
I 

Order No. AA-K 177 A-TK 

· DECnet 
DIGITAL Network Architecture 

Data Access Protocol 
Functional Specification 

(DAP) 
Version 5.6.0 



DEenet 
DIGITAL Network Architecture 

(Phase III) 
Data Access Protocol 

Functional Specification 
(DAP) 

Order No. AA-K177 A-TK 
Version 5.6.0 

October 1980 

This document describes the features, message formats, and 
operation of the Data Access Protocol (DAP). DAP provides 
standardized formats and procedures for accessing and pass
ing data between a user process and a file system existing in a 
network environment. It assumes a controlled conversation 
path provided by the network system. In DECnet, this path is 
created by the Session Control and Network Services Proto
cols and their associated interfaces. 

To order additional copies of this document, contact your local 
Digital Equipment Corporation Sales Office. 

digital equipment corporation · maynard, massachusetts 



First Printing, October 1980 

This material may be copied, in whole or in part, provided that the 
copyright notice below is included in each copy along with an 
acknowledgment that the copy describes the Data Access Protocol 
developed by Digital Equipment Corporation. 

This material may be changed without notice by Digital Equipment 
Corporation, and Digital Equipment Corporation is not responsible for 
any errors which may appear herein. 

Copyright ~ 1980 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-ll 
VAX 
DECnet 
DATATRIEVE 

DECsystem-10 
DECtape 
OIBOL 
EOUSYSTEM 
FLIP CHIP 
FOCAL 
INOAC 
LAB-8 
DECSYSTEM-20 
RTS-8 
VMS 
lAS 
TRAX 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-ll 
TMS-ll 
ITPS-IO 
SBI 
PDT 



1.0 
2.0 
2.1 
2.2 
2.3 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 
3.11 
3.12 
3.13 
3.14 
3.15 
3.16 
3.17 
3.18 
4.0 
4.1 
4.2 
4.2.1 
4.2.2 
4.3 
4.3.1 
4.3.2 
4.3.3 
4.3.4 
4.4 
4.4.1 
4.4.2 
4.4.3 
4.4.4 
5.0 
5.1 
5.1.1 
5.1. 2 
5.2 
5.2.1 
5.2.2 
5.2.3 
5.2.4 
5.2.5 
5.2.6 
5.2.7 
5.2.8 

CONTENTS 

INTRODUCTION 
FUNCTIONAL DESCRIPTION 

DAP Functions 
Relationship to the DIGITAL Network Architecture 
Generic Model 

MESSAGE FORMATS 
Notation 
General Message Format 
Configuration Message 
Attributes Message 
Access Message 
Control Message 
Continue Transfer Message 
Acknowledge Message 
Access Complete Message 
Data Message 
Status Message 
Key Definition Attributes Extension Message 
Allocation Attributes Extension Message 
Summary Attributes Extension Message 
Date and Time Attributes Extension Message 
Protection Attributes Extension Message 
Name Message 
Access Control List Attributes Extension Message 

FILE ORGANIZATION 
Types of Files 
Record Formats and Attributes 
Handling Stream ASCII 
Conversions 
Data Formats 
Fixed-Length Records 
Variable-Length Records 
Variable with Fixed-Control Format Records 
ASCII Stream 
Supported Data Types 
ASCII 
EBCDIC 
Image 
Compression 

OPERATION 
Setting up the Link 
Errors in the Setup Sequence 
Setup Sequence 
Transferring Data over the Link 
Sequential File Retrieval 
Sequential File Storage/Append 
Record Retrieval 
Record Store 
Append to Existing File 
Deleting a File 
Command/Batch Execution Files 
Renaming a File 

iii 

Page 

1 
2 
2 
2 
4 
6 
6 
7 

11 
14 
21 
25 
29 
29 
29 
31 
31 
45 
46 
48 
48 
49 
51 
51 
52 
52 
52 
53 
53 
54 
54 
54 
54 
55 
55 
55 
55 
55 
56 
58 
58 
60 
61 
67 
68. 
70 
73 
74 
75 
75 
76 
76 



5.2.9 
5.2.10 
5.2.11 
5.2.12 
5.2.13 
5.2.14 
5.2.15 
5.2.16 
5.2.17 
5.2.18 
5.2.19 
5.2.20 
5.2.20.1 
5.2.20.2 
5.2.20.3 
5.2.20.4 
5.3 
5.4 
5.5 
5.5.1 
5.5.2 
5.6 
5.6.1 

CONTENTS (Cont.) 

Extending Files 
Display Attributes 
Directory List 
Rewind Data Stream 
Truncate File 
Free Buckets 
Space Forward or Backward 
Flush I/O Buffers 
Deleting a Record 
Find 
Update 
Wildcard Operations 
Wildcard Sequential File Retrieval 
Wildcard File Deletion 
Wilcard File Rename 
Wildcard Command File Execution 
Closing a File and Terminating Data Streams 
Terminating a Logical Link 
File Security, Integrity and Protection 
Access Control 
Data Integrity 
DAP-Based Applications Written by DIGITAL 
Access Control and Accounting for DAP-Based 
Applications 

APPENDIX A 
APPENDIX B 

P.l 
B.2 

USER IDENTIFICATION MESSAGE 
REVISION HISTORY 
Version 1.0 to Version 4.1 
Version 4.1 to Version 5.6 

GLOSSARY 

FIGURES 

FIGURE 1 Interrelationship of DNA Layers 
2 Typical DAP Message Exchange (Sequential File 

Retrieval) 

TABLES 

TABLE 1 DAP Messages 
2 MACCODE Field Values 
3 MICCODE Field Values for Use with MAC CO DE Values 

10, and 11 Octal 
4 MICCODE Field Values for Use with MACCODE Values 

1, 4, 5, 6, and 7 Octal 

of 2, 

of 0, 

5 MICCODE Field Values (with MACCODE Value of 12 Octal) 
6 Responses to Setup Message Errors 

iv 

Page 

76 
77 
78 
81 
81 
81 
82 
82 
82 
83 
83 
84 
85 
87 
89 
90 
90 
90 
90 
90 
91 
91 

91 

93 
95 
95 
95 

97 

3 

5 

4 
32 

33 

39 
44 
61 



1.0 INTRODUCTION 

This document describes the functions, operation, and message formats 
of the Data Access Protocol (DAP). The document is primarily intended 
to assist those who implement DAP in understanding how DAP functions 
within a system. The document does not address specific 
implementations. 

DAP performs remote file access via a file system such as Record 
Management Services (RMS). Unit Record Devices and terminals can be 
accessed if supported by a file system. When Unit Record Devices and 
terminals are supported by a file system in a device-dependent manner, 
the device control features peculiar to the individual devices are not 
supported by DAP. 

DAP is one of the protocols of the DIGITAL Network Architecture (DNA). 
DNA models the software (or hardware) for DECnet implementations. 
DECnet is a family of software modules, data bases, and hardware 
components typically used to tie DIGITAL systems together for resource 
sharing, distributed computation, or remote system communication. 

DNA is a layered structure. Modules in each layer perform distinct 
functions. Equivalent modules within the same layer in both the same 
and different nodes communicate using protocols. A node is an 
implementation of the Session Control layer (Section 2.2). Usually a 
single computer is associated with one node. Protocols are the 
messages exchanged by modules and the rules governing the message 
exchanges. Modules in functionally different layers of DNA interface 
using either subroutine calls or a system-dependent method. 

A glossary at the end of this document defines many DAP terms. 

Other DNA Phase III functional specifications are: 

DNA Digital Data Communications Message Protocol (DDCMP) 
Functional Specification, Version 4.1.0, Order No. AA-K175A-TK 

DNA Maintenance Operations Protocol (MOP) Functional 
Specification, Version 2.1.0, Order No. AA-Kl78A-TK 

DNA Network Management Functional Specification, Version 2.0.0, 
Order No. AA-K181A-TK 

DNA Network Services (NSP) Functional Specification, Version 
3.2.0, Order No. AA-K176A-TK 

DNA Session Control Functional Specification, Version 1.0.0, 
Order No. AA-K182A-TK 

DNA Transport Functional Specification, Version 1.3.0, Order No. 
AA-K180A-TK 

The following overview document for these specifications is an 
introduction to the structure and functions of DNA. 

DNA General Description, Order No. AA-Kl79A-TK 

1 



2.0 FUNCTIONAL DESCRIPTION 

The Data Access Protocol 
primary purpose is to 
environment independently 
being accessed. 

is an application level protOcol. Its 
permit remote file access within the DECnet 
6f the I/O structure of the operat~ng system 

2.1 DAP Functions 

Within DECnet, DIGITAL opera~ing ~"qtems can emplpy DAP to provide the 
following remote f~~e access functions: 

• Retrieve a file from an input device. 

• Store a file on an output device. 

• Provide ASCII file transportability between nodes. 

• Provide error recovery. 

• Allow multiple data streams to be sent over a logical link. 

• Command file execution and submission. 

• Provide for random access of records in a file. 

• Provide for file deletion. 

• Rename files. 

• List directoriep. 

2.2 Relationship to the DIGITAL Network Architecture 

The DIGITAL Network Architecture provides a modular design for DECnet. 
Its functional components are d~fined within eight layers which are 
described below. Each layer performs a well-defined set of network 
functions (via network protocols) and presents services to the layer 
above it: 

User layer. The User layer contains all the user-supplied functions. 
It is the highest layer in the DNA structure. 

Network Management layer. The Network Management layer contains the 
modules that provide user control over and access to network 
parameters and counters. Network Management modules also furnish 
down-line loading, up-line dumping, and testing functions. 

Network Application layer. The Application layer supports the various 
user services and programs that utilize the network facilities. These 
services and programs must utilize the network communication mechanism 
provided by the Session Control and Network Services layers. DAP 
resides within the Application layer. 

Session Control layer. The Session Control layer defines the 
system-dependent aspects of logical link communication. 

2 



Network Services layer. The Network Services layer provides the 
mechanism that permits node-to-node communications and 
process-to-process communications between processes in the same or 
different nodes. It provides a logical link service and a datagram 
service to the network. 

Transport layer. The Transport layer provides a mechanism for the 
network serVlce layer to send a unit of data (a packet) from any node 
in the network to any other node in the network. 

Data Link layer. The Data Link layer controls the physical link 
operation to ensure both data integrity and sequentiality. 

Physical Link layer. The Physical Link layer, the lowest layer, 
consists of device specific modules that provide the interface to the 
communication hardware. 

Figure 1 shows the interrelationship of the DNA layers. 

User Modules 

----~------

User Layer 

Network 
Management Layer 

Network 

Application Layer 

--- .... ------

Session Control Layer 

Network Services Layer 

Transport Layer 

Data Link Layer 

Physical Link Layer 

Horizontal arrows show direct access for control and examination of parameters, counters, etc. Vertical and 
curved arrows show interfaces between layers for normal user operations such as file access, down-line load, 
up-line dump, end-to-end looping, and logical link usage. 

Figure 1 Interrelationship of DNA Layers 

3 



2.3 Generic Model 

As an aid toward understanding the Data Access Protocol, this section 
contains a gener ic model. This mo'del consists of a summary of the DAP 
messages (Table 1) and a typical DAP message exchange sequence 
illustrating how DECnet sequential file retrieval is accomplished 
between two dialogue processes (Figure, 2) . 

For a more detailed description of the DAP message formats and the 
protocol operation, refer to Sections 3.0 and 5.0, respectively. 

Message 

Configuration 

Attributes 

Access 

Control 

Continue-Transfer 

Acknowledge 

Access Complete 

Data Message 

Status 

Key Definition 
Attributes Extension 

Allocation 
Attributes Extension 

Table 1 
OAP Messages 

Function 

Exchanges system capability and 
configuration information between 
OAP-speaking processes. This message is 
sent immediately after a link is 
established. It contains information about 
the operating system, the file system, 
protocol version, and buffering ability. 

is 
The 

file 
record 
device 

Provides information on how data 
structured in the file being accessed. 
message contains information on 
organization, data type, format, 
attributes, record length, size, and 
characteristics. 

Specifies the file name and type of access 
requested. 

Sends control information to a file system 
and to establish data streams. 

Allows recovery from errors. Used for 
retry, skip, and abort after an error is 
reported. 

Acknowledges access commands and control 
connect messages used to establish data 
streams. 

Controls termination of, file and stream 
access. 

Transfers the file data over the link. 

Returns status and information on error 
conditions. 

Specifies 
files. 

key definitions for indexed 

Used when creating or explicitly extending 
a file to specify the character of the 
allocation. 

(continued on next page) 

4 



Message 

Summary 
Attributes Extension 

Date Time 
Attributes Extension 

Protection 
Attributes Extension 

Name 

Access Control 
List Attributes 
Extension 

User Node Message 
Description 

Configuration Information 
(e.g., Buffer Size, OS, File 
System DECnet Phase No., 
and DAP Version No.) 

File Characteristics 
(e.g., Type, Blk Size 
and Record Size) 

Access Request 

Set up Data Stream 

Request Start of Data 
Transfer and Mode of 
Transfer 

Request to Term i nate 

• 

.. 
'" 

• 

.. 

.. 

.. 

• 

Table 1 (Cont.) 
DAP Messages 

Function 

Returns summary information about file. 

Specifies time-related information 
the file. 

Specifies the file protection code. 

about 

Sends name information when renaming a file 
or obtaining a directory listing. 

When creating a file, this message is used 
to specify the access rights users are 
granted for access to this file. 

Messages 

Configuration Message 

Configuration Message 

Attributes Message 

Access Message 

Attributes Message 

Acknowledge Message 

Control (Initiate Data Stream) 
Message' 

Acknowledge Message 

Control (Get) Message 

Record 1 

• • • 
Record N 

Status Message 

Access Complete Message 

Access Complete Response 

.. 

.. 

.. 

.. 

.. 

.. 

Remote Node Message 
Description 

Configuration 
Information 
Returned 

Actual File Characteristics Returned 

File Opened 

Data Stream Established 

Data Sent in Records 

End-of-File Indicated 

Request Completed Successfully 

Figure 2 Typical DAP Message Exchange (Sequential File Retrieval) 

5 



3.0 MESSAGE FORMATS 

3.1 Notation 

The follo~ing notation is used to describe the DA? messages: 

FIELD (LENGTH) : CODING Description of field. 

where: 

FIELD 

LENGTH 

CODING 

Is the name of the field being described. 

Is the length of the field, which can be indicated in 
one of four ways: 

1. A number meaning number of 8-bit bytes (octet). 

2. A number followed by a "B" meaning number of 
bits. 

3. The letters "EX" meaning extensible field. 
Extensible fields are of variable length 
consisting of 8-bit bytes in which the 
high-order bit of each byte denotes whether the 
next byte is part of the same field. A 1 means 
the next byte is part of this field and a 0 
denotes the last byte. Extensible fields are 
for bit maps only. Seven bits from each octet 
are used as information bits. The notation 
EX-n means an extensible field where the 
maximum length of the field is n bytes. 

NOTE 

The bit definitions define the 
information bits after removing the 
extension bits and compressing the 
remaining bits. 

4. The letters "I-n" means this is an image field, 
with n being a number that specifies the 
maximum length of the field in 8-bit bytes. 
The image is preceded by a I-byte count of the 
length of the remainder of the field. Image 
fields are variable in length and may be null 
(count=0). All 8~bits of each byte are used as 
information bits. The meaning and 
interpretation of each image fi~ld is as 
defined with that specific field. 

Is the representation type used, where: 

A = 7-bit ASCII 
B binary 
BM = bit map (in which each bit has a specific 

meaning) . 

6 



The following rules apply to the notation: 

1. If length and coding are omitted, field represents a number 
of subfields specified in the description. 

2. Any bit or field described as "reserved" shall be zero unless 
otherwise specified. 

3. All fields are presented to the Session Control Protocol with 
the least-significant byte first. In an ASCII field, the 
left-most character is contained in the low-order byte. 

4. All numbers are in decimal unless otherwise specified. 

5. When default values are defined for fields in DAP messages, 
the values will be used only if that field is absent from the 
message. There are two ways in which fields within OAP 
messages can be omitted so the default can be used: 

a. A field that appears under a MENU may be omitted by 
setting the corresponding MENU bit to zero. 

b. Trailing fields in DAP messages may be omitted if they 
are not needed or if the default value can be used. If a 
MENU field is truncated in this way, its value is zero 
(which means all the fields controlled by the MENU are 
absent, too). 

If a field is present with a zero value, do not use the 
default value. Use the value zero. 

6. Brackets [ 1 denote optional fields. 

3.2 General Message Format 

All DAP messages have the following form: 

OPERATOR 

where: 

OPERATOR 

OPERAND 

This field describes the characteristics and type of 
message. It is divided into seven subfields: TYPE, 
FLAGS, STREAMID, LENGTH, LEN256, BIrCNT, and SYSPEC. 

TYPE (1) : B The type of DAP message. These 
numbers are given with each DAP 
message description. Types 128-191 
are reserved for DIGITAL applications 
based on DAP. Types 192-255 are 
reserved for user extensions to DAP. 

7 



FLAGS (EX-5) BM 

STREAMID(l) B 

LENGTH(l) B 

The DAP mess~ge flags. Bits in this 
extensible field are currently 
defined as follows: 

Bit(s) Meaning (When Set) 

o Str~am identification field 
present. 

1 Length field present. 

2 If bit 1 (length field 
present) is set, field 
LEN256 is present and the 
length field is in effect 2 
bytes long. Illegal if bit 
1 not set. 

3 The BITCNT field is present. 

4 Reserved (0). 

5 SYSPEC field present. 

6 If set, this is a segmented 
message and this is not the 
last segment of the message. 
The next message will 
contain the next segment of 
the full message. The next 
message must be of the same 
type as this message. Refer 
to the SYSCAP field of the 
Configuration message to see 
if this facility is 
supported. 

The stream identification field. 
This field is included only if bit 0 
of the FLAGS field is set. This 
field is used to allow a single user 
to have multiple data streams in use 
for a single open file. All data 
streams use the same logical link 
(they multiplex on the STREAMID 
number) . 

If the STREAMID number is omitted, it 
is assumed to be zero. Not all file 
systems are capable of supporting 
multiple data streams from a single 
file. 

Denotes the length of the OPERAND 
field (number of 8-bit bytes). This 
field is optional. It is included 
only if bit 1 of the FLAGS field is 
set. Two or more DAP messages may be 
blocked together into one Session 
Control buffer (usually for reasons 
of efficiency). If DAP messages are 
blocked, the LENGTH field must be 
present so the end of one message and 
start of the next can be found. 

8 



LEN256(1) B 

BITCNT(l) B 

SYSPEC(I-255) 

Messages between 0 and 255 bytes long 
may be blocked using only the LENGTH 
field. DAP messages whose operand 
length is between 256 and 64K bytes 
may be blocked only if both bits 1 
and 2 of FLAGS are set. Lengths 
greater than 64K bytes are sent 
unblocked or as the last part of a 
blocked message. 

Contains the most significant byte of 
a two byte OPERAND length if bit 2 of 
FLAGS is set. LENGTH contains the 
least significant byte. If LEN256 is 
present, LENGTH must also be present. 

This field is valid only with the 
Data message. If present, it 
contains a number in the range 0-7 
which is the number of unused bits in 
the final 8-bit byte of the message. 
It is required only when transmitting 
data which does not completely fill 
the final 8-bit frame of a Data 
message. This is useful when 
accessing files whose byte size is 
not a multiple of eight. See Section 
4.4.3. 

B This optional field is the system 
specific field. It can only be used 
for file access between two 
homogeneous systems. This field is 
included only if bit 5 of the FLAGS 
field is set. If it is used between 
hetrogeneous systems, it will produce 
a fatal error and the access will be 
aborted. Between homogeneous 
systems, this field can be used for 
passing system specific information 
as defined by the system. The SYSPEC 
field can not be used with the 
Configuration message. This field 
must not be used for passing 
information common to more than one 
system. 

9 

NOTE 

If this field is used, all 
system specific functions 
must be registered with the 
architecture group within 
DECnet in advance of 
certification. 



OPERANO The information field for OAP messages. It is dependent 
on the TYPE field. 

NOTE 

Typically, one OAP-speaking process 
sends one or more OAP messages to a 
cooperating process which then responds 
with one or more messages. Section 5 
contains examples of message sequences. 
This pattern repeats until the access is 
complete. 

