable of multi-block loads from location 0 up to its buffer ad-
dress, usually the last 1–2K words of physical memory. It requests the operating system to be
loaded. The current tertiary loaders do not specify any specific operating system. The choice of
system to send is established by prior agreement or by command at the host system.

129

Appendix D

LAN Loop Test Examples

The following examples address the application of the Loop Test functions. They are in-
tended as examples of how a higher level process can use the facilities. They are intended nei-
ther as a specification for how they must be used nor as an exhaustive test script.

In the examples, no account is taken of the fact that the Loop Test functions make only one
attempt to transmit a message. To increase the reliability of the tests, each interface function
that fails due to a communication error should be retried enough times to lessen the probability
that an intermittent error occurred.

D.1 Local Control Test Example

In this case, a node finds itself unable to communicate with some other node that it believes
is on the network and operational. The following test script can be used by the node to check
out the problem.

First, LoopDirect is invoked with remoteAddress set at the correct address of the specific re-
mote node, the suspect node. This results in a simplest, two hop frame consisting of :

1. a Forward Data message which specifies the testing node’s address as the forwarding
address, containing

2. a Reply message.

This frame is transmitted to the suspect node. If this test succeeds, the communication is
possible and the problem may have been either intermittent, the remote node is down, or there
is a problem with message length or data pattern. Different message lengths and/or data pat-
terns could then be tried.

If the above test, LoopDirect, results in a return indicating failure, next invoke LoopAs-
sisted, using some other node as assistantAddress. This will construct a loop test datagram as
follows:

1. a Forward Data message which specifies the suspect node’s address as the forwarding
address, containing:

2. a Forward Data message which specifies the assistant’s node address as the forwarding
address, containing:

130 LAN Loop Test Examples

3. a Forward Data message which specifies the testing node’s address as the forwarding
address, containing:

4. a Reply message.

This frame is transmitted to the assistant node. This four-part datagram obtains the full
assistance of the loopback assistant.

If no assistant address is known, invoke LoopDirect with no remoteAddress parameter to
send a simple, two hop loop test datagram to the Loopback Assistance Multicast Address. Use
the source address of any responding node as an assistant address. If no communication with
the Loopback Multicast Assistance group is possible, then the last resort is to obtain a list of
nodes on the network. The list can be obtained by either listening to the Remote Console
Multicast Address for the Remote Console System ID messages or obtaining such information
from the network manager. From the list of nodes, select a node for loopback assistant by re-
peating the above procedure. If this fails then repeat the process with other nodes on the list.
If this fails with all the nodes on the list, then either no one else is turned on or the local node is
broken.

If some loopback assistant node can communicate with the remote node but the local node
cannot, the local node can then test for the direction in which communication does not work.
The LoopAssisted function, using the assistant node that responded previously as the assistant,
can be used to detect either transmit or receive problems. This is accomplished using various
assistance level, transmit or receive or full, supported by the loopAssisted function. By repeat-
ing the above test with different remote nodes, it can be determined whether the local node or
the remote node is at fault, thus isolating the problem to a particular transmitter or receiver.

When a node finds itself unable to communicate, it can report this in whatever high level
way is available. An operator or control center can then respond by attempting to isolate and
repair the problem.

D.2 Remote Control Test Example

When a control center receives a report that a node cannot communicate properly, it can use
the Loop Test functions to investigate the problem. It can first diagnose its own ability to com-
municate with the node. If this communication appears to work, the control center can simi-
larly check its ability to communicate with the remote node that the reporting node could not
reach.

If the control center can communicate with both nodes, it can then use LoopAssisted, full as-
sistance, with one of the nodes as assistant and the other as remote to see if they can communi-
cate. Similarly it can use transmit and receive assistance to determine which direction is a
problem.

Similar checks using other nodes can be used to isolate the problem to a particular transmit-
ter or receiver.

