
OECnet Digital Network Architecture
Phase IV
Maintenance Operations
Functional Specification
Order No. AA- X436A- TK

DECnet Digital Network Architecture
Phase IV
Maintenance Operations
Functional Specification
Order No. AA-X436A-TK

December 1983

ThiS document describes the structure. functions. interfaces. and proto
cols needed for the low level maintenance of a DECnet network.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

VERSION: 3.0.0

To order additional copies of this document. contact your local
Digital Equipment Corporation Sales Office.

digital equipment corporation · maynard, massachusetts

First Prin' ;ng. December 1983

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license. .

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1983 by Digital Equipment Corporation

The postage-prepaid READER'S COM~lE\",TS form on the last page of this document reque~t~ the user'~
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS
TRAX

MASSBUS
O~l\",IBCS

08/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-l1
ITPS-I0
SBI
PDT

Distributed Systems Publications typeset this manual using DIGITAL's
TMS-ll Text Management System.

MGTPEALL

Table of Contents Page 3

1
1.1
1.2
1. 2.1
1. 2.2
1. 2.3

2
2.1
2.2
2,2.1

3
3.1
3.1.1
3.1. 2
3.1. 3
3.1. 4
3.1. 5
3.1. 6
3.1. 7
3.1. 8
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3 . 3 . 3
3.3.4
3.3.5
3 . 3 . 6
3.3.7
3.3.8
3.3.9
3.4
3.4.1
3.4.2

4
4.1
4.2
4.2. 1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2

CONTENTS

INTRODUcrION • • . • 6
Functional Description • •. 7
Design Scope . .•••••••.•. • 8

Requirements . .•.•• . . •. 8
Goals••......... 8
Non-qoals 9

MODELS • 9
Relationship to DIGITAL Network Architecture. 9
Simplified Network Model. • • • • • • 12

Low Level Maintenance Operation Model ..•. 12

INTERFACES . . . • . • . • • •
Data Link Interface •..

Maintenance-check ...••
Ope n • • • • • • • .
Close
T ran sm it.
Transmit-poll
Receive
Receive-poll. . . . •. .•.
Receive-abort ... • . •••..

User Level Maintenance Operation Interface .
Dump/Load Functions
Loop Test Functions ..••.•....•..
Remote Console Functions ••.••......

Network Management Interface •
Set-state • . . .
Read-state • .
Add-dump/load-entry
Remove-dump/load-entry . •
Set-dump/load-parameter
Read-dump/load-list
Read-dump/load-parameters . . .
Set-console-parameter . . .
Read-console-parameters . . .

Interface Usage Examples ..•
A System Boot Monitor
A Minimal ASCII Console Carrier

OPERATION
Common Algorithms • •
Dump/Load • .. •.....

Dump/Load Server . • •
Dump/Load Requester . . . • • •

Loop Test . • • • . . • •••
Loop Server • • •
Loop Requester • • • . • •

Remote Console . .•••••••..••..
Console Server • • • • • • • • . . • •
Console Requester • • • • • .

13
13
15
15
16
16
17
18
19
19
20
21
29
33
45
45
46
47
48
48
49
49
50
51
51
52
52

54
54
55
56
60
62
62
63
63
63
66

Table of Contents Page 4

5
5.1
5.1.1
5.1. 2
5.1. 3
5.1. 4
5.1. 5
5.1. 6
5.1. 7
5.1. 8
5.1. 9
5.1.10
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5. 3. 3
5.3.4
5.3.5
5.3.6
5.3. 7
5.3.8
5.3.9

APPENDIX A

A.l
A.2
A.3

APPENDIX B

B.1
B.2
B.3

APPENDIX C

C .1
C.2

APPENDIX D

D .1
D.2
D.3

PROTOCOL MESSAGES • . . . 69
70
70
71
72
72
73
74
75
75
78
78
78
78
79
79
79
81
81
84
85
85
85
86
86

Dump/Load
Memory Load with Transfer Address
Memory Load . • . . • . • •
Request Memory Dump
Request Program . • • . • • • . ~

Request Memory Load . •••
Request Dump Service • . . . • • .
Memory Dump Data •. ...•
Parameter Load with Transfer Address .
Dump Complete••
Assis~ance Volunteer .•...•.

Loop Test . . . • • • •
Loop Data Message
Looped Data Message . • •

Remote Console
Boo t
Request I D•..
System ID
Request Counters . . • .
Counters •....
Reserve Console
Release Console . . •
Console Command and Poll .
Console Response and Acknowledge

PREDEFINED VALUES

Communication Devices
Data Links
System Processors

DATA LINK SPECIFIC INFORMATION

DDCMP
LAPB .
Ethernet .

A-I
?- 2
, ~

• rl-":':

B-1
· B-1

· . B-1

IMPLEMEHTATION SPECIFIC DUMP/LOAD CHARACTERISTICS

Secondary Loader
Tertiary Loader

REVISION HISTORY

Changes from Version 1.1 to Version 2.0
Changes from Version 2.0 to Version 2.1.0
Changes from Version 2.1.0 to Version 3.0.0

· C-l
· . C-l

· D-1
• . D-2

· D-2

Table of Contents Page 5

APPENDIX E

E.l
E.l.l
E .1.2
E.l.3
E.l.4
E.2
E. 2.1
E.2.1.1
E.2.1.2
E.2.1.3
E.2.1.4
E. 2.2
E.2.2.1
E.2.2.2
E.2.2.3
E. 2.2.4
E.2.2.5
E.3
E. 3.1
E. 3.2
E.4
E. 4.1
E.4.2
E.4.2.1
E.4.2.2
E.4. 2.3
E.4.2.4
E.5
E.5.1
E.5.2

ETHERNET LOOP TESTING

Introduction. • .•.•..... E-l
Goals E-l
Loop Testing Functions. . • •. .• E-l
Functional Model . . .• ••. . •••• E-2
Conformance Requirements. . ..•.•••. E-3

Interfaces •• E-3
Data Interface• E-4

LoopDirect•.•... E-4
LoopAssisted . . • . • • E-5
LoopPoll •. . E-6
LoopAbort•••• E-7

Network Management Interface •.••.••••• E-7
EnableServer . .. ••• . . • . • E-7
DisableServer•. E-7
EnableAssistance E-7
DisableAssistance•. E-7
ReadStatus•. . . . E-8

Loop Test Examples•........• E-8
Local Control Test Example • . . E-8
Remote Control Test Example E-9

Operation•.. E-9
Loop Server •. ..• E-10
Loop Requester E-ll

LoopDirect Function . . . E-ll
LoopAssisted Function • . E-ll
LoopPoll Function . . . E-12
LoopAbort Function • . E-12

Protocol Messages E-12
Repl~ Message E-13
Forward Data Message E-13

Introduction Page 6

1 INTRODUCTION

Certain maintenance functions need to be performed remotely at a low
level in the overall network architecture. These are functions that
cannot depend on high level software being operational in the system
being maintained.

In the context of this specification, low level implies direct usage
of data link services. High level means such network functions as
routing and end-to-end, virtual circuit type protocols, both of which
are also users of data link services. This specification assumes that
only a minimal level of da~a link services are available to support
maintenance operations, and that these maintenance operations provide
a base on which any higher level functions can be built.

This document describes the structure, functions, interfaces, and
protocols needed for low level maintenance. DNA is the model on which
DECnet implementations are based. A DECnet network is a family of
software modules, data bases, and hardware components used to tie
DIGITAL systems together for resource sharing, distributed computation
or remote system communication.

DNA is a layered $tructure. Modules in each layer perform distinct
functions. Modules within a single DNA layer (but typically in
different computer systems) communicate using specific protocols.
Modules in different layers (but typically in the same computer
system) interface using subroutine calls or a system-dependent method.
In this document interfaces are described in terms of calls to
subroutines.

This document assumes that the reader is familiar with computer
communications and DECnet. The primary audience consists of those who
implement DECnet systems or other systems under different
architectures, but requiring the same functions. However, the
document may be useful to anyone interested in the details of DECnet
structure. The other current DNA functional specifications are:

DNA Data Access Protocol (DAP) Functional Specification, version
~O, Order No. AA-Kl77A-TK

DNA Digital Data Communications Message Protocol (DDCMP)
Functional-sp€cification, Version 4.1.0, Order No. AA-K175A-TK

DNA Ethernet Data Link Functional Specification, version 1.0.0,
Order No. AA-Y298A-TK

DNA Ethernet Node Product Architecture Specification, Version
1.0.0, Order No. AA-X440A-TK

DNA Network Management Functional Specification, version 4.0.0,
Order No. AA-X437A-TK

DNA Network Services Protocol Functional Specification, version
4.0.0, Order No. AA-X439A-TK

Introduction Page 7

DNA Routing Layer Functional Specification, version 2.0.0, Order
No. AA-X435A-TK

DNA Session Control Functional Specification, Version 1.0.0, Order
No. AA-K182A-TK

The Ethernet - A Local Area Network - Data Link Layer and Physical
Layer Specificati~ version 2.0, -roTgital, -rntel, and
xerox}, Order No. AA-K759B-TK

The DECnet DIGITAL Network Architecture
(Order No. AA-N149A-TC) provides
architecture and an introduction to
specifications.

1.1 Functional Description

(Phase IV) General Description
an overvIew of the network
each of the DNA functional

Low level maintenance functions are divided into three categories.
Operation within any category depends on the operability of at least
part of the preceding category. The categories are:

1. Communications test

2. System console

3. System load/dump

Each of these functions can
passive end. The active
maintenance function and
responding.

be
end

the

viewed either
is the one

passive end

from the active
that is driving

is the one that

or
the

is

Communications test determines if the data link communications path is
operative.

System console provides low level access to a system for the functions
of:

Identify processor

Read data link counters

Boot system

Console carrier

The console carrier is a general purpose console input/output channel.
It provides a common communication mechanism to allow remote access
regardless of console command specifics.

Introduction Page 8

System load/dump copies the contents of processor memory to or from a
remote system.

Throughout this document, the term boot is used to mean the process of
causing a system to initialize itself. Initialization may inclu~e
loading system memory. A boot command is a cause. The term load 1S

use~ to mean the process of ~ransferring a system image into processor
memory from some source. This is one potential effect of a boot
command. The source of major interest in this specification is a
remote system, accessed via a communication channel.

1.2 Design Scope

. The low level maintenance operations require certain characteristics
to be present, attempt to meet certain goals, and lack some features
that are not within the scope of the design.

1.2.1 Requirements

The maintenance
characteristics:

operation design must have the following

The functions previously mentioned must be included in the
design.

Active and passive sides of maintenance operations can be
implemented and used independently. The three categories of
maintenance operations are inter-dependent only in simple,
clearly defined ways.

Effects of errors (such as operator errors, protocol errors,
and hardware errors) are minimized, always leaving a system in
a well defined state.

It must be compatible with inter-company standard Ethernet
loopback protocol.

Implementations may select subsets of functions based on
particular product need.

1.2.2 Goals

The maintenance operation design tries to have
characteristics:

the following

Functions and protocols are upward compatible with the DNA
Maintenance Operation Protocol (MOP) version 2.1.

Introduction Page 9

Algorithms, particularly those found in memory-only systems,
are processing a~d memory efficient. Communications
efficiency is a secondary goal. In the specific case of
down-line load and up-line dump, overall speed of operation is
an important goal.

Extensible to accommodate newly developed
modification of current functions.

Operates independently of the underlying
mechanism (e.g. DDCMP, Ethernet, etc.).

functions or

communication

No complex algorithms or data bases. Minimal state kept in
the smallest systems.

1.2.3 Non-goals

The maintenance operation design does not try to have the following
characteristics:

Isolation of components that have failed in a failing system.

System security in the low level maintenance functions.

2 MODELS

This section describes the relationship of the low level maintenance
operations to other network layers and modules. Although this
specification primarily relates the maintenance operations to DNA, the
same relationships can also be applied within other network
architectures, such as the DIGITAL System Communication Arch:te~ture.

2.1 Relationship to DIGITAL Network Architecture

The maintenance operations reside in the DNA Network Management Layer.
They are direct users of the DNA Data Link Layer. The other DNA
layers are not required in the support of the low level maintenance
operations unless such services as remote file access are to be used.

The following diagram shows the overall layering of DNA. A later
diagram shows the simplified model that is applicable to the low level
maintenance operations.

Models

User Modules

1 1

1 1 V
.- 1 ------- 1 ------------------------------------

. ------1 1 Network 1 Management Modules
1 'I ------- 1 ------------------------------------
1 1 1
1 1 V V
1 - 1 --------------------------------
1----> 1 Network Application Modules
1 1 --------------------------------
1 1
1 V
1

1---->
1

1

1

V

Session Control Modules

V
I .---------------------------.
1------------> I End Communication Modules 1
1

1

1 V
1 .---------------------------

1------------> ! Routing Modules
1

1
1 V

V

V

"I
1

I
I
I
1

1
1

I
I
I
I
1

1

V

Page 10

I .---
1------------> 1 Data Link Modules
1

1

1

1

V
.

------------> ! Physical Link Modules

NOTE

Horizontal arrows show direct access for control and
observation of parameters, counters, etc. Vertical
arrows show interfaces between layers for normal user
operations such as file access, down-line load, and
logical link usage.

Each layer in DNA consists of functional modules and protocols.
Generally, modules use the services of the next lower layer. In this
document, the service relationship is demonstrated in the way the
interfaces are modeled, as calls to subroutines. Note that the
Network Management Layer interfaces directly with each of the lower

Models Page 11

layers. Also, the layers above Session Control interface directly
with it. For this reason t~e upper three layers are sometimes
referred to as the ~end user.~

Modules of the same type in the same layer communicate with each other
to provide their services. The rules governing this communication and
the messages required constitute the protocol for those modules.
Messages are typically excnanged between equivalent modules in
different nodes. However, equlvalent modules within a single node can
also exchange messages.

A brief description of each layer follows in order from the highest to
the lowest layer:

1. User Layer. The highest layer, the User Layer supports user
services and programs. Programs such as the Network Control
Program, which interfaces with the Network Management Layer,
and file transfer programs, which interface with the Network
Application Layer, reside in the User Layer.

2. Network Management Layer. The Network Management Layer is the
only one that has direct access to each lower layer for
control purposes. Modules in this layer provide user control
over and access to network parameters and counters. These
modules also perform up-line dumping, down-line loading, and
testing functions.

3. Network Application Layer. Modules in the Network Application
Layer support network functions, such as remote file access
and file transfer, used by the User and Network Management
Layers.

4. Session Control Layer. The Session Control defines the
system-dependent aspects of logical link communication, which
allows messages to be sent from one node to another in a
network. Session Control functions include name-to-address
translation, process addressing, and, in some systems, process
activation and access control.

5. End Communication Layer. The End Communication Layer defines
the system-independent aspects of logical link communication.

6. Routing Layer. Modules in the Routing Layer route messages,
called packets, between source and destination nodes.

7. Data Link Layer. The Data Link Layer defines the protocol
concerning data integrity and physical channel management.

S. Physical Link Layer. The Physical Link Layer encompasses a
part of the device driver for each communications device plus
the communications hardware itself. The hardware includes
interface devices, modems, and the communication lines.

Models Page 12

2.2 Simplified Network Model

The following diagram shows a simplified relationship of the
maintenance operations to the rest of the network architecture.

.

.
1 DDCMP
I Data
1 Link

. .
I User I

• • I • •

. .
I Maintenance I
1 Operations 1

"'-------------,
• • I • • I

1 I

Ethernet
Data
Link

User
Layer

·
Network
Management
Layer

·

· lather
I Data
I Link

Data
Link
Layer

2.2.1 Low Level Maintenance Operation Model

The following diagram shows the components within the maintenance
operation module.

Use r Pro c e sse s

1 1 I 1

1 .-----------. I .-----------. • -----------. I
'-I Dump/Load I '-I Dump/Load I 1 Dump/Load I 1

1 Data Base 1===1 Server 1 1 Requester 1 1

-----------. .
1 Console 1

1 Requester 1
'-----------,

'_-1 _________ ,

.
I • ---------.
'--I Console 1

1 Server I
'---------,

-----------, 1

.
1

1
I

1

1

I .--------.
'--I Loop 1

1 Server I
'--------,

D a t a Lin k

. .
1 Loop 1

1 Requester 1

'----------,

Models Page 13

Requesters are the processes responsible for initiation of maintenance
operations. This can be done either at higher level user request, or
because of information obtained from a lower level. Requesters are
the active side of a maintenance operation.