Blocking OAP messages. OAP messages can 
be blocked in one of two ways: 

l. The first process blocks and sends 
OAP messages up to the point where 
it expects a response from the 
cooperating process. It then waits 
for the response. 

2. The first process blocks and sends 
OAP messages. without regard for 
response from the cooperating 
process. The first process may be 
way ahead of the cooperating 
process. This means the cooperating 
process must be able to receive a 
buffer full of OAP messages, process 
some of them, send a response and 
then continue processing OAP 
messages from the same buffer from 
where it left off before sending the 
response. If the response was an 
error, the unprocessed messages in 
the buffer may no longer be valid 
and must be discarded. 

The first method of blocking is the 
more commonly used. The type of 
blocking a system supports is 
specified in the Configuration 
message. Some small systems may not 
support blocking at all. 

Truncating OAP messages. OAP messages 
can be truncated up to the point of 
leaving only the TYPE field provided the 
fields truncated are not needed or can 
be defaulted. This is particularly 
useful with the Acknowledge message 
which reduces the ACK to a one byte 
message. 

10 



3.3 Configuration Message 

The Configuration message passes system configuration information 
between the cooperating processes involved in DAP remote file access. 
This message is sent immediately following link establishment. The 
accessed process may wait to receive a Configuration message from the 
accessing process before it sends a Configuration message itself. 
However, this is not necessary. The Configuration message should not 
be sent blocked with any other DAP message. The reason for this is 
that buffers of the appropriate size can be allocated for receiving 
subsequent DAP messages. The Configuration message format is: 

ICONFIGIBUFSIZIOSTYPEI FILESYSIVERSIONISYSCAPI 

where: 

CONFIG 

BUFSIZ(2) B 

OSTYPE(l) B 

The OPERATOR field with TYPE = 1. 

The maximum buffer size (in bytes) of the sending 
system for message exchange. The two cooperating 
DAP speaking processes will use the lesser of the 
two buffer sizes as the maximum size. If one of 
the two systems has an unlimited buffer size, it 
sends a 0 and the two systems will use the 
nonzero buffer size as the maximum. If both 
systems send 0, there is no limit on the length 
of messages sent. 

Operating system type (the 
Values in the range 1-191 
DIGITAL use; 192-255 are 

sending system) . 
are reserved for 

reserved for 
user-specified operating systems. 

Value OS Type 

0 Illegal 
1 RT-ll 
2 RSTS/E 
3 RSX-llS 
4 RSX-llM 
5 RSX-llD 
6 lAS 
7 VAX/VMS 
8 TOPS-20 
9 TOPS-10 

10 RTS-8 
11 OS-8 
12 RSX-llM+ 
l3 COPOS/ll (TOPS-20 front-end) 

11 



FILESYS(l) B 

VERSION 

File system type (of the file system being used 
by the process sending this message). Values in 
the range. 1-191 ar,e reserved for DIGITAL use; 
192-255 are reserved for user-specified file 
systems.' 

Value System 

0 Illegal 
1 RMS-ll 
2 RMS-20 
3 RMS-32 
4 FCS-ll 
5 RT-ll 
6 No file system supported 
7 TOPS-20 
8 TOPS-lf2J 
9 OS-8 

A field identifying the protocol and software 
version numbers. This field is subdivided as 
follows: 

VERNUM I ECONUM USRNUM I SOFTVERI USRSOFT 

where: 

VERNUM(l) B 

ECONUM(l) B 

USRNUM(l) : B 

SOFTVER(l) B 

USRSOFT(l) B 

12 

DAP version number. This is the 
same as the first digit of the 
protocol version number. 

DAP ECO 
This is 
digit of 
number. 

(Modification) number. 
the same as the second 
the protocol version 

Customer modification level of 
DAP. Set to 0 by DIGITAL. 

DAP software version number in 
binary. This is the DIGITAL 
release number. If the software 
is completely user written, this 
field should be 0. 

User software version number in 
binary. If the user modifies 
DIGITAL software, he should 
increment this byte to reflect 
his modification number. Set to 
o by DIGITAL. 



SYSCAP(EX-12) BM Generic system capabilities. These are defined 
as follows: 

Bit Meaning (When Set) 

o Supports file preallocation. 
1 Supports sequential file organization. 
2 Supports relative file organization. 
3 Intended to support direct file 

organization (reserved). 
4 Supports single keyed indexed file 

organization (reserved). 
5 Supports sequential file transfer. 
6 Supports random access by record number. 
7 Supports random access by virtual Block 

Number. 
8 Supports random access by key. 
9 Intended to support random access by user 

generated hash code (reserved). 
10 Supports random access by Record File 

Address (RFA). 
11 Supports multi-keyed indexed file 

organization. 
12 Supports switching access mode. (See RAC 

field in Section 3.6.) 
13 Supports append to file access. 
14 Supports command file submission and/or 

execution as specified in the Access 
message. 

15 Supports data compression (reserved). 
16 Supports multiple data streams. 
17 Supports status return (reserved). 
18 Supports blocking of DAP messages up to 

response. (See note Section 3.2.) 
19 Supports unrestricted blocking of DAP 

messages. (See note Section 3.2.) 
20 Supports the use of two byte operand 

length in the DAP message header, i.e., 
LENGTH and LEN256. 

21 Supports the file checksum option (See 
ACCOPT field in the Access message and 
also Section 5.5.2). 

22 Supports the Key Definition Extended 
Attributes message. 

23 Supports the Allocation Extended 
Attributes message. 

24 Supports the Summary Extended Attributes 
message. 

25 Supports directory list. 
26 Supports the Date and Time Extended 

Attributes message. 
27 Supports the File Protection Extended 

Attributes message. 

13 



Bit Meaning (When Set) 

28 Supports the Access Control List Extended 
Attributes message (reserved). 

29 Supports spooling as specified by bit 20 
of the FOP field (see Attributes and 
Access Complete messages) . 

30 Supports command file submission as 
specified by bit 21 of the FOP field. 

31 Supports file deletiun as specified by 
bit 22 of the FOP field. 

32 Supports the default file specification 
(see Section 3.17) (reserved). 

33 Supports sequential record access. 
34 Supports the recovery option for file 

transfer (reserved). 
35 Supports the use of the BITCNT field in 

the Data message. 
36 Supports the warning Status message 

(MACCODE = 6). 
37 Supports the file rename operation. 
38 Supports wildcard operations (see Section 

5.2.19) . 
39 Supports the Go/No-Go option (see Section 

3.5, ACCOPT field). (reserved) 
40 Supports the Name message. 
41 Supports segmented DAP messages (see bit 

6 of FLAGS field). (reserved) 

NOTE 

Bits 5 and 33 differentiate between the 
use of file transfer (see Sections 5.2.1 
and 5.2.2) and record access on 
sequential files (see Section 5.2.3 and 
5.2.4) where file transfer reduces 
overhead by eliminating the need for 
Control messages. 

3.4 Attributes Message 

The Attributes message describes how data is being represented in a 
file being accessed. It is sent as a part of the initial set up. The 
Attributes message format is as follows: 

I ATTRIBIATTMENUIOATATYPEIORGIRFMIRATIBLSIMRSIALQIBKSIFSzl 

I MRNIRUNSYSIDEQIFOpIBszIOEv\sDcILRLI HBKIEBK/FFBISBNI 

!14 



where: 

ATTRIB 

ATTMENU(EX-6) 

NOTES 

1. Symbolic names, where supplied, 
refer to the corresponding RMS 
names. They are included here for 
ease of reference only; they have 
no meaning for DAP. 

2. Values passed to the accessed 
system's file system may not be used 
literally in some cases. For 
example if a value of 0 is passed in 
the DEQ field, RMS systems ignore 
the 0 and use the local default 
rather than return an error as might 
be expected. The application of 
defaults, as in this example, is a 
function of individual file systems 
and is in no way related to defaults 
as specified in DAP. If a field is 
present in a DAP message, no DAP 
specified default will be 
substituted in place of the value it 
contains. 

3. Sometimes fields will be ignored if 
they are not applicable to the 
particular operation or are not 
supported and their omission will 
not affect the operation. For 
example, RMS ignores MRS as input to 
the OPEN operation. Also, with bit 
map fields, sometimes bits will be 
ignored where they are not 
applicable to the operation or not 
supported by that particular file 
system. 

BM 

The OPERATOR field with TYPE = 2. 

The following bit map specifies which of the 
attributes fields will be present in the main 
attributes message when the corresponding bit 
is set. These fields and only these fields 
may appear in the message and they must be in 
the order specified. 

15 



DATATYPE(EX-2) 

Bit Meaning (When Set) 

0 DATATYPE 
1 ORG 
2 RFM 
3 RAT 
4 BLS 
5 MRS 
6 ALQ 
7 BKS 
8 FSZ 
9 MRN 

10 RUNSYS 
11 DEQ 
12 FOP 
13 BSZ 
14 DEV 
15 SDC (reserved) 
16 LRL 
17 HBK 
18 EBK 
19 FFB 
20 SBN 

BM The type of data being transferred. The 
default is Image. Unless a file has 
attributes specifying whether the file 
contains ASCII or Image data, the accessed 
process returns the value (ASCII or Image) 
sent by the accessing process when opening a 
file. 

Bit Meaning (When Set) 

0 ASCII (see Note 1) . 
1 Image (default) (see Note 2) . 
2 EBCDIC (reserved) . 
3 Compressed format. 
4 Executable code. 
5 Pr ivileged code. 
6 Reserved (set 0 when sending 

Attributes message; ignore when 
receiving Attributes message) . 

7 Sensitive data -- zero 
Data in file is set to 
file is deleted for data 

NOTES 

1. This is the 7-bit ASCII code set as 
defined in the 1968 ANSI Standard. 
When transmitting or receiving 7-bit 
ASCII in 8-bit frames, the high 
order bit is ignored except when 
using 7-bit compression. 

2. Image is the mode where no code-set 
is specified. It is a format for 
sending 8-bit quantities in DAP 
without specifying any code 
representation. The actual data may 
be ASCII, binary or anything else. 
The user process determines how to 
use the data. See Section 4.4.3. 

16 

on delete. 
zero when the 
security. 



ORG(l) B 

RFM(l) B 

RAT(EX-3) BM 

Attributes of the file being accessed. These 
attributes are as follows: 

Value 
(octal) Meaning 

0 FB$SEQi Sequential (default) . 
20 FB$RELi Relative. 
40 FB$IDXi Indexed. 
60 FB$HSHi Hashed (reserved) . 

Format of the records being transferred. 
These formats are as follows: 

Value Meaning 

0 FB$UDFi Undefined record 
format. 

1 FB$FIXi Fixed-length records 
(default) . 

2 FB$VARi Variable-length 
records. 

3 FB$VFCi Variable with fixed 
control format. 

4 FB$S™i ASCII Stream Format. 

Information about the attributes of 
individual records. The default is all bits 
set 0. 

Bit Meaning (When Set) 

0 FB$FTNi Records contain FORTRAN 
carriage control (see Note 1) • 

1 FB$CRi Records have an implied LF/CR 
envelope. 

2 FB$PRNi Print file carriage control 
where pre- and post-fix carriage 
control information is stored in the 
fixed header field of files in 
variable with fixed control (VFC) 
format. 

3 FB$BLKi Records that do not span 
blocks (see Note 2) • 

4 Records have embedded format control 
(see Note 3) . 

5 Intended for COBOL carriage control 
(reserved) . 

6 FB$LSAi Line-sequenced ASCII Format. 
7 MACYll format (note 4) • 

17 



BLS(2) B 

MRS (2) B 

ALQ(I-5) B 

BKS(l) B 

NOTES 

1. FORTRAN Carriage Control. For line 
printers and some terminals, treat 
the first character of each record 
as a carriage control character. 

2. This bit, when set, informs the 
system that the record length should 
not exceed the physical device 
blocking size. with some systems 
and on some I/O devices (for 
example, disk and magnetic tape) 
this may be a factor in determining 
the actual format used on the 
device. 

3. This bit, when set, informs the 
system that records in the file may 
contain format control characters 
(LF, VT, and so on) . 

4. MACYll format is a standard used on 
10's and 20's to store files 
destined for PDP-II's. These files 
usually contain 8-bit data such as 
object code output by a cross 
compiler. 

Physical block size in bytes on media. The 
default value is 512. The actual byte size 
is as specified by field BSZ. 

The length of each file record in number of 
bytes. For variable-length records, this 
field specifies the maximum record size. 
When the accessed process receives the MRS 
(maximum record size), it must check it 
against the length of its buffer. If the 
buffer will not accommodate this size record, 
the accessed process should return an error. 
A zero value means no checking is performed 
on record size. MRS is used by the various 
file systems in a system-dependent manner. 
The default is 0. 

This field specifies the allocation quantity 
in blocks. For file creation, it specifies 
the initial size of the new file. The actual 
size of the new file is returned in this 
field~ The default is 0. 

NOTE 

Ignore this value on opening existing 
files. Use this field only to return 
the file si ze. 

Bucket size in blocks, Used for access to 
relative (not RMS-20), hashed and indexed 
files with RMS. The default is 0 (see Note 2 
at the top of Section 3.4). 

18 



FSZ{l) B 

MRN (I-5) B 

RUNSYS (I-40) A 

DEQ (2) B 

FOP (EX-6) BM 

Size in bytes of fixed part of variable 
length record with fixed control format. The 
default is 0 (see Note 2 at the top of 
Section 3.4). 

Maximum record number for file (for relative 
files only). If set to 0, checking is 
suppressed. The default is 0. 

Name of the Run-Time System environment 
required to execute the code contained in the 
file. This field is useful to operating 
systems that can emulate other operating 
system environments. The default value is 
accessed-operating-system-dependent. 

File extension quantum 
blocks. This size is the 
blocks, added to the file 
is implicitly extended. 
(see Note 2 at the top of 

size in virtual 
amount of space, in 
each time the file 

The default is 0 
Section 3.4). 

The file access options a user requires. The 
default is all bits set to 0. 

Bit Meaning (When Set) 

o FB$RWOi Rewind on open. 
1 FB$RWCi Rewind on close. 
2 Reserved (0). 
3 FB$POSi Position magnetic tape just 

past the most recently 
created file. 

4 FB$DLKi Do not lock file if not 
properly closed. 

5 Reserved (0). 
6 File Locked. 
7 FB$CTGi A contiguous file creation 

or extension required. 
8 FB$SUPi Supersede existing file on 

create. 
9 FB$NEFi Do not position to EOF on 

opening magnetic tape file 
for PUT. 

10 FB$TMPi Create temporary file. 
11 FB$MKDi Create temporary file and 

mark for delete on close. 
12 Reserved (0). 
13 FB$DMOi Rewind and dismount 

magnetic tape on close. 
14 FB$WCKi Enable write checking. 
15 FB$RCKi Enable Read checking. 
16 FB$CIFi Create new file if one by 

the same name does not 
exist. If one does exist, 
open the highest version 
of the file. 

17 FB$LKOi Override file lock on open 
(reserved) . 

18 FB$SQOi Sequential access only. 
19 FB$MXVi Maximize version number. 
20 FB$SP~i Spool file to line printer 

(one copy only) on close. 

19 



BSZ(l) B 

DEV(EX-6) BM 

Bit Meaning (When Set) 

21 FB$SCF; Submit as command file on 
close. 

22 FB$DLT; Delete file on close. May 
be used as a SUb-option with 
submit or spool. 

23 FB$CBT; Contiguous best try. The 
file will be created but 
it will be contiguous 
only when it is possible. 

24 FB$WAT; Wait for file if it is 
locked by another process 
(reserved) . 

25 FB$DFW; Deferred write (REL and IDX 
files) . 

26 FB$TEF; Truncate at EOF on close 
(wri te accessed SEQ files) . 

27 FB$OFP; Output file parse (the name 
type will be preserved 
until overridden). 

Number of bits per byte for data stored in 
the file on the accessed node. Data is 
always transmitted in 8-bit frames (see 
Section 4.4). 

When a DAP Attributes message is sent from 
the accessing to the accessed system, BSZ is 
required only when dealing with systems 
capable of supporting a variable byte size, 
such as TOPS-20. The default value for BSZ 
is the normal default for the accessed 
system's file system, for example, 8 bits per 
byte for RSX. 

When the Attributes message is returned from 
the accessed to the accessing system, BSZ 
should always be sent unless the default 
applies. The default for BSZ in a returned 
Attributes message is 8 bits. 

For attributes sent to the accessing node, 
this field contains the generic 
characteristics of the device on which a file 
resides. The default is all bits set to 0. 

Bit Meaning (When Set) 

o 
1 
2 
3 
4 
5 

6 
7 

8 
9 

10 
11 

FB$REC; 
FB$CCL; 
FB$TRM; 
FB$MDI; 
FB$SDI; 
FB$SQDi 

, 
FB$FOD; 

, 
FB$SPLi 
FB$MNTi 
FB$DMTi 

20 

Record oriented. 
Carriage. control device. 
Terminal. 
Directory structured. 
Single directory only. 
Sequential, block oriented (for 
example, magnetic tape). 
Null device. 
A file-oriented device (for 
example, a disk or magnetic 
tape) . 
Device can be shared. 
Device is being spooled. 
Device is currently mounted. 
Device is marked for dismount. 



SDC(EX-6) : BM 
(Reserved for 
future use) 

LRL (2) 

HBK(I-S) 

EBK(I-S) 

FFB(2) 

SBN (1-5) 

B 

B 

B 

B 

B 

Bit Meaning (When Set) 

12 FB$ALL; Device is allocated. 
13 FB$IDV; Device is capable of providing 

input. 
14 FB$ODV; Device is capable of providing 

output. 
15 FB$SWL; Device is software write-

locked. 
16 FB$AVL; Device is available for use. 
17 FB$ELG; Device has error logging 

enabled. 
18 FB$MBX; Device is a mailbox. 
19 FB$RTM; Device is realtime in nature, 

not suitable for RMS use. 
20 FB$RAD; A random access device. 
21 ; Device has read checking 

enabled. 
22 ; Device has write checking 

enabled. 
23 ; Device is foreign. 
24 ; Network device. 
25 ; Generic device. 

Spooling device characteristics. SOC uses 
the same bit definitions as in the DEV field. 
If the file is spooled, SOC contains the 
characteristics of the spooling device. The 
characteristics of the ultimate device are 
contained in DEV. The default is all bits 
set to 0. 

Longest record length. Length of the longest 
record in the file. 

Highest virtual block allocated to the file. 

End of file virtual block number. 

First free byte in end of file block--byte 
size as defined in BSZ. 

Starting logical block number for file if 
contiguous; else 0. 

3.5 Access Message 

The Access 
requested. 

message specifies the file name and type of 
The format for the Access message is as follows: 

NOTE 

Symbolic names, where supplied, refer to 
the corresponding RMS names. They are 
included here for ease of reference 
only. They have no meaning for DAP. 

21 

access 



where: 

ACCESS 

ACCFUNC(I) B 

ACCOPT(EX-S) BM 

The OPERATOR field with TYPE = 3. 

The request code specifying the operation to be 
performed is as follows: 

I $OPEN; Open existing file. 
2 $CREATE; Open new file. 
3 $RENAME; Rename a file. 
4 $ERASEi Delete a file. 
S Reserved. 
6 Directory List. 
7 Submit as a command (batch) file. 
8 Execute command (batch) file. 

If $RENAME is specified, the FILESPEC field below 
contains the old file specification and the new 
file specification is contained in the Name 
message which follows the Access message. 

If $CREATE is specified, 
already exists, follow 
node for file creation. 
system may create a new 
is one greater than the 
number. 

but a file of that name 
the rules of the accessed 

For example, the file 
file whose version number 
current highest version 

NOTE 

The Data Access Protocol (DAP) does not 
perform functions beyond remote data 
access. DAP should not be extended to 
include RJE, spooling, or other similar 
functions which, while they involve file 
transfer, also require command processing, 
parameter passing, and job queueing. The 
two command file submission commands are 
here for historical reasons: they were 
implemented in the first release of 
DAP-based software. 

The access options are as follows: 

Bit Meaning (When Set) 

0 I/O errors are non-fatal. A record may be 
skipped or repeated as specified by the 
Continue Transfer message. If not set, 
I/O errors are fatal and terminate the 
access. 