131

Appendix E

Load File Formats

E.1 CMIP Script File Format

The MOP protocol specifies a way for downline loading initialization management directives
in the form of a sequence of CMIP directive messages, called a CMIP Script. In order to allow
initialization scripts to be manipulated on various nodes that may be different implementations
than the load hosts, it is also necessary to specify the file format of initialization scripts. The
following specification applies only to files used as MOP initialization scripts. Whether they
can also be used in other ways, for example as scripts accepted by management directors, is be-
yond the scope of this architecture specification. The CMIP Script file has the structure of an
RMS sequential file with variable-length records. The records of the file correspond one-to-one
with the CMIP Script messages sent in the protocol. In particular, the first record contains the
CMIP version number as described in the DNA CMIP architecture specification, and subse-
quent records contain the directive messages, one per record. The RMS FDL description of the
record format is as follows:

FILE
...
ORGANIZATION sequential

RECORD
BLOCK_SPAN yes
CARRIAGE_CONTROL none
FORMAT variable
SIZE 0

In the file, each record is preceded by a 2 byte field specifying the byte count of the record. If
the byte count is odd, a pad byte (null) follows the record, thereby aligning the byte count fields
on even boundaries. Block boundaries are given no special processing. End of file is indicated
by a 2 byte field of hex FFFF instead of the byte count, and the remainder of the block is null-
filled.

These files can be processed by RMS or directly by simple application code, and can be trans-
ferred using the DAP protocol (using Block mode if necessary).

133

Appendix F

LAN Frame Formats

Note:
This appendix is not part of the specification and is not under the control of the
DNA review process. It is included here for information only.

The following diagrams illustrate examples of LAN frame formats for several of the LAN
data links. Refer to the appropriate Data Link architecture specification for a detailed descrip-
tion of the messages and fields.

Figure 32: NI Frame Formats

Preamble: A sequence of encoded bits which the Physical Layer transmits before
each frame to allow synchronization of clocks and other Physical Layer
circuitry at the receivers.

FC: Frame Control field defines the type of the frame and certain MAC and
management specific information frame functions.

DA: the Destination Data Link Address

Preamble Prot type Data Pad FCS

Preamble DA SA Length Pad FCS

DA SA

DSAP SSAP Ctl Info

Preamble DA SA Length Pad FCS
AA AA UI M_InfPID

Preamble DA SA FCS
AA AA UI M_InfPID

EFSFC

Ethernet format

IEEE 802.3

FDDI with Protocol ID

IEEE 802.3 with Protocol ID

Length

134 LAN Frame Formats

SA: the Source Data Link Address

Length: the number of octets of user data (optional for Ethernet format). It is
applicable for CSMA/CD LAN only.

Prot Type: the Protocol Type for Ethernet frames

PID: the Protocol Identifier for 802.2 PDUs addressed to the SNAP SAP

LLC: IEEE 802.2 Logical Link Control sublayer

PDU: Protocol Data Unit

SNAP: the 802.1 Sub-Network Access Protocol

DSAP: the LLC Destination Service Access Point Address

SSAP: the LLC Source Service Access Point Address

Ctl: the LLC PDU Control field. For connectionless service it is one of:

 UI: the Unnumbered Information type LLC PDU Control field

 XID: the Exchange Identification type LLC PDU Control field

 TEST: the Test type LLC PDU Control field

Data: the MAC user data

Info: the LLC SAP user data

M__Inf: the 802 SNAP Protocol Identifier user data

PAD: the padding octets (optional for Ethernet format)

FCS: the Frame Check Sequence

EFS: End-of-Frame Sequence. The EFS typically contains the Ending
Delimiter (ED), to mark the end of the frame, and the Frame Status.

135

Appendix G

Compatibility with Previous Versions

This appendix discusses what implementations of V4.0 of the MOP architecture need to do in
order to communicate with implementations of earlier versions of the MOP architecture, specifi-
cally V3.0.0 and V3.1.0. Refer to the MOP V3 architecture specification for more details about
message formats and algorithms for that protocol version.

G.1 Support for the previous version of MOP

In the Load Client and Dump Client components, support for MOP V3 is a product imple-
mentation choice. General purpose products should include V3 support in the Load/Dump Cli-
ents to ensure flexibility in the choice of Load/Dump Servers. Bounded (fixed function) prod-
ucts for which it is acceptable to limit the choice of Load/Dump Servers to only those that
support MOP V4 may omit the V3 support from the Load/Dump Clients.

For all other functions, support for MOP V3 is required.