Servers are the processes that respond to maintenance requesters.
They are the passive side of a maintenance operation. Servers should
not try to do more than they are capable of. For example, it is not
acceptable to always volunteer:to load every system that requests it
and then take too long to get done because the local resources are
overextended.

The diagram shows servers and requesters as separate to represent
their functional independence. In an implementation that supports
multiple servers and/or requesters that use the same protocol type,
they may have to be more closely coupled so that messages received
through the data link are properly demultiplexed. Also, servers and
requesters that allow mUltiple users must further demultiplex messages
to the proper user processes.

The Dump/Load Data Base
Dump/Load Server uses to
requests.

contains
fill in

default information that the
necessary values in incomplete

Lines to the top of processes indicate flow of the control data that
initiates processing. Lines to the side indicate Network Management
control. The double horizontal line indicates data base access.

3 INTERFACES

The following sections describe the interfaces related to maintenance
operations. The function descriptions are in terms of subroutines
with input and output arguments. These subroutines are to be
understood as abstract, functional descriptions. Actual
implementations may vary, for example in synchronization techniques,
as long as they provide the same functions.

References to buffers in all of the following subroutine descriptions
assume a buffer descriptor containing buffer address, maximum buffer
length, and, if applicable, length of information in buffer.

3.1 Data Link Interface

Maintenance operations can be performed over communication channels
provided by different data link disciplines. All of the potential
data link user interfaces are abstracted into the functions required
for maintenance operations. This section describes that interface.
This section is included to define exactly what services a data link
must provide so that the low level maintenance functions can be
performed. It is an abstract representation of all possible data link
interfaces, in terms that are directly applicable to low level

Interfaces Page 14

maintenance operations.

From the perspective of maintenance operations, there are two data
link configurations: point-to-point and multiaccess.

Point-to-point data links are those where there is a single node on
the each end of a logical channel. Trans~~ts and receives are always
between these two nodes. Multipoint is treated as point-to-point, in
the sense that each logical channel (tributary) is identified and used
independently.

Multiaccess data links are those where the number and identification
of all adjacent nodes are not necessarily known. On multiaccess data
links, node identification must accompany transmit and receive
requests. Additionally, multiaccess data links may provide multicast
service for communications with a class of nodes.

Independently of configuration, some data links may allow concurrent
operation of both normal and maintenance traffic. Others may allow
maintenance traffic only in a mode that excludes normal traffic.

This interface assumes that all data links offer the same basic
services, framing and error checking. The data link frames messages
and provides the length of received messages. Messages are sent and
received in the order they were offered by the sender. Messages that
the data link delivers to the receiver have been checked for bit
errors. It is possible for messages tu be lost with no notification
to either sender or receiver.

The interface function descriptions refer to data link configuration
and maintenance exclusiveness as necessary to indicate differences of
operation.

The Data Link Interface conta:ns the following functions:

Maintenance-check -- check to see if maintenance service is
needed.

Open -- open a port.

Close -- close a port.

Transmit -- send a frame.

Transmit-poll -- check for completion of a Transmit.

Receive -- receive a frame.

Receive-poll -- check for completion of a Receive.

Receive-abort -- abort a Receive.

Interfaces Page 15

3.1.1 Maintenance-check

Function:

Checks the channel to see if maintenance service is needed.
Applicable only on exc~usive maintenance channels.

Inputs:

Channe1-id. - the unique identification of the channel to check.

Outputs:

Return-code - the status of the request. One of:

Running normally - the channel is running or attempting to run
normal user traffic.

Maintenance needed - the channel wants to run maintenance
traffic.

unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the check can be made.

3.1.2 Open

Function:

Opens a port so that the user can transmit and receive frames.

Inputs:

Channel-id - the unique identification of the channel on which the
port is to be opened.

Pad - an indication that the data link is to use its own standard
padding technique if padding is necessary. Maintenance operations
use this option, when available, for all but the multiaccess
channel loop protocol.

Id-list - a list of identification data, such as protocol types or
multicast addresses, that identify this user of the data link.
Data link specific and applicable only on concurrent maintenance
channels. For example, in the Ethernet Data Link this abstract
id-list function is accomplished using the Ethernet Data Link
Open, Enable-protocol, and Enable-multicast functions.

Outputs:

Return-code - the status of the request. One of:

Interfaces Page 16

Success - a port was opened.

No resources the data link does not have sufficient
resources to open a port.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where a
port can·be opened.

Port-id - a port identification to be used in the other data link
interface functions.

3.1.3 Close

Function:

Closes an open port and releases all its resources. A port cannot
be closed unless all outstanding transmit or receive requests are
completed.

Inputs:

Port-id - a port identification assigned by the Open function.

Outputs:

Return-code - the status of the request. One of:

Success - the port is closed.

Unrecognized port - there is no open port with the specified
identification.

Calls outstanding - there are uncompleted transmit or recelve
requests outstanding on the port.

3.1.4 Transmit

Function:

Queues a frame to be transmitted. The user tests for completion
by using Transmit-poll. Transmission of a frame always succeeds
or fails within such a small amount of time that an abort function
is not necessary.

Inputs:

Poit-id - a port identification assigned by the Open function.

Interfaces Page 17

Destination-address - the address of the frame destination. This
can be either a physical address or a multicast address.
Applicable only on multiaccess channels.

Protocol-type - a protocol type
receiving system. Applicable
channels.

to
only

identify the
on concurrent

data at the
maintenance

Input-buffer - a buffer containing the data to be sent. Until the
request is completed, the user must not disturb the contents of
the buffer.

Outputs:

Return-code - the status of the request. One of:

Request accepted - the data link will attempt to transmit the
frame. Notification of completion is via the Transmit-poll
function.

No resources the data link does not have sufficient
resources to queue a transmit for this port.

Unrecognized port - there is no open port with the specified
identification.

Channel in wrong state - the channel is not in a state where
it can send a frame.

3.1.5 Transmit-poll

Function:

Checks for the completion of a transmit request. The data link
transmits frames in the order in which the user submits them.

Successful completion of this function implies only that the local
transmitter believes that it sent the frame. It does not
necessarily imply that the destination received it.

Inputs:

Port-id - a port identification assigned by the Open function.

Outputs:

Return-code - the transmit request for this port. One of:

Not complete - no transmit for this port is done.

None outstanding - there are no outstanding transmits for this
port.

Interfaces Page 18

Transmit successful - a frame successfully left the local
transmitter.

Transmit failed - the local transmitter could not transmit the
frame.

Unrecognized port - there is no open port with the specified
identification.

Channel in wrong state - the channel 1S not in a state where
it can send a frame.

Input-buffer - the buffer that was supplied in the Transmit
function.

3.1.6 Receive

Function:

Queues a buffer to receive a frame. On multiaccess or concurrent
maintenance channels, the receive is filtered according to the
id-list established in the Open function.

Inputs:

Port-id - a port identification assigned by the Open function.

Output-buffer - a descriptor of a buffer to contain the received
frame.

Outputs:

Return-code - the status of the request. One of:

Request accepted - if a message is received for the specified
port, the data link will put it into the buffer. Notification
of completion is via the Receive-poll function.

No resources the data link does not have sufficient
resources to queue a receive for this port.

Unrecognized port - there is no open port with the specified
identification.

Channel in wrong state - the channel is not in a state where
it can receive a frame.

Interfaces Page 19

3.1.7 Receive-poll

Function:

Check for the completion of a receive
gives received frames to the user
arrived.

request. The data link
in the order in which they

Inputs:

Port-id - a port identification assigned by the Open function.

Outputs:

Return-code - the status of the receive request. One of:

Not complete - no outstanding receive for this port is done.

None outstanding - there are no outstanding receives for thi~
port.

Receive successful - a frame was successfully received into
the buffer.

Receive with overrun - a frame was successfully received, but
had to be truncated to fit into the buffer.

Receive aborted - the user cancelled the receive request witr
the Receive-abort function.

Unrecognized port - there is no open port with the specified
identification.

Channel in wrong state - the channel is not in a state whe~e
it can receive a frame.

Destination-address - the address to which the received frame was
addressed. Applicable only on multiaccess channels.

Source-address - the address from which the received frame came.
Applicable only on multiaccess channels.

Protocol-type the protocol type from the received frame.
Applicable only on concurrent maintenance channels.

Output-buffer - the received data.

3.1.8 Receive-abort

Function:

Aborts all outstanding receive requests. The buffers are returnee
via the Receive-poll function. They may be returned as aborted or

Interfaces Page 20

as normally completed.

Inputs:

Port-id - a port identification assigned by the Open function.

Output-buffer - a descriptor of a buffer for a pending receive.

Outputs:

Return-code - the status of the request. One of:

Success - the request is now complete.

Unrecognized port - there is no open port with the specified
identification.

Unrecognized buffer - the specified buffer is not queued for
the specified port.

3.2 User Level Maintenance Operation Interface

This section describes the functions available to the maintenance
operation user. The descriptions relate each function to its
respective component in the maintenance operation model. The
functions are divided into three groups:

Dump/Load Functions

Loop Test Functions

Remote Console Functions

The Dump/Load Functions are:

Force-load -- load a remote system.

Force-load-poll -- check for completion of a Force-load.

Load-self -- load the local system.

Load-self-poll -- check for completion of a Load-self.

Force-dump -- dump a remote system.

Force-dump-poll -- check for completion of a Force-dump.

Dump-self -- dump the local system.

Interfaces Page 21

Dump-self-poll -- check for completion of a Dump-self.

The Loop Test Functions are:

Loop-direct -- loop test direct with another system.

Loop-~ssisted -- loop test wiLh third-party assistance.

Loop-poll -- check for completion of a loop.

Loop-abort -- abort a loop.

The Remote Console Functions are:

Request-poll -- check for remote execution control request.

Identify-self -- send system identification.

Boot -- force remote system to load.

Read-identity -- read remote identity.

Read-identity-poll -- check for completion of a Read~identity.

Read-counters -- read remote data link counters.

Read-counters-poll -- check for completion of a Read-counters.

Reserve-remote-console reserve remote system's console.

Release-remote-console release remote system's console. *

Send-console-command
console. *

send command message to remote

Console-response-poll
command. *

check for completion of Send-console-

Send-console-response -- send consvle response data to remote
command Console Requester. *

Console-abort -- abort a pending console function.

* Requires that the Console Server be reserved.

3.2.1 Dump/Load Functions

The following functions are performed by either the
Requester or the Dump/Load Server.

Dump/Load

Interfaces Page 22

3.2.1.1 Force-load

Function:

Forces a down-line load of the system on the specified channel.
This function is a call to the Dump/Load Server. It is a server
function rather than a requester function since the server is the
component that will actually service the load request that is
forced from the target system.

The Force-load function queues the request. The user checks for
completion with the Force-load-poll function.

Inputs:

Channel-id - the unique identification of the channel over which
the load is to be performed. If not specified, the channel-id
from the Dump/Load Data Base is used.

Destination-address - the identification of the target system. If
not specified but needed, the destination-address from the
Dump/Load Data Base is used. Destination-address is needed on
multiaccess channels.

NOTE

Either the channel-id or the destination-address
must be included in order to identify the target
system. If both are included, the
destination-address is used as the data base
search key to find other values in the Dump/Load
Data Base.

Load-file - the identification of the file that is to be down-line
loaded into the target system. If not specified, the file
identification from the Dump/Load Data Base is used.

Secondary-loader - the identification of the file that contains
the secondary loader program to use. If not specified but needed,
the file identification from the Dump/Load Data Base is used.

Tertiary-loader - the identification of the file that contains the
tertiary loader program to use. If not specified but needed, the
file identification from the Dump/Load Data Base is used.

Outputs:

Return-code - the status of the request. One of:

Request accepted
Notification of
function.

the load
completion

process
is via

will
the

be initiated.
Force-load-poll

Interfaces Page 23

No resources - the Dump/Load Server does not have sufficient
resources to queue the request.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where a
load can be done.

Receipt-number - a receipt number to identify this request in the
Force-load-poll function.

3.2.1.2 Force-load-poll

Function:

Checks for completion of a pending Force-load function.
function is a call to the Dump/Load Server.

This

Inputs:

Receipt-number - the receipt number assigned by the Force-load
function to identify the request.

Outputs:

Return-code - the status of the request. One of:

In process - the load is proceeding.

Success - the down-line load completed successfully.

Force boot failed - could not force the target system to enter
a booting state.

Memory load error - the target system reported an error ln
attempting to deposit part of the load.

File open error - could not open one of the files.

Invalid file contents - invalid data in one of the files.

File I/O error - I/O error reading one of the files.

Channel communication error - error in transmit or receive on
the channel.

Channel protocol error - error in protocol usage by the target
system.

Unrecognized channel - there is no channel with the specified
identification.

Interfaces Page 24

Unrecognized target - the Dump/Load Data Base was needed but
did not contain an entry for the specified target.

Channel in wrong state - the channel is not in a state where a
load operation can be done.

File-indicator - the indication of which file a file error relates
to. Not meaningful for non-file related errors. One of:

Load file
Secondary loader
Tertiary loader

3.2.1.3 Load-self

Function:

Requests a down-line load of the local system. This is the
communications channel equivalent of a system loading itself from
local mass storage. Note that only one self-load can be in
progress at a time. If a second request is made before a previous
one completes, the new request simply replaces the old one. This
function is a call to the Dump/Load Requester.

Inputs:

Channel-id - the unique identification of the channel on which the
load is to be done.

Destination-address - the identification of the system that is to
assist in the load. Applicable only on multiaccess channels. If
the address is applicable but not specified, the load will be
taken from whatever system is able to help (for further details,
see operation section).

System-processor - the processor type of the local system. If not
specified, the assisting system must assume a type. Defined types
are in Appendix A.

Software-id - the type of software desired.
assisting system must assume a type.

If not specified, the

Other-info - further, implementation-specific information. Zero
or more other-info parameters may be included, each consisting of:

Parameter-id identification of the parameter.
Identifications are related to the standard parameters (e.g.
communications-processor, system-bus) on an
implementation-specific basis. .

Parameter-value - the value of the parameter.

Interfaces Page 25

Outputs:

Return-code - the status of the request. One of:

Request accepted the load process will be initiated.
Notification of completion is via the Load-self-poll function.

Unrecognized channel - th~re is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where a
load can be done.

3.2.1.4 Load-self-poll

Function:

Checks for completion of the pending Load-self function.
function is a call to the Dump/Load Requester.

Inputs: None.

Outputs:

Return-code - the status of the request. One of:

Requesting - the load is being requested.

In process - the load 1S proceeding.

Successful - the load completed successfully.

Failure - the load failed.

This

Start-address - on successful load completion, the starting memory
address of the loaded image.

Local-address - the network address that the local system is to
use. Not returned if not received.

Local-name - the network name that the local system is to use.
Not returned if not received.

Host-address - the network address of the host that this system is
to use. Not returned if not received.

Host-name - the network name of the host that this system is to
use. Not returned if not received.

Host-date-time - the date and time at the host system. Not
returned if not received.

Interfaces Page 26

3.2.1.5 Force-dump

Function:

Forces an up-line dump of the system on the specified channel.
This function is a call to the Dump/Load Server. It is a server
function rather than a requester function since the server is the
component that will actually dump the target system.

The Force-dump function queues the request. The user checks for
completion with the Force-dump-poll function.

Inputs:

Channel-id - the unique identification of the channel over which
the dump is to be performed. If not specified, the channel-id
from the Dump/Load Data Base is used.

Destination-address - the identification of the target system. If
not specified but needed, the destination-address from the
Dump/Load Data Base is used. Destination-address is needed on
multiaccess channels.

NOTE

Either the channel-id or the destination-address
must be included in order to identify the target
system. If both are included, the
destination-address is used as the data base
search key to find other values in the Dump/Load
Data Base.

Dump-file - the identification of the file that is to be up-line
dumped into on the target system. If not specified, the file
identification from the Dump/Load Data Base is used.

Dump-address - the memory address in the target system to begin
dumping from. If not specified and not obtainable from the
target, the value from the Dump/Load Data Base is used.

Dump-count - the number of memory units to
whatever is customary for the processor
necessarily, eight-bit bytes. If not
obtainable from the target, the value from
is used.

Outputs:

dump. Memory units are
type: usually, but not
specified, and not

the Dump/Load Data Base

Return-code - the status of the request. One of:

Request accepted
Notification of
function.

the dump
completion

process
is via

will
the

be initiated.
Force-dump-poll

Interfaces Page 27

No resources - the Dump/Load Server does not have sufficient
resources to queue the request.

unrecognized destination - there is no destination with the
specified identification.

unrecognized channel - there is no channel with the specified
identification.

Channei in wrong state - the channel is not in a state where a
dump can be done.