I A status message will be returned 
following each record sent to the accessed 
process in the record access mode 
(reserved) . 

22 



FILESPEC 
(1-255) A 

FAC(EX-3) BM 

Bit Meaning (When Set) 

2 A status message is returned with each 
record retrieved from an accessed system. 
The status message should precede the Data 
message so that it is always possible to 
block the two into one Session Control 
buffer. When a user requires a Record 
File Address (RFA) to be returned, this 
option is used (reserved). 

3 A 16 bit file checksum will be generated 
by both the transmitting and receiving 
nodes. When closing the file, the 
accessing process sends the checksum it 
generated to the accessed process in the 
Access Complete (Close) message. The 
accessed process closes the file if the 
checksums agree. If they do not agree, it 
returns a status message. See Section 
5.5.2. 

4 The Go/No-Go option is to be used with 
this operation. Go/No-Go is valid only 
for the Delete, Rename, and Execute 
Command File functions and wildcard 
operations using these functions. 
GO/No-Go operation causes the accessed 
process to return the name of the file to 
the accessing process before executing the 
operation. The accessing process can then 
choose whether or not to perform the 
operation on the file by sending either a 
Control (Resume) or Control (Skip) See 
Section 5.2.11 for state operation. 

The file specification in the format required by 
the remote node. A null file specification 
assumes the meaning of a null file specification 
on the target node. 

The file access operations a user requires: 

Bit 

0 
1 
2 
3 
4 
5 
6 

FB$REA 
FB$WRT 

Meaning (When Set) 

FB$PUT; Put access. 
FB$GET; Get access (default) . 
FB$DEL; Delete access. 
FB$UPD; Update access. 
FB$TRN; Truncate access. 
FB$BIO; Block I/O acess (see Note) . 
FB$BRO; Support switching between 

block and record I/O. 

NOTE 

FB$BIO!FB$GET; Block I/O Read access. 
FB$BIO!FB$PUTi Block I/O Write access. 

23 



SHR (EX- 3) BM 

DISPLAY(EX-4): BM 

PASSWORD(I-40): B 

Operations shared with other users: 

Bit Meaning (When Set) 

0 FB$PUT; Put access. 
1 FB$GET; Get access (default) . 
2 FB$DEL; Delete access. 
3 FB$UPD; Update access. 
4 FB$MSE; Enable mUlti-stream access. 
5 FB$UPI; User provided interlocking 

(allows multiple writers to SEQ 
files) . 

6 FB$NIL; No access by other users. 

Attributes and Extended Attributes messages which 
are to be returned in response to this Access 
message. See note 2 Section 3.6. 

Bit Meaning (When Set) 

o Main Attributes message (see Note 1, 
Section 5.1. 2) . 

1 Key definition Attributes message. 
2 Allocation Attributes message. 
3 Summary Attributes message. 
4 Date and Time Attributes message. 
5 File Protection Attributes message. 
6 Reserved (0). 
7 Access Control List 

Attributes message (reserved). 
8 Name message containing resultant 

file specification. If the file 
was opened using log ical name (s) , 
this will return the file specification 
of file opened without logical names. 

NOTE 

When opening a file and DISPLAY 
requests key definition and 
allocation attributes for that 
file, the Attributes message must 
be followed by Key Definition and 
Allocation Attributes Extension 
messages specifiying for which 
keys and which areas this 
information is to be returned. If 
no keys or areas are specified, no 
key or area information will be 
returned. See Section 5.1.2 for 
the setup message sequence. 

Password required to obtain access to file. 

24 



3.6 Control Message 

The Control message sends control type information to a file system. 
The Control message format is as follows: 

where: 

CONTROL 

CTLFUNC(l) B 

The OPERATOR field with TYPE = 4. 

Specific control information: 

Value 

1 

2 

Meaning 

$GET (o~ $READ for block I/O) ~ Get record 
(or block) . If random access to a 
relative file is made, the KEY field 
contains the record number. If a random 
access to an indexed file is made, KEY 
contains the key. If sequential access is 
employed, get the next record (default). 

$CONNECT~ Initiate data stream. If 
multiple data streams are used, they are 
multiplexed on the STREAMID number. The 
STREAMID number in the Control message 
initiates a data stream. If the STREAMID 
number is omitted, assume a default of 
zero. 

3 $UPDATE~ Update current record. 

4 

Indicates to the accessed system the 
intent of the accessing system to update 
the currently positioned record with the 
next data transmission. 

$PUT (or $WRITE for block I/O) ~ 
to the accessed system, 
information to follow should 
into the file. 

Indicates 
that the 

be written 

5 $DELETE~ Delete current record. 

6 $REWIND~ Rewind file. 

7 

8 

9 

$TRUNCATE~ Truncate file. 
end-of-file at current position. 
with sequential files only. 

writes 
Used 

$MODIFY~ Change file attributes 
(reserved) . 

$RELEASE~ Unlock record specified by 
Record File Address in KEY field 
(reserved) . 

10 $FREE~ Unlock all locked records for this 
data stream. 

11 Reserved. 

25 



CTLMENU(EX-4) :BM 

RAC(l) B 

Value 

12 

13 

Meaning 

$FLUSH~ 
buffers 
stream. 

Write out all modified I/O 
and attributes for this data 

$NXTVOL~ Perform 
start-of-next-volume 
(reserved) • 

end-of-volume and 
processing 

14 $FIND~ Find record. Same as 1, but the. 
data is not transferred. 

15 $EXTEND~ Extend this file by the amount 
specified in the following Allocation 
Attributes Extension message (reserved). 

16 $DISPLAY~ Retrieve this file's attributes 
as defined by the field DISPLAY 
(reserved) . 

17 SPACE FORWARD~ Forward space the file by 
the number of blocks specified by KEY 
below. Block I/O only. 

18 SPACE BACKWARD~ Backward space the file 
by the number of blocks specified by KEY 
below. Block I/O only. 

The following bits when set, indicate the 
following optional fields are present. These 
fields and only these fields may appear in the 
message and they must be in the order specified. 

Bit Field 

0 RAC 
1 KEY 
2 KRF 
3 ROP 
4 HSH (reserved) 
5 DISPLAY (reserved) 

Sets the access mode. If this field is not 
present, retain the option in force for the last 
access. The default is 0 if not set previously. 

Value 

o 
1 
2 

3 

4 

5 

Meaning 

RB$SEQ~ Sequential record access. 
RB$KEY~ Keyed access. 
RB$RFA; Access by Record File Address 
(RFA--an RMS specific access mode) . 
Sequential file access (the remainder of 
the file is transferred sequentially from 
the current file position) . 
Block mode; Access by Virtual Block 
Number. For retrieval, a Control message 
must request each block as in the record 
access mode. 
Block mode file transfer. Blocks are 
transferred sequentially to end-of-file 
without need for a Control message 
preceding each block transferred. An 
explici t Control (Get) or (Put) is 
required to start data moving. 

26 



KEY (I-255) B 

KRF(l) B 

ROP(EX-6) BM 

HSH(I-5) : B 
(Reserved for 
future use) 

File or Mode Key 

Relative Files 
Indexed Files 
Hashed Files 

Record Number 
Record Key 
Record Key 

Record File Address 
Access Mode Record File Address 

virtual Block Number 
(binary, range 1 to n) 
Input File Checkpoint 
Locater 

Block Mode Access 

Recovery 

Right justify non 8-bit quantities in the KEY 
field with the high order and unused bits set to 
zero. If the key consists of 7-bit ASCII 
characters, right justify each 7-bit character in 
an 8-bit frame as is usual for the transmission of 
ASCII characters. 

Key of reference. If this field is not present, 
do not change the key of reference. Default is 
primary if never set. 

Value Meaning 

0 Primary key 
1-254 Secondary key indicator 

Optional record processing features. If this 
field is not present, retain the options in force 
for the last access. 

Bit Meaning (When Set) 

o RB$EOF; position to EOF. 
1 RB$FDL; Fast delete--mark record 

deleted but do not remove 
pointers from index. 

2 RB$UIF; $PUT's update existing 
records in relative files. 

3 RB$HSH; Use hash code in HSH 
(reserved) . 

4 RB$LOA; Follow fill quantities. 
5 RB$ULK; Manual locking/unlocking 

(reserved) . 
6 RB$TPT; Truncate Put--writes EOF 

at current position. SEQ files 
only (Put also occurs). 

7 RB$RAH; Read ahead. 
8 RB$WBH; write behind. 
9 RB$KGE; Key is >=. 

10 RB$KGT; Key is >. 
11 RB$NLK; Do not lock record. 
12 RB$RLK; Read a locked record (read 

only) . 
13 RB$BIO; Block I/O. 
14 RB$LIM; Compare for key limit 

reached (reserved). 
15 RB$NXR; Non-existent record 

processing (reserved). 

Hash code if keyed access on direct file is 
employed and the user is doing hashing. 

27 



DISPLAY(EX-4) 
(Reserved for 
future use) 

BM Attributes messages to be 
to a request to retrieve 
are: 

returned in response 
the file's attributes 

Bit Meaning (When Set) 

0 Main Attributes message. 
1 Key definition attributes. 
2 Allocation attributes. 
3 Summary Attributes message. 
4 Date and Time Attributes message. 
5 File Protection Attributes message. 
6 Reserved (0) • 
7 Access Control List Attributes message 

(reserved) . 
8 Name message containing resultant file 

specification--if file opened using 
logical name (s) , this returns the file 
specification of the file 
logical names. 

NOTE 

1. When a file's attributes and Key 
definition and/or allocation 
attributes have been requested in 
the DISPLAY field of a Control 
message, the Control message must 
have been preceded by Key Definition 
and/or Allocation Attributes 
Extension messages specifying for 
which Keys and/or areas this 
information is to be returned. If 
no keys or areas are specified, no 
Key or area information will be 
returned. See Section 5.2.10 for 
the message sequence. 

2. An accessing process seeing the 
accessed process does not support a 
particular message type (as 
indicated in the Configuration 
message from the accessed process) 
does not request that message type 
in the DISPLAY field of either the 
Access Complete or Control messages. 
If an unsupported message type is 
requested, return an error. 

3. FAL's written to versions of DAP 
prior to 5.6 will not return a 
Status message for successful 
completion with Get, Put, Delete, 
and Find operations. FAL's written 
to DAP version 5.6 and later 
versions will return successful 
status for these operations. see 
Sections 5.2.3, 5.2.4, 5.2.17 and 
5.2.18 for the operation of these 
functions. 

28 

opened without 



3.7 Continue Transfer Message 

The Continue Transfer message tells the accessed process what action 
to take when an error is detected in an I/O transfer. Normally, the 
accessed process informs the accessing process of an I/O error using a 
Status message. The accessing process returns a Continue Transfer 
message. This message is also used when the accessed process suspends 
to await an operator decision as with Go/No-Go operation. The format 
of the Continue Transfer message is: 

I CONTRAN I CONFUNC I 
where: 

CONTRAN The OPERATOR field with TYPE = 5. 

CONFUNC(l) B This field specifies the recovery action to be taken: 

Value Meaning 

1 Try again. 
2 Skip and continue. 
3 Abort transfer. (Discard all records in the 

pipeline until an Access Complete message is 
found indicating the pipeline is clear.) 

4 Resume processing (used to restart accessed 
process processing data for this data stream 
if the accessed 

3.8 Acknowledge Message 

The Acknowledge message acknowledges 
connects, and the taking of a checkpoint. 

I ACKNOWLEDGE 

where: 

process is suspended) . 

access commands, control 
Its format is as follows: 

ACKNOWLEDGE: The OPERATOR field with TYPE 6. 

3.9 Access Complete Message 

The Access Complete message either terminates access or acknowledges a 
request to terminate access. The Access Complete message format is as 
follows: 

ACCOMP CMPFUNC FOP CHECK 

where: 

ACCOMP The OPERATOR field with TYPE 7. 

29 



CMPFUNC(l) B 

FOP(EX-6) BM 

CHECK(2) B 

The access completion functiohs are: 

Value 

1 

Meaning 

Close. Terminate access. Close a file 
is currently open. When multiple 
streams are in use, close all of 
($CLOSE) . 

that 
data 
them 

2 Response. Sent by the accessed process in 
response to all Access Complete messages from 
the accessing prOcess unless an error occurs. 

3 Purge. Purge a file. That is, close and 
delete ($CLOSE + $ERASE) the file. 

4 End-of-stream. Terminate the data stream 
associated with this STREAMID number, but do 
not close the file ($OISCONNECT). 

5 Skip. Close the file currently associated 
with this link (forcefully, if 
necessary--ignore any errors that may occur 
in closing the file) and go on to process the 
next file. This function is for use with a 
series of wildcard transfers. 

NOTE 

FAL's written to OAP version 4.1 
will not return an Access Complete 
(Response) to an Access Complete 
(End-of-Stream) (EOS). FAL's 
written to later versions of OAP 
will return an Access Complete 
(Response). The Access Complete 
(End-of-Stream) does not close the 
file. The accessed process should 
be in a state wherein it can 
accept another Control (Connect) 
to open another stream. 

The file access options a user requires. Refer to 
Section 3.4 for option values. If any portion of the 
FOP field in the Access Complete is present, the 
whole FOP from the Attributes is superseded with 
unspecified bits being set 0. 

The 16 bit file checksum if requested in the ACCOPT 
field of the Access message. See Section 5.5.2. 
Send the checksum only in the Access Complete (Close) 
message. Return a Status message if the checksum is 
incorrect. When this field is present, the accessed 
process compares the checksums. If this field is 
absent, make no checksum comparison and close the 
file even if it is known to contain errors. 

30 



3.10 Data Message 

The Data message transfers the file data over a DAP link. 
message format is as follows: 

The Data 

DATA I RECNUM IFILEDATA I 

where: 

DATA : 

RECNUM(I-S) B 

FILEDATA 

The OPERATOR field with TYPE = S. 

This field sends the record number when accessing 
relative files (or sequential files in a relative 
manner, in other words, by record number). For 
random store, this field contains the record number 
(for relative files) or hash code (if the user is 
generating his own hash codes with hashed files). 
When RECNUM is not used, the byte count is zero. 
When in block mode, this field contains the VBN 
instead of the record number. For file retrieval 
with recovery, this field contains the input file 
checkpoint locater. 

The file data being 
totally transparent 
byte. 

transferred. This field is 
and uses all S-bits of each 

3.11 status Message 

The status message returns information on the status of DAP messages 
or data transfers. This message is sent synchronously in response to 
another DAP message or an error during data transfer. The format is: 

STATUS STSCODE RFA RECNUM I STV 

where: 

STATUS 

STSCODE 

RFA(I-S) B 

The OPERATOR field with TYPE = 9. 

A 2-byte status field (16 bits) subdivided as: 

15 12 11 

MACCODE MICCODE 

where: 

MACCODE(4B) :B 

MICCODE(12B) :B 

The macro or functional group 
reason for the Status message. 
Table 2 specifies values for this 
field. 

The specific type of status (by 
MACCODE type). Tables 3, 4, and 5 
specify values for this field. 

Returns the Record File Address of the 
which this Status message applies. If 
message field ACCOPT indicates a return 
after each record is stored, then 
contains the record file address of the 
the accessed system's file. 

record to 
the Access 
of status 

this field 
record in 

31 



RECNUM(I-8) B Returns the record number for relative files when a 
Status message is returned after each record is 
transferred (as specified in the ACCOPT field of the 
Access message). The RECNUM field is null for 
non-relative files. 

STV{I-8) B 

Value 

Secondary status. Used to return secondary status 
information where required. (For example, RMS uses 
it for device error codes.) 

Table 2 
MACCODE Field Values 

(Octal) Name Meaning 

o Pending 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13-15 

16-17 

Successful 

Unsupported 

File Open 

Transfer 
Error 

Transfer 
Warning 

Access 
Termination 

Format 

Invalid 

Sync 

Operation in progress. 

Returns 
success. 

information that indicates 

This implementation of DAP does not 
support the specified request. For 
example, this is used when an 
unsupported bit/field or a field/value 
is encountered which a particular 
implementation does not support. 

Reserved. 

Errors that occur before a file is 
successfully opened. 

Errors that occur after opening a file 
and before closing that file. 

For operations on open files, indicates 
the operation completed but not with 
complete success. 

Errors associated 
access to a file. 

with terminating 

Error in parsing a message. 
not c·orrect. 

Format is 

Field of message is invalid (for 
example, bits that are meant to be 
mutually exclusive are set, an undefined 
bit is set, a field value is out of 
range or an illegal string is in a 
field) • 

DAP message received out of 
synchronization. 

Reserved. 

User defined STATUS MACCODES 



Table 3 
MICCODE Field Values for Use with MACCODE 

Values of 2, 10, and 11 Octal 

Type of Error 

Miscellaneous 

Configuration 
Message 
errors by field 

Attributes 
Message 
errors by field 

Code 
(Octal) 

00 00 
00 10 

01 00 

01 10 
01 11 

01 12 
01 13 
01 14 

01 20 
01 21 
01 22 
01 23 
01 24 
01 25 

01 26 

01 27 

01 30 

02 00 

02 10 
02 11 

02 12 
02 13 
02 14 
02 15 

02 20 
02 21 
02 22 
02 23 
02 24 
02 25 
02 26 
02 27 
02 30 
02 31 
02 32 

Reason 

NOTE 

MICCODE Format: Bits 0-5 specify the 
DAP message field number. Bits 6-11 
specify the DAP message type number. 

Unspecified DAP message error. 
DAP message type field (TYPE) error. 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) • 
Length field (LENGTH). 
Length extension field (LEN256). 
BITCNT field (BITCNT). 

Buffer size field (BUFSIZ). 

field 

Operating system type field (OSTYPE). 
File system type field (FILESYS). 
DAP version number field (VERNUM). 
ECO version number field (ECONUM). 
USER protocol version number field 
(USRNUM) • 
DEC software release number field 
(SOFTVER) • 
User software release number field 
(USRSOFT) . 
System capabilities field (SYSCAP). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification field 
( STREAMID) • 
Length field (LENGTH). 
Length extension field (LEN 256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Attributes menu field (ATTMENU). 
Data type field (DATATYPE). 
File organization field (ORG). 
Record format field (RFM). 
Record attributes field (RAT). 
Block size field (BLS). 
Maximum record size field (MRS). 
Allocation quantity field (ALQ). 
Bucket size field (BKS). 
Fixed control area size field (FSZ). 
Maximum record number field (MRN). 

(continued on next page) 

33 



Table 3 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 2, 10, and 11 Octal 

Type of Error 

Attributes 
Message 
errors by field 
(Cont.) 

Access 
Message 
errors by field 

Control 
Message 
errors by field 

Code 
(Octal) 

02 33 
02 34 
02 35 
02 36 
02 37 
02 40 

02 41 
02 42 

02 43 
02 44 
02 45 

03 00 

03 10 
03 11 

03 12 
03 13 
03 14 
03 15 

03 20 
03 21 
03 22 
03 23 
03 24 
03 25 

03 26 

04 00 

04 10 
04 11 

04 12 
04 13 
04 14 
04 15 

04 20 
04 21 
04 22 
04 23 
04 24 
04 25 
04 26 

04 27 

Reason 

Run-time system field (RUNSYS). 
Default extension quantity field (DEQ). 
File options field (FOP). 
Byte size field (BSZ). 
Device characteristics field (DEV). 
Spooling device characteristics field 
(SDC); (reserved). 
Longest record length field (LRL). 
Highest virtual block allocated field 
(HBK) . 
End of file block field (EBK). 
First free byte field (FFB). 
Starting LBN for contiguous file (SBN). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Access function field (ACCFUNC). 
Access options field (ACCOPT). 

field 

File specification field (FILESPEC). 
File access field (FAC). 
File sharing field (SHR). 
Display attributes request field 
(DISPLAY) . 
File password field (PASSWORD). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) • 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Control function field (CTLFUNC). 
Control menu field (CTLMENU). 
Record access field (RAC). 
Key field (KEY). 
Key of reference field (KRF). 
Record options field (ROP). 

field 

Hash code field (HSH); Reserved for 
future use. 
Display attributes request field 
(DISPLAY) . 

(continued on next page) 

34 



Table 3 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 2, 10, and 11 Octal 

Code 
Type of Error (Octal) Reason 

Continue 05 00 Unknown field. 
Message 
errors by field 05 10 DAP message flags field (FLAGS) . 