Note, however, that certain functions of MOP V4 are not defined in MOP V3. These func-
tions are of course exempt from the above requirement. The functions specific to MOP V4 are:

• HDLC support

• Response to the Read Counters request message on FDDI data links

• CMIP Script down line load

G.2 Ethernet and 802 frame formats

On a CSMA/CD LAN, the data link allows the use of both 802 format and Ethernet format
frames. MOP uses 802 format frames (using SNAP format LLC frames) in V4. MOP V3 used
Ethernet format packets.

Other LANs, such as FDDI, do not have the direct equivalent of “Ethernet” format; they only
support IEEE 802.2 LLC. To support communication with nodes that use Ethernet message
formats across LAN Bridges, there exists a packet format mapping that maps Ethernet packets
(with 2 byte Protocol Types) into IEEE 802.2 packets (using SNAP, with 5 byte Protocol IDs).
The data link layer architecture for these LANs describes this mapping in detail. In the service
interface, the service provided is essentially identical to that of the CSMA/CD data link with its
support of Ethernet format. Consequently, the rules about the use of Ethernet format on LANs
apply to all LANs; in the case of LANs other than CSMA/CD the encapsulated Ethernet packet

136 Compatibility with Previous Versions

service of the data link is used for this. In particular, where nodes are required to support MOP
V3, this requirement applies to non-CSMA/CD LANs as well as to CSMA/CD, unless specifically
stated otherwise.

G.2.1 Response to received requests

MOP V4 implementations listen for requests both in 802 (V4 format) and in Ethernet (V3
format) frames. The response to the request is in the same frame format as the request. If the
request was in an Ethernet format frame, it is interpreted and responded to according to the
algorithms specified in the MOP V3 architecture specification (except as noted below).

G.2.2 Initiation of requests

MOP V4 implementations send requests both in 802 (V4 format) and in Ethernet (V3 format)
frames. In the case of the Ethernet format request, the message is formatted according to the
V3 architecture rules. The 802 format request is sent out first; if no response is received in the
timeout period, the Ethernet format request is then sent. If that times out as well, the 802 for-
mat request is sent again. Each iteration of 802 format, then Ethernet format frame counts as
one retry. As an optimization, an implementation may send both formats at the same time.
For some protocol exchanges (e.g., Loop) care must be taken not to confuse the replies; the re-
ceipt number in the message can be used to do this.

The algorithm for the Boot message is slightly different, since there is no response to that
message. The Boot message is simply sent in both formats, with the 802 format frame sent
first.

Note that requests that are not expressible in Ethernet format, such as a Request Program
message specifying a request for a CMIP Script, are sent in 802 format only.

In MOP V3, the Verification field of the boot message was defined as being either 4 or 8
bytes long. V4 implementations may send V3 format boot messages with 8 byte verification
fields independent of the value in the field. However, MOP implementations receiving a boot
message in V3 format must be prepared for a 4 byte or an 8 byte verification field. If a 4 byte
verification field is received, the omitted 4 bytes are treated as zero.

The Verification attribute in the Client database is an Octet String. In Phase IV, it was de-
fined as a “Hex Integer”, which is not a defined data type in CMIP. Since strings are written
with the lowest numbered byte on the left, and integers with the lowest numbered byte on the
right, this means that the same verification string is represented differently in the two manage-
ment user interfaces. For example, the verification string written in this version of MOP as
%x0102560415A69708 would appear in the Phase IV management interface as
0897A61504560201, or (omitting leading zeroes) as 897A61504560201. This difference does not
affect the protocol, but it does affect documentation. If a Boot target allows setting of the verifi-
cation string in Phase IV format, but the Load Server implements MOP V4, the verification
strings supplied in the user interface have to be bytewise reversed.

G.3 Version handling on point to point data links

The Request Program and Request Dump Service contain a “Format Version” field which in-
dicates the version of the MOP architecture to which the requesting system conforms. The
rules for the handling of this version number are as follows:

• If the version number is higher than the highest version known to the Dump/Load
server, ignore the request.

• Otherwise, process the request according to the rules for the specified version.

G.4: Request Program message 137

Note:
Note that the usual third case in version number handling does not occur here,
since the only version number other than the one currently used (4) is 1, which
is used by all versions of MOP preceding V4.0.0.

G.4 Request Program message

The Program Type value of CMIP Script file can only be specified in a V4 format Request
Program message.