Receipt-number - a receipt number to identify this request in the
Force-dump-poll function.

3.2.1.6 Force-dump-poll

Function:

Checks for completion of a Force-dump function.

Inputs:

Receipt-number - the receipt number assigned by the Force-dump
function to identify the request.

Outputs:

Return-code - the status of the request. One of:

In process - the dump is proceeding.

Success - the up-line dump completed successfully.

Remote dump failed - could not force the target system to
cooperate. The higher level may be able to remedy this with a
Force-load.

Memory read error - the target system reported an error in
reading memory.

File open error - could not open the dump file.

Invalid file contents - invalid data in the dump file.

File I/O error - I/O error reading or writing the dump file.

Channel communication error - error in transmit or receive on
the channel.

Channel protocol error - error in protocol usage by the target
system.

Interfaces Page 28

Unrecognized channel - there is no channel with the specified
identification.

Unrecognized target - the Dump/Load Data Base was needed, but
did not contain an entry for the specified target.

Channel in wrong state - the channel is not in a state where a
dump operation can be done.

3.2.1.7 Dump-self

Function:

Requests an up-line dump of the local system. This is the
communications channel equivalent of a system dumping itself to
local mass stor~ge. Note that only one self-dump can be in
progress at a t1me. If a second request is made before a previous
one completes, the new request simply replaces the old one. This
function is a call to the Dump/Load Requester.

Inputs:

Channel-id - the unique identification of the channel on which the
dump is to be done.

Destination-address - the identification of the system that is to
assist in the dump. Applicable only on multiaccess channels. If
applicable but not specified, the dump will go to whatever system
is able to help.

Dump-address - the address in local memory at which the dump is to
begin. If not specified, the assisting system must assume an
address.

Dump-count - the number of memory
whatever 1S customary for the
necessarily, eight bit bytes. If
system must assume a count.

units to dump. Memory units are
processor type; usually, but not

not specified, the assisting

System-processor - the processor type of the local system. If not
specified, the assisting system must assume a type. Defined types
are in Appendix A.

Software-id - the type of software that was running. If not
specified, the assisting system must assume a type. Defined types
are in Appendix A.

Other-info - further, implementation-specific information. Zero
or more other-info parameters may be included, each consisting of:

Parameter-id identification of the parameter.
Identifications are related to the standard parameters (e.g.
communications-processor, system-bus) on an

Interfaces Page 29

implementation-specific basis.

Parameter-value - the value of the parameter.

Outputs:

Return-code - the status of the request. One of:

Request accepted the dump process will be initiated.
Notification of completion is via the Dump-self-poll function.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where a
dump can be done.

3.2.1.8 Dump-self-poll

Function:

Checks for completion of the pending Dump-self function.
function is a call to the Dump/Load Requester.

Inputs: None.

Outputs:

Return-code - the status of the request. One of:

Requesting - the dump 1S being requested.

In process - the dump is proceeding.

Successful - the dump completed successfully.

Failure - the dump failed.

3.2.2 Loop Test Functions

The specific goals in the design of the Loop Test functions are:

This

Provide for all forms of loop test that are necessary to
diagnose a system's ability to communicate.

Allow each system to assume the responsibility to diagnose its
own ability to communicate.

Interfaces Page 30

For multiaccess channels, allow a network management system to
diagnose some other system's ability to communicate.

Minimize processing and memory requirements, particularly in
systems other than the requesting system.

The realization of these goals is differen~ for multiaccess channels
and point-to-point channels, since multiaccess channels have a broader
communication ability.

On a point-to-point channel, a system using the Loop Test functions on
its own behalf and having all of them available can ascertain its
ability to communicate with the system on the other end of the
channel.

For multiaccess channels, the Loop Test functions are modeled after
the Ethernet standard. See Appendix E or the Ethernet Specification,
Version 2.0, for a detailed description.

Some multiaccess channels may support
loopback assistant. These are systems
some forms of multiaccess loopback
descriptions refer to these systems
multicast group.

the concept of a generic
that are willing to assist in

testing. The following
as the loopback assistant

The amount of the Loop
the full range from
systems that do no~
proportionately llmit
more dependent on some

Test interface thcl is implemented can cover
none at all to full capability. However, those

provide the full interface capability
their capacity for self diagnosis and become

centralized test facility.

The following functions are all calls to the Loop Requester.

3.2.2.1 Loop-direct

Function:

Determine if direct communication with a remote system is
possible.

Inputs:

Channel-id - the unique identification of the channel on which the
loop is to be done.

Destination-address - the identification of the system that is to
be looped to. Applicable only on multiaccess channels. If
applicable and not included, the loopback assistant group
multicast address is used.

Interfaces Page 31

Input-buffer - a buffer containing the data to be looped.

Output-buffer - a buffer to contain the looped back data. If not
present, the looped back data is not returned to the user.

Outputs:

Return-code - the status of the request. One of:

Request accepted - the loop will be attempted.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is in a state where a
loop cannot be done.

Receipt-number - the request identification used in the Loop-poll
or Loop-abort function to identify this request.

3.2.2.2 Loop-assisted

Function:

Determine if some other system can communicate with the specified
remote system. Applicable only on multiaccess channels.

Inputs:

Channel-id - the unique identification of the channel on which the
loop is to be done.

Destination-address - the identification of the system that is to
be looped to. The destination-address cannot be a multicast
address.

Assistant-address - the identification of the third party system
to assist in the test. The address ~annot be a multicast address.

Assistance-level - the amount of assistance desired:

transmit - the assistant station is only to relay the request,
the request is to be returned from the destination system.

receive - the assistant station is only to relay the reply,
the request is to be sent to the destination station.

full - the assistant station is to relay both request and
reply.

Input-buffer - a buffer containing the data to be looped.

Interfaces Page 32

Output-buffer - a buffer to contain the looped back data. If not
present, the looped back data is not returned to the user.

Outputs:

Return-code - the status of the request. One of:

Request accepted - the loop will be a~tempted.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel IS in a state where a
loop cannot be done.

Receipt-number - the request identification used in the Loop-poll
or Loop-abort function to identify this request.

3.2.2.3 Loop-poll

Function:

Used to poll for completion of a Loop-direct or Loop-assisted.

Tnputs:

Receipt-number - the request identification assigned to this
request by the Loop function.

Outputs:

Return-code - the status of the operation. One of:

Not complete - the loop is not yet done.

Success - the data came back correctly.

Aborted - the request was aborted with a Loop-abort.

Compare error - the data carne back, but it did not match what
was sent.

Transmit failed - the local transmitter could not send the
initial message.

Channel communication error no response was received.
Either the initial message or the response did not arrive.

Responding-address - the identification of the remote system that
satisfied the request. Applicable only on multicast channels.
For Loop-assisted with transmit assistance, this is the remote
system address. For Loop-assisted with receive or full
assistance, it is the assistant system address.

Interfaces Page 33

Output-buffer - the looped back data received, whether correct or
not. Present only if the buffer was furnished on the Loop call.

3.2.2.4 Loop-abort

Function:

Used to aqort a Loop-direct or Loop-assisted, for example if the
user decides that the reply has taken too long.

Inputs:

Receipt-number - the request identification assigned to this
request by the Loop-direct or Loop-assisted function.

Outputs: none.

3.2.3 Remote Console Functions

There is an aspect of the Console Server operational model that
affects the user interface in a way that must be explained here. This
is the relationship between data access functions and control
functions.

Data access -- these functions involve parameters (for example
Read-identity). The model assumes that the Console Server has
necessary access abilities without higher level involvement.

Control -- these functions involve changing the flow of
execution of a processor (for example, Boot). The model
assumes that the Console Server cannot do this directly. The
higher level must therefore poll the Console Server for this
type of request and the information needed to honor it.

Most of the remote console functions are calls to the Console
Requester. Console Requester operations are of two types, those that
require exclusive access to the remote console and those that do not.

Unless otherwise noted, the following functions are calls to the
Console Requester.

3.2.3.1 Request-poll

Function:

Checks to see if certain remote requests have been made. These
are requests that directly modify local system processor

Interfaces Page 34

execution. Remote requests are not queued: only the most recent
1S available. Each remote request can be read only once. The
higher level process is responsible for polling often enough to
ensure a minimum number of lost requests.

This is a call to the Console Server.

Inputs:

Channel-id - the unique identification of the channel on which to
check for remote requests.

Outputs:

Return-code - the status of the request. One of:

No requests - no remote requests have been received.

Request read - a remote request has been returned.

Request truncated a console command request has been
received; however all of the command data was lost.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the request can be received.

Request-type - the type of request made by the remote system. One
of:

Boot
Console command

Boot-server - for a boot request, an indication of the server
system to be used to honor the request. One of:

Default-server - the system that this system would normally
use.

Command-source - the system involved in this request.

Boot-device - for a boot request, an indication of the device this
system is to use to honor the request. One of:

Default-device - the device that this system would normally
use.

Specified-device - the device specified by the command source.

Device-id - for specified-device, identification of the device to
boot from.

Interfaces Page 35

Verification-code for a boot request. the 4 or 8 byte
verification code sent by the requesting system.

Source-address - the identification of the system that sent the
request. Applicable only on multiaccess channels.

Command-data-buffer - for a console command, the buffer containing
the command message.

Command-break-flag - for a console command, indicates when a break
condition is to precede the command message to the console.

3.2.3.2 Identify-self

Function:

Causes a system identification message to be sent.

This is a call to the Console Server.

Inputs:

Channel-id - the unique identification of the channel on which to
send the identity.

Destination-address the identification of the destination
system. Applicable only to multiaccess channels. If applicable
and not present, the identity message will be sent to the remote
console multicast group.

Outputs:

Return-code - the status of the request. One of:

Success - identity sent.

Transmit failed - the data link failed to send the message.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state whe~e
the request can be received.

3.2.3.3 Boot

Function:

Force the remote processor to initialize itself. This may cause
the system to reload its system image either locally or remotely.

Interfaces Page 36

Inputs:

Channel-id - the unique identification of the channel on which to
send the boot command.

Destination-address the identification of the destination
syStem. Applicable only to multiaccess channels.

verification code - a code to send to the remote system so it will
honor the request. The code can be either 4 or 8 bytes long. If
it is 4 bytes, no additional parameters can be sent. If
additional parameters are to be sent, the code must be 8 bytes
long.

Boot-server - for a boot request, an indication of the server
system to be used to honor the request. One of:

Default-server - the system that this system would normally
use.

Command-source - the system involved in this request.

Boot-device - for a boot request, an indication of the device this
system is to use to honor the request. One of:

Default-device - the device that this system would normally
use.

Specified-device - the device specified by the command source.

Device-id - for specified-device, identification of the device to
boot from.

Software-id - the software that the remote system is to load.

Outputs:

Return-code - the status of the request. One of:

Success - request sent.

Transmit failed - the local transmitter could not transmit the
request.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the boot can be done.

Interfaces Page 37

3.2.3.4 Read-identity

Function:

Reads the identity of the specified system.

Inputs:

Channel-id - the unique identification of the channel on which to
read the identity.

Destination-address the identification of the destination
system. Applicable only to multiaccess channels.

Outputs:

Receipt-number - the receipt number used in the Console-abort or
Read-identity-poll functions to identify this request.

3.2.3.5 Read-identity-poll

Function:

Polls for completion of a Read-identity function.

Inputs:

Receipt-number - the request identification assigned to this
request by the Read-identity function.

Outputs:

Return-code - the status of the request. One of:

Not complete - the operation is still in process.

Success - identity read.

Transmit failed - the local transmitter could not transmit the
request.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the read can be done.

Maintenance-version the version number of the Low Level
Maintenance Operations Architecture that the system is using.

Functions - a list of flags indicating whether or not various
maintenance functions are currently supported on the system. The
possible functions are:

Interfaces

Loop
Dump
Primary loader (can only load secondary loader)
Multi-block loader (can load tertiary loader or system)
Boot
Console carrier
Data link counters
Console carrier reservation

Page 38

Console-user - the identification of the system that has the
remote console reserved. Not returned if not received.

Reservation-timer - the maximum number of seconds that are allowed
with no remote console requests before the reservation expires.
Not returned if not received.

Console-command-size - the maximum allowable size of a console
command message. Not returned if not received.

Console-response-size - the maximum allowable size of a console
response message. Not returned if not received.

Hardware-address - the unique hardware address of the remote
system. This mayor may not be the address in use to identify the
system. Not returned if not received.

Communication-device the device type of the communication
subsystem over which the remote system received the request. Not
returned if not received. Defined types are in Appendix A.

Software-id - the type of software running in the remote system.
Not returned if not received. Defined types are in Appendix A.

System-processor - the processor type of the remote system. Not
returned if not received. Defined types are in Appendix A.

Data-link-type - the data link mechanism over
system received the request. Not returned
Defined types are in Appendix A.

which the remote
if not received.

Data-link-buffer-size - the size of the data link buffer, which
determines the maximum size MOP message that the station can
accept. It includes all except the DDCMP header. The default
value is 262 (256 plus the current MOP header size). A server may
ignore this field, so that all requesters must support 262 byte
messages. Not returned if not received.

Other-info - further, implementation-specific information. Zero
or more other-info parameters may be included, each consisting of:

Parameter-id identification of the parameter.
Identifications are related to the standard parameters (e.g.,
communication-device, system-processor) on an implementation
specific basis.

Interfaces Page 39

Parameter-value - the value of the parameter.

3.2.3.6 Read-counters

Function:

Reads the data link counters from the specified system.

Inputs:

Channel-id - the unique identification of the channel on which to
read the counters.

Destination-address the identification of the destination
system. Applicable only to multiaccess channels.

Outputs:

Receipt-number - the receipt number used in the Console-abort or
Read-counters-poll functions to identify this request.

3.2.3.7 Read-counters-poll

Function:

Polls for completion of a Read-counters function.

Inputs:

Receipt-number - the request identification assigned to this
request by the Read-counters function.

Outputs:

Return-code - the status of the request. One of:

Not complete - the operation is still in process.

Success - counters read.

Transmit failed - the local transmitter could not transmit the
request.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the read can be done.

Interfaces Page 40

Counters - a block of counter information as defined for the
particular data link (see Appendix B).

3.2.3.8 Reserve-remote-console

Function:

Reserves the remote system console for use by this system. This
must be done before the console carrier can be used. The remote
console stays reserved as long as this system makes any console
request before the remote system's reservation timer expires. If
the remote console reservation timer expires, this system's
console reservation is lost without notification.

Reservation of a remote console allocates and initializes a
collection of local resources, known as a port. Those console
functions,that require a reservation are requested via the port
identification. Initialization of the port allows the command
node to synchronize the command and response data streams with the
target node's Console Server.

In cases where a remote system console can be accessed over more
than one communication channel, it is the responsibility of that
system and the user of the remote console to ensure that there are
no conflicts of control.

Inputs:

Channel-id - the unique identification of the ~hannel on which to
reserve the remote system console.

Destination-address the identification of the destination
system. Applicable only to multiaccess channeis.

Verification code - a code to send to the remote system so it will
honor the request.

Outputs:

Return-code - the status of the request. One of:

Success - request sent.

No resources - this system has insufficient resources to
assign a port for remote console requests.

Transmit failed - the local transmitter could not transmit the
request.

Unrecognized channel - there is no channel with the specified
identification.

Interfaces Page 41

Channel in wrong state - the channel is not in a state where
the reservation can be made.

Port-id - a port identification to be used ln the other Remote
Console Interface functions that require a reservation.

3.2.3.9 Release-remote-console

Function:

Releases this system's access to the remote system console. This
provides an optimization over allowing the remote system's
reservation timer to expire and deal locates the local port
resources.

Note that even though a message cannot be sent to the remote
system, the local resources will still be released. In other
words, from the standpoint of the local system, this function does
not fail.

Inputs:

Port-id a port identification assigned by the
Reserve-remote-console function.

Outputs:

Return-code - the status of the request. One of:

Success - request sent.

Transmit failed - the local transmitter could not transmit the
request.

Unrecognized port - there is no open port with the specified
identification.

Channel in wrong state - the channel is not in a state where a
transmit can be done.

3.2.3.10 Send-console-command

Function:

Sends console command data and polls the Console Server of the
target system. This function is used with no command data to
achieve a poll of the target system without sending a command.

Inputs:

Interfaces . Page 42

Port-id - a port identification assigned by the Reserve-remote
console function.

Command-break-flag - a logical value, where true indicates that
the data in the command-data-buffer is to be preceeded by a break
condition in the serial byte stream. This is for target system
console implementations with an RS232-C type interface.

Command-data-buffer - a buffer containing command data to be sent
to the remote system. This must not be larger than the maximum
size command the remote system can receive, as indicated through
the Read-identity function.