05 11 Data stream identification 
(STREAMID) . 

05 12 Length field (LENGTH) • 
05 13 Length extension field (LEN256) . 
05 14 Bit count field (BITCNT) . 
05 15 System specific field (SYSPEC) • 

05 20 Continue transfer function 
(CONFUNC) . 

Acknowledge 06 00 Unknown field. 
Message 
errors by field 06 10 DAP message flags field (FLAGS) . 

06 11 Data stream identification 
(STREAMID) . 

06 12 Length field (LENGTH) . 
06 13 Length extension field (LEN256) . 
06 14 Bit count field (BITCNT) . 
06 15 System specific field (SYSPEC) . 

Access Complete 07 00 Unknown field. 
Message 
errors by field 07 10 DAP message flags field (FLAGS) • 

07 11 Data stream identification 
(STREAMID) . 

07 12 Length field (LENGTH) • 
07 13 Length extension field (LEN256) . 
07 14 Bit count field (BITCNT) . 
07 15 System specific field (SYSPEC) . 

07 20 Access complete function 
(CMPFUNC) . 

07 21 File options field (FOP) . 
07 22 Checksum field (CHECK) . 

Data Message 10 00 Unknown field. 
errors by field 

10 10 DAP message flags field (FLAGS) • 
10 11 Data stream identification 

(STREAMID) • 
10 12 Length field (LENGTH) . 
10 13 Length extension field (LEN256) • 
10 14 Bit count field (BITCNT) • 
10 15 System specific field (SYSPEC) • 

10 20 Record number field (RECNUM) • 
10 21 File data field (FILEDATA) • 

field 

field 

field 

field 

field 

field 

(continued on next page) 

35 



Table 3 (Cont.) 
MICCODE Field Values for Use with MAC CODE 

Values of 2, 10, and 11 Octal 

Type of Error 

Status Message 
errors by field 

Key Definition 
Message errors 
by field: 

Code 
(Octal) 

11 00 

11 10 
1111 

11 12 
1113 
1114 
11 15 

11 20 
11 21 
11 22 
11 23 
11 24 

12 00 

12 10 
12 11 

12 12 
12 13 
12 14 
12 15 

12 20 
12 21 
12 22 
12 23 
12 24 
12 25 
12 26 
12 27 
12 30 
12 31 
12 32 
12 33 
12 34 
12 35 
12 36 
12 37 
12 40 
12 41 
12 42 
12 43 
12 44 
12 45 

Reason 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Macro status code field (MACCODE). 
Micro status code field (MICCODE). 
Record file address field (RFA). 
Record number field (RECNUM). 
Secondary status field (STV). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

field 

field 

Key definition menu field (KEYMENU). 
Key option flags field (FLG). 
Data bucket fill quantity field (DFL). 
Index bucket fill quantity field (IFL). 
Key segment repeat count field (SEGCNT). 
Key segment position field (PaS). 
Key segment size field (SIZ). 
Key of reference field (REF). 
Key name field (KNM). 
Null key character field (NUL). 
Index area number field (IAN). 
Lowest level area number field (LAN). 
Data level area number field (DAN). 
Key data type field (DTP). 
Root VBN for this key field (RVB). 
Hash algorithm value field (HAL). 
First data bucket VBN field (DVB). 
Data bucket size field (DBS). 
Index bucket size field (IBS). 
Level of root bucket field (LVL). 
Total key size field (TKS). 
Minimum record size field (MRL). 

(continued on next page) 

36 



Table 3 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 2, 10, and 11 Octal 

Type of Error 

Allocation 
message errors 
by field: 

Summary 
Messaqe 
errors by field 

Date and Time 
Message 
errors by field 

Code 
(Octal) Reason 

13 00 Unknown field. 

13 10 
1311 

13 12 
1313 
1314 
13 15 

13 20 
13 21 
13 22 
13 23 
13 24 
13 25 
13 26 
13 27 
13 30 
13 31 

14 00 

14 10 
1411 

14 12 
1413 
14 14 
14 15 

14 20 
14 21 
14 22 
14 23 

14 24 

15 00 
15 10 
15 11 

15 12 
15 13 
15 14 
15 15 

15 20 
15 21 
15 22 
15 23 
15 24 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) • 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Allocation menu field (ALLMENU). 
Relative volume number field (VOL). 
Alignment options field (ALN). 
Allocation options field (AOP). 
Starting location field (LOC). 

field 

Related file identification field (RFI). 
Allocation quantity field (ALQ). 
Area identification field (AID). 
Bucket size field (BKZ). 
Default extension quantity field (DEQ). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LE~GTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Summary menu field (SUMENU). 
Number of keys field (NOK). 
Number of areas field (NOA). 
Number of record descriptors 
(NOR) • 
Prologue version number (PVN). 

Unknown field. 
DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) • 
Length field (LENGTH)~ 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

field 

field 

field 

Date and time menu field (DATMENU). 
Creation date and time field (COT). 
Last update date and time field (ROT). 
Deletion date and time field (EDT). 
Revision number field (RVN). 

(continued on next page) 

37 



Table 3 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 2, 10, and 11 Octal 

Type of Error 

Protection 
Message 
errors by field 

Name Message 
errors by field 

Code 
(Octal) 

16 00 
16 10 
16 11 

16 12 
16 13 
16 14 
16 15 

16 20 
16 21 
16 22 
16 23 
16 24 
16 25 

17 00 
17 10 
1711 

17 12 
17 13 
17 14 
17 15 

17 20 
17 21 

Access Control 20 00 
List Message 
errors by field: 20 10 
(Reserved for 20 11 
future use) 

20 12 
20 13 
20 14 
20 15 

20 20 

20 21 

Reason 

Unknown field. 
DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Protection menu field (PROTMENU). 
File owner field (OWNER). 
System protection field (PROTSYS). 
Owner protection field (PROTOWN). 
Group protection field (PROTGRP). 
World protection field (PROTWLD). 

Unknown field. 
DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

Name type field (NAMETYPE). 
Name field (NAMESPEC). 

Unknown field. 

DAP message flags field (FLAGS). 
Data stream identification 
(STREAMID) . 
Length field (LENGTH). 
Length extension field (LEN256). 
Bit count field (BITCNT). 
System specific field (SYSPEC). 

field 

field 

field 

Access control list repeat count field 
(ACLCNT) . 
Access control list entry field (ACL). 

38 



Value 
(Octal) 

0 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 

25 
26 
27 
30 
31 

32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 

Table 4 
MICCODE Field Values for Use with MAC CODE 

Values of 0, 1, 4, 5, 6, and 7 Octal 

ER$ABO; 
ER$ACC; 
ER$ACT; 
ER$AID; 
ER$ALN; 
ER$ALQ; 
ER$ANI; 
ER$AOP; 
ER$AST; 
ER$ATR; 
ER$ATW; 
ER$BKS; 
ER$BKZi 
ER$BLN; 
ER$BOF; 
ER$BPA; 
ER$BPS; 
ER$BUG; 
ER$CCR; 
ER$CHG; 

ER$CHK; 
ER$CLS; 
ER$COD; 
ER$CRE; 
ER$CUR; 

ER$DAC; 
ER$DAN; 
ER$DEL; 
ER$DEV; 
ER$DIR; 
ER$DME; 
ER$DNF; 
ER$DNR; 
ER$DPE; 
ER$DTP; 
ER$DUP; 
ER$ENT; 
ER$ENV; 
ER$EOF; 
ER$ESS; 
ER$EXP; 

Error/Reason 

NOTE 

MICCODE Format: Bits 0-11 contain the error code 
number. Symbolic status codes, where supplied, 
refer to the corresponding RMS status codes. 
These codes are included here for ease of 
reference only. They have no meaning for DAP. 

Unspecified error. 
Operation aborted. 
Fll-ACP could not access file. 
FILE activity precludes operation. 
Bad area ID. 
Alignment options error. 
Allocation quantity too large or 0 value. 
Not ANSI D format. 
Allocation options error. 
Invalid (i.e., synch) operation at AST level. 
Attribute read error. 
Attribute write error. 
Bucket size too large. 
Bucket size too large. 
BLN length error. 
Beginning of file detected. 
Private pool address. 
Private pool size. 
Internal RMS error condition detected. 
Cannot connect RAB. 
$UPDATE changed a key without having attribute of 
XB$CHG set. 
Bucket format check-byte failure. 
RSTS/E close function failed. 
Invalid or unsupported COD field. 
Fll-ACP could not create file (STV=sys err code). 
No current record (operation not preceded by 
GET/FIND) • 
FIl-ACP deaccess error during CLOSE. 
Data AREA number invalid. 
RFA-Accessed record was deleted. 
Bad device, or inappropriate device type. 
Error in directory name. 
Dynamic memory exhausted. 
Directory not found. 
Device not ready. 
Device .has positioning error. 
DTP field invalid. 
Duplicate key detected, XB$DUP not set. 
RSX-FllACP enter function failed. 
Operation not selected in ORG$ macro. 
End-of-file. 
Expanded string area too short. 
File ~xpiration date not yet reached. 

(continued on next page) 

39 



Table 4 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 0, 1, 4, 5, 6, and 7 Octal 

Value 
(Octal) 

Error/Reason 

52 ER$EXT; File extend failure. 
53 ER$FAB; Not a valid FAB (BID NOT = FB$BID). 
54 ER$FAC; Illegal FAC for REC-OP,0, or FB$PUT not set for 

CREATE. 
55 ER$FEX; File already exists. 
56 ER$FID; Invalid file I.D. 
57 ER$FLG; Invalid flag-bits combination. 
60 ER$FLK; File is locked by other user. 
61 ER$FND; RSX-FIIACP FIND function failed. 
62 ER$FNF; File not found. 
63 ER$FNMi Error in file name. 
64 ER$FOPi Invalid file options. 
65 ER$FULi DEVICE/FILE full. 
66 ER$IANi Index AREA number invalid. 
67 ER$IFI; Invalid IFI value or unopened file. 
70 ER$IMXi Maximum NUM(254) areas/key XABS exceeded. 
71 ER$INI; $INIT macro never issued. 
72 ER$IOP; Operation illegal or invalid for file 

organization. 
73 ER$IRCi Illegal record encountered (with sequential files 

only) . 
74 ER$ISIi Invalid lSI value, on unconnected RAB. 
75 ER$KBFi Bad KEY buffer address (KBF=0). 
76 ER$KEYi Invalid KEY field (KEY=0/neg). 
77 ER$KRFi Invalid key~of-reference ($GET/$FIND). 

100 ER$KSZi KEY size too large. 
101 ER$LANi Lowest-level-index AREA number invalid. 
102 ER$LBLi Not ANSI labeled tape. 
103 ER$LBYi Logical channel busy. 
104 ER$LCHi Logical channel number too large. 
105 ER$LEXi Logical extend error, prior extend still valid. 
106 ER$LOCi LOC field invalid. 
107 ER$MAPi Buffer mapping error. 
110 ER$MKDi FII-ACP could not mark file for deletion. 
III ER$MRNi MRN value=neg or relative key>MRN. 
112 ER$MRSi MRS value=0 for fixed length records. Also 0 for 

relative files. 
113 ER$NAMi NAM block address invalid (NAM=0, or not 

accessible) . 
114 ER$NEFi Not positioned to EOF (sequential files only) . 
115 ER$NIDi Cannot allocate internal index descriptor. 
116 ER$NPKi Indexed filei nO primary key defined. 
117 ER$OPNi RSTS/E open fUnction failed. 
120 ER$ORDi XAB'S not in correct order. 
121 ER$ORGi Invalid file organization value. 
122 ER$PLGi Error in file's prologue (reconstruct file). 
123 ER$POSi POS field invalid (POS>MRS,STV=XAB indicator). 
124 ER$PRMi Bad file date field retrieved. 
125 ER$PRVi Privilege violation (OS denies access) . 
126 ER$RABi Not a valid RAB (BID NOT=RB$BID) . 
127 ER$RACi Illegal RAC value. 
130 ER$RATi Illegal record attributes. 

(continued on next page) 

40 



Table 4 (Cont.) 
MICCODE Field Values for Use with MAC CODE 

Values of 0, 1, 4, 5, 6, and 7 Octal 

Value 
(Octal) 

Error/Reason 

131 ER$RBF; Invalid record buffer address (ODD, or not 
word-aligned if BLK-IO) . 

132 ER$RER; File read error. 
133 ER$REX; Record already exists. 
134 ER$RFA; Bad RFA value (RFA=0). 
135 ER$RFM; Invalid record format. 
136 ER$RLK; Target bucket locked by another stream. 
137 ER$RMV; RSX-Fll ACP remove function failed. 
140 ER$RNF; Record not found. 
141 ER$RNL; Record not locked. 
142 ER$ROP; Invalid record options. 
143 ER$RPL; Error while reading prologue. 
144 ER$RRV; Invalid RRV record encountered. 
145 ER$RSA; RAB stream currently active. 
146 ER$RSZ; Bad record size (RSZ>MRS, or NOT=MRS if fixed 

length records). 
147 ER$RTB; Record too big for user s buffer. 
150 ER$SEQ; Primary key out of sequence (RAC=RB$SEQ for 

$PUT) . 
151 ER$SHR; SHR field invalid for file (cannot share 

sequential files). 
152 ER$SIZ; SIZ field invalid. 
153 ER$STK; Stack too big for save area. 
154 ER$SYS; System directive error. 
155 ER$TRE; Index tree error. 
156 ER$TYP; Error in file type extension on FNS too big. 
157 ER$UBF; Invalid user buffer addr (0, ODD, or if BLK-IO 

not word aligned). 
160 ER$USZ; Invalid user buffer size (USZ=0). 
161 ER$VER; Error in version number. 
162 ER$VOL; Invalid volume number. 
163 ER$WER; File write error (STV=sys err code). 
164 ER$WLK; Device is write locked. 
165 ER$WPL; Error while writing prologue. 
166 ER$XAB; Not a valid XAB (@XAB=ODD,STV=XAB indicator). 
167 BUGDDI; Default directory invalid. 
170 CAA ; Cannot access argument list. 
171 CCF ; Cannot close file. 
172 CDA ; Cannot deliver AST. 
173 CHN ; Channel assignment failure (STV=sys err code). 
174 CNTRLO; Terminal output ignored due to (CNTRL) o. 
175 CNTRLY; Terminal input aborted due to (CNTRL) Y. 
176 DNA ; Default filename string address error. 
177 DVI ; Invalid device 1.0. field. 
200 ESA ; Expanded string address error. 
201 FNA ; Filename string address error. 
202 FSZ ; FSZ field invalid. 
203 IAL ; Invalid argument list. 
204 KFF ; Known file found. 
205 LNE ; Logical name error. 
206 NOD ; Node name error. 
207 NORMAL; Operation successful. 
210 OK_DUP; Record inserted had duplicate key. 

(continued on next page) 

41 



Table 4 ,(Cont.) 
MICCODE Field Values for Use with MAC CODE 

Values~f 0, 1, 4, 5, 6 and 7 Octal 

Value Error/Reason 
(Octal) 

211 OK IDX: Index update error occurred-record inserted. 
212 OK-RLK: Record locked but read anyway. 
213 OK:=RRV: Record inserted in primary o.k.: may not be 

accessible by secondary keys or RFA. 
214 CREATE~ File was created, but not opened. 
215 PBF : Bad prompt buffer address. 
216 PNDING: Async. operation pending completion. 
217 QUO : Quoted string error. 
220 RHB : Record header buffer invalid. 
221 RLF : Invalid related file. 
222 RSS : Invalid resultant string size. 
223 RST : Invalid resultant string address. 
224 SQO : Operation not sequential. 
225 SUC : Operation successful. 
226 SPRSED: Created fil~ superseded existing version. 
227 SYN : Filename syntax error. 
230 TMO : Time-out period expired. 
231 ER$BLK: FB$BLK record attribute not supported. 
232 ER$BSZ: Bad byte size. 
233 ER$CDR: Cannot disconnect RAB. 
234 ER$CGJ: Cannot get JFN for file. 
235 ER$COF: Cannot open file. 
236 ER$JFN: Bad JFN value. 
237 ER$PEF: Cannot position to end-of-file. 
240 ER$TRU: Cannot truncate file. 
241 ER$UDF; File is currently in an undefined state; access 

is denied. 
242 ER$XCL; File must be opened for exclusive access. 
243 ; Directory full. 
244 ; Handler not in system. 
245 ; Fatal hardware error'. 
246 ; Attempt to write beyond EOF. 
247 ; Hardware option not present. 
250 ; Devite not attached. 
251 : Device already attached~ 
252 : Device not attachable. 
253 : Sharable resource in use. 
254 ; Illegal overlay request. 
255 : Block check or CRC e~ror. 
256 : Caller s nodes exhausted. 
257 : Index file full. 
260 ; File header full. 
261 ; Accessed for write. 
262 : File header checksum failure. 
263 ; Attribute control list error. 
264 : File already accessed on LUN. 
265 : Bad tape format. 
266 : Illegal operation an file descriptor block. 
267 ; Rename; 2 different devices. 
270 ; Rename; new filename already in use. 
271 ; Cannot rename old file system. 
272 ; File already open. 
273 : Parity error on device. 

(continued on next page) 

42 



Value 
(Octal) 

274 
275 
276 
277 
300 
301 
302 
303 
304 
305 
306 
307 
310 
311 
312 
313 
314 
315 
316 
317 
320 
321 
322 
323 
324 

325 
326 
327 
330 
331 
332 
333 
334 
335 
336 
337 

340 

341 
342 
343 
344 
345 

346 

347 

350 

Table 4 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 0, 1, 4, 5, 6, and 7 Octal 

; 

· , 
; 
; 
; 
; 

· , 
; 

· , 
; 

SPL ; 
NMF ; 
CRC ; 

; 
BUGDAP; 
CNTRLC; 
DFL · , 
ESL ; 
IBF ; 
IBK ; 
IDX ; 
IFA ; 
IFL ; 
KNM ; 
KSI ; 

MBC ; 
NET ; 
OK ALK; -OK DEL; -OK LIM; -OK NOP; -OK RNF; 
PLV ; 
REF ; 
RSL ; 
RVU ; 

SEG ; 

· , 
SUP ; 
WBE · , 
WLD ; 
WSF ; 

; 

; 

; 

Error/Reason 

End of volume detected. 
Data over-run. 
Bad block on device. 
End of tape detected. 
No buffer space for file. 
File exceeds allocated space -- no blks. 
Specified task not installed. 
Unlock error. 
No file accessed on LUN. 
Send/receive failure. 
Spool or submit command file failure. 
No more files. 
DAP file transfer checksum error. 
Quota exceeded 
Internal network error condition detected. 
Terminal input aborted due to (CNTRL) C. 
Data bucket fill size > bucket size in XAB. 
Invalid expanded string length. 
Illegal bucket format. 
Bucket size of LAN NOT = IAN in XAB. 
Index not initialized. 
Illegal file attributes (corrupt file header). 
Index bucket fill size > bucket size in XAB. 
Key name buffer not readable or writeable in XAB. 
Index bucket will not hold two keys for key of 
reference. 
Multi-buffer count invalid (negative value). 
Network operation failed at remote node. 
Record is already locked. 
Deleted record successfully accessed. 
Retrieved record exceeds specified key value. 
Key XAB not filled in. 
Nonexistent record successfully accessed. 
Unsupported prologue version. 
Illegal key-of-reference in XAB. 
Invalid resultant string length. 
Error updating rrv's, some paths to data may be 
lost. 
Data types other than string limited to one 
segment in XAB. 
Reserved 
Operation not supported over network. 
Error on write behind. 
Invalid wildcard operation. 
Working set full (can not lock buffers in working 
set) • 
Directory listing--error in reading volume-set 
name, directory name, of file name. 
Directory listing--error in reading file 
attributes. 
Directory listing--protection violation in trying 
to read the volume-set, directory or file name. 

(continued on next page) 

43 



Value 
(Octal) 

351 

352 
353 

354 
355 
356 
357 

360 
361 
362 
363 
364 
365 

366 

6000 
to 

7777 

Value 
(Octal) 

o 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 

Table 4 (Cont.) 
MICCODE Field Values for Use with MACCODE 

Values of 0, 1, 4, 5, 6, and 7 Octal 

SNE 
SPE 
UPI 
ACS 

TNS 
BES 
PES 
WCC 
IDR 
STR 

FTM 

Error/Reason 

; Directory listing--protection violation in trying 
to read file attributes. 