The rules given below for interpretation of the Data Link Buffer Size field in the System ID
message (Appendix G.6) apply also to the interpretation of that field in the V3 format Request
Program message.

G.5 Parameter Load with Transfer Address message

This message has changed substantially between MOP V3 and V4. Parameter type codes 1
through 5 were defined in previous versions of MOP; parameter type code 6 is used only in V4.
The values of parameters 1 through 4 are obtained from the Client database entry used for the
Load operation. The characteristics used for each parameter are as follows:

Parameter Attribute
1 Phase IV Client Name
2 Phase IV Client Address
3 Phase IV Host Name
4 Phase IV Host Address

In the V3 format message, Host System Time is passed as parameter code 5, in the format
specified in the V3 architecture specification. In the V4 format message, it is in addition passed
as parameter code 6, as a Binary Absolute Time.

The MOP V3 architecture defines parameters 2 and 4 as 6-byte values, though it leaves open
the issue of whether shorter values are permitted. All known implementations in fact send only
two bytes, exactly as in MOP V2.1. Therefore, V4 implementations must likewise send two
bytes. The parameter value sent is the value of the Phase IV Client Address or Phase IV Host
Address attributes, respectively. The low order byte of the attribute is sent first.

A MOP V4 load client being loaded by a V3 load server will receive a Parameter Load mes-
sage in V3 format. It uses parameter code 5 to obtain the local time of the load server, but that
does not provide all of the information of the V4 format Host System Time field. Alternatively,
the load client can implement the Time Service client, ignore the Host System Time field alto-
gether, and instead use information obtained from the Time Service. (This is the preferable so-
lution if the Time Service is available.)

G.6 System ID message

When sending a System ID message in V3 format, V4 nodes must omit those fields which are
defined only in MOP V4 (Node ID, System Time, Node Name part 1 and 2, Station ID). System
Time may be sent instead (if desired) using type code 8, encoded according to the V3 architec-
ture specification. The Maintenance Version field is always sent with the value 4.0.0, indicat-
ing a Version 4 MOP implementation, whether the System ID message is sent in Ethernet for-
mat (to a V3 node) or in 802 format (to a V4 node).

138 Compatibility with Previous Versions

In both the V3 and the V4 format messages, the value for Data Link Buffer Size specifies
only the length of the MOP data (including MOP protocol header) but not any part of the
Ethernet or IEEE 802.2 LLC header. Thus the largest possible value for V3 format messages
on Ethernet is 1498; for 802.2 format messages on Ethernet the limit is 1492.

Note:
For compatibility with certain existing implementations, any value greater than
1498 for Data Link Buffer Size when received in a V3 format System ID, Re-
quest Program, or Request Dump Service message shall be interpreted as 1498.
Furthermore, the value 1030 shall be interpreted as 1010.

G.7 Counters message

The MOP V4 CSMA/CD Counters message contains the list of counters specified in Appendix
B.4. The V3 Counters message is substantially different: the counters are shorter, several
counters are combined into a single counter with a “reasons” bitmap, Collision Detect Check
Failure is omitted, and the time since counter initialization is encoded differently. Apart from
the frame format, these two cases can also be distinguished by the length of the received
counter block.

For data links other than CSMA/CD (currently only FDDI) the counter block defined in MOP
V3, or its modified form for V4 described above, is not suitable, since the set of counters are
different for the different data links. Such data links therefore use a different message to re-
spond to the Request Counters message, with message code 21. That message is new in MOP
V4. Since it has no MOP V3 equivalent, non-CSMA/CD data links do not respond to the Re-
quest Counters message from MOP V3 nodes. The System ID message sent on these data links
reflects this rule: the V4 format System ID (sent in 802.2 format) will show Data Link Counters
among the supported functions, but the V3 format System ID (sent in Ethernet format) does
not.

139

Appendix H

Glossary

Broadcast: As applied to data links, broadcast capability refers to the ability of any
one node (link) to address all other nodes (links) simultaneously.

Broadcast Address: This is a group address which is a distinguished, predefined multicast
address that always denotes the set of all nodes on a given Extended
LAN. The Broadcast Address is predefined to be the address with 48
bit of all 1’s.