Response-data-buffer - a buffer to receive data from the remote
system. This must be at least as large as the maximum size
response the remote system can send, as indicated through the
Read-identity-poll function.

Outputs:

Return-code - the status of the request. One of:

Success - console command accepted for transmission.

Unrecognized port - there is no open port with the specified
identification.

Function denied - a previous Send-console-command function was
still pending.

Invalid buffer size - the command buffer is larger than the
target Server allows, or the response buffer is smaller than
the target Server allows.

Receipt-number - the request identification used in the Console
abort or Console-response-poll functions to identify this request.

3.2.3.11 Console-response-poll

Function:

Polls for completion of the Send-console-command function.

Inputs:

Receipt-number - the request identification assigned to the Send
console-command function.

Outputs:

Return-code - the status of the request. One of:

Interfaces Page 43

Pending - the exchange is not yet complete.

Success - console data sent and acknowledged.

Data lost - success, but data was lost during the exchange.

Transmit failed - the local transmitter could not transmit the
request.

command-data-buffer - the buffer which contained the command sent
to the remote system. Invalid if pending status is returned.

Response-data-buffer - the buffer with the received response data
from the remote system. Invalid if pending status is returned.

Data-Iost-flags - indicators as to the type and reason for the
Data lost return-code. Present only if Data lost code returned.
Any of:

Command-data-lost - a logical value that is true if the
command data in the Console Command And Poll message was lost.

Response-data-lost - a logical value that is
remote console server detected lost console
buffer overrun or other error condition. The
response-data-buffer is possibly incomplete.

true if the
data due to a
data in the

Receive-data-Iost - a
receive-data-buffer
that was sent.

logical value that is true if the
was too small to receive all of the data

3.2.3.12 Send-console-response

Function:

Causes a console response to be sent to the Console Requester of
the remote command system.

This 1S a call to the Console Server of the target system. It is
used to respond to remote console requests from the console user.

Inputs:

Channel-id - the unique identification of the channel on which the
response is to be made.

Destination-address - the identification of the command system.
Applicable only to multiaccess channels. If applicable and not
present, the console-user address is implied.

Command-data-lost-flag - a logical value that is true if the
command data in the received console command was lost.

Interfaces Page 44

Response-data-lost-flag - a logical value that is true if there
was a loss of data in the console response. This is provided for
implementations where the user of the Console Server cannot block
the source of the console output data stream.

Response-data-buffer - a buffer containing data to be sent to the
remote system. This must not be larger than the maximum response
buffer size in the local system id.

Outputs:

Return-code - the status of the request. One of:

Success - console response data sent.

Invalid buffer size - the buffer is larger than the server
allows.

Function denied - a previous send-console-response request is
still active.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in the reserved
state or the console carrier protocol has not been enabled.

Invalid destination-address - the supplied destination-address
does not match the console-user address in the local system
ID.

Transmit failed - the local transmitter could not transmit the
request.

3.2.3.13 Console-abort

Function:

Aborts a pending console request. Console-abort only affects an
individual request and does not cause any change in console state.

Inputs:

Receipt-number the number assigned to the request. The
following requests can be aborted:

Read-identity
Read-counters
Send-console-command

Interfaces Page 45

Outputs: None.

3.3 Network Management Interface

This section defines the control and observation functions for the
maintenance operations.

The Network Management Interface functions are:

Set-state -- enable or disable local maintenance function.

Read-state -- read states of switchable functions.

Add-dump/load-entry -- add a new entry to the Dump/Load Data
Base.

Remove-dump/load-entry -- Remove an entry from the Dump/Load
Data Base.

Set-dump/load-parameter -- set a dump/load parameter.

Read-dump/load-list -- read the list of dump/load entries.

Read-dump/load-parameter read dump/load parameters.

Set-console-parameter -- set a local console parameter.

Read-console-parameter -- read a local console parameter.

3.3.1 Set-state

Function:

Enables or disables various local maintenance operation functions
or components.

Inputs:

Channel-id - the unique identification of the channel for which
the function state is to be switched.

Function - the function whose state is to be switched. One of:

Console Server - controls whether the Console Server will
respond to any incoming requests.

Dump/Load Server - controls whether the Dump/Load Server will
respond to any incoming requests.

Interfaces Page 46

Dump/Load assistance - controls whether the
will respond to dump or load requests
assistance multicast group.

Dump/Load Server
to the dump/load

Loop Server - controls whether the Loop Server will respond to
any incoming requests.

Loop assistance controls whether the LOOD Server will
respond to loop requests to the loopback assistance multicast
group.

Remote console reservation controls whether any remote
system is allowed to reserve the local console.

State - the state that the function is to be switched to. One of:

On - the function is allowed to operate.

Off - the function is not allowed to operate.

Outputs:

Return-code - the status of the request. One of:

Success - state switched.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where a
switch can be done.

3.3.2 Read-state

Function:

Reads the states of the switchable
All of the states are either
Set-state function.

Inputs:

local maintenance functions.
on or off as described for the

Channel-id - the unique identification of the channel to read the
states for.

Outputs:

Return-code - the status of the request. One of:

Success - states read.

Interfaces Page 47

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the read can be done.

Console-state - the state of the Console Server.

Dump/load-state - the state of the Dump/Load Server.

Loop-state - the state of the Loop Server.

Loop-assistance-state - the state of loop assistance.

Remote-console-reservation-state - the state of remote console
reservations.

3.3.3 Add-dump/load-entry

Function:

Adds an entry to the Dump/Load Data Base.

Inputs:

Channel-id the unique identification of the channel that
identifies the data base entry.

Destination-address - the identification of the target system that
identifies the data base entry.

Outputs:

Either the channel-id
must be included in
system. If both are
address is used as
find the entry in the

NOTE

or the destination-address
order to identify the target
included, the destination-
the data base search key to

Dump/Load Data Base.

Return-code - the status of the request. One of:

Success - entry added.

Already defined - the Dump/Load Data Base already contains an
entry for the specified target.

Interfaces Page 48

3.3.4 Remove-dump/load-entry

Function:

Removes an entry from the Dump/Load Data Base.

Inputs:;

Channel-id the unique identification of the channel that
identifies the data base entry.

Destination-address - the identification of the target system that
identifies the data base entry.

Outputs:

Either the channel-id
must be included in
system. If both are
address is used as
find the entry in the

NOTE

or the destination-address
order to identify the target
included, the destination-
the data base search key to

Dump/Load Data Base.

Return-code - the status of the request. One of:

Success - entry removed.

Unrecognized target - the Dump/Load Data Base does not contain
an entry for the specified target.

3.3.5 Set-dump/load-parameter

Function:

Stores parameter values into the Dump/Load Data Base.

Inputs:

Channel-id the unique identification of the channel that
identifies the data base entry.

Destination-address - the identification of the target system that
identifies the data base entry.

NOTE

Either the channel-id or the destination-address
must be included in order to identify the target
system. If both are included, the destination
address is used as the data base search key to
find other values in the Dump/Load Data Base.

Interfaces Page 49

Parameter-type - the particular parameter to set. One of:

Load-file
Secondary-loader
Tertiary-loader
Dump-file
Secondary-dumper
Dump-address
Dump-count

Parameter-value - the new value of the parameter specified by
parameter-type.

Outputs:

Return-code - the status of the request. One of:

Success - parameter set.

Unrecognized target - the Dump/Load Data Base does not contain
an entry for the specified target.

3.3.6 Read-dump/load-list

Function:

Reads the list of Dump/Load Data Base entries.

Inputs:

Buffer - descriptor of a buffer to contain the list.

Outputs:

Return-code - the status of the request. One of:

Success - parameters read.

Buffer too small - the buffer could not hold all the entries.
Those that would not fit are not returned.

Buffer - descriptor of buffer containing the list. Each entry
consists of destination-address or channel-id if the destination
address is not set.

3.3.7 Read-durnp/load-parameters

Function:

Reads the Dump/Load Data Base entry for a channel.

Interfaces Page 50

Channel-id the unique identification of the channel that
identifies the data base entry.

Destination-address - the identification of the target system that
identifies the data base entry.

Outputs:

NOTE

Either the channel-id or the destination-address
must be included in order to identify the target
system. If both are included, the destination
address is used as the data base search key to
find other values in the Dump/Load Data Base.

Return-code - the status of the request. One of:

Success - parameters read.

Unrecognized target - the Dump/Load Data Base does not contain
an entry for the specified target.

Parameter-entries - the parameters that are set. Each parameter
entry consists of a parameter-type and a parameter-value as
described for the Set-dump/load-parameter function.

2.3.8 Set-co~soie-pa~ameter

Function:

Stores paraffieter values to be used by the remote console server.
The User Layer is the source of the values. It may obtain them,
for example, through physical switch settings or terminal
interaction with a person.

Inputs:

Channel-id - the unique identification of the channel for which
the values are to be changed.

Parameter-type - the particular parameter to set.
are described for the Read-identity-poll function.

Maintenance-version
Functions
Reservation-timer
Console-command-size
Console-response-size
Hardware-address
Communication-device

The parameters
They are:

Interfaces Page 51

Software-id
System-processor
Data-link-type
Other-info (in the form of an other-info parameter-type)

Parameter-value - the new value of the parameter specified by
parameter-type.

Outputs:

Return-code - the status of the request. One of:

Success - parameter set.

Unrecognized channel - there is no channel with the specified
identification.

Channel in wrong state - the channel is not in a state where
the parameter can be stored.

3.3.9 Read-console-parameters

Function:

Reads the console parameters for a channel.

Inputs:

Channel-id - the unique identification of the channel for which
the parameters are to be read.

Outputs:

Return-code - the status of the request. One of:

Success - parameters read.

Unrecognized channel - there is no channel with the specified
identification.

Parameter-entries - the console parameters that are set. Each
parameter entry consists of a parameter-type and a parameter-value
as described for the Set-console-parameter function.

3.4 Interface Usage Examples

This section contains examples of how the maintenance functions might
be used. The examples are not exhaustive and do not restrict the way
the functions might be used.

Interfaces Page 52

cor examples of multicast Loop Test, see Appendix E or the Ethernet
3pecification, Version 2.0.

3.4.1 A System Boot Monitor

In this example, a system can be booted by remote command, can decide
locally to reboot itself, or can decide it is thoroughly broken and
needs expert help. The process responsible for all this is in the
User Layer and uses the low level maintenance interface functions.

The monitor process is implemented so that it is a highly reliable
process. Even if nothing else in the system works, this process has a
high probability of running.

The monitor process watches for remote boot commands through the
Request-poll function. If a boot request is received, it checks the
verification code, and if the code is acceptable, the monitor process
halts all other processing in the system and calls the Load-s~lf
function, requesting normal operating software. The monitor then goes
into load polling as described below.

On a locally determined timer, the monitor process checks over system
operation. If it finds that operation is not proceeding properly, it
halts all other processing and calls the Load-self function,
requesting diagnostics rather than normal operating software. The
monitor then goes into load polling.

When the monitor has a Load-self outstanding, it does two things. It
continues to watch for remote boot commands through Request-poll. It
polls for completion of the Load-self with Load-self-poll. If the
load fails or takes too long ("too long" is locally defined), the
monitor enables reservation of its console with the Set-state function
and periodically does an Identify-self on a timer preset according to
system needs and communication speed. If the channel being used is a
multiaccess channel, the Identify-self goes to the remote console
multicast group. A remote monitor can then assist the system as
necessary.

3.4.2 A Minimal ASCII Console Carrier

A very simple console carrier mechanism can be implemented to process
only one transmit and one receive character at a tIme. This is
suitable for systems that have already implemented an ASCII console.
This requires a minimum of resources, yet provides a highly reliable
connection. Data will be lost only if the connected processes try to
"pump" data at a rate greater than the connection can accommodate, at
which point overrun errors will occur.

The local (command) system initiates a console connection by calling
the Reserve-remote-console function, identifying the remote (target)
system. It then issues a Read-identity call to the target and waits

Interfaces

for a response from the target by using
function. If the target has not reserved the
expires, the process is repeated.

Page 53

the Read-identity-poll
console or a timer

The target system's console server must be able to process the console
reservation from the host system and will open its console to the host
system if all the necessary conditions are met. Once the console is
reserved, the user process in the target system, i.e., that system's
console processor, must be periodically polling the Console Server for
console commands using the Request-poll function.

When both systems are ready to communicate, the command system has the
responsibility both to transmit commands and poll for responses from
the target system. The target system has to respond to console
command and poll messages and maintain the console reservation timer.
When the command system has data to send, it calls the Send-console
command function, then waits for the response by periodically calling
the Console-response-poll function. If a failure is observed, the
command system makes any necessary corrections and reissues the Send
console-command. This process is repeated until all pending command
data has been sent and acknowledged. If data was returned with the
final acknowledgment, it is processed and another Send-console-command
call is made to "flush" the remote console response buffer. Even when
there is no data to send or being returned, the command system still
must periodically call the Send-console-command function to keep the
reservation alive and to receive possible unsolicited "response" data
from the remote console. If the command system does not receive a
response to a Send-console-command within a specified "no response
time," then it calls the Console-abort function and issues a Request
identity to try to ascertain the state of the target system and the
reasor. for its failure to respond.

At the other end, the target system's user process must periodically
call the Request-poll function. When the user process receives a
console command it must process it and acknowledge it by calling the
Send-console-response function.

At either end, data overrun is blocked by the Console Responder or
Server returning an error status code to the user if the previous
message has not been acknowledged. Unblocking of a data stream that
may have experienced some kind of prolonged discontinuity is achieved
by the command system detecting the error condition, releasing and
then re-reserving the target console. This will force the target
system to reinitialize its Console Server and, hopefully, unblock the
data stream.

Operation Page 54

4 OPERATION

This section
interfaces.
and uses an
specification

describes the operation that supports the various
The operation is described in terms of the model section

Algol-like colloquial, high-level language for
of algorithms.

For this version of the specification, operation is not presented in
the form of a complete implementation model. Instead, to allow
quicker review, and since the protocols are quite simple, descriptions
are in English or simplified algorithmic form. The descriptions
assume, for example, that transmits and receives will be properly
demultiplexed between the Data Link Layer and the simplified processes
presented here. They also assume that Data Link Open and Close
functions are performed outside themselves.

Operation and message formats are, as much as possible, drawn from the
existing Maintenance Operation Protocol (MOP) Version 2.1. This means
that some algorithms, such as down-line load, are directly drawn from
existing products with proven field records.

4.1 Cornmon Algorithms

In all maintenance protocols, an invalid message is treated as if it
never arrived or had data errors.

Many of the maintenance algorithms require timeout and retransmission
of a message when a response is not received. There are two
variations of this algorithm. The first is persistent. It will not
terminate unless stopped by a hard error or high level intervention.
The second terminates when a fixed retry count is exhausted.

In the higher level algorithms they are referred to as

Must-transact, message

for the persistent variety, and

Transact, message

for the fixed retry variety. Message is the message that is to be
sent. A receive buffer, and other outputs of the call, are assumed to
avoid obscuring the important algorithms. These algorithms also
assume synchronous transmit and receive functions, with a receive
timeout calculated according to channel speed and size of receive
buffer plus 1 second for remote response time.

These algorithms result in either a transmit or receive error or a
message received in response to the message transmitted. The
algorithms assume that the data link has a service-timer and a
suggested maximum-retries for maintenance operation. Control of these
parameters is outside the scope of this specification.

Operation Page 55

The Must-transact algorithm is:

Set no intervention, no error, and no message received.
WHILE no intervention AND no error AND no message received.

Transmit message.
IF successful transmit:

Receive message.
CASE return-status

Receive successful:
Set message received.

Receive aborted:
Set intervention .

. ENDCASE
ELSE

IF fatal transmit error:
Set error.

ENDIF
ENDIF

ENDWHILE

The Transact algorithm is:

Set retry counter to 0, no error, and no message received.
WHILE no error and no message received.

Transmit message.
IF successful transmit:

Receive message.
IF successful receive:

Set message received.
ELSE

IF receive timed out:
IF retry counter <= maximum-retries:

Increment retry counter.
ELSE

Set channel communication error.
ENDIF

ELSE
Set error from Receive.

ENDIF
ENDIF

ELSE
Set error from Transmit.

ENDIF
ENDWHILE

4.2 Dump/Load

This section describes the operation of the Dump/Load Server and
Requester. In this section the term "target system" describes the
system being dumped or loaded (i.e. the one running the Dump/Load
Requester). The term "assisting system" describes the system that is
providing file services (i.e. the one running the Dump/Load Server).