; Directory listing--file attributes do not exist. 
; Directory listing--unable to recover directory 

list after Continue Transfer (Skip). 
; Sharing not enabled. 
; Sharing page count exceeded. 
; UPI bit not set when sharing with BRO set. 
; Error in access control strihg (poor man's route 

through error). 
; Terminator not seen. 
; Bad escape sequence. 
; Partial escape sequence. 
; Invalid wildcard context 
; Invalid directory rename 
; User structure (FAB/RAB) 

operation. 

val ue. 
operation. 

became invalid dur ing 

; Network file transfer mode precludes operation. 

; User defined errors 

Table 5 
MICCODE Field Values 

(with MACCODE Value of 12 Octal) 

Error/Reason 

NOTE 

MICCODE Formatl Bits 0-11 contain the message 
type number. 

Unknown message type 
Configuration message 
Attributes message 
Access message 
Control message 
Continue Transfer message 
Acknowledge message 
Access Complete message 
Data message 
Status message 
Key Definition Attributes Extension message 
Allocation Attributes Extension message 
Summary Attributes Extension message 
Date and Time Attributes Extension message 
Protection Attributes Extension message 
Name message 
Access Control List Extended Attributes message 

44 



3.12 Key Definition Attributes Extension Message 

Each key is defined by a group of 19 fields. The form of the key 
definition message is: 

, KEYDEF' KEYMENU' FLG' DFL' IFL' NSG' POS' SIZ' [POS, SIZ .•. ]' REF' KNM I 

KEYDEF : 

KEYMENU (EX-6) 

FLG (EX-3) 

DFL (2) 

IFL (2) 

NSG(l) 

POS(2) 

SIZ(l) 

REF(l) 

BM 

B 

B 

B 

B 

B 

B 

BM 

The operator field with TYPE = 10. 

The following bit map specifies which of the 
following fields are present in this message. 
These fields and only these fields may appear in 
the message and they must be in the order 
specified. 

Bit Meaning (When Set) 

0 FLG 
1 DFL 
2 IFL 
3 NSG, POS and SIZ 
4 REF 
5 KNM 
6 NUL 
7 IAN 
8 LAN 
9 DAN 

10 DTP 
11 RVB 
12 HAL (reserved) 
13 DVB 
14 DBS 
15 IBS 
16 LVL 
17 TKS 
18 MRL 

Key option flag 

bit 0 
bit 1 
bit 2 

XB$DUP duplicates allowed 
XB$CHG allow keys to change 
XB$NUL null key character defined 

Data bucket fill. 

Index bucket fill. 

Number of segments (max. 8) needed to define the 
key in the record. For each segment, there will 
be a POS, SIZ pair. For example, if NSG 
contains 3, the following sequence of fields 
would appear: 

position of key in record by byte number. 
first byte in the record is byte 0. 

Size of key in record in bytes. 

Key Of reference indicator. 

45 

The 



KNM(I-40) :A 

NUL (1) B 

IAN (1) B 

LAN (1) B 

DAN (1) B 

DTP (1) B 

RVB (1-8) B 

HAL(I-5) B 

DVB(I-8) B 

DBS (1) B 

IBS(l) B 

LVL(l) B 

TKS(l) B 

MRL (2) B 

Key name correspoding to key of reference (REF) 
above. 

Value of null key character. 

Index area number. 

Lowest level index area number. 

Data level area number. 

Data type. 

Root VBN for key. 

Hash algorithm value (reserved). 

First data bucket start virtual block number. 

Data bucket size field. 

Index bucket size field. 

Level of root bucket. 

Total key size. 

Minimum record length~ the minimum record 
length in bytes which will totally contain the 
key field for the key described by this message. 

3.13 Allocation Attributes Extension Message 

Use the Allocation message when creating .or explicitly extending a 
file to specify the character of the allocation. The form of the 
allocation message is: 

ALLOC 

ALLMENU (EX-6): BM' 

VOL (2) B 

The operator field with TYPE = 11. 

The following bit map specifies which of the 
following fields are present in this message-;~ 
These fields and only these fields may appear in 
the message. They must be in the order 
specified. 

Bit Meaning (When Set) 

0 VOL 
1 ALN 
2 AOP 
3 LOC 
4 RFI (reserved) 
5 ALQ 
6 AID 
7 BKZ 
8 DEQ 

Relative volume number of a volume set on which 
this area or file will be allocated. 

46 



ALN(EX-4) BM 

AOP (EX-4) BM 

LOC (1-8) B 

RFI ( I -l6 ) : B 

ALQ (1-5) : B 

AID (1) 

BKZ (1) 

DEQ( 2) 

B 

B 

B 

Alignment options 

Bit Meaning Explanation 

0 XB$ANY No specified allocation 
placement. 

1 XB$CYL Align on cylinder boundary. 
2 XB$LBN Align to specified logical 

block. 
3 XB$VBN Allocate as near as possible to 

specified virtual block. 
4 XB$RFI Allocate as near as possible to 

specified related file. 

Allocation options 

Bit Meaning Explanation 

0 XB$HRD If the requested alignment can 
not be done, return an error. 

1 XB$CTG Contiguous allocation required. 
2 XB$CBT Contiguous best try. The file 

will be created, but it will be 
contiguous only when it is 
possible. 

3 XB$ONC Allocate space on any cylinder 
boundary. 

Allocation starting point. Value is as follows: 

If ALN XB$CYL, LOC is the cylinder number 
where allocation is to start. 

If ALN XB$LBN, LOC is the logical block where 
allocation is to start. 

If ALN XB$VBN, LOC is the virtual block near 
which allocation should start; 
o (default) means as near as 
possible to current EOF. 

If ALN = XB$RFI, LOC is a VBN but a VBN in the 
related file. 

Related file 1.0. (reserved) . 

The amount of space in virtual blocks to be 
allocated. Returns actual size of allocation. 
For DISPLAY, returns size of area. 

Area 1.0. The area number used to identify an 
area for reference by a key definition. 

Bucket size for this area. 

The default extension quantity in virtual 
blocks. Specifies the amount of space to be 
added to the area whenever it is extended 
automatically. It overrides the DEQ in the main 
Attributes message. 

47 



3.14 Summary Attributes Extension Message 

The Summary Attributes Extension message comprises the fields 
described below. The accessed process optionally returns this message 
to the accessing process on a file open, file create, display of a 
file's attributes or directory list. The format of the Summary 
Attributes Extension message is: 

I SUMMARyISUMENU!NOKINOAINORlpVN 

where: 

SUMMARY 

SUMENU (EX- 6) 

NOK{l) 

NOA{l) 

NOR (I) 

PVN (2) 

8 

8 

8 

8 

8M 

The operator field with TYPE = 12. 

The following bit map specifies which of the 
following fields are present in this message. 
These fields and only these fields may appear in 
the message and they must appear in the order 
specified. 

Bit Meaning (When Set) 

(!J NOK 
1 NOA 
2 NOR 
3 PVN 

Number of keys defined in file. 

Number of areas defined in file. 

Number of record descriptors in file. 

Prologue version number. 

3.15 Date and Time Attributes Extension Message 

The Date and Time Attributes Extension message is composed of the 
fields described below. This message is optionally returned to the 
accessing process by the accessed process on a, file open, file create, 
display of a file's attributes or directory list. The form of the 
message is: 

I DATIMEI DATMENUICDTIRDTIEDT IRVN 

where: 

OATIME 

OATMENU (EX-6) 8M 

The operator field with TYPE = 13. 

The following bit map specifies which of th~ 
following fields are present in this message. 
These fields and only these fields may appear in 
the message and they must appear in the order 
specified. 

Bit Meaning (When Set) 

0 COT 
1 ROT 
2 EDT 
3 RVN 

48 



CDT(18) A 

RDT(18) A 

EDT(18) w A 

RVN(2) : B 

Date and time file created in Network Standard 
Time (NST). 

Date and time file last updated in NST. 

Date and time file may be deleted in NST. 

The preceding three fields should be in the 
following format: 

dd-mon-yybhh:mm:ss 

where: 

dd is the day 
mon is a three letter abbreviation for the month 
as follows: 

JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

yy is the year 
b is blank (space) 
hh is the hour 
mm is the minutes 
ss is the seconds 

Revision number--the number of times the file 
has been modified. 

Network standard time (NST) is the time standard chosen for each 
network to effect synchronization of remote file access operations and 
their results. For example, if a user in London creates a file in New 
York with a deletion time of 2 a.m., does he mean 2 a.m. in London or 
New York? NST resolves this problem. NST may be local time (for 
example, for networks wholly contained in one time zone), GMT or some 
other agreed on time. 

3.16 Protection Attributes Extension Message 

Use the Protection Attributes Extension message when creating a file 
to specify the protection for that file. If this information is not 
present when creating a new file, the file will be created with the 
default protection of the accessed node. This message may also be 
used to return a file's protection code to the accessing process on a 
file open, display of the file's attributes or directory list. The 
format of the Protection Attributes Extension message is: 

[PROTECTlpROTMENUloWNERlpROTSYS!PROTOWNfpROTGRPlpROTWLD I 

49 



where: 

PROTECT 

PROTMENU(EX-6) BM 

OWNER (1-40) A 

PROTSYS(EX-3) BM 

PROTOWN(EX-3) BM 

PROTGRP(EX-3) BM 

PROTWLD (EX- 3) BM 

The OPERATOR field with TYPE = 14. 

The following bit map specifies which of the 
following fields are present in this message. 
If the field is not present, the default, if 
any, should be used. These fields and only 
these fields may appear in the message and they 
must appear in the order specified. 

Bit Meaning (When Set) 

0 OWNER 
1 PROTSYS 
2 PROTOWN 
3 PROTGRD. 
4 PROTWLD 

The name or user code (for example, UIC such as 
240,220) of the file owner. When creating a 
file and when the file system allows the owner 
to be user-specified, this field, if present, 
specifies the owner of the file. If this field 
is not present, the file owner information is 
taken from the user identification information 
which comes with the connect. Alternatively, if 
the User Identification message is being used 
(see Appendix A) owner information may be taken 
from it. 

File protection for system access rights. 

Bit Meaning (When Set) 

0 Deny read access. 
1 Deny write access. 
2 Deny execute access. 
3 Deny delete access. 
4 Deny append access. 
5 Deny directory list access. 
6 Deny update access. 
7 Deny change access protection 

attribute. 
S Deny extend access. 

File protection for file owner access rights. 
Refer to the bit map used for PROTSYS above. 

File protection for group access rights. 
to the bit map used for PROTSYS above. 

Refer 

File protection for general (world) access. 
Refer to the bit map used for PROTSYS above. 

50 



3.17 Name Message 

Use the Name message when renaming a file to contain the new name the 
file will have after the operation is complete. Use the Name message 
with the directory listing to return the name of each file for which 
attributes are returned. It may also be used when opening or creating 
a file to contain the default or related file specification. The form 
of the name message is: 

NAME!NAMETYPEINAMESPEC 

where: 

NAME: 

NAMETYPE (EX- 3) BM 

NAMESPEC(I-200) A 

The operator field with TYPE = 15. 

Type of name contained in NAMESPEC field. 

Bit 

0 
1 
2 
3 
4 

5 

Meaning 

File specification 
File name 
Directory name 
Volume or structure name 
Default file specification 
( reserved) 
Related file specification 
(reserved) 

NOTE 

Here the file specification means the 
full file specification including the 
volume, directory, and file name. 

The file specification in the format of the 
field is not remote node. This ASCII 

interpreted by DAP software. 

3.1B Access Control List Attributes Extension Message (Reserved for 
Future Use) 

The Access Control List (ACL) message specifies a list of users and 
the access rights they have to this file. Each ACL entry is in the 
format of the system where the file resides. The list is potentially 
very long and therefore this message has a facility for specifying if 
this is the last of a sequence of ACL messages. The form of the ACL 
message is: 

ACLTYPE I ACLCNT I ACL I [ACL .•. J I 
ACLTYPE : 

ACLCNT(l) B 

ACL(I-B0) A 

The operator field with TYPE = 16. 

The absolute value of this field is the number 
of repetitions of the ACL field in this message. 
If this field contains a negative value, this is 
the last in a sequence of ACL messages. 

Access control list entry. There is one entry 
for each user having access to the file. This 
field is treated as a literal string (not parsed 
by accessing system) and is in the format of the 
accessed system. 

51 



4.0 FILE ORGANIZATION 

4.1 Types of Files 

The following types of files are addressed by this specification: 

• Sequential. Each record's position depends on the position of 
the previous record. 

• Relative. Each record in the file has a unique identifying 
number, its record number. Records may be accessed randomly 
by specifying their record number in a Control message. 

• Hashed/Indexed. These files have records organized according 
to some classification method, usually an access key. Within 
a particular key for indexed files, the records are assumed to 
be logically sequential. 

4.2 Record Formats and Attributes 

There are two ways in which ASCII records are stored in DIGITAL file 
systems: 

1. Byte Count. A byte count associated with the record in the 
file indicates how long the record is and is used to 
determine record boundaries. 

2. Stream. The ASCII record is stored exactly as is. The 
record is assumed to be terminated with one of the following 
delimiters: 

a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 
i. 
j. 

( FF) 
(DLE) 
(DCl) 
(DC2) 
(DC3) 
(DC4) 
(VT) 
(LF) 
(ESC) 
(AZ) 

Form feed 
Data link escape 

vertical tab 
Line feed 
Escape 
Control Z 

Files using ASCII stream often do not have record attributes 
stored with the file. 

DAP supports four ASCII record formats: 

1. Fixed length records 

2. Variable length records 

3. Variable with fixed control 

4. ASCII stream 

52 



In addition, DAP supports the following eight attributes: 

1. FORTRAN carriage control 

2. COBOL carriage control 

3. Print file carriage control 

4. Implied LF/CR envelope for printing 

5. Embedded carriage control 

6. Line sequential ASCII 

7. MACYll 

8. None of the above 

4.2.1 Handling Stream ASCII ~- Stream ASCII files consist of a string 
of ASCII characters with no explicit record structure imposed upon the 
data within the file. Records in a stream ASCII file are defined by a 
set of delimiters (see Section 4.2) where each record is terminated by 
one of the delimiters. DAP processes transferring stream ASCII data 
records perform no transformations upon the records. All characters 
in the records, up to and including the delimiter, are sent as a 
single record in a DAP Data message. No characters, including NULLs, 
are stripped or replaced. Stream ASCII files may have other 
attributes as well as stream ASCII, for example, FORTRAN carriage 
control. 

4.2.2 Conversions -- DAP does not specify data or format conversions 
that may be necessary when sending data from one type of system to 
another. It is the responsibility of the user process (accessing 
process) to make any necessary conversions when transferring data 
between unlike systems. The accessed process (server) is 
non-intelligent and does only what it is told. The accessed process 
executes a protocol function only if it supports that type of 
operation or attribute. If an accessed process does not support an 
operation or attribute, it returns an appropriate Status message. 
Thus, if a conversion must be made, for example, sending a Stream 
ASCII file to a remote system supporting variable length byte count 
records but not Stream ASCII, the accessing process (user) must 
perform the conversion before sending each record of the file. 

53 



NOTE 

While this is not a part of the DAP 
specification, the following algorithm 
has been used effectively in several 
DAP-speaking user processes to determine 
what (if any) conversions must be made 
when trying to store a file on a remote 
file system: 

1. Open file using file's attributes on 
local system. 

2. If no error on Attributes message, 
send file and terminate, else go to 
step 3. 

3. Send new Attributes and .Access 
Complete messages using the next 
most likely attributes to be 
supported by the remote system .. 

4. If no error on Attributes message, 
send file and terminate, else go to 
step 3. 

4.3 Data Formats 

This should almost never require 
more than two repetitions of step 3 
as most ASCII files are either 
stream or variable with implied 
CR/LF. 

4.3.1 Fixed-Length Records - All records are of the fixed length 
specified in the MRS field. They are delimited by physical message 
blocks (that is, the last byte in a Data message is the end of the 
record) • 

4.3.2 Variable-Length Records - These records are like the 
fixed-length records except the record length is variable with the 
maximum length being specified in the MRS field. 

4.3.3 Variable with Fixed-Control Format Records - These records are 
normal variable-length records with an associated fixed-length field 
used for control purposes. In DAP Data messages, this fixed-length 
control field immediately precedes and is contiguous with the variable 
part of the record. The length of the fixed field is found in the FSZ 
field in the Attributes message. MRS contains the maximum length of 
the variable portion only. FSZ + MRS = total maximum record length. 
Regardless of the type of the data in the variable portion of the 
record, the data in the fixed portion is always sent as a binary field 
contained in an integral number of 8-bit bytes. 

54 



4.3.4 ASCII Stream - Here a file contains just a stream of ASCII 
characters with no real concept of records. However, delimiters are 
used to terminate "records" for purposes of reading and writing the 
file. 

4.4 Supported Data Types 

The DATATYPE field of the Attributes message defines the code 
representation used to transfer data. These are: 

ASCII 
Image 
EBCDIC (Reserved) 

In addition, there is a COMPRESSION option mode, which can be used 
with any of the above. This compressed mode reduces the amount of 
data sent by encoding blanks and duplicates. 

4.4.1 ASCII - This is the 7-bit ASCII code-set as defined in the 1968 
ANSI standard. To transmit this within 8-bit frames, the high order 
bit is ignored except when using 7-bit compression. On card readers, 
this refers to the ASCII encoding of the punches into the 128 
character codes. 

4.4.2 EBCDIC - this is an IBM 8-bit EBCDIC code set. (Reserved) 

4.4.3 Image - This is a mode for transmitting data in DAP where no 
code set is specified and data records (or blocks) are simply regarded 
as ordered strings of bits. The number of bits in a bit string (image 
mode record) need not be a multiple of 8 although the bit strings are 
in fact transmitted in 8-bit frames (a requirement of lower level 
protocols) . 

When transmitting Image data, if the number of data bits in the 
message is not a multiple of 8 (the number of actual data bits in a 
DAP Data message must be a multiple of the byte size as specified by 
BSZ in the Attributes message), the field BITCNT in the header of the 
Data message must be used. The BITCNT field specifies the number of 
bits in the final 8-bit frame of the Data message which are not actual 
data bits. The non-data bits are padding bits required to fill out 
the 8-bit frame. 

When transferring bit strings where the bit count is a multiple of 8, 
it is not necessary to use BITCNT. 

55 



The order in the bit strings is low order bit of low order byte first, 
second bit of low byte, and so on, followed by the same sequence for 
successively higher order bytes. For example, consider retrieving the 
3 byte record with 6-bit bytes shown below. The order of the string 
is as shown below with the first bit on the right and the last bit in 
the string on the left (the top row of single digit numbers inside the 
boxes is byte numbers and the bottom row is bit numbers. Thus for any 
bit position in the string, the top digit gives the byte and the 
bottom digit the bit within that byte). 

byte 2 byte 1 byte 0 

2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 
5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 

In Image record mode, this string transmits in 3 8-bit frames in a DAP 
Data message as follows: 

frame 2 frame 1 frame 0 

x x x x x x 2 2 2 2 221 1 1 1 1 10000 0 0 
5 4 3 21054 3 2 1 05432 1 0 

with frame 0 being transmitted first, low order bit first. The x's 
are padding. BITCNT is 6 for this DAP Data message. 

If this image record is being sent to a system which stores data in 
7-bit bytes, this record is stored as follows: 

byte 2 byte 1 byte 0 

x x x 222 2 2 2 1 1 1 1 1 1 0 000 0 0 
543 2 1 0 5 4 3 2 1 0 5 43 2 1 0 

4.4.4 Compression - Any of the encodings, even the Image mode, may be 
compressed on transmission to eliminate the sending of duplicates and 
multiple blanks. The compression technique is slightly different with 
7-bit and 8-bit character encodings. 

7-bit compression: 

1. Send non-compressed characters with high order bit 
low 7-bits = character: (0) (7-bit char). 

o and 

2. Send blanks as high bits = 10 followed by number of blanks in 
6-bit binary: (10) (number blanks). 

3. Send repetitions as high bits = 110 followed by number of 
repetitions in 5-bit binary: (110) (number reps) followed by 
the repeated character. 