CMIP Script: An description of the information required to initialize a node, encoded
in the form of a sequence of network management directives in CMIP
form. (See also “Management Image”.)

Datagram: An atomic unit of information exchanged by local area networks.

Flow Control: A set of rules applied to processes, beetween the nodes , which prevents
a transmitting process from sending data to a receiving process that is
not prepared to buffer the transmitted data.

Extended LAN: Diverse Local Area Networks interconnected, by the connecting
network component called the Bridge, into an extended, logically
integrated network.

Disjoint Extended LAN: A disjoint Extended LAN is defined to be separate universes where
under no condition shall the separate universes ever be merged
together.

Group Address: The first bit of the 48 bit address contains a 1, the first bit transmitted.
This is a multi-destination address, associated with one or more
stations on the Extended LAN. There are two kinds of Group address:
Multicast address and Broadcast address.

Hardware Address: This is the default hardware 48 bit LAN Address. This is the
universally unique hardware address which may or may not be used as
the physical (link) address.

Individual Address: The first bit of the 48 bit address contains a 0, the first bit transmitted.
All Physical (Link) addresses and Hardware addresses must be
individual address.

140 Glossary

LLC: Logical Link Control. The top sublayer of the data link that provides
the mechanism to support multiplexing and demultiplexing of
datagrams over the Medium Access Control sublayer defined by IEEE
802.2 spec.

MAC: Medium Access Control. The bottom sublayer of the data link that
provides frame encapsulation/decapsulation, error checking and access
control algorithms for controlling the sharing of the physical layer by
the attached stations (nodes).

Management image: A load image containing initialization data for a node, encoded in a
product-specific manner. (See also “CMIP Script”.)

Multicast: As applied to data links, multicast capability refers to the ability of any
one node (link) to address a subset of all other nodes (links), within the
logical group, with a single datagram.

Multicast Address: This is a Group Address as defined above. This is an address associated
by higher-level convention with a group of logically related nodes.

Physical (Link) Address: This is the 48 bit address that identifies the link’s attachment point in
the Extended LAN. This is the address recognized as specific
destination in received frames and sent as source address in the
transmitted frames.

SAP: Service Access Point. The LLC header contains the address fields
(DSAP, SSAP), which is the ordered pair of service access point
addresses at the beginning of an LLC frame which identifies the LLC’s
designated to receive the frame and the LLC sending the frame. Each
of the DSAP and SSAP is one octet in length.

SNAP SAP: It is the Sub-Network Access Protocol (SNAP).

141

Appendix I

Load/Dump Service Implementation Notes

This appendix contains a number of notes and suggestions for implementers of Load/Dump
Clients and Servers.

I.1 Downline load and upline dump over multi-mode point to point lines

When load or dump service is to be provided via point to point lines (DDCMP or HDLC) it is
sometimes necessary to provide the data link layer with operating parameters such as bit rate,
framing mode, etc. For servers, this is in general not an issue because these parameters are set
as part of the normal initialization procedure for the node.

Clients may have difficulty providing these data link parameters, since clients run in primi-
tive state. It is generally not convenient or even desirable to have to set up line parameters
prior to downline load, for reasons such as:

• Autoconfiguration: there should be no need for management setup as part of installa-
tion (“Plug and Play”).

• Lack of a local console: load clients often do not have any local management interface.

For these reasons, a procedure similar to the “autobaud” mechanism used in many timeshar-
ing systems would be desirable. Ideally, the autoconfiguration process should be able to deal
with all of the following parameters:

• Data Link protocol: HDLC vs. DDCMP, for lines that are capable of supporting both.

• Byte framing mode: synchronous or asynchronous.

• Line speed, for asynchronous framing mode.

Such an autoconfiguration is feasible, provided that certain requirements are met at the
server end. The server must have its parameters set up via management (i.e., it must not at-
tempt to run the autoconfiguration procedure at the same time as the client), its data link must
be On, and the data link must then run its data link initialization procedure indefinitely, rather
than giving up after a limited number of retries.

Given that the above requirements are met, a simple client algorithm that meets the above
goals is as follows:

142 Load/Dump Service Implementation Notes

1. Set the framing mode for the data link to Synchronous. Generally this also requires
setting the data link for externally supplied bit clocking (e.g., from the modem). Set the
data link protocol to HDLC (bit stuffing mode) and attempt to receive some frames.