Operation

NOTE

See Appendix C for implementation specific Dump/Load
information.

4.2.1 Dump/Load Server

Page 56

The Dump/Load Server is by far more complex than the Dump/Load
Requester. This is because the Dump/Load Requester is designed to run
in systems with minimal resources available. Functions are therefore
shifted as much as is practical or possible into the Server.

The description of Dump/Load Server operat~on is divided into two
major sections, dump and load. Both sectlons use the Remote Console
to force dump or load cooperation from the target system. This usage
is presented in a simplified form that assumes an algorithm similar to
that described for the Transact function, where:

Transmit message becomes a request for the required console
operation (Boot or Dump).

Receive message becomes a check for the required response (a
request program for Boot; a request dump service for Dump).

4.2.1.1 Assistance Volunteer

This function is only applicable on multiaccess channels.
the following messages:

Request dump service.

It requires

Sent by a target system to request assistance as a result of a
Dump-self function. May contain considerable information as to
system configuration as described in the Dump-self function.

Request program.

Sent by a target system to request assistance as a result of
Load-self function. May contain considerable information as to
system configuration as described in the Load-self function.

Assistance volunteer.

Sent by a potential assisting system in response to a request
dump service or request program message.

This function is performed in Dump/Load Servers on systems that are
part of a dump/load assistance multicast group. It is performed when
a request program or request dump service message is received
addressed to the multicast group. This function is not performed if
the request is for a secondary loader. In that case, a server that

Operation Page 57

can do so simply responds with the secondary program rather than
volunteering assistance, and maintains no further state relative to
the request.

The Server determines its ability to assist by checking for the
presence of the necessary information, either in the request or in its
own Dump/Load Data Base. If it can assist, and the request was not
for a secondary loader, it replies with a single transmission of an
assistance volunteer message. It maintains no state to recall that
any of this has been done, as it may not be selected by the target to
be the assistant.

4.2.1.2 Dump Operation

Dump operation requires the following messages:

Request dump service.

Sent by a target system as a result of a Dump-self function.
Says that the system requires assistance in dumping itself. May
contain considerable information as to system configuration as
described in the Dump-self function.

Request memory dump.

Sent by an assisting system to obtain a segment of memory.

Memory dump data.

Contains a segment of memory sent by a target system in response
to a request memory dump message.

Dump complete.

Sent by the assisting system to indicate that the dump 1S done.

The dump algorithm 1S:

Perform dump.
IF failure on first message:

Use Remote Console to force dump.
IF successful:

Perform dump.
ELSE

Set error.
ENDIF

ENDIF

Operation Page 58

The algorithm for a dump server is:

Open output file.
WHILE no error and more to dump

Transact, request memory dump.
IF no error:

IF message received is memory dump data:
Write segment to file.
Update memory address to dump from.

ELSE
Set channel protocol error.

ENDIF
ENDIF

ENDWHILE
IF no error:

Complete file as necessary.
ENDIF
Transmit, dump complete.
Close output file.

4.2.1.3 Load Operation

Load operation requires the following messages:

Request program.

Sent by a target system as a result of a Load-self function.
Says that the system requires assistance in loading itself. May
contain considerable information as to system configuration as
described in the Load-self function. Also indicates whether the
request is for an intermediate loader or for the final program
(the "operating system").

Memory load with transfer address.

Sent by an assisting system to load a secondary loader program.
Sent in response to a program request message for a secondary
loader or as the last load of a tertiary loader.

Request memory load.

Sent by a target system in response to a memory load message.
Indicates whether or not the memory was successfully loaded and
requests another segment.

Memory load.

Contains a segment of memory to load. Sent by an assisting
system in response to a program request message for a tertiary
loader or operating system, or a request memory load message.

Operation Page 59

Parameter load with transfer address.

Contains various system parameters and a final transfer memory
address. Sent by an assisting system at the end of a multi
segment load.

NOTE

See Appendix C for special conventions related to
existing PDP-II down-line load programs.

The load algorithm is:

Perform load with initial program type determined from higher
level request or default data base.

IF failure on first message:
Use Remote Console to boot target system.
IF success:

Perform load with initial program type from program request.
ELSE

Set error.
ENDIF

ENDIF

The algorithm to perform a load is:

Set no error and operating system not loaded.
Set program to load from input of initial program identification.
WHILE no error and not done:

Open program image file and determine starting address, number
of bytes, and transfer address.

IF program type = secondary loader:
Read entire program from file.
Send memory load with transfer address.
Set done.

ELSE
Perform multi-segment program load.
Set retry counter to O.
WHILE no error and received message is request memory load

and requested segment number in message = load number:
IF program type = tertiary loader:

Send memory load (empty) with transfer address.
ELSE (must be operating system)

Send parameter load with transfer address.
ENDIF
IF no error and received message is request memory load

and requested segment number in message = load
number and retry counter < maximum-retries:

Increment retry counter.
ELSE

Set channel communication error.
ENDIF

ENDWHILE
ENDIF
IF no error:

Operation Page 60

IF program type = operating system:
IF message received is request memory load and requested

segment number in message = load number + 1:
Set operating system loaded.

ELSE
Set channel protocol error.

ENDIF
ENDIF

ENDIF
ENDWHILE

The algorithm for a multi-segment program load 1S:

Set load segment number to O.
Set requested segment number to O.
WHILE no error and more to load:

Read a segment of memory from file.
Set retry count to O.
WHILE no error and requested segment = load segment:

Transact, memory load message.
IF no error:

IF request memory load received:
Set requested segment number from message.
IF requested segment number = load segment number:

IF retry count < maximum-retries:
Increment retry count.

ELSE
Set channel communication error.

ENDIF
ELSE

IF requested segment number <> load segment number
+ 1:

Set channel protocol error.
ENDIF

ENDIF
ELSE

Set channel protocol error.
ENDIF

ENDIF
ENDWHILE
Increment load segment number.

ENDWHILE

4.2.2 Dump/Load Requester

The Dump/Load Requester is as simple as possible in its operation to
avoid burdening a small system that needs to dump or load itself with
minimal resources available.

The operation is described in stages to indicate how a system with
minimal resources could approach the functions. A system with the
resources to begin at one of the later stages can and should do so,
only implementing needed capabilities (such as initial request) from

Operation Page 61

earlier stages.

Both dump and load operate similarly from the higher level's
perspective. They are invoked with a Dump-self or Load-self function
and checked for completion with the matching poll function. The poll
function returns a state that depends on the progress being made so
that the high level can decide to abort and restart or whatever else
it deems appropriate.

Both dump and load have a special function available on multiaccess
channels. This function allows them to select an assistant from the
dump/load assistance multicast group. The initial request message is
first sent to the multicast address. The first Assistance Volunteer
message responder is selected as the assistant and the operation
proceeds from there the same as for a point-to-point channel. The
initial request is sent via the Must-transact function. During this
stage of the operation, the poll function returns a "requesting"
state.

4.2.2.1 Dump Operation

The first stage is to get the dump started with a Must-transact of a
request dump service message. This succeeds when a request memory
message is received. During this stage, the poll function returns a
"requesting" state. On success, proceed to the next stage.

The second stage is the actual dump. During this stage, the poll
function returns an "in-process" state. A dump data message is sent
in response to each request memory message. A failure on a transmit
or a receive terminates the operation with a failure or receipt of any
other message. A timeout on a receive or the receipt of a dump
complete message terminates the operation with success.

4.2.2.2 Load Operation

The first stage is to load a secondary loader program with a Transact
of a request program. This succeeds when a memory load with transfer
address is received and started. The message must contain an entire
secondary loader. Note that a primary loader accepts only a secondary
loader; it does not use the assistance volunteer function.

The second stage is to load a tertiary loader program. The first
segment is obtained with a Must-transact of a request program message.
Subsequent segments are obtained with a simple transmit of a request
memory load mes5age. The request memory message is used to
acknowledge the successful or failing storage of the previous memory
segment and either requests the same one again or the next one. The
load is completed by receipt of a memory load with transfer address.
The program loaded must be a tertiary loader.

Operation Page 62

The third stage is to load the "operating system". This could
actually be any type of program. The load procedure is the same as
for the tertiary loader, except that the final message is a transfer
address and parameters. The transfer address and parameters are
passed up to the higher level with the notification of successful
completion. Also, the final message is acknowledged with a request
memory for the next segment, which the assi~tant understands as an
acknowledgement rather than a request.

During the second and third stages, the Dump/Load Requester keeps a
timer while waiting for a message from the assistant. If this timer
runs out, the Dump/Load Requester declares the load as failed with a
"failed" error return. This timer is set according to the service
timer for the particular data link.

Also during the second and third stages, the loaders must not accept a
Memory Load with Transfer Address message with any memory image in it.
This is to avoid confusion with additional secondary loaders received
in response to the primary loader.

4.3 Loop Test

This section describes the operation of the Loop Test Server and
Requester for point-to-point channels. The operation for multicast
channels is the Ethernet standard, found in Appendix E or Version 2.0
of the Ethernet Specification.

The operational descriptions assume the following Loop Test protocol
messages.

Looped Data - a message identifiable as a response to some
request.

Loop Data - a message that 1S to be looped to its sender.

4.3.1 Loop Server

The Loop Server
is turned on.
another receive
be necessary to

always keeps a receive pending for each channel
Whenever a receive completes, it is processed

posted. For purposes of not missing messages, it
keep more than one receive posted.

The received message is processed according to function code:

that
and
may

Loop Data message: The function code is changed to Looped Data
and the message is transmitted back to the source system.

unrecognized function code: The message is ignored.

Operation Page 63

Note that in the case of an unintelligent loopback mechanism, such as
a simple turn-around connector, the function code will not change.

4.3.2 Loop Requester

A receipt number is chosen and the state of the operation is set to
"not complete". The input data provided is transmitted to the
destination system as a Loop Data message. If the transmit is not
accepted, the error code is returned and the receipt number marked
complete. If the transmit succeeded, a receive is posted. Note that
it may be necessary to post the receive first to avoid a race between
the posting of the receive and the receipt of the message.

When the transmit and receive are both complete, if they were
successful the received data is compared to the transmitted data. If
they do not match or the receive or transmit failed, the appropriate
error is recorded. Otherwise, success and the responding system
address are recorded.

The Loop-poll function returns the state of the operation.

4.4 Remote Console

This section describes the operation of the Remote Console Server and
Requester. For this section, the term "target system" means the
system whose remote console is being used (i.e. the one running the
Console Server). The term "command system" means the system sending
the commands (i.e. the one running the Console Requester).

The console carrier protocol is a half-duplex polled protocol. That
is, the Console Requester must poll the remote Console Server for
information.

4.4.1 Console Server

The Console Server operates within the following state diagram:

Operation

Off
.
\<------------.

\

V
A
\ . .

\ Disabled \<------.
'---------- \

V
A
\ . .

\<====\
\ \

\

\

\

\

\

\

\

\

\

\

Enabled \====>\ Reserved
\ \

\<++++\

Page 64

In the off state the Console Server will not operate. In the disabled
state, the Console Server will send a System ID message in response to
a local Identify-self or a remote Read-identity or a Counters message
in response to a Read-counters. In the disabled state, the console
will accept a Boot message and make the information available to the
user through Request-poll. In the enabled state, the Console Server
will additionally respond to reservation requests. In the reserved
state, the Console Server will respond to console carrier request from
the system that reserved it and to other requests from any system.

The single line arrows represent action taken because of local Network
Management Interface functions. The double line arrows represent
action taken because of received messages. The crossed arrow
represents action taken because of operation within the Console Server
itself.

Network Management forces the Console Server in and out of off state
or disabled state with the Set-state function.

The Console Server moves itself from reserved state to enabled state
on the expiration of the reservation timer, whose value is set via
Network Management.

The Console Server responds to a local Identify-self with a single
attempt to send a System ID message.

Each of the Console Requester functions maps one-to-one to a simple
server action, each function using its corresponding Remote Console
Protocol message. The Console Server actions are:

In response to a Request ID message, send a System ID message.

In response to a Request Counters message, send a Counters
message.

Operation Page 65

In response to a Boot
information visible to
Request-poll function.

message, make the
the local higher

request and
level through

boot
the

In response to a Reserve Console message
state, initialize the console carrier
reserved state. For multiaccess channels,
the console-user system is saved.

while in the enabled
buffers and enter the
the identification of

In response to a Release Console message from the console-user,
release the console (enter enabled state). For multiaccess
channels, the console-user identification parameter is cleared.

In response to a Console Command and Poll message from the
console-user, make the command data (if any) visible to the local
higher level through the Request-poll function. The higher level
user has the responsibility of sending a Console Response and
Acknowledge message, including any console output data that is
pending.

In addition to these protocol-driven actions, the Console Server also
times the reservation while in the reserved state. It resets the
reservation timer each time a Console Co~mand And Poll message is
received from the reserving system. If the reservation timer expires,
it clears the reservation.

The Console Server algorithm for processing remote console messages
follows:

CASE <message code>

Request ID:
transmit System ID message.

Request Counters:
IF function [counters] = on THEN

transmit Counters message.
ENDIF.

Boot:
IF function [boot] = on THEN

request-type := boot.
ENDIF.

Reserve Console:
IF console state = enabled THEN

console reservation := <source address>.
console state := reserved.
message number := O.
CLEAR command buffer.
CLEAR response buffer.

ENDIF.

Operation

Release Console:
IF console user = <source address> THEN

console user := O.
console state := enabled.
IF request-type = console command THEN

CLEAR request-type.
ENDIF.

ENDIF.

Console Command And Poll:
IF console user = <source address> THEN

Reset reservation timer.
IF message number = <message number> THEN

IF request-type is clear THEN

Page 66

transmit Console Response and Acknowledge message.
ENDIF

ELSE
co~nand buffer := <command data>.
COMPLEMENT message number.
request-type := console command.

ENDIF.
ENDIF.

ENDCASE.

The Console Server user process obtains commands and sends responses
via the following algorithm:

CALL Request-poll (Channel-id)
IF return-code = Request read THEN

CASE Request-type

Boot:
Initiate system boot process.

Console command:
Read the command buffer.
CALL send-console-response (Channel-id, Console-user,

Response-data).

ENDCASE.
CLEAR Request-type.

ENDIF

4.4.2 Console Requester

Console Requester operation is very simple. Requests from the high
level user map directly to corresponding Remote Console Protocol
messages. With the exception of the Read-identity, Read-counters and
Send-console-command functions, none of these messages have responses;
therefore, the Requester returns completion when a simple transmit is
done.

Operation Page 67

In the cases of the Read-identity, Read-counters, and Send-console
command functions, the Requester sends the appropriate message as a
Must-transact." The higher level must abort the request if it
determines that it has taken too long.

Receipt number is initialized to a random, non-zero value at system
startup and incremented by one each time one is used. It is used to
identify the request between the Console Requester and user.

The Console Requester is the "master" of the console carrier
mechanism. It initiates a console carrier connection by opening a
port to the target system. The Port-id parameter is used to insure
that only one Console Requester user can have access to the console
carrier connection at one time. It establishes the connection by
transmitting a reserve console message to the target system and
verifies the connection by sending a Request ID and checking the
returned System TD from the target system.

The Console Requester accepts commands from the user and transmits
them using the console command and poll message. It waits for
acknowledgement of the command by receiving a console response and
acknowledge message from the target system before accepting another
command from the user. If there is data in the response message, it
makes that data available to the user through the Console-response
poll function.

The algorithms for the console carrier functions in the Console
Requester are:

ROUTINE Reserve-remote-console (channel-id, destination-address)
ON not successful, EXIT with appropriate return-code.
port-id := Open (channel-id, pad, id-list).
receipt-number := Next-receipt-number (channel-id).
system-id := Transact, Request ID message.
IF system-id <function [console carrier]> is on AND system-id

<function [console carrier reservation]> is off THEN
command-buffer := Allocate-buffer (command-buffer-size).
response-buffer := Allocate-buffer (response-buffer-size).
transmit, Reserve Console message.
receipt-number := Next-receipt-number (channel-id).
system-id := Transact, Request ID message.
IF system-id <console-user> = source-address THEN

message number := O.
CLEAR command-pending.
return-code := success.

ELSE
return-code := channel in wrong state.

ENDIF.
ELSE

return-code := channel in wrong state.
ENDIF.

RETURN Reserve-remote-console.

ROUTINE Release-remote-console (port-id)
IF port is open THEN

Operation Page 68

SET no error.
WHILE system-id <console-user> = source-address AND no error

DO
transmit, Release Console message.
receipt-number := Next-receipt-number (channel-id).
Transact, Request ID message.

ENDWHILE.
Close (port-id).