4. An escape scheme allows sending of l2-bit card images when 
they do not encode into the ASCII code set by sending high 
bits = 1111 followed by columns 12-1 and another character of 
columns 2-9. For example, send (1111) (12,11,0,1) in the 
first character and (2,3,4,5,6,7,8,9) in the second 
character. 

56 



5. The high bit sequence 1110 has been reserved for future 
expansion. 

6. In the case of repetitions the repeated character may be a 
12-bit image which is sent as 2-characters. 

7. Summary 7-bit compression: 

0xxxxxxx 
10xxxxxx 
110xxxxx 
llllxxxx 
xxxxxxxx 
1110xxxx 

a-bit compression: 

7-bit non-compressed characters 
number of blanks (the character octal 40) 
number of repeated characters 
12-bit card image 
12-bit card image (continued) 
reserved 

with a-bit codes the blanks, repetitions and 12-bit card image are the 
same as the 7-bit case. Precede a-bit non-compressed strings by a 
count of the string length with high bit = 0 followed by 7-bit count: 
(0) (count). This is followed by "count" a-bit characters. Following 
this may be another string, blanks or repetitions. 

Summary: 

0xxxxxxx 
10xxxxxx 
110xxxxx 
1110xxxx 
llllxxxx 
xxxxxxxx 

number of non-compressed characters 
number of nulls (all zero bytes) 
number of repetitions 
reserved 
12-bit card image 
12-bit card image (continued) 

The receiver of compressed data must be able to expand it according to 
the rules just given. Do not use data compression unless the 
Configuration messages from both systems indicate they both support 
file compression (bit 15). The compressed format bit of the DATATYPE 
field in the Attributes message indicates the use of file compression. 

57 



5.0 OPERATION 

OAP transfers data to and from I/O devices and mass storage files 
independent of the I/O structure of the system being accessed. This 
transfer is accomplished by communication with a OAP process that 
accepts OAP requests on the network side and translates them into 
equivalent requests to the local I/O system. From the network it 
appears as if OECnet systems support OAP messages directly within 
their file systems. 

OAP provides the mechanism for setting up the conversation path for 
remote file access, transferring data over the link, and terminating 
the logical link. 

5.1 Setting up the Link 

Processes that implement the OAP protocol operate at the application 
level within a OECnet system. They use the lower level interprocess 
communication facilities of the network for the creation and flow 
control of the data path (logical link) between the processes 
exchanging messages within the OAP environment. Once the link is 
established, the processes may exchange OAP messages over the link. 

Each remote file access in progress uses a separate logical 
This means a single user cannot access more than one file at 
over a single logical link. It also means that several users 
access the same file over a single logical link. However, a 
logical link can be used to access more than one file provided 
to the files is sequential and does not overlap. 

link. 
a time 
cannot 
single 
access 

A lower level interprocess communication 
control information (user identification, 
identification) from the accessing (user) OAP 
(server) OAP process. 

protocol passes 
password, and 

process to the 

access 
account 

accessed 

Following link establishment, the OAP-speaking processes exchange 
Configuration messages. The purposes of this exchange are: 

l. To establish the maximum buffer size for exchanging lower 
level protocol messages 

2. To identify system type to each other 

3. To enable one OAP process to know which version of the 
protocol the other OAP process speaks 

4. To inform the opposite process of the generic capabil i ties of 
the system sending the message 

The system type is used when it is necessary to know the type of both 
the operating system and the file system on the other end of the link. 
This is helpful, for example, in deciding if block mode file transfer 
can be used when transferring files between like systems or if 
multiple data streams can be initiated as is possible between 
RMS-based systems. 

The capabilities field of the Configuration message indicates to each 
of the OAP processes the generic capabilities of the other OAP process 
with which it is communicating, This field determines the type of 
file support offered by a remote system without resorting to trial and 
error techniques. 

58 



The node where the file or device resides is the accessed node while 
the node where the user process is located is the accessing node. The 
accessing process initiates the connection. For each DAP message sent 
over the link, a transmit request and corresponding receive request 
must be issued to Session Control (DNA Session Control Functional 
Specification) . This document explains the DAP messages only and 
assumes that the necessary receives and transmits are issued by the 
processes involved. 

After link creation and the exchange of Configuration messages, the 
accessing process sends an Attributes message, optionally followed by 
one or more Extended Attributes messages, specifying the mode and 
format of the data and the structure of the file. This is then 
followed by an Access message specifying the desired operation. The 
Access message may be preceded by a Name message if the default 
filename option is required. The Attributes, Extended Attributes, 
Name, and Access messages may be blocked and sent together in one 
transmission if buffer space is available (the LENGTH field must be 
used) and if blocking is supported as indicated by the Configuration 
message. Alternately, if a DAP message is too long to be sent as .a 
single entity due to limitations of the underlying Transport 
mechanism, the DAP message may be segmented and sent in two or more 
pieces (see FLAGS field in message header) if segmentation is 
supported. 

Systems not retaining the file attributes use the Attributes message 
to set the attributes for the transfer. When creating a new file, the 
Attributes message sent by the accessing process specifies the 
attributes the new file should have. If the accessed system does not 
support these attributes, it returns a Status message to that effect. 
When storing records with systems retaining attributes, the accessing 
system uses the Attributes message returned by the accessed system to 
indicate the attributes the records being sent should have. For 
record retrieval with systems retaining attributes, records are 
transferred with the attributes of the Attributes messages returned by 
the accessed process. 

After the initial set up messages are sent, the accessing system 
receives a response from the accessed process. If the access 
specified opens a file, an Attributes message and Extended Attributes 
messages followed by an Acknowledge message is sent from the accessed 
system containing the actual attributes of the accessed file. If the 
operation specified in the Access message deletes, renames or executes 
a file, no Attributes messages or Acknowledge messages are returned 
and the response is an Access Complete message. 

To minimize the tying up of network resources (such as logical links 
and buffers), the Configuration, Attributes, Extended Attributes, 
Name, and Access messages should be sent in a timely manner. A timer 
may be set for each message and if it does not arrive in a reasonable 
time the link may be disconnected by the accessed process. After the 
Acknowledge message has been received, the file is open and the 
accessing process sets the pace for access of the file. 

If there are errors in the setup procedure, a Status message will be 
returned. 

NOTE 

A receive must always be outstanding in 
order to accept both expected and 
unexpected DAP Status messages. Status 
messages are always sent as ordinary 
(not Interrupt) messages. 

59 



If an error is detected in a Status message, either during or after 
setup, a protocol error has occurred and there is nothing that can be 
done to recover so the link should be disconnected. 

Errors in exchanging Configuration messages should be very rare since 
the information in Configuration messages will generally be "canned" 
and of an informative nature. If the accessed system detects an error 
in the Configuration message, it returns a Status message and the 
accessing system can either retry or disconnect. If the accessing 
system detects an error, it disconnects. 

NOTE 

If, however, a Configuration message 
appears to be in error because the 
SYSCAP field is too long and the DAP 
version number is greater than that to 
which the current software is written, 
assume that the SYSCAP field has been 
extended in the later version of DAP. 
Ignore this error. This is the only 
time when an error is ignored. The 
assumption is that the more 
sophisticated DAP process uses only a 
subset of the protocol and thus both 
sets of software can work together. 

5.1.1 Errors in the Setup Sequence - The accessed process returns a 
Status message for errors detected in each message (Configuration, 
Attributes, Name, and Access). On receiving an error in response to 
one of these messages, there are three possibilities open to the 
accessing DAP process: 

1. Disconnect the link. 

2. Send the corrected message responsible for the error. There 
is no point in sending the original message unless there is 
sufficient doubt that the message was delivered properly or 
that the error indicated was of a temporary nature. For 
example, an attempt was made to open a file already open by 
another ~rocess. 

3. Start a different access. A new access usually starts with 
an Attributes message, but it could start with an Access 
message (where the type of access does not require attributes 
such as ERASE) or even a Configuration message. 

If the user process tries to recover by sending a corrected message or 
starting a new access, the accessed DAP process can accept any of the 
setup messages in response to a Status message. Table 6 contains a 
list of responses to setup message errors. In this table, Extended 
Attributes messages are considered as being Attributes messages and 
Name messages part of the Access message. When recovering from an 
error in an Attributes Extension message, the accessing process should 
back up to the Attributes message. 

60 



Table 6 
Responses to Setup Message Errors 

.. 

Responses 

Configuration Attributes Access 
Error Message Message Message 

Configuration Message 1 0 0 

Attributes Message 1 1 2 

Access Message 1 1 1 

where: 

0 Invalid response. 
1 Valid response. 
2 Valid response only for accesses requiring no 

attributes message. 

Errors detected by the accessing process in Attributes, Extended 
Attributes, Name and Acknowledge messages cause the accessing process 
to disconnect the logical link thus terminating the access. 

5.1.2 Setup Sequence - If a timer is used between setup messages, 
this same timer should be set by the accessed process after an error 
during setup. If the timer expires, a disconnect should be initiated. 

The following conventions are used in DAP message sequence diagrams in 
this and subsequent sections: 

• Brackets [ 1 denote optional messages. 

• Messages on the left side of the arrows are from the accessing 
process. 

• Messages on the right side of the arrow are sent by the 
accessed process. 

NOTE 

The message sequence diagrams in this 
and subsequent sections are not 
definitive. However, although they do 
not cover every situation that can arise 
with DAP remote file access, they should 
be complete enough to give an idea of 
what should be done in those situation~ 
not explicitly addressed. 

61 



After a logical link is established, the setup sequence is as follows: 

1. Configuration information exchange: 

CONFIGURATION<------)CONFIGURATION 

NOTE 

Both accessing and accessed processes 
can send Configuration messages 
immediately on link establishment. The 
accessing process must send its 
Configuration message immediately. 

2. Setup for access: 

ATTRIBUTES------) 

[EXTENDED 
ATTRIBUTES]----) 

[NAME-----------) 
(DEFAULT)] 

ACCESS-----~----) 

<------ATTRIBUTES 

[EXTENDED 
<------ATTRIBUTES] 

<------[NAME (EXPANDED FILESPEC)] 

<------ACKNOWLEDGE 

62 



NOTES 

1. An Attributes message is not 
required when the Access message 
specifies ERASE, RENAME, DIRECTORY 
LIST, or EXECUTE command file. For 
these types of access, the accessed 
process returns neither the 
Attributes message nor the 
Acknowledge message unless 
specifically requested by the 
DISPLAY field. If the DISPLAY field 
is omitted from the Access message 
and the function is OPEN, CREATE, or 
SUBMIT, the accessed process returns 
a Main Attributes message. When a 
DISPLAY field is present in an 
Access message, the accessed process 
returns only the messages requested 
by the DISPLAY field. When RENAME 
is specified, follow the Access 
message by a Name message containing 
the new name for the file (see 
Section 5.2.8). 

2. Request the optional Name message 
returned by the accessed process 
after opening the file by setting a 
bit in the DISPLAY field of the 
Access message. The Name message 
contains the file specification of 
the file opened or created after all 
the logical names have been resolved 
and defaults applied. 

3. Error in Configuration messages: 

(a) Disconnect after error detected: 

CONFIGURATION------>(error detected) 

<------STATUS 

DISCONNECT 

or 

(b) Correcting erroneous message: 

CONFIGURATION----~->(error detected) 

<------STATUS 

CONFIGURATION------> 

or 

(c) If the error is in the returned message: 

CONFIGURATION------> 

(in error) <------CONFIGURATION 

DISCONNECT 

63 



4. Error in Attributes message: 

(a) Disconnect after erroneous message: 

ATTRIBUTES-----~>(error detected) 

<------STATUS 

DISCONNECT 

or 

(b) Correcting erroneous message: 

ATTRIBUTES~----->(error detected) 

<------STATUS 

ATTRIBUTES------> 

or 

(c) Starting anew remote file access on the same link. The 
new access shown must be one not requiring the Attributes 
message as no valid attributes are currently in effect (the 
former Attributes message contained an error). See Note 1 in 
Section 5.1.2. 

ATTRIBUTES------>(error detected) 

<------STATUS 

ACCESS ...,-----> 

5. Error in Optional Extended Attributes message: 

(a) Disconnect after erroneous message: 

ATTRIBUTES------> 

EXTENDED 
ATTRIBUTES 1-----> 

EXTENDED 
ATTRIBUTES n----->(error detected) 

<------STATOS 

DISCONNECT 

or 

64 



(b) Correcting erroneous message (note that restart backs up 
to the Attributes message) : 

ATTRIBUTES------> 

EXTENDED 
ATTRIBUTES 1-----> 

EXTENDED 
ATTRIBUTES n----->(error detected) 

<------STATUS 

ATTRIBUTES-----> 

EXTENDED 
ATTRIBUTES 1-----> 

EXTENDED 
ATTRIBUTES n-----> 

etc. 

(c) Starting new access on same link: 

ATTRIBUTES--------> 

EXTENDED 
ATTRIBUTES 1------> 

EXTENDED 
ATTRIBUTES n------>(error detected) 

<------STATUS 

ACCESS ------> 
6. Error in Name message for default file specification: 

(a) Disconnect after erroneous message: 

NAME ------> (error detected) 

<------STATUS 

DISCONNECT 

65 



(b) Correcting erroneous message: 

NAME ------>(error detected) 

(------STATUS 

NAME ------> 

(c) Starting new access on same link: 

NAME 

ATTRIBUTES 

[NAME 

ACCESS 

------>(error detected) 

(------STATUS 

------> 
------» 
------> 

7. Error in Access message: 

(a) Disconnect after erroneous message: 

ATTRIBUTES------> 

ACCESS ------>(error detected) 

(------STATUS 

DISCONNECT------> 

or 

(b) Correcting erroneous message: 

ATTRIBUTES------> 

ACCESS ------>(error detected) 

(------STATUS 

ACCESS ------> 
or 

(c) Starting new access on same link with new Attributes and 
Access messages: 

ATTRIBUTES------> 

ACCESS ------>(error detected) 

(------STATUS 

ATTRIBUTES------> 

ACCESS ------> 

66 



5.2 Transferring Data Over the Link 

The message exchange sequence for transferring data over the link 
depends on the direction of data flow with respect to the accessing 
and accessed systems. Data may be sent to the accessing node as in a 
retrieve operation or from it as in a store operation. 

Before data transfer can start, however, a data stream must be 
initiated by sending a Control message ($CONNECT) after the file is 
open. With file systems that support multiple data streams, 
additional data streams can be initiated with more Control messages. 
Multiple data streams are differentiated by using the STREAMID number. 
Data messages for a particular data stream must have the same STREAMID 
number as the Control message that initiated the data stream. If the 
STREAMID number is omitted, a default of 0 is used. 

The sequence for initiating a data stream is as follows: 

CONTROL(CONNECT)----> 

<----ACKNOWLEDGE 

If an error occurs, a Status message is returned instead of an ACK. A 
new data stream can be initiated any time the file is open by using 
the above message sequence. 

NOTE 

Multiple data streams cannot be used if 
file transfer mode is specified in the 
RAe field of the Control message. The 
file transfer mode implies a single data 
stream with only data (no control 
messages) flowing over the link. By 
eliminating Control messages, efficiency 
is gained. 

There are three classes of Status message which can be sent by the 
accessed process during data transfer: 

1. Successful. The accessed process returns a success Status 
message for data transferred when not in file transfer mode. 
The successful Status messages synchronize DAP processes and 
return information to the user. 

In file transfer mode, data is pipelined, and successful 
status messages are omitted for efficiency. 

2. Warning. This class of Status message is sent to the 
accessing process when an operation completes without 
complete success. For example, this message 1S sent if a 
record was inserted in an indexed file that had a duplicate 
key. Warning Status messages are always sent to the 
accessing process provided the Configuration message states 
the accessing process supports them. After sending a warning 
Status message, the accessed process suspends processing on 
that data stream until it receives a Continue Transfer 
message (or the next Control message for Record Retrieval) 
instructing it to resume processing or an Access Complete 
message terminating the access. On receiving a warning 
Status message, the accessing process either sends a Continue 
Transfer (Resume) to continue data transfer, a Control 
message, or an Access Complete if it wants to terminate the 
access. 

67 



3. Error. This class of Status message is sent when an 
operation was unable to complete at all, for example, if 
there were a read error. When an event in this class occurs, 
a Status message is always sent to the accessing process. 
After sending the Status message, the accessed process 
suspends processing on that data stream until it receives a 
Continue Transfer message telling it what to do or an Access 
Complete message terminating the access. On receiving an 
error Status message, the accessing process either sends an 
Access Complete to terminate the access or a Continue 
Transfer if it wants to attempt recovery. 

These three classes of Status message are differentiated by the 
MACCODE field of the Status message (see Section 3.11 and Table 2). 
Status codes returned by the file system often assist in determining 
which class of Status message, if any, should be sent on the 
completion of each operation. However, ultimate responsibility for 
the classification and mapping of file system status codes into DAP 
Status messages resides with those who implement DAP server (accessed) 
processes. The following SUbsections contain examples of the handling 
of both warning and error Status messages. 

5.2.1 Sequential File Retrieval - For sequential file retrieval, the 
accessed system sends data records. Once the initial startup sequence 
is completed and the data stream initiated, a single Control message 
(Get) is sent to start data records flowing. Thereafter, the file 
records are transmitted without waiting for any further DAP messages 
to control sending messages. The lower level protocols perform all 
flow control. 

To specify sequential file retrieval, the accessing process specifies 
sequential file access (or virtual block number file transfer) in the 
Control (Get) message. The accessed process then sends file records 
(or blocks) without waiting for any further DAP Control messages. In 
contrast to sequential file retrieval, if sequential record access is 
specified, the accessing process must send a Control message for each 
record retrieved. 

Data messages continue to arrive until one of the following occurs: 

• The end-of-file is reached on the accessed system. 
• An error occurs in accessing the file. 
• The accessing system decides it has completed its access. 

In the first case, the last record sent in a data message is followed 
by a Status message with end-of-file detected set. In the second 
case, a Status message is sent when an error occurs in accessing the 
original file. 

If the accessing system receives a Status message with end-of-file, it 
sends an Access Complete message and waits for an Access Complete 
(Response). It then either disconnects or initiates another access by 
sending a setup sequence. If the accessing process receives a Status 
message with either an error or warning, it may either send an Access 
Complete Command and wait for an Access Complete (Response) or try to 
recover with a Continue Transfer. 

68 



If the accessing system decides to terminate access prior to 
end-of-file, it sends an Access Complete (Close) and waits for an 
Access Complete (Response) in return. In such cases, an accessing 
system issuing an Access Complete (Close) may still receive one or 
more records for the file, an end-of-file indication or even a Status 
message due to the pipelining delay in the system. It should pass 
over these records until an Access Complete (Response) is received. 
It may then disconnect or access another file. 

A numbei 
diagrammed 
messages to 
messages to 

of possible sequential 
below. In each case, 
the left of the arrows. 
the right of the arrows. 

file retrieval sequences are 
the accessing process sends the 
The access process sends the 
Optional messages are bracketed. 

1. Retrieval until End-of-File (EOF): 

CONTROL (GET)------> 
<------RECORD 1 

<------RECORD n 

NOTE 

Transfer continues until End-of-File or 
error 

<------STATUS (End-of-File) 

ACCOMP (CLOSE)------> 
<------ACCOMP (RESPONSE) 

The accessing process may now issue another 
access or disconnect the link. 

2. Retrieval until error or warning status: 

<------RECORD n 
<------STATUS 

NOTE 

The STATUS message occurs while trying 
to read record n+l. 

When an error is received, the accessing process can do one 
of the following: 

(a) Requ~st link termination. 

ACCOMP (CLOSE)--------> 
<------ACCOMP (RESPONSE) 

(b) Request the information be sent again 

CONTINUE (TRY AGAIN)------> 
(------RECORD n+l 

69 



(c) Skip that record and continue 

CONTINUE (SKIP)------> 
<------RECORD n+2 

(d) When a warning is received, the accessing process can 
request link termination as in (a) above or resume processing 
by sending a Continue Transfer (Resume) message. 

CONTINUE (RESUME)-----> 
<------RECORD n+l 

3. Retrieval with access termination: 

<----RECORD m 
ACCOMP (CLOSE)----> 

<----ACCOMP (RESPONSE) 

The accessed process may set a timer following sending Access 
Complete (Response). If neither a Disconnect or another 
message is received within the time interval, it may 
disconnect the link. 