If the server is indeed using HDLC, valid frames will be received within a few seconds,
containing HDLC data link startup messages (SABM, SABME, or XID).

2. Set the data link protocol to DDCMP (byte count character oriented) and attempt to re-
ceive some frames. If the server is running DDCMP in synchronous mode, valid frames
will be received within a few seconds, containing DDCMP data link startup messages
(ISTRT). If the server is trying to perform MOP protocol operations on the data link,
MOP mode DDCMP messages will be received instead.

3. Set the framing mode for the data link to Asynchronous. For each of the data link
speeds to be supported, set the data link to that speed and listen for a few seconds for
messages as above. Examine the messages to see if they are valid HDLC or DDCMP
initialization messages. If none are heard, proceed to the next speed.

This algorithm can be repeated until it completes.

I.2 Downline load and upline dump service on diskless servers

When load or dump clients have multiple circuits, it is generally required that any of the
lines can be used for downline load or upline dump. This may appear difficult when some of
these lines are point to point lines connected to neighbors that have no disk storage, such as
routers. This section presents a way to provide load/dump service in such cases.

MOP does not require that the load server have local file storage, such as disks. It may use
any available means to obtain the files. In particular, remote file access protocols, such as DAP,
may be used. DAP is well suited to this job, since the subset required by load servers is quite
small. Only sequential read access is needed, and block mode can be used. This means that the
DAP access amounts to little more than establishment of the Transport connection to the file
server and receiving of the data blocks over that connection. Similarly, for upline dump only
sequential write access is needed, and again block mode is sufficient.

Diskless load servers still include a normal MOP Load Server module, with the usual man-
agement interface. The necessary attributes, in particular the Client database, can be set up in
any convenient manner, for example with the initialization script. The client database would
contain the necessary entries to describe the requests the server must deal with. One of these
would be an entry for the neighbor on the point to point line. The various attributes in the cli-
ent database that specify the load file names are set to point to the files on the file server that
stores the load files. These attributes are Sequence of FileSpec to allow the network manager
to specify multiple locations for the files. This provides for redundant file servers.

I.3 Downline load and upline dump in clients with multiple data links

The algorithms given in the Operation chapter (Chapter 4) are for a load or dump operation
on a single data link circuit. If the client has multiple circuits, the load or dump should be able
to use any of them. The client needs some way to select the circuit on which the operation can
be completed. Once it has done this, the remainder of the load or dump operation is executed in
the usual manner.

There are several ways the initial step of the load or dump can be done on a multi link client.
 The most efficient way is to send the first message (Request Program in the case of downline
load, Request Dump Service in the case of upline dump) simultaneously on each of the circuits.

I.3: Downline load and upline dump in clients with multiple data links 143

When a response is received on any of the circuits, that circuit is selected, and the rest of the
operation proceeds as usual on that circuilt.

The advantage of this “parallel” approach is speed and the fact that it requires no additional
state to be kept, but it does require dealing with multiple circuits simultaneously.

Alternatively, the client can attempt to initiate the operation on the circuits one at a time in
“round robin” fashion. To do this, the client would send the first message of the operation on
one of the circuits, performing a small number of retries (4 retries would be suitable). If no re-
sponse is received, the same is then done for the next circuit, and so on through each of the
available circuits.

The “round robin” approach is potentially slower, but it may be easier in some implementa-
tions. All circuits except the one being tried at any point in time are logically Off, so the client
does not need to do any processing for the other circuits. (Note in particular that the require-
ments of the Node Product Architecture apply only to data links that are On — in this case,
only one data link circuit is On at any time.)