ELSE
return-code := unrecognized port.

ENDIF.
RETURN Release-remote-console.

ROUTINE Send-console-command (port-id, command-break-flag,
command-data-buffer, response-data-buffer)

IF port is open THEN
IF command-pending THEN

return-code := function denied.
ELSE

receipt-number := Next-receipt-number (channel-id).
COMPLEMENT message number.
SET command-pending.
START Must-transact, Send Console Command And Poll

message.
ENDIF.

ELSE
return-code := unrecognized port.

ENDIF.
RETURN Send-console-command.

ROUTINE Console-response-poll (receipt-number) :
IF command-pending THEN

IF Must-transact operation completed THEN
IF message number = <message number> THEN

Response-data-buffer := <response data>.
CLEAR command-pending.
IF <Command data lost flag> OR

<Response data lost flag> OR
Receive with overrun THEN

SET corresponding Data-lost-flags.
retur~-code := Data lost.

ELSE
return-code := Success.

ENDIF.
ELSE

START must-transact, Send Console Command And Poll
message.

ENDIF.
ELSE

return-code := pending.
ENDIF.

ELSE
return-code := unrecognized request.

~NDIF.

RETURN Console-response-poll.

Protocol Messages Page 69

5 PROTOCOL MESSAGES

This section defines the binary formats of the protocol messages that
support the operation described in the operation section. In order to
operate correctly on exclusive maintenance channels, message
identification codes are taken from a single space. Values 16 and 18
are reserved for compatibility with MOP implementations not described
here.

Some data lihks have a minimum message size and many of the
maintenance protocol messages are quite small. Padding must be
requested from the particular data link on the assumption that such a
service is provided if needed. The actual size of received messages
is also provided by the Data Link Layer, so that messages with a
single variable length data field need not include a size field.

The following notation is used to describe the messages:

FIELD (LENGTH) : CODING =

Description of field

Where:

FIELD Is the name of the field being described.

LENGTH Is the length of the ~ield expressed as one of the following:

The number of 8-bit bytes.

The notation "C-n" meaning counted image field with n
being a number that is the maximum length in 8-bit bytes
of the image. The actual length of the image is encoded
into the first byte of the field. Therefore, the minimum
length of the field is one byte. The first byte of the
field may contain information in addition to the length
count.

The notation "I-n" meaning image field with n being a
number that is the maximum length in 8-bit bytes of the
image. The image is preceded by sufficient information to
compute the length of the field. Image fields are
variable length and may be null (length=O). All 8 bits of
each byte may be used as information bits.

An asterisk (*), indicating that the field consists of the
remainder of the message, i.e., the total message length
less the length of all of the other fields.

CODING Is the representation type used, as follows:

B Binary
BM Bit map (each bit has independent meaning)

Protocol Messages

A
Null

Notes:

ASCII
Interpretation depends on data representation

Page 70

All numeric values are shown in decimal unless otherwise
noted.

Fields are transmitted in the order shown, left to right.

All fields are transmitted low-order or least significant
bit first unless otherwise specified.

Bits in a field are numbered from 0 to n where 0 is the
low-order or least-significant bit.

5.1 Dump/Load

The messages specified here are a directly compatible extension of MOP
version 2.1. Unless otherwise noted, they are identical.

5.1.1 Memory Load with Transfer Address

The Memory Load with Transfer Address message consists of:

CODE

Where:

CODE (1) B =

LOAD
NUMBER

The number O.

LOAD NUMBER (1) : B =

LOAD
ADDRESS

IMAGE
DATA

TRANSFER
ADDRESS

The load number for multi-segment loads. This message may be
preceded by Memory Load without transfer address messages. The
load number starts at zero and is incremented for each load
message sent in a loading sequence. A load number of zero is
always valid and resets the expected load number. Zero must not
be used for all load numbers in a sequence of load messages
because that nullifies the sequence checking of the protocol. The
load number is modulo 256. After load number 255 is load number
o .

LOAD ADDRESS (4) : B =

The memory load address (physical) for storage of the data image.

Protocol Messages Page 71

IMAGE DATA (*) : =

The image to be stored into computer memory. The form sent can be
machine-dependent, to be defined on an as needed basis. Unless
otherwise defined, each byte represents one memory byte.

TRANSFER ADDRESS (4) : B =

The starting memory address of the image just loaded.

NOTE

IMAGE DATA or LOAD ADDRESS and IMAGE DATA may be
omitted. Valid message lengths are 6 (LOAD ADDRESS
and IMAGE DATA omitted), 10 (IMAGE DATA omitted), or
greater then 10.

5.1.2 Memory Load

The Memory Load message consists of:

CODE

Where:

LOAD
NUMBER

LOAD
ADDRESS

IMAGE
DATA

CODE (1) B =

The number 2.

LOAD NUMBER (1) : B =

As described for Memory Load with Transfer Address.

LOAD ADDRESS (4) B =

As described for Memory Load with Transfer Address.

IMAGE DATA (*) : =

As described for Memory Load with Transfer Address.

NOTE

IMAGE DATA may be omitted. Valid message lengths may
be 6 (IMAGE DATA omitted), or greater than 6.
Messages without IMAGE DATA cause nothing to be
loaded; however, the LOAD NUMBER value is still
incremented for the next load.

Protocol Messages

5.1.3 Request Memory Dump

The Request Memory Dump message consists of:

CODE

Where:

CODE (1) B =

MEMORY
ADDRESS

The number 4.

MEMORY ADDRESS (4) B =

COUNT

The starting physical memory address for the dump.

COUNT (2) : B =

Page 72

The number of locations to dump. The meaning of the count can be
machine-dependent, to be defined on an as needed basis. Unless
otherwise defined, the count is in bytes.

NOTE

This request results in a single Memory Dump Data
message. A dump should not be requested for more data
than can be reliably sent in a single reply on the
channel used. The maximum data link message length
limits the maximum length for a given channel.

5.1.4 Request Program

The Request Program message consists of:

CODE

Where:

CODE (1) B =

DEVICE
TYPE

The number 8.

DEVICE TYPE (1) : B =

FORMAT
VERSION

PROGRAM
TYPE

SOFTWARE
ID

PROCESSOR OTHER
INFO

The device type at the requesting system. Used to cause the
proper requested program to be loaded if it is device specific.
Defined device types are found in Appendix A.

Protocol Messages Page 73

FORMAT VERSION (1) B =

The protocol format version. For all current versions, the number
1.

PROGRAM TYPE (1) : B =

The generic type of program being requested. This is for control
of the loading process itself, rather than for final software
selection. The defined values are as follows:

Value

o
1
2

Meaning

Secondary loader
Tertiary loader
System

This field and all the following can be omitted, in which
default for this field is O. A system in this context is
is to end up in the requesting system, and could be any
program.

SOFTWARE ID (C-17) =

case the
whatever
type of

Identification of
PROGRAM TYPE is
the Boot message.

the software being requested. Omitted if
omitted. The format is the same as defined for

PROCESSOR (1) : B =

The processor to be booted. This field did not exist in MOP
version 2.1.

Value

o
1

OTHER INFO (*)

Meaning

System processor
Communication processor

=

Further information to identify the requesting system. This field
did not exist in MOP version 2.1. Definition is as described for
the Remote Console System ID message.

5.1.5 Request Memory Load

The Request Memory Load message consists of:

CODE LOAD
NUMBER

ERROR

Protocol Messages Page 74

Where:

CODE (1) B =

The number 10.

LOAD NUMBER (1) : B =

The number of the load segment being requested, as defined for the
Memory Load with Transfer Address message.

ERROR (1) : B =

An error indicator for the previously received segment. The
values are:

Value
a

Meaning
No error

1 IMAGE DATA not properly loaded (for example, because of
a memory boundary or parity error problem)

5.1.6 Request Dump Service

The Request Dump Service message is a redefinition of the MOP version
2.1 MOP Mode Running message. Its new meaning is compatible with all
known implementations of the old message. The message consists of:

CODE

Where:

CODE (1) B =

DEVICE
TYPE

The number 12.

DEVICE TYPE (1) : B

FORMAT
VERSION

MEMORY
SIZE

BITS OTHER
INFO

As described for the Request Program message. Not used In actual
operation.

FORMAT VERSION (1) : B =

As described for the Request Program message.

MEMORY SIZE (4) B =

The size of physical machine memory. Units are as described for
COUNT in the Request Memory Dump message.

BITS (1) : B =

The number 2. Present for compatibility only.

Protocol Messages Page 75

OTHER INFO (*) : =

Further information to identify the requesting system. This field
did not exist in MOP version 2.1. Definition is as described for
the Remote Console System ID message. The only valid INFO TYPE is
DATA LINK BUFFER SIZE (401).

5.1.7 Memory Dump Data

The Memory Dump Data message consists of:

CODE

Where:

CODE (1) B =

MEMORY
ADDRESS

The number 14.

MEMORY ADDRESS (4) B =

IMAGE
DATA

As described for the Request Memory Dump message.

IMAGE DATA (*) : =

As described for the Memory Load with Transfer Address message.

5.1.8 Parameter Load with Transfer Address

The Parameter Load with Transfer Address message consists of:

CODE

Where:

LOAD
NUMBER

CODE (1) B =

The number 20.

PARAMETERS

LOAD NUMBER (1) : B =

TRANSFER
ADDRESS

As described for the Memory Load with Transfer Address message.

PARAMETERS (*) : =

Zero or more parameter entries followed by an END MARK.

Protocol Messages

Where:

END MARK (1) : B =

The number O.

And a parameter entry consists of:

PARAMETER
TYPE

Where:

PARAMETER
LENGTH

PARAMETER TYPE (1) : B =

PARAMETER
VALUE

Page 76

A type code for the parameter information. The values are:

Value Parameter

1 TARGET SYSTEM NAME
2 TARGET SYSTEM ADDRESS
3 HOST SYSTEM NAME
4 HOST SYSTEM ADDRESS
5 HOST SYSTEM TIME

PARAMETER LENGTH (1) B =

The number of bytes in the PARAMETER VALUE field.

PARAMETER VALUE (1-16) : =

A value according to PARAMETER TYPE and PARAMETER LENGTH.

Where:

TARGET SYSTEM NAME (1-16) : A =

ASCII system name target system is to use for itself.

TARGET SYSTEM ADDRESS (1-6) : B =

Binary system address target system is to use for itself.

HOST SYSTEM NAME (1-16) : A =

ASCII system name of host assigned to system (for example,
host for task loading of core only systems).

HOST SYSTEM ADDRESS (1-6) B =

Binary system address of host.

Protocol Messages Page 77

NOTE

The maximum lengths of the above parameters are
longer than for MOP version 2.1. Old system
versions may not be able to support more than 6
bytes for a system name or 2 bytes for a system
address. The following parameter did not exist in
MOP version 2.1.

HOST SYSTEM TIME (10) : B =

Segmented binary system time of host, consisting of:

CENTURY YEAR MONTH DAY HOUR MINUTE SECOND 100TH TDFH TDFM

where:

CENTURY (1) : B = the century base for reckoning the
absolute year. Value is a positive integer (0 through
+127).

YEAR (1) : B = the year of the base century. Value 1S in
the range 0 through 100.

MONTH (1) : B = the month of the year, starting with
January = 1. Value is in the range 1 through 12.

DAY (1) : B -= the day of the month. Value is 1n the
range , through 3l.

HOUR (1) : B = the hour of the day. Value is in the
range 0 through 23.

MINUTE (1) . B = the minute of the hour. Value is in the .
range 0 through 59.

SECOND (1) : B = the second of the minute. Value is in
the range 0 through 59.

100TH (1) B = the number of hundredths of a second.
Value is in the range 0 through 99.

TDFH (1) : B = the hours portion of the Time Differential
Factor. Value is in the range -12 through +13.

TDFM (1) B
Differential
through 59.
as the sign

TRANSFER ADDRESS (4) B =

= the minutes portion of
Factor. Value is in the

The sign of this value must be
of the TDFH value.

the
range
the

Time
-59

same

As described for the Memory Load with Transfer Address message.

Protocol Messages Page 78

5.1.9 Dump Complete

The Dump Complete message was not part of MOP 2.1. It consists of:

CODE

Where:

CODE (1) B =

The numbe r 1.

5.1.10 Assistance Volunteer

The Assistance Volunteer message was not part of MOP version 2.1. It
consists of:

CODE

Where:

CODE (1) B =

The number 3.

5.2 Loop Test

The protocol
standard, and
the Ethernet
Configuration

messages for multiaccess channels are the Ethernet
are described in Appendix E. They are also described in
Specification, Version 2.0, Section 8 (Ethernet

Testing Protocol).

The messages specified here are directly compatible with MOP version
2.1. The only change is the specification of a receipt number field
which, from the standpoint of a system looping a message back, is just
part of the data.

5.2.1 Loop Data Message

The Loop Data message consists of:

CODE RECEIPT DATA

Where:

CODE (1) B =

The number 24.

Protocol Messages Page 79

RECEIPT (2) : B =

The receipt number for the loop request.

DATA (*) : B =

The data to be looped back.

5.2.2 Looped Data Message

The Looped Data message consists of:

CODE RECEIPT DATA

Where:

CODE (1) B =

The number 26.

RECE I PT (2) : B =

The receipt number from the Loop Data message.

DATA (*) : B =

The data from the Loop Data message.

5.3 Remote Console

Unless otherwise stated, the Remote Console messages are additions to
MOP version 2.1.

5.3.1 Boot

When used with a 4 byte verification code, the Boot
same as the MOP version 2.1 Enter MOP Mode message
with all known implementations. When used with an 8
not compatible. It consists of:

CODE VERIFICATION PROCESSOR CONTROL

Where:

CODE (1) B =

The number 6.

message is the
and is compatible
byte code, it is

DEVICE SOFTWARE
ID ID

Protocol Messages Page 80

VERIFICATION (4/8) B =

A verification code that must match before the receiving system
can honor the request. If 4 bytes long, no other fields can be
included. If 8 bytes long, the remaining fields are included.

PROCESSOR (1) B =

As described for the Request Program message.

CONTROL (1) : BM =

Instructions to the system as to what device to use for the
operation. Values are:

Bit Meaning Value Meaning

0 Boot-server a System default
1 Requesting system

1 Boot-device 0 System default
1 Specified device

DEV I CE I D (C -1 7) : =

The device to use.
Specified device.
system.

Present only
Interpretation

for CONTROL<Boot-device> =
is specific to the receiving

SOFTWARE ID (C-17): =

The software the system is to load.

Software identification consists of:

FORM ID

Where:

FORM (1) B =

The general type ~f software. Values are:

Value Meaning

a No software id
>0 The length of the ID field
-1 Standard operating system
-2 Maintenance system

ID (I-16) : A =

A specific software ID. Present only if FORM
Interpretation is specific to the receiving system.

> o .

Protocol Messages

5.3.2 Request ID

The Request ID message consists of:

CODE RESERVED

Where:

CODE (1) B ==

The number 5.

RESERVED (1): =

RECEIPT
NUMBER

Page 81

A one byte field reserved to DEC for future use. Value is O.

RECEIPT NUMBER (2) : B =

A receipt number to identify the request.

5.3.3 System ID

The System ID message consists of:

CODE RESERVED

Where:

CODE (1) B =

The number 7.

RESERVED (1) : =

RECEIPT
NUMBER

OTHER
INFO

A one byte field reserved to DEC for future use. Value is O.

RECEIPT NUMBER (2) : B =

A receipt number to identify the request.

OTHER INFO (*) : =

Further information to describe the system. Consists of zero or
more entries in any order. Each entry consists of:

Where:

INFO
TYPE

INFO
LENGTH

INFO
VALUE

Protocol Messages

INFO TYPE (2) B =

Is the type of information. The values are:

Value

1
2
3
4
5
6
7
8

100
101-199
200
201-299
300
301-399
400
401
402-499

Information

MAINTENANCE VERSION *
FUNCTIONS *
CONSOLE USER **
RESERVATION TIMER **
CONSOLE COMMAND SIZE **
CONSOLE RESPONSE SIZE **
HARDWARE ADDRESS *
SYSTEM TIME
COMMUNICATION DEVICE *
COMMUNICATION DEVICE RELATED
SOFTWARE ID
SOFTWARE ID RELATED
SYSTEM PROCESSOR
SYSTEM PROCESSOR RELATED
DATA LINK
DATA LINK BUFFER SIZE
DATA LINK RELATED

Page 82

* Required field (System ID message only).
** Required field if console carrier available

(FUNCTION bit 5).

INFO LENGTH (1): B =

The number of bytes ln the INFO VALUE field.

INFO VALUE (1-17) =

The value according to INFO TYPE and INFO LENGTH.