4. Retrieval with checksum error on close: 

<----RECORD n 
<----STATUS (EOF) 

ACCOMP(CLOSE)----> 
<----STATUS(checksum error) 

ACCOMP(CLOSE)----> 
<----ACCOMP(RESPONSE) 

Do not send an Access Complete (Purge) to the accessed 
process as it purges the input file. Sending the Access 
Complete message with the CHECK field cauSeS a comparison of 
the checksums. If the CHECK field is omitted, checking is 
by-passed. See Section 5.5.2. 

5.2.2 Sequential File Storage/Append - In the store case, data is 
sent to the accessed system. Following the initialization of the data 
stream, the accessing system sends a Control (Put) message to tell the 
accessed process what to do. The Control message is followed by file 
records using the Data message. The accessed system accepts these 
messages and continues until the accessing system sends an Access 
Complete (Close). This causes a corresponding Access Complete 
Response to be returned following successful file closure, or a Status 
message to be sent if an error occurs in closing the file or a 
checksum failure is detected. For other than a checksum failure, the 
access is concluded and another access may start or the link may be 
disconnected. If a checksum failure is detected, another Access 
Complete (without the CHECK field) is sent, either close or purge, to 
terminate the access the way the user desires. 

To specify sequential file storage, the accessing process specifies 
sequential file access in the Control message together with Put. To 
specify sequential file append, the operations are the same except 
"position to EOF" is specified in the Control message in addition to 
Put and sequential file access. As with sequential file retrieval, 
sequential file storage implies the use of only one data stream and no 
Control messages after the initial Control (Put) message. 

70 



Example 1 below shows an optional Access Complete (End-of-Stream) 
message flushing the pipeline before closing the file. This 
resynchronizes the accessing and accessed processes. Thus, error 
handling is easier if an error occurs in writing the final records to 
the file when the user issues a close command. After the error is 
returned to the user, he has the option of purging the file as the 
Access Complete (Close) is not yet in the pipe. 

If an error occurs during record transfer, the accessed system returns 
a Status message. This must always be replied to with a Continue 
message sent as an Interrupt message (because of possible pipelining) . 
In addition, to terminate the access, send an Access Complete message. 

A list of sequential file storage sequences follows. In each sequence 
the accessing process sends the messages to the left of the arrows. 
The accessed process sends the messages to the right of the arrows. 

1. Store with no errors: 

CONTROL (PUT) 
RECORD 1 

------) 
------) 

NOTE 

Transfer continues until 
complete or error 

RECORD n ------) 
[ACCOMP (EOS)------)] 

access is 

[<------ACCOMP (RESPONSE)] 
ACCOMP (CLOSE) ------) 

<------ACCOMP (RESPONSE) 

2. Error during transfer: 

(a) Purge the new file and terminate: 

RECORD n ------) 
<------STATUS 

ACCOMP (PURGE) ------) 
CONTINUE (ABORT) ------) (INTERRUPT) 

NOTE 

On receiving the Continue Transfer 
Interrupt message, the accessed system 
discards records until Access Complete 
(Purge) is received. It then purges the 
incomplete file and returns an Access 
Complete. 

<------ACCOMP (RESPONSE) 

or 

71 



(b) Close the new file and terminate: 

ACCOMP (CLOSE) ~-----> 
CONTINUE (ABORT) ------> (INTERRUPT) 

NOTE 

The accessed system discards records 
until the Access Complete (Close) is 
received and then closes the incomplete 
output file. 

<------ACCOMP (RESPONSE) 

or 

(c) Retry--the accessed system still has the record which 
caused the error in its buffer: 

CONTINUE (TRY AGAIN)------> (INTERRUPT) 
RECORD n+l ------> 

or 

(d) Skip the record and continue: 

CONTINUE (SKIP)------> (INTERRUPT) 
RECORD n+l ------> 

NOTE 

On an error, the accessed process does 
not issue any more receives after 
sending the Status message and before 
receIvIng the Continue message, which 
tells it what to do. If the accessIng 
process responds to the error by sending 
an interrupt Continue Transfer (Retry) 
message and the retry is successful, the 
accessed process posts a receive and 
carries on with the data transfer. If 
the retry fails, another Status message 
is sent. A Continue message with skip 
always posts a receive and tries to 
carryon having skipped the record which 
caused the original error. For file 
transfer store or append, continue 
messages must be sent in interrupt mode 
as there may be data in the pipeline. 

3. Warning during transfer: 

(a) Resume after receiving warning status: 

RECORD n ------> 
<------STATUS (WARNING) 

CONTINUE (RESUME) ------> (INTERRUPT) 
RECORD n+l ------> 

or 

72 



(b) To terminate the access after a warning, follow sequence 
2(a) above to purge the output file or 2(b) to keep the 
output file. 

NOTE 

After sending the 
message, the accessed 
more receives until 
interrupt Continue 
instructing it what to 

warning Status 
prpcess issues no 
it receives an 
Transfer message 
do. 

4. Stopping a sequential file storage operation before it is 
complete and purging the incomplete file on the accessed 
system: 

RECORD n---------------> 

ACCOMP (PURGE) -------> Purge the incomplete file 

<----ACCOMP (~ESPONSE) 

To save an incomplete file on the accessed system, the 
operations are as in Step 1. 

5. Checksum error on close: 

Record N----> 
ACCOMP (CLOSE)----> 

<----STATUS (Checksum error) 

ACCOMP(CLOSE/PURGE)----> 

<----ACCOMP(RESPONSE) 

The user can either keep or purge the erroneous output file 
by sending either a close or purge Access Complete message 
without the CHECK field. 

5.2.3 Record Retrieval - Record retrieval requires that a Cuntrol 
message (with a record key for random retrieval) be sent by the 
accessing process for each record accessed. To specify record 
retrieval, the accessing process sets sequential record access, keyed 
access or Record File Address (RFA) access in the Control message. 
Block mode transfer, similar to record retrieval, is specified by 
setting virtual Block Number (VBN) access. 

For keyed, VBN, or RFA access, the sequence is as follows: 

CONTROL (get record with Key n)----> 
<---- RECORD n, STATUS 

CONTROL (get record with Key m)----> 
<---- RECORD m, STATUS 

73 



For sequential record access, the state operation is as follows: 

CONTROL (get sequential)---------> 
<---- RECORD k, STATUS 

CONTROL (get sequential)--------> 
<---- RECORD k+l, STATUS 

Once the location of a 
random access, the 
sequentially. To do 
sequential in the 
systems, the user is 

particular record in a file is found using 

rules.) 

user frequently wants to get subsequent records 
this, switch the access mode from keyed or RFA to 
Control message, and issue a Get. (With RMS 
free to switch access modes according to the RMS 

CONTROL (get record with Key r)----> 
<----RECORD r, STATUS 

CONTROL (get sequential) --------> 
<----RECORD r+l, STATUS 

Once a particular record in a file is found, it is possible to 
transfer the remainder of the file in sequential file access mode. 

CONTROL (get record with key t)----> 
<----RECORD t, STATUS 

CONTROL (sequential file access, get)-----> 
<----RECORD t+l, STATUS 
<----RECORD t+2, STATUS 

to end-of-file 

Error handling for sequential record retrieval is similar to error 
handling for sequential file retrieval. The handling of warnings is 
easier, however. In order to continue processing, the accessing 
process sends a Control (Get). A Contine Transfer (Resume) is not 
necessary, but should be ignored if received. 

Error handling for random record retrieval is similar to that for 
sequential file retrieval. However, the Continue (Skip) recovery 
option, which is valid for sequential retrieval, is not valid for 
random retrieval. When a control request specifies a nonexistent 
record while doing random record retrieval, the accessed process will 
return an appropriate error message (for example, record number out of 
range or record not found). 

5.2.4 Record Store - This is similar to sequential file store in 
messages exchanged. The access message specifies whether to open an 
existing file or create and open a new file. The Control message must 
specify Put access. For record storage, the accessing process may 
specify sequential record access, or keyed access. Optionally, VBN 
access may also be used. 

For relative files, the data messages must include the relative record 
number field specifying the number of the record (RECNUM). For hashed 
files where the user is supplying his own hash code (RB$HSH set in the 
ROP field of a Control message), RECNUM contains the hash code. In 
all other cases, the contents of RECNUM are ignored and will probably 
be set null to minimize data transmission overhead. For sequential 
files, records are written starting at the current position within the 
file. 

74 



The sequence of records to be stored may be preceded by a Control 
(Put) message if it is necessary to change record options or access 

mode from the current value. Optionally, each record to be stored may 
be preceded by a Control (Put) message. This is inefficient, however, 
since it doubles the number of DAP messages transmitted. When storing 
a record, if the Data message is preceded by a Control message that 
contains a record number in the KEY field and the Data message also 
contains a record number in the RECNUM field, then the record number 
in the RECNUM field will be used. 

The sequence for record storage with return of status is as follows: 

RECORD n --------> 

<-------- STATUS 

RECORD n+l ------> 

<-------- STATUS 

Section 5.2.2 describes error-handling. Note that a warning Status 
message requires an interrupt Continue Transfer (Resume) (or Abort) to 
restart processing because of possible pipelining problems. Continue 
(Skip) causes the accessed process to ignore the record which caused 
the error and go on to process the next DAP message. 

5.2.5 Append to Existing File - The append operation is identical to 
sequential store and applies only to sequential files. The accessed 
system places the records at the logical end of the file. The Control 
message sets the position to EOF. The sequence is as follows: 

RECORD 1--------> 

<-------- STATUS 

RECORD 2--------> 

<-------- STATUS 

5.2.6 Deleting a File - The delete operation (Erase) does not cause 
any file data to be transferred, but does manipulate file structures. 
Deleting a file does not require an Attributes message in the setup 
sequence. 

The message sequence for the delete operation is as follows: 

[ATTRIBUTES---------->] 

ACCESS (ERASE) -----> 

<-----ACCOMP (RESPONSE) 
or 

<~----STATUS 

75 



5.2.7 Command/Batch Execution Files - The Data Access Protocol 
includes commands for the transfer and submission of files to a batch 
processing facility or command interpreter. The 
"submit-as-command-file" request in the Access message requests the 
storage of the data that follows in a temporary file. This request 
also indicates submission of the file to a batch-type facility upon 
access completion (closing of the file) . The batch facility deletes 
the file following execution. DAP does ~ot respond to any feedback 
from the batch facility. DAP does not guarantee that the file 
actually executes in the batch monitor. DAP transfers the file using 
sequential file storage (Section 5.2.2). 

The "execute-as-command-file" requests the submission of the specified 
file to the batch facility only. No data follows this command. The 
specified file is previously established on the accessed system. The 
file is not deleted following execution by the batch facility, so that 
the sequence "store," and "execute-command-file" will transfer a file, 
submit it and retain the file for later use. The sequence for 
"submit-as-command-file" is identical to "store," while the 
"execute-command-file" is identical to Erase. 

NOTE 

Since errors are not returned to the 
originating node automatically, a test 
for errors might be included in indirect 
command files. Upon error or 
completion, a suitable message can be 
returned to the originating node. 

5.2.8 Renaming a File - The rename operation does not cause the 
transfer of any file data. However, it does require the transmission 
of two file specifications. The old name of the file is in the Access 
message; the new name for the file is in the Name message following 
the Access message. Rename does not require an Attributes message in 
the set up sequence. 

The message sequence for the rename operation is as follows: 

[ATTRIBUTESj---------> 

ACCESS (RENAME)------> 

NAME (FILESPEC)------> 

<----------ACCOMP (RESPONSE) 
or 

<----------STATUS 

5.2.9 Extending Files - File systems often offer an automatic file 
extension facility to extend an existing file when space runs out but 
there is more data to be written to the file. However, automatic file 
extension usually offers little control over the size and placement of 
file extensions. 

76 



Another method of extending a file is to use the explicit $EXTEND code 
of the Control message where a file system supports user directed 
extension. User directed file extension is initiated after the file 
is open. The DAP state operations are: 

data traffic on link 

ALLOC 1 ------> 

ALLOC n ------> 

CONTROL (EXTEND)------> 

<-------ALLOC 1 

<-------ALLOC n 

<-------STATUS 

continue data traffic on link 

Precede the Control (Extend) message by one or more ALLOC (Allocation 
Attributes Extension) messages specifying the type of extension 
desired. Return a corresponding number of ALLOC messages, specifying 
the extensions performed. Return a Status message terminating the 
string of returned ALLOC messages. If an error occurs, a Status 
message will contain the error code. 

5.2.10 Display Attributes - This command provides a means of 
obtaining attribute information about a file. It is specifically for 
use with RMS file systems. If this command is used, the accessing 
node must specify which groups of attributes it wants. It does this 
by setting the appropriate bits in the DISPLAY field of the Control 
message sent to the remote node. In the case of the allocation and 
key definition groups of attributes, the appropriate Key Definition 
and Allocation Attributes Extension messages precede the Control 
message to indicate for which Keys of reference or which areas 
attributes are required. 

77 



The state operations for display are: 

[ATTRIBUTES 
EXTENSION-------------> 
MESSAGES] 

CONTROL (Display)------> 

<---------[ATTRIBUTES and ATTRIBUTES EXTENSION 
MESSAGES AS REQUIRED] 

<---------STATUS 

5.2.11 Directory List - A directory or multiple directory listing 
request causeR the accessed process to return the file attributes of 
the files specified in the FILESPEC field of the Access message 
requesting the directory list. The accessed process returns 
attributes using the Attributes and Attributes Extension messages. 
The accessing process can specify which Attributes messages it wants 
by setting the appropriate bit(s) in the DISPLAY field of the Access 
message. If the DISPLAY field requests the Name message (bit 8), the 
resultant file name is returned with the Attributes messages in a Name 
message. This Name message is in addition to the Name messages shown 
in the state operations below. 

The file specification in the Access message may contain such "wild 
cards" as are recognized by the accessed process. 

As can be seen from the state operations for directory list below, a 
Name message for the file the Attributes messages describe precedes 
each group of Attributes messages. If no bits in the DISPLAY field of 
the requesting Access message are set, only the Name messages are sent 
(no Attributes messages). A Name message precedes all the files in a 
given directory. Optionally, if all the directories for which a 
listing is requested do not reside on the same volume-set (or 
structure) , a Name message precedes the directories for each 
volume-set. The Name message indicates which volume-set the following 
directories are on. 

The state operations for directory listing are: 

ACCESS(DIRECTORY)------------> 

[<----------NAME (VOLUME-SET)] 

<----------NAME (DIRECTORY) 

<----------NAME (FILE) 

[<----------ATTRIBUTES] 

[<----------ATTRIBUTES EXTENSION] 

[<----------ATTRIBUTES EXTENSION] 

<-----------NAME (FILE) 

[<----------ATTRIBUTES] 

78 



[<----------ATTRIBUTES EXTENSION] 

[<----------ATTRIBUTES EXTENSION] 

<-----------NAME (FILE) 

[<----------ATTRIBUTES] 

[<----------ATTRIBUTES EXTENSION] 

[<----------ATTRIBUTES EXTENSION] 

<-----------NAME (DIRECTORY) 

<-----------ACCOMP (RESPONSE) 

The accessing process may terminate a directory listing at anytime by 
sending an Access Complete (Close) . This causes the accessed process 
to send no more Name or Attributes messages, to finish its operation 
(for example, close any files it may have open) and finally to return 
an Access Complete (Response) . Note that due to pipelining, the 
accessing process may receive several Attributes and/or Name messages 
before receiving an Access Complete (Response) after it sends an Access 
Complete (Close) . 

Errors occurring during a directory listing result from trying to 
obtain information to generate either a Name message or an Attributes 
or Attributes Extension message when reading a directory or the 
attributes of a file. On a gross level, errors will be either read 
errors, access protection violations, or non-existent attributes (for 
some reason, the attributes for a file cannot be found or do not 
exist). Read errors are handled by using the Continue Transfer (Try 
again or Skip) or Access Complete (Close). Protection violations and 
non-existent attributes errors are handled using the Continue Transfer 
(Skip) or Access Complete (Close). Continue Transfer (Try again) 
usually just returns the same error. 

Access Complete (Close) terminates the directory listing, closes any 
open files and leaves the link in a state where another DAP access may 
be started. Continue Transfer (Try again) repeats the operation that 
failed. Continue Transfer (Skip) causes the accessed process to skip 
over the operation causing the error, and attempt to recover the 
listing that lost some information. For example, this operation tries 
to read subsequent blocks in the directory, trying to get the next 
file name. Or the operation may attempt to read the next block 
containing attributes for the current file. In some cases, it may not 
be possible to recover using Continue Transfer (Skip). 

79 



The following are examples showing error handling for directory 
listing: 

1. Using Access Complete(Close) to terminate listing: 

ACCOMP(CLOSE) 

<---------- NAME (FILE) 
<---------- ATTRIBUTES <---------- STATUS ----------> <---------- ACCOMP(RESPONSE) 

2. Using Control(Skip) to skip over error (some information will 
always be lost and in some cases it may not be possible to 
recover): 

(a) Error on reading file name: 

CONTROL (SKIP) 

<---------- NAME (FILE) <---------- ATTRIBUTES 
<---------- STATUS ----------> <---------- NAME(of next file) 

(b) Protection violation on reading file attributes 

CONTROL (SKIP) 

<---------- NAME(FILE) 
<---------- STATUS 
----------> <---------- NAME(of next file) 

(c) 'Unable to recover after error: 

CONTROL (SKIP) 

ACCOMP(CLOSE) 

<---------- NAME (FILE) <---------- ATTRIBUTES <---------- STATUS 
-,---------> 

, <---------- STATUS (can not 
recover) 

----------> <---------- ACCOMP(RESPONSE) 

80 



5.2.12 Rewind Data Stream - $REWIND sets the current context of the 
stream identified by the STREAMID field of the Control message to 
beginning of file (BOF). The state operations for rewind are: 

CONTROL(REWIND)------> 

<------STATUS 

5.2.13 Truncate File - $TRUNCATE truncates sequential files and is 
not a valid operation on other file types. 

It causes the deletion of all records from the current record on, and 
the declaration of an EOF in place of the current record~ 

CONTROL(TRUNCATE)------> 

<------STATUS 

5.2.14 Free Buckets - $FREE unlocks all locked records in the stream 
identified by the STREAMID field of the Control message. 

CONTROL(FREE)------> 

<------STATUS 

81 



5.2.15 Space Forward or Backward - $SPACE forward or backward spaces 
the file the number of blocks specified in the KEY field. 

CONTROL (Forward/Backwardl------> 

<------STATUS 

The RECNUM field of the Status message contains the number of blocks 
actually spaced. This may not be the same as the number of blocks 
specified in the Control message. For example, if the current 
position is VBN 7, a backspace of 10 will not actually backspace 
beyond the beginning of file. 

5.2.16 Flush I/O Buffers - $FLUSH writes out all modified I/O buffers 
associated with the record access stream identified by the STREAMID of 
the Control message. 

CONTROL(FLUSHl------> 

<------STATUS 

5.2.17 Deleting a Record - $DELETE deletes the current record for 
these files where record deletion is possible. For example, relative 
or indexed files usually support record deletion. 

CONTROL(DELETEl------> 

<------ STATUS 

82 



5.2.18 Find - $FIND operation is essentially identical to $GET except 
that it does not transfer any data. The specified record becomes the 
current record. 

CONTROL(FIND)------) 

(------ STATUS 

5.2.19 Update - $UPDATE causes the current record to be updated with 
the record ln the following Data message on this stream. The 
Control (Update) and Data messages together form a transaction and must 
not have any intervening messages on that stream. For convenience and 
efficiency, they can be blocked together. The operation is: 

CONTROL(UPDATE)-----) 

DATA -----) 

(----- STATUS 

Because of the transaction nature of update, if an error occurs at any 
point in the operation, the whole transaction fails. If the accessed 
process detects an error in the Control message, it sends the 
appropriate Status message and it also discards the next Data message 
on that stream as it was a part of the transaction that failed. The 
accessing process recovers by starting the transaction over (having 
corrected the error) with new Control and Data messages as below: 

CONTROL(UPDATE)-----) (error detected) 

DATA -----) (discard) 

(----- STATUS (with error code) 

Corrected 
CONTROL(UPDATE)-----) 

DATA -----) 

(----- STATUS (successful) 

83 



If an error is detected in the Data message, the accessed process 
returns the appropriate Status message and considers the whole 
transaction to have failed (current position may be lost depending on 
the nature of the error -- it may be necessary to re-establish the 
current position in the file). After correcting the error in the Data 
message, the accessing process must repeat the entire transaction: 

CONTROL (UPDATE)-----> 

DATA -----> (error detected) 

(----- STATUS (with error code) 

CONTROL(UPDATE)-----> 

Corrected 
DATA -----> 

(----- STATUS 

5.2.20 Wildcard Operations - The wildcard operation for sequential 
file retrieval, file deletion, file renaming and command file 
execution is supported through the DAP message sequences defined in 
the following subsections. The wildcard file specification contained 
in the Access message is in the format used on the accessed system. 