145

Index

A

Action directives
circuit, 23

load, 26
loop, 25
query, 29
test, 28

client, 15
boot, 18
load, 17
loop, 15
query, 19
test, 18

MOP module, 12
operation, 32
station, 33

Algorithms
CSMA/CD specific, 94

close, 95
open, 94
transmit, 95

data link independent
buffer manipulation, 97
circuit lookup, 98
client database lookup, 97
receive, 81
request-response, 82
Request_Program transact, 83
send, 81
Transact, 83

DDCMP specific, 90
close, 91
exclusive maintenance, 90
open, 90
transmit, 91

dump client, 61
dump server, 63, 65
FDDI specific, 96
HDLC specific, 91

close, 92
open, 92
transmit, 92

LAN

loop requester, 68
loop server, 67, 70
receive dispatcher, 88
select SAP address, 98

LAPB specific, 92
open, 93
transmit, 93

load client, 51
load server, 54, 57
point to point

receive dispatcher, 87
query, 72
test, 71

Architectural constants, 39

B

Boot
directive, 18, 27, 47
message format, 48
receive processing, 77

C

Characteristics
circuit, 30
client, 21
MOP module, 14
operation, 33
station, 34

Circuit subentity, 23
action directives, 23
characteristics, 30
counters, 31
events, 31
identifier, 29
status, 30

Client database, 42
algorithms, 97

Client subentity, 14
action directives, 15
characteristics, 21
counters, 23
events, 23
identifier, 20
status, 23

Configuration monitor, 78
Console

server, 73

146 Index

Console carrier
client, 78
server, 76

Counters
circuit, 31
client, 23
message format

CSMA/CD, 75
other than CSMA/CD, 76
V3 compatibility, 138

MOP module, 14
operation, 33
station, 35

D

Data types
Buffer, 40
Circuit, 40
Client, 40
FormatAndMux, 39
for algorithms, 39
for management, 10
MOPVersion, 39
Operation, 40
OpType, 11
ProgType, 11
ServType, 11
Station, 41

Directives. See Action directives
Dump

client, 61
server, 63, 65

E

Entity structure, 9
Events

circuit, 31
client, 23
MOP module, 14
operation, 33
station, 36

Exclusive maintenance mode, 90

G

Goals, 3

I

Identifier
circuit, 29
client, 20

MOP module, 13
operation, 32
station, 34

L

Load
algorithms

client, 51
server, 54, 57

directive, 17, 26, 45
Loop

directive, 15, 25, 43
examples, 129
message format

LAN, 109
point to point, 108

requester
LAN, 68
point to point, 66

server
LAN, 70
point to point, 67

M

Message
assistance volunteer, 57, 88, 103
boot, 48, 87, 89, 110
console command, 81, 117
console response, 77, 89, 117
counters, 138

CSMA/CD, 75, 89, 116
other than CSMA/CD, 76, 89,

116
dump complete, 66, 87, 89, 108
dump data, 62, 88, 89, 107
looped data

LAN, 69, 88, 109
point to point, 67, 87, 108

loop data
LAN, 69, 88, 109
point to point, 66, 87, 108

memory dump data, 62, 88, 89, 107
memory load, 60, 87, 88, 104

with transfer address, 60, 87,
88, 103

parameter load, 60, 87, 88, 104, 137
query, 73, 89
release console, 89, 118
request counters, 74, 89, 115
request dump data, 66, 87, 89
request dump service, 62, 88, 89,

106

Index 147

request ID, 74, 80, 111
request load, 54
request memory dump, 107
request memory load, 87, 89, 103
request program, 53, 87, 89, 102,

137
reserve console, 81, 89, 116
system ID, 89, 112, 137
test, 71, 89

Model
DNA, 5
MOP, 8

Module, 11
action directives, 12
characteristics, 14
counters, 14
events, 14
identifier, 13
status, 14

N

Non-goals, 4

O

Operation subentity, 32
action directives, 32
characteristics, 33
counters, 33
events, 33
identifier, 32
status, 33

Q

Query
algorithm, 72
directive, 19, 29, 50
disable SAP, 85
enable SAP, 85
message format, 73
select SAP address, 98
transact, 85

R

Request counters
response, 75

Request load
message format, 54

Request program
message format, 53
V3 compatibility, 137

Requirements, 3

S

Software ID, 57
Station subentity, 33, 78

action directives, 34
characteristics, 34
counters, 35
events, 36
identifier, 34
status, 34

Status
circuit, 30
client, 23
MOP module, 14
operation, 33
station, 34

Support categories, 10
System ID

message format, 75, 112
periodic, 74
response, 75
V3 compatibility, 137

T

Test
algorithm, 71
directive, 18, 28, 49
disable SAP, 85
enable SAP, 85
message format, 71
select SAP address, 98
transact, 85

Transact, 83
for Request_Program, 83