Where:

MAINTENANCE VERSION (3) : B =

The maintenance version number. The bytes, in order from
low to high, are version, ECO, and user ECO.

FUNCTIONS (2) : BM =

The maintenance functions currently available through this
channel. The bit meanings are:

Bit Function

o Loop
1 Dump
2 Primary loader (can only load secondary loader)
3 Multi-block loader (can load tertiary loader or

system)

Protocol Messages

4
5
6
7

Boot
Console carrier
Data link counters
Console carrier reservation

CONSOLE USER (6) : B =

Page 83

System address of the system that has the console
reserved. Not present if not applicable. Must be present
if console carrier is available, i.e., FUNCTION bit 5 is
ON. Not valid if the console carrier is not reserved,
i.e., FUNCTION bit 7 is ON.

RESERVATION TIMER (2) : B =

The maximum value, in seconds, of the timer used to clear
unused console reservations. Not present if not
applicable. Must be present if console carrier is
available, i.e., FUNCTION bit 5 is ON.

CONSOLE COMMAND SIZE (2) B =

The maximum size of the console command buffer. Not
present if not applicable. Must be present if console
carrier is available, i.e., FUNCTION bit 5 is ON.

CONSOLE RESPONSE SIZE (2) B =

The maximum size of the console response buffer. Not
present if not applicable. Must be present if console
carrier is available, i.e., FUNCTION bit 5 is ON.

HARDWARE ADDRESS (6) : B =

A hardware established address for this system, relative
to the channel being used.

SYSTEM TIME (10) : B =

A segmented binary system time stamp.
same as defined for the Parameter
Address message.

COMMUNICATION DEVICE (1) B =

The format is the
Load with Transfer

The hardware device type of the channel being used.
Values are in Appendix A.

COMMUNICATION DEVICE RELATED (1-16) =

Information specific to
DEVICE. Not present if
Appendix A.

the particular
not applicable.

COMMUNICATION
Values are in

Protocol Messages Page 84

SOFTWARE ID (C-17) =

The identification of the software the system is supposed
to be running. The format is the same as defined for the
Boot message.

SOFTWARE ID RELATED (1-16): =

Information specific to 'the particular SOFTWARE ID. Not
present if not applicable. Interpretation is specific to
the receiving system (e.g., file specification, which may
vary depending on the type of file server).

SYSTEM PROCESSOR (1) : B =

The type of system processor. Values are in Appendix A.

SYSTEM PROCESSOR RELATED (1-16) =

Information specific to the particular SYSTEM PROCESSOR.
Not present if not applicable. Values are in Appendix A.

DAT A LINK (1) : B =

The type of data link protocol on the channel being used.
Values are in Appendix A.

DATA LINK BUFFER SIZE (2) : B =

The size of the data link buffer. Not present if not
applicable. The default value is 262.

DATA LINK RELATED (1-16) =

Information specific to the
present if not applicable.

particular DATA LINK. Not
Values are in Appendix A.

5.3.4 Request Counters

The Request Counters message consists of:

CODE

Where:

CODE (1) B =

RECEIPT
NUMBER

The number 9.

RECEIPT NUMBER (2) B =

A receipt number to identify the request.

Protocol Messages

5.3.5 Counters

The Counters message consists of:

CODE

Where:

CODE (1) B =

RECEIPT
NUMBER

The number 11.

RECEIPT NUMBER (2) B =

COUNTER
BLOCK

A receipt number to identify the request.

COUNTER BLOCK (*): =

Page 85

A block of counters as defined for the particular data link (see
Appendix B).

5.3.6 Reserve Console

The Reserve Console message consists of:

CODE VERIFICATION

Where:

CODE (1) B =

The number 13.

VERIFICATION (8) : B =

A verification code that must match before the receiving system
can honor the request.

5.3.7 Release Console

The Release Console message consists of:

CODE

Where:

CODE (1) B =

The number 15.

Protocol Messages Page 86

5.3.8 Console Command and Poll

This message is issued by the Console Requester in the command system
and is received by the Console Server in the target system. The
Console Command and Poll message consists of:

Where:

CODE CONTROL
FLAGS

CODE (1) B =

The number 17.

COMMAND
DATA

CONTROL FLAGS (1) : BM =

The control flags
message streams.

bit function

indicate the state of the console
They insure that messages are not lost.

carrier

o Message Number - indicates the current message number. This
is a one bit sequence number of the current Console Requester
command message.

1 Command Break Flag - indicates if the (possibly null) command
data is to be preceded by a break condition in the serial byte
stream. This may take on the value of zero, meaning no break,
or one, meaning there is a break.

COMMAND DATA (*) : =

This is a (possibly null) sequence of bytes to be provided as
input to the receiving system's higher level user of the Console
Server.

5.3.9 Console Response and Acknowledge

This message is issued by the Console Server in the target system in
response to the receipt of a Console Command and Poll message from the
Console Requester in the command system. The Console Response and
Acknowledge message consists of:

CODE CONTROL RESPONSE
FLAGS DATA

Where:

CODE (1) B =

Protocol Messages

The number 19.

CONTROL FLAGS (1) : BM =

The control flags
message streams.

bit function

indicate the state of the console
They insure that messages are not lost.

Page 87

carrIer

o Message Number - indicates the current message number. This
is a one bit sequence number of the current command message
being acknowledged.

1 Command Data Lost Flag - indicates if the console command data
was lost and must be sent again. This may take on the value
of zero, meaning acceptance of the command data, or one,
meaning that the command data was lost.

2 Response Data Lost Flag - indicates if remote console response
data was lost due to data overrun. This may take on the value
of zero, meaning no detection of lost data, or one, meaning
there was lost data.

RESPONSE DATA (*) =

This is a
input to
Requester.

(possibly null) sequence of bytes to be provided as
the receiving system's higher level user of the Console

APPENDIX A

PREDEFINED VALUES

This appendix contains the predefined values for various maintenance
operation parameters. These values are referenced in the interfaces
and in the message definitions. Each parameter has a description to
be used in the interface calls and an actual value to be used in
protocol messages.

New values are defined on an as needed basis.

A.l Communication Devices

Value Name Device

0 DP
1 UNA
2 DU
3 CNA
4 DL
5 QNA
6 DQ
7 CI
8 DA
9 PCL

10 DUP
12 DMC
14 DN
16 DLV

18 DMP
20 DTE
22 DV
24 DZ
28 KDP
30 KDZ
32 KL
34 DMV
36 DPV
38 'DMF
40 DMR

DPll-DA (OBSOLETE)
DEUNA multiaccess communication link
DUll-DA synchronous line interface

DLll-C, -E or -WA asynchronous line interface

DQll-DA (OBSOLETE)
Computer Interconnect interface
DAlI-B or -AL UNIBUS link
PCL1I-B multiple CPU link
DUP11-DA synchronous line interface
DMCII-DA/AR,\ -FA/AR, -MA/AL or -MD/AL interprocessor link
DNII-BA or -AA automatic calling unit
DLVlI-E, -F, -J, MXVII-A or - B asynchronous line

interface
DMPll multipoint interprocessor link
DTE20 PDP-II to KLIO interface
DVll-AA/BA synchronous line multiplexer
DZII-A, -B, -C, or -D asynchronous line multiplexer
KMCll/DUPIl-DA synchronous line multiplexer
KMCll/DZll-A, -B, -C, or -D asynchronous line multiplexer
KL8-J (OBSOLETE)
DMVll interprocessor link
DPVll synchronous line interface
DMF-32 synchronous line unit
DMRll-AA, -AB, -AC, or -AE interprocessor link

Predefined Values Page A-2

42 KMY KMSII-PX synchronous line interface with X.25 level 2
microcode

44 KMX KMSIl-BD/BE synchronous line interface with X.25 level 2
microcode

A.2 Data Links

The data link type values are:

Value

1
2
3

Meaning

Ethernet
DDCMP
LAPB (frame level of X.25)

A.3 System Processors

System processor type values are:

Value

1
2
3

Meaning

PDP-II (UNIBUS)
Communication Server
Professional

APPENDIX B

DATA LINK SPECIFIC INFORMATION

This appendix contains information necessary to relate specific data
link types to the maintenance operations.

B.l DDCMP

The Digital Data Communication Message Protocol (DDCMP) Data Link is a
point-to-point channel and allows exclusive maintenance operation in
its maintenance mode. It does not require message padding.

B.2 LAPB

The LAPB Data Link is the frame level of X.25. It is a point-to-point
channel and allows exclusive maintenance operation for loopback only.
It does not require message padding.

B.3 Ethernet

The Ethernet Data Link is the Digital Equipment Corporation
implementation of the inter-company Ethernet Data Link. It allows
concurrent maintenance operation and is a multiaccess channel. As
such it has specific protocol types and multicast addresses that go
with it. It requires message padding.

Refer to the the Ethernet Product Architecture Specification and the
DNA Ethernet Data Link Architectural Specification for specific
functions and requirements. For example, the Product Architecture
Specification requires that the Loop Server and the Console Server
cannot be off while the data link is on.

Data Link Specific Information

The protocol types are:

Value Protocol

90-00
60-01
60-02

Loopback
Dump/Load
Remote Console

The multicast addresses are:

Address

CF-OO-OO-OO-OO-OO
AB-OO-OO-OI-OO-OO
AB-OO-OO-02-00-00

Group

Loopback assistance
Dump/Load assistance
Remote Console

Page B-2

Ethernet counters can be read through the Remote Console. The
counters are defined in the DNA Ethernet Data Link specification. The
counters are a fixed format block with each value as indicated below.

Byte
Length Counter Value

2 Seconds since last zeroed
4 Bytes received
4 Bytes sent
4 Frames received
4 Frames sent
4 Multicast bytes received
4 Multicast frames received
4 Frames sent, initially deferred
4 Frames sent, single collision
4 Frames sent, mUltiple collisions
2 Send failure
2 Send failure reason bitmap
2 Receive failure
2 Receive failure reason bitmap
2 Unrecognized frame destination
2 Data overrun
2 System buffer unavailable
2 User buffer unavailable

The bit meanings for the Send failure reason bitmap are:

Bit Reason

o Excessive collisions
1 Carrier check failed
2 Short circuit
3 Open circuit
4 Frame too long
5 Remote failure to defer

Data Link Specific Information Page B-3

The bit meanings for the data errors inbound reason bitmap are:

Bit Reason

o Block check error
I Framing error
2 Frame too long

APPENDIX C

IMPLEMENTATION SPECIFIC DUMP/LOAD CHARACTERISTICS

This appendix documents characteristics of PDP-II dump/load programs
existing as of the date of this specification.

C.l Secondary Loader

The secondary loader is sent as a single Memory Load with Transfer
Address message as normally required. In addition to this
requirement, it must be loaded and started at location 6. Current
secondary loaders are between 400 and 600 bytes in length, depending
upon the device type used. They use the stack address set up by the
primary loader. For current loaders this will be between 17400(octal)
and l7776(octal). The secondary loader assigns its buffer space below
the stack. The secondary loader accepts Memory Load with and without
Transfer Address messages. It is, therefore, capable of doing
multi-block loads into absolute addresses without memory management.
It requests a tertiary loader to be loaded.

The DMP-ll and DMV-ll do not set up the stack pointer or RI as
described. For those devices, Rl contains the device unit number.

C.2 Tertiary Loader

The tertiary loader IS loaded by the secondary in a multi-block load
starting at location 10000(octal). It will run with memory management
on if it exists on the system. The tertiary loader moves itself to
the top of physical memory and assigns its stack and buffer space just
below itself. It is, therefore, capable of multi-block loads from
location 0 up to its buffer address, usually the last 1-2K words of
physical memory. It requests the operating system to be loaded. The
current tertiary loaders do not specify any specific operating system.
The choice of system to send is established by prior agreement or by
command at the host system.

APPENDIX D

REVISION HISTORY

This appendix provides a list of the major changes that have been made
to this specification.

D.l Changes from Version 1.1 to Version 2.0

1. Removed all references to MOP being used directly to
non-adjacent systems over DECnet links. The NICE protocol
performs MOP-like functions within DECnet, using actual MOP
protocol only over a physical link.

2. Decoupled MOP from DDCMP maintenance mode. The protocol
specifies the requirements of a link control procedure to be
used with MOP. DDCMP maintenance mode is one such procedure.

3. Deleted the following messages not needed in MOP. These are
now handled by NICE. Code 20, Examine data by name; code 22,
Clear data by name; and code 26, Examined data by name.

4. Clarified the description of the fields in all MOP messages.

5.

Clarified and expanded the operational details of MOP and
added a state table for operation.

Added detailed description of
link control procedure to
description of the interface,
to that procedure.

the requirements of the data
be used by MOP and a detailed
set of commands and responses,

6. Added VAX and DECSYSTEM 10/20 information in message formats
where necessary.

7. Changed message 8, Request MOP secondary mode program, to
Request Program. It is now used to request all program loads
in MOP, not just the secondary program. The STADDR field is
removed and replaced by a MOP version number field. Added
DTE20 to DEVTYPE field. PGMTYPE field is changed and SOFTID
is added.

Revision History Page D-2

8. Changed message 10, Request memory load, to remove NODE and
SOFTID, function now part of message 8 described above.
Added an ERROR field to return any errors on previous load.

9. Changed message 12, Secondary mode running, to MOP mode
running. Removed STADDR and replaced with MOP version
number. Added a FEATURES field to describe the MOP features
a node supports.

10. Added a new message, code 20, Parameter load with transfer
address. This message is used to load a parameter block
before transferring control to a just loaded program.

11. Added a detailed description of primary mode and the
operation of loading the secondary program.

D.2 Changes from Version 2.0 to Version 2.1.0

1. Added Looped Data Message as response to a Loopback Test
Message.

2. Added host node number parameter to Parameter Load with
Transfer Address Message.

3. Added notification from DDCMP that a start was received while
in maintenance mode.

D.3 Changes from Version 2.1.0 to Version 3.0.0

1. Expanded capabilities to cover data links which support
mUltiple concurrent protocols and multiaccess channels (e.g.
Ethernet). Changed references .to "DDCMP" to "data link" to
cover the more general scope.

2. Generally expanded the documentation. Added user and network
management interface sections.

3. Divided functionality into three distinct classes (protocol
types): Loop Test, Dump/Load, and Remote Console.

4. Added Dump Complete and Assistance messages to the Dump/Load
protocol.

5. Changed Enter MOP Mode message to Boot message. Added
Processor, Control Device ID, and Software ID fields.

Revision History Page D-3

6. Added Request ID, System ID, Request Counters, Counters,
Reserve Console, Release Console, Console Command and Poll,
and Console Respond and Acknowledge messages to the Remote
Console protocol.

7. Added Reply and Forward Data messages to the Loop Test
protocol. These are for multiaccess channels. The V2.1 Loop
messages are still available for point-to-point channels.

8. Replaced Load/Dump state tables with procedural descriptions.

APPENDIX E

ETHERNET LOOP TESTING

E.l Introduction

The Ethernet Loop Testing Protocol provides minimum testing capability
of comrnunlcation between stations on an Ethernet. It is the only
Client Layer protocol specified in the Ethernet specification. Using
these procedures, the Network Managment System is given a minimum set
of functions which can be used to determine network configuration,
station addresses, and stations on the Ethernet with the ability to
communicate.

Some support of loop testing functions is required on all Ethernet
stations, as specified in the .section on Conformance Requirements.

E.l.l Goals

The goals of the Ethernet Loop Testing Protocol are:

1. Provide for all forms of multi-station loop test that are
necessary to diagnose a station's ability to communicate.

2. Allow each station to assume the responsibility to diagnose
its own ability to communicate.

3. Allow a network management node to diagnose some other
station's ability to communicate.

4. Minimize processing and memory requirements, particularly in
stations other than the executing station.

E.l.2 Loop Testing Functions

A station using the Loop Test Protocol can ascertain the following:

Ethernet Loop Testing Page E-2

1. The ability to communicate with a specific remote station.

2. The ability to communicate with some remote station.

3. The ability of a specific third party station to communicate
with a specific remote station.

4. with the help of a third party station, the ability to hear or
be heard by a specific station.

E.l.3 Functional Model

The Ethernet Loop Testing Protocol is composed of two modules, the
Loop Requester and the Loop Server. Although these two modules are
Client Layer entities, some services not included by the Data Link
Layer are also required. A minimum Client Layer communication
service, which lies between the Data Link Layer and the two modules
above, is needed to provide simple success/fail transmit and receive
services, as well as protocol type demultiplexing. Thus, the abstract
Ethernet interface assumed in this description is of a slightly higher
level than the Data Link to Client Layer interface.