NOTE 

It is not necessary to specify wildcard 
support in the Configuration message in 
order to use wildcards with the 
directory list function. Directory list 
support implies wildcard support for 
directory list file specifications. 
However, wildcard support must be 
specified in order to use wildcards with 
any function other than directory list. 

84 



5.2.20.1 Wildcard Sequential File Retrieval - Wildcard sequential 
file retrieval operation is similar to sequential file retrieval as 
described in Section 5.2.1 except that Name messages and file 
attributes precede each transferred file. The state operations for 
wildcard sequential file retrieval are (optional Attributes Extension 
messages are not shown): 

ATTRIBUTES --------------> 
ACCESS (WILDCARD) --------------> 

CONTROL (CONNECT) 

CONTROL (GET) 

ACCOMP (CLOSE) 

CONTROL (CONNECT) 

CONTROL (GET) 

[<------------
[<------------
<------------
<------------
<------------
--------------> 
<------------
--------------> 
<------------
<-------------

<------------
<------------
--------------> 
<------------
<------------
<------------
--------------> 
<------------
---_._---------> 
<-------------

NAME (VOLUME-SET)] 
NAME (DIRECTORY)] 
NAME (FILE) 
ATTRIBUTES 
ACK 

ACK 

DATA 
DATA 

DATA 
STATUS (EOF) 

NAME (FILE) 
ATTRIBUTES 
ACK 

ACK 

DATA 

<------------- STATUS (EOF) 
ACCOMP (CLOSE) 

CONTROL (CONNECT) 

CONTROL (GET) 

ACCOMP (CLOSE) 

--------------> 

<------------
<------------
<------------
--------------> 
<------------
--------------> 
<-------------

<------------<------------
--------------> 
<-------------

NAME (FILE) 
ATTRIBUTES 
ACK 

ACK 

DATA 

DATA 
STATUS (EOF) 

ACCOMP (RESPONSE) 

A new Name message for the volume-set or directory is sent only when 
either the volume-set or directory change. 

85 



If the accessing process does not want one of the files specified by 
the wildcard file specification, it closes the file instead of 
establishing a data stream thus skipping the file. 

ACCOMP (CLOSE) 

<------------<------------<------------
-------------> 

NAME (FILE) 
ATTRIBUTES 
ACK 

<------------- NAME (of next file) 

If, during a file transfer, the accessing process decides it does not 
require the remainder of the file but wants to go on to the next file, 
the accessing process terminates the access to the current file with 
an Access Complete (Close) • The accessed process closes the current 
file and initiates the transfer of the next file in the wildcard 
series. Note that due to pipelining, the accessing process may 
receive several Data messages or a Status message before the Name 
message. 

<------------- NAME (FILE) <------------- ATTRIBUTES 
<------------- ACK 

CONTROL (CONNECT) --------------> 
CONTROL (GET) 

ACCOMP (CLOSE) 

<------------- ACK 
--------------> <------------- DATA <------------- DATA 

<------------- DATA --------------> 
<------------- NAME (FILE) <------------- ATTRIBUTES 
<------------- ACK 

86 



The accessing process may abort a wildcard file retrieval at anytime 
by disconnecting the link. When the accessed process detects link 
termination, it closes any currently open files. 

CONTROL (CONNECT) 

CONTROL (GET) 

<------------
<------------
<------------
--------------> 
<------------
--------------> 
<-------------

disconnect link 

NAME (FILE) 
ATTRIBUTES 
ACK 

ACK 

DATA 

Errors for wildcard sequential file retrieval are handled as with 
normal file retrieval except for errors in closing the file (excluding 
checksum errors). In this case Access Complete (Skip) forces file 
closure and clears the link so the accessed process can proceed to the 
next file to be transferred. 

ACCOMP (CLOSE) 

ACCOMP (SKIP) 

ACCOMP (CLOSE) 

-------------> 
<------------- STATUS 
-------------> 
<------------- NAME (next file) 
<------------- ATTRIBUTES 

or 

-------------> 
<------------- STATUS 
disconnect link 

5.2.20.2 Wildcard File Deletion - Wildcard file deletion has two 
modes of operation: 

1. Normal. Delete all files specified by the wildcard 
specification before returning any response (except error) to 
the accessing process. 

2. Go/No-Go. Return the name of each file meeting the wildcard 
file specification to the accessing process before deleting 
the file. The accessing process can then cause the file to 
be deleted by sending a Control (Resume) message or the file 
to be left in the file system by sending a Control (Skip) 
message. Setting bit 4 in the ACCOPT field of the Access 
message specifies the Go/No-Go mode of operation. 

87 



The operation of normal wildcard file deletion is: 

ACCESS (WILDCARD) ---------------) <-------------- ACCOMP (RESPONSE) 

Operation of Go/No-Go wildcard file deletion is: 

ACCESS (WILDCARD) --------------) 

[<-----~-------- NAME (VOLUME)] 
[<-------------- NAME (DIRECTORY)] <-------------- NAME (FILE) 

CONTROL (RESUME) --------------) (delete file) 

. <-------------- NAME (FILE) 
CONTROL (SKIP) --------------) (do not delete) 

<-------------- NAME (FILE) 
CONTROL (RESUME) --------------) (delete file) 

<-------------- NAME (FILE) 
CONTROL (RESUME) --------------) (delete file) 

<-------------- ACCOMP (RESPONSE) 

Abort Go/No-Go wildcard file deletion by disconnecting the link. 

ACCESS (WILDCARD) -------------) 

[<------------- NAME (VOLUME)] [<------------- NAME (DIRECTORY)] 
<------------- NAME (FILE) 

CONTROL (RESUME) -------------) 

<------------- NAME (FILE) 
disconnect link 

Use the Continue Transfer message to handle errors in wildcard file 
deletion. Either retry the deletion that caused the error or skip the 
file causing the error. Alternatively, abort the operations by 
disconnecting the link. The operation of error handling (with 
GO/NO-Go) is: 

ACCESS (WILDCARD) -------------) 

[<------------- NAME (VOLUME)] [<------------- NAME (DIRETORY)] 
<------------- NAME (FILE) 
<------------- STATUS 

CONTROL (TRY AGAIN) -------------) (Repeat operation) 

or 

88 



CONTROL (SKIP) 

<------------- NAME (FILE) 
<------------- STATUS 

-------------> (Skip file) 

CONTROL (RESUME) 
<------------- NAME (of next file) 

-------------> (delete next file) 

or 

<------------- NAME (FILE) 
<------------- STATUS 
disconnect link 

The operation of error handling without the Go/No-Go option is 
identical to that with GO/No-Go except that once the error has been 
dealt with, the Control (Resume) is not required as in the above 
sequence. The operation without Go/No-Go is as follows: 

ACCESS (WILDCARD) -------------> 

[<------------- NAME (VOLUME») 
[<------------- NAME (DIRECTORY») 
<------------- NAME (FILE) 
<------------- STATUS 

CONTROL (TRY AGAIN) -------------> (Repeat operation) 

CONTROL (SKIP) 

or 

<------------- NAME (FILE) 
<------------- STATUS 

-------------> (Skip file) 

or 

<------------- NAME (FILE) 
<------------- STATUS 
disconnect link 

NOTE 

GO/No-Go operation can also be used with 
single file delete. Setting bit 4 of 
ACCOPT requests this option. 

5.2.20.3 Wildcard File Rename - Wildcard file 
identical to wildcard file deletion except 
specification must be supplied as for normal 
5.2.8). This affects only the set-up as shown 
operation) : 

ACCESS (WILDCARD)---------------> 
NAME (WILDCARD) ---------------> 

rename operation is 
that a second file 
rename (see section 
below (using Go/No-Go 

[<-------------- NAME (OLD VOLUME)] [<-------------- NAME (OLD DIRECTORY») <-------------- NAME (OLD FILE) 
CONTROL (RESUME) ---------------> (rename file) 

<-------------- ACCOMP (RESPONSE) 

In other respects, wildcard rename operation is identical to wildcard 
. delete. 

89 



5.2.20.4 Wildcard Comm*nd Fil~ Execution - Wildcard command file 
execution operation is identical to wildcard file deletion operation. 

5.3 Closing a File and Terminating Data Streams 

The Access Complete End of Stream (EOS) command terminates a data 
stream. When the accessing process wishes to terminate a data stream, 
it may do so by sending an Access Complete (EOS) containing the 
STREAMID it wishes to terminate. This will not close the file even if 
it terminates the last active data stream. 

An Access Complete (Close) closes the file and terminates the access. 
This includes closing out all remaining active data streams. 

5.4 Terminating a Logical Link 

Terminate the logical link by issuing a Disconnect Request. During 
the setup of the link, this may be done by the accessed process if 
optional timers indicate delay by the accessing process in supplying 
the required information. Once setup is complete, the accessing 
process controls the rate of access of the file. Disconnection at 
this point usually follows access completion. The accessing process 
may disconnect at any time; however, different systems may handle 
file closing and disposition differently if disconnection occurs 
during transfers. 

The accessing process is not required 
following each access. However, if a 
must be initiated in a timely manner. 
between setup messages, it should also 
following an Access Complete message. 

~o disconnect and reconnect 
new access is to be started, it 

If a timer is being used 
be set by the accessed process 

5.5 File Security, Integrity and Protection 

5.5.1 Access Control - OAP attempts to provide approximately the same 
degree of file security and protection over the network as is 
available locally. To do this, a DAP user must be a registered user 
of each system holding files he wishes to access. Embedded in the 
connect message sent by the accessing process is sufficient 
information for the user to be logg'ed onto the system that has files 
he wishes to access. User access is first ve~ified (not necessarily 
actually logged-on) and then file access is allowed to proceed under 
the normal rules for file access applicable to a local user. 

If the accessing process wants to change the account under which the 
accessed process is running at the remote node, it must disconnect the 
logical link and reconnect specifying the new account in the connect. 

90 



5.5.2 Data Integrity - A checksum on all data transferred (in both 
directions) during a file access can be generated by both the 
transmitting and receiving node to ensure data integrity. If this 
optional checksum is required, a bit in the ACCOPT field of the Access 
message is set. The accessing and accessed DAP processes compute the 
checksum on the data in the DAP Data message whenever a Data message 
is sent or received. When the access is complete and the remote file 
is being closed, the checksum generated by the accessing process is 
sent to the accessed process in the CHECK field of the Access Complete 
(Close) message. The accessed process compares the checksum it 
received with the checksum it generated and closes the file if they 
agree. If they do not agree, a Status message is returned to the 
accessing process instead of an Access Complete (Response). If a 
checksum error occurs, the accessing process can either purge the 
output file or, if errors can be tolerated, keep and close the output 
file (Sections 5.2.1 and 5.2.2) by sending the appropriate Access 
Complete message without the CHECK field. Checksum errors should be 
logged by the accessing process (and optionally by the accessed 
process) . 

The checksum is a CRC computed only on the data in DAP Data messages. 
Data message headers are not included. The CRC polynomial is: 

X**16 + X**15 + X**13 + X**7 + X**4 + X**2 + X + 1 

Before starting data transfer, initialize the 16-bit CRC to -1. In 
other words, set all bits. 

5.6 DAP-Based Applications written by DIGITAL 

DAP message types 128 through 191 are reserved for DEC-written 
applications based on DAP that require further application-specific 
messages in the protocol. FTS is an example of such an application. 
It requires the USERID message defined in Appendix A to supply 
accounting and access control information to the remote FTS server 
process. 

5.6.1 Access Control and Accounting for DAP-Based Applications - The 
User Identification message is designed for use by applications using 
cooperating, DAP-speaking control processes to offer a file transfer 
based service to network users. One of the control processes is a 
queueing process that handles the user's requests for file transfer, 
and the other is a server process that handles the remote end of 
executing the users transfers. These control processes 
characteristically establish a link and sequentially transfer several 
users' files over the same link. The server control process runs as a 
privileged process. It has access to all files within the system. 

This scheme places the responsibility for access control (a user 
should be allowed to access only those files he has explicit 
permission to access) and accounting (charge each user for the 
resources he uses) on the cooperating control processes. The control 
processes are charged for the resources they use as they are logged on 
the systems they are running on. They need to pass the charges on to 
the users of the services. In order to perform access control and 
accounting functions, the server process needs the user's 
identification and optional account number. The User Identification 
message (see Appendix A) supplies this information. 

91 



Note that security is not an issue here. The server process "trusts" 
the queueuing process and assumes that the contents of the User 
Identification messages are correct and any necessary validation has 
been done by the queueing process. Therefore a password is bot 
necessary or even desirable in this message. The server process can 
"trust" the queueing process as long as it is talking to a valid 
queueing process. This is ensured by the Session Control access 
control procedure which validates a password supplied by the queueing 
process before it allows a logical link to be established. 

92 



APPENDIX A 

USER IDENTIFICATION MESSAGE 

The User Identification message is an application message designed for 
use by DIGITAL's File Transfer System (FTS) and other DAP-based 
applications using the same queueing model. This queueing model 
consists of two controlling processes which speak DAP across the 
network. One of the processes accepts and queues requests from users 
to transfer files. The other is a server process which executes the 
user's requests at the remote node in response to DAP messages from 
the first process. A single logical link may be used to sequentially 
process any number of user requests. It is not necessary to 
disconnect the link after processing each user's file transfer 
request. 

In order that appropriate access control and accounting measures can 
be taken by the server process, the queueing control process sends a 
User Identification message each time it initiates a file access for a 
new user. The User Identification contains the identity (for example, 
PPN) under which the access at the remote node takes place plus the 
optional user account number. The User Identification message is sent 
immediately before the Attributes message when initiating a new file 
access. The form of the message is: 

!USERID!IDMENU!IDENT!ACCOUNT!OPTIONS! 

where: 

USERID 

IDMENU(EX-6) BM 

IDENT(I-40) A 

The operator field with TYPE = 128. 

The following bit map specifies which of the 
following fields are present in this message. 
If the field is not present, the default, if 
any, should be used. These fields and only 
these fields may appear in the message and they 
must appear in the order specified. 

Bit Meaning (When Set) 

0 IDENT 
1 ACCOUNT 
2 OPTIONS 

The user identification (for example, UIC) under 
which the server process will execute the 
following remote file accesses. This 
establishes the user's identity for both 
resource usage accounting at the remote node and 
file access rights. If this field is defaulted, 
the previous identity in effect remains in 
effect. When a link is first established, the 
user identity from the Session Control connect 
message is the user identity in effect. 

93 



ACCOUNT(I-40) A 

OPTIONS(I-132) A 

USER IDENTIFICATION MESSAGE 

For systems requiring additional information for 
accounting (for example, discrete project 
number) this field contains this accounting 
information. 

Options field for additional information which 
may be required by the server control process. 
It may be used for supplemental accounting 
information, page headers, or, non-network 
routing information for mail. 

94 



APPENDIX B 

REVISION HISTORY 

B.l Version 1.0 to Version 4.1 

A number of significant changes have been made to the Data Access 
Protocol since its first release. The major differences between DAP 
Version 4.1 and Version 1.0 are: 

• DAP Version 1.0 could not adequately support indexed and ISAM 
file access. 

• The format of the operator field has been expanded. 

• The User Identification message has been eliminated. 

• The Status and Error messages have been combined. 

• The Access Complete message has been added. 

• The Configuration message has been added. 

• The two types of Data messages employed in Version 1.0 have 
been merged into one Data message in Version 4.1. 

While a definite incompatibility exists between Versions 1.0 and 4.1, 
numerous steps have been taken to build a more flexible architecture. 
DAP Version 4.1 is flexible enough to allow new file access functions 
to be added to the protocol framework. 

B.2 Version 4.1 to Version 5.6 

A number of significant changes have been made to DAP since the 
Version 4.1 release. The major differences are as follows: 

• The Key Definition, Allocation, Summary, Date and Time, 
Protection, and Name messages have been added. Previously 
some of these were present but were marked reserved. 

• The format of the operator field has been expanded again to 
allow blocking of DAP messages greater than 256 bytes long and 
to allow an optional field in the Data message. 

• A file transfer checksum on the complete file has been added 
for better file integrity. 

• Indexed file access is now fully supported. Only record 
number random access was supported in 4.1. 

• The Configuration message has been expanded to include more 
capabilities. 

95 



REVISION HISTORY 

• Print file carriage control has been added. 

• The Image data type definition has been clarified, especially 
for files containing non 8-bit bytes. 

• The MACYll data type has been added. 

• Explanation of how to use the Extended Attributes messages has 
been added. 

• Rename has been added. 

• Display and Directory List have been added. 

• Several new Control message options have been added. 

• Wildcard support has been added. 

The 5.6 version of DAP is upwardly compatible with the 4.1 version. 
The new facilities in 5.6 have been put into the protocol using 
extensibility built into DAP Version 4.1. 

96 



REVISION HISTORY 

GLOSSARY 

bucket 

ISAM 

JFN 

key 

A grouping of a file's virtual blocks used for I/O transfer or 
structural format storage. 

Indexed Sequential Access Method. This access method is a 
combination of random and sequential access. Random access is 
used to locate a sequence of records and then access is switched 
to sequential to read the remaining records in the series. 

Job File Number. The JFN is the job's global handle on a file. 

A data item used to locate a record in a random access file 
system. 

key field 

For direct and indexed files, the position of the key within the 
record. 

key of reference 

The particular key field of the record for which the key applies. 

MACYll 

A format for fitting l6-bit words into 36-bit words for file 
transfers between PDP-II's and DECsystem l0's and 20's. 

octets 

Octets in this document are bytes of 8 bits, with bit 0 the 
rightmost (low-order, least-significant) bit and bit 7 the 
leftmost (high-order, most-significant) bit. Fields and bytes of 
other lengths are numbered similarly. 

object type 

Numeric value that may be used for process addressing by DECnet 
processes instead of a process name. See the Session Control 
specification for further details. DAP server processes are 
object type number 21 (octal). 

97 



RFA 

RMS 

URO 

VBN 

REVISION HISTQRY 

Record File Address. The unique address of a record within a 
file. This method of addressing can be used explicitly with RMS. 

Record Management Services. This file system will be used on all 
major DIGITAL systems except where space is limited (for example, 
RT-II). In addition to access modes provided by previous file 
systems, RMS provides random access for direct and indexed files 
and ISAM. 

unit Record Device. 

Virtual Block Number. This number is in the range I to n where n 
is the highest numbered block allocated to the file. 

wild card 

An asterisk (*) that replaces an element in a file specification. 
The asterisk specifies all known items in the range indicated by 
its position. For example, FILE.*~* specifies all known versions 
and types of all files named FILE. 

98 



DECnet DIGITAL Network 
Architecture Data Access 
Protocol Functional 
Specification (DAP) 
AA-Kl77A-TK 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[J Assembly language programmer 

[J Higher-level language programmer 

[J Occasional programmer (experienced) 

[J User with little programming experience 

[J Student programmer 
[J Other (please specify) __________________________________ ___ 

Name Date ______________________ ___ 

Organization ____________________________________________________________ __ 

Street __________________ ----____________________________________________ ___ 

City ___________________________ State _____________ Zip Code ____________ _ 

or 
Country 



- - - -Do Not Tear - Fold Here and Tape - - - - - -

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE DOCUMENTATION 
146 MAIN STREET ML 5-5/E39 
MAYNARD, MASSACHUSETTS 01754 

I 

I 
I 

- ---l 

No Postage 

Necessary 

if Mailed in the 

United States 

I 
- - - Do NotTear-Fold Here and Tape - - ~ - - - - - - - - - - - - - --, 