+--------------+
I User Modules I
+--------------+

+---------+
V I

+-----------+--------+ I
I Loop I Loop 1<--+
I Requester 1 Server 1

+-----------+--------+

+---------+

V
+---------------+
1 Communication I

I Service I
+---------------+
• • • • I • • •

V
+------------+
I Ethernet I
1 Data Link 1

+------------+

Client
Layer

Data
Link
Layer

The active end of the loop testing communication link is the Loop
Requester module. It contains features which establish and control
the loop communications.

Ethernet Loop Testing Page E-3

Every Ethernet station must implement the Loop Server module. This
module contains procedures which respond to Loop Requester inquiries
and performs general communications service for remote Loop Requester
modules for system tests and diagnostics.

The relationship between the various modules are shown in the figure.
Vertical arrows indicate flow of control at data interfaces. The
horizontal arrow indicates control at a network management interface.

E.l.4 Conformance Requirements

In order to guarantee the availability of these functions and to
provide for communication checking by a network management station,
all Ethernet stations must implement the Loop Server.

The Loop Server receives datagrams addressed to Ethernet physical
addresses, the broadcast address, and, optio~ally, the loopback
assistance multicast address. The Loop Server 1S not required to
receive datagrams addressed to any other multicast address.

Systems may implement the Loop Requester as desired. The allowed
range of functions is between none at all to the full capability
specified below. However, those stations that do not provide the full
interface capability, proportionately limit their capacity for
self-diagnosis and become more dependent on some centralized test
facility.

E.2 Interfaces

This section describes the Loop Test functions using Pascal as a
notational technique. These Pascal descriptions are to be understood
as abstract, functional representations. Actual implementations may
vary, for example in synChronization techniques, as long as they
provide the same functions.

The functional descriptions use the following common declarations:

const
addressSize = 48; {48 bit address = 6 octets}
dataSize = 12000; {12000 bit data field = 1500 octets}
receiptSize = 16; {16 bit receipt = 2 octets}

type
Bit = 0 .. 1;
AddressValue = array [l .• addressSize] of Bit;
DataValue = array [l .. dataSize] of Bit;
BufferValue = record {A general purpose buffer}

BufferMaximum: O .• dataSize; {Buffer maximum contents}
BufferLength: O •• dataSize; {Buffer actual contents}
BufferData: array [l •• dataSize] of Bit; {Buffer contents}
end;

Ethernet Loop Testing Page E-4

ReceiptValue = array [l .. receiptSize] of Bit;

E.2.1 Data Interface

This' section describes the data communication functions available to
the user. These functions are the interface to the Loop Requester.
There is no data interface to the" Loop Server.

The Loop Requester module provides three functions and one procedure
as an interface for user module loop testing services.

Functions:
LoopDirect LoopAssisted Looppoll

Procedure:
LoopAbort

E.2.1.1 LoopDirect

The LoopDirect function is used to determine if direct communication
with a remote station is possible.

function LoopDirect (
remoteAddress: Addressvalue;
transmitBuffer: BufferValue;
var receiptNumber: ReceiptValue;
var receiveBuffer: BufferValuel: LoopDirectStatus;

type LoopDirectStatus = (accepted,wrongState);

With the following definitions:

remoteAddress - the identification of the station with which
communication is to be checked. The address can be a multicast
address, in which case success is defined as a response from any
station in the multicast group. If no address is specified, the
loopback assistant g~oup multicast address is used.

transmitBuffer - a buffer containing the data to be looped.

receiptNumber - the request identification used in LoopPoll or
LoopAbort to identify this request.

receiveBuffer - an optional buffer to contain the looped back
data. If no buffer is supplied (i.e. BufferMaximum = a), the
looped back data is not returned to the caller.

LoopDirectStatus - the status of the request. One of:

, accepted - the loop will be attempted.

Ethernet Loop Testing Page E-5

wrongState - the data link is in a state where a loop cannot
be done.

E.2.l.2 LoopAssisted

The LoopAssisted function is used by a station to
station in the local network can communicate with
station. This may be used if attempts at direct
failed. Loop testing assistance is obtained
function:

function LoopAssisted (
remoteAddress: AddressValue;
assistantAddress: AddressValue;
assistanceLevel: (transmit,receive,full);
transmitBuffer: BufferValue;
var receiptNumber: ReceiptValue;

determine if some
the specified remote

communication have
by a call to the

var receiveBuffer: BufferValue): LoopAssistedStatus;

type LoopAssistedStatus =

(accepted,wrongState, invalidRemote, invalidAssistant};

With the following definitions:

remoteAddress the
station of the test.

identification of the final destination
The address cannot be a multicast address.

assistantAddress - the identification of the third party station
to assist in the test. To avoid undesirable levels of multicast
traffic, the address cannot be a multicast address.

assistanceLevel - the amount of assistance to be provided, one of:

transmit - the assistant station is only to relay the request.
the reply is to be returned from the station possessing the
remoteAddress.

receive - the assistant station is only to
the request is to be sent to the
remoteAddress.

relay the reply,
station with the

full - the assistant station is to relay both request and
reply.

transmitBuffer - a buffer containing the data to loop.

receiptNumber - the request identification used in the LoopPoll or
LoopAbort function to identify this request.

receiveBuffer - an optional buffer to contain the looped back
data. If no buffer is supplied (i.e. BufferMaximum = 0), the
looped back data is not returned to the caller.

Ethernet Loop Testing Page E-6

LoopAssistedStatus - the status of the request. One of:

accepted - the loop will be attempted.

wrongState - the data link is not in a state where a loop can
be done.

invalidRemote
address.

the destination-address was a multicast

invalidAssistant
address.

the assistant-address was a multicast

E.2.1.3 LoopPoll

The LoopPoll function IS used to poll for completion of a LoopDirect
or LoopAssisted.

function LoopPoll
receiptNumber: ReceiptValue;
var remoteAddress: AddressValue}: LoopPollStatus;

type LoopPollStatus =

(notComplete,success,compareError,transmitFailed,

communicationError);

With the following definitions:

receiptNumber the request identification assigned to this
request by the LoopDirect or LoopAssisted function.

remoteAddress - the identification of the remote station that
satisfied the request. For LoopAssisted with transmit assistance,
this is the remote station address. For LoopAssisted with receive
or full assistance, it is the assistant station address.

LoOpPollStatus - the status of the operation. One of:

notComplete - the loop is not yet done.

success - the data came back correctly.

compareError - the data came back, but it did not match what
was sent.

transmitFailed - the local transmitter could not send the
initial message.

communicationError - no response was received.
initial message or the response did not arrive.

Either the

Ethernet Loop Testing Page E-7

E.2.1.4 LoopAbort

The LoopAbort procedure is used to abort a LoopDirect or LoopAssisted
when, for example, the user decides that the reply has taken too long.

procedure LoopAbort (receiptNumber: ReceiptValue)~

with the following definition:

receiptNumber the request identification assigned to this
request by the LoopDirect or LoopAssisted function.

E.2.2 Network Management Interface

This section describes the Network Management control and observation
functions. These functions interface to the Loop Server. There are
no Network Management functions for the Loop Requester.

E.2.2.1 EnableServer

The EnableServer procedure is used to allow Loop Server operation.

procedure EnableServer;

E.2.2.2 DisableServer

The DisableServer procedure 1S used to stop Loop Server operation.

procedure DisableServer;

E.2.2.3 EnableAssistance

The EnableAssistance procedure is used to allow the Loop Server to
listen to the loopback assistance multicast address.

procedure EnableAssistance;

E.2.2.4 DisableAssistance

The DisableAssistance procedure is used to stop the Loop Server from
listening to the loopback assistance multicast address.

procedure DisableAssistance~

Ethernet Loop Testing Page E-8

E.2.2.5 ReadStatus

The ReadStatus procedure is used to read the status of the Loop
server.

procedure ReadStatus (
Ivar serverState: (on,off);
var assistanceState: (on,off));

With the following definit10ns:

serverState - the state of the Loop Server.

assistanceState - the state of the loop assistance feature, i.e.
determines if station IS listening for loopback assistance
multicast address.

E.3 Loop Test Examples

The following examples address the application of the Loop Test
functions. They are intended as examples of how a higher level
process can use the facilities. They are intended neither as a
specification for how they must be used nor as an exhaustive test
script.

In the examples, no account is taken of the fact that the Loop Test
functions make only one attempt to transmit a message. To increase
the reliability of the tests, each interface function that fails due
to a communication error should be retried enough times to lessen the
probability that an intermittent error occurred.

E.3.l Local Control Test Example

In this case, a station finds itself unable to communicate with
other station that it has reason to believe should be available.
following test script can be used by the station to check out
problem itself.

some
The
the

First, LoopDirect is invoked with remoteAddress set at the correct
address of the specific remote station. If this test succeeds, the
communication is possible and the problem may have been either
intermittent, the remote station is down, or there is a problem with
message length or data pattern. Different message lengths and/or data
patterns could then be tried.

If LoopDirect results in a return indicating failure, next invoke
LoopAssisted, using some other node as assistantAddress (if no
potential assistant is known, use LoopDirect with no remoteAddress to
find a member of the loopback assistance multicast group). If
LoopAssisted fails, then the assistant cannot communicate with the
remote node, either. If a LoopDirect was successfully used to find an

Ethernet Loop Testing Page E-9

assistant, the remote station is probably down. If no communication
with the multicast assistant group is possible, then the last resort
is a LoopDirect to the general broadcast address. If this fails then
either no one else is turned on or the local station is broken. If it
succeeds, it is again most likely that the remote station is down.

If some loopback assistant station can communicate with the remote
node but the local station cannot, the local station can then test for
the direction in which communication does not work. The LoopAssisted
function, using the assistant node that responded previously as the
assistant, can be used to detect either transmit or receive problems.
By repeating the above test with different remote stations, it can be
determined whether the local station or the remote station is at
fault, thus isolating the problem to a particular transmitter or
receiver.

When a station finds itself unable to communicate, it can report this
in whatever high level way is available. An operator or control
center can then respond by attempting to isolate and repair the
problem.

E.3.2 Remote Control Test Example

When a control center receives a report that a station cannot
communicate properly, it Cqn use the Loop Testing functions to
investigate the problem. It can first diagnose its own ability to
communicate with the station. If this communication appears to work,
the control center can similarly check its ability to communicate with
the remote station that the reporting station could not reach.

If the control center can communicate with both stations, it can then
use LoopAssisted, full assistance, with one of the nodes as assistant
and the other as remote to see if they can communicate. Similarly it
can use transmit and receive assistance to determine which direction
is a problem.

Similar checks using other stations can be used to isolate the problem
to a particular transmitter or receiver.

E.4 Operation

This section describes the operation of the Loop Test Server and
Requester.

Loop Test operation does not depend on particular stations being able
to receive multicast messages. Those stations willing to volunteer as
loop testing assistants respond to multicast address
CF-OO-OO-OO-OO-OO, and are known as the loopback assistance multicast
group.

Ethernet Loop Testing Page E-IO

In the interests of simplicity and efficiency, loopback operation and
message formats are designed to meet the following requirements:

1. All fields begin on 16-bit boundaries.

2. Progressive operations on the same message (e.g.
back) do not change the message size.

looping it

The general form of operation is that different loopback message types
are encapsulated within one another. The first field, called the skip
count, in all messages indicates how many octets to skip after the
skip count to find the message type. When a message is processed, the
processing system updates the skip count so that the next system will
process the next encapsulated message. Note that in order to meet the
16-bit boundary requirement, the skip count is always an even number.

The Loop Test protocol uses protocol type 90-00.

The operational descriptions assume the following Loop Test protocol
messages.

1. Reply - a message identifiable as a response to some request.

2. Forward Data - A message whose data portion is forwarded to
another station.

E.4.1 Loop Server

The Loo~ Server always keeps a receive pending while the data link is
turned on. Whenever a receive completes. it is processed and another
receive posted. For purposes of not missing messages, it may be
necessary to keep more than one receive posted, although this is not
required.

In order to help bound the time a test can take, the Loop Server must
respond to the data link within one second of the time it receives a
valid message.

The received message is processed according to function code:

1. Forward Data message.

The skip count is increased by the length of the function code
and forward address. If the forward address is a multicast
address, the message is ignored. Otherwise, the message is
transmitted to the forward address.

Ethernet Loop Testing Page E-ll

2. Unrecognized function 26de.

The message is ignored.

In order to provide maximum problem diagnosis capabilities,
Servers must always attempt to recejv~ Ethernet maximum
messages.

E.4.2 Loop Requester

Loop
sized

The Loop Requester uses receipt numbers to identify requests both back
to the user and in protocol messages. When the system is initialized,
the next available receipt number is set to a random value. It 1S

then incremented each time one is used.

E.4.2.l LoopDirect Function

A receipt number is assigned and the state of the operation is set to
"not complete". The data, provided via transmitBuffer, is transmitted
to the destination station, identified by remoteAddress, as a Reply
message encapsulated in a Forward Data message with the local station
as the forwarding address. If the trans.nit is not accepted, the error
code 1S returned and the receipt number marked complete. If the
transmit succeeded, a receive is p~sted. Note that in some
implementations it may be necessary to post the receive first to avoid
a race between the posting of the receive and the receipt of the
message.

The receive is satisfied by the first Reply message received with the
correct receipt number. Additional replies (as in the case of a
LoopDirect to the loopback assistance multicast group) are
automatically ignored since there is no longer an outstanding request
with the receipt number. When the transmit and receive are both
complete, if they were successful the received data is compared to the
transmitted data, exclusive of loop protocol overhead. If they do not
match or the receive or transmit failed, the appropriate error is
recorded; otherwise, success and the responding station address are
recorded.

E.4.2.2 LoopAssisted Function

If the request is for receive assistance, and the assistant address is
a multicast address, an invalid assistant address error is returned;
otherwise, a receipt number is taken and the state of the operation is
set to "not complete". The data is put into the form of a Reply
message and encapsulated in a Forward Data message with the local
station address as the forward address. The rest of the operation
depends on the assistance level requested:

Ethernet Loop Testing Page E-12

1. Transmit assistance.

The message so far is encapsulated in a Forward
with the remote station as the forward address.
message is then sent to the assistant address.

Data message
The resulting

2. Receive assistance.

The message so far is encapsulated in a Forward Data message
with the assistant address as the forward address. The
resulting message is then sent to the remote station.

3. Full assistance.

The message so far is encapsulated in a Forward Data
with the assistant address as the forward address.
turn, is encapsulated in a Forward Data message
remote station address as the forward address. The
message is then sent to the assistant address.

message,
This, in

with the
resulting

Receive processing is the same as was described for LoopDirect.

E.4.2.3 LoopPoll Function

The LoopPoll function returns the state of the operation. If the
state is success:ul completion, the responding station address is also
returned. If a receiveBuffer was provided on the initial request, the
received message is returned, truncated if it will not fit.

E.4.2.4 LoopAbort Function

The LoopAbort procedure simply marks the receiptNumber as aborted if
it is not already complete.

E.5 Protocol Messages

This section defines the format of the Loop Test protocol messages.
The descriptive and transmission conventions are the same as for the
body of the Ethernet specification.

The Loop Test protocol contains the following messages:

Function
Code

1
2

Function

Reply
Forward Data

Ethernet Loop Testing Page E-13

E.5.1 Reply Message

This message is recognized as a looped reply. The message format is:

\<--- 1 octet --->\

+-----------------+
skip 2 octets

count
+-----------------+

. octets to skip
according to skip count octets
skip count

+-----------------+
function 2 octets

1
+-----------------+

receipt
number

+-----------------+

data

+-----------------+

E.5.2 Forward Data Message

2 octets

remainder

This message is used to get a message forwarded to some other station.
Its format is:

Ethernet Loop Testing

1<--- 1 octet --->1

+-----------------+
skip 2 octets

count
+-----------------+

. octets to skip
according to skip count octets
skip count

+-----------------+
function 2 octets

2
+-----------------+

forward
address

+-----------------+

data

+-----------------+

6 octets

remainder

Page E-14

DECnet Digital NetworK ArcOiteclure t'na15., I Y

Maintenance Operations Functional Specification
AA-X436A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

o
o
o
o
o
o Other (please specify) __________________________ _

Name ____________________________________ Date __________________________________ __

Organ~ation __ _

Street __ ___

City __________________ __ State __________ Zip Code _______ _

or
Country

- - - - -Do Not Tear - Fold Here and Tape - - - - - -

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TW/E07
TEWKSBURY, MASSACHUSETTS 01876

I
-----l

No Postage

Necessary

if Mailed In the

United States

- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - -

