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About this Manual

This book describes the organization and usage of object files and images that are
built on Tru64 UNIX systems.

Audience

This manual is targeted for compiler and debugger writers and other developers
who must access or manipulate object files. A familiarity with basic program
development and symbol table concepts is assumed.

Necessity

This manual is designed to fill a need for technical information for back-end
developers working on the Tru64 UNIX operating system. It supplements or
replaces information that has previously been available in the Assembly Language
Programmer’s Guide.

Organization

This manual is organized as follows:

Chapter 1 Provides background information on the development environment and
describes the high-level organization and usage of object files.
Chapter 2 Describes the header sections of the object file.
Chapter 3 Describes the contents of the “raw data” sections of the object file.
Chapter 4 Describes the relocation process and related structures
stored in the object file.
Chapter 5 Describes the symbol table.
Chapter 6 Describes the object file sections containing dynamic loading information.
Chapter 7 Describes the format and usage of the object file comment section.
Chapter 8 Describes the archive file format.
Chapter 9 Provides examples that illustrate symbol table representations.
Chapter 10 Provides programming examples to illustrate object file

and symbol table access.

Related Documents

This manual discusses the object file format from the perspective of tools

that produce or use object files. Understanding the purpose of these tools is

a prerequisite, but this information is touched upon briefly in this document.
The primary source for information on system programs in the development
environment is the Programmer’s Guide. The default debugger on Tru64 UNIX
is the ladebug debugger, which is treated separately in the Ladebug Debugger
Manual.

The contents of object files are also tied to the Alpha architectural implementation.
The Assembly Language Programmer’s Guide provides an architectural overview
that focuses on assembly level instructions and directives. Architectural
documentation is also available in the Alpha Architecture Reference Manual.
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The Calling Standard for Alpha Systems also contains material related to this
manual. The calling standard defines the interface and other requirements for
procedure calls on Alpha platforms.

Icons on Tru64 UNIX Printed Books

The printed version of the Tru64 UNIX documentation uses letter icons on the
spines of the books to help specific audiences quickly find the books that meet their
needs. (You can order the printed documentation from Compag.) The following
list describes this convention:

Books for general users

Books for system and network administrators

Books for programmers

Books for device driver writers

I O T 0 ®

Books for reference page users

Some books in the documentation help meet the needs of several audiences. For
example, the information in some system books is also used by programmers. Keep
this in mind when searching for information on specific topics.

The Documentation Overview provides information on all of the books in the Tru64
UNIX documentation set.

Reader's Comments

Xiv

Compaq welcomes any comments and suggestions you have on this and other

Tru64 UNIX manuals.

You can send your comments in the following ways:

= Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

= Internet electronic mail: readers comment@zk3.dec.com
A Reader’s Comment form is located on your system in the following location:
/usr/doc/readers_comment . txt

= Mail:

Compag Computer Corporation

UBPG Publications Manager

ZKO03-3/Y32

110 Spit Brook Road

Nashua, NH 03062-2698

A Reader’'s Comment form is located in the back of each printed manual. The

form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

= The full title of the book and the order number. (The order number is printed
on the title page of this book and on its back cover.)

= The section numbers and page numbers of the information on which you are
commenting.

= The version of Tru64 UNIX that you are using.
= If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local system
vendor or to the appropriate Compag technical support office. Information provided
with the software media explains how to send problem reports to Compag.
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Conventions

The following conventions are used in this manual:

o
o

$

file

[1]
{1}

cat(1)

Ctrl/x

Alt x

Colored ink

A percent sign represents the C shell system prompt. A
dollar sign represents the system prompt for the Bourne,
Korn, and POSIX shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates typed
user input.

Italic (slanted) type indicates variable values, placeholders,
and function argument names.

In syntax definitions, brackets indicate items that are
optional and braces indicate items that are required.
Vertical bars separating items inside brackets or braces
indicate that you choose one item from among those listed.

In syntax definitions, a horizontal ellipsis indicates that
the preceding item can be repeated one or more times.

A vertical ellipsis indicates that a portion of an example
that would normally be present is not shown.

A cross-reference to a reference page includes the
appropriate section number in parentheses. For example,
cat(l) indicates that you can find information on the cat
command in Section 1 of the reference pages.

In an example, a key name enclosed in a box indicates that
you press that key.

This symbol indicates that you hold down the first named
key while pressing the key or mouse button that follows
the slash. In examples, this key combination is enclosed in

a box (for example, |Ctrl/C|).

Multiple key or mouse button names separated by spaces
indicate that you press and release each in sequence. In
examples, each key in the sequence is enclosed in a box

(for example, [AIt[Q)).

Colored ink indicates information that you enter from the
keyboard or a screen object that you must choose or click on.
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Introduction

This specification is the official definition of the object file and symbol table formats
used for Tru64 UNIX object files. It also describes the legal uses of the formats
and their interpretation.

New or retired features of the object file and symbol table formats are identified
throughout this document by Version Notes. Table entries and structure fields may
also be marked with a range of version stamps in parenthesis and bold type. This
indicates that the marked feature is valid for the indicated range of operating
system or format versions. The examples that follow illustrate the three kinds of
version stamps and the four types of ranges.

(V5.1-) Indicates that the marked feature is valid in Tru64 UNIX
for releases V5.1 and greater.

(-0Vv3.12) Indicates that the marked feature is valid for all object
format versions up to and including V3.12.

(SVv3.10 - SV3.13) Indicates that the marked feature is valid for symbol table
format versions V3.10 through V3.13 inclusive.

(OV3.13) Indicates that the marked feature is only valid for object
format version V3.13.

Operating system, object format, and symbol table format versions (see

Section 1.4.5) will be used to identify new or retired features. Compiler and

tool versions can also affect what features may be used or supported, but this
information will be provided in documentation accompanying the compiler or tool.

This document treats in detail the file formats for object files and archive files.
These files are described as follows:

Object File An object file is a binary file produced by a compiler,
assembler, and/or linker from high-level-language source
files or other object files. Object files can be executable
programs, shared libraries, or relocatable object files. One
or more relocatable object files can be linked together to
form executable programs or shared libraries.

Symbol Table A symbol table is contained within an object file. It is used
to convey linking and debugging information describing the
contents of the object file.

Archive File An archive file is a single file which contains many object
or text files that are managed as a group. Archive files
can serve as libraries that are searched by the linker. A
special symbol table is included in the archive file for this
purpose. The archiver (ar(1)) is the tool used to create
and update archive files.
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Tools that create, use, or otherwise interact with object or archive files should
conform to the formatting and usage conventions outlined in this specification.

1.1 Definitions

This section defines terms that are used throughout this document.

address

alignment

absolute file offset

API

application

base address

byte boundary

common storage
class symbol

constant
dynamic
executable

dynamic loader

entry point

executable

file offset

hashing

1-2 Introduction

If not otherwise specified, an address is a location in
virtual memory.

The positioning of data items or object file sections in
memory so that the starting address is evenly divisible by
a given factor.

See file offset.
Application Programming Interface.
A user-level program.

The lowest-numbered location of an object file mapped
in virtual memory.

The alignment factor.

A global symbol that can be legally multiply defined.
Storage space for common storage class symbols is typically
allocated when relocatable object files are linked.

A variable or value that cannot be overwritten.

A call-shared application or program. A dynamic
executable is linked with shared libraries and loaded by
the dynamic loader.

A system program that maps dynamic executables and
shared libraries into virtual memory so that they can be
executed.

The first instruction that is executed in a program or
procedure.

An object file that can be executed. Also referred to as a
program, image, or executable object. Executables can
be static or dynamic.

The distance in bytes from the beginning of an on-disk file
to an item within the file. Also referred to as an absolute
file offset.

A search technique typically used in performance-sensitive
programs.



image A program mapped in memory for execution. A shared
process image includes mappings of shared libraries used
by the program.

linker The system utility 1d. This utility is the primary producer
of executable object files and shared libraries.

literal A value represented directly.

locally stripped Stripped of "local" symbol information used primarily for
debugging.

namespace A scope within which symbol names should all be unique.

relative file offset  The distance in bytes from a given position in an on-disk
file to another item within the file.

relative index An index represented as an offset from a base index.

relocatable object  An object file that includes the information required to link
it with other object files.

section The primary unit of an object file.

segment A portion of an object file that consists of one or more
sections and can be loaded into virtual memory.

shared library An object file that provides routines and data used by one
or more dynamic executables.

shared object A dynamic executable or shared library.

static executable An object file that contains all of the executable code and
data required to create a runnable program image.

symbol preemption A mechanism by which all references to a multiply defined
symbol are resolved to the same instance of the symbol.

1.2 History and Applicability

The object file format described in this specification originated from the System
V COFF (Common Object File Format). Implementation-dependent varieties of
the COFF format are used on many UNIX systems. Tru64 UNIX has altered and
extended the object file format to serve as the basis for program development on
Alpha systems. This extended version of COFF is referred to in this document as
eCOFF.

All systems based on the Alpha architecture and running Tru64 UNIX employ
the eCOFF object file format.

1.3 Producers and Consumers

Many tools interact with objects and archives in the development environment.
Object file producers create object files, and object file consumers read object files.
A tool may be both a producer and a consumer. Figure 1-1 provides one view
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of the program development process from source files through executable object
file production.

Figure 1-1: Object File Producers and Consumers

Source Compilers  Assembler Archiver Instrumentation
Files Linker Tools
Cname.s
Cnatne.c—p, Chatre.o @-} libname. a
Fname.o
Frname f—p

Ename s Zname.o » —P
Zname.s \ _‘__fj——b @

libname.so a ot

a.out,atom

A summary of the functions of relevant system utilities and their relationship to
objects and archives follows. Detailed information is available in reference pages.

1.3.1 Compilers

Compilers are programs that translate source code into either intermediate code
that can be processed by an assembler or an object file that can be processed by
the linker (or executed directly). Accordingly, compilers may be direct or indirect
producers of object files, depending on the compilation system. The compiler
creates the initial symbol table.

1.3.2 Assemblers

Assemblers also produce object files. An assembler converts a compiler’s output
from assembly language (the intermediate form) into binary machine language.
The result is traditionally a non-executable object file (.o file). The assembler
lays out the sections of the object file and assigns data elements and code to the
various sections. It also lays the groundwork for the relocation process performed
by linkers.

1.3.3 Linkers

A linker (or link-editor) accepts one or more object files as input and produces
another object file, which may be an executable program. The linker performs
relocation fixups and symbol resolution. It merges symbolic information and
searches for referenced symbols in shared libraries and archive libraries. Linkers
are producers and consumers of object files, and consumers of archive files.

The selection of command-line options determines what type of object the linker
produces. A final link produces an executable object file or shared library. A partial
link produces a relocatable object that can be included in a future link.

1.3.4 Loaders

1-4

Loaders (sometimes referred to as dynamic linkers) load executable object files and
shared libraries into system memory for execution. A loader may perform dynamic
relocation and dynamic symbol resolution. It may also provide run-time support for
loading and unloading shared objects and on-the-fly symbol resolution. The loader
is a consumer of executable object files and shared libraries.
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1.3.5 Debuggers

Debuggers are utilities designed to assist programmers in pinpointing errors in
their programs. Debuggers are object file consumers, and they rely heavily on the
debug symbol table information contained in object files.

1.3.6 Object Instrumentation Tools

Object instrumentation tools are both consumers and producers of object files.
Their input is an executable object and, possibly, the shared libraries used by
that executable object. Their output is the instrumented version of the executable
program. Instrumentation involves modifying the application by adding calls

to analysis procedures at basic block, procedure, or instruction boundaries.
Depending on the tool, the aim may be to optimize the program or gather data to
enable future optimizations.

1.3.6.1 Post-Link Optimizers

The om and spike object modification tools perform post-link optimizations such
as removal of unneeded instructions and data.

The cord tool is a post-link tool that rearranges procedures in an executable file
to facilitate improved cache mapping.

These tools are object file consumers and producers.

1.3.6.2 Profiling Tools

UNIX profiling tools (such as Compag’'s programmable profiling and program
analysis tool, Atom) are object file producers and consumers. These tools examine
an executable object and the shared libraries it uses and report information such
as basic block counts and procedure calling hierarchies. They may also restructure
the program to improve performance. Output includes files that store profiling
data generated during execution of the instrumented application.

1.3.7 Archivers

An archiver is a tool that produces and maintains archive files. It is a producer and
a consumer of archive files and a consumer of object files.

1.3.8 Miscellaneous Object Tools

1.3.8.1 Object Dumpers

Tools are available that read object files and dump (print) their contents in
human-readable form. Examples are nm, odump, stdump, and dis. These tools are
object file consumers.

1.3.8.2 Object Manipulators

The tools ostrip and strip reduce the size of an object file by removing certain
portions of the file. The mcs tool modifies the comment section only. These tools are
both consumers and producers of object files.
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1.4 Object File Overview

1.4.1 Main Components of Object Files

This document is organized to correspond to a conceptual breakdown of an object
file’s contents. The main components of an object file are described briefly in the
remainder of this section.

A high-level view of the eCOFF object file contents is depicted in Figure 1-2.

Figure 1-2: Object File Contents

File Header
a.out Header
Section Headers

Raw Data Sections
Relocations

Symbol Table
Comment Section

1.4.1.1 Object File Headers

Header structures serve as a roadmap for navigating portions of the object file.
They provide information about the size, location, and status of various sections
and about the object as a whole. See Chapter 2 for more information.

1.4.1.2 Instructions and Data

Instructions and data are located in loadable segments of the object file.
Instructions consist of all executable code. Data consists of uninitialized and
initialized data, constants, and literals. Instructions and data are laid out in
sections that are arranged into segments. The segments are then loaded to form
part of the program’s final image in memory. See Chapter 3 for more information.

1.4.1.3 Object File Relocation Information

The purpose of relocation is to defer writing the address-dependent contents of
an object file until link time. Relocation entries are created by the compiler and
assembler, and the necessary address adjustments are calculated by the linker.
Information relevant to relocation is stored in section relocation entries and in

the symbol table. In some instances, the loader subsequently performs dynamic
relocation. See Chapter 4 and Chapter 6 for more details.

1.4.1.4 Symbol Table

The symbol table contains information that describes the contents of an object file.
Linkers rely on symbol table information to resolve references between object
files. Debuggers use symbol table information to provide users with a source
language view of a program’s execution and its execution image. See Chapter 5
for more details.
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1.4.1.5 Dynamic Loading Information

Dynamic sections are utilized by the loader to create a process image for

an executable object. These sections are present in shared object files only.
Information is included to enable dynamic symbol resolution, dynamic relocation,
and quickstarting of programs. See Chapter 6 for more details.

1.4.1.6 Comment Section

The comment section is a non-loadable section of the object file that is divided
into subsections, each containing a different kind of information. This section is
designed to be a flexible and expandable repository for supplemental object file
data. See Chapter 7 for more information.

1.4.2 Kinds of Object Files

There are four principal types of object files:

Relocatable objects

Static (non-shared)
executables

Dynamic
(call-shared)
executables

Shared libraries

Relocatable objects are object files that contain full
relocation information. They are usually not executable.
Pre-link producers (generally compilers and assemblers)
always generate relocatable objects. The linker can also
generate relocatable objects, but does not do so by default.
See Chapter 4 for more details.

An object file is executable if it has no undefined symbol
references. Executable objects can be static or dynamic.

Static executables are object files that are linked
-non_shared. They use archive libraries only. They are
fully resolved at link time and are loaded by the kernel’s
program execution facility.

Dynamic executables are object files that are linked
-call shared. They may use shared libraries, archive
libraries or both. A dynamic executable is the compilation
system’s default output. The system loader performs
dynamic linking, dynamic symbol resolution, and memory
mapping for dynamic executables and the shared libraries
they use.

Shared libraries are object files that provide collections

of routines that can be used by dynamic executables.
Although it contains executable code, a shared library

by itself is not usually executable. Advantages of shared
libraries include the ability to use updated libraries without
relinking and a reduction in disk requirements. The
reduction in disk requirements is achieved by providing a
single copy of routines and data that might otherwise be
duplicated in many executable object files.

Object file types can often be differentiated by their file name extension. Typically,
relocatable objects have a .o file extension and shared libraries have a . so file
extension. The default name for an executable object file is a.out. User-named
executable files often do not have an extension.

It is important to be aware of which type of file is under discussion because the
usage, content, and format of each kind of object file can vary significantly.
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1.4.3 Object File Compression

File compression is used widely on all kinds of files to save disk space. Similarly,
object files can be compressed to save space. However, not all objects are candidates
for compression and not all tools that handle objects also support compressed
object files.

Decompressed data can be, at most, eight times the size of the compressed data.
This rate of compression is the best case possible. At worst case, a compressed
object will actually be larger than the decompressed version. Typically, however, a
reduction of 50% to 75% in size is achieved.

When an object is compressed, the file header in uncompressed form precedes the
compressed object file. The uncompressed file header’s magic number indicates
whether the remainder of the file contains a compressed object.

Figure 1-3: Object File Compression

File Header File Header uncompressed
+ ﬂhjz + ima
(rest of Fad
object N
file) (entire file) compressed
uncompressed compressed
object obiject
(ALPHAMAGIC) (ALPHAMAGICT)

The value of "size" is the size of the uncompressed object in bytes. The archiver
uses the "pad" value to indicate the bytes of padding it inserted. Both fields are
8-byte unsigned integers.

The most commonly compressed objects are archive members. Both the archiver
and the linker support compressed objects used as archive members.

Executable objects and shared libraries cannot be compressed because the dynamic
loader does not support compressed objects. To decompress an image, the loader
would need to allocate space where it could write the decompressed image.
Serious system penalties would be incurred because no part of the image would be
shareable. However, a compressed object file can subsequently be decompressed
and then loaded; this might be a way to temporarily save disk space in some
circumstances.

The tool objz is a Tru64 UNIX compression utility designed for object files. See
the objz(1) man page for details.

1.4.4 Object Archives

Archiving is a method used to enable manipulation of a large number of files as
a single group, which may ease the task of file management. Any file can be

1-8 Introduction



archived. However, the archive files of primary interest in program development
are archived object files that are used as libraries for static executables.

Object archives provide a means of working with a collection of objects
simultaneously. System libraries such as 1ibc.a and 1ibm. a are object archives.
Each library collects a set of related objects which provide a service in the form of
callable APIs. Benefits of using archives in this fashion include the grouping of
related functions and shorter build commands.

Another benefit of archive libraries is selective linking, whereby the linker extracts
only needed objects from a library, instead of mapping the entire library with the
image. For example, suppose the library 1ibEx.a contained the objects x. o,
y.o, and z.o. If the executable a.out depended on x. o to define a referenced
symbol, but not on the other objects in the archive, only x. o would become part

of the final executable object.

Another typical use for object archives is to subdivide large builds into subsystems,
each of which is implemented as an archive that is eventually included in the
final link.

Most tools that read objects will also read object archives. The linker applies
special semantics in its handling of object archives, while other utilities treat an
object archive as simply a list of object files.

Object archive members can also be compressed. In this case, each object that is
an archive member is compressed as shown in Section 1.4.3. The archive file's
administrative information is not compressed. Also, an archive file may contain
both compressed and uncompressed file members.

More information on archives can be found in Chapter 8.

1.4.5 Object File Versioning

The object file and symbol table formats are versioned. This versioning scheme is
independent of the operating system or hardware versions. It is not designed to
be visible to end-users.

The object file and symbol table versions are each stored as a two-byte version
stamp, with major and minor components of one byte each. The object file version
is stored in the vstamp field of the a.out header, and the symbol table version is
stored in the symbolic header’s vstamp field. The minor version is incremented
when new features or compatible structure changes are introduced. The major
version is incremented when an incompatible or semantically very significant
change is made.

The object file version stamp covers the following structures:

= File header (filehdr.h)

= a.out header (aouthdr.h)

= Section header (scnhdr.h)

= Relocations (reloc.h)

= .comment data (scncomment . h)

= Dynamic loading information structures (cof£ dyn.h)

The symbol table version covers all symbol table structures and values defined in
the header files sym.h, symconst .h, and 1inenum.h.

The object file and symbol table versions can differ.

This document covers object file format V3.13 and symbol table format V3.13.
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Tool-specific version information for object file consumers may also be stored in the
on-disk object file. If present, this information is stored in the comment section.
See Chapter 7 for details.

1.4.6 Object File Abstract Data Types

1-10

A consistent set of basic abstract data types are used to build object file, symbol
table, and dynamic loading structures. These names are defined in the header
file coff type.h.

The use of abstract types for all elements of these structures facilitates
cross-platform builds. To build a tool to run on another platform, redefine the
COFF basic abstract types for the new platform. This is done by inserting the new
definitions and "#define ALTERNATE COFF BASIC_TYPES" prior to any object
file or symbol table header files.

Table 1-1: COFF Basic Abstract Types

Name Size Alignment Purpose

coff addr 8 8 Unsigned program address
coff off 8 8 Unsigned file offset
coff ulong 8 8 Unsigned long word
coff long 8 8 Signed long word
coff uint 4 4 Unsigned word
coff int 4 4 Signed word

coff ushort 2 2 Unsigned half word
coff short 2 2 Signed half word
coff ubyte 1 1 Unsigned byte
coff byte 1 1 Signed byte

Another data representation that is currently used exclusively in the optimization
symbol table is LEB (Little Endian Byte) 128 format. This is a variable-length
format for numeric data. The low-order seven bits of each LEB byte are interpreted
as an integer value. The high bit, if set, indicates a continuation to the next byte.
An LEB byte is illustrated in Figure 1-4. This format takes advantage of the
likelihood that most numbers will be small. To form a large number, concatenate
the 7-bit segments of the LEB128 bytes, as shown in Figure 1-5.

Figure 1-4: LEB 128 Byte

Bit:
7 0

. T
Continue  Numeric Value
(may be signed or vnsigned)
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Figure 1-5: LEB 128 Multi-Byte Data

SLEB
Sign Bit
7 0 7 | 0
Ifojo|ofo]oll]1l Ol1]0|1f1]0|1]|0
| |
Continue Stop
10110100000011b
or
-4861

A value represented in LEB 128 format may be signed (SLEB) or unsigned (LEB).
The second-highest bit in the final byte of an SLEB value is the sign bit. This
means that the signed value has to be propagated only within one byte.

The program example in Section 10.2 includes subroutines that read LEB 128 data.

1.5 Source Language Support

Object files originate from source files that may be coded in any of several
high-level languages. The Tru64 UNIX eCOFF object file format supports the
programming languages C, C++, Fortran, Bliss, Fortran90, Pascal, Cobol, Ada,
PL1, and assembly. The choice of source language primarily impacts the symbol
table, which includes the type and scope information used by the debugger. See
Section 5.3.2 for more information.

The UNIX system is closely tied to the C programming language, and many tools
that work with objects do not fully support non-C languages. Reference the specific
tool’s documentation for details.

1.6 System Dependencies

Certain characteristics of the object file format are dependent on the Tru64 UNIX
operating system. This section highlights those features and provides references
to more detailed information.

The address space and image layout information covered in Chapter 2 are
dependent on the operating system'’s virtual memory organization.

The kernel's virtual memory manager ensures that multiple processes can share all
text and data pages. As soon as a process writes to one of those pages, it receives
its own copy of that page. Because text pages are always mapped read-only, they
are always shared for the lifetime of the process.

The virtual memory manager uses additional shareable pages, known as Page
Table pages, to record the memory layout of a process. The linker’'s default address
selection and the system library addresses are designed to maximize sharing of
page table pages, which are implemented as "wired" memory, a limited system
resource.

As part of this implementation, the text and data segments of shared libraries
are usually separated in the address space. This separation allows many shared
library text segments to be mapped in one area of memory. The Page Table pages
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used to describe an area of memory containing only text segments are shared by all
processes that map one or more of those text segments into their address space.
This sharing can result in significant savings in wired memory used by the system.

The GP-relative addressing technique is unique to Tru64 UNIX. See Section 3.3.2.

The operation of the system dynamic loader as described in Chapter 6 is
system-dependent. Other loaders may behave differently.

The discussion of system shared library implementation using weak symbols is
unique to Tru64 UNIX. See Section 6.3.4.1.

1.7 Architectural Dependencies

The 64-bit Alpha architecture defaults to using the little-endian byte-ordering
scheme. In little-endian systems, the address of a multibyte data element is
the address of its least significant byte, and the sign bit is located in the most
significant bit. Bytes are numbered beginning at byte 0 for the lowest address
byte, as shown in Figure 1-6.

Figure 1-6: Little Endian Byte Ordering

Guadword
Byte:r 7 6 5 4 3 2 1 0

most bte address
significant bits of quadwiord

A big-endian byte order can be inferred by assuming all structure fields would

be byte-swapped in a big-endian object. For example, big-endian byte order can
be inferred from Figure 1-6 by reversing the byte nhumbering and moving the
"byte address of quadword" label to the new location of byte 0. In a big-endian
representation, bit numbering within a byte is also reversed. This document will
only identify differences in the big-endian representation that either do not follow
convention or are not obvious.

As discussed in Section 2.3.5, hardware constraints dictate text and data
alignment. Unaligned references can cause fatal errors or negatively impact
performance. For instance, on Alpha systems, dereferencing a pointer to a
longword- or quadword-aligned object is more efficient than dereferencing a pointer
to a byte- or word-aligned object. Special instructions exist for unaligned data
memory accesses. The default assumption is that data is aligned.

TASO, the Truncated Address Space Option, is a migration path for applications
with 32-bit assumptions onto 64-bit Alpha platforms. This topic is discussed
in Section 2.3.3.2.

Relocation entries are heavily dependent on the Alpha instruction format. See
Chapter 4 for details.

See the Assembly Language Programmer’s Guide and Alpha Architecture Reference
Manual for additional information about the Alpha Architecture.

1.8 Relevant Header Files

Object and archive file structure declarations and value definitions are contained
in the following header files in the /usr/include directory:

aouthdr.h
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ar.h

coff type.h
coff dyn.h
cmplrs/cmrlc.h
cmplrs/stsupport.h
filehdr.h
linenum.h
pdsc.h

reloc.h
scnhdr.h

sym.h
symconst.h
scncomment .h
stamp.h

To access object file structures, it is preferable to use defined APIs. APIs provide a
constant interface to an underlying structure which will evolve over time. See the
libst intro(3) manpage for reference.
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Headers

Headers serve as a cover page and table of contents for the object file. They contain
size descriptions, magic numbers, and pointers to other sections.

The object file components covered in this chapter are the file header, a.out
header, and section headers:

= The file header identifies the object file and indicates its type.

= The a.out header provides the size, location, and addresses of the object’s
segments.

= Section headers store the name, size, and mapped address of their sections and
contain the locations of the section’s raw data and relocation entries. Each
object file section that is not part of the symbol table has a section header.

An object file may contain other header sections that are used to navigate the
symbol table and dynamic loading information. The symbolic header and dynamic
header are discussed in Chapter 5 and Chapter 6 respectively.

2.1 New or Changed Header Features

Tru64 UNIX V5.1 includes the following new or modified features:

= A new section header definition that uses reserved bits for specifying section
alignment (see Section 2.2.3).

2.2 Structures, Fields, and Values for Headers

2.2.1 File Header (filehdr.h)

struct filehdr {

coff ushort f magic;
coff ushort f nscns;
coff int f timdat;
coff off f_symptr;
coff int f nsyms;
coff ushort f _opthdr;
coff ushort f flags;

}i
SIZE - 24 bytes, ALIGNMENT - 8 bytes

File Header Fields

f magic File magic number (see Table 2-1). Used for identification.
f nscns Number of section headers in the object file.
f timdat Time and date stamp. This field is implemented as a signed

32-bit quantity that acts as a forward or backward offset in
seconds from midnight on January 1, 1970. The resulting
date range is approximately 1902-2038.

f symptr File offset to symbolic header. This field is set to zero in a
stripped object.
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f nsyms Size of symbolic header (in bytes). This field is set to zero
in a stripped object.

f opthdr Size of a.out header (in bytes).

f flags Flags (see Table 2—2) that describe the object file. Note
that the file header flags cannot be treated as a bit vector
because some values are overloaded.

Table 2-1: File Header Magic Numbers

Symbol Value Description

ALPHAMAGIC 0603 Object file.

ALPHAMAGICZ 0610 Compressed object file.
ALPHAUMAGIC 0617 ( - V4.0x) Ucode object file.

Table 2-2: File Header Flags

Symbol Value Description

F_RELFLG 0x0001 File does not contain relocation information.
This flag applies to actual relocations only,
not compact relocations.

F_EXEC 0x0002 File is executable (has no unresolved
external references).

F_LNNO 0x0004 Line numbers are stripped from file.

F_LSYMS 0x0008 Local symbols are stripped from file.

F_NO_SHARED 0x0010 Currently unused.

F_NO_CALL_SHARED 0x0020 Object file cannot be used to create a

-call shared (dynamic) executable file.

F_LOMAP 0x0040 Allows a static executable file to be loaded at an
address less than vM_MIN ADDRESS (0x10000).
This flag cannot be used by dynamic executables.

F_SHARABLE 0x2000 Shared library.

F_CALL_SHARED 0x3000 Dynamic executable file.

F_NO_REORG 0x4000 Tells object consumer not to reorder sections.
F_NO_REMOVE 0x8000 Tells object consumer not to remove NOP

instructions.

2.2.2 a.out Header (aouthdr.h)

The a.out header is also referred to as the "optional header". Note that "optional”
is a misnomer because the header is actually mandatory.

typedef struct aouthdr {

coff ushort magic;
coff ushort vstamp;
coff ushort bldrev;
coff ushort padcell;
coff long tsize;
coff long dsize;
coff long size;
coff addr entry;
coff addr text_start;
coff addr data_start;
coff addr bss_start;
coff uint gprmask;
coff word fprmask;
coff long gp_value;

} AOUTHDR;
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SIZE - 80 bytes, ALIGNMENT - 8 bytes

a.out Header Fields

magic

vstamp

bldrev

tsize

dsize

bsize

entry

Object-file magic numbers (see Table 2—4).

Object file version stamp. This value consists of a major
version number and a minor version number, as defined in
the stamp.h header file:

Symbol Value Description

MAJ_OBJ_STAMP 3 Current major object
format version

MIN_OBJ_STAMP 13 Current minor object
format version

This version stamp covers all parts of the object file
exclusive of the symbol table, which is covered by an
independent version stamp stored in the symbolic header

See Section 1.4.5 for a description of object file versioning.

Revision of system build tools. This value is defined in
stamp.h and is updated for each major release of the
operating system. The values for Tru64 UNIX releases to
date are shown below. This field is not meaningful to users.

Table 2-3: Build Revision Constants

Release bldrev
V1.2 —
V1.3 2
V2.0 4
V3.0 6
V3.2 8
V4.0 10
V5.0 12

Text segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no text segment.

For zMAGIC object files, this value includes the size of the
header sections (file header, a. out header, and all section
headers). See Section 2.3.2 for more information.

Data segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no data segment..

Bss segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no bss segment.

Virtual address of program entry point. This field is
meaningful primarily for executable objects. For shared
libraries, it contains the starting address of the first
procedure. For pre-link objects, it is typically set to zero.
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text start,
data start,
bss sStart

gprmask

fprmask

gp_value

Base address of text, data, and bss segments, respectively,
for this file. Alignment requirements are discussed in
Section 2.3.2.

Unused.
Unused.

The initial GP (Global Pointer) value used for this object.
The kernel loads this value into the GP register ($gp)
when a program is executed. The program entry point
identified by the entry field will load its GP value into the
GP register, which may or may not be different than the
value in this field for objects with multiple GP ranges.

See Section 2.3.4. This value is also used by the linker

as a basis for relocation adjustments in objects. See
Section 4.3.3.2.

Table 2-4: a.out Header Magic Numbers

Symbol Value Description

OMAGIC 0x107 Impure format. The text segment is not write-protected or shareable;
the data segment is contiguous with the text segment. An OMAGIC
file can be a relocatable object or an executable.

NMAGIC 0x108 Shared text format. NMAGIC files are static executables. This layout
is rarely used but supported for historical reasons.

ZMAGIC 0x10b Demand-paged format. The text and data segments are separated

and the text segment is write-protected and shareable. The
object can be a dynamic or static executable, or a shared library.
All shared objects use a ZMAGIC layout.

2.2.3 Section Headers (scnhdr.h)

Version Note

The following structure definition is for Tru64 UNIX V5.1 and greater.
It is compatible with object format VV3.13 and greater. New fields are
identified in the field descriptions following the structure.

struct scnhdr {
char
coff addr
coff addr
coff long
coff off
coff off
coff ulong
union {

struct {

coff ushort
coff ushort

} _si

struct {
coff uint
coff uint
coff uint

} _b;

s_name [8] ;
s_paddr;

s_vaddr;

57
57
57
57

size;
scnptr;
relptr;
lnnoptr;

_s_nreloc;
_s_nlnno;

_s_nreloc:16;
_s_alignment:4;
_s_reserved:12;

} s u;

coff uint

}i

#define s_nreloc s_u.
#define s_nlnno s_u.
#define s_alignment s_u.

#define s_reserved s_u.
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SIZE - 64 bytes, ALIGNMENT - 8 bytes

Section Header Fields

S_name

s_paddr

s_vaddr

s_size

s_scnptr

s_relptr

s_lnnoptr

s_nreloc

Section name (see Table 2-5); null-terminated unless
exactly 8 bytes. Long section names are truncated to 8
bytes and are not null-terminated. Unused bytes are
zero filled.

Base virtual address of section in the image. Although
this field contains the same value as s_vaddr, normally
s_vaddr is used and s_paddr is ignored.

Base virtual address of a loadable section in the image.

This field is set to zero for nonloadable sections such as
.comment.

For the sections .tlsdata and .tlsbss, this field
contains an offset from the beginning of the object’s
dynamically allocated TLS region.

Section size rounded to 16-byte multiple.

File offset to beginning of raw data for the section. The
raw data pointed to by this field, and described by the
s _size field, is mapped at s_vaddr (if non-zero) in the
process image.

For sections with no raw data, such as .bss, this field
is set to zero.

File offset to relocations for the section; set to zero if the
section has no relocations.

In .1lita section header, indicates number of GP ranges
used for the object:

Value Meaning

0 Object has one GP range.

1 Invalid value.

2 or higher Object has this number of GP ranges.

For sections with GP relative relocations, this field
contains the number of R_GPVALUE relocation entries for
that section. In .pdata this field contains the number of
run-time procedure descriptors.

For other sections, the field is reserved and must be zero.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

Number of relocation entries; 0xf£££ if number of entries
overflows size of this field (see Table 2—6).
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s_nlnno

s_alignment

s_reserved

s _flags

Not used. This field overlays the s_alignment and
s _reserved fields.

(V5.1 -) Contains a power-of-two biased alignment factor.
The alignment is calculated by adding 3 to this value

and interpreting the sum as a power of two. The value 0

is interpreted as 16 byte alignment because this is the
minimum section rounding allowed. The maximum value
that can be represented is 15 which is 256k byte alignment.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

(V5.1 - ) Reserved. Must be zero.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

Flags identifying the section (see Table 2—6). Not all of
these flag values are single bit masks. See Section 2.3.6 for
information on testing section flags.

Table 2-5: Section Header Constants for Section Names

Symbol Field Contents Description

_TEXT .text Text section

_INIT .init Initialization text section
_FINI .fini Termination (clean-up) text section
_RCONST .rconst Read-only constant section
__RDATA .rdata Read-only data section
_DATA .data Large data section

_LITA .lita Literal address pool section
_LIT8 .1lits 8-byte literal pool section
_LIT4 .lit4 4-byte literal pool section
__SDATA .sdata Small data section

_BSS .bss Large bss section

_SBSS .sbss Small bss section

_UCODE .ucode (obsolete) Ucode section
_coT! .got Global offset table
_DyNaMICl .dynamic Dynamic linking information
_DYNSyM! .dynsym Dynamic linking symbol table
_REL DYN! .rel.dyn Relocation information
_DYNSTR! .dynstr Dynamic linking strings
_uasu! .hash Dynamic symbol hash table
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Table 2-5: Section Header Constants for Section Names (cont.)

Symbol Field Contents Description

_Msym! -msym Additional dynamic linking symbol table

_LIBLIST! .liblist Shared library dependency list

_CcoNFLICT! .conflict Additional dynamic linking information. (This
name is truncated to .conflic when stored in
the s_name field of the section header.)

_XDATA? .xdata Runtime procedure descriptors and GP
range information

__PDATA? .pdata Code range descriptors

_TLS_DATA .tlsdata Initialized TLS data

_TLS_BSS .tlsbss Uninitialized TLS data

_TLS_INIT .tlsinit Initialization for TLS data

_ COMMENT . comment Comment section

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are
used during dynamic linking. See Chapter 6 for details.

2. The .xdata and .pdata sections contain exception-handling data. See the
Calling Standard for Alpha Systems for details. Other sections are described

in Chapter 3.

Table 2—6: Section Flags (s flags field)

Symbol Value Description

STYP REG 0x00000000 Regular section: allocated, relocated, loaded.
User section flags have this setting.

STYP_ TEXT 0x00000020 Text only

STYP DATA 0x00000040 Data only

STYP_ BSS 0x00000080 Bss only

STYP_ RDATA 0x00000100 Read-only data only

STYP_ SDATA 0x00000200 Small data only

STYP_SBSS 0x00000400 Small bss only

STYP_ UCODE 0x00000800 (obsolete) Ucode

sTyYp_cot! 0%00001000 Global offset table

STYP_ DYNAMIC! 0%00002000 Dynamic linking information

STYP_DYNsym! 0x00004000 Dynamic linking symbol table

STYP_REL_DYN! 0x00008000 Dynamic relocation information

STYP_ DYNSTR! 0%00010000 Dynamic linking symbol table

STYP_ HASH! 0x00020000 Dynamic symbol hash table

STYP_DSOLIST! 0x00040000 Shared library dependency list

STYP Msyml 0x00080000  Additional dynamic linking symbol table

STYP_CONFLICT! 0x00100000  Additional dynamic linking information

STYP_FINI 0x01000000 Termination text only

STYP_ COMMENT 0x02000000 Comment section
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Table 2—6: Section Flags (s_flags field) (cont.)

Symbol Value Description

STYP_RCONST 0x02200000 Read-only constants

STYP_XDATA 0x02400000 Runtime procedure descriptors and GP
range information

STYP_ TLSDATA 0x02500000 Initialized TLS data

STYP_TLSBSS 0x02600000 Uninitialized TLS data

STYP TLSINIT 0x02700000 Initialization for TLS data

STYP_ PDATA 0x02800000 Code range descriptors

STYP_RESTEXT 0x02900000 (not supported) Resident text

STYP_LITA 0x04000000 Address literals only

STYP_LIT8 0x08000000 8-byte literals only

STYP_EXTMASK 0x0££00000 Identifies bits used for multiple bit flag values.

STYP LIT4 0x10000000 4-byte literals only

S_NRELOC_OVFLZ  0x20000000 Indicates that section header field s _nre-
loc overflowed

STYP_INIT 0x80000000 Initialization text only

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are
used during dynamic linking. See Chapter 6 for details.

2. The S_NRELOC_OVFL flag is used when the number of relocation entries
in a section overflows the s_nreloc field in the section header. In this
case, s_nreloc contains the value 0xf££f and the s_flags field has the
S_NRELOC_OVFL flag set. The actual relocation count is in the first relocation
entry for the section.

Version Note

The value STYP_RESTEXT is reserved for use on Tandem big-endian
systems. It is not supported on Tru64 UNIX.

General Notes:

The system linker uses the s_flags field instead of s name to determine the
section type. User-defined sections (see Section 3.3.10) constitute an exception;
they are identified exclusively by section name.

Each section header must be unique within the object file. For system-defined
sections, both the section name and flags must be unique. For user-defined

sections, the name must be unique.
2.3 Header Usage

2.3.1 Object Recognition

Object file consumers use the file header to recognize an input file as an object file.
Other tools that do not support objects may use the file header to determine that
they cannot process the file. The £ile command can also identify an object by
means of the file and a.out headers.
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A file is identified as an object in its first 16 bits. These bits correspond to the
magic number field in the file header. Objects built for the Alpha architecture
are identified by the magic number ALPHAMAGIC; equivalent compressed objects
are identified by ALPHAMAGICZ. Foreign objects, which are objects built for other
architectures, may also be positively identified. However, once a foreign object is
recognized, it is not considered to be a linkable or executable object file on the
Alpha system.

In addition to providing basic identification, the file header also provides a
high-level description of the object file through its £1ags field. File header flags
store the following information: whether the object is executable, whether symbol
table sections have been stripped, whether the file is suitable for creation of a
shared library, and more. See Table 2-2 for a list of all flags.

The a.out header magic numbers also contribute important information about the
file format. The magic numbers signify different organizations of object file sections
and indicate where the image will be mapped into memory (see Section 2.3.2).

2.3.2 Image Layout

The a.out header stores run-time information about the object. Its magic number
field indicates how the file is to be organized in virtual memory. Note that the
contents and ordering of the sections of the image can be affected by compilation
options and program contents in addition to the MAGIC classification.

The possible image formats are:

Impure Format OMAGIC files are typically relocatable object files. They
(OMAGIC) are referred to as "impure" because the text segment
is writable.

Shared Text Format  NMAGIC files are static executables that use a different
(NMAGIC) organization from the default zMAGIC layout. The NMAGIC
format is historical and offers no special advantages. This
format can be selected by using the linker option -n or -nN
in conjunction with -non_shared. In an NMAGIC file,
the text segment is shared.

Demand Paged ZMAGIC files are executable files or shared libraries.

Format (ZMAGIC) This format is referred to as demand-paged because its
segments are blocked on page boundaries, allowing the
operating system to page in text and data as needed by the
running process. By default, the linker aligns zMAGIC
segments on 64K boundaries, the maximum possible page
size on Alpha systems.

The ordering of sections within segments is flexible. Diagrams in this section
depict the default ordering as laid out by the linker.

The default segment ordering, which places the text segment before the data
segment, is flexible. However, the bss segment is required to contiguously follow
the data segment, wherever the data segment is located.

All three formats are constrained by the following restrictions:
= Segments must not overlap.
= The bss segment must follow the data segment.

= All text addresses in the object file must be within two gigabytes (0x7£££8000)
of all data addresses in the file.
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2.3.2.1 oMAGIC

The oMAGIC format typically has the following layout and characteristics:

Figure 2-1: oMAGIC Layout

pdata
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fini
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- xdata segment
user sections
\ sdata
uzer data ]
.sbas ] bss
b | segment
tlsdata tlsdata tlsdata
tlshss tlsbes tlshss
thread 1 thread 2 thread 17

Segments must not overlap.

The bss segment must follow the data segment.

segment

All text addresses in the object file must be within two gigabytes (0x7£££8000)

of all data addresses in the file.

Starting section addresses are aligned on a 16-byte boundary.

Pre-link OMAGIC objects are zero-based, with the data segment contiguous to
the text segment. The default text segment address for partially linked objects
iS 0x10000000, and the data segment follows the text segment.

Usually contain relocation information.

Cannot be a shared object.

Starting addresses can be specified for the text and data segments using -T and
-D options. These addresses can be anywhere in the virtual address space but

must be aligned on a 16-byte boundary.

OMAGIC layout is most commonly used for pre-link object files produced by
compilers. Post-link OMAGIC files tend to be used for special purposes such as

loadable device drivers and om input objects.

Loadable device drivers must be built as OMAGIC files because the kernel loader
kloadsrv relies upon relocation information in order to link objects into the
kernel image.
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OMAGIC files can also be executable. An important example of an OMAGIC
executable file is the kernel, /vmunix. A programmer might also choose to use an
oMAGIC format for self-modifying programs or for any other application that has
a reason to write to the text segment.

2.3.2.2 NMAGIC

The NMAGIC file format is of historical interest only.

The NMAGIC format typically has the following layout and characteristics:

Figure 2—-2: NMAGIC Layout
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Segments must not overlap.
The bss segment must follow the data segment.

All text addresses in the object file must be within two gigabytes (0x7£££8000)
of all data addresses in the file.

Text and data segment addresses fall on page-size boundaries. The bss segment
is aligned on a 16-byte boundary.

By default, the starting address of the text segment is 0x20000000 and the
starting address of the data segment is 0x40000000.

Cannot be a relocatable object, partially linked object, or a shared object.

Addresses can be specified for the start of the text and data segments using -T
and -D options. These addresses may be anywhere in the virtual address space

but must be a multiple of the page size.
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2.3.2.3 ZMAGIC

The zMAGIC format typically has the following layout and characteristics:

Figure 2-3: zZMAGIC Layout for Shared Object
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Figure 2—4: zMAGIC Layout for Static Executable Objects
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The .rdata and .tlsinit sections are shown as part of the text segment.
However, it is possible that one or both of those sections might be in the data
segment. They are placed in the data segment only if they contain dynamic
relocations.

= Segments must not overlap.
= The bss segment must follow the data segment.

= All text addresses in the object file must be within two gigabytes (0x7£££8000)
of all data addresses in the file.

= Text and data segments are blocked; the blocking factor is the page size.

= By default the starting address of the text segment is 0x120000000 and the
starting address of the data segment is 0x140000000. The bss segment follows
the data segment.

= Can be either a shared or static object, but not a relocatable object.

Addresses can be specified for the start of the text and data segments using -T
and -D options. Those addresses can be anywhere in the virtual address space
but must be a multiple of the page size.

2.3.3 Address Space

At load time, an executable object is mapped into the system’s virtual memory using
one of the formats detailed in Section 2.3.2. The user can choose where the object,
transformed into the program image, will be loaded, but system-specific constraints
exist. This section discusses the general layout of the address space and the various
considerations involved in choosing memory locations for object file segments.
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Figure 2-5 shows the default memory scheme for a dynamic image.

Figure 2-5: Address Space Layout
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The stack is used for storing local variables. It grows toward zero. The stack
pointer (stored in register $sp) points to the top of the stack at all times. In
generated code, items on the stack are often referenced relative to the stack pointer.

The program heap is reserved for system memory-allocation calls (brk () and
sbrk ()). TLS sections are allocated from the heap. The heap begins where the bss
segment of the program ends, and the special symbol end indicates the start of
the heap. The heap’s placement can also be calculated using the starting addresses
and sizes of segments in the a.out header. The mapping of shared libraries may
impose an upper bound on the heap’s size. Some programs do not have a heap.

The dynamic loader and shared libraries reside in memory during program
execution. See Section 6.3.2 for details.

User programs can request additional memory space that is dynamically allocated.
One way to request space is through an anonymous mmap ( ) call. This system call
creates a new memory region belonging to the process. The user can attempt to
specify the address where the region will be placed. However, if it is not possible
to accommodate that placement, the system will rely on environment variables to
dictate placement. See the mmap(2) man page for details.

The usable address range for user mode addresses is 0x0 - 0x40000000000.
Attempts to map object file segments outside this range will fail, and the defaults
will be invoked or execution aborted.

2.3.3.1 Address Selection

Several mechanisms permit the user to select addresses for loadable objects or
assist the user in choosing viable addresses. Unless there is a good reason to
do otherwise, it is preferable to rely on system defaults, which are designed to
enhance performance and reduce conflicts.
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The linker’'s -T and -D options may be used to specify the starting addresses for
the text and data segments of an executable, respectively. Use of these options may
be appropriate for large applications with dependencies on many shared libraries
that need to explicitly manage their address space. Programs relying in any way
on fixed addresses may also need to control the segment placement.

Another use of the address selection options is to place an application in the lowest
31 bits of the address space. To restrict an application to this part of the address
space, the -T and -D switches may be used in conjunction with the -taso option
(see Section 2.3.3.2) or separately.

The default placement of the text and data segments at 0x120000000 and
0x140000000 for executables means the default maximum size of the text segment
iS 0x20000000 hytes, or approximately 500MB. If this space is insufficient, the

-D option can be used to enlarge it by specifying a higher starting address for

the data segment.

The -T and -D options can also be used to change the segment ordering. Some
applications, such as those ported from other platforms onto the Alpha platform,
may rely upon the data segment being mapped in lower addresses than the text
segment.

If only -T or only -D is specified on the link line, system defaults are used for the
nonspecified address. If a given address is not properly aligned, the linker rounds
the value to the applicable boundary. If inappropriate addresses are chosen, such
as addresses for the text and data segments that are too far apart, linking may
fail. Alternatively, linking may succeed, but execution can abnormally terminate if
addresses are incompatible with the system memory configuration.

The linker option -B, which specifies a placement for the bss segment, is available
for partial links only. For executable objects, the bss segment should be contiguous
with the data segment, which is the system default. As a general rule, the -B
option should not be used.

Another mechanism permits address selection for shared libraries. A registry file,
by default named so_locations, stores shared library segment addresses and
sizes. The so_locations directives, described in the Programmer’s Guide, can be
used to control the linker’s address selection for shared libraries.

2.3.3.2 TASO Address Space

The TASO (Truncated Address Space Option) address space is a 32-bit
address-space emulation that is useful for porting 32-bit applications to 64-bit
Alpha systems. Selection of the -taso linker option causes object file segments to
be loaded into the lower 31 bits of the memory space. This can also be accomplished,
in part, by using -T and -D. If the -taso option is used in conjunction with the -T
or -D options, the addresses specified with -T and -D take precedence.

Use of the -taso option also causes shared libraries linked outside the 31-bit
address space to be appropriately relocated by the loader. All executable objects
and shared libraries will be mapped to the address range 0x0 - Ox7fffffff.

The default segment addresses for a TASO executable are 0x12000000 for the text
segment and 0x14000000 for the data segment, with the bss segment directly
following the data segment. The -T and -D options can be used to alter the segment
placement if necessary.

Figure 2—6 is a diagram of the TASO address space layout.
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Figure 2—-6: TASO Address Space Layout
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A TASO shared object is marked as such with the RHF USE_31BIT ADDRESSES
flag in the DT FLAGS entry in the dynamic header. The loader recognizes dynamic
executable objects marked with the TASO flag and maps their shared library
dependencies to the TASO address space. A TASO static executable is not explicitly
identified.

2.3.4 GP (Global Pointer) Ranges
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Programs running on Tru64 UNIX obtain the addresses of procedures and global
data by means of a GP (Global Pointer) and an address table. Address ranges and
address-table sections (.1ita and .got) are described further in Section 3.3.2
and Section 6.3.3. However, several important pieces of information concerning
GP-relative addressing are contained in the headers.

During program execution, the global pointer register ($gp) contains the active
GP value. This value is used to access run-time addresses stored in the image’s
address-table section. Addresses are specified in generated code as an offset to
the GP.

There are several reasons for using this GP-relative addressing technique:

= Alpha instructions support only 16-bit relative addressing, but the generated
code must be able to quickly and efficiently access arbitrary 64-bit addresses.

= The generated code must be position independent.

= The addressing method must support symbol preemption (see Section 6.3.4).

A GP range is the set of addresses reachable from a given GP. The size of this range
is approximately 64KB, or 8K 64-bit addresses.

Although only one GP value is active at any time, a program can use several GP
values. A program’s text can be divided into ranges of addresses with a different
GP value for each range. The linker will start a new GP range at a boundary
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between two input object file's section contributions. As a result, a GP range will
rarely be filled before a new GP range is started. Regardless of how much of a GP
range is actually used, the linker always sets the GP value associated with that
range as follows:

GP value = GP range start address + 32752

Figure 2—7 is a depiction of the use of GP values and ranges.

Figure 2-7: GP (Global Pointer) Ranges
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Objects can share a GP range, as shown in Figure 2—7, or use more than one GP
range, depending on the amount of program data. However, the Calling Standard
for Alpha Systems specifies that a single procedure can use only one GP value. The
a.out header’s gp_value field contains either the GP value of the object (if there is
only one) or the first one the program should use (if there are multiple GP ranges).

How the number of GP ranges is represented in an object depends on the object’s

type:

= For objects with a . 1ita section, the section header field s_nlnnoptr indicates
the number of GP ranges, as explained in Section 2.2.3.

= In a relocatable object (OMAGIC file), a new GP range is signaled by a
R_GPVALUE relocation entry. See Section 4.3.4.18 for details.

< Inshared objects, multiple GP ranges are indicated by entries in the dynamic
header section (.dynamic), which are described in Section 6.2.1.

2.3.5 Alignment

Alignment is an architectural issue that must be dealt with in the object file at
several levels: object file segments, object file sections, and program variables all
have alignment requirements.

Data alignment refers to the rounding that must be applied to a data item’s
address. For natural alignment, a data item’s address must be a multiple of its
size. For example, the natural alignment of a character variable is one byte, and
the natural alignment of a double-precision floating-point variable is 8 bytes.

On Alpha systems, all data should be aligned on proper boundaries. Unaligned
references can result in substantially slower access times or cause fatal errors. The
compiler and the user have some control over the alignments through the use

of assembler directives and compilation flags (see the Programmer’s Guide and
Assembly Language Programmer’s Guide). When designing alignment attributes,
however, the architectural cost of loading unaligned values should be considered.

Headers 2-17



2-18

Object file segments are, by default, aligned as indicated in Section 2.3.2. Segment
alignment can be impacted by section alignment. The segment alignment must

be evenly divisible by the highest alignment factor for sections contained in that
segment.

For shared libraries that are not mapped at their quickstart addresses the loader
will map segments with a minimum alignment of 8K bytes. If any section in the
shared library requires an alignment greater than 8K bytes, the loader will map
the text segment with 64K byte alignment. The linker is responsible for assigning
segment addresses with a distance that is a 64K byte multiple. This will allow the
loader to align the data segment address which is mapped at a fixed distance
from the text segment.

Object file sections may have a power-of-two alignment factor specified in their
section headers (see Section 2.2.3). The default section alignment is 16 bytes.

Version Note

Power-of-two section alignment is supported in object format VV3.13 and
greater for Tru64 UNIX V5.1 and greater.

The default alignment boundary for raw data is 16 bytes. Smaller alignments can
be applied to individual data items allocated in raw section data. If a data item
must be aligned with greater than 16 byte alignment, the section in which it is
allocated must be aligned with a power-of-two alignment factor that is greater than
or equal to the data item’s required alignment.

Individual data items should meet the following minimum requirements. Structure
members and array elements are aligned according to the minimum requirements
in order to minimize pad bytes between members. Other data items are typically
aligned with 8 or 16 byte rounding due to alignment requirements imposed by the
generated code used to access data addresses.

= Atomic data items are aligned using natural alignment.
= Structures are aligned based on the size of their largest member.

= Arrays are aligned according to the alignment requirements of the array
element.

= Procedures are aligned on a 16-byte (quadruple instruction word) boundary.
This preserves the integrity of multiple-instruction issue established by the
instruction scheduling phase of code generation.

< Common storage class symbols must be aligned when they are allocated. The
value field for a common storage class symbol indicates its size and determines
which section it will be allocated in (.bss or .sbss). The alignment field
for the common storage class symbol indicates the required power-of-two
alignment biased by 2°3. If alignment is zero, the default alignment is based
on the symbol’s size. Common storage class symbols with a size of 16-bytes
or greater are aligned to octaword (16-byte) boundaries, otherwise they are
aligned to quadword (8-byte) boundaries. The maximum alignment supported
for allocating common storage class symbols is 64K bytes. This is represented
in the alignment field as the value "13".

Version Note

The definition of a power-of-two alignment field in external symbol table
entries is supported in Tru64 UNIX V5.1 and greater. Objects built by
compilers that do no support the alignment field will appear to have the
alignment set to 0 which will yield the desired default behavior.
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Sections are padded wherever necessary to maintain proper alignment. Padding is
done with zero bytes in the data and bss sections. In the text segment, each routine
is padded with NOP instructions to a 16-byte boundary. The section sizes reported
in the section headers and the segment sizes reported in the a. out header reflect
this padding.

2.3.6 Section Types

The primary unit of an object file is a section, and the sections in an object are
identified, located, and broadly characterized by means of the section headers.
Object files are organized into sections primarily to enable the linker to combine
multiple input objects into an executable image. At link time, sections of the same
type are concatenated or merged. The sectional breakdown also provides the linker
flexibility in segment mapping; the linker has a choice in assigning sections to
segments for memory-mapping and loading.

Section headers include flags that describe the section type. These flags identify
the section type and attributes. See Table 2—6 for a complete listing of section
flags. Note that the s flags field cannot be treated as a simple bit vector when
testing or accessing section types because some of the flag values are overloaded.
The algorithm below illustrates how to test for a particular section type using
the s_flags field.
if (type & STYP_ EXTMASK)

FOUND = ((SHDR.s_flags & STYP_EXTMASK) == type)

else
FOUND = (SHDR.s_ flags & type)

Sections can be mapped or unmapped. A mapped section is one that is part of the
process image as well as the object file. An unmapped section is present only in
the on-disk object file.

Raw data, organized by section and segment, is part of the process image. For a
ZMAGIC file, all header sections in the object are also mapped into memory as
part of the text segment.

2.3.7 Special Symbols

Some special symbol names are reserved for use by the linker or loader. The
majority of these special symbols correspond to locations in the image layout.

Table 2—7 describes the special symbols and indicates whether they are reserved
for the linker or the loader. Additional special symbols for debug information are
described in Section 5.3.9.

Table 2—7: Special Symbols
Linker Reserved Symbols

Symbol Description
_BASE_ADDRESS3 Base address of text segment.
_cobol main First COBOL main symbol; undefined if

not a COBOL program.

_DYNAMIC Starting address of .dynamic section if
present; otherwise, zero.

_DYNAMIC_LINK Enumeration value identifying module
type: O = static executable, 1 = dynamic
executable, 2 = shared library.

_ebss End of bss segment.

_edata End of data segment.
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Table 2—-7: Special Symbols (cont.)

Linker Reserved Symbols

Symbol Description

edatal Weak symbol for end of data segment.

_end End of bss segment.

endl Weak symbol for end of bss segment.

_etext End of text segment.

etextl! Weak symbol for end of text segment.

_fbss First location of bss data. Usually the virtual
address of either the . sbss or .bss section.

_fdata First location of initialized data. Usually
the virtual address of the .data section
and data segment.

_fpdata Start of .pdata section.

_fpdata_size

_ fstart

_ftext

_ftlsinit

_GOT_OFFSET®

_gp°®

_gpinfo

__istart
_procedure_string table?
_procedure_table2
_procedure table size?
__tlsbsize

__tlsdsize

_ tlskey

_ tlsoffset

__tlsregions

Loader Reserved Symbols

Number of entries in .pdata. The
exception-handling object file sections

(.pdata and .xdata) are included in the output
object if this symbol is referenced.

Start of . f£ini section.

First location of executable text. Usually the
virtual address of the . text section.

The address of the .tlsinit section.

Starting address of .got section if present;
otherwise, zero.

GP value stored in a.out header.

Table of GP ranges used exclusively by
exception handling code.

Start of .init section.

String table for run-time procedures

Run-time procedure table.

Number of entries in run-time procedure table.
Size of the .tlsbss section.

Size of the .tlsdata section.

The value of this symbol is the address of the GOT
or .lita entry of the tlsoffset symbol.

Offset in the TSD array of the TLS pointer for a
particular object. For static executables, this value
is set at link time. For shared objects, the value is
set to 0 at link time and filled in at run time.

The number of TLS regions (TSD entries) that
are used by an executable or library.

_ldr process_context
ldr_process_contextl

~rld new interface

Points to loader’s data structures.
Weak symbol pointing to loader’s data structures.

The generic loader entry point servicing
all loader function calls.
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Table Notes:

1. These symbols are not defined under strict ANSI standards. They are weak
symbols that are retained for backward compatibility. See Section 6.3.4.2 for
further discussion of weak aliasing to strong symbols.

2.  These symbols relate to the run-time procedure table, which is a table of RPDR
structures (their declaration is in the header file sym.h). The table is a subset
of the procedure descriptor table portion of the symbol table with one unused
field, exception_info, that is set to zero. The run-time procedure table is
maintained for historical reasons. It is not used by the system'’s exception
handling software, nor any other Tru64 UNIX runtime support.

3. These symbols are recorded as scAbs symbols in the external symbol table,
but their values are relocatable addresses that are not absolute values in
a shared library. This misclassification is maintained partly for historical
reasons, and partly because the values of these symbols cannot be described
as an offset within a specific section. The equivalent dynamic symbol table
entries identify these symbols as text (SHN TEXT) or data symbols (SHN DATA)
rather than absolute symbols (SHN ABS).

Version Note

Prior to Tru64 UNIX V5.1 the system linker records these symbols
as absolute symbols (SEN_ABS) in the dynamic symbol table, and
they are not relocated correctly by the dynamic loader.

The linker defines special symbols only if they are referenced.

The majority of these symbols have local binding in a shared object's dynamic
symbol table. Consequently, a shared object can only reference its own definition
of these symbols. However, several special symbols have global scope. The
linker-defined symbols end, end, istart,and cobol main are global, which
implies that each has a unique value process-wide. The symbol end and its weak
counterpart end are used by 1ibc. so to identify the start of the heap in memory.
The symbol cobol main gives a COBOL program’s main entry point.

Special symbols in addition to those listed in Table 2—1 are defined by the linker to
represent object file section addresses:

.bss
.comment
.data
.fini
.init
.1lit4
.1it8
.lita
.pdata
.rconst
.rdata
.sbss
.sdata
.text
.xdata

The value of the symbol is the starting address of the corresponding section. These
symbols generally are not referenced by user code. For shared objects, they may
appear in the dynamic symbol table.
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2.3.7.1 Accessing

A user program can reference, but not define, reserved symbols. An error message
is generated if a user program attempts to define a symbol reserved for system use.

A special symbol is a label, and thus its value is its address. Interpreting a
label’s contents as its value may lead to an access violation, particularly for
those linker-defined symbols that are not address locations within the image (for
example, DYNAMIC LINKOr procedure table size).

The following example shows how linker-defined labels are referenced in code:

$ cat gprange.c
#include <stdio.h>
#include <excpt.h>

extern unsigned long _gpinfoll;
extern unsigned long _ftext;
extern unsigned long _fdata;

main () {
int 1i;
unsigned long tstart, tend;
unsigned long gpval;

if (! gpinfo || _gpinfo[0] != GPINFO_MAGIC) ({
printf ("No GP range info\n");
} else {
for (i=1; _gpinfo[i] != GPINFO_LAST; i+:3){
tstart = (unsigned long)& ftext + _gpinfolil;

tend = tstart + _gpinfoli+1];
gpval = (unsigned long) & fdata + _gpinfol[i+2];
printf ("GP=0x%1x for Text Range [0x%1lx - 0x%1x]\n",

gpval, tstart, tend);

}

$ cc gprange.c
S a.out
GP=0x1400080c0 for Text Range [0x120000fe0 - 0x120001440

This example prints out the GP ranges recorded in the .xdata section. See
Section 3.3.8 for a description of the GP range info.

2.4 Language-Specific Header Features
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The linker-defined symbol _cobol main is set to the symbol value of the first
external symbol encountered by the linker with its cobol main flag set. COBOL
programs use this symbol to determine the program entry point.
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Instructions and Data

Instructions and data are the portions of the object file that are logically copied into
the final process image. Instructions include all executable machine code. Data
includes initialized and zero-initialized data, constant data, exception-handling
data structures, and thread local storage (TLS) data. The breakdown of the
instructions and data into object file sections is shown in Figure 3-1.

Object file sections are organized into three loadable segments: text, data, and bss.
Multiple TLS regions may also be loaded. The mapping of sections into segments is
principally determined by segment access permissions and object file. Figure 3-1
illustrates the layout of a typical dynamic executable file. See Section 2.3.2 for
details.

Figure 3-1: Raw Data Sections of an Object File
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The object file sections containing dynamic load information are covered separately
in Chapter 6. Chapter 7 describes the . comment section data. This chapter covers
all other raw data sections.
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3.1 New or Changed Instructions and Data Features

Version 5.1 of Tru64 UNIX adds new fields to the code range descriptor (see
Section 3.2.1) and the run-time procedure descriptor (see Section 3.2.2).

Version 5.0 of Tru64 UNIX supports a new name-recognition mechanism for
ordering subsystem-generated initialization and termination routines. See
Section 3.3.5.2.4 for details.

Version 3.13 of the object file format does not introduce any new features for the
instructions or data contained within the object file.

3.2 Structures, Fields, and Values for Instructions and Data

Section 3.2.1 and Section 3.2.2 contain structure declarations for the
exception-handling data structures as stored in the .xdata and .pdata object file
sections. These are the only two sections covered in this chapter that contain
structured data. Text sections containing machine instructions use the Alpha
instruction formats and other sections contain binary and character data.

3.2.1 Code Range Descriptor (pdsc.h)

The .pdata section contains a table of code range descriptors ordered by address.

typedef unsigned int pdsc_mask;
typedef unsigned int pdsc_space;
typedef int pdsc_offset;

union pdsc_crd {

struct {
pdsc_offset begin_ address;
pdsc_offset rpd_offset;

} words;

struct {
pdsc_mask context_t :1; (V5.1 - )
pdsc_mask context_s :1; (V5.1 - )
pdsc_offset shifted begin address :30;
pdsc_mask no_prolog :1;
pdsc_mask memory speculation :1;
pdsc_offset shifted rpd offset :30;

} fields;

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Version Note

The fields marked "V5.1" in the preceding structure definition are new
fields for Tru64 UNIX V5.1 and greater. The new fields take the place of
a reserved field so there is no change in the structure size.

See the Calling Standard for Alpha Systems for a full description.

3.2.2 Run-time Procedure Descriptor (pdsc.h)

3-2

The .xdata section contains run-time procedure descriptors. These descriptors
are not necessarily sorted, and may be intermixed with unstructured
exception-handling data.

typedef unsigned char pdsc_uchar_offset;
typedef unsigned short pdsc_ushort_offset;
typedef unsigned int pdsc_count;

typedef unsigned int pdsc_register;
typedef unsigned long pdsc_address;

typedef union pdsc_rpd {

struct pdsc_short stack _rpd {
pdsc_mask flags:8;
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pdsc_uchar offset
pdsc_mask
pdsc_mask
pdsc_count
pdsc_count
pdsc_count

} short stack rpd;

rsa_offset;
fmask:8;
imask:8;

frame size:16;
sp_set:8;

entry length:8;

struct pdsc_short reg rpd {

pdsc_mask
pdsc_space
pdsc_register
pdsc_register
pdsc_space
pdsc_count
pdsc_count
pdsc_count
} short reg rpd;

flags:8;
reservedl:3;
entry ra:5;
save_ra:5;
reserved2:11;
frame size:16;
sp_set:8;

entry length:8;

struct pdsc_long stack rpd {

pdsc_mask
pdsc_register

flags:11;
entry ra:5;

pdsc_ushort_offset rsa_offset;

pdsc_count
pdsc_count
pdsc_count
pdsc_mask
pdsc_offset
pdsc_mask
pdsc_mask
} long stack rpd;

sp_set:16;

entry length:16;
frame_size;
reserved:2;
return_address:30;
imask;

fmask;

(V5.1 -

)
(V5.1 - )

struct pdsc_long reg rpd {

pdsc_mask
pdsc_register
pdsc_register
pdsc_space
pdsc_count
pdsc_count
pdsc_count
pdsc_mask
pdsc_offset
pdsc_mask
pdsc_mask

} long reg rpd;

flags:11;

entry ra:5;
save_ra:5;
reservedl:11;
sp_set:16;

entry length:16;
frame_size;
reserved2:2;
return_address:30;
imask;

fmask;

(V5.1 -

)
(V5.1 - )

struct pdsc_short with handler {

union {

struct pdsc_short_stack_rpd short_ stack_rpd;

struct pdsc_short_reg rpd

} stack or reg;
pdsc_address
pdsc_address

} short with handler;

short_reg rpd;

handler;
handler data;

struct pdsc_long with handler
union {
struct pdsc_long_stack_rpd
struct pdsc_long reg rpd

long_stack_rpd;
long reg_rpd;

} stack or reg;
pdsc_address
pdsc_address

} long with handler;

} pdsc_rpd;

handler;
handler data;

SIZE - 40 bytes, ALIGNMENT - 8 bytes

Version Note

The fields marked "V5.1" in the preceding structure definition are new
fields for Tru64 UNIX V5.1 and greater. The new fields take the place of
a reserved field so there is no change in the structure size.

See the Calling Standard for Alpha Systems for a full description.
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3.3 Instructions and Data Usage

3.3.1 Minimal Objects

Many sections may be missing from a still-viable object file. Sections may not be
present due to the type of the object file or to the contents of a particular program.

The .init and . £ini sections of the text segment are typically not present in
relocatable objects. They contain code generated during final link.

The allocation of data in the "small” and "large” writable data sections (.sdata,
.data, .sbss, .bss)can be controlled by the user in some situations. See
Section 3.3.6 for more details.

The .1it4 and .11it8 sections, which hold 4- and 8-byte literal values respectively,
may be omitted from an object file. Compilers may choose not to emit these sections.

The .xdata and .pdata sections, which contain exception-handling information,
may not be present. All pre-link objects with a non-empty text segment contain
these sections because compilers are expected to provide exception-handling
information for their code. Statically linked executables will only contain these
sections if they include code which handles exceptions. The linker identifies
exception handling code by looking for references to the fpdata size symbol.
By default, shared objects will contain these sections. The .xdata and .pdata
sections are required if a shared object includes exception handling code or if it is
used in conjunction with another shared object that includes exception handling
code.

Although most objects contain both text and data segments, only one loadable
segment is required for an object to be loadable. A minimal pre-link object file
may contain no sections.

3.3.2 Position-Independent Code (PIC)
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Position-independent code is generated code that is not constrained to any
particular location in the virtual address space. Eventually, code must be assigned
to a portion of the address space where it can execute. However, on Tru64 UNIX,
code is kept position-independent as long as possible.

The implementation of position-independent code in eCOFF relies upon address
tables to store full virtual addresses for procedures and data locations invoked
or referenced in the text segment. Programs refer to these addresses using a
technique called GP-relative addressing.

Most eCOFF objects have address tables that hold 64-bit addresses. Address tables
in shared objects are called Global Offset Tables (GOTs) and are found in the .got
section. Address tables for relocatable and static objects are called literal address
pools and are found in the . 1ita section.

Address table entries are accessed in code by adding a signed 16-bit offset to the
currently active GP value, which is stored in the $gp register:

ldg t12,-31656 (gp)

Multiple GP ranges can be associated with a program, each corresponding to a
different portion of the address table. See Section 2.3.4 for details.

In some cases, special instruction sequences may be required to update the
contents of the $gp register. In particular, the GP value used by a procedure

may or may not be the same as the value used by the calling code. Under most
circumstances, the called procedure’s GP value is calculated when a procedure is
invoked. Upon completion of the procedure’s execution, the calling code’s GP value
must be reestablished. Refer to the Calling Standard for Alpha Systems for details.
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Different kinds of objects use address tables in different ways:
= Relocatable Objects

Pre-link objects usually have a . 1ita section with associated section relocation
information. The literal address pool contains addresses that must be adjusted
at link time.

e Static Executables

Addresses in static executables are fixed at link time. The image must be
loaded and executed at addresses the linker has chosen. Library addresses as
well as segment base addresses are known at link time.

Static executables store addresses in a .1ita section that encompasses one or
more GP ranges. The contents of the address table are accessed by means of
the GP value or values, which are also fixed at link time.

= Shared Objects

Each .1lita entry in the input object files is relocated by the linker to form the
GOT in the output object. The loader may need to update the GOT entries
when mapping the process image. The addresses are then absolute and may be
extracted at run time to obtain the final locations of referenced items.

The loader may also update GOT entries at run time, such as when it replaces lazy
text stubs with resolved procedure addresses or dynamically loads new objects.

The GOT may contain entries for nonsymbolic text and data addresses. These are
known as local GOT entries. The GOT may also contain entries for unresolvable
symbols; which are either set to NULL or to the address of a lazy text stub routine.

Special semantics are associated with multiple GP ranges in shared objects. See
Section 6.3.3.3 for details on multiple GOT representation and usage.

Code can be only partially position independent. For example, shared libraries can
be mapped anywhere in the address space that is not in conflict with previously
mapped objects, but executable objects must be mapped at their link-time base
addresses. Dynamic executables are thus partly PIC because their own segment
addresses are fixed, but the addresses of shared libraries they use are not. Static
executables are position dependent (nonPIC) and can be optimized to rely on more
efficient position dependent methods for accessing program addresses.

3.3.3 Lazy-Text Stubs

This section applies to shared objects only. See Section 6.3.4.5 for related
information.

Final addresses may be unknown at link time for subroutines that are defined in
shared libraries and called by dynamic executables. Instructions reference these
routines in an address-independent manner, and the dynamic loader resolves the
procedure’s actual address the first time it is invoked.

Stubs are specially constructed code fragments used for this run-time symbol
resolution. They serve as placeholders for the definitions of functions that cannot
be resolved at static link time. The linker builds the stub for each called procedure
and allocates GOT table entries that point to the stubs. The stubs themselves are
inserted in the . text section of the shared object file by the linker.

A stub looks like this:

stub_xyz:
ldg t12, got_index(gp) //load register with .got entry
// of lazy text resolver
lda $at, dynsym index low(zero) //load register with external
ldah $at, dynsym index_high($at) // symbol’s .dynsym index
jmp tl2, (t12) //jump to lazy text resolver

Instructions and Data 3-5



The first time the procedure is called, its stub is invoked. The stub, in turn, calls
the loader to resolve the associated symbol. The dynamic loader then replaces the
stub address with the correct procedure address, which is used for subsequent calls.

The calling standard requires that when control actually reaches the procedure’s
entry point, register $r27 must contain the procedure value of the newly loaded
routine (as if no intermediate processing had occurred).

3.3.4 Constant Data

3.3.5
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Constant data is data that cannot be changed over the course of program execution.
It can include constants appearing in the source program, constants that are
generated during the compilation process (usually addresses), and literal values
(also referred to as immediate values).

Constant data may appear in any data section. It is likely to appear in the .1it4,
.1its, .lita, .rconst, and .rdata sections. Compilers and other object file
producers may make varying choices concerning data placement in object file
sections.

The literal sections contain only literal values sorted by sizes. 4-byte literals

are stored in the .1it4 section, 8-byte literals in the .1it8 section, and 8-byte
address literals in the . 1ita section. However, these sections do not necessarily
contain all the literals in the program. String literals, for example, are assigned to
the .data section (or . rconst section when the -read _only strings compiler
option is specified).

There are compile-time, link-time, and run-time constants. Examples of
compile-time constants include numeric constant data such as floating-point
constants and literals appearing in the source file. Examples of link-time constants
include addresses that are fully resolved at link time. Examples of run-time
constants include addresses established by the dynamic loader.

The linker places the . rconst section and all three literal sections with the
text segment because they contain nonwritable data. The advantage of mapping
constant data with a program’s read-only segment is that it allows the data to be
shared among processes.

The . rdata section contains constant data with values that may not be known
until run time (such as global symbol addresses). For shared objects, the . rdata
section is mapped with the data segment so the loader can perform relocations
for that section without affecting the shareability of text or page table pages. If
there are no dynamic relocations, the . rdata section may be mapped with the
text segment.

INIT/FINI Driver Routines

Every compilation unit in an executable or shared library has the opportunity

to contribute initialization or termination code to be run at startup and exit,
respectively. INIT routines perform initialization actions and are run automatically
at load time or by the routine dlopen ( ). FINI routines are termination functions
that are executed by dlclose () or at program termination by exit ().

The .init and . fini sections consist of a series of calls to the initialization and
termination routines. These calls, or drivers, are generated by the linker. They
are not present in pre-link objects. The .init driver is invoked by a call from
startup code in /usr/1ib/cmplrs/cc/crt0. o, which must be linked into every
executable object file.

The driver code in the . init and . £ini sections has the following characteristics:

< No associated symbolic information
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< No associated call frame information

= Use of self-relative code for jumping to the routines; therefore, no use of the
GOT table or GP value

The initialization and termination routines themselves are in the . text section
and have the following characteristics:

= No arguments
< No return value

= Defined in one of the objects or archives being linked

Figure 3-2 presents a graphical overview of the INIT/FINI mechanism for shared
objects:

Figure 3-2: INIT/FINI Routines in Shared Objects

a.out
ed
—| _ start:
call rid_run_inits
call main
call exit
anit
__istart:
call all INIT routines
(in this abject)
Ailal
fetart:
call all FIRI routines
(in this object)

Isbinfloader

fd_run_inits:
for each shared library
call init routine
call a.out's _ istart
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rd_run_finis: cq) . out's __fatart
for each shared library
call fini routine

jusrishlibflibc.so
__istart:

call all IMIT routines
(in this abject)

P P P P P A P P P P U U P e P P e e e

call rid_run_finis

For static executables, the first call is to the main object's _istart () symbol
instead of r1d_run_init (). The dynamic loader is not involved.
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System tools can generate initialization and termination routines. For example,
global constructor and destructor routines for static objects are implemented as
INIT/FINI routines by the C++ compiler.

The INIT/FINI mechanism is used for allocation and deallocation of thread-specific
data. Every object using TLS has its own INIT routine to take care of the TLS data
associated with that object. The purpose of this INIT routine is to allocate a TSD
key that will be used for the object’s TLS for the duration of the object mapping.
See Section 3.3.9 for more information on TLS data.

3.3.5.1 Linking
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INIT and FINI routines can be included implicitly, by prefix recognition, or
explicitly, by option processing. With either linking method, as the routine’s
symbols are identified, a list determining the execution order is built. When the
list is complete, code to invoke the routines is generated by the linker and placed in
the .init and .fini sections.

To link explicitly, the -init and -£ini linker options are used with a symbol
parameter. The symbol should meet the criteria listed above for INIT and FINI
routines.

To link implicitly, it is necessary to conform to naming and usage conventions. A
symbol is recognized as an initialization or termination symbol if:

= Automatic recognition of special symbols is not disabled.
= The symbol is defined in an object included in the link.
= The symbol bears the correct prefix (__init or fini ).

= The symbol is a procedure.

Library archives may contain aptly named routines that are not implicitly linked
into an object as INIT or FINI routines. The reason this situation can occur is that
prefix recognition alone is not sufficient cause to extract a module from an archive.

Figure 3-3: INIT/FINI Recognition in Archive Libraries

main.o libfubar.a
rain{) { foo.o
foo(); foo() { ]
} | _init_foo{) [}
l bar.o
bar(} {}
__init_bar() {}

__init_bar() notin a.out

On the other hand, if the archived object is already linked into the object, prefix
recognition will apply to routines contained in that module. Explicit inclusion can
be used to ensure an archived routine is included as an initialization or termination
routine in all cases. See the Programmer’s Guide for more information on linking
with archive libraries.

The linker's -no_prefix recognition option disables implicit linking of INIT
and FINI routines.
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3.3.5.2 Execution Order

This section describes the execution order of initialization and termination routines
in dynamic and static executables. It also covers the determining factors used by
the linker and loader to establish this order.

3.3.5.2.1 Dynamic Executables

The INIT driver routine for each shared object is executed after INIT drivers for
all of its dependencies. Dependencies are processed in a post-order traversal of
the dependency graph. The dependency graphs shown in this section are based
on link-line ordering (a left "sibling" appears first on the link line) as well as the

shared library dependency information.

FINI drivers are executed in precisely the reverse order of INIT drivers.

Figure 3—4: INIT/FINI Example (1)

a.out

o~

libA. 50 libB.so

NS

libc.so

INIT order: 1ibc.so 1ibB.so 1ibA.so a.out
FINI order: a.out 1ibA.so 1ibB.so libc.so

Cyclic dependencies are handled using a first-seen approach, while still conforming
to the preceding rules. For example:

Figure 3-5: INIT/FINI Example (II)

a.out

LN\
libA.so ﬁl libB.so -‘

INIT order: 1ibA.so 1ibB.so a.out

Initialization and termination routines may also be executed when shared objects
are loaded and unloaded dynamically during run time. dlopen () runs INIT
routines for any shared objects that it loads. dlclose () runs FINI routines for
each shared object that it unloads.
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Figure 3-6: INIT/FINI Example (llI)

a.out

|

libc.so

INIT order before dlopen call: 1ibc.so a.out

Figure 3-7: INIT/FINI Example (IV)

aout [—¥dlopen() libfoo.so

libc.so libm so

INIT order after dlopen call: 1ibm.so libfoo.so

FINI order after dlopen call: 1ibfoo.so libm.so a.out libc.so

3.3.5.2.2 Static Executables

For static executables, the execution order for initialization and termination
routines is determined at link time. The linker establishes the execution order

for INIT routines by the order in which they are encountered within an object’s
external symbol table and by the ordering of objects on the command line. It also
takes into account the ordering of archive libraries on the command line. The INIT
routines from each archive are executed in the reverse order of their occurrence on
the command line. For example:

$ 1d x.0 y.o z.o libm.a libfoo.a
INIT order: 1libfoo.a libm.ax.o0y.0 z.0

FINI order: z.oy.o x.0 libm.a 1libfoo.a

3.3.5.2.3 Ordering Within Objects
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It is also possible to have multiple INIT or FINI routines within an object. The
number of initialization or termination functions that can be included from a single
object is unlimited. When multiple routines are encountered in an input object,
they are placed as a group within the overall ordering.

If both methods of linking are used, explicitly linked initialization routines are
executed prior to the implicitly linked routines for that object. Because the FINI
order is always the opposite of the INIT order, any explicitly linked termination
routines are executed last.
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If the linker’s range-table generating routines are present, they execute first and
last, respectively in INIT/FINI ordering on a per-object basis. These initialization
routines set up a PC-range table that enables exception-handling. They execute
first so that range information is added before other INIT routines are executed.
These termination routines run last so that all others are run before range
information is removed. These precautions allow other INIT and FINI routines
to utilize exception handling.

3.3.5.2.4 Subsystem Control of INIT/FINI Order

Version Note

Subsystem generated initialization and termination routines are
supported in Tru64 UNIX V5.0 and greater.

Compilers may need to generate initialization and termination routines and to
control the order in which they execute. For this reason, subsystem-generated
INIT and FINI routines are distinguished from user INIT and FINI routines.

The linker recognizes a subsystem-generated routine by the prefixes INIT
and  FINI . Routines recognized with the INIT prefix always run prior to
any routines recognized with the  init prefix within the same executable or
shared library. FINI routines recognized with the  FINI prefix always run
after any routines recognized with the  fini prefix. Subsystem INIT and FINI
routines also run, respectively, before and after any routines added by a user using
the linker’s -init and -fini switches.

All routines with the  INIT prefix execute in alphabetic order, and all routines
with the  FINI prefix execute in reverse alphabetic order. For a name of

the form  INIT ALPHANAME, the ALPHANAME portion should be encoded as a
variable-length hexadecimal string. The string will contain one or more hex digits
followed by an underscore.

INIT routines generated by the linker for exception-handling, speculative
execution, and thread-local storage run prior to all other INIT routines. The
associated FINI routines run last.

3.3.6 Initialized Data and Zero-Initialized Data (bss)

Writable user-program data is divided between data (initialized data) and bss
(zero-initialized data) sections, which may then be subdivided according to data
element size. Zero-initialized data consists of program variables whose values
are not specified at compile time. Initialized data includes all variables that are
explicitly initialized in declaration statements.

One example of zero-initialized data is Fortran commons . Another is uninitialized
C data (int count;).

Note that a C-global or C-static data item explicitly initialized to zero (int count
= 0;) may be placed in an initialized data section, even though its value is the
same as if it were part of bss.

The primary advantage of separating initialized and uninitialized data is to save
space in the object file. All bss data elements are set to the same value (zero).
The only information required in the object file is a description of the run-time
size and location of the bss sections. This description is found in the .bss and
.sbss section headers.

Zero-filled memory is allocated for the bss segment when an object is mapped into
memory. Because the .bss and . sbss raw data sections do not require space in
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the object file, their section header size field reports the size of the section in the
process image instead of in the object file.

To take advantage of all available space, zero-initialized data immediately follows
initialized data in the image. An object can have bss sections but no bss segment.
If the data in the bss sections does not exceed the size of the leftover space in the
last page of the data segment, the bss segment will be empty. This situation is
illustrated in Figure 3-8.

Figure 3-8: Data and Bss Segment Layout (1)

data
segment

bss
segment
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Last Page of Data Segment

For the same reason, some bss data can potentially be present in the data segment,
even if a separate bss segment exists. This situation is illustrated in Figure 3-9.
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Figure 3-9: Data and Bss Segment Layout (ll)

G\

data
segment
bss
segment
bss
segment
Last Page of First Page of
Data Segment Bss Segment

When part or all of the bss segment is contained in the last page of a data segment,
that portion of the data page must be initialized to zero in the corresponding raw
data area of the object file.

The division of initialized and uninitialized data by size may split writable data
into "small” (.sdata, .sbss) and "large" (.data, .bss) sections. It may be
possible to exploit this division by grouping frequently used data together in a
section. This strategy may enhance performance by reducing page faults. The size
division may also allow post-link tools, such as om and spike, to generate more
efficient code sequences for accessing data items.

The default maximum value for an item allocated in a "small” section is eight bytes.
Some compilers accept a -G option with a parameter to specify the maximum size
of a "small" data item. However, the default compilers on Tru64 UNIX do not.

When speaking of item size, note that an aggregate data item is considered as a
whole. For example, a string of ten characters has a size of ten bytes.

3.3.7 Permissions/Protections
When a process image is created for a program, loadable segments are assigned

access permissions. These are determined by the file's MAGIC number and the
segment type.

Table 3-1: Segment Access Permissions

Image Segment Access Permissions
OMAGIC text, data, bss Read, Write, Execute
NMAGIC text Read, Execute
NMAGIC data Read, Write

NMAGIC bss Read, Write, Execute
ZMAGIC text Read, Execute
ZMAGIC data Read, Write

ZMAGIC bss Read, Write, Execute
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3.3.8 Exception Handling Data
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Exception handling is provided on the system to cope with unusual conditions. The
object file contains two sections for storing exception-handling data structures. The
declaration of these structures is shown in Section 3.2.

The object file sections .xdata and .pdata work together to provide
exception-handling support. The .xdata section contains run-time procedure
descriptors, GP range information, and user-specified exception data. The .pdata
section contains code range descriptors. Exception information is produced for

all pre-link object files. The linker produces exception information for dynamic
executables and shared libraries because they will potentially be utilized in
conjunction with other dynamic executables or shared libraries that rely on
exception handling. The linker also produces exception information for static
executables that reference fpdata_ size, a linker-defined symbol which
represents the number of entries in the .pdata section.

A code range descriptor associates a contiguous sequence of addresses with a
run-time procedure descriptor. The .pdata code range descriptors are ordered by
run-time address. The ranges never overlap. The last .pdata entry is an end
marker. It may be followed by padding.

The code range descriptor points into both the text segment and the run-time
procedure descriptors, as shown in Figure 3—10. The relationship between code
range descriptors and run-time procedure descriptors can be a many-to-one
relationship. Also note that a code range descriptor may not have an associated
run-time procedure descriptor.
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Figure 3-10: Exception-Handling Data Structures
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The virtual address space containing the text section of the object file is portioned
into code ranges. Each code range descriptor has only one address, which indicates
the beginning of the range. The range is implicitly ended just prior to the beginning
address of the subsequent range. The final code range descriptor serves to end the
range begun by the next-to-last descriptor, not to start a new range.

The GP range information can be accessed via the special symbol gpinfo (see
Section 2.3.7). It is an array of signed 64 bit integers. If the first entry is not
GPINFO MAGIC the GP range information should be ignored. The end of GP range
information is identified by the constant GPINFO LAST. (These constants can be
found in /usr/include/excpt.h.) Each range of instructions with a unique GP value
is represented by a set of three entries as shown in Figure 3-10.

begin address The address of the first instruction in the GP range stored
as an offset from &_ftext.

size Size in bytes of the GP range.
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gp offset The GP value used for the GP range stored as an offset
from &_fdata.

The Programmer’s Guide and the Calling Standard for Alpha Systems provide
detailed explanations of the exception-handling mechanisms supported by Tru64
UNIX. Related man pages such as pdsc(4) and exception intro(3) are also
available for quick reference.

C++ uses its own unique exception mechanism. An example illustrating the symbol
table representation of C++ exception information can be found in Section 9.2.6.

3.3.9 Thread Local Storage (TLS) Data
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Threads are available on Tru64 UNIX as a way to increase processor utilization
and overall application performance. Thread Local Storage (TLS) provides a
way for an application writer to declare data that has multiple instances, one
per thread. The object file has specific structures designed to store and manage
TLS. These structures and the impact of TLS on the object file and symbol table
are described here. For general information about threads programming, see the
Guide to DECthreads.

Three object file sections are devoted to TLS data: .tlsdata, .tlsbss, and
.tlsinit. The TLS region consists of the .tlsdata and .tlsbss sections.
The .tlsinit section, which may be mapped with the object file’s text or data
segments, contains initialization information for .tlsdata. Objects containing
TLS data are distinguished by the presence of these sections.

Structures outside the object file are used to reference TLS data. The Thread
Environment Block (TEB) is an architected structure provided by system libraries.
One of the fields in the TEB is the address of the Thread Specific Data (TSD) array,
which contains pointers into the TLS region. Each object containing TLS will be
allocated one or more TSD entries. In each thread, the TSD entries will contain the
address of the start of a region of that thread's TLS area.

Figure 3-11: Thread Local Storage Data Structures
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3.3.10

Because the TLS region is allocated dynamically and is unique per-thread, no
address information can be recorded in the object file. All other attributes of the
TLS region can be determined at link time and are recorded in the object file in the
TLS data and TLS bss section headers.

The TLS data and bss sections occupy no space in the object file and do not have
associated section relocation information.

The TLS INIT section contains the data which will be used to initialize each
thread’s instance of the TLS data section at run time. The TLS INIT section can
contain relocation information. Only R_REFQUAD and R_REFLONG relocations are
allowed, and the relocations must reference nonTLS symbols or sections.

The TLS region for a shared object consists of the initialized and zero-initialized
TLS data defined by that object. The TLS region is composed of two sections: the
TLS data section containing initialized TLS data (.t1lsdata) and the TLS bss
section (. tlsbss) containing zero-initialized TLS data.

If a shared object contains TLS data, an entry in the GOT (for the special symbol
___tlsoffset ) contains the offset into the TSD array to the array element that
points to the TLS area. If this is a multiple-GOT shared object, the entry may be
duplicated in each GOT. The value of the GOT entry is filled in at load time when
the TLS initialization routine calls the loader with the allocated TSD key value.

If a static executable contains TLS data, the address of __ t1soffset will normally
be accessed through a .1ita entry that contains the value 2048, the offset to
TSD key 256.

Special symbol types and relocation types are specific to TLS. See Chapter 5 and
Chapter 4 for more information.

User Text and User Data Sections

The linker contains provisions for creating and relocating user-defined object file
sections. This feature was implemented for a specific customer at the customer’s
request. It is very rarely used and minimally supported. This section is designed to
provide only a general overview.

Any number of user sections can be added to an object file. See Section 2.3.2 for the
placement of the user sections in the various object file layouts.

The section header for a user section has the same semantics as those used for
other object file sections. The section flags are set to STYP_REG. The user creating
the section chooses the section name. User text sections are distinguished from
user data sections by their addresses. User text sections have text segment
addresses, and user data sections have data segment addresses.

For user sections, the linker synthesizes special symbols for the start and end
addresses of each section. These symbols take the form:

_ fuser section SECTION NAME
__euser section SECTION NAME

where SECTION NAME is the name in the section header. These linker-defined
symbols are always strong symbols.

The linker also combines like-named user sections in multiple input files to form a
single section in the output file.

User sections can only have external relocation records.

Namespace issues can arise due to the user’s naming of these sections. It is
the responsibility of the user to protect against and recognize errors caused by
namespace issues.
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3.4 Language-Specific Instructions and Data Features

Procedures with alternate entry points require multiple run-time procedure
descriptors. See the Calling Standard for Alpha Systems for details.

C++ has exception handling facilities in addition to those discussed in this chapter.

C++ global constructors and destructors are implemented as initialization and
termination routines invoked by driver code stored in the .init and .fini
sections.
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Relocation

The purpose of relocation is to identify and update storage locations that need to be
adjusted when an executable image is created from input object files at link time.
Relocation information enables the linker to patch addresses where necessary by
providing the location of those addresses and indicating the type of adjustments to
be performed. Relocation entries in the section relocation information are created
by the assembler, compiler, or other object producer, and the address adjustments
are performed by the linker.

The linker performs relocation fixups after determining the linked object's memory
layout and selecting starting addresses for its segments. During partial links,
relocation information is updated and preserved for subsequent links. Relocation
updates for partial links include converting external relocation entries to local
relocation entries and retargeting relocation entries to new section addresses.

See Section 4.3.2.1 for details.

Relocation information contained in an object file can have four distinct
representations:

= Relocation entries identified in section headers. These are the relocation
entries referred to in this document as "normal” or "actual".

= Compact relocation records, produced by the linker and consumed by om, spike,
and profiling tools. Compact relocations are stored in the . comment section.

= Linkerdef entries which are produced by the linker to identify all uses of
linker-defined symbols. Linkerdef entries are stored in the . comment section.

Version Note

Linkerdef entries are supported in Tru64 UNIX V5.1 and greater for
object format VV3.13 and greater.

= Dynamic relocations, which are present only in shared objects. Dynamic
relocation may be performed for shared objects at load time.

The first three forms of relocation information are discussed in this chapter.
Compact relocations are discussed in Section 4.4 and linkerdef relocations are
covered in Section 4.5. The fourth form is covered in Chapter 6. Figure 4-1
summarizes which kinds of objects contain which kinds of relocation information.
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Figure 4-1: Kinds of Relocations
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Actual relocation entries are organized by raw data section. Not all object file
sections necessarily have relocation entries associated with them. For example,
bss sections do not have relocation entries because they do not have raw data to
relocate. Section headers for sections with relocation entries contain pointers to
the appropriate section relocation information, as shown in Figure 4-2.

Objects

Figure 4-2: Section Relocation Information in an Object File
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Note that the ordering of section headers does not necessarily correspond to the

ordering of raw data and section relocation information. Consumers should rely on
the section header to access this information.

4.1 New or Changed Relocations Features

Tru64 UNIX V5.1 introduces the following new or changed features:

Full compact relocations. See Section 4.4.

Linkerdef relocations. See Section 4.5.
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4.2 Structures, Fields, and Values for Relocations

4.2.1 Relocation Entry (reloc.h)

struct reloc {

coff addr r_vaddr;

coff uint r_symndx;

coff uint r type : 8;
coff uint r_extern: 1;
coff uint r offset:6;
coff uint r _reserved:11;
coff uint r size:6;

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Relocation Entry Fields

r vaddr Virtual address of an item to be relocated.

If the s_nreloc field in the section header overflows,
this field contains the number of relocation entries for the
section. This possibility applies only to the first entry

in a section’s relocation information. See Section 4.2.4
for more information.

r symndx For an external relocation entry, r symndx is an index into
external symbols. For a local relocation entry, r symndx is
the number of the section containing the symbol. Table 4-1
lists the section numbering.

For entries of type R_LITUSE, this field contains a subtype.

See Table 4-3.
r_type Relocation type code. Table 4-2 lists all possible values.
r_extern Set to 1 for an external relocation entry. Set to O for a

local relocation entry.

r offset For an entry of type R_OP_STORE, r_offset is the bit
offset of a field within a quadword. For other relocation
types, the field is unused and must be zero.

r reserved Must be zero.

r size For an entry of type R_OP_STORE, r_size is the bit size
of a field. For R_IMMED * entries, it is a subtype. See
Table 4-4. For other relocation types, the field is unused
and must be zero.

Table 4-1: Section Numbers for Local Relocation Entries

Symbol Value Description
R_SN_NULL 0 no section
R_SN_TEXT 1 .text section
R_SN_RDATA 2 .rdata section
R_SN_DATA 3 .data section
R_SN_SDATA 4 .sdata section
R SN SBSS 5 .sbss section
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Table 4-1: Section Numbers for Local Relocation Entries (cont.)

Symbol Value Description

R_SN_BSS 6 .bss section

R _SN_INIT 7 .init section

R SN LITS8 8 .1its section

R _SN LIT4 9 .1lit4 section
R_SN_XDATA 10 .xdata section
R_SN_PDATA 11 .pdata section

R SN _FINI 12 .fini section

R_SN _LITA 13 .lita section

R_SN_ABS 14 for R_OP_xxxx constants
R_SN RCONST 15 .rconst section

R SN TLSDATA 16 .tlsdata section

R SN TLSBSS 17 .tlsbss section

R_SN TLSINIT 18 .tlsinitsection
R_SN_RESTEXT 19 (not supported) .restext section
R_SN _GOT 20 (V5.1 - ).got section

Version Note

The R_SN_RESTEXT value is reserved for Tandem big-endian systems. It
is not used on Tru64 UNIX.

Table 4-2: Relocation Types

Symbol Value  Description
R _ABS 0x0 Relocation already performed
R_REFLONG Ox1 A 32-bit reference to symbol’s virtual address
R_REFQUAD 0x2 A 64-bit reference to symbol’s virtual address
R_GPREL32 0x3 A 32-bit displacement from the global pointer
to a symbol’s virtual address
R_LITERAL 0ox4 A reference to a literal in the literal address pool
as an offset from the global pointer
R_LITUSE! 0x5 An instance of a literal address previously
loaded into a register
R_GPDISP 0x6 An 1da/ldah instruction pair that is used to initialize
a procedure’s global-pointer register
R_BRADDR 0x7 A 21-bit branch reference to the symbol’s virtual address
R_HINT 0x8 A 14-bit jsr hint reference to symbol’s virtual address
R_SREL16 0x9 A 16-bit self-relative reference to symbol’s virtual address
R _SREL32 Oxa A 32-bit self-relative reference to symbol’s virtual address
R_SREL64 Oxb A 64-bit self-relative reference to symbol’s virtual address
R_OP_PUSH Oxc A 64-bit virtual address to push on the relocation
expression stack
R_OP_STORE Oxd An address to store the value popped from the
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Table 4-2: Relocation Types (cont.)

Symbol Value  Description

R_OP_PSUB Oxe A symbol’s virtual address to subtract from value at
the top of the relocation expression stack

R_OP_PRSHIFT Oxf The number of bit positions to shift the value at the
top of the relocation expression stack

R_GPVALUE 0x10 A new GP value to be used for the address range starting
with the address specified by the r vaddr field

R_GPRELHIGH Ox11 The most significant 16 bits of a 32-bit from the global
pointer to a symbol’s virtual address

R_GPRELLOW 0x12 The least significant 16 bits of a 32-bit from the global
pointer to a symbol’s virtual address

R_IMMED? 0x13 An instruction sequence that calculates an address

R_TLS_LITERAL 0x14 The instruction that loads the TLS key

R_TLS_HIGH 0x15 The most significant 16 bits of a 32-bit from the TLS

region pointer to a symbol’s virtual address

R_TLS_LOW 0x16 The least significant 16 bits of a 32-bit from the TLS
region pointer to a symbol’s virtual address

Table Notes

1. The r symndx field for the relocation type R_LITUSE is a subtype. The valid
entries for this field and their meanings are summarized in Table 4-3.

2. Ther size field for the relocation type R_IMMED is a subtype. The valid
entries for this field and their meanings are summarized in Table 4—4.

Table 4-3: Literal Usage Types

Symbol Value  Description

R_LU BASE 1 The base register of a memory format instruction
(except 1dah) contains a literal address

R _LU BYTOFF 2 Should not be used

R_LU JSR 3 The target register of a jsr instruction contains

a literal address

Table 4-4: Immediate Relocation Types

Symbol Value  Description
R_IMMED GP_16 1 16-bit displacement from GP value
R _IMMED GP HI32 2 Most significant 16 bits of 32-bit displace-

ment from GP value

R_IMMED SCN HI32 3 Most significant 16 bits of 32-bit displacement
from section start

R _IMMED BR HI32 4 Most significant 16 bits of 32-bit displacement
from instruction following branch

R _IMMED LO32 5 Least significant 16 bits of 32-bit displacement
specified by last R_IMMED * HI32

4.2.2 Compact Relocation Records)

Compact relocation records are written into the free-form data area of the comment
section. They are identified by a tag type of CM_COMPACT RLC in the comment
header. The public versions of compact relocation interfaces for producers and
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consumers are located in the header file cmplrs/cmrlc.h. See Section 4.4 and
Chapter 7 for more information.

4.2.3 Linkerdef Relocation Records (scncomment . h)

Linkerdef relocation records are written into the free-form data area of the
comment section. They are identified by a tag type of CM_LINKDERDEF in the
comment header. The Linkerdef comment subsection is an array of linker data
structures that contain information similar to the reloc structure. See Section 4.5
and Chapter 7 for more information.

Version Note

The linker data structure is supported on Tru64 UNIX V5.1 and
greater.

struct linker data {

unsigned int 1d_scnptr;

unsigned int 1d_base : 65
unsigned int 1d_symbol : 6;
unsigned int 1d_type 8;
unsigned int 1d_size 6;
unsigned int 1d _offset : 6;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Linkerdef Relocation Entry Fields

1d_scnptr A byte offset relative to the starting file offset of the section
identified by 1d_base. Together, these fields identify the
target address for the relocation.

1d_base The number of the section containing the target address.
See Table 4-1 for a list of valid section numbers.

1d_symbol An enumeration value identifying a linker-defined symbol.
See Section 4.2.3.1 for a list of valid values.

1d_type A relocation type. See Table 4-2 for a list of relocation
types.

1d size The size of a bitfield for the R_OP_STORE relocation.

1d offset The bit offset of a bitfield for the R_OP_STORE relocation.

4.2.3.1 Linkerdef Symbol Enumeration

4-6

Linker-defined symbols are identified by the following enumeration. Each
enumeration value corresponds to the linker-defined symbol of the same name
(excluding the "LDEF " prefix).

Version Note

The LD_SYMBOL enumeration is supported on Tru64 UNIX V5.1 and
greater.

enum LD SYMBOL {
LDEF__BASE ADDRESS
LDEF___cobol_main
LDEF__DYNAMIC

wouwon
=
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LDEF__DYNAMIC_LINK
LDEF__ebss
LDEF__edata
LDEF_edata

LDEF__end

LDEF_end

LDEF__etext
LDEF_etext

LDEF__ fbss

LDEF__ fdata

LDEF__ fpdata
LDEF__fpdata_size
LDEF___ fstart

LDEF__ ftext

LDEF__ ftlsinit
LDEF_GOT_OFFSET
LDEF__gp

LDEF__gpinfo

LDEF___ istart
LDEF__procedure_string table
LDEF__procedure_table
LDEF__procedure_table size
LDEF___ tlsbsize
LDEF___ tlsdsize
LDEF___ tlskey

LDEF___ tlsoffset
LDEF___ tlsregions
LDEF_MAX

14,

17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,

L | (| | | (L (L L (L L
i
[

}i

4.2.4 Section Header

The section header contains a file pointer to the section’s relocation information
and the number of entries. (See Section 2.2.3 for the declaration.) The number of
relocation entries for a section is contained in the section header field s_nreloc. If
that field overflows, the section header flag S NRELOCS_OVFL is set and the first
relocation entry’s r vaddr field stores the actual number of relocation entries for
the section. That relocation entry has a type of R_ABS and all other fields are zero,
causing it to be ignored during relocation.

4.3 Relocations Usage

4.3.1 Relocatable Objects

An object is relocatable if it contains enough relocation information for the linker to
successfully relocate it. Relocatable objects can be produced by compiling without
linking or by partial linking.

Compilers and assemblers always produce relocatable objects. By default,

the relocatable object files produced are passed to the linker to produce a
non-relocatable executable object. Most compilers recognize a -c option. The -c
option suppresses the link operation and writes the object file in its relocatable
form. For example, the following command produces a non-executable OMAGIC
file named pgm. o.

$ cc -c pgm.c

By means of partial linking, the linker can also produce a relocatable object.

By default, the linker attempts to produce an executable zMAGIC file for which
all relocation entries have been processed and removed. To preserve relocation
information, the linker’s - r switch should be selected. For example, the following
command produces a non-executable OMAGIC file named a. out.

$ 1d -r pgm.o

Selection of the - r switch has other effects: common storage class symbol allocation
is deferred until final link and undefined symbol error messages are suppressed.
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Relocatable objects have various uses. The most obvious is as input to a subsequent
partial or final link operation. All objects input to the linker are relocatable objects,
regardless of how they are produced. Multiple relocatable objects can be combined
during a final link to produce an executable object. The typical example of this
process is when several separately compiled modules are created at different times
and later linked together to produce the final executable program. For example,
the following steps produce an executable zMAGIC file named a . out.

cc -c partl.c

cc -c part2.c

cc -c part3.c
cc partl.o part2.o part3.o

v r r

Relocatable objects are also used for archives. Although files of any type may be
archived, one important use of archives is for user or system libraries. An example
is the system library 1ibc.a, which is linked with many C programs. Objects in
archive libraries must be relocatable to be linked with other object files to make
executable programs.

Relocatable objects may be used as loadable device drivers, which are object files
that are dynamically added to a running kernel. See Reference Pages, Section
9r, Device Drivers (Volume 1) and Reference Pages, Section 9s, 9u, and 9v, Device
Drivers (Molume 2) for more information.

Relocatable objects can also be used by the bootlinker, which builds the kernel from
object files at boot time. Information is available in the System Administration
guide.

Some profiling tools require relocatable objects as input because they rebuild the
object and require the capability of rearranging raw data. However, on Tru64
UNIX, these tools rely on compact relocations, which are an alternate form of
relocation information. Compact relocations are described in Section 4.4.

4.3.2 Relocation Processing

This section describes the generic process of relocating object files from a high-level
viewpoint. It does not include details of address calculations, nor does it take into
account the substantial variations in the contents of a relocation entry’s fields.
For specifics, see Section 4.3.4.

Relocation involves tracking and updating references as the referenced items move
in memory. At a minimum, one relocation entry is required for each reference
made to an item whose address may potentially change. This address, pointed to
by the reloc structure field r_vaddr, is the target address of the relocation. This
address is adjusted when relocation records are preserved at link time. The target
address is located in one of the raw data sections of the object file.

The target address points to another item in the raw data. This item can be a data
item, procedure, or any program element that will potentially be mapped to a new
memory location when the linker builds the executable object.
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Figure 4-3: Relocation Entry

Raw Data

Relocation Entry

p [target address]

r_vaddr -]

r_symndx ——
r_extern _:.I\ ,
b [target item]

may move

Note that a many-to-one relationship may exist between relocation entries and
target items. A target item may be addressed multiple times in an object file’s raw
data, and a single target address reference may be described by multiple relocation
entries.

Taken together, the r symndx field and r_extern bit track the position of
the target item. If it is moved to a new location, the target address is updated
accordingly.

The value of the relocation is the distance that the tracked item will move in
memory.

4.3.2.1 Local and External Entries

Relocation entries are used for several purposes:

= Address references to unresolved symbols that will be imported from other
objects.

= References to addresses within an object that may change when the object is
linked at a different base address or linked with other object files.

= ldentification of address references that may be optimized at link time.
Relocation entries may be local or external. Local relocation entries are used for
references to addresses within an object. External relocation entries are used for

references to any external symbols. In particular, unresolved symbol references
can only be represented by external relocation entries.

The r extern flag is set in external relocation entries. This flag determines the
interpretation of the r symndx field. For external entries, this field provides the
external symbol table index of the referenced symbol.

Figure 4-4 shows a sample external relocation entry.
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Figure 4-4: External Relocation Entry
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For an external entry, the value for relocation is the run-time address of the
referenced external symbol. In cases where the symbol is undefined in an input
object, it must first be resolved. Figure 4-5 depicts this process.

Figure 4-5: Processing an External Relocation Entry

Declaring Object File Defining Object File Executable Object File

text section text section text section raw
rawy olata: rawy data: data combines all
call myproc? | myproc: do a.b.c input objects' text:
call myproc -
HHTHTHTHTH f
relu:u:atiogjntry: A‘ myproc: do a.b.c
r_waddr
— r_symndx external symbol
wmbo
table entry: HI
[fmmmmmmm | febleen s
external syr_”nbul ralacaiaiic sddn table entry:
tahle iantr\f.u st=stProc L value=
sc:=:l:E:IUunEd—EiinEd sc=scGlobal refa.:::‘&_r_.?d&a"a’f
B Ncma:vj
Swmbol table
> (matches declaration S:Sgennottir?e
with definition eemcutakla,

A local relocation entry has its r_extern flag cleared and tracks references by
section.

Figure 4-6 shows a sample local entry.
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Figure 4-6: Local Relocation Entry

Relocation Entry Section k Header

r_vaddr | )
r_symndx
s_vaddr
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Raw Data Section k Data
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For a local entry, the value for relocation is the difference between a section’s

address in the input object and the address of that section’s data after linking.
The section is identified by a relocation section type in r symndx. Figure 4—7
depicts this situation.

Figure 4-7: Processing a Local Relocation Entry

Input Object  Input Object  Input Object  Cutput Object

=

text section text section text section text section

= fext?
Mt Lt it | ez "
relocation: relocation: relocation | |reas
r_vaddr - r_vaddr L r_vaddr

i i i AL
y

Linker
concatenates and

relocates obiject file
gections

To complete relocation for all entries, the base address for the final process image
is required. The linker can then use that address to patch all relocatable entries.

4.3.2.2 Relocation Entry Ordering

The ordering of relocation entries is sometimes significant. The diagram below
shows the optional relocation entry count and grouping of relocation entries
according to GP range.
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Figure 4-8: Relocation Entry Ordering Requirements

section KEelocations
R _AES Optional relocation owerflow count
™. Includes all GP-relative relocations
/ for first GP range
R_GPVRLUE

\\. Includes all GP-relative relocations
/ for second GP range

If a section requires an optional relocation entry overflow count, it must be in
the first relocation entry.

Relocation processing tools require GP-relative relocations to be grouped by GP
range. R_GPVALUE entries will effectively separate the groups of GP-relative
relocation entries for each GP range. For a list of GP-relative relocation types,
see Section 4.3.3.2.

Some relocation types can only be used when paired with other relocation types.
These relocation groupings are:

e R GPRELHIGH, R_GPRELLOW

e R TLSHIGH, R TLSLOW

e R LITERAL, R_LITUSE

e R OP_PUSH,R OP PSUB,R _OP PRSHIFT,R OP STORE

An R_GPRELHIGH entry must be followed by one or more R_GPRELLOW entries.
An R_TLSHIGH entry must be followed by one or more R_TLSLOW entries.

An R_LITERAL entry may be followed by zero or more R_LITUSE entries.

An R_OP_PUSH entry must be followed by exactly one R_OP_STORE entry. Zero
or more R_OP_PSUB and R_OP_PRSHIFT entries may be located between the
R _OP_PUSH and R_OP_STORE entries.

4.3.2.3 Shared Object Transformation

Part of the linker’s preparation of loading information for shared objects is to
create dynamic relocation entries from some of the actual relocation entries.

The linker must determine which relocation entries need to be converted to
dynamic relocation entries. Data references (R_REFQUAD and R_REFLONG
relocation types) must be represented in the .rel.dyn section if they are not in
the .1lita section. The .1lita section is an exception because its contents are
mapped directly into the GOT. All other R_REFQUAD or R_REFLONG entries have an
associated dynamic relocation entry in the shared object file.

Dynamic relocation entries are not permitted for text addresses. The text segment
is not mapped with write permission, so text relocation fixups cannot be performed
by the dynamic loader.
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4.3.3 Kinds of Relocations

Relocations types can be grouped into the following categories:
= Direct Relocations

= GP-relative Relocations

= Self-relative Relocations

= Literal Relocations

= Relocations Stack Expressions

< Immediate Relocations

e TLS Relocations

The categories often overlap.

4.3.3.1 Direct Relocations

Direct relocations are independent entries; all of the information necessary to
process them is self-contained. The relocation target contains either the address
of a relocatable symbol or an offset from that address. They are used for simple
address adjustments; addresses in the literal address pool (.1ita section), for
example, will have associated direct relocation entries.

R _REFQUAD and R_REFLONG are direct relocation types. R_REFQUAD indicates a
64-bit address and thus is normally used on Alpha systems. R_REFLONG indicates
a 32-bit address and most often occurs when the xtaso environment is in effect.
These types of relocations are processed in the manner described in Section 4.3.2.

The following special requirements exist for direct relocation entries for the .1ita
section:

= Only entries of type R_REFQUAD or R_REFLONG are permitted.

= R _REFLONG entries pertain to the bottom 4 bytes of a . 1ita entry. The size of
the entry is unchanged, but an error is generated if the result overflows 4 bytes.

= All external entries must correspond to symbols whose value is zero prior to
relocation.

4.3.3.2 GP-Relative Relocations

This class of relocations requires use of the GP value as a factor in the calculation.
Note that the literal relocations in Section 4.3.3.4 and Section 4.3.3.7 also fit this
category.

The R_GPREL32, R GPRELHIGH, R _GPRELLOW, and R_GPDISP relocation types are
GP-relative. They typically point to instructions that calculate or load addresses
using a GP value. The R_GPRELHIGH and R_GPRELLOW relocation types must be
used together. The R_GPDISP relocation type is used for instruction pairs that
load the GP value.

A special-purpose GP-relative relocation entry specifies that a new GP range is

in effect. The relocation type for this entry is R_GPVALUE. The linker inserts

R _GPVALUE entries at object module boundaries during a partial link (1d -r) when
the .1ita section it is building would otherwise overflow. Entries of this type
appear in the . text section or the . rdata section. These entries are local entries
because they are not tied to any symbol.

4.3.3.3 Self-Relative (PC-Relative) Relocations

This class of relocations require adjustments based on the current position in the
text or data. Self-relative relocations are also referred to as PC-relative relocations.
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The R_SREL16, R SREL32, and R_SRELé&4 relocation types apply to 16, 32, and
64 bit target addresses, respectively.

Two more self-relative relocation types are R_BRADDR and R_HINT. R _BRADDR is
used to identify branching instructions whose targets are known at link time.
R _HINT is used to adjust the branch-prediction hint bits in jump instructions.

4.3.3.4 Literal Relocations

This category of relocations encompasses both literal relocations (type R_LITERAL)
and literal-usage relocations (type R_LITUSE), which work together to describe
text references.

A literal relocation (type R_LITERAL) occurs on a load of an address from the
.lita section. Any associated R _LITUSE entries always directly follow the
R _LITERAL entry.

The literal-usage entries are used for linker optimizations. Processing for these
relocation entries is optional. The linker and other tools may ignore these
relocation entries with no risk of producing an improperly relocated object file.

The advantage of literal-usage entries is that they enable link-time memory-access
optimizations. These relocation entries identify instructions which use a
previously loaded literal. With this knowledge, the linker is able to determine that
certain instructions are unnecessary or can be altered to improve performance.
Optimization is performed only during final link and with an optimization level
setting of at least -01.

4.3.3.5 Relocation Stack Expressions

Relocation stack expressions constitute a sequence of relocation entries that must
be evaluated as a group. The purpose of stack expressions is to provide a way to
represent complex relationships between relocatable addresses and store results
with bit field granularity. They are currently used only for exception-handling
sections.

An additional advantage of stack expressions is that they provide the capability to
describe a new relocation type without requiring tool support or code modification
to recognize and execute a new r type. However, the greater flexibility of
relocations expressions is offset by the fact that multiple entries are necessary to
describe a single fix-up.

Special relocation types are used to build relocation expressions. The types are:
e R OP PUSH

* R OP STORE

e R OP PSUB

e R OP PRSHIFT

An R_OP_PUSH entry marks the beginning of a sequence of relocation stack
expressions and an R_0OP_STORE marks the end. The types of any intervening
relocation entries should be either R_OP_PRSHIFT to shift the top of stack value
right or R_OP_PSUB to subtract an address from the top of stack value.

An R_OP_STORE entry pops the value from the top of the expression stack and
stores selected bits into a field in a word in memory. The r offset and r_size
fields of a relocation entry are used to specify the target bit field.

It is an error to cause stack underflow or to have values left on the stack when
section relocation is complete.
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Currently, these relocation types are used exclusively for relocating the
exception-handling data in .xdata and .pdata. The reason this relocation is
performed using the stack expression types is the need to shift the address by two
bits. Bit field granularity cannot be specified with other relocation types unless it
is implicit in the relocation type.

4.3.3.6 Immediate Relocations

Immediate relocations are used to describe the linker’s optimization of literal
pool references. If optimization options are in effect, the linker will replace

R _LITERAL and R_LITUSE entries with R_IMMED entries wherever possible. This
information is then used to generate compact relocations that sufficiently describe
all relocatable storage locations.

Immediate relocations can describe instruction sequences that calculate addresses
by adding either a 16-bit or 32-bit immediate displacement to a base address.
R_IMMED entries always point to memory-access instructions. The displacement is
obtained from the instruction.

There are five types of immediate relocations. Subcodes in the r size field
identify them. The types are:

e R_IMMED GP_ 16
e R_IMMED GP_HI32

R_IMMED SCN HI32

R_IMMED BR HI32

R_IMMED L1032

R _IMMED GP 16 and R_IMMED GP_ HI32 entries identify address calculations
performed by adding an offset to the global pointer. An R_IMMED SCN HI32 entry
is paired with an R_IMMED LO32 entry to identify a pair of instructions which add
a 32 bit displacement to the starting address of a section. An R_IMMED BR HI32
entry is paired with an R_IMMED LO32 entry to identify a pair of instructions
which add a 32 bit displacement to the address of an instruction following a branch.

4.3.3.7 TLS Relocations

The types R_TLS LITERAL, R_TLS LOW, and R_TLS HIGH are TLS-specific
relocation types.

R TLS LITERAL is very similar to R_LITERAL, except it relates to a literal in the
TLS data storage area, the TSD array. R_TLS LOW and R_TLS_ HIGH entries are
used as a pair to identify instructions which load a TLS data address by adding

a 32 bit offset to the TLS region pointer. These relocation types are identical to
the R_GPRELHIGH and R_GPRELLOW relocation types except for the fact that the
target instructions for the TLS relocation entries calculate addresses using the TLS
region pointer instead of the GP value.

4.3.4 Relocation Entry Types

The type of a relocation entry (stored in the r_type field) describes the action the
linker must perform. This section discusses the purposes of the different types and
provides examples of their use.

Relocation entry fields are interpreted differently based on relocation type. There

also may be constraints on fields’ contents depending on the type. Some relocation
entries are context sensitive and must be preceded or followed by a particular entry.
Some are size specific and the computed address must fall within a specified range.
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Moreover, some types are constrained to be local entries only or are associated with
particular object file sections.

To describe the calculations performed by the linker, the following notation is used
in the detailed descriptions for each relocation type:

* disp

GP

new_scn_addr

old GP

old scn_addr

[r vaddr]

SEXT

stack

this new addr

this new scn_addr

this old scn_addr

tos

result

4341 R ABS

4-16

Fields

r_vaddr

r_symndx

r extern

r offset

Relocation

The displacement field of whatever instruction is indicated.

Current GP value; begins as the contents of
AOUTHDR.gp_value for the final object.

The address of the tracked section of a local relocation
entry, as calculated by the linker.

GP value in the input object; begins as AOUTHDR.gp_value
for the input object.

The contents of s_vaddr in the section header of the input
object file for the tracked section of a local relocation entry.

The contents at the address r_vaddr; to be distinguished
from the address itself.

The constant immediately following is sign-extended.
The relocation expression stack.
Where r_vaddr will be after relocation .

Where the section containing r_vaddr will be after
relocation, as calculated by the linker.

The contents of s_vaddr in the section header of the input
object file for the section containing r_vaddr.

Top of relocation expression stack.

The result of the relocation, which is written back into
the relocated r_vaddr in the object file that the linker is
producing.

Number of relocation entries if s nreloc section header
field has overflowed. This number includes itself in the
count. Otherwise, unused.

Unused.
Unused.

Unused.



r size Unused.

Operation

N/A

Restrictions

N/A

Description

This relocation entry is used to indicate a relocation has already been performed or
should not be performed. No calculation is associated with such an entry.

The first entry in a relocation section is of type R_ABS if it contains the number
of relocation entries in that section (which is the case when the section header
field s nreloc overflows). This type can also be used to pad relocation data or to
delete relocation entries in place. In-place deletions of relocation entries are likely
to be performed during a partial link.

Example

An object file produced during a partial link has 99993 relocations associated with
its . text section. A listing of the entries begins with an R_ABS because the total
number overflows s nreloc:

Vaddr Symndx Type Off Size Extern Name
.text:

0x0000000000018699 0 ABS local <null>

4.3.4.2 R_REFLONG

Fields
r vaddr Points to target address.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + (int) [r_vaddr]
else
result = EXTR.asym.value + (int) [r_vaddr]

Restrictions

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type describes a simple address adjustment to the 32-bit
value pointed to by r vaddr. R_REFLONG entries are most likely to occur when
the compilation option -xtaso short is specified.
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The relocated value may be unaligned.

Example 1

C code fragment:

extern int 1i;
void *p = (void *) (&1 + 1);

Compile as follows:
$ cc -c -xtaso_short pgmname.c

Produces the following R_REFLONG entry:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.sdata:
0x0000000000000000 0 REFLONG extern I

This relocation entry is necessary because the value of the pointer p depends on the
address of the global (common storage class) symbol i, whose address is yet to be
determined. At the location indicated by s _vaddr, the value 4 is stored, which will
be added to the resolved address of i. The "4" represents the 4 bytes to the next
integer storage location in memory after i’s.

Example 2

From assembly code, the following declaration produces the same relocation entry
as the previous example.

.long I

4.3.4.3 R_REFQUAD

Fields
r vaddr Points to target address.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old _scn_addr) + (long) [r_vaddr]
else
result = EXTR.asym.value + (long) [r_vaddr]

Restrictions

None.

Description

A relocation entry of this type describes a simple address adjustment to the 64-bit
value pointed to by r vaddr. R_REFQUAD entries are most likely to occur in data
sections and almost always are used for relocation of the . 1ita section.

The relocated value may be unaligned.
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Example 1
Small program:
#include <stdio.h>
main () {

printf ("printing!\n") ;
}

Relocation entries produced for its . 1ita section:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
.lita:
0x0000000000000070 1 REFQUAD extern printf
0x0000000000000078 3 REFQUAD local .data

The .1lita section consists of two entries, and each is relocated. One entry is
external, tracking the routine name printf ( ), and one local, tracking the address
of the string literal in the .data section.

Example 2
A R_REFQUAD entry can also be produced by an assembly language statement
such as:

.globl y

.data
b: .quad y

Relocation entry produced:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.data:
0x0000000000000000 0 REFQUAD extern y

The variable b is allocated at s _vaddr in the .data section and will be updated by
adding the address of y when the symbol v is resolved.

4.3.4.4 R_GPREL32

Fields
r vaddr Points to a 32-bit GP-relative value.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + old GP - GP +
SEXT ( (int) [r_vaddr]
else

result = EXTR.asym.value - GP + SEXT((int) [r_vaddr]

Restrictions

Signed result after relocation must not overflow 32 bits.
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Description

A relocation entry of this type indicates a 32-bit GP-relative value that must be
updated. If it is a local entry, this value must be biased by the GP value for the
input object file. In both cases, the current GP value is subtracted to produce
a result that is an offset from the GP.

Example 1

Local R_GPREL32 entries are produced for a many-case switch statement. For
example, consider the following C program:

main () {
int 1i;

scanf ("%d", &1i) ;
switch(i)
case 0:i++; break;
case 1:i--; break;
case 2:1i+=2; break;
case 3:1-=2; break;
case 4:i+=3; break;
case 5:1-=3; break;
case 6:1i++; break;
default: i=0;

}

A compiler may implement a switch statement with a "jump table", that is a code
sequence containing labels for each case and a jump statement selecting between
them. For each case label, a relocation entry is produced:

Vaddr Symndx Type Off Size Extern Name
.rconst:
0x00000000000000d0 1 GPREL32 local .text
0x00000000000000d4 1 GPREL32 local .text
0x00000000000000d8 1 GPREL32 local .text
0x00000000000000dc 1 GPREL32 local .text
0x00000000000000e0 1 GPREL32 local .text
0x00000000000000e4 1 GPREL32 local .text
0x00000000000000e8 1 GPREL32 local .text
Example 2

The following assembly code sequence also produces a R_GPREL32 entry:
.globl =z

.data
a: .gprel32 z

Relocation entry produced:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
gprel32.o:
.data:
0x0000000000000000 0 GPREL32 extern =z

4.3.45 R_LITERAL
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Fields
r vaddr Points to a load instruction in the text segment. The value
to be relocated is the memory displacement from the $gp in
the instruction.
r_ symndx R SN LITA
r_extern Must be zero; all R_LITERAL entries are local.
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r offset Unused.

r size Unused.

Operation

result = (new_scn_addr - old_scn_addr) + (SEXT((short) [r vaddr]) +
old GP) - GP

Restrictions
The result after relocation for an R_LITERAL entry must not overflow 16 bits. .

R_LITERAL entries must be local and relative to the . 1ita section.

Description

A relocation entry of this type is produced when an instruction attempts to
reference values in the literal-address pool (.1ita section). The instruction
containing the reference accesses a .1lita entry using the GP value in effect and a
signed 16-bit constant. The original address of the item has to be reconstructed
and then adjusted for the new location of the address table. The new address then
has to be reconverted into a GP displacement using the new GP value.

An R_LITERAL entry may or may not be followed by corresponding R_LITUSE
entries. The R_LITERAL entry is required but the R_LITUSE entries are not.

Example

R _LITERAL entries are used when an address is loaded from the literal address
pool:

ldg tl2, -32664(gp)

Relocation entry produced:

***RELOCATION INFORMATION***
Vaddr Symndx Type Off Size Extern Name

.text:

0x0000000000000038 13 LITERAL local .lita

4346 R _LITUSE: R LU BASE

Fields

r vaddr Points to memory-format instruction.

r symndx R LU BASE

r_extern Must be zero; all R_LITUSE entries are local.
r offset Unused.

r size Unused.

Operation

Check if displacement is within 16 or 32 bits. The displacement is calculated:

new _lit = [relocated literal belonging to corresponding R_LITERAL]
disp = new_lit + lituse disp - GP
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Restrictions

A relocation entry of this type must follow either an R_LITERAL or another
R _LITUSE entry with no other types intervening.

r vaddr must be aligned on a byte boundary.
Ignored if optimization level is not at least -01.

Cannot remove the first load instruction unless this is the only corresponding
R _LITUSE entry.

Description

This relocation entry is informational and indicates that the base register of the
indicated instruction holds a literal address. Note that a R_LITERAL entry,
corresponding to an 1dqg instruction, precedes this entry.

Possible optimizations depend on the distance of the memory displacement from the
GP value. If the displacement is less than 16 bits from the GP, a single instruction
suffices to describe the location. The code sequence can be changed as shown:

ldg rx, disp(gp) R_LITERAL

ldg/stq ry, disp2(rx) R_LITUSE (R_LU_BASE)

ldg/stqg ry, disp3(gp)

The linker converts the R_LITUSE entry toan R_IMMED GP_16 for the transformed
instructions.

If the displacement is within 32 bits of the GP, one memory access can be saved by
replacing the first load instruction with the faster 1dah instruction.
ldg rx, disp(gp) R_LITERAL

ldg/stqg ry, disp2(rx) R_LITUSE (R_LU_BASE)

ldah rx, disp3(gp)
ldg/stq ry, disp4(rx)

The linker will convert the R_LITERAL and the R_LITUSE, respectively, to entries
of type R_IMMED GP HI32 and R_IMMED GPLOW32.

This can currently only be done if exactly one R_LITUSE exists for the R_LITERAL.

Example 1

The following instructions represent a single use of an address literal:

0x100: 1dg al, -32656(gp) // R_LITERAL
0x104: lda al, 32(al) // R_LU BASE

Relocation entries produced:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000100 13 LITERAL local .lita
0x0000000000000104 1 LITUSE local R_LU BASE

The potential optimization indicated by thisR_LU BASE is that the two instructions
could possibly be replaced by a single 1dg instruction of the form:

ldg al, <disp>(gp)

Example 2

The following instructions illustrate multiple R_LITUSE entries following an
R _LITERAL entry:

0x130: ldg t0, -32736(gp) // R_LITERAL
0x134: ldg tl, 0(to0) // R_LU BASE
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0x138: zap tl, 0x2, tl

0x13c: insbl v0, 0xl1l, vO
0x140: bis tl, v0, tl
0x144: stq tl, 0(to) // R_LU BASE

Relocation entries produced are:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
0x0000000000000130 13 LITERAL local .lita
0x0000000000000134 1 LITUSE local R_LU BASE
0x0000000000000144 1 LITUSE local R_LU BASE

43.47 R_LITUSE: R LU JSR

Fields

r vaddr Points to jump instruction (in text segment).
r_ symndx R LU JSR

r_extern Must be zero; all R_LITUSE entries are local.
r offset Unused.

r size Unused.

Operation

new_lit = [relocated literal belonging to correponding R_LITERAL]

this new_addr = r vaddr - this_old scn _addr + this new_scn_addr
branch disp = prologue size + new lit - this new addr + 4
result = branch disp / 4

Restrictions

Must follow either an R_LITERAL or another R_LITUSE entry with no other types
intervening.

Result after relocation must not overflow 21 bits (size of branch displacement
field in the branch instruction format).

Description

A relocation entry of this type is informational only. It informs the linker that the
indicated jump instruction is jumping to an address previously loaded out of the
literal address pool. The load instruction had an associated R_LITERAL entry that
precedes this relocation entry.

Under the right circumstances, the linker can optimize this sequence in several
ways:

= The procedure prologue can be skipped if it is not needed to load a GP value
for the procedure.

= The branch can be calculated and the instruction changed to a branch
instruction.

= The preceding 1dg can be removed.
The first two actions may be performed but not the last if other R_LITUSE entries
correspond to the same R_LITERAL. These optimization are performed by the

linker for optimization level 1 and greater. In order to preserve preemptibility of
symbol references, this optimization can only be done for non-weak global symbols
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in a static and dynamic executable. References to static or hidden symbols can be
optimized in executables or shared libraries.

Example

The following instructions illustrate the use of a literal as the target of a jump

instruction:

0x8: 1dg t1l2, -32736(gp) // R _LITERAL
oxc: lda sp, -16 (sp)

0x10: stq ra, 0 (sp)

0x14: Jjsr ra, (t12) // R_LU JSR

Relocation entries produced:

***RELOCATION INFORMATION***

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000008 13 LITERAL local .lita
0x0000000000000014 3 LITUSE local R LU _JSR

The instructions identified by the R_LITERAL and R_LU_ JSR entries in this
example can be optimized. The 1dq instruction can be replaced with a NOP
instruction and the jsr can be replaced with a bsr yielding:

0x1200011a8: ldg u zero, 0(sp) // NOP
0x120001lac: lda sp, -16 (sp)
0x120001110: stq ra, 0 (sp)

0x120001114: bsr ra, 0x1200011d8

4.3.4.8 R_GPDISP

Fields

r vaddr Points to the first of a pair of instructions: 1da and 1dah.
Either instruction may occur first.

r symndx Contains the unsigned byte offset from the instruction
indicated in r_vaddr to the other instruction used to load
the GP value.

r_extern Must be zero; all R_GPDISP entries are local.

r offset Unused.

r size Unused.

Operation

result = (old GP - GP) + (this_old scn _addr - this_new_scn_addr)

+ (65536 * high disp)

+ low_disp

The result after relocation is written back into the instruction pair.

lda_disp = result

ldah_disp =

Restrictions

(result + 32768)

/ 65536

Must be a local relocation.

Must describe an 1da/1dah instruction pair.

Result after relocation must not overflow 32 bits.

4-24  Relocation



Description

A relocation entry of this type corresponds to two instructions in the code. The
field r vaddr points to one instruction and the address of the other is computed
by adding the value of r symndx to r vaddr. This relocation entry occurs for
each instruction sequence that loads the GP value. For instance, procedure entry
points typically include instructions which load their effective GP value. They are
normally the first instructions in a procedure’s prologue.

Example

A simple example of an occurrence of the R_GPDISP entry is the program entry
point:

main() {

}

Instructions generated:

0x0: ldah gp, 1(t12) // R_GPDISP (r_ vaddr)
0x4 : lda gp, -32704(gp) // R _GPDISP (r vaddr + r_symndx)

Relocation entry produced:
Vaddr Symndx Type Off Size Extern Name

.text:
0x0000000000000000 4 GPDISP local

There are situations where a procedure is called but the R_GPDISP entry is not
required. In this case, the gp_used field of the procedure’s descriptor will be zero,
and an R_LU_JSR optimization may cause the prologue to be skipped. See the
Calling Standard for Alpha Systems for details on when a procedure requires
calculation of a GP value.

4.3.49 R_BRADDR

Fields
r vaddr Points to a branch instruction.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
this new_addr = r vaddr - this_old scn _addr + this new_scn_addr
result = ((new_scn_addr - old scn_addr) +
(branch_displacement * 4)
+ r vaddr + 4 - this new addr) / 4

else
this new _addr = r vaddr - this_old scn _addr + this new_scn_addr
result = (EXTR.asym.value + (branch displacement * 4)
- this new addr) / 4

Restrictions

After relocation the result should be aligned on a 4-byte boundary.
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4.3.4.10

The signed result must not overflow the 21-bit branch displacement field.

Description

A relocation entry of this type identifies a branch instruction in the code. The
branch displacement is treated as a longword (32-bit, or one instruction) offset. The
branch target’s virtual address is computed:

va <- PC + (4 * branch displacement)
The branch displacement must be relocated.

The R_BRADDR relocation can only be used for local or static references because the
displacement is fixed at link time. Updating it at run time would require writing
to the text segment, which is not permitted. Without the ability to update at run
time, symbol preemption for shared objects will not function.

Example

A relocation of this type is used for a call of a static procedure:

static bar () {
int g =1;
printf ("the value of g is %d\n", q);

Instruction generated:

ox4c: bsr ra, 0x8(zero) // R_BRADDR

Relocation entry produced:

Vaddr Symndx Type Off Size Extern Name
.text:
0x000000000000004c 1 BRADDR local .text
R_HINT
Fields
r vaddr Points to jump-format instruction.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
this new_addr = r vaddr - this_old scn_addr + this new_scn_addr
result = ((new_scn _addr - old scn_addr) + (jump_disp * 4) +
r vaddr + 4 - this new addr) / 4
else
this new _addr = r vaddr - this_old scn_addr + this new_scn_addr
result = (EXTR.asym.value + (jump_displacement * 4) -

this new addr) / 4
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4.3.4.11

Restrictions

Result after relocation should be aligned on a 4-byte (instruction-size) boundary.

Description

Jump instructions are memory-format instructions where the 14 bits of the
displacement field serve as a hint for determining the jump target. The hint is
PC-relative and must be relocated to remain relevant. Note that the use of hints is
for optimization purposes only and takes advantage of branch-prediction logic built
into the architecture. If the hint values were not relocated, a correct executable
program would still be produced but potential performance improvements would be
lost.

A characteristic of R_HINT entry processing is that instead of checking for overflow
of the 14-bit result after relocation, the linker truncates the result and writes it
back without issuing an error or warning.

Example

Subroutine calls often cause R_HINT entries.

main() {
printf ("hello\n") ;
}

Instructions generated:

0x14: ldg t12, -32752(gp) // R_LITERAL
0x18: jsr ra, (tl2), printf // R_HINT

Relocation entries produced:

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000018 3 LITUSE local R LU _JSR
0x0000000000000018 0 HINT extern printf

Note that the same source line and corresponding instruction produce a second
relocation entry of type R_LITUSE JSR. This second entry is also informational
only. It indicates that the target register of the jump instruction contains a
previously loaded literal address.

R _SREL16

Fields

r vaddr Points to a 16-bit self-relative value.

r symndx External symbol index if r_extern is 1; section number if
r extern isO.

r_extern Either O or 1.

r offset Unused.

r size Unused.

Operation

if (r_extern == 0)
this new_addr = r vaddr - this_old scn_addr + this new_scn_addr
result = (new_scn_addr - old scn_addr) +
SEXT ( (short) [r_vaddr]) + r_vaddr - this_new_addr
else
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4.3.4.12

this new_addr = r vaddr - this_old scn _addr + this new_scn_addr
result = EXTR.asym.value - this new_addr

Restrictions

The result after relocation must not overflow 16 bits.

Description

A relocation entry of this type is identical to an R_SREL32 entry except for the
size of the value being adjusted.

Example

This type is currently not used by the compilation system.

R_SREL32

Fields

r vaddr Points to a 32-bit self-relative value.

r symndx External symbol index if r_extern is 1; section number if

r extern isO.

r_extern Either O or 1.

r offset Unused.

r size Unused.

Operation

if (r_extern == 0)
this new_addr = r vaddr - this_old scn_addr + this new_scn_addr
result = (new_scn_addr - old scn_addr)

+ SEXT((int) [r_vaddr]) + r_vaddr - this_new_addr
else
this new _addr = r vaddr - this_old scn_addr + this new_scn_addr
result = EXTR.asym.value - this new_addr

Restrictions

The result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a value that describes a reference as an
offset to its own location. In other words, the target address is computed by adding
the contents of the relocation address ([r_vaddr]) to the address of the relocation
(r_wvaddr). To perform this relocation, the new location of r vaddr must be
computed and subtracted from the new target address to provide the correctly
adjusted self-relative, offset which is then written back into the raw data.

Example

The code range descriptors that are generated for each object contain a 32-bit
self-relative offset in the rpd offset field. See Section 3.2.1. The rpd_offset
field contains an offset to the associated run-time procedure descriptor in the
.xdata section. The R_SREL32 entry identifies this value.

main () {
printf ("Printing\n") ;
}
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4.3.4.13

4.3.4.14

Relocation entry produced:
Vaddr Symndx Type Off Size Extern Name
.pdata:
0x0000000000000054 10 SREL32 local .xdata
Note that this relationship between the .xdata and .pdata sections imposes a
restriction on the distance between the text and data segments. The run-time

procedures in the .xdata section must be within reach of a 32-bit signed offset from
the code range descriptors in .pdata.

R_SREL64

Fields

r_vaddr Points to a 64-bit self-relative value.

r symndx External symbol index if r_extern is 1; section number if

r extern isO.

r_extern Either O or 1.

r offset Unused.

r size Unused.

Operation

if (r_extern == 0)
this new_addr = r vaddr - this_old scn_addr + this new_scn_addr
result = (new_scn_addr - old_scn_addr) + (long) [r_vaddr]

+ r vaddr - this new_addr
else
this new _addr = r vaddr - this_old scn_addr + this new_scn_addr
result = EXTR.asym.value - this new_addr

Restrictions

None.

Description

A relocation entry of this type is identical to an R_SREL32 entry except for the
size of the value being adjusted.

Example

This type is currently not used by the compilation system.

R_OP_PUSH

Fields

r_vaddr 0if r_extern is 1; an unsigned offset within a section if
r extern isO.

r symndx External symbol index if r_extern is 1; section number if
r extern isO.

r_extern Either O or 1.
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r offset Unused.

r size Unused.
Operation
if (r_extern == 0)
stack [++tos] = (new_scn_addr - old_scn_addr) + r_vaddr
else
stack [++tos] = EXTR.asym.value

Restrictions

This relocation entry must be followed by an R_OP STORE entry, with one or more
R OP_PSUB Or R_OP_ PRSHIFT entries in between.

Stack can hold a maximum of 20 entries.

Description

A relocation entry of this type causes a value to be pushed onto the relocation stack.
The value is generally the target address of the relocation, which will be adjusted
using subsequent R_OP_PSUB and R_OP_PRSHIFT relocation calculations.

Example

A code range descriptor in the .pdata section contains a 32-bit field,

begin address, which is the offset of the associated code range address from
the beginning of the code range descriptor table. See Section 3.2.1. This value is
calculated by subtracting two addresses and storing the least significant 32 bits. A
series of three stack relocation entries is used to represent this offset calculation.

main () {
fool();
}

foo () {
printf ("Printing\n") ;
}

Relocation entries produced for use in calculating the begin address in the
code range descriptor for foo ( ):

Vaddr Symndx Type Off Size Extern Name
.pdata:
0x0000000000000030 1 PUSH local .text
0x0000000000000000 3 PSUB extern _fpdata
0x0000000000000078 11 STORE 0 32 1local .pdata

The following series of relocation entries will effectively perform the calculation:

(.pdata+0x78) = (long) (((.text+0x30)-&_fpdata) & OxEfffffff)

4.3.4.15 R_OP_STORE

Fields

r vaddr Location to store calculated bit field.

r symndx Section index of containing section.

r_extern Must be 0.

r offset Bit offset from r_vaddr. (Bit O is the least significant

bit in little-endian objects and the most significant bit in
big-endian objects. See Section 1.7.)
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4.3.4.16

r size Number of bits to store.

Operation

if (little_endian)
rshift = r offset
else
rshift = 64 - (r_offset + r_size)
bitfield = ((long) [r_vaddr] >> r offset) & ((1 << r_size) - 1)
bitfield <- stack[tos--]

Restrictions

Stack cannot be empty.

Description

A relocation entry of this type causes the value currently on the top of the
relocation stack to be written into a bit field specified by the entry. The bit field is
described using a bit position and size in bits. Note that bit numbering is reversed
in a big-endian representation.

Example

An example of the R_OP STORE entry is given in Section 4.3.4.14.

R OP PSUB
Fields
r vaddr 0 if r extern is 1; an unsigned offset within a section if
r extern isO.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_ vaddr
stack[tos] = stack[tos] - result
else
result = EXTR.asym.value
stack[tos] = stack[tos] - result

Restrictions

The relocation stack cannot be empty. This entry must fall somewhere between an
R _OP PUSH entry and an R_OP_STORE entry.

Description

A relocation entry of this type causes the value at the top of the relocation
expression stack to be popped, adjusted by subtracting the address described by
r extern and r_symndx, and pushed back on the stack.

Example

An example of the R_OP STORE entry is given in Section 4.3.4.14.
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4.3.4.17 R_OP_PRSHIFT

Fields
r_vaddr 0if r_extern is 1; an unsigned offset within a section if
r extern isO.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_ vaddr
stack[tos] = stack[tos] >> result

else
result = EXTR.asym.value
stack[tos] = stack[tos] >> result

Restrictions

The stack cannot be empty. So this entry must fall somewhere between an
R OP PUSH and an R_OP STORE.

Description

A relocation entry of this type causes the value at the top of the relocation
expression stack to be popped, adjusted by right shifting the value by the number
of bits described by r extern and r_symndx, and pushed back on the stack.

Example

This relocation type can be used to convert a byte offset into an instruction offset.
Right shifting a byte offset by two bits will produce an instruction offset because
Alpha instructions are 4 bytes wide.

The following assembly code will result in an R_HINT entry for the 14-bit instruction
offset contained in the hint field of a jsr instruction. See Section 4.3.4.10 for a
description of the R_HINT entry.

0x3c ldg tl2, -32752(gp) /* &printf */
0x40 jsr ra, (tl2)

The R_HINT entry for the instruction at 0x40 could also be accomplished with a
series of stack relocation options:

.text:

0x0000000000000000 2 PUSH extern printf
0x0000000000000044 1 PSUB local .text
0x0000000000000002 14 PRSHIFT local .abs

0x0000000000000040 1 STORE O 14 local .text

4.3.4.18 R_GPVALUE
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Fields

r vaddr Starting virtual address for new GP value.
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4.3.4.19

r_symndx

r extern
r offset
r size

Operation

Constant that is added to the GP value in the a.out
header to obtain the new GP value.

Must be zero; all R_GPVALUE entries are local.
Unused.

Unused.

new GP = AOUTHDR.gp_ value + r_symndx

Restrictions

This type of relocation entry cannot be external.

Description

A relocation entry of this type identifies the position in the code where a new GP
value takes effect. R_GPVALUE entries are inserted by the linker during partial

links.

Example

A linked program that references 20,000 external symbols will have at least 3 GOT

entries with 3 corresponding GP values. See Section 2.3.4. If the program has

GP-relative relocation entries in both . text and . rdata sections, two R_GPVALUE
entries would be reported for each of these sections.

Vaddr

.text:
0x0000000010084cf0
0x00000000100cb190

.rdata:
0x000000001000£a00
0x000000001001b570

R GPRELHIGH

Fields

r_vaddr

r_ symndx

r extern
r offset
r size

Operation

Symndx Type Off Size Extern Name

64000 GPVALUE local
111984 GPVALUE local
64000 GPVALUE local
111984 GPVALUE local

Points to a memory format instruction (1dah).

External symbol index if r_extern is 1; section number if

r extern isO.
Either O or 1.
Unused.

Unused.

See R_GPRELLOW relocation type.

Restrictions

Must be followed by at least one R_GPRELLOW.
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4.3.4.20

Relocated result must not overflow unsigned 32-bit range.

Description

A relocation entry of this type is invalid unless it is followed by at least one
R_GPRELLOW entry. When an R_GPRELHIGH entry is encountered, no calculation is
performed. The relocation calculation is deferred until the R_GPRELLOW entry is
processed. See the R_GPRELLOW description for more information.

Example

See R_GPRELLOW.

R _GPRELLOW

Fields

r vaddr Points to memory format instruction (1d* or st*).
r symndx Must match R GPRELHIGH.

r_extern Must match R_GPRELHIGH.

r offset Unused.

r size Unused.

Operation

low_disp = [r vaddr].displacement

high disp = [R_GPRELHIGH->r vaddr] .displacement

displacement = high disp * 65536 + low_disp

if (r_extern = 0)
result = displacement + (new_scn_addr - old scn_addr) +
(0ld GP - GP)
else
result = displacement + EXTR.asym.value + (old GP - GP)

[R_GPRELHIGH->r vaddr] .displacement = (result+32768) >> 16
[r vaddr] .displacement = result & OxFFFF

Restrictions

The R_GPRELHIGH/R GPRELLOW relocations must be used as a pair or set. At least
one R_GPRELLOW entry follows each R_GPRELHIGH entry.

After relocation, the result must not overflow 32 bits.

The memory displacement for all R_GPRELLOW entries corresponding to the same
R_GPRELHIGH must match.

Description

The R_GPRELHIGH/R GPRELLOW entry pair is used to describe GP-relative
memory accesses. The R_GPRELHIGH entry indicates an 1dah instruction. The

R _GPRELLOW entry (or entries) indicates a load or store instruction. If multiple
R_GPRELLOW entries are associated with an R_GPRELHIGH, they must all describe
the same memory location. A relocatable address can be formed with the following
computation:

addr = 65536 * high disp + SEXT (low_disp)
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4.3.4.21

To relocate this code sequence, the memory displacement fields in each instruction
must be adjusted to reflect changes in the target address they compute and in
the GP value.

The reason these entries are treated as a pair is that sign extension of the low
instruction’s displacement field can result in an off-by-one error that must be fixed
by adding one to the high instruction’s displacement. This situation can only be
detected if the instructions are considered together.

These relocation entries describe instructions that are primarily used for computing
addresses in kernel code.. The kernel is built without a .1ita section, and kernel
performance is enhanced by code that calculates addresses directly instead of
loading addresses from a .1ita memory location. The code size, on average, is
unaffected by the kernel’s use of this addressing method.

Example

Use the kernel build option -Wb, -static to compile the following sample code.
static int a;

foo () {
a++;
}

Code generated for loading the address of "a":

0x0: ldah to, 0 (gp)
0x4: 1da t0, 16(t0)

Relocation entries produced are:

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000000 5 GPHIGH local .sbss
0x0000000000000004 5 GPLOW local .sbss

R _IMMED: GP16

Fields

r vaddr Points to memory-format instruction.

r symndx External symbol index if r_extern is 1; section number if
r extern isO.

r_extern Either O or 1.

r offset Unused.

r size R IMMED GP 16.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that adds a 16-bit
displacement to the GP value, obtaining an address. The r extern and r _symndx
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4.3.4.22

4.3.4.23

fields specify the external symbol or section to which the calculated address is
relative.

This relocation entry is created by the linker to indicate that an optimization has
taken place because the displacement is within 16-bits of the GP value.

Example

N/A

R IMMED: GP HI32

Fields

r vaddr Points to memory-format instruction.
r symndx Unused.

r extern Unused.

r offset Unused.

r size R IMMED GP HI32.
Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the GP value. This instruction
adds the high portion of the 32-bit displacement. The next R_IMMED LO32 entry
identifies the instruction containing the low portion of the displacement. More than
one subsequentR_IMMED LO32 entry can share the sameR_IMMED GP_HI32 entry.

Example

N/A

R _IMMED: SCN HI32

Fields

r vaddr Points to memory-format instruction.
r symndx Unused.

r extern Unused.

r offset Unused.

r size R _IMMED SCNHI32.
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4.3.4.24

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the starting address of the current
section. This instruction adds the high portion of the displacement. The next

R _IMMED LO32 entry identifies the instruction with the low portion.

Example

N/A

R _IMMED: BR HI32

Fields

r_vaddr Points to a memory-format instruction following a branch
(br, bsr, jsr, or jmp) instruction.

r_symndx Specifies a byte offset from r_vaddr to the branch
instruction.

r extern Unused.

r offset Unused.

r size R _IMMED BRHI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the address of the instruction
following a branch (br, bsr, jsr, or jmp). The branch must precede this
instruction. The r_symndx field specifies a byte offset from r_vaddr to the
branch instruction. The instruction identified by this relocation entry adds the
high portion of the displacement. The next R_IMMED 1032 entry identifies the
instruction with the low portion of the displacement.

Example

N/A
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4.3.425 R _IMMED: LO32

Fields

r vaddr Points to a memory-format instruction.

r symndx External symbol index if r_extern is 1; section number if
r extern isO.

r_extern Either O or 1.

r offset Unused.

r size R _IMMED LO32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to a base address. This instruction
adds the low portion of the displacement. This relocation entry is combined with
the previous R_IMMED GP HI32, R IMMED SCN HI32,0r R_IMMED BR HI32
entry. The r extern and r symndx fields specify the external symbol or section to
which the calculated address is relative.

Example

N/A

43.426 R_TLS LITERAL

Fields

r vaddr Points to an instruction that loads the TSD key for
initiating a thread local storage reference — actually, not
the key itself but key * 8, which gives the offset of the TLS
pointer in the TSD array.

r_symndx R SN LITA

r_extern Must be zero; all R_TLS LITERAL entries are local.

r offset Unused.

r size Unused.

Operation

result = (new_scn_addr - old _scn_addr) +

(SEXT ( (short) [r_vaddr]) +old GP) - GP
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4.3.4.27

Restrictions
The result after relocation for an R_TLS LITERAL entry must not overflow 16 bits.

R _TLS_ LITERAL entries must be local and relative to the . 1ita section.

Description

A relocation entry of this type is very similar to an R_LITERAL entry. An
R _TLS LITERAL entry identifies an instruction that uses a GP displacement to
load an the address of the symbol _ tlsoffset from the .1ita section.

The value of the  tlsoffset symbol is fixed at run time to be the TSD array
offset of the TLS pointer. The symbol can occur anywhere in the GOT or .lita
section. The linker-defined symbol _ t1lskey points to one of the instances of the
__tlsoffset symbol.

The linker processes the R_TLS LITERAL relocation by adjusting the GP offset in
the displacement of the target instruction.
Example

Routines that reference TLS addresses will have at least one R_TLS LITERAL
entry for the load of the _ tlsoffset value.

__declspec(thread) long foo;
main () {

foo = 2;
}

Code generated will include the instruction:

0x14: ldg at, -32752(gp)

Relocation entry produced:

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000014 13 TLSLITE local .lita
R TLS HIGH
Fields
r vaddr Points to memory-format instruction.
r symndx External symbol index if r_extern is 1; section number if
r extern isO.
r_extern Either O or 1.
r offset Unused.
r size Unused.
Operation

See R_TLS_LOW description.

Restrictions

Must be followed by R_TLS LOW entry.
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Description

See R_TLS_LOW.

Example

See R_TLS_LOW.

4.3.4.28 R_TLS LOW

Fields

r vaddr Points to memory-format instruction.

r symndx External symbol index if r_extern is 1; section number if
r extern isO.

r_extern Either O or 1.

r offset Unused.

r size Unused.

Operation

low_disp = [r vaddr].displacement

high disp = [R_TLS_HIGH->r vaddr] .displacement

displacement = high disp * 65536 + low_disp
if (r_extern = 0)

result = displacement + (new_scn_addr - old scn_addr)
else

result = displacement + EXTR.asym.value

[R_TLS_HIGH->r vaddr].displacement = (result+32768) >> 16
[r vaddr] .displacement = result & OxFFFF

Restrictions
External relocation entries of this type are limited to TLS symbols.

Local relocation entries of this type are restricted to the TLS sections .tlsdata
and .tlsbss.

The relocated result must not exceed 32 bits.

Description

The linker must handle R_TLS HIGH and R_TLS_ LOW entries as a pair. The pairs
of relocation entries must be in sequence starting with R_TLS HIGH. The order
and location of the instructions associated with these relocation entries are not
restricted.

Example

The load of a TLS symbol's address requiresan R_TLS HIGH/R_TLS_LOW entry pair.
__declspec(thread) long foo;

main () {
foo = 2;
}

Code generated:

0x0c: call pal rdunig
0x10: ldg voO, 96 (v0)
0x14: ldg at, -32752(gp)
0x18: addg v0, at, vO
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Oxlc: ldg vO0, 0(vo0)
0x20: ldah v0, 0(wvo0)
0x24: stqg tO0, 0(vo0)

Relocation entries produced:

Vaddr Symndx Type Off Size Extern Name
.text:
0x0000000000000020 0 TLSHIGH extern foo
0x0000000000000024 0 TLSLOW extern foo

4.4 Compact Relocations

Compact relocations are a highly compressed form of relocation records designed
for the use of profiling tools and object restructuring tools. By default, they are
generated by the linker for all fully linked executable objects and recorded in the
object’s . comment section. The linker produces this information using 1ibmld.a
APIls, which implement the reading and writing of compact relocations. Compact
relocations are not produced for images linked with the following linker options:
-r, -s. The strip utility will remove the comment subsection that contains
compact relocations. See Chapter 7 for the format of the . comment section.

Compact relocations must provide crucial relocation information in much less space
than the space required for actual relocation entries. This goal is accomplished

by employing a heuristic function to predict relocations. For some sections, this
heuristic is highly accurate. Detailing many records in the object file becomes
unnecessary because the algorithm can be used instead to recreate many of the
actual relocation entries.

Version Note

In releases of Tru64 UNIX prior to V5.1, compact relocations contained
only enough relocation information to drive tools that restructure an
executable’s . text, .init, and .fini sections. From Tru64 UNIX
V5.1 onward, executables contain full compact relocation information
including relocation records for text and data segment addresses in

all mapped object sections.

The interfaces for compact relocations continue to evolve. These interfaces are
defined and described in the header file cmplrs/cmrlc.h. This section describes
the on-disk file format of compact relocations and the producer and consumer
algorithms.

4.4.1 Overview
The procedure for creation of compact relocations is as follows:

1. Generate a list of predicted relocations using heuristics.

2. Compare the predicted relocations to the actual relocation entries (which are
input data to the compact relocations producer).

3.  Wherever a "miss" occurs (that is, the predicted and actual entries do not
match) output a compact relocation record.

The procedure for the use of compact relocation records follows:

1. Generate the list of predicted relocations using the same heuristics as the
compact relocations producer.

2. Compare the expanded compact relocations data with predicted relocations to
reconstruct the actual relocation entries.
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See Section 4.4.3 for more details.

4.4.2 File Format

Compact relocations are stored in a subsection of the . comment section. The linker
and other tools do not need to be aware of the details of the internal structure of
the compact relocation subsection. This knowledge is encapsulated in the cmrlc *
routines found in 1ibmld. a.

The on-disk format of the compact relocations data consists of the following
components, in order:

= \ersion identifier

= Compact relocations file header

= Compact relocations section headers (for each section)

= Compact relocations tables (for each section)

= Expression stack relocations tables (for each section)

= GP value tables (for each section)

Code may only assume that the version and the file header are contiguous. To

access other structures, it is necessary to rely on the location information in the
file header.

4.4.2.1 Compact Relocations Version
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The compact relocation section begins with a version identifier, which has the
following structure:
struct {

unsigned int version major;
unsigned int version minor;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

The version identifier allows the format of the compact relocations to change from
one release to another while providing a mechanism for tools to work on binaries
with either the old or new formats. The version identifiers are separate from the
header because the format of the header itself may change from release to release.

The major version identifier is incremented for changes in the format of the
compact relocation data that affect the most basic access to the data. For example,
changes in structure sizes or structure layout are likely to cause failures in existing
code that simply reads the raw compact relocation data.

The minor version identifier is incremented whenever the compact relocation data
is modified without impacting the format of the data. For example, changing the
heuristic to further compact the stored relocation information would require the
minor version identifier to be incremented. If the consumer routines see that an
object has an old minor version number, they can call a matching version of the
heuristic to correctly reconstruct the relocation information.

The major and minor version identifiers that have been used for compact relocation
data are described in Table 4-5. Enumeration values for supported versions can be
found in the header file /usr/include/cmplrs/cmrlc.h.
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Table 4-5: Compact Relocation Version ldentifiers

Major Minor OS Version

Description

0 0 V3.0
1 0 V3.2
2 0 V4.0
2 3 V5.1

Initial version
Fix for dynsym relocations
Miscellaneous bug fixes

Full compact relocations

4.4.2.2 Compact Relocations File Header

The version identifier is followed by a high-level header structure that stores the
sizes and locations of the other tables with compact relocations information:

struct cmrlc file header

/*
* Total
*/
unsigned
unsigned
unsigned
unsigned

/*

number of elements in

long
long
long
long

scn_num; /*
rlc num; /*
expr_num; /*
gpval _num; /*

each sub-table.

section header table */
compact relocation table */
expression relocation table */
GP value table */

* Relative file offset from start of compact relocation data
* to each sub-table.

*/
unsigned
unsigned
unsigned
unsigned

}i

long
long
long
long

scn_off;
rlc_off;
expr_off;
gpval_off;

SIZE - 64 bytes, ALIGNMENT - 8 bytes

Each of the * num fields indicates the number of entries in the corresponding
tables. Each of the *_off fields contains a relative file offset from the start of the
compact relocations . comment subsection to the start of the corresponding table. If
any of the tables are not present for a particular program, the * numand * off
fields should be set to zero.

4.4.2.3 Compact Relocations Section Header

One or more compact relocations section headers follow the compact relocations file
header. Each section header has the following structure:

struct cmrlc file scnhdr {
name [8] ; /* section name */

char

/*

* Number of elements for this section in each sub-table.

*/
unsigned
unsigned
unsigned

/*
* Index
* (This
*/
unsigned
unsigned
unsigned

/*
* Flag:

long
long
long

rlc_snum;
expr_snum;
gpval_snum;

from start of table to this section’s elements.
element index, not a byte offset.)

is an
long

long
long

True

* increasing

*/

unsigned long
unsigned long

}i

rlc_indx;
expr_indx;
gpval_indx;

if compact relocation table is sorted by

virtual address.

rlc_sorted:1;
:63;

SIZE - 64 bytes, ALIGNMENT - 8 bytes
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One compact relocation section header is created for each eCOFF object file section
for which compact relocation data is stored. This section header is unrelated to the
eCOFF section header structure except for the name field, which connects the two.

Each of the * num fields indicates the number of entries in the corresponding table
for this object file section. If the * num field is non-zero, the corresponding * indx
field contains the index of the start of that section’s entries within the table.

The rlc_sorted field indicates whether the compact relocation table entries for
this section are sorted by virtual address.

If an object file section does not have entries in one of the tables for a particular
program, the corresponding fields should be set to zero.

4.4.2.4 Compact Relocations Table

Compact relocation tables follow the compact relocation section headers. Each
compact relocation table consists of an array of structures:

struct cmrlc file rlc {

unsigned v_offset;
union {
unsigned word;
struct {
unsigned type:5;
unsigned :27;
} common;
struct { /* GPDISP */
unsigned type:5;
unsigned lda_offset:27;
} gpdisp;
struct { /* EXPRESSION */
unsigned type:5;
unsigned index:27;
} expr;
struct { /* REF*, SREL*, GPREL32 */
unsigned type:5;
unsigned rel scn:5;
unsigned count:12;
unsigned dist:4; (V5.0 - )
unsigned :6;
} addrtype;
struct { /* External REF */ (V5.1 - )
unsigned type:5; (V5.1 - )
unsigned r symndx:27; (V5.1 - )
} eref; (V5.1 - )
struct { /* LITERAL */ (V5.1 - )
unsigned type:5; (V5.1 - )
unsigned rel scn:5; (V5.1 - )
unsigned count:12; (V5.1 - )
unsigned dist:4; (V5.1 - )
unsigned :6; (V5.1 - )
} literal; (V5.1 - )
struct { /* LITUSE */ (V5.1 - )
unsigned type:5; (V5.1 - )
unsigned rel scn:5; (V5.1 - )
unsigned lit_type:5; (v5.1 - )
unsigned 1itOFFSET:17; (V5.1 - )
} lituse; (V5.1 - )
struct { /* NO_RELOC, NO LITUSE */ (V5.0 - )
unsigned type:5; (V5.0 - )
unsigned count:12; (V5.0 - )
unsigned dist:4; (V5.0 - )
unsigned :11; (V5.0 - )
} noreloc; (V5.0 - )
struct { /* IMMED: GP_HI32, SCN_HI32, BR HI32 */
unsigned type:5;
unsigned subop:6;
unsigned br offset:21;
} immedhi;
struct { /* IMMED: all other sub-opcodes */
unsigned type:5;
unsigned subop:6;
unsigned rel scn:5;
unsigned hi offset:16; (V5.1 - )
} immedlo;
struct { /* VADJUST */

4-44  Relocation



unsigned type:5;

signed adjust:27;
} vadjust;
struct { /* BRADDR, HINT */
unsigned type:5;
unsigned rel scn:5;
unsigned :22;
} other;

} info;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

/*
* Values for ’type’ field.
*/
enum cmrlc rlctypes {
CMRLC_REFLONG=1,
CMRLC_REFQUAD=2,
CMRLC_GPREL32=3,
CMRLC_GPDISP=4,
CMRLC_BRADDR=5,
CMRLC_HINT=6,
CMRLC_SREL16=7,
CMRLC_SREL32=8,
CMRLC_SREL64=9,

CMRLC_EXPRESSION=10, /* R_OP_* expression */
CMRLC_IMMEDHI=11, /* R_IMMED for high part */
CMRLC_IMMEDLO=12, /* R_IMMED for low part */
CMRLC_NO RELOC=13, /* correct mispredicted relocation */
CMRLC_VADJUST=14, /* adjust base for succeeding ‘v _offset’s */
CMRLC_LITERAL=15, (v5.1 - )
CMRLC_LITUSE=16, (V5.1 -
CMRLC_NO_LITUSE=17, (V5.1 - )
CMRLC REFQUAD EXTERN=18 /* external REFQUAD */ (v5.1 - )
}i
/*
* Maximum value for ’‘count’ field in ’‘addrtype’ relocations.
*/
#define CMRLC_COUNT_MAX ((l<<12) - 1)
/*
* Maximum value for ’‘dist’ field in ’addrtype’ and ’'noreloc’ relocations.
*/
#define CMRLC_DIST MAX ((l<<4) - 1)

The number of elements in the array is determined by the corresponding * num
field in the section header.

The v_offset field specifies the virtual address of each relocation entry as a
byte offset from a base address. Initially, the base is the starting virtual address
of the current section. If relocations are required at addresses that cannot be
expressed as a 32-bit offset from the section’s start address, CMRLC VADJUST
relocation entries are used to extend the addressing range. However, this feature
is not fully supported.

The value of the type field determines how to interpret the remainder of a compact
relocation structure.

The 1da_offset field specifies an instruction offset (byte offset divided by 4) from
the relocation entry’s virtual address to the 1da instruction in an R_GPDISP entry’s
1dah/1da pair. This design does not support 1dah/1da pairs that are separated by
more than 2729 bytes.

The rel scn field indicates the ID of the section to which this relocation is
relative. It uses the R_SN_* values from the header file reloc.h.

The count and dist fields are used to specify consecutive relocation entries

that are identical. The count field can be used in this manner for R_REFLONG,

R REFQUAD, R SREL16, R SREL32, R SREL64, R GPREL32, and R_LITERAL
entries. Two relocation entries are identical if they have the same type and relative
section. Two relocation entries are consecutive if the difference in their virtual
addresses is equal to the same multiple of the natural size for the relocation
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type (16 bits for R_SREL16; 32 bits for R_REFLONG, R_SREL32, R_GPREL32;

and R_LITERAL, and 64 bits for R_REFQUAD and R_SREL64). The dist field
multiplied by the natural size of the relocation type gives the byte distance between
repetitions of the relocation. A count value of zero is not allowed. These fields
reduce the impact of mispredicting the relocations for jump tables.

4.4.2.5 Stack Relocation Table

Expression stack relocation information is stored separately. Each stack relocation
table entry has the following structure:

struct cmrlc file expr {
unsigned long vaddr;

unsigned type:5;

unsigned rel scn:5;

unsigned offset:6; /* CMRLC _EXPR STORE only */
unsigned size:6; /* CMRLC_EXPR STORE only */
unsigned last:1; /* true for last reloc in expr */
unsigned :9;

unsigned reserved;

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

/*
* Values for ’type’ field.
*/
enum cmrlc exprtypes {
CMRLC_EXPR_PUSH=1, /* R_OP_PUSH */
CMRLC_EXPR_PSUB=2, /* R_OP_PSUB */
CMRLC_EXPR_PRSHIFT=3, /* R_OP_PRSHIFT */
CMRLC_EXPR_STORE=4 /* R_OP_STORE */

}i

Expression stack compact relocation records are stored in a separate table because
each record requires more space than other types of compact relocation records.
Entries in this table are grouped into sequences of relocation entries that form a
single expression. The first entry in each table starts a sequence. The last entry in
each sequence has its last field set to one. A new sequence starts immediately
after the end of the previous sequence.

The start of each sequence is referenced by a CMRLC EXPRESSION entry in the
section’s compact relocation table. The index field of that entry points to the first
entry in a stack relocation sequence. All sequences in the stack relocation table
should have a corresponding CMRLC EXPRESSION entry in the compact relocation
table.

4.4.2.6 GP Value Tables
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Additional tables called GP value tables are used to store GP range information.
GP values are kept in tables separate from other compact relocations to reduce the
processing required to map a virtual address to the corresponding active GP value.

Each GP value table consists of an array of these structures:

struct {
unsigned long vaddr
unsigned gp_offset
unsigned reserved

}i
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Each additional GP range after the first range has an entry in the table. (The
first range is described by the GP value in the file’'s a. out header.) Therefore, a
single-GOT program will have no entries in its GP value tables.

If an executable’s sections have different numbers of GP ranges, gpval num should
be set to describe the section with the largest number of ranges. eCOFF sections
with fewer GP ranges must still have GP value tables with gpval num entries.
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Sections with short GP value tables can duplicate their last GP value table entry
until the table is the proper length.

The vaddr field contains the virtual address where the new range starts. vaddr
must point within the section to which this GP value table corresponds. The new
GP value is computed by adding gp_offset to the GP value in the file's a. out
header.

4.4.3 Basic Algorithm for Compact Relocations Production

In order to produce compact relocations, a tool must have a set of actual relocation
entries and the raw data to which those relocation entries apply. It should then
apply the following algorithm to create a set of matching compact relocations:

1. Convert the external relocation entries to local relocation entries.

2. Run the prediction heuristic function to construct a set of predicted relocation
entries from the raw data.

3. Compare the predicted relocation entries to the remaining actual relocation
entries and create a compact relocation record for any mismatches.

4. Compress any sequences of consecutive, identical R REF*, R _SREL*,
R _GPREL32, or R_LITERAL entries.

5. Setthe rlc_sorted field if the compact relocation entries are stored in a
sorted order.

Any R_GPVALUE entries must be handled specially. These relocation entries must
be added to their section’s GP value table. They should then be removed from the
list of actual relocation entries used to create compact relocations.

The first step in the algorithm is to convert actual relocation entries from external
to local. The compact relocations only exist in fully linked executables with no
undefined symbols. Thus, external relocation entries are not usually needed.
(The compact relocation types include a type for retaining external R REFQUAD
relocations wherever symbol correspondence might be needed for post-link
processing.) An external relocation entry is converted to a local relocation entry
by setting its r extern field to zero and changing its r symndx field to the
appropriate relocation section constant (see Table 4-1).

The second step is to run the prediction heuristic function over the raw data
for which these actual relocation entries apply. This produces a set of predicted
relocation entries.

Step three compares the predicted relocation entries to the actual relocation
entries as follows:

a. If a match exists between a predicted relocation entry and an actual relocation
entry at the same virtual address, do nothing.

b. If a predicted relocation entry and an actual relocation entry at the same
virtual address do not match, write a compact form of the actual relocation
entry to the compact relocation data file.

c. Ifonly a predicted relocation entry exists for a particular virtual address, write
a compact CMRLC_NO_ RELOC record to the data file at this virtual address.

d. Ifonly an actual relocation entry exists for a particular virtual address, write a
compact form of the actual relocation entry to the compact relocation data file.

Creating a compact relocation entry from an actual relocation entry is fairly
straightforward except in the case of an expression stack relocation sequence.
First, create entries in the stack relocation table for each relocation entry in the
sequence. Normally, this sequence starts with an R_OP PUSH entry and ends with
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an R_OP_STORE entry. The last entry should have the last field set to one. Then
create a CMRLC_EXPRESSION compact relocation entry whose index field points to
the first entry in the stack relocation table for this expression. (This can only be
done for a sequence that describes a complete expression.)

The fourth step is to compress any sequences of R_REF*, R_SREL*, R _GPREL32, Or
R _LITERAL entries that are consecutive and identical . Such a sequence exists if
all relocation entries in the sequence have the same relocation type, are relative to
the same rel_scn value (R_SN_* constant), and have v_offset fields that increase
by a multiple of the natural size of the relocation type (for example, 8 bytes for

R _REFQUAD, 2 bytes for R_SREL16). Such sequences can be replaced with a single
compact relocation entry that has the sequence’s type and rel scn value. The
v_offset field should be that of the first relocation entry in the sequence. The
dist field should be set to the distance between repeated relocations in natural
size increments, and the count field should be set to the number of relocation
entries in the sequence.

The final step is to set the r1c_sorted field in the compact relocation section
header. If the compact relocations are stored in order of increasing v_offset
values, this field should be set to one. Otherwise, it should be set to zero.

4.4.4 Basic Algorithm for Compact Relocations Consumption
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A consumer tool can read back the compact relocation entries if it has the compact
relocation information and the raw data that they describe. The consumer tool
can use this information to regenerate the actual relocation entries by following
this algorithm:

1. Expand any R_REF*, R SREL*, R GPREL32, or R_LITERAL compact relocation
entries whose count field is greater than one.

2. Run the prediction heuristic function to construct a set of predicted relocation
entries from the raw data.

3. Compare the predicted relocation entries to the compact relocation entries and
reconstruct the actual relocation entries.

The first step in this algorithm just undoes the compression step (step four) in the
production algorithm.

The second step runs the same prediction heuristic that was used in the production
algorithm. To guarantee that the generated predicted relocation entries are the
same as when the compact relocation entries were produced, it is critical that the
heuristic function is the same. It is also critical that the raw data is the same as
when the compact relocation entries were produced.

The final step compares the predicted relocation entries with the stored compact
relocation entries as follows:

1. If only a predicted relocation entry exists for a particular virtual address,
report the predicted relocation entry.

2. IfaCMRLC NO_ RELOC entry exists at the same virtual address as a predicted
relocation entry, do not report a relocation entry at this virtual address.

3. If a compact relocation entry other than CMRLC_NO RELOC exists at the same
virtual address as a predicted relocation entry, report the compact relocation
entry.

4. If only a compact relocation entry exists for a particular virtual address, report
the compact relocation entry.
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45 Linkerdef Relocations

Version Note

Linkerdef relocations are supported in Tru64 UNIX V5.1 and greater for
symbol table format VV3.13 and greater.

Linkerdef relocations are generated by the linker for all fully linked executable
objects and shared libraries. They are not produced for images linked with the
following linker options: -r, -s. The strip utility will remove the comment
subsection that contains linkerdef relocations. See Chapter 7 for the format of
the . comment section.

The linkerdef relocations supplement compact relocation information. They
provide relocation information for all uses of linker-defined symbol values within
the section data of an object. This information is not currently accessible in
compact relocation information. Compact relocations are generally stored as local
relocations with no symbolic information. Linkerdef relocations are also unique
because they contain relocations for absolute symbols with literal values such as
_DYNAMIC LINK and procedure table size.

Tools that modify linked objects, such as om and spike, can use linkerdef
relocations to update references to linker-defined symbol values that are
necessarily changed as a result of other changes made to the linked object.

4.6 Language-Specific Relocations Features

Relocation entries may be generated for language-specific compiler-generated
external symbols. For example, they are often generated in Fortran programs
for the procedure for set reentrancy() and in C++ programs for
exception-handling labels.
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5

Symbol Table

One of the chief tasks of the compilation process is the production of a symbol
table, which is a collection of data structures whose purpose is to store type, scope,
and address information about program data. Compilers and assemblers create the
symbol table. It is read and may be modified by linkers, profiling tools, and assorted
object manipulation tools. It also contains information required for debugging.

For large applications, a single compilation can involve many program components,
including source files, header files, and libraries. Data from all of these files must
be described in the symbol table.

The Tru64 UNIX eCOFF symbol table, when present, comprises a large portion of
the physical object file and is often considered a stand-alone entity. It is divided
into numerous sections, including a header section that is used for navigation. The
contents of the symbol table are shown in Figure 5-1.

Figure 5-1: Symbol Table Sections

Symbolic Header
Procedure Descriptors |
Local Symbols *
: Auxiliary Symbols %
File Header LﬂcaﬁySt:ngs *
a out Header External Strings
Section Headers File Descriptors
Raw Data Sections Relative File Descriptors| *
Relocations External Symbols
Symbol Table Optimization Symbols | *
Comment Section [~ Line Numbers *

* one subtable per
source file

The symbol table has a hierarchical design. The sections storing local symbols, local
strings, relative file descriptors, procedure descriptors, line numbers, auxiliary
symbols, and optimization symbols are divided into subtables and organized by file.
Local symbols, local strings, and optimization symbols are further broken down by
procedure. Figure 5-2 depicts this hierarchy.
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Figure 5-2: Symbol Table Hierarchy

Symbolic Header
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“| Aux. Symbols (file 1)
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Aux. Symbols (file N)

Rel. File Dg_sc. (file 1)
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— | Opt. Symbols (file 1)

Opt. S}qﬁt;ols (file n)

ol

A particular symbol table may not contain all sections, for one of the following
reasons:

Relative file descriptors are present in linked objects only.

The line number, auxiliary symbol and optimization symbol tables are produced
only when debugging information is requested.

Symbol table information may be partially or entirely removed by post-link
object tools.

Optimization symbols are not present in symbol table formats less than V3.13.

The function of each symbol table section is summarized below:

The symbolic header stores the sizes and locations of all other symbol table
sections.

The line number table enables debuggers to map machine instructions to
source code lines.

The procedure descriptor table contains call-frame information as well as
pointers to a procedure’s local symbols, line numbers and optimization entries.

The local symbol table describes procedures, static and local data, and
user-defined types.

The external symbol table stores information about global symbols.

The relative file descriptor table contains a post-link file descriptor table index
mapping for each file in the compilation.
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The local and external string tables store local and external symbol names,
respectively.

The file descriptor table stores the sizes and locations of each subtable produced
for contributing source and include files. It also contains miscellaneous
information about each file, such as the source language and the level of
symbolic information.

The auxiliary symbol table contains data type information for local and
external symbols.

The optimization symbols section stores procedure relative information,
including extended source location information and optimized debugging
information.

Several tools are available to view the contents of the symbol table. See the
stdump(l), odump(1), and nm(1l) man pages.

This chapter covers symbol table organization and usage, concentrating on
debugging issues in particular. The current version of the symbol table is
V3.13. The dynamic symbol table built by the linker is discussed separately in
Section 6.3.3.

5.1 New or Changed Symbol Table Features

Tru64 UNIX V5.1 includes the following new or changed features:

Alignment for common storage class symbols (see Section 5.2.6 and
Section 2.3.5)

Tail call flag used in procedure call optimization (see Section 5.2.3)
A new ESLI command to describe gaps in address ranges (see Section 5.3.2.2)
A new basic type for 32-byte complex (see Table 5-5).

A new representation for empty classes or structures (see Section 5.3.8.6.1) to
distinguish them from opaque classes and structures (see Section 5.3.8.6.2).

Version 3.13 of the symbol table includes the following new or changed features:

64-bit auxiliary support (see Section 5.3.7.3)

Parameters with static storage and unallocated parameters (see Section 5.2.11)
New optimization symbols section (see Section 5.3.3)

Extended Source Location Information (see Section 5.3.2.2)

New representation for procedures with no text (see Section 5.3.6.1)

Modified variant record representation (see Section 5.3.8.11)

New function pointer representation (see Section 5.3.8.5)

Block symbol added for alternate entry prologue size (see Section 5.3.6.7)
Address of locally stripped FDRS set to addressNil (see Section 5.3.1.2)
Uplevel links for referencing local symbols in an outer scope (see Section 5.3.4.4)
New profile feedback information (see Section 5.3.5)

New representation for C++ namespaces (see Section 5.3.6.4)

Unnamed union or structure representation (see Section 5.3.8.3)

5.2 Structures, Fields and Values for Symbol Tables

Unless otherwise specified, all structures described in this section are declared in
the header file sym.h, and all constants are defined in the header file symconst .h.
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5.2.1 Symbolic Header (HDRR)

typedef struct {

coff ushort magic;

coff ushort vstamp;

coff int ilineMax;
coff int idnMax;

coff int ipdMax;

coff int isymMax;
coff int ioptMax;
coff int iauxMax;
coff int issMax;

coff int issExtMax;
coff int ifdMax;

coff int crfd;

coff int iextMax;
coff long cbLine;

coff off cbLineOffset;
coff off cbDnOffset;
coff off cbPdOffset;
coff off cbSymOffset;
coff off cbOptOffset;
coff off cbAuxOffset;
coff off cbSsOffset;
coff off cbSsExtOffset;
coff off cbFdOffset;
coff off cbrRfdOffset;
coff off cbExtOffset;

} HDRR, *pHDRR;

SIZE - 144 bytes, ALIGNMENT - 8 bytes

Symbolic Header Fields

magic To verify validity of the symbol table, this field must
contain the constant magicSym, defined as 0x1992.

vstamp Symbol table version stamp. This value consists of a major
version number and a minor version number, as defined in
the stamp.h header file:

Symbol Value Description

MAJ_OBJ_STAMP 3 Current major object
format version

MIN_OBJ_STAMP 13 Current minor object
format version

See Section 1.4.5 for a description of object and symbol
table versioning.

ilineMax Number of line number entries (if expanded).
idnMax Obsolete.

ipdMax Number of procedure descriptors.

isymMax Number of local symbols.

ioptMax Byte size of optimization symbol table.
iauxMax Number of auxiliary symbols.

issMax Byte size of local string table.
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issExtMax Byte size of external string table.

ifdMax Number of file descriptors.

crfd Number of relative file descriptors.
iextMax Number of external symbols.

cbLine Byte size of (packed) line number entries.
cbLineOffset Byte offset to start of (packed) line numbers.
cbDnOffset Obsolete.

cbPdOffset Byte offset to start of procedure descriptors.
cbSymOffset Byte offset to start of local symbols.
cbOptOffset Byte offset to start of optimization entries.
cbAuxOffset Byte offset to start of auxiliary symbols.
cbSsOffset Byte offset to start of local strings.
cbSsExtOffset Byte offset to start of external strings.
cbFdOffset Byte offset to start of file descriptors.
cbRfdOffset Byte offset to start of relative file descriptors.
cbExtOffset Byte offset to start of external symbols.

General Notes:

The size and offset fields describing symbol table sections must be set to zero if the
section described is not present.

The cb*0Offset fields are byte offsets from the beginning of the object file.

The i*Max fields contain the number of entries for a symbol table section. Legal
index values for a symbol table section will range from 0 to the value of the
associated i*Max field minus one.

For an explanation of packed and expanded line number entries, see the discussion
in Section 5.3.2.2.

5.2.2 File Descriptor Entry (FDR)

typedef struct fdr {

coff addr adr;

coff long cbLineOffset;
coff long cbLine;

coff long cbSs;

coff int rss;

coff int issBase;

coff int isymBase;
coff int csym;

coff int ilineBase;
coff int cline;
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coff int
coff int
coff int
coff int
coff int
coff int
coff int
coff int
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint
#ifndef TANDEMSYM
coff uint
#else
coff uint
coff uint
#endif
coff ushort
coff uint
} FDR, *pFDR;

ioptBase;
copt;
ipdFirst;
cpd;
iauxBase;
caux;
rfdBase;
crfd;

lang : 5;
fMerge : 1;
fReadin : 1;
fBigendian : 1;
glevel : 2;
fTrim : 1;

reserved : 5;

platform : 3; (not supported)
reserved : 2;
vstamp; (sv3.13 - )
reserved2;

SIZE - 96 bytes, ALIGNMENT - 8 bytes

See Section 5.3.2.1 for related information.

File Descriptor Table Entry Fields

adr

cbLineOffset

cbLine

cbSs

rss

issBase

isymBase

csym

ilineBase

5-6 Symbol Table

Address of first instruction generated from this source file,
which should be the same value as found in the PDR.adr
field of the first procedure descriptor for this file. If no
instructions are associated with this source file, this field
should be set to 0. File descriptors that have been merged
by source language in locally-stripped objects will have this
field set to addressNil (-1).

Version Note

This use of addressNil is supported in symbol
table format V3.13 and greater.

Byte offset from start of packed line numbers to start of
entries for this file.

Byte size of packed line numbers for this file.
Byte size of local string table entries for this file.

Byte offset from start of file’s local string table entries to
source file name; set to issNil (-1) to indicate the source
file name is unknown.

Start of local strings for this file.
Starting index of local symbol entries for this file.
Count of local symbol entries for this file.

Debuggers and other tools expand the packed line numbers,
producing an array of line numbers with an entry for each
machine instruction in the program. This field is an index



cline

ioptBase

copt

ipdFirst

cpd

iauxBase

caux

rfdBase

crfd

lang

fMerge

fReadin

fBigendian

glevel

fTrim

platform

for this file’s first line number entry in the expanded line
number array.

See the preceding description of i1ineBase. This field is
a count of this file's entries in the expanded line number
array.

Byte offset from start of optimization symbol table to
optimization symbol entries for this file.

Byte size of optimization symbol entries for this file.
Starting index of procedure descriptors for this file.
Count of procedure descriptors for this file.

Starting index of auxiliary symbol entries for this file.
Count of auxiliary symbol entries for this file.
Starting index of relative file descriptors for this file.
Count of relative file descriptors for this file.

Source language for this file (see Table 5-1).

Informs linker whether this file can be merged.

True if file was read in (as opposed to just created).
Unused.

Symbolic information level with which this file was
compiled. This value is not the same as the user’s idea of
debugging levels. The value mapping from the user level
-g option to the symbol table value is:

Debug switch glevel contents

-go0 2
-gl 1
-g2 0
-g3 3
Unused.

Identifies the platform associated with the file descriptor.
Set to platUndef, platGuard, platOss, Or platPc.
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Version Note

The platform field is reserved for use on
Tandem big-endian systems. It is not supported
on Tru64 UNIX

vstamp Symbol table version stamp (HDRR.vstamp) value from
the original object module (.o file) that is recorded by the
linker. The linker may combine objects that were compiled
at different times and potentially contain different versions
of the symbol table. In post-link objects, this value may or
may not match the version stamp in the symbolic header.
For pre-link objects, the value in this field will either be
zero or the same as the symbolic header stamp.

Version Note

The vstamp field is supported on Tru64 UNIX
V5.0 and greater for symbol table version VV3.13
and greater.

reserved Must be zero.
reserved? Must be zero.

General Notes:

The i*Base fields provide the starting indices of this file’s subtables within the
symbol table sections. If the associated count fields are set to 0, the base fields
will also be set to zero.

For an explanation of packed and expanded line number entries, see the discussion
in Section 5.3.2.2.

Table 5-1: Source Language (1ang) Constants
Name Value Commant

langC
langPascal
langFortran
langAssembler
langMachine
langNil
langAda
langPl1l

langCobol

© 0O N o o0~ W N BB O

langStdc

Ay
o

langMIPSCxx Unused.

[N
[EEN

langDECCxx

[EnY
N

langCxx
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Table 5-1: Source Language (1ang) Constants (cont.)

Name Value Commant

langFortran90 13 Not used by all compilers -
langFortran might be used
instead for both f77 and f90

langBliss 14

langPTAL 15 (not supported)

langCplusplusVl 16 (not supported)

langCplusplusV2 17 (not supported)

langMax 31 Number of language codes available

Version Note

The language constants 1angPTAL, langCplusplusVl, and
langCplusplusV2 are reserved for use on Tandem big-endian systems.
They are not supported on Tru64 UNIX.

5.2.3 Procedure Descriptor Entry (PDR)

#ifndef TANDEMSYM
struct pdr {
#else
struct pdrv4 {
#endif
coff addr
coff long
coff int
coff int
coff uint
coff int
coff int
coff uint
coff int
coff int
coff int
coff int
coff uint
coff uint
coff uint
coff uint
coff uint
#ifndef TANDEMSYM
coff uint
#else
coff uint
coff uint
#endif
coff uint
coff ushort
coff ushort
#ifdef TANDEMSYM
coff uint
coff uint
} PDRV4, *pPDRV4;
#else
} PDR, *pPDR;
#endif

adr;
cbLineOffset;
isym;

iline;

regmask;
regoffset;

iopt;

fregmask;
fregoffset;
frameoffset;
1nLow;

1nHigh;
gp_prologue : 8;
gp_used : 1;
reg_frame : 1;
prof : 1;
gp_tailcall : 1;

reserved : 12;

optlevel : 4;
reserved : 8;

localoff : 8;
framereg;
bcreg;

proctype : 16;
reserved2 : 48;

(V5.1 - )

(not supported)

(not supported)

SIZE - 64 bytes (72 bytes for Tandem), ALIGNMENT - 8 bytes

See Section 5.3.4 for related information.

Procedure Descriptor Table Entry Fields

adr

The start address of this procedure. Set to addressNil
(-1) for procedures with no text.
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cbLineOffset

isym

iline

regmask

regoffset

iopt

fregmask

fregoffset

frameoffset

1nLow
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Version Note

Prior to symbol table format V3.13 this field
may not be updated by the linker. To determine
the procedure start address for symbol table
formats V3.10 - V3.12, use the algorithm
described in Section 5.3.4.1.

Byte offset to the start of this procedure’s packed line
numbers from the start of the file descriptor entry
(FDR.cbLineOffset).

Start of local symbols for this procedure. This symbol is
the symbol for the procedure (symbol type stProc). The
name of the procedure can be obtained from the iss field
of the symbol table entry.

If the object is stripped of local symbol information, this
field contains an external symbol table index for the
procedure symbol’s entry.

If this procedure has no symbols associated with it, this
field should be set to isymNil (-1). This situation occurs
for a static procedure in an object stripped of local symbol
information.

Start of line number entries (if expanded) for this
procedure. Setto ilineNil (-1) to indicate that this
procedure does not have line numbers.

Saved general register mask.

Offset from the virtual frame pointer to the general register
save area in the stack frame.

Start of procedure’s optimization symbol entries. Set to
ioptNil (-1) to indicate that this procedure does not
have optimization symbol entries.

Saved floating-point register mask.

Offset from the virtual frame pointer to the floating-point
register save area in the stack frame.

Size of the fixed part of the stack frame. The actual frame
size can exceed this value. A routine can extend its own
frame size for frame sizes larger than 2 GB or for dynamic
stack allocation requests.

Lowest source line number within this file for the
procedure. This is typically the line number of the first
instruction in the procedure, but not always. Code
optimizations can rearrange or remove instructions making
the first instruction map to a different line number.



1nHigh

gp_prologue

gp_used

reg frame

prof

gp_tailcall

optlevel

reserved

localoff

framereg
pcreg

proctype

Highest source line number within this file for the
procedure. This field contains a value of -1 for alternate
entry points, which is how an alternate entry point is
identified.

Byte size of GP prologue.
Flag set if the procedure uses GP.

True if the procedure is a light-weight or null-weight
procedure. See the General Notes section following these
definitions for more details on procedure weights.

True if the procedure has been compiled with -pg for
gprof profiling.

Indicates that a call to this procedure may result in a tail
call return from a different GP domain. This bit is used
exclusively for tail call optimizations.

Version Note

The gp_tailcall field is supported in Tru64
UNIX V5.1 and greater.

Optimization level. Set to 0 for unknown or 1 through 6 for
optimization levels o through 5 respectively.

Version Note

The optlevel field is used on Tandem
big-endian systems. It is not supported on
Tru64 UNIX.

Must be zero.

Bias value for accessing local symbols on the stack at run
time.

Frame pointer register number.
PC (Program Counter) register number.

Procedure attribute flags. See Table 5-2 for flag
descriptions.

Version Note

The proctype field and the associated flag values in Table 5-2 are
reserved for use on Tandem big-endian systems. They are not supported

on Tru64 UNIX.
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Table 5-2: Procedure Attribute Flags

Flag Value Description

TNDM_MAIN 0x0001 Main entry point

TNDM_RESIDENT 0x0002 Resident routine
TNDM_PRIVILEGED 0x0004  Privileged routine

TNDM_ CALLABLE 0x0008 Callable routine

TNDM_ENTRY 0x0010 Alternate entry, procedure, or subprocedure
TNDM_SUBPROC 0x0020  Subprocedure

TNDM_ INTERRUPT 0x0040 Interrupt routine

TNDM_SHELL 0x0080  Shell routine
TNDM_COMPILER_GENERATED 0x0200  Procedure can have multiple copies
TNDM_EXTENSIBLE 0x0800 Extensible procedure
TNDM_EDITLINE 0x8000 Edit line numbers

General Notes:
For more information on call frames, see Section 5.3.4.2.

If the value of gp_prologue is zero and gp_used is 1, a gp prologue is present
but was scheduled into the procedure prologue. Otherwise, the gp prologue
field gives the number of bytes occupied by the GP prologue instructions at the
procedure’s start address.

If there is a chain of tail call procedures, some of which are in the same GP domain,
and some that are in a different GP domain, then gp_tailcall must be set for all
procedures in the chain. For example, suppose there is a tail call from A to B, and a
tail call from B to C. A and B are in the same GP domain, but C is in a different GP
domain. In this case gp_tailcall must be set in both A's and B’s PDR, because
callers can't rely on the standard definition of GP after calling A. See the Alpha
Architecture Reference Manual for additional details.

For an explanation of packed and expanded line number entries, see the discussion
in Section 5.3.2.2.

A procedure may be heavy-, light-, or null-weight. The weight of a procedure can be
determined from its descriptor by using the following guidelines:

Weight Indications

Heavy reg frame is 0 and bit 26 of the register mask (regmask) is on
Light reg frame is 1 and regoffset iS ra_save

Null reg frame is 1 and regoffset is 26

See the Calling Standard for Alpha Systems for details on the calling conventions
for different weight procedures. Note that a calling routine does not need to know
the weight of the routine being called.

5.2.4 Line Number Entry (LINER)
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Line numbers are represented using two formats: packed and expanded.

The packed format is a byte stream that can be interpreted as described in
Section 5.3.2.2 to build an expanded table that maps instructions to source line
numbers. The LINER type is used to refer to a single entry in the expanded table.
It is declared as:

typedef int LINER, *pLINER;
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A second, newer form of line number information is located in the optimization
symbols section. See Section 5.2.10 and Section 5.3.2.2.

5.2.5 Local Symbol Entry (SYMR)

typedef struct {
coff long
coff int
coff uint
coff uint
coff uint
coff uint

} SYMR, *pSYMR;

value;
iss;

st :
sc

6;
: 5;

reserved : 1;
index : 20;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 5.2.11, Section 5.3.4, and Section 5.3.8 for related information.

Local Symbol Table Entry Fields

value

iss

st

scC

reserved

index

A field that can contain an address, size, offset, or index.
Its interpretation is determined by the symbol type and
storage class combination, as explained in Section 5.2.11.

Byte offset from the issBase field of a file descriptor table
entry to the name of the symbol. If the symbol does not
have a name, this field is set to 1ssNil (-1). Generally,
all user-defined symbols have names. A symbol without

a name is one that has been created by the compilation
system for its own use.

Symbol type (see Table 5-3).
Storage class (see Table 5-4).
Must be zero.

An index into either the local symbol table or auxiliary
symbol table, depending on the symbol type and class.
The index is used as an offset from the isymBase field in
the file descriptor entry for an entry in the local symbol
table or an offset from the iauxBase field for an entry in
the auxiliary symbol table.

The index field may have a value of indexNil, which is
defined as (long)oxf£££££. This value is used to indicate
that the index is not a valid reference.

The next two tables contain all defined values for the st and sc constants, along
with short descriptions. However, these fields must be considered as pairs that
have a limited number of possible pairings as explained in Section 5.2.11.

Table 5-3: Symbol Type (st) Constants

Constant Value Description

StNil 0 Dummy entry
stGlobal 1 Global variable
stStatic 2 Static variable
stParam 3 Procedure argument
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Table 5-3: Symbol Type (st) Constants (cont.)

Constant Value Description
stLocal 4 Local variable
stLabel 5 Label
stProc 6 Global procedure
stBlock 7 Start of block
stEnd 8 End of block, file, or procedure
stMember 9 Member of class, structure, union, or enumeration
stTypedef 10 User-defined type definition
stFile 11 Source file name
stStaticProc 14 Static procedure
stConstant 15 Constant data
stBase 17 Base class (for example, C++)
stVirtBase 18 Virtual base class (for example, C++)
stTag 19 Data structure tag value (for example, C++ class or struct)
stInter 20 Interlude (for example, C++)
stModule 22 (not yet implemented) Fortran90 module definition.
stNamespace 22 (V5.0 - ) Namespace definition (for example, C++)
stModview 23 (not yet implemented) Modifiers for current
view of given module.
stUsing 23 (V5.0 - ) Namespace use (for example, C++ "using").
stAlias 24 (V5.0 - ) Defines an alias for another symbols. Currently,
only used for namespace aliases.
stDefine 25 (not supported) Macro definition
stObjinfo 26 (not supported) Name/data object info
stToolinfo 27 (not supported) Compiler info
stSrcinfo 28 (not supported) Source data info
stEquivRel 29 (not supported) Equivalence variable
stMax 64 Maximum number of symbol types

General Notes:

Symbol type codes with more than one interpretation are identified by the lang
field in the associated file descriptor. This applies to the stModule/stNamespace
and stModview/stUsing symbol types.

Version Note

The symbol types: stDefine, stObjinfo, stToolinfo, stSrcinfo,
and stEquivRel are reserved for use on Tandem big-endian systems.
They are not supported on Tru64 UNIX.
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Table 5-4: Storage Class (sc) Constants

Constant Value Description

scNil 0 Dummy entry

scText 1 Symbol allocated in the .text section
scData 2 Symbol allocated in the .data section
ScBss 3 Symbol allocated in the .bss section
scRegister 4 Symbol allocated in a register

scAbs 5 Symbol value is absolute

scUndefined 6 Symbol referenced but not defined in the current module
scUnallocated 7 Storage not allocated for this symbol
scResText 8 (not supported) Resident text
scTlsUndefined 9 TLS symbol referenced but not defined in the current module
scInfo 11 Symbol contains debugger information
scSData 13 Symbol allocated in the .sdata section
scSBss 14 Symbol allocated in the .sbss section
scRData 15 Symbol allocated in the .rdata section
scvar 16 Parameter passed by reference (for example, Fortran or Pascal)
scCommon 17 Common symbol

scSCommon 18 Small common symbol

scVarRegister 19 Parameter passed by reference in a register
scVariant 20 Variant record (for example, Pascal or Ada)
scFileDesc 20 File descriptor (for example, COBOL)
scSUndefined 21 Small undefined symbol

scInit 22 Symbol allocated in the .init section
ScReportDesc 23 Report descriptor (for example, COBOL)
scXData 24 Symbol allocated in the .xdata section
scPData 25 Symbol allocated in the .pdata section
scFini 26 Symbol allocated in the .fini section
scRConst 27 Symbol allocated in the .rconst section
scT1lsCommon 29 TLS common symbol

scTlsData 30 Symbol allocated in the .tlsdata section
scTlsBss 31 Symbol allocated in the .tlsbss section
scMax 32 Maximum number of storage classes

Version Note

The scResText storage class is reserved for use on Tandem big-endian
systems. It is not supported on Tru64 UNIX.

5.2.6 External Symbol Entry (EXTR)

typedef struct {

SYMR asym;

coff uint jmptbl : 1;
coff uint cobol main : 1;
coff uint weakext : 1;
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coff uint
#ifdef TANDEMSYM

coff uint

coff uint

coff uint
#else

coff uint
#endif

coff int
} EXTR, *pEXTR;

alignment : 4; (V5.1 - )
xport : 1; (not supported)
multiext : 1; (not supported)

reserved : 23;

reserved:25;

ifd;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

External Symbol Table Entry Fields

asym

asym.value

asym.iss

asym. st

asym.sc

asym.reserved

asym. index

jmptbl

cobol main

weakext

alignment
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External symbol table entry. This structure has the same
format as a local symbol entry. The field interpretations
differ as described in the following entries.

Contains the symbol address for most defined symbols. See
Section 5.2.11 for details.

Byte offset in external string table to symbol name. Set to
igsNil (-1) if there is no name for this symbol.

Symbol type. See Table 5-3 for possible values.
Storage class. See Table 54 for possible values.
Must be zero.

Contains either an index into the auxiliary symbol table for
a type description or an index into the local symbol table
pointing to a related symbol.

The index field may have a value of indexNil, which is
defined as (long) oxff£f£ff. This value is used to indicate
that the index is not a valid reference.

Unused.

Flag set to indicate that the symbol is a COBOL main
procedure.

Flag set to identify the symbol as a weak external. See
Section 6.3.4.2 for more details on weak symbols.

Power of two byte alignment for common storage class
symbols biased by 273 (8). Supported values range from 0
through 13 yielding a minimum alignment of 8 bytes and
a maximum alignment of 64K bytes. For symbols with
storage classes other than scCommon and scSCommon
this field should be ignored.

Version Note

The alignment field is supported on Tru64
UNIX V5.1 and greater.




xport Flag set to indicate the symbol is to be exported from a
shared library.

Version Note

The xport field is reserved for use on Tandem
big-endian systems. It is not supported on
Tru64 UNIX.

multiext Flag set to indicate that multiple definitions of the symbol
are allowed.

Version Note

The multiext field is reserved for use on
Tandem big-endian systems. It is not supported
on Tru64 UNIX.

reserved Must be zero.

ifd Index of the file descriptor where the symbol is defined.
Set to ifdNil (-1) for undefined symbols and for some
compiler system symbols.

5.2.7 Relative File Descriptor Entry (RFDT)

The relative file descriptor table provides a post-link mapping of file descriptor
indices. The purpose of this table is to minimize work for the linker, which does
not update symbol table references to local symbols. This information is used

to obtain the file offset used to bias local symbol indices. Because this table is
also known as the File Indirect Table, two declarations are included in the sym.h
header file, as shown here.

typedef int RFDT, *pRFDT;
typedef int FIT, *pFIT;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 5.3.2.1 for related information.

5.2.8 Auxiliary Symbol Table Entry (AUXU)

The auxiliary symbol table entry is a 32-bit union. It is either interpreted as a
TIR Or RNDXR structure or as an integer value. See Section 5.3.7.3 for detailed
instructions on reading the auxiliary symbols.

typedef union {

TIR ti;

RNDXR rndx;

coff int dnLow;

coff int dnHigh;

coff int isym;

coff int iss;

coff int width;

coff int count ;

coff int slice; (V5.0a)

} AUXU, *pAUXU;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 5.3.7.3 for related information.
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Auxiliary Symbol Table Entry Fields

ti

rndx

dnLow

dnHigh

isym

iss

width

count

slice

General Notes:

Type information record (TIR), as defined in Section 5.2.8.1.

Relative index into local or auxiliary symbols (rndx), as
defined in Section 5.2.8.2.

Lower bound of range or array dimension. For large
structures, two of these fields can be used together to form
one 64-bit number.

Upper bound of range or array dimension. For large
structures, two of these fields can be used together to form
one 64-bit number.

For procedures (stProc or stStaticProc symbols), this
field is an index into the local symbols. It is also used as an
index into the relative file descriptors.

Unused.

Width of a bit field or array stride in bits. Fortran compilers
set the array stride to the array element size in bits. Two of
these fields can be used together to form one 64-bit number.

Count of ranges for variant arm. This field name is
only used within the type description of a variant block
(stBlock, scVariant).

Reserved.

The fields dnLow, dnHigh, or width must all use either the 32-bit or 64-bit
representation when used together. For example, an array dimension cannot be
specified with a 32-bit dnLow and a 64-bit dnHigh.

5.2.8.1 Type Information Record (TIR)

5-18

typedef struct {
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint
coff uint

} TIR, *pTIR;

fBitfield : 1;
continued : 1;
bt : 65

tg4
tg5
tg0
tgl :
tg2 :
tg3

L L

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Type Information Record Entry Fields

fBitfield

continued

Symbol Table

Flag set if bit width is specified.

Flag set to indicate that the type description is continued
in another TIR record. This will happen if the type is
represented with more than six type qualifiers.



bt

tqo,
tq3,

tqgl,
tg4,

tgz,
tgb

Basic type (see Table 5-5 and Section 5.3.7.1).

Type qualifiers (see Table 5-6 and Section 5.3.7.2). The
lower-numbered tqg fields must be used first, and all
unneeded fields must be set to tgNil (0).

Table 5-5: Basic Type (bt) Constants

Constant Value Description

btNil 0 Undefined or void

btAdr32 1 Address (32 bits)

btChar 2 Character

btUChar 3 Unsigned character

btShort 4 Short (16 bits)

btUShort 5 Unsigned short (16 bits)

btInt 6 Integer (32 bits)

btUInt 7 Unsigned integer (32 bits)

btLong32 8 Long (32 bits)

btULong32 9 Unsigned long (32 bits)

btFloat 10 Floating point

btDouble 11 Double-precision floating point

btStruct 12 Structure or record

btUnion 13 Union

btEnum 14 Enumeration

btTypedef 15 Defined by means of a user-defined type definition

btRange 16 Range of values (for example, Pascal subrange)

btSet 17 Sets (for example, Pascal)

btComplex 18 Single complex (for example, Fortran COMPLEX*8)

btDComplex 19 Double complex (for example, Fortran COMPLEX*16)

btIndirect 20 Indirect definition; following rndx points to an entry in the
auxiliary symbol table that contains a TIR (type information record)

btFixedBin 21 Fixed binary (for example, COBOL)

btDecimal 22 Packed or unpacked decimal (for example, COBOL)

btPicture 25 Picture (for example, COBOL)

btvoid 26 Void

btPtrMem 27 Currently unused

btScaledBin 27 Scaled binary (for example, COBOL)

btVptr 28 Virtual function table (for example, C++)

btArrayDesc 28 Array descriptor (for example, Fortran, Pascal)

btClass 29 Class (for example, C++)

btLong64 30 Address (64 bits)

btLong 30 Long (64 bits)

btULongé64 31 Unsigned long (64 bits)

btULong 31 Unsigned long (64 bits)
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Table 5-5: Basic Type (bt) Constants (cont.)

Constant Value Description

btLongLong 32 Long long (64 bits)

btULongLong 33 Unsigned long long (64 bits)

btAdre4 34 Address (64 bits)

btAdr 34 Address (64 bits)

btInté64 35 Integer (64 bits)

btUInte4 36 Unsigned integer (64 bits)

btLDouble 37 Long double floating point (128 bits)

btInt8 38 Integer (64 bits)

btUInts 39 Unsigned integer (64 bits)

btRange 64 41 (V5.0 - ) 64-bit range

btProc 42 (V5.0 - ) Procedure or function

btCobolIn- 43 (not supported) COBOL index variables

dex

btReal32 44 (not supported) Tandem float

btReal64 45 (not supported) Tandem double

btQComplex 46 (V5.1 - ) Quad complex (for example Fortran COMPLEX*32)
btChecksum 63 Symbol table checksum value stored in auxiliary record
btMax 64 Number of basic type codes

Table Notes:

1. DbtInt and btLong32 are synonymous.

2. DbtUInt and btULong32 are synonymous.

3. btLong, btLongé4, btLongLong, btInté64, and bt Int8 are synonymous.
4. btULongé64, btULongLong, btUInté64, and btUInt8 are Synonymous.

Version Note

The basic type constants: btCobolIndex, btReal32, and btRealé4
are reserved for use on Tandem big-endian systems. They are not
supported on Tru64 UNIX.

Table 5-6: Type Qualifier (tg) Constants

Constant Value Description

tgNil 0 No qualifier (placeholder)

tgPtr 1 Pointer

tgProc 2 (obsolete) Procedure or function

tgArray 3 Array

tgFar 4 32-bit pointer; used with the -xtaso emulation
tgVol 5 Volatile

tgConst 6 Constant

tgRef 7 Reference
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Table 5-6: Type Qualifier (tq) Constants (cont.)

Constant Value Description

tgArray 64 8 (V5.0 - ) Large array

tgHasLen 9 (not supported) Length for buffer parameters
tgShar 10 (v5.0a - ) Reserved

tgSharArr 64 11 (V5.0a - ) Reserved

tgMax 16 Number of type qualifier codes

Version Note

The tgHasLen type qualifier is reserved for use on Tandem big-endian
systems. It is not supported on Tru64 UNIX.

5.2.8.2 Relative Symbol Record (RNDXR)

typedef struct {
coff uint rfd : 12;
coff uint index : 20;
} RNDXR, *pRNDXR;

SIZE - 4, ALIGNMENT - 4

Relative Symbol Record Fields

rfd Index into relative file descriptor table if it exists;
otherwise, index into file descriptor table.

This field may have a value of ST RFDESCAPE, defined as
oxfff in the header file cmplrs/stsupport.h. This
value is used to indicate that the next auxiliary entry,
interpreted as an isym, contains the actual rfd index.

index Symbol index. Used as an offset from either FDR.isymbase
or FDR.iauxbase, depending on context.

5.2.9 String Table

Objects can contain two string tables: the local string table (corresponding to
local symbols) and the external string table (corresponding to external symbols).
The local string table is present only for objects created with full debugging
information; it is removed if an object is locally stripped.

The storage format for the string tables is a list of null-terminated character
strings. It is correctly considered as one long character array, not an array of
strings. Fields in the symbolic header and file headers represent string table sizes
and offsets in bytes.

5.2.10 Optimization Symbol Entry (PPODHDR)

The optimization symbol table contains information for optimized debugging, basic
block profiling, and other miscellaneous procedure-specific data. Each procedure’s
associated optimization symbol table data begins with an array of PPODHDR
structures. See Section 5.3.3 for a description of the optimization symbol table.
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Version Note

The following structure definition is for Tru64 UNIX V5.0 and greater.
It is used for symbol table format VV3.13 and greater.

typedef struct {

coff uint ppode_tag;
coff uint ppode_len;
coff ulong ppode_val;

} PPODHDR, *pPPODHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Optimization Symbol Entry Fields

ppode tag Identifies the kind of data described by this entry.

ppode len Indicates the size in bytes of the data that is found in the
raw data area for this entry. When this field is zero, the
only data is stored in the ppode wval field.

ppode_val This field is either a pointer to the entry’s data or is
itself the data. If ppode len is nonzero, this field is a
relative file offset from the beginning of the current PPOD
(Per-Procedure Optimization Descriptor ) to the applicable
data area. If ppode len is zero, this field contains the
data for the entry.

A PPOD contains multiple PPODHDRS. A PPODHDR and
its associated data are collectively referred to as a
PPODE (Per-Procedure Optimization Descriptor Entry.)
Figure 5-10 in Section 5.3.3 shows several PPODs with
multiple PPODHDRS and their data.

Table 5-7: Optimization Tag Values

Name Value  Description

PPODE_STAMP 1 Version number of the PPOD stored in ppode _val.
The current PPOD_VERSION value is 1.

PPODE_END 2 End of entries for this PPOD.

PPODE_EXT SRC 3 Extended source line information.

PPODE_SEM_EVENT 4 Semantic event information. (Reserved

for future use.)

PPODE_SPLIT 5 Split lifetime information. (Reserved
for future use.)

PPODE_DISCONTIG_SCOPE 6 Discontiguous scope information. (Reserved
for future use.)

PPODE_INLINED_ CALL 7 Inlined procedure call information. (Reserved
for future use.)

PPODE_PROFILE_INFO 8 Profile feedback information.

5.2.11 Symbol Type and Class (st/sc) Combinations
Entries in the symbol table are primarily identified by the combination of their

symbol type (st) and storage class (sc) values. Not all combinations are valid.
Figure 5-3 indicates which combinations are currently in use.
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Figure 5-3: st/sc Combination Matrix
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A symbol’s type and class taken together determines interpretation of other fields
in the symbol table entry. The same combination can be used for different purposes
in different contexts. As a result, to understand the symbol entry, it also may be
necessary to access type information in the auxiliary table or the source language
information in the file descriptor.

The contents of the value and index fields for each combination, with a brief
explanation of the symbol’s use, are described in the following list of combinations.
For many combinations, greater detail can be found in Section 5.3.7 and

Section 5.3.8.

stGlobal/scAbs
e The value field contains an absolute value.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a global absolute value.

stGlobal/scSData,
stGlobal/scData,
stGlobal/scSBss,
stGlobal/scBss,
stGlobal/scRData,
stGlobal/scRConst

= The value field is the symbol's address.
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= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a defined global variable.

stGlobal/scTlsData,

stGlobal/scTlsBss

= The value field is the offset from the base of the object’'s TLS region.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a defined global TLS variable.
stGlobal/scSCommon,

stGlobal/scCommon,
stGlobal/scTlsCommon

= The value field is the symbol's size in bytes.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a common.
stGlobal/scSUndefined,

stGlobal/scUndefined,
stGlobal/scTlsUndefined

= The value field is zero in linked objects. In relocatable objects, the value field
is ignored. (Some compilers store the size in bytes of the global variable in
the value field.)

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is an undefined global variable.

stStatic/scAbs
e The value field is an absolute value.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is an absolute value with static scope.

stStatic/scSData,
stStatic/scData,
stStatic/scSBss,
stStatic/scBss,
stStatic/scRData,
stStatic/scRConst

e The value field is the symbol’s address.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a defined static variable.

stStatic/scTlsData,

stStatic/scTlsBss

= The value field is an offset from the base of the object's TLS region.

= The index field is an auxiliary table index or indexNil if there is no type
information.
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= This symbol is a defined static TLS variable.

stStatic/scCommon
e The value field is zero.

= The index field is an auxiliary table index or indexNil if there is no type
information.

= This symbol is a Fortran common block.

stStatic/scInfo
= The value field is zero.
= The index field is an auxiliary table index.

= This symbol is a C++ static data member.

stParam/scAbs
= The value field is an offset from the virtual frame pointer.
= The index field is an auxiliary table index.

= This symbol is a parameter stored on the stack.

stParam/scRegister
= The value field is the number of the register containing the parameter.
= The index field is an auxiliary table index.

= This symbol is a parameter stored in a register.

stParam/scVar

= The value field is an offset from the virtual frame pointer to the parameter’s
address.

= The index field is an auxiliary table index.

= This symbol is a parameter stored on the stack. One level of indirection is
required to access the parameter’s value.

stParam/scVarRegister
= The value field is the register number containing the address of the parameter.
= The index field is an auxiliary table index.

= This symbol is a parameter stored on the stack. One level of indirection is
required to access the parameter’s value.

stParam/scInfo
= The value field is zero.
= The index field is an auxiliary table index.

= This symbol is a parameter of a C++ member function, function pointer
definition, or procedure with no code.

stParam/scSData,
stParam/scData,
stParam/scSBss,
stParam/scBss,
stParam/scRData,
stParam/scRConst

= The value field is the address of the parameter.
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= The index field is an auxiliary table index.

= This symbol is a static parameter.

Version Note

Static parameters are supported in symbol table format V3.13 and
greater.

stParam/scUnallocated
e The value field is zero.
= The index field is an auxiliary table index.

= This is an unallocated parameter.

stLocal/scAbs
= The value field is an offset from the virtual frame pointer.
= The index field is an auxiliary table index.

e This is a local variable stored on the stack.

stLocal/scRegister
= The value field is the number of the register containing the variable.
= The index field is an auxiliary table index.

= This symbol is a local variable stored in a register.

stLocal/scVar

= The value field is an offset from the virtual frame pointer to the symbol’s
address.

= The index field is an auxiliary table index.

= This symbol is a local variable stored on the stack. One level of indirection is
required to access its value.

stLocal/scVarRegister

= The value field is the register number containing the address of this variable.

= The index field is an auxiliary table index.

= This symbol is a local variable stored on the stack. One level of indirection is
required to access its value.

stLocal/scUnallocated

= The value field is zero.

= The index field is an auxiliary table index.

e This is an unallocated local variable.

Version Note

The use of scUnallocated is supported in symbol table format V3.13
and greater.

stLocal/scText,
stLocal/scInit,
stLocal/scFini,
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stLocal/scSData,
stLocal/scData,
stLocal/scSBss,
stLocal/scBss,
stLocal/scRData,
stLocal/scRConst,
stLocal/scTlsData,
stLocal/scTlsBss

= The value field is the address of the section indicated by the storage class.
e The index field is indexNil.

= These are special symbols inserted by the linker for shared objects. They are
found in the external symbol table and their names are the section names (for
example, .text or .init).

stLabel/scAbs

= The value field is the symbol’s value. This may be either a numeric constant
or absolute address.

e The index field is indexNil.

= This symbol is a linker defined absolute symbol.

stLabel/scText,
stLabel/scInit,
stLabel/scFini,
stLabel/scSData,
stLabel/scData,
stLabel/scXData,
stLabel/scPData,
stLabel/scSBss,
stLabel/scBss,
stLabel/scRData,
stLabel/scRConst,
stLabel/scTlsData,
stLabel/scTlsBss

= The value field is the label’s value (an address).
e The index field is indexNil.

= This symbol is an allocated label. It can be associated with any raw data
section of the object file.

stLabel/scUnallocated
e The value field is zero.
e The index field is indexNil.

= This symbol is an unallocated label.

stProc/scNil
e The value field is zero.
e The index field is indexNil.

= This symbol can be ignored. Compilers may produce this type/class combination
for procedures that have been optimized away and that don't require debug
information. The linker removes these symbols from the external symbol table
in linked objects.
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stProc/scText
= The value field is the procedure’s address.
= This symbol can occur in the external or local symbol table:
— In the local symbol table, the index field is an auxiliary table index.

— Inthe external symbol table, it is the local symbol index of the corresponding
procedure symbol in the local symbol table, unless the file is stripped of
local symbol information. If the file is locally stripped, the index field is
indexNil.

= This symbol is a defined procedure.

stProc/scUndefined
e The value field is zero.
e The index field is indexNil.

= This symbol is an undefined procedure.

stProc/scInfo
= The value field contains a value of:
— -1 (a procedure with no code)
— -2 (a function prototype or function pointer definition)

— A non-negative index into the virtual function table for this function, for a
C++ virtual member function.

Version Note

The use of -1 and -2 in the value field is supported in symbol
table format V3.13 and greater.

= The index field is an auxiliary table index.

= This symbol represents a procedure without code, a function prototype, or
a function pointer. The value field is used to distinguish among these
possibilities.

stBlock/scText
= The value field depends on context:

— If this is the first stBlock/scText symbol following an stProc/scText
symbol, the value is the byte offset from the procedure’s address to the
address of the first instruction beyond the end of the procedure’s prologue.

— Otherwise, it is the byte offset from the procedure’s address to the starting
instruction address of the block.

= The index field is the local symbol index of the symbol following the matching
stEnd. If this is the first stBlock/scText following an stProc/scText for
an alternate entry point, the index field will be set to indexNil because the
symbol will not have a matching stEnd symbol.

Version Note

The use of stBlock/scText for alternate entry points is supported
in symbol table format VV3.13 and greater.

= This symbol indicates the start of a block scope.
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stBlock/scInfo

The value field depends on context:

— Size in bytes for a class, structure, or union.

— Size of the underlying data type for an enumerated type.
— Auxiliary table index for a variant record.

— Zero for the block scope of a procedure with no code.

The index field is the local symbol index of the symbol following the matching
stEnd.

This symbol indicates the start of a structure, union, or enumeration definition
(in C; the C++ representation differs). It describes a variant arm if it is inside
an stBlock/scVariant scope. This symbol is also used to define the block
scope of a procedure with no code.

stBlock/scCommon

The value field is the size of the common block in bytes.

The index field is the local symbol index of the symbol following the matching
stEnd.

This symbol is a scoping symbol for a Fortran common block. It occurs in the
context of the synthesized file used to define a common block.

stBlock/scVariant

The value field is the local symbol index of the structure member whose value
determines which variant range is used.

The index field is a the local symbol index of the symbol following the
matching stEnd.

This symbol occurs in the context of Pascal and Ada variant records. It
indicates the start of the symbols for one variant.

stBlock/scFileDesc,
stBlock/scReportDesc

The value field is zero.

The index field is a the local symbol index of the symbol following the
matching stEnd.

This symbol occurs in COBOL only. It indicates the start of the file or report
descriptor scope.

stEnd/scText

The value field depends on the type of scope it is ending. Itis:
— The size in bytes of the procedure’s text (for a procedure).

— Byte offset from a procedure’s address to the start of the epilogue (for the
outermost text block in a procedure).

— Byte offset from a procedure’s address to the first instruction address
beyond the end of the block (for a text block).

— Zero (for a file).

The index field is the local symbol index of the matching stBlock, stProc,
or stFile.

This symbol ends a file, procedure, or text block scope.
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stEnd/scInfo
e The value field is zero.

= The index field is a the local symbol index of the matching stBlock or
stNamespace.

= If the matching symbol is an stBlock, this symbol ends a structure, union,
enumeration, C++ member function definition, procedure with no code, or the
block scope contained by a procedure with no code. If the matching symbol is an
stNamespace, this symbol ends a namespace definition.

stEnd/scCommon
= The value field is zero.
= The index field is the local symbol index of the matching stBlock.

= This symbol ends a Fortran common definition.

stEnd/scVariant
= The value field is the same as that of the matching stBlock.
= The index field is the local symbol index of the matching stBlock.

= This symbol ends a variant record block.

stEnd/scFileDesc,
stEnd/scReportDesc

= The value field is zero.
= The index field is the local symbol index of the matching stBlock.

= This symbol ends a file or report descriptor block.

stMember/scInfo

= The value field depends on the symbol’s data type:
— The ordinal value (for an element of an enumerated type).
— Zero (for a namespace or union member).

— Bit offset from the beginning of the structure (for a C structure or C++
class member).

= The index field is an auxiliary table index.

= This symbol describes a data structure field or the member of a namespace. It
is found inside a block defining a data structure (for example, class or struct) or
a namespace definition block.

stMember/scFileDesc,
stMember/scReportDesc

= The value field is zero or one, depending on whether the symbol is local or
external, respectively.

= The index field is an auxiliary table index.

= This symbol occurs in COBOL only. It is found inside a file descriptor or report
descriptor block.

stTypedef/scInfo
e The value field depends on the purpose of this symbol:

— Zero (for a user-defined type definition).
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— The auxiliary table index of the next auxiliary entry after the start of the
class definition (for a compiler-inserted symbol). In effect, the value is the
contents of the index field plus one.

= The index field is an auxiliary table index.

= This symbol is a user-chosen name for a data type. It also appears as a
compiler-inserted symbol following the st Tag/scInfo symbol for a C++ opaque
class or structure.

stFile/scText
e The value field is zero.

= The index field is the local symbol index of the symbol following the matching
stEnd.

= This symbol denotes the scoping block for a source file.

stStaticProc/scText
= The value field is the procedure’s address.
= The index field is an auxiliary table index.

= This symbol is a defined static procedure.

stStaticProc/scInit,
stStaticProc/scFini

= The value field is the procedure address.
= The index field is an auxiliary table index.

= These combinations are used for the special symbols  istart and __ fstart,
which are inserted by the linker.

stConstant/scAbs
e The value field is the value of the constant.
= The index field is an auxiliary table index.

= This symbol represents a named value (for example, Fortran PARAMETER).

stConstant/scSData,
stConstant/scData,
stConstant/scSBss,
stConstant/scBss,
stConstant/scRData,
stConstant/scRConst

= The value field is the symbol's address.
= The index field is an auxiliary table index.

= This symbol represents allocated constant data.

stBase/scInfo
e The value field is the offset of the base class relative to a derived class.
= The index field is an auxiliary table index.

= This symbol is a C++ base class. It is found inside a block defining a data
structure (for example, class or struct).
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stVirtBase/scInfo

= The value field is an index (starting at 1) of the base class run-time description
in the virtual base class table. See Section 5.3.8.6.3.

= The index field is an auxiliary table index.

= This symbol is a C++ virtual base class. It is found inside a block defining a
data structure (for example, class or struct).

stTag/scInfo
e The value field is zero.
= The index field is an auxiliary table index.

< This symbol is a C++ class, structure, or union. See Section 5.3.8.6. Note that
the representation for C structures and unions (Section 5.3.8.3) is different.

stInter/scInfo
= The value field is zero.
= The index field is an auxiliary table index.

= This symbol is used in C++ to connect the definition of a member function with
its prototype in the class definition context.

stNamespace/scInfo
e The value field is zero.

= The index field is the local symbol index of the symbol following the matching
stEnd.

= This symbol indicates the start of the symbols in a namespace definition.

Version Note

Namespace symbols are supported in symbol table format VV3.13 and
greater.

stUsing/scInfo
= The value field is zero.
= The index field is an auxiliary table index.

= This symbol specifies a C++ namespace (or portion thereof) that is being
imported into another scope.

Version Note

Namespace USING directives are supported in symbol table format
V3.13 and greater.

stAlias/scInfo
= The value field is zero.
= The index field is an auxiliary table index.

= This symbol defines an alias for a C++ namespace.
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Version Note

Namespace aliases are supported in symbol table format V3.13 and

greater.

Combinations may be valid in the local symbol table, the external symbol table,
or both. Table 5-8 shows which combinations are valid in which table, based on

the symbol type value and also the storage class value where necessary. Only

combinations previously specified as valid apply where the storage class value is

shown as a wildcard value with the character *'.

Table 5-8: Valid Placement for st/sc Combinations

st/sec Combination

External Symbol Table

Local Symbol Table

SstNil, scx* X
stGlobal, sc* X
stStatic, sc¥*

stParam, sc*

stLocal,scSC’Nl X
stLocal,notscSC’Nl

stLabel, sc* X
stProc, scInfo

stProc, scText

stProc, scUndefined

stBlock, sc*

stEnd, sc*

stMember, sc*

stTypedef, sc*

stFile, sc¥*

stStaticProc, scText
stStaticProc, scInit/scFini X
stConstant, sc* X
stBase, sc*

stVirtBase, sc*

stTag, *

stInter, sc*

stNamespace, sc*

stUsing, sc*

stAlias, *

X

>

MoK X X

Moo X X X X

Moo X X X X X X

Table Notes:

1. scSCNis a section storage class: scData, scSData, scBss, scSBss,
scRConst, scRData, scInit, scFini, scText, scXData, scPData,

scTlsData, scTlsBss
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5.3 Symbol Table Usage

5.3.1 Levels of Symbolic Information

Different levels of symbolic information can be stored with an object file. Compilers
often provide options that allow the user to choose the desired level of symbolic
information for their program. This choice may be influenced by size considerations
and debugging needs. A trade-off exists between the benefit of saving space in the
object file and the amount of information available to tools that consume symbolic
information.

It is also possible to change the amount of symbolic information present in a
program that has already been compiled and linked. Information can be added

or deleted. Two of the most common and useful operations are locally stripping
and fully stripping the symbol tables in executable files. Tools that modify linked
executables, such as instrumentation tools and code optimizers, may rewrite parts
of the symbol table to reflect changes that they made.

5.3.1.1 Compilation Levels

The representation of symbolic information supported by compilers can be broken
down into four levels:
Minimal- Only information required for linking

Limited— Source file and line number information for profiling and limited
debugging (stack-tracing)

Full- Complete debugging information for non-optimized code
Optimized— Debugging information for optimized code
These levels correspond to the system compiler switches -g0 (minimal), -g1

(limited), -g2 (full), and -g3 (optimized). Table 5-9 shows the symbol table
sections that are produced by system compilers at each compilation level.

Table 5-9: Symbol Table Sections Produced at Various Compilation Levels
Compilation Level

Symbol Table Section Minimal Limited Full Optimized
Symbolic header Yes Yes Yes Yes
File Descriptors Yes Yes Yes Yes
External Symbols Yes Yes Yes Yes
External Strings Yes Yes Yes Yes
Procedure Descriptors Yes Yes Yes Yes
Line Numbers No Yes Yes Yes
Relative File Descriptors No No Yes Yes
Optimization Symbols No Partial Yes Yes
Local Symbols No Partial Yes Yes
Local Strings No Partial Yes Yes
Auxiliary Symbols No Partial Yes Yes

The minimal level of symbolic information that may be produced during
compilation includes only the symbol information required for the linker to function
properly. This includes external symbol information that is needed to perform
symbol resolution and relocation.
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If the limited level of symbolic information is requested, line number entries are
generated, as well as external symbol information and procedure descriptors. In
addition, local symbols for procedures (and the corresponding auxiliary symbols,
optimization symbols, and local strings) are present. Limited symbolic information
is sufficient to meet the needs of profiling tools. The information present at this
level is a subset of that required for full debugger support.

If full symbolic information is included, all symbol table sections are produced in
full. This level enables full debugging support with complete type descriptions for
local and external symbols. Optimization is disabled.

Optimized symbolic information is designed to balance the aims of performance
and debugging capabilities. This level supplies the same information as the full
debugging option, but it also allows all compiler optimizations. As a result, some of
the correlation is lost between the source code and the executable program.

On Tru64 UNIX systems, users can choose to compile their programs with any
one of the four levels of symbolic information. The options -go, -g1, and -g2
specify increasing levels of symbolic information. The system compiler’s default is
to produce the minimal level (-g0). Currently, debugging of optimized code (-g3) is
not fully supported. See cc(1) for more details.

5.3.1.2 Locally Stripped Images

Objects can be produced with only global symbolic information stored in the symbol
table. Selection of the -x option causes the linker to create a locally-stripped
object. Reasons for stripping local symbolic information include reducing file

size and limiting the amount of symbolic information available to end users of

an application.

A locally-stripped object is very similar to an object produced with minimal
symbolic information (see Section 5.3.1.1). The difference is the consolidation of file
descriptors, which the linker does only for locally-stripped objects.

In a locally-stripped image, the file descriptors are included solely for the purpose
of identifying source file languages. One file descriptor is present for each source
language involved in the compilation. These file descriptors will have their adr
field set to addressNil indicating the file descriptors cannot be used to identify
text addresses.

Version Note

The preceding use of addressNil is supported in symbol table format
V3.13 and greater. In symbol table formats less than V3.13, the file
descriptor adr value should be ignored.

The procedure descriptor table is present in full but is rearranged to group
procedures by source language. All procedure descriptors for procedures written
in a particular source language are thus contiguous, and they reflect the file
descriptor’s information.

External symbols are also present in a locally-stripped image. The file indices (1£d
field) of the external symbols are updated to identify the generic file descriptor for
the appropriate source language. The index fields are set to zero to indicate that
no type information is available. External symbols with the storage class scNil
are removed. These are debugging symbols that are not normally produced for
minimal symbol tables.

Limited debugging is possible with locally-stripped objects. Because the procedure
descriptors are retained, stack traces are possible. External symbol information
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can also be viewed, and language-dependent handling of symbols (for example,
C++ name demangling) is preserved.

A linked executable file can be locally stripped at any time after its creation
using the command ostrip -x. The output is the same as described above. This
operation may also alter the raw data of the . comment section. See Chapter 7
for details.

5.3.1.3 (Fully) Stripped Images

Executable files may be fully stripped at any time after creation using either the
strip command or the command ostrip -s. Stripping an executable will result
in complete removal of the symbol table, including the symbolic header. The file

header fields £ symptr and £ nsyms are set to zero to indicate that the file has
been stripped.

This operation may also alter the raw data of the . comment section. See Chapter 7
for details.

5.3.2 Source Information

The final executable image for a program bears little resemblance to the source
code files from which it was created. One of the principal functions of the symbol
table is to track the relationship between the two so that the debugger is able to
describe the resulting program in a way that the programmer can recognize.

5.3.2.1 Source Files
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Much of the complication of source information stems from the "include" system.
When a compilation involves several source files, there may be duplication of the
header files included in each source file, or of the source files themselves. To avoid
repetition of header file information in the linked object, the linker merges the
input objects’ included files wherever possible. Compilers mark file descriptors as
mergeable or unmergeable. The linker then examines the input file descriptors and
performs the merge whenever possible.

The linker considers two file descriptors to be mergeable if all of the following
criteria are met:

The file descriptor £Merge bit is set in both (marked as mergeable by compiler).
Files have the same name.

Files are written in the same language.

Files contain the same number of local and auxiliary symbols.

o~ wbd PR

Checksums match.

The checksums match if either:

a. Neither file’s first auxiliary record is a btChecksum.

b. Both files’ first auxiliary record is a bt Checksum and they are identical.

The role of the relative file descriptor (RFD) tables is to track file-relative
information after merging. A relative file descriptor table entry maps the index
of each file at compile time to its index after linking. After linking, local or
auxiliary symbols must be accessed through the RFD table to obtain the updated
file descriptor index. This mechanism is necessary because the indices in the local
symbol table are not updated when files are merged.

Figure 5—4 is an example of the use of the relative file descriptor table.
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Figure 5-4: Relative File Descriptor Table Example

#include a.h #include b h
#include b.h #¥include a.h
dEl’[ c '['ab '
0) dat.c
1)tab.c
File
2)ah Descriptors
3) b.h (merged)
datc —— 0) 0
1)2 Relative
2) 3 File
tab ¢ > o1 Descriptors
13 (per file)
2) 2

For a symbol reference composed of a file index and symbol index (offset within
file), the relative file descriptor table is used as follows:

1. To look up given file index in the RFD table to get the updated file index.

2. To look up new file index in the (merged) file descriptor table to get the base of
symbols for that file.

3. To add symbol index to file’s base to access the symbol entry.

See Section 5.3.7.3 for the representation of relative indices in the auxiliary symbol
table.

5.3.2.2 Line Number Information

For a debugger to be effective, a connection must be made between
high-level-language statements in source files and the executable machine
instructions in object files. Line number entries map executable instructions to
source lines. This mapping allows a debugger to present to a programmer the
line of source code that corresponds to the code being executed. The line number
information is produced by the compiler and should be rewritten if an application
such as an instrumentation tool or an optimizer modifies code.

Line number information is emitted in two forms, one found in the line number
table and one in the optimization symbol table (see Section 5.3.3).

The line number information found in the optimization symbol table is referred
to as ESLI (extended source location information). This is a new form of line
number that augments the information in the line number table. ESLI will only
be present for procedures that cannot be described accurately by entries in the
line number table.
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Version Note

In symbol table formats less than V3.13 line number information is
found exclusively in the line number table.

5.3.2.2.1 The Line Number Table
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Line number information is generated for each source file that contributes
executable code to a program. Within each source file, line numbers are organized
by procedure, in the order of appearance in the file. The line number symbol table
section is produced only when a program is compiled with limited or greater
symbolic information (see Section 5.3.2.2).

Figure 5-5 illustrates the organization of the line number table.

Figure 5-5: Line Number Table

File 1
Froc 1
Froc 2

Froc M
File 2

Proc 1

Froc 2

Froc M
File M
Froc 1

Froc 2
Froc

The order outlined in Figure 5-5 is not guaranteed to match the ordering of file
descriptors or procedure descriptors in those tables. The starting offset for a
procedure’s line table entries can be computed by adding the procedure descriptor’s
cbLineOffset to the containing file descriptor’'s cbLineOffset. The count of
line number entries for a specific procedure can only be determined by finding

the starting offset of the next procedure’s entries in the line number table. This
calculation is illustrated by the proc_pline count () function in the packed line
number programming example in Section 10.1.

Alternate entry points have a starting line number, but they have no specific ending
line number. Procedure descriptors for a procedure and each of its associated
alternate entry points share a common end offset in the line number table. See
Section 5.3.6.7 for more information on alternate entry points.

The line number table has two forms. The "packed" form is used in the object file.
The "expanded" form is a more useful representation to programmers and can be
derived algorithmically (or by API) from the packed form.

The packed line numbers are stored as bytes. Each packed entry within the single
byte value consists of two parts: count and delta. The count is the number of
instructions generated from a source line. The delta is the number of source lines
between the current source line and the previous one that generated executable
instructions.

Figure 5-6 shows how these two values are represented.
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Figure 5-6: Line Number Byte Format
Bit:
K 0

e ——
Delta Count

The four-bit count is interpreted as an unsigned value between 1 and 16 (0 means
1, 1 means 2, and so forth). A zero value would be wasted when no instructions
are generated for a source line and, as a result, no line number entry will exist
for that line.

The four-bit delta is interpreted as a signed value in the range -7 to +7. Code
generators may produce instructions that are not in the same order as the
corresponding source lines. Therefore, the offset to the "next" source line may be a
forwards or backward jump.

Either of these quantities may fall outside the representable range. For a delta
outside the range, an extended format exists (as shown in Figure 5-7). This
extended format can represent delta values in the range -32768 to 32767. Delta
values outside of this range are not representable. This is a permanent restriction
of the packed line number format.

Figure 5-7: Line Number 3-Byte Extended Format

Bit:
Ki 0
11010]0
l‘—\f_—" \_\/__/
Constant Count
Bit:
K 0
o
e
Upper & bits of Delta
Bit:
K 0
.
—

Lower 8 bits of Delta

For a count outside the range, one or more additional entries follow, with the
delta set to zero.
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If both fields are out of range, the delta is handled first. An extended-format delta
representation is followed by an entry with the delta bits set to zero and the
remainder of the count contained in the count value.

The packed line number format can be expanded to produce the
instruction-to-source-line mapping that is needed for debugging. A sample program
is provided in Section 10.1 to illustrate interpretation of packed line numbers.

The following source listing of a file named 1ines.c provides an example that
shows how the compiler assigns line numbers:

1 #include <stdio.h>

2 main ()

3

4 char c;

5

6 printf ("this program just prints input\n");
7 for (;;) {

8 if ((c =fgetc(stdin)) != EOF) break;

9 /* this is a greater than 7-line comment
10 * 1

11 * 2

12 * 3

13 * 4

14 * 5

15 * 6

16 * 7

17 */

18 printf ("$c", c);

19 } /* end for */

20 } /* end main */

The compiler generates line numbers only for the lines 2, 6, 8, 18, and 20; the other
lines are either blank or contain only comments.

Table 5-10 shows the packed entries’ interpretation for each source line.

Table 5-10: Line Number Example

Source Line LINER contents Interpretation

2 03 Delta 0, count 4
6 44 Delta 4, count 5
8 29 Delta 2, count 10
181 88 00 Oa Delta 10, count 9
19 10 Delta 1, count 1
20 14 Delta 1, count 5
Table Note:

1. Extended format (delta is greater than 7 lines).

The compiler generates the following instructions for the example program:

[lines.c: 2] 0x0: ldah gp, 1(tl2)
[lines.c: 2] 0x4: lda gp, -32592(gp)
[lines.c: 2] 0x8: lda sp, -16(sp)
[lines.c: 2] Oxc: stq ra, 0(sp)
[lines.c: 6] 0x10: ldg a0, -32720(gp)
[lines.c: 6] 0x14: ldg tl2, -32728(gp)
[lines.c: 6] 0x18: jsr ra, (tl2), printf
[lines.c: 6] Oxlc: ldah gp, 1l(ra)
[lines.c: 6] 0x20: lda gp, -32620(gp)
[lines.c: 8] 0x24: ldg a0, -32736(gp)
[lines.c: 8] 0x28: ldg tl2, -32744(gp)
[lines.c: 8] Ox2c: jsr ra, (tl2), fgetc
[lines.c: 8] 0x30: ldah gp, 1l(ra)
[lines.c: 8] 0x34: lda gp, -32640(gp)
[lines.c: 8] 0x38: and v0, Oxff, tO
[lines.c: 8] O0x3c: stq v0, 8(sp)
[lines.c: 8] 0x40: XOor t0o, Oxff, to
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[lines.c: 8] 0x44: bne t0, 0x6¢C
[lines.c: 18] 0x48: ldg t2, 8(sp)
[lines.c: 18] Ox4c: sll t2, 0x38, t2
[lines.c: 18] 0x50: sra t2, 0x38, al
[lines.c: 18] 0x54: ldg a0, -32752(gp)
[lines.c: 18] 0x58: ldg tl2, -32728(gp)
[lines.c: 18] O0x5c: jsr ra, (tl2), printf
[lines.c: 18] 0x60: ldah gp, 1l(ra)
[lines.c: 18] 0x64: lda gp, -32688(gp)
[lines.c: 19] 0x68: br zero, 0x24
[lines.c: 20] O0x6c: bis zero, zero, vO0
[lines.c: 20] 0x70: ldg ra, 0(sp)
[lines.c: 20] 0x74: lda sp, 16 (sp)
[lines.c: 20] 0x78: ret zero, (ra), 1
[lines.c: 20] 0x7c: call pal halt

After expanding packed line numbers, the following instruction-to-source mapping
(formatted instruction number.source line number) is produced by odump
for the -1 option:

0. 2 1. 2 2. 2

3. 2 4. 6 5. 6

6. 6 7. 6 8. 6

9. 8 10. 8 11. 8
12. 8 13. 8 14. 8
15. 8 16. 8 17. 8
18. 18 19. 18 20. 18
21. 18 22. 18 23. 18
24. 18 25. 18 26. 19
27. 20 28. 20 29. 20
30. 20 31. 20

Header files included in an object have no associated line numbers recorded in
the symbol table. Line number information for included files containing source
code is not supported by the packed line number format. The following section
describes a more comprehensive line number representation that includes line
number information for header files.

5.3.2.2.2 Extended Source Location Information (ESLI)

Version Note

ESLI is supported for symbol table format V3.13 and greater.

The line number table does not correctly describe optimized code or programs with
untraditional source files, resulting in images that are difficult to debug. Extended
Source Location Information (ESLI) is intended to provide more information to
enable debugging of optimized programs, including PC and line number changes,
file transitions, and line and column ranges. ESLI is essentially a superset of the
older line number table.

ESLI is stored in the optimization symbols section. This information is accessible
on a per-procedure basis from the procedure descriptors. See Section 5.3.3 for more
detail on accessing information in the optimization symbols section.

ESLI is a byte stream that can be interpreted in two modes: data mode or
command mode. Currently, two formats are defined for data mode. These are
designated as "Data Mode 1" and "Data Mode 2". Additional data modes may
be defined as needed.
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Figure 5-8: ESLI Data Mode Bytes
Data Mode 1
Bit:
Fi 0

e
Delta Count
Data Mode 2
Bit:
7 0o 7 0

Delta Count Column #

Data Mode 1 is the initial mode for a procedure’s ESLI. Data Mode 1 is identical to
the packed line number format with the exception of the interpretation of the delta
PC escape value 0x80 (which indicates a switch to command mode).

In Data Mode 2, each entry consists of two bytes. The first byte is identical to
the encoding and interpretation of Data Mode 1. The second byte is an absolute
column number (from 0 to 255), where column number O indicates that column
information is missing or not meaningful for this entry. The escape from Data
Mode 2 to command mode consists of a delta PC escape value set to 0x80 and
column number set to O.

In command mode, each byte is either a command or a command parameter. For
a command byte, the low-order six bits are a command code, and the two high
bits are used as flags, as shown in Figure 5-9. The "mark" flag, if set, announces
that a new state has been established. Several commands may be required to
fully describe a new state. The "resume” flag, if set, indicates the end of command
mode. The next byte following a command with "resume" set will be a data mode
byte. The effective data mode can be changed by SET DATA MODE commands in
command mode, otherwise the data mode that was in effect prior to the escape to
command mode will be resumed. See Table 5-11 for a complete list of commands.

Figure 5-9: ESLI Command Byte

Bit:
7 0

I
Mark TR T
a]; command code
esume

Command parameters are stored in LEB (Little Endian Byte) 128 format. See
Section 1.4.6 for a description of this data representation. PC deltas are always
expressed as machine instruction offsets and must be scaled by the size of a
machine instruction before adding to the current PC. No other deltas need to be
scaled.
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Table 5-11 shows how to interpret the bytes in command mode. These definitions
can be found in the system header file 1inenum.h.

Table 5-11: ESLI Commands

Name Value Parameters by Type

ADD_PC 1 SLEB

ADD LINE 2 SLEB

SET COL 3 LEB

SET FILE 4 LEB

SET DATA MODE 5 LEB

ADD LINE PC 6 SLEB, SLEB

ADD LINE PC_COL 7 SLEB, SLEB, LEB

SET LINE 8 LEB

SET LINE COL 9 LEB, LEB

SEQUENCE_BREAK 10 SLEB

SET EXP 11 LEB

ADD PC Parameter is a signed value to add to the current PC value.

ADD_LINE Parameter is a signed value to add to the current line
number.

SET_COL Parameter is an unsigned value that represents a
new column number. The column number is used to
associate the PC with a particular location within a
source line. Column number parameters use a zero-based
representation that must be adjusted by adding 1.

SET_FILE Parameter is an unsigned value used to switch file context.

SET DATA MODE

ADD LINE_PC

ADD LINE_ PC_COL

SET LINE

SET LINE COL

This command is typically followed by a set_line
command.

Parameter is an unsigned value used to set the data mode
that will be in effect when data mode is resumed. The only
parameter values that are currently accepted are 1 and 2.
Additional data modes may be defined in future releases.

Both parameters are signed values. The first is added to
the line number and the second is added to the PC.

The first two parameters are signed values and the third
is an unsigned value. The first two are added to the line
number and PC respectively. The third is used to set the
column number.

Parameter is an unsigned value that sets the current line
number.

Both parameters are unsigned values. The first represents
the line number and the second represents the column
number.
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SEQUENCE_BREAK Indicates the end of a contiguous sequence of address
descriptions. The value of the parameter is added to
the current address, and the resulting address becomes
the starting address of the next sequence of address
descriptions. The current file and line number continue to
apply as the current values for the new sequence as well.
(These can, however, be changed using the appropriate
commands.)

Version Note

The SEQUENCE BREAK command is supported in
Tru64 UNIX V5.1 and greater for symbol table
format V3.13 and greater.

SET_EXP Set exponent for Tandem edit line numbers. The value of
the parameter is an unsigned integer from 0 through 7
representing a power of 10 from -3 through 4.

Version Note

The SET_EXP command is reserved for use on
Tandem big-endian systems. It is not supported
on Tru64 UNIX.

A tool reading the ESLI must maintain the current PC value, file number, line
number, and column. Taken together, these four values represent the current
"state". Consumers must also keep track of the mode in effect to interpret the data
properly. A sample program is provided in Section 10.2 to illustrate consumption
of ESLI.

Data encoded in ESLI can be represented in tabular format. The PC value and file,
line, and column numbers can be stored as a state table. The following example
shows how to build this state table.

In this example ESLI will record line numbers for a routine that includes text
from a header file.

Source listing for 1inel.c:

/* ESLI example using included source lines */

main() {
char *msg;

msg = (char *)0;
#include "line2.h"

printf ("$s", msg);

H 2 W o300 s wh e

0
1}

Source listing for 1ine2.h

1 msg = (char *)malloc(20);
2 /*

3 *

4 *

5 *

6 *

7 *

8 *

9 *

10 */

11 strcpy(msg, "Hello\n");
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The compiler generates the following instructions for the example program:

main:
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[line2.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.
[linel.

Q
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3]
3]
3]
3]
3]
6]
1]
1]
1]
1]
1]
1]

0x1200011d0:
0x1200011d4:
0x1200011d8:
0x1200011dc:
0x1200011e0:
0x1200011e4:
0x1200011e8:
0x1200011lec:
0x1200011£f0:
0x1200011f4:
0x1200011£8:
0x1200011fc:
0x120001200:
0x120001204:
0x120001208:
0x12000120c:
0x120001210:
0x120001214:
0x120001218:
0x12000121c:
0x120001220:
0x120001224:
0x120001228:
0x12000122c:
0x120001230:
0x120001234:
0x120001238:
0x12000123c:
0x120001240:
0x120001244:

ldah gp, 8192(t1l2)
lda gp, 28336 (gp)
lda sp, -16(sp)

stq ra, 0(sp)

stq s0, 8(sp)

bis zero, zero, sO
bis zero, 0x14, a0
ldg tl2, -32560(gp)
jsr ra, (t1l2)

ldah gp, 8192 (ra)
lda gp, 28300 (gp)
bis zero, v0, sO
bis zero, s0, a0
lda al, -32768(gp)
ldg tl2, -32600(gp)
jsr ra, (t1l2)

ldah gp, 8192 (ra)
lda gp, 28272 (gp)
ldg u zero, 0(sp)

lda a0, -32760(gp)
bis zero, s0, al
ldg tl2, -32552(gp)
jsr ra, (t12)

ldah gp, 8192(gp)
lda gp, 28244 (gp)
bis zero, zero, vO0
ldg ra, 0(sp)

ldg s0, 8(sp)

lda sp, 16 (sp)

ret zero, (ra)

The ESLI and its interpretation for the generated code is shown in the following
table.

Table 5-12: ESLI Example

Command State

(M)ark (R)esume (F)ile (L)ine (C)olumn
ESLI bytes (hex) Mode Code M R PC (hex) F L C
Initial State (from Datal 1200011d0 o0 3 0
PDR)
04 Datal 120001le4 0 3 0
30 Datal 1200011e8 0 6 0
80 Datal Escape
04 01 Cmd set_file(1) 1
48 01 Cmd set_line(1) R 1
05 Datal 120001200 1 1 0
80 Datal Escape
86 0a 06 Cmd add line pc(10,6) M 120001218 1 11 O
04 00 Cmd set_file(0) 0
48 Oa Cmd set_line(10) R 10
06 Datal 120001234 0 10 O
16 Datal 120001250 0 11 0

The handling of alternate entry points differs from the handling of main entry
points. Procedure descriptors for alternate entry points are identified by a
PDR.1nHigh value of -1. If the PC for an instruction maps to an alternate entry
point, the following steps should be taken:
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= Find procedure descriptor for the corresponding main entry. This is
accomplished by searching back in the procedure descriptors until a PDR is
found that is not an alternate entry (PDR.1nHigh is not -1).

= Access the ESLI for the procedure.

e Read the ESLI until the PC value matches the PDR.adr field of the alternate
entry’s procedure descriptor.

5.3.3 Optimization Symbols

Version Note

Optimization symbols are supported for symbol table format VV3.13.
and greater.

The optimization symbols section gives individual producers and consumers the
ability to communicate information about any aspect of the object file, in any
form they choose. New information can be generated at any time with minimal
coordination between all producers and consumers.

The optimization section is organized on a per-procedure basis. Each procedure
descriptor has a pointer to the optimization symbols in the field PDR.iopt. If

no optimization symbols are associated with the procedure, the field contains
ioptNil. Otherwise, it contains the index of the first optimization symbol entry
for this procedure. Consumers should access the optimization symbols through the
procedure descriptors. The optimization section is not present in a locally-stripped
object.

This section consists of a sequence of zero or more Per-Procedure Optimization
Descriptions (PPODs), as shown in Figure 5-10. Each PPOD's internal structure
consists of two parts:

1. A leading sequence of structured entries using a Tag-Length-Value model to
describe subsequent raw data. The structure of the PPOD entry can be found
in Section 5.2.10.

2. The raw data area.
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Figure 5-10: Optimization Symbols Section

HDRFR. chOptOffset +
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<other entry type>
FPPODE END
- extended source PPOD 1
location information
—
_ data
FDE 1optBaze + ]
PLE.1opt TPODE STAMD 7
(file boundary) Zother eniry type> PPOD 2
FPPODE END _

This section has the following alignment requirements:

= Octaword (16-byte) alignment of the beginning of the section.

= Octaword (16-byte) alignment of the beginning of the raw data area.
= Octaword (16-byte) alignment of each PPOD.

Object file producers must produce either an empty optimization symbols section
or a valid one. An empty one has the symbolic header fields cbOptOffset and
ioptMax set to zero. If an optimization section is present, but a particular file
does not contribute to it, the file descriptor field copt is set to zero. In this case,
all procedure descriptors belonging to the file must have their iopt fields set

to ioptNil.

Tools that both read and write object files must consume a valid optimization
symbols section (if present in the input file) and produce an equivalent and valid
section in its output file. If a tool does not know how to process the section contents,
the section must be omitted from the output file. If a tool does know how to process
portions of the optimization symbols, those portions may be modified and the rest
should be removed. The linker concatenates input optimization symbols sections
into one output section without reading or modifying any of the entries.

The format and flexible nature of this section are similar by design to the
.comment section. The structures are the same size and contain the same fields
(with different names), and the rules of navigation are the same. The primary
difference is that the optimization section contains procedure-specific information;
whereas, the comment section contains object-specific information.
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5.3.4 Run-Time Information

The symbol table contains information that debuggers must interpret to find
symbols at run time. This section describes the information that the static symbol
table structures provides. Algorithms for determining run-time symbol addresses
are included.

5.3.4.1 Procedure Addresses

The following pseudocode describes an algorithm for determining the procedure
start address:

if (HDRR.vstamp >= 0x30D || PDR.isym == isymNil)
return (PDR.adr)
else
foreach FDR in HDRR
foreach PDR in FDR
if PDR matches

if (FDR.csym == 0) /* Use external symbol */
return (EXTR[PDR.isym].asym.value)
else /* Use local symbol */

return (SYMR[FDR.isymbase + PDR.isym] .value)

If local symbol information is present for the given PDR, the isym field identifies
the local symbol table entry that contains the start address of the procedure. If no
local symbol information is present, the isym field identifies the external symbol
table entry containing the start address of the procedure. If no symbol information
is present for the PDR, the isym field is set to isymNil and the adr field will
contain a reliable start address.

Version Note

The PDR.adr field is reliably updated by the linker for symbol table
format V3.13. The preceding algorithm is recommended for determining
procedure addresses in symbol table formats less than V3.13.

5.3.4.2 Stack Frames

5-48

A stack frame is a run-time memory structure that is created whenever a procedure
is called. The Calling Standard for Alpha Systems specifies the stack frame format
and related code requirements. This section explains how to interpret procedure
descriptor fields related to the stack frame.

Two types of stack frames are supported: fixed-size frames and variable-size
frames. The variable frame format is used for procedures that dynamically allocate
memory and for those with very large frames. Figure 5-11 shows a fixed-size
frame and Figure 5-12 shows a variable-sized frame.

From the procedure descriptor, you can determine which type of stack frame the
procedure has. The field PDR.framereg stores the frame pointer register number.
If this field has a value of 30 ($sp), the stack frame is a fixed-size frame. If it has a
value of 15 ($fp), the stack frame is a variable-size frame.
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Figure 5-11: Fixed-Size Stack Frame
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Figure 5-12: Variable-Size Stack Frame
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For both types of stack frames, the value of PDR.frameof fset is the size of the
fixed part of the stack frame. In the case of a fixed-size frame, it is the entire frame
size. For a variable-sized frame, the entire frame size cannot be determined from
the symbol table. The code may dynamically increase and decrease the size of the
frame multiple times during procedure execution.

The virtual frame pointer represents the contents of the frame pointer register
at procedure entry, prior to prologue execution. The (real) frame pointer is the
contents of the frame pointer register after prologue execution. The difference
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between the virtual and real frame pointer values is the fixed frame size, which is
subtracted from the $sp contents during the procedure prologue. Note that stack
offsets recorded in the symbol table are relative to the virtual frame pointer, not
the real value used at run time.

The contents of the frame pointer register at are used at run time as the base
address for accessing data, such as parameters and local variables, on the stack.
See Section 5.3.4.3 for details.

5.3.4.3 Local Symbol Addresses

Local variables and parameters may be stored in registers or on the stack. Those
stored in registers (identified by a storage class of scRegister) do not have
addresses. For local variables and parameters with addresses, this section explains
how to calculate their run-time locations from the symbol table information.

To calculate the run-time address for a local variable (stLocal) based on its
symbol table value:

Frame pointer - PDR.localoff + SYMR.value

To calculate the run-time address for a parameter (stParam) based on its symbol
table value:

Frame pointer - argument home area size + SYMR.value

The argument home area is a portion of the stack frame designated for parameter
storage. See Figure 5-11 for an illustration. For historical reasons, the size of
this area is always 48 bytes.

The calculations above must be performed at run time when the actual frame
pointer value is known. Note that the value becomes valid only after the procedure
prologue has executed.

To calculate the locations based on static information, convert the symbol’s value to
an offset from the real frame pointer:

Local:

PDR. frameoffset - PDR.localoff + SYMR.value
Parameter:

PDR. frameoffset - 48 + SYMR.value

The resulting offsets are always positive values because the frame pointer contains
the address of the lowest memory in the fixed part of the stack frame at run time.

5.3.4.4 Uplevel Links

Version Note

Uplevel links are supported in symbol table format V3.13 and greater.

An uplevel link is the real frame pointer of an ancestor of a nested routine. The
routine nesting may be a feature of the language (such as Pascal), or the nesting
may occur in optimized code which has been decomposed for parallel execution into
smaller routines. Uplevel links provide debuggers a method of finding all local
symbols associated with the ancestor routine.

When a procedure is passed a static link, that static link will be represented within
the scope of the procedure definition as a local automatic symbol with a special
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name beginning with " StaticLink.". The lifetime of this symbol begins after
the procedure prologue has been executed.

The static link symbol will occur between the procedure’s parameter definitions
and the first stBlock symbol.

The full name of the symbol will be " StaticLink. " followed by a positive
decimal integer with no leading zeros. This integer value identifies the number of
levels up the ancestor tree the static link points to.

For example, if the name is " StaticLink.3" it will contain the static link
of the procedure in which it is defined, and that procedure’s static link points
to a stack frame that is three levels up in the procedure’s ancestor tree, the
great-grandfather of the procedure.

Figure 5-13: Representation of Uplevel Reference
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and (procedure)
high memory

end (block)

end (procedure)

Debuggers of Tru64 UNIX object files need to use the uplevel link information to
determine which symbols are visible at a location in the program and to compute
the addresses of local symbols in ancestor routines. When the debugger needs the
current value or address of a name that might be defined as an uplevel reference,
two separate actions may be required: finding the procedure that defines the
currently visible instance of that name, and finding the address of the currently
visible instance of that name. If only type information is required, finding the
procedure that defines the name may be sufficient.

Finding the defining procedure is accomplished by repeatedly looking up the
name in the local symbol table of a chain of procedures that extends from the
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current procedure through its chain of ancestors until either the name is found in
a procedure or the end of the chain of ancestors is reached without finding the
name. If this search terminates without finding the name, the debugger should
conclude that the name is not visible by uplevel reference at the current location in
the program.

When searching for the desired procedure, the debugger should count how many
levels in the ancestor chain were traversed before finding the name. If zero levels
were traversed, the name is defined within the current procedure and is not an
uplevel reference. The number of levels traversed is assumed to be in the variable
LevelsToGo in the algorithm below.

Finding the address for the name involves locating static link values and
dereferencing them with appropriate offsets. Basically, while the number of levels
to be traversed is greater than zero, find the static link symbol for the current level
and obtain its value. Finally, add the desired symbol’s offset from the real frame
pointer to the final static link value.

The recommended algorithm for finding the address is as follows:

LevelsToGo = <from name lookup aboves
NewProc = CurrentProcedure
NewFrame = FramePointerValue (CurrentProcedure)

Failed = false
while (LevelsToGo > 0 && !Failed)
StaticLink = FindStaticLinkSym (NewProc)
if (StaticLink == NULL)
Failed = true
else
NewFrame = * (NewFrame + StaticLink->symbol.offset)
Levels = StaticLinkLevels (StaticLink)
LevelsToGo = LevelsToGo - Levels
for (; Levels > 0; Levels--
NewProc = NewProc->proc.parent

if Failed is true after executing this algorithm, required information about static
links is missing in the symbol table, and an error has occurred. If LevelsToGo
ends up less than zero, the optimizer’s static link optimization has eliminated

a static link level that would be needed to compute the address of the name. It

is recommended that debuggers inform the user that optimization prevents the
debugger from computing the address of the name.

If Failed is false and LevelsToGo is equal to zero, the address for the currently
visible instance of the name is NewFrame plus the offset of the name with respect
to the real frame pointer for NewProc.

The function StaticLinkLevels returns the integer at the end of the name for
the indicated static link symbol.

5.3.4.5 Finding Thread Local Storage (TLS) Symbols
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This section explains how to interpret symbolic information for TLS symbols
(identified by a storage class of scTlsData or scT1sBss). See Section 3.3.9 or the
Programmer’s Guide for general information on TLS.

A TLS symbol’s value contains its offset from the start of the TLS region for that
object. This offset can be used at process execution time to determine the address
of the TLS symbol for a particular thread.

A debugger can calculate TLS symbol addresses by looking up the address of the
TLS region using run-time structures and adding the offset of the TLS symbol to
that address. The following formula can be used to calculate TLS symbol addresses.

TLS sym address = *(TEB.TSD + _ tlskey) + SYMR.value
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A detailed description of this formula follows:

Get the address of the Thread Environment Block (TEB).

2. Get the address of the Thread Specific Data (TSD) array from the TEB
structure.

3. Get the offset of the TLS pointer in the TSD array.

This offset is normally stored in a .1ita or .got entry. This value should be
accessed using the symbol _ tlskey . In spite of the fact that  tlskeyisa
label symbol, no ampersand is used in this context because the value that the
label points to is being retrieved. The address of  t1skey will need to be
adjusted by the address mapping displacement in the same manner that the
debugger adjusts addresses of text and data symbols.

For static executables, the .1ita entry contains the constant offset (2048).
This offset identifies the first and only TSD slot (256) that will be allocated
for the TLS pointer.

For shared objects, the .got entry labeled by  tlskey is initially O,
indicating that the TSD slot has not been allocated yet. After the object’s
initialization routines have run, a TSD key will be allocated and the .got
entry will contain its offset.

4. Get the TLS pointer value. The TLS pointer is a 64-bit address set to the
start of the TLS Region.

5. Calculate the address of the TLS symbol by adding the offset of the TLS
symbol to the TLS pointer value.

TLS common symbols (scT1sCommon) should not occur in linked objects, so
debuggers should not need to support them. Executables and shared libraries can
only reference TLS symbols that they define, so successfully linked objects should
have not TLS undefined or TLS common symbols.

5.3.5 Profile Feedback Data

Version Note

Profile feedback data is supported in symbol table format V3.13 and
greater.

Profile feedback data is stored in entries in the optimization symbols table with
tag type PPODE_PROFILE INFO. The data contained in this section is intended
for Compagq internal use only. It contains execution profiling feedback used by

compilers and the om utility.

Profile feedback data contains relative file descriptor and local symbol table
indexes. If an object tool removes, adds, or rearranges relative file descriptors or
local symbol table entries it must also remove all optimization symbol table entries
including the profile feedback data.

5.3.6 Scopes

From a user-program’s point of view, an identifer’'s scope determines its visibility
in different parts of the program. Programming languages provide facilities

for declaring and defining names of procedures, variables and other program
components inside various scoping levels. This section briefly discusses the concept
of scope and then explains how it is represented in the symbol table. References
are made to structures in the auxiliary symbol table; see Section 5.3.7.3 for details.
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Generally speaking, the four main scoping levels in a program are block scope,
procedure scope, file scope, and program scope. Most programming languages
have constructs to implement at least these scoping levels. Figure 5-14 shows
the hierarchy of these scopes.

Figure 5-14: Basic Scopes
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Names with block scope can only be referenced inside the declaring block. Blocks
are delimited by begin and end markers, the syntax of which varies among
languages.

Names with procedure scope are only recognized inside their enclosing subroutines.
For instance, the names of formal parameters and local variables declared inside a
procedure are accessible only to that procedure’s executable statements.

Names with file scope can be referenced by any instruction within the file where
they are declared. A file can be composed of procedures and data external to any
procedure. Both external data names and procedure names can have file scope
or program scope. Note that in a compilation involving only a single file or in a
compilation for a programming language with no separate-compilation facilities,
file scope and program scope are equivalent.

Names with program scope are visible everywhere in the program, even when
the executable program is built from many source and header files. The linker
must resolve these names or pass them to the dynamic loader to resolve. See
Section 5.3.10 for more information about symbol resolution.

In the symbol table, procedure scope, file scope, and program scope correspond to
local, static, and global symbols, respectively. Block scope names are also local
symbols. Local and static symbols appear in the local symbol table, and global
symbols are in the external symbol table.

5.3.6.1 Procedure Scope

Although procedure symbols can only be global or static (with symbol types stProc
and stStaticProc, respectively), procedure entries appear in the local symbol
table to identify the containing scope of their local data. The set of symbols
appearing in the local symbol table to describe a procedure scope and their
associated auxiliary entries is shown in Figure 5-15. Global procedures also have

5-54  Symbol Table



entries in the external symbol table. As illustrated, the indices of these external
entries point to the scoping entries in the local symbol table.

Note

In this chapter, all diagrams of symbol table representations use arrows
to show that one entry contains an index to another entry. For external
and local symbol table entries, the index used is contained in the index
field. For auxiliary symbols, the isym or RNDXR field is the index used.

Any exceptions to this general rule are noted in the diagrams.

Figure 5-15: Procedure Representation
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A special instance of a procedure definition occurs for a procedure with no text.
This type of procedure occurs only in the local symbol table and is very similar
to the representation of other procedures. It is generally used for procedures
that have been optimized away that still need to be represented for debugging or
profiling information.
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Figure 5-16: Procedure with No Text
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A procedure with no code can contain only nested procedures that also have no
code associated with them. If a procedure with no code does not contain any
nested procedures, the stBlock/stEnd symbol pair can be omitted from the
representation.

The stProc symbol included in this representation is distinguished from similar
stProc symbols by its value field that is set to addressNil (-1).

Version Note

Procedures with no code are supported in symbol table format V3.13
and greater.

5.3.6.2 File Scope

As in the case of procedures, file name entries appear in the local symbol table to
define the file’s scope. This representation is shown in Figure 5-17. Note that file
symbols appear in the local symbol table only.

Figure 5-17: File Representation
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5.3.6.3 Block Scope

In general, the local symbol table denotes scoping levels with stBlock and stEnd
pairs, as shown in Figure 5-18.

All symbols contained between these two entries belong to the scope they describe.
Nested blocks are possible, and stEnd symbols match the most recent occurrences
of stBlock (or other opening symbol entries such as stProc or stTag).

Figure 5-18: Block Representation
Local Symbols Avpiliary Entries
begin (block)
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<next symbol>

Block scopes occur in many languages. In C, they take the form of lexical blocks.
In C++, declarations can occur anywhere in the code. In Pascal and Ada, nested
procedures are possible, with local variables at any or all levels.

5.3.6.4 Namespaces (C++)

Version Note

Namespaces are supported in symbol table format VV3.13 and greater.

A C++ namespace is a mechanism that allows the partitioning of the program
global name space. This partitioning is intended to reduce name clashing and
provide greater program manageability to C++ developers.
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Figure 5-19: C++ Namespace Representation
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A namespace definition may exist only at the global scope or within another
namespace. The namespace representation in Figure 5-19 shows a single
contribution to a namespace. This representation may be replicated many times in
the symbol table for a single namespace. A namespace definition may be continued
within the same file or over multiple source files.

A single namespace contribution that spans multiple source files is represented as
if it were contained entirely within the source file in which it began.

Namespaces may be aliased, allowing a single namespace to be referred to by
multiple names. Namespace components may also be referenced without their
namespace qualification if they are included within a scope by a using directive

or using declaration. The representations of namespace aliases, using directives,
and using declarations are shown in Figure 5-19. Namespace definitions,
namespace component declarations, namespace aliases, using directives, and using
declarations occur only in the local symbol table. Namespace component definitions
may occur in the local or external symbol table.
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5.3.6.4.1 Namespace Components

The components of a namespace are represented in two parts: declarations and
definitions. Namespace components that do not require definition must be declared
in the namespace definition. Namespace components that are referenced by a using
declaration must be declared in the namespace definition. All other namespace
component declarations may be omitted from the namespace definition.

Namespace component names are mangled only as needed. Function and data
definitions have mangled name definitions in the local or external symbol table.
These entries are mangled for type-safe linkage and as a method of matching
components with the namespaces to which they belong. Names of component
declarations within a namespace definition may or may not be mangled. They are
not required to include the namespace name in their mangled form.

Empty namespace contributions can be omitted, but at least one instance of a
namespace definition must occur somewhere in the local symbol table. This
definition is required because name mangling rules do not distinguish namespace
component definitions from class member definitions.

5.3.6.4.2 Namespace Aliases

Namespace aliases can occur in namespace, file, procedure, or block scope in
the local symbol table. The index value for the stAlias entry is an auxiliary
table index. The auxiliary entry is a RNDXR record containing the local symbol
table index of the stNamespace symbol in the first instance of a namespace
definition within a compilation unit. For an alias of an alias, the RNDXR record
can also contain the index of another stAlias symbol in the local symbol table.
Section 9.2.5 provides an example of a namespace alias.

The stAlias symbol type may be used in future versions of the symbol table format
as a general purpose symbol alias representation. The semantic interpretation of
the stAlias symbol depends on the type of the symbol it aliases.

5.3.6.4.3 Unnamed Namespace

An unnamed namespace can be declared at the global scope or within another
namespace. An unnamed namespace is unique within a compilation unit. Multiple
contributions to a unique unnamed namespace are not allowed. Unnamed
namespace contributions are included in the non-mergeable portion of a C++
header file.

Unnamed namespace components are subject to the same rules as named
namespaces for declarations and definitions.

The stNamespace symbol for an unnamed namespace has a compiler generated
name starting with __ N1. This same name is used to identify the unnamed
namespace in the mangled names of components of that namespace. (See the
unnamed namespace example in Section 9.2.4.)

5.3.6.4.4 Usage of Namespaces

A C++ using directive or a using declaration is represented by a symbol of type
stUsing. It may occur in any scope in the local symbol table. The index value for
the stUsing entry is an auxiliary table index. If the stUsing entry represents

a using declaration for a single namespace component, the auxiliary entry is a
RNDXR record containing the local symbol table index of a namespace component
declaration. If the stUsing entry represents a using directive, its RNDXR auxiliary
contains the local symbol table index of the stNamespace symbol in the first
definition of that namespace in the compilation unit.
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A using directive for a namespace alias is represented with a RNDXR auxiliary that
directly references the aliased namespace. This representation contains no record
of the alias referenced by the using directive.

Names are not required for stUsing entries, but they can be set to match the
namespace or namespace component to which they refer.

Namespace components that are referenced by an stUsing symbol must be
declared in the namespace definition.

Section 9.2.3 provides an example of namespace definitions and uses.

5.3.6.5 Exception Handling Blocks (C++)

In C++, a special scoping mechanism is introduced to expand user-defined
exception-handling capabilities. Exception handlers are defined to "catch”
exceptions that are "thrown" by other functions. The symbol table must contain
sufficient information to recognize the scope of a handler. The compiler generates
special symbols to identify where exception handlers are valid.

Figure 5-20: C++ Exception Handler Representation
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5.3.6.6 Fortran Common Blocks

Fortran common blocks constitute another scoping level. Fortran uses common
blocks as a way of specifying data that is global or shared between program units.
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A common block is global storage that can be named, allocated, accessed, and used
by various subroutines. The block can be named or unnamed; unnamed blocks are
known as "blank commons". Internal to the symbol table, blank commons are
named BLNK .

Figure 5-21 shows the symbolic representation of Fortran common blocks.

Figure 5-21: Fortran Common Block Representation
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Because a Fortran common is represented as a synthesized file, it also has an entry
in the file descriptor table. Furthermore, a global symbol with the same name is
also present in the external symbol table.

An example of a Fortran common block can be found in Section 9.3.1.

5.3.6.7 Alternate Entry Points

Fortran also has a facility for creating alternate entry points in procedures. An
alternate entry point is represented using an stProc/scText symbol. In the
procedure descriptor table, an alternate entry point is identified by a 1nHigh
field with a value of -1. Procedure descriptors for alternate entry points follow the
procedure descriptor for the primary entry point. In the local symbol table, an
alternate entry point has an entry inside the scope of the procedure’s primary entry.

The representation of a procedure with an alternate entry point is shown in
Figure 5-22

Version Note

The stBlock symbol that follows the alternate entry’s st Proc symbol
in Figure 5-22 is supported in symbol table format VV3.13 and greater.

Symbol Table 5-61



In symbol table formats less than V3.13 alternate entries do not have a
start block symbol, and their prologue size is unknown.

Figure 5-22: Alternate Entry Point Representation
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An example of Fortran alternate entries can be found in Section 9.3.2.

5.3.7 Data Types in the Symbol Table

A data element’s type dictates its size and interpretation in a programming
environment. One of the symbol table’s most important tasks is to represent data
types in a compact and complete manner.

Type information is stored in the local and auxiliary symbol tables. This section
provides guidelines for understanding the type information plus specific examples
for depicting a range of types.

5.3.7.1 Basic Types

All programming languages have a set of simple types that are built into the
language and from which other data types can be derived. Examples of simple
types are integer, character, and floating point. Languages also provide constructs
for creating user-defined types based on the simple types. For example, a C++ class
can be built using any simple type or previously defined user-defined type and the
language facility for declaring classes.

Similarly, a basic type in the symbol table is a building block from which each
language constructs its type information. Basic type (bt) values directly represent
many of the simple types for supported languages; for instance, the value btChar
indicates a character. Other bt values represent language constructs for building
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aggregate types; a value of bt Struct may be used, for example, to represent a
C structure or Pascal record.

The symbol table uses approximately forty basic type values. The interpretation of
some of these values is language dependent. See Table 5-5 for a list of all values.

5.3.7.2 Type Qualifiers

Type qualifiers can be applied to basic types to create other data types. Examples

are "pointer to", "array of", and "function returning”. Generally the number and
order of type qualifiers is unrestricted.

See Table 5-6 for a list of type qualifiers and their meanings.

5.3.7.3 Interpreting Type Descriptions in the Auxiliary Table

This section explains in detail the encoding of type descriptions in the symbol
table. To fully describe the type of a symbol, the auxiliary symbol table must be
created and referenced. Compilation with full symbolic information (-g option on
system compilers) results in the creation of this table.

To correctly decode the type information, proceed sequentially, beginning with
the symbol table entry. Several fields may be required from other symbol table
structures:

= symbol type (st)
= storage class (sc)
= index (SYMR.index)
= value (SYMR.value)

= source language (FDR.lang)

The first step is to determine whether the symbol contains an index of an auxiliary
table description.

Table 5-13: Symbols with Auxiliary Type Descriptions

Symbol Type Storage Class Conditions AUXU Index Field
stGlobal Any None index
stStatic Any None index
stParam Any None index
stLocal Any Local symbol table index
stProc Any Local symbol table index
stBlock scInfo Inside an scvariant block value
stMember scInfo None index
stTypedef scInfo None index
stStaticProc Any Local symbol table index
stConstant Any None index
stBase scInfo None index
stVirtBase scInfo None index
stTag scInfo None index
stInter scInfo None index
stNamespace scInfo None index

Symbol Table 5-63



Table 5-13: Symbols with Auxiliary Type Descriptions (cont.)

Symbol Type Storage Class Conditions AUXU Index Field
stUsing scInfo None index
stAlias scInfo None index

If the index does represent a record in the auxiliary symbol table, the interpretation
of the first auxiliary entry (AUXU) depends on the type of the symbol:

= If the symbol's type is stProc or stStaticProc and the symbol is a local
symbol, the indexed AUXU is an isym (set to indexNil for alternate entry
points) and the second AUXU is a TIR. External procedure symbols do not have
descriptions in the auxiliary table.

= If the symbol's type is stInter, stAlias, Or stUsing, the indexed AUXU is an
RNDXR and the type description does not contain a TIR.

= If the symbol is an stBlock symbol inside an scvariant block, the symbol
entry’s value field is an index into the auxiliary table. This special case is
the only one where the value is used as an auxiliary symbol pointer. In all
other cases, it is the index field that potentially indexes the auxiliary table
type description.

e Otherwise, the indexed AUXU is a TIR.

The next task is to examine the contents of the TIR. The TIR contains constants
representing the basic type of the symbol and up to six type qualifiers, labeled
tg0-tg5. If a type has more than one qualifier, they are ordered from lowest to
highest. Lower qualifiers are applied to the basic type before higher qualifiers.
All unused tgq fields are set to tgqNil, and no tgNil fields are present before or
between other type qualifiers.

In addition to the basic type and type qualifiers, the TIR contains two flags: an
fBitfield flag to mark whether the size of the type is explicitly recorded, and a
continued flag to indicate that the type description is continued in another TIR.
If fBitfield is set, the TIR is immediately followed by a width entry. If more
than six type qualifiers are required for the current definition, the description is
continued, and the continued flag is set. If exactly six type qualifiers are needed,
all six fields are used and the continued flag is cleared.

To illustrate, consider the type "array of pointers to integers”. The basic type is
"integer" and has two qualifiers, "array of" and "pointer to". Each element of the
array is a "pointer to integer". Therefore, the qualifier "pointer to" must be applied
first to the basic type "integer". In this example, the qualifier "pointer to" is lower
than the qualifier "array of". The contents of the TIR are as follows:

bt: btInt

tg0: tgPtr

tgl: tgArray

tg2: tgNil

tg3: tgNil

tg4: tgNil

tg5: tgNil

continued: 0

fBitfield: 0

The contents of the TIR dictate how to interpret any subsequent records. The
records appear in a prescribed order:

= |Ifthe £Bitfield flag is set, a width record follows the TIR.

= If the basic type is bt Picture, the next four records contain integer values:
the string table index of the picture string, the length, precision and scale.

= If the basic type is bt ScaledBin, the next three records contain integer values:
a basic type, the precision and scale.
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= If the basic type field is bt Struct, btUnion, btEnum, btClass, btIndirect,
btSet, btTypedef, btRange, btRange 64, btDecimal, btFixedBin, or
btProc, the next record is an RNDXR.

= If the rfd field of the RNDXR contains the value ST RFDESCAPE, the next record
is an isym.

= If the basic type is btRange, the next two records are dnLow and dnHigh.

= If the basic type is btRange 64, the next two records are dnLow records and
the two after that are dnHigh records.

= If the basic type is btDecimal or btFixedBin, the next two records contain
integer values: the precision and scale.

= For each array type qualifier in the TIR, the following symbols occur:
— An RNDXR, again possibly followed by an isym

— Either one or two dnLow records (depending on whether the array is
tgArray Or tgArray 64)

— Either one or two dnHigh records (depending on whether the array is
tgArray Or tgArray 64)

— Either one or two width records (depending on whether the array is
tgArray Or tgArray 64)

= |If the continued flag is set, the next record is another TIR

For a type description containing more than one TIR, the fields of all TIR records
are interpreted in the same way. When a TIR is reached with the flag cleared and
any records associated with that TIR have been decoded, the type description is
complete.

As an example, consider an array of structures with the fBitfield flag set. A
total of seven auxiliary records can be used to describe the type:

The TIR with a basic type of bt Struct and with tq0 set to tgArray.

A width record. The size of the basic type.

A RNDXR record. A pointer to the structure definition in the local symbol table.

Ea

A RNDXR record. A pointer to the array index type description elsewhere in the
auxiliary table.

o

A dnlow record. The lower bound of the array’s range.
A dnhigh record. The upper bound of the array’s range.
7. Awidth record. The distance in bits between each element in the array.

If the continued flag of the TIR is cleared, the width record corresponding to the
array qualifier is the final Auxu for this type description.

For another view of this process, see Figure 5-23. Each box represents one
auxiliary entry belonging to the symbol’s type description. Using the flowchart, an
ordered list of entries can be assembled.
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Figure 5-23: Auxiliary Table Interpretation
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Figure 5-24: Auxiliary Table "ti" Interpretation
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Figure 5-25: Auxiliary Table "bt vals" Interpretation
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Figure 5-26: Auxiliary Table "arrays" Interpretation
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Figure 5-27: Auxiliary Table Range Interpretation
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Figure 5-28: Auxiliary Table RNDXR Interpretation
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The final step is to decode the RNDXR records. The basic types that are followed by
RNDXR records require reference to another local or auxiliary symbol to complete
the type description. Interpret the RNDXR records as follows:

= If the basic type is btStruct,btUnion, btEnum, btClass, btProc, Or
btTypedef, the index field of the RNDXR points into the local symbol table.
The specified local symbol is the start of the definition of the structure, union,
enumeration, class, or user-defined type. For btProc, the referenced local
symbol is the start of the set of symbols defining the procedure’s signature.
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= If the basic type is bt Set, the RNDXR points into the auxiliary symbol table.
The specified record is the start of the description of the type of each element in
the set.

= If the basic type is bt Indirect, the RNDXR points into the auxiliary symbol
table. The specified auxiliary record is the start of the description of the
referenced type.

= If the basic type is btRange, the RNDXR points into the auxiliary symbol table.
The specified auxiliary record is the start of the description of the type being
subranged.

= If the basic type is bt FixedBin, the rfd field of the RNDXR contains a Boolean
value. If r£d is true, the base is decimal; if r£d is false, the base is binary.
The index field represents a type code.

= If the basic type is btDecimal, the r£d field of the RNDXR contains the value
1 for 4-bit digits (packed decimal) or 2 for 8-bit digits (zoned decimal). The
index field represents a type code.

Additionally, the index of every RNDXR used as a pointer must be mapped through
the relative file descriptor table (see Section 5.3.2.1), if the table exists. The rfd
field of the record controls this mapping. The following algorithm can be used to
locate the symbol referenced by the relative index record:
if (RNDXR.rfd == ST RFDESCAPE)

RFD = (++AUXU) .isym
else

RFD = RNDXR.rfd
if (HDRR.crfd) /* RFD table exists */

IFD = (current FDR’s RFD table) [RFD]

else
IFD = RFD

if (SYMR needed)
SYMBASE = FDR[IFD].isymBase
SYMR = SYMBASE [RNDXR. index]
else if (AUXU needed)
AUXBASE = FDR[IFD] .iauxBase
AUXU = AUXBASE [RNDXR. index]

5.3.8 Individual Type Representations

This section provides sketches of type representations in the local and auxiliary
symbol tables. The connections between the two tables is depicted for each type.
This form of representation is only possible when full symbolic information is
present.

Note that external symbols as well as local symbols reference the auxiliary table,
although the examples in this chapter use local symbols only.

5.3.8.1 Pointer Type

A pointer is a variable containing the address of another variable. A pointer

is represented by a tgPtr type qualifier modifying another type. A pointer is
represented by a single symbol with an entry in the auxiliary table, as shown in
Figure 5-29.

Note that if the pointer referenced a user-defined type, such as a class or structure,
the TIR would be followed by an RNDXR (and possibly an isym).
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Figure 5-29: Pointer Representation
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The combination of type qualifiers tgFar and tgPtr are used to represent a short
(32-bit) pointer. This pointer type is used with the XTASO emulation.

5.3.8.2 Array Type

An array is a list of elements that all have the same type. Arrays may be fixed size
and allocated at compile time or dynamically sized and allocated at run time. This
section describes the fixed-size array symbol table representation. For information
on Fortran dynamic arrays, see Section 5.3.8.9. For conformant arrays in Pascal
and Ada, see Section 5.3.8.10.

An array is represented by a tgArray or tgArray 64 type qualifier applied to
another type. This second type describes the type of all elements in the array. In
the local or external symbol table, a single entry represents an array. Figure 5-30
shows the symbol table description for an array.

Figure 5-30: Array Representation
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Note that for an array of elements of a user-defined type, such as a class or
structure, another RNDXR (and possibly an isym) would be inserted between the
TIR and the RNDXR describing the subscript type.
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If an array has multiple dimensions, the symbols describing the dimension appear
in the order of innermost to outermost. For example, the following declaration
produces a TIR with the tgArray qualifier followed by the RNDXR and range
description for 0-1 followed by the entries for the dimension 0-99:

float floattable[100] [2]
Some arrays may have dimensions too large to represent in the 32-bit format
shown in Figure 5-30. Such arrays are represented using a 64-bit format in which

two auxiliary entries are used for the dimension bounds and size. Figure 5-31
illustrates the 64-bit representation.

Version Note

The 64-bit representation of arrays is supported in symbol table format
V3.13 and greater.

Figure 5-31: 64-Bit Array Representation
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5.3.8.3 Structure, Union, and Enumerated Types

This section applies to data structures in languages other than C++. For the C++
structure, union, or enumerated type representation, see Section 5.3.8.6.

Structures, unions, and enumerated types have a common representation. All
three are identified using "tags" and contain zero or more fields. In the symbol
table, the tag is the name associated with the starting stBlock symbol for the
structure’s set of local symbols. Note that it may be empty because the tag is
optional. Symbols for fields follow. The definition is completed by a block-end
symbol matching the block-start symbol.
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Figure 5-32 contains a graphical depiction of this set of symbols.

Figure 5-32: Structure Representation
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The structure members have auxiliary table indices pointing to their type
descriptions.

Untagged structures and unions are represented with a NULL tag name.
Unnamed structures can be embedded in other structures and are represented as a
NULL-named member of the outer structure. See Section 9.1.1 for an example of
an unnamed structure.

Version Note

Unnamed member structures are supported in symbol table format
V3.13 and greater. As of Tru64 UNIX V5.1 dbx will display structures
with unnamed member structures, but neither dbx nor ladebug provide
specific access to members of unnamed member structures.

A structure can contain a field that is a pointer to itself. This field is represented by
an stMember symbol with an auxiliary table entry that references the beginning of
the structure’s block of local symbols, as shown in Figure 5-33.
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Figure 5-33: Recursive Structure Representation

Local Symbols

T‘-

Auxiliary Entries

tag name (block)

o

<membersz

recursive member

end (block)

<next symbol=

bt=
btStruct ®

1NTIR 2} RNDXR

Type descriptions

P P U P P e e R

P P Pl P P P P 1 P P P

AN
™
/ EEEPU ®

*

struct variable

* could be external

btStruct
ITIR 2)RNDXR

When a field within a structure is itself a structure, the compiler may choose to
generate the structure definitions either sequentially or embedded, as shown in

Figure 5-

34.

Figure 5-34: Nested Structure Representation
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The following declaration might result in the nested structure representation:

struct line
stru

{
ct point {
float x, y;

}opl, p2;
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5.3.8.4 Typedef Type

Most languages allow programmers to choose alternate names, or aliases, for data
types. The alias created by such a facility (such as C’s typedef) is represented as a
single local symbol entry that has a pointer to its type description in the auxiliary
table. The auxiliary entry contains a pointer to the definition of the type name, as

shown in Figure 5-35.

Figure 5-35: Typedef Representation
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5.3.8.5 Function Pointer Type

Version Note

The following function pointer representation is the preferred
representation for symbol table format VV3.13 and greater.

Languages such as C and C++, which allow pointers to functions, represent the
type of the function pointer using a special stProc/scInfo block describing the
parameters and return value for the function as shown in Figure 5-36.
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Figure 5-36: Function Pointer Representation
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The stProc/scInfo entry has its value set to -2, which distinguishes it from
similar entries used to represent procedures with no text and C++ member
functions. The stProc/scInfo and stEnd/scInfo entries have null names in
the function pointer representation. The parameters are optional and may or
may not be named.

Version Note

For symbol table formats less than V3.13 the preceding representation
for function pointers is not supported, and the following alternate
representation is used exclusively.

An alternate representation of function pointers is shown in Figure 5-37. This
representation describes the return type of the function pointer but not its
parameters, and it is valid for all symbol table format versions. The combination of
type qualifiers tgPtr and tgProc is interpreted as "pointer to function returning".
The function return type may be the base type (bt) in the TIR or it may be
constructed from the base type augmented by additional type qualifiers.

Figure 5-37: Function Pointer Alternate Representation
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5.3.8.6 Class Type (C++)

5-78

A C++ class resembles an extended C structure. One major distinction is that class
fields (referred to as "members") can be functions as well as variables. The set of
symbols created for a class is organized as follows:

e The name of the class
= A block symbol for scoping
e Data members

= Symbols associated with member functions. Each member function is
represented by the normal set of symbols present for a function.

= Corresponding end symbols that denote the completion of the block and class.
Another characteristic of classes is that symbols are defined implicitly. For
example, all classes have an operator= operator-overloading function included
in the class definition and a this pointer to its own type as a parameter to all

member functions. These symbols are always included explicitly in the symbol
table description.

Figure 5-38 is a graphical representation of the set of symbols for a class.

Figure 5-38: Class Representation
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Class members, including member functions, have auxiliary references that
point to their type descriptions. Note that member functions are represented as
prototypes. The set of symbols defining the member function is elsewhere in the
symbol table. To locate the definition of a member function, a name lookup can be
performed using the mangled name of the member function with its class name
gualifier. See Section 5.3.10.3 for information on name mangling.

C++ structures, unions, and enumerated types are represented the same way as
classes. The different data structures are distinguished by basic type value.

The symbol table does not represent class member access attributes.

Examples of base and derived classes can be found in Section 9.2.1.
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5.3.8.6.1 Empty Class or Structure (C++)
The representation of an empty class in C++ is shown in Figure 5-39. Empty

structures in C++ are represented in a similar manner with the TIR.bt set to
btStruct.

Figure 5-39: Empty Class or Structure (C++)
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Version Note

This empty class or structure representation is supported in Tru64
UNIX V5.1. Prior to Tru64 UNIX V5.1, the default compilers did not
distinguish empty classes and structures from opaque classes and
structures. See Section 5.3.8.6.2 for more details.

5.3.8.6.2 Opaque Class or Structure (C++)

Opague classes and structures are incomplete types. They have no member
information, and they are distinguished from empty classes and structures that
have no members. The representation of an opaque class in C++ is shown in
Figure 5-40. Opaque structures in C++ are represented in a similar manner with
TIR.bt set to btStruct.

Figure 5-40: Opaque Class or Structure (C++)
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Version Note

Prior to Tru64 UNIX V5.1 the default compilers used the preceding
representation for empty classes and structures as well as opaque
classes and structures.

5.3.8.6.3 Base and Derived Classes (C++)

Hierarchical groups of classes can be designed in C++. A base class serves as

a wider classification for its derived classes, and a derived class has all of the
members and methods of the base class, plus additional members of its own. In
the symbol table, the set of symbols denoting a derived class is nearly identical to
that for a non-derived class. The derived class includes an additional stBase or
stVirtBase symbol that identifies its corresponding base class, and it does not
need to duplicate the definitions for the base class members. This representation is
shown in Figure 5-41.

Figure 5-41: Base Class Representation
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The representation of virtual base classes for C++ relies on the definition of a
special symbol that identifies the virtual base table. The name for this symbol is
derived from the name of the class to which it belongs. For example, the virtual
base table symbol for class ¢5 would be named " _btbl 2c5". This table contains
entries for base class run-time descriptions.

A class can include the special member bptr. This class member is a pointer
to the virtual base table for that class.

The value field for a virtual base class symbol (stvVirtBase/scInfo) serves as an
index (starting at 1) into the virtual base class table.

5.3.8.7 Template Type (C++)

Templates are a C++-specific language construct allowing the parameterization
of types. C++ class templates are represented in the symbol table for each
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instantiation, but not for the template itself. The set of class symbols is unchanged
from the set shown in Figure 5-38.

5.3.8.8 Interlude Type (C++)

Interludes are compiler generated functions in C++. They are represented in the
local symbol table with special names starting with the " INTER__" prefix. Their
representation in the symbol table makes use of two RNDXR aux entries to identify
the related member function and the actual interlude function, both of which are
local symbol table entries.

Figure 5-42: Interlude Representation
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5.3.8.9 Array Descriptor Type (Fortran90)

A Fortran90 array descriptor is a structure that describes an array: its location,
dimensions, bounds, sizes, and other attributes. Array descriptors are described in
detail in the Fortran 90 User Manual for Tru64 UNIX. Fortran90 includes several
types of arrays for which the dimensions or dimension bounds are determined at
run time: allocatable arrays, assumed shape arrays, and array pointers.

Two symbol table representations have been used for array descriptors. The current
representation describes the array descriptor itself. The retired representation
described attributes of the array known at compile time.

For both representations, symbols of this type point to a data location at which the
array descriptor is allocated. One of the array descriptor fields contains a pointer
to the actual array. Other fields are used to describe the attributes of the array.
Fields that describe the number of dimensions and upper and lower bounds are
filled in at run time.

By default, array descriptors are described by a structure tag representation. Most
of the array descriptor fields are represented as structure members. (Excluded
fields are not needed by debuggers.) Special tag names are used to identify array
descriptor structure definitions: $£903£90 array desc (assumed-shape array),
$£90$£90 ptr desc (pointer to array) and $£90$£90 alloc desc (allocatable
array). Figure 5-43 shows the format of this representation.

Some compilers may emit other fields in addition to those shown in Figure 5-43.
A consumer’s ability to interpret additional fields depends on its knowledge of
the producing compiler.
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Figure 5-43: Array Descriptor Representation
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An example of the default Fortran array descriptor representation can be found in
Section 9.3.3.

Version Note

The following representation of Fortan array descriptors is supported
in symbol table formats less than V3.13. It is not supported in symbol
table format V3.13 and greater.

This retired representation of Fortran array descriptors is substantially more
compact in the local symbol table, but it provides no way to distinguish between
the different array descriptor types.

The overloaded basic type value 28 indicates an array descriptor in the TIR, and
dimension bounds are set to [1:1] indicating their true size is unknown. The
alternate representation does not provide any information describing the contents
of the array descriptor itself, so debuggers must assume a static representation for
the descriptor and lookup the fields at their expected offsets.

Figure 5-44 shows this representation of array descriptors.
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Figure 5-44: Array Descriptor Representation (retired)
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5.3.8.10 Conformant Array Type (Pascal)

Full details are not currently available for Pascal’'s conformant array
representation. A Pascal conformant array is very similar to Fortran’'s assumed
shape arrays. It is an array parameter with upper and lower dimension bounds
that are determined by the input argument. A conformant array is represented by
an array descriptor. The special names used and the format of the array descriptor
differ from those used for Fortran. The DEC Pascal release notes contain additional
information on conformant arrays.

5.3.8.11 Variant Record Type (Pascal and Ada)

A variant record is an extension to the record data type, which is a Pascal or Ada
data structure akin to a C structure and is represented in the same manner in the
symbol table. The variant part of the record consists of sets of one or more fields
associated with a range of values. Only one such set is part of the record, and it is
selected based on the value of another record field. Any number of variant parts
can be embedded in a single record.

Version Note

The following variant record representation is for symbol table format
V3.13 and greater.

The local symbol table entries for the variant part of a record are contained within
a block with the storage class (sc value) scvariant. The value field of the
stBlock entry contains the index of the local symbol entry for the member of
the record whose value determines which variant arm is used. The variant block

Symbol Table 5-83



5-84

contains multiple inner blocks, each representing a variant arm. The value field
of each of these block entries is an auxiliary table index. Each auxiliary table entry
starts with a count, which indicates how many range entries follow. The range
entries describe the values associated with the block.

Figure 5-45 is a graphical representation of a variant record.

Figure 5-45: Variant Record Representation
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Version Note

The following variant record representation is for symbol table formats
less than V3.13. It is not supported in symbol table format V3.13 and
greater.

The representation of variant records depicted in Figure 5-46 does not include
TIR auxiliaries.
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Figure 5-46: Variant Record Representation (retired)
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An example of a Pascal variant record can be found in Section 9.4.3.
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Subrange Type (Pascal and Ada)
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A subrange data type defines a subset of the values associated with a particular
ordinal type (the "base type" of the subrange). Ordinal types in Pascal include
integers, characters, and enumerated types. The symbol table representation of a
subrange uses the btRange or btRange 64 type followed by an auxiliary index
identifying the base type and entries providing the bounds of the subrange. The

32-bit representation is shown in Figure 5-47 and the 64-bit representation is
shown in Figure 5-48.
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Figure 5-47: Subrange Representation
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Figure 5-48: 64-bit Range Representation
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Version Note

The 64-bit range representation is supported in symbol table format
V3.13 and greater.

An example of a Pascal subrange can be found in Section 9.4.2.

5.3.8.13 Set Type (Pascal)
A set is a data type that groups ordinal elements in an unordered list. The

arithmetic and logical operators are overloaded in Pascal; this enables them to
be used with set variables to perform classic set operations such as union and
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intersection. A special auxiliary type definition btSet exists to identify this type.
The symbol table representation is depicted in Figure 5—-49.

Figure 5-49: Set Representation
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The element type for a set is typically a range or an enumeration. An example of a
Pascal set can be found in Section 9.4.1.

5.3.9 Special Debug Symbols

A variety of special symbols are used throughout the symbol table to convey call
frame information, special type semantics, or other language specific information.
These names are reserved for use by compilers and other tools that produce Tru64

UNIX object files.

Table 5-14: Special Debug Symbols

Name

Purpose

Name
__ StaticLink.*
_BLNK

MAIN

ARGNAME. len

.1b_ <ARRAY>.<dim>
.ub_<ARRAY>.<dim>

$£90$f90_array desc
$£90$£f90_alloc_desc
$£f90$f90_ptr desc

cray pointee

pointer

_DECCXX generated name_*

this

__vptr

Purpose
(SV3.13 - ) Uplevel link. See Section 5.3.4.4.
Fortran unnamed common block. See Section 5.3.6.6.

Fortran alias for main program unit. See
Section 5.3.10.4.

Generated parameter for Fortran routines. It contains
the length of ARGNAME, a parameter of character type.

Lower and upper bounds of particular dimensions
of arrays - when the array has an explicit
shape, yet some bounds come from non-constant
specification expressions (array arguments in
Pascal and Fortran routines).

Variants of Fortran-90 described arrays (assumed
shape, ALLOCATABLE, and POINTER, respectively).
See Section 5.3.8.9.

Fortran-generated typedef describing the type of a
variable pointed to by a CRAY pointer.

Fortran generated typedef describing the type of
a scalar with the POINTER attribute.

DECC++ compiler-inserted name for unnamed
classes and enumerations.

Hidden parameter in C++ member functions
that is a pointer to the current instance of the
class. See Section 5.3.8.6.

Hidden C++ class member containing the virtual
function table. See example in Section 9.2.2.
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5.3.10

5.3.10.1

5.3.10.2

Table 5-14: Special Debug Symbols (cont.)

Name Purpose

__bptr Hidden C++ class member containing the virtual base
class table. See example in Section 9.2.2.

_ vtbl * Global symbols for C++ virtual function tables.
See example in Section 9.2.2.

__btbl * Global symbols for C++ virtual base class tables.
See example in Section 9.2.2.

__control Hidden argument to C++ constructors controlling
descent (in the face of virtual base classes).

__t* evdf Structure used to maintain a list of C++
global deconstructors.

t*  diviw C++ static procedure used for global constructors.

t*  evdw C++ static procedure used for global destructors.

___t* thunk C++ static procedure used to provide a
defaulted argument value.

_ INTER__* C++ interlude. See example in Section 9.2.2.

_ N1* C++ unnamed namespaces. See example

in Section 9.2.4.

Symbol Resolution

Among the linker’s chief tasks is symbol resolution. Because most compilations
involve multiple source files and virtually all programs rely on system libraries, a
process is necessary to resolve conflicting uses of global symbol names. The linker
must decide which symbol is referenced by a given name. This section highlights
the major issues involved in that decision. Related information is contained in
Section 6.3.4 and the Programmer’s Guide.

Symbol table entries provide information relevant to performing symbol resolution.
External symbols with a storage class of sc (S) Undefined, sc (S) Common, Or
scTlsCommon must be resolved before they are referenced. By default, the linker
will not mark an object file with unresolved symbols as executable. However, linker
options give programmers a fair measure of control over its symbol resolution
behavior. See 14(1) for more information.

Library Search

Symbols referenced, but not defined in the main executable of an application
must be matched with definitions in linked-in libraries. The linker combines
objects, archives, and shared libraries while attempting to resolve all references to
undefined symbols. The Programmer’s Guide covers related topics in detail, such
as how to specify libraries during compilation and the search order of libraries.

In general, main executable objects and shared libraries are searched before
archive libraries. If no undefined external symbols remain, archive libraries in the
library list do not have to be searched, because archive members are only loaded
to resolve external references. Archives are not used to find "better” common
definitions (see Section 5.3.10.2), and no archive definitions preempt symbol
definitions from the main object or shared libraries.

Resolution of Symbols with Common Storage Class

Symbols with common storage class are a special category of global symbols that
have a size but no allocated storage. Symbols with common storage class should
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5.3.10.3

5.3.10.4

not be confused with Fortran common symbols, which are not represented by a
single symbol table entry. (See Section 5.3.6.6 for a description of Fortran common
symbols.) Common storage classes are scCommon, scSCommon, and scT1sCommon.

The symbol definition model used by Tru64 UNIX allows an unlimited number
of common storage class symbols with the same name. Ultimately, the "best" of
these must be selected (by the linker or the loader) during symbol resolution. The
criteria used to select the best symbol definition include the symbol’s allocation
status and size.

The symbol table does not provide an "allocated common" storage class. Common
storage class symbols adopt a new storage class when they are allocated. Typically,
their new storage class is scBss or scSBss or scT1lsBss. On the other hand, the
dynamic symbol table does explicitly distinguish common storage class symbols
that have been allocated. See Section 6.3.4 for more information on dynamic
symbol resolution.

A symbol reference is resolved according to the following precedence rules:

1. Find a symbol definition that does not have a common storage class and is not
identified as an allocated common in the dynamic symbol table.

Find the largest allocated common identified in the dynamic symbol table.

Find the largest common storage class symbol and allocate it. This step will be
skipped when the linker produces a relocatable object file.

Precedence is given to symbol definitions with storage allocation to minimize load
time common allocation and redundant storage allocations in shared objects. The
loader is capable of allocating space for common storage class symbols, but this
should only be necessary when a program references an allocated common symbol
in a shared library that is later removed from that shared library.

Note that Fortran common block representations use common storage class
symbols. Another very frequent occurrence of a common storage class symbol is a
C-language global variable that does not have an initializer in its declaration.

Mangling and Demangling

Another issue related to symbol resolution is the need to "mangle” user-level
identifiers. For example, C++ allows function overloading, prototyping, and the
use of templates—all of which can result in the occurrence of the same names for
different entities. The solution employed by the symbol table is to use mangled
names that derive from the symbol’s type signature.

Object file consumers, such as debuggers and object dumpers, need to "demangle"
the identifiers so they can be output in a form that is recognizable to the user. For
linking and loading, the mangled names are used for symbol resolution.

The encoding of C++ names is described in the manual Using DEC C++ for Tru64
UNIX Systems.

Other compilers may write symbol names that are modified by prepending or
appending special characters such as dollar sign ($) or underscore () or by
prepending qualifier strings such as file names or namespace names. Uppercasing
of names is also common for certain languages such as Fortran. All of these
transformations fall into the general category of mangled names. Refer to the
release notes for specific compilers for additional information.

Mixed Language Resolution

Compilation of a program involving multiple source languages introduces
additional symbol resolution issues. One important task is resolving the main
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program entry point because conflicting "main" symbols may be present in the
different files. For C and C++, the symbol "main" is the main program entry point,
but for other languages, "main" will either be an alias for the main program or an
interlude. DEC Fortran and DEC COBOL provide interludes that perform some
language specific initializations and then call the real main program entry point.
For DEC Fortran the main program is "MAIN__" and for DEC COBOL the main
program is"__cobol_main". DEC Pascal provides a "main" symbol that aliases the
actual main program symbol.

The symbols "MAIN__"and"__cobol_main" can both be present in a mixed language
program, and either, neither, or both can be used by the program. Debuggers can
set a breakpoint in the user’'s main program by applying some precedence for
selecting the most appropriate symbol. For a mixed language program, there is a
slight chance that "MAIN__"or "__cobol_main" will be present but never called.

TLS Symbols

TLS (Thread Local Storage) symbols, like non-TLS symbols, can be undefined
or common. Unresolved TLS symbols are identified by the storage class
scTlsUndefined, and TLS commons have the storage class scT1sCommon. The
symbol resolution process for TLS names is similar, but separate; TLS symbols
cannot be resolved to non-TLS symbols or vice versa.

TLS common symbols are resolved in the same manner as other common storage
class symbols (see Section 5.3.10.2), except that, again, only TLS symbols are
candidates for resolution.

Another rule special to TLS is that symbol definitions for TLS common and
undefined symbols cannot be imported from shared libraries.

5.4 Language-Specific Symbol Table Features

Language-specific characteristics are pervasive in the symbol table, particularly in
the local, external, and auxiliary symbol tables. See Section 5.2 and Section 5.3.7
for information on language-specific values.

The lang field of the file descriptor entry encodes the source language of the file.
This field should be accessed prior to decoding symbolic information, especially
type descriptions. This section highlights, by language, language-specific features
represented in the symbol table. Additional information on certain features is
available elsewhere in this chapter.

5.4.1 Fortran77 and Fortran90

In Fortran, it is possible to create multiple entry points in subroutines. A
subroutine has one main entry point and zero or more alternate entry points,
indicated by ENTRY statements. See Section 5.3.6.7 for their representation in
the symbol table.

Fortran90 array descriptors include allocatable arrays, assumed-shape arrays,
and pointers to arrays. Their representation in the symbol table is discussed in
Section 5.3.8.9.

Modules provide another scoping level in Fortran90 programs. The symbol table
representation for modules has not yet been implemented.

5.4.2 C++

C++ classes encapsulate functions and data inside a single structure. Classes
are represented in the symbol table using a btClass basic type and the
stBlock/stEnd scoping mechanism. See Section 5.3.8.6.

5-90 Symbol Table



Templates provide for parameterized types. At present, no special symbol

table values are related to templates. The template itself is not represented,;
rather, entries that correspond to each instantiation are generated. Template
instantiations are distinguished by mangled names based on their type signatures.

C++ namespaces, like Fortran modules, offer an additional scope for program
identifiers.

The C++ concepts of private, protected, and public data attributes are not currently
represented in the symbol table. The C++ concept of "friend" classes and functions
are also not represented.

5.4.3 Pascal and Ada

Pascal conformant arrays are function parameters with array dimensions that
are determined by the arguments passed to the function at run time. See
Section 5.3.8.10.

Variant records are an extension of the record data structure. Variant records allow
different sets of fields depending on the value of a particular record member. See
Section 5.3.8.11.

Nested procedures are supported in these languages. They are represented using
standard scoping mechanisms discussed in Section 5.3.6 and uplevel references
described in Section 5.3.4.4.

Sets and subranges are user-defined subsets of ordinal types. Sets are unordered
groups of elements, which can be manipulated with the classic set operations.
Subranges are ordered and are used with the usual operators. See Section 5.3.8.12
and Section 5.3.8.13.

Ada subtypes of ordinal types are represented in the same manner as Pascal
subranges.
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Dynamic Loading Information

The dynamic linker/loader (commonly referred to as the loader) is responsible for
creating a dynamic executable’s process image and placing it into system memory
so that it can execute. The loader’s functions include finding and mapping shared
libraries, completing symbol resolution, and finalizing program addresses.

To accomplish these functions, the loader requires information on external symbols
and shared libraries. The linker prepares this dynamic loading information for
shared objects only. The dynamic loader then uses this information to create

and map the process image. The dynamic information consists of the sections
highlighted in Figure 6-1.

Figure 6-1: Dynamic Object File Sections
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Comment Section dynstr  string table
dynsym symbol table
.hash hash table
_got address table

These sections are mapped with the text segment, except for the .got section,
which contains the GOT (Global Offset Table). The GOT is part of the data segment
because it must be written into when addresses are updated.

The function of each dynamic section can be summarized as follows:
= The .dynamic section serves as a header for the dynamic information.
= The .dynsym section contains the dynamic symbol table.

= The .dynstr section contains the names of dynamic symbols and shared
library dependencies.

= The .hash section holds a hash table to provide quick access into the dynamic
symbol table.

= The .msym table contains supplemental symbolic information, including
pre-computed hash values and dynamic relocation indices.

e The .1iblist section stores dependency information.
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e The .conflict section contains a list of multiply-defined symbol names that

must be resolved at

load time.

= The .rel.dyn section contains dynamic relocation entries.

= The .got section contains one or more tables of 64-bit run-time addresses.

This chapter covers the dynamic sections and related topics. The actions of the
system dynamic loader are explained in detail. Related material is available in the
Programmer’s Guide and loader(5).

6.1 New or Changed Dynamic Loading Information Features
Tru64 UNIX V5.0 supports depth-first symbol resolution order for individual

shared objects. See DT _

SYMBOLIC in Section 6.2.1 for details.

6.2 Structures, Fields, and Values for Dynamic Loading

Information

All structures and macros are declared in the header file cof£ dyn.h unless

otherwise indicated.

6.2.1 Dynamic Header Entry

6-2

typedef struct {

coff int d_tag;
coff uint reserved;

union {

coff uint d _val;
coff addr d ptr;

} d un;
} Coff Dyn;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Dynamic Header Entry Fields

d tag

reserved

d val

d ptr

Indicates how the d_un field is to be interpreted.

Must be zero.

Represents integer values.

Represents virtual addresses. Virtual addresses stored in
this field may not match the memory virtual addresses
during execution. The dynamic loader computes actual
addresses based on the virtual address from the file and the
memory base address. Object files do not contain relocation
entries to correct addresses in the dynamic section.

The d_tag requirements for dynamic executable files and shared library files are
summarized in Table 6-1. "mandatory" indicates that the dynamic linking array
must contain an entry of that type; "optional” indicates that an entry for the tag

may exist but is not required.

Table 6-1: Dynamic Array Tags (d tag)

Name Value d_un Executable Shared Library
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional

DT PLTGOT 3 d_ptr optional optional
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Table 6-1: Dynamic Array Tags (d_tag) (cont.)

Name Value d_un Executable Shared Library
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT STRSZ 10 d_val optional optional
DT_SYMENT 11 d_val optional optional
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored mandatory
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored optional optional
DT_REL 17 d_ptr mandatory mandatory
DT RELSZ 18 d_val mandatory mandatory
DT_RELENT 19 d_val optional optional

DT RLD VERSION 0x70000001 d_val mandatory mandatory
DT_TIME_STAMP 0x70000002 d_val optional optional
DT ICHECKSUM 0x70000003 d_val optional optional
DT IVERSION 0x70000004 d_val optional optional
DT FLAGS 0x70000005 d_val optional optional
DT_BASE ADDRESS 0x70000006 d_ptr optional optional
DT_MSYM 0x70000007 d_ptr optional optional
DT_CONFLICT 0x70000008 d_ptr optional optional
DT LIBLIST 0x70000009 d_ptr optional optional
DT_LOCAL_GOTNO 0x7000000A d_val mandatory mandatory
DT_CONFLICTNO 0x7000000B d_val optional optional
DT LIBLISTNO 0x70000010 d_val optional optional
DT SYMTABNO 0x70000011 d_val mandatory mandatory
DT UNREFEXTNO 0x70000012 d_val optional optional
DT GOTSYM 0x70000013 d_val mandatory mandatory
DT HIPAGENO 0x70000014 d_val optional optional
DT SO_SUFFIX 0x70000017 d_val optional optional

The uses of the various dynamic array tags are as follows:

DT NULL

DT NEEDED

DT HASH

Marks the end of the array.

Contains the string table offset of a null-terminated string
that is the name of a needed library. The offset is an index
into the table indicated in the DT _STRTAB entry. The
dynamic array can contain multiple entries of this type.

The order of these entries is significant.

Contains the quickstart address of the symbol hash table.
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DT STRTAB

DT SYMTAB

DT STRSZ

DT SYMENT

DT INIT

DT FINI

DT SONAME

DT RPATH

DT SYMBOLIC

DT REL

DT RELSZ

DT RELENT

DT _RLD VERSION

6—4 Dynamic Loading Information

Contains the quickstart address of the string table.

Contains the quickstart address of the symbol table with
Coff Sym entries.

Contains the size of the string table (in bytes).
Contains the size of a symbol table entry (in bytes).

Contains the quickstart address of the initialization
function.

Contains the quickstart address of the termination
function.

Contains the string table offset of a null-terminated string
that gives the name of the shared library file. The offset is
an index into the table indicated in the DT _STRTAB entry.

Contains the string table offset of a null-terminated library
search path string. The offset is an index into the table
indicated in the DT _STRTAB entry.

The presence of this entry indicates that symbol references
should be resolved using a depth-ring search of the shared
object’s dependencies. See Section 6.3.4.3 for a details on
shared object search order.

This dynamic entry is for information only. The search
order is controlled by the DT FLAGS setting that includes
the RHF RING SEARCH and RHF DEPTH FIRST flags when
DT_SYMBOLIC is added to the dynamic section.

Version Note

DT SYMBOLIC is supported in Tru64 UNIX
V5.0 and greater.

Contains the address of the dynamic relocation table. If
this entry is present, the dynamic structure must contain
the DT _RELSZ entry.

Contains the size (in bytes) of the dynamic relocation table
pointed to by the DT REL entry.

Contains the size (in bytes) of a DT _REL entry.

Contains the version number of the run-time linker
interface. The version is:

= 1 for executable objects that have a single GOT
= 2 for executable objects that have multiple GOTs
= 3 only for objects built on Tru64 UNIX V2.x



DT TIME STAMP

DT ICHECKSUM

DT IVERSION

DT FLAGS

DT BASE ADDRESS

DT CONFLICT

DT LIBLIST

DT LOCAL_GOTNO

DT CONFLICTNO

DT LIBLISTNO

DT SYMTABNO

DT UNREFEXTNO

DT GOTSYM

DT HIPAGENO

DT SO_SUFFIX

Contains a 32-bit time stamp.

Contains a checksum value computed from the names and
other attributes of all symbols exported by the library.

Contains the string table offset of a series of colon-separated
versions. An index value of zero means no version string
was specified.

Contains a set of 1-bit flags. See Table 6-2 for a list of
supported flag values.

Contains the quickstart base address of the object.
Contains the quickstart address of the .conflict section.
Contains the quickstart address of the .1iblist section.

Contains the number of local GOT entries. The dynamic
array contains one of these entries for each GOT.

Contains the number of entries in the .conflict section.
Contains the number of entries in the .1iblist section.
Indicates the number of entries in the .dynsym section.

Holds the index to the first dynamic symbol table entry
that is an external symbol not referenced within the object.

Holds the index to the first dynamic symbol table entry
that corresponds to an entry in the global offset table. The
dynamic array contains one of these entries for each GOT.

Not used by the default system loader. If present, must
contain the value 0.

Contains a shared library suffix that the loader appends
to library names when searching for dependencies. This
tag is used, for example, with Atom tools. Instrumented
applications may be dependent on instrumented shared
libraries identified by a tool-specific suffix.

All other tag values are reserved. Entries can appear in any order, except for the
DT _NULL entry at the end of the array and the relative order of the DT NEEDED

entries.

Table 6-2: DT FLAGS Flags

Flag

Value Meaning

RHF QUICKSTART

RHF NOTPOT

0x00000001 Object may be quickstarted by loader
0x00000002 Hash size not a power of two
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Table 6-2: DT FLAGS Flags (cont.)

Flag

Value Meaning

RHF_NO_LIBRARY RE-
PLACEMENT

RHF_NO_MOVE
RHF TLS

RHF_RING SEARCH

RHF_DEPTH_FIRST

0x00000004 Use default system libraries only

0x00000008 Do not relocate
0x04000000 Identifies objects that use TLS

0x10000000 Symbol resolution same as DT _SYMBOLIC.
This flag is only meaningful when combined
with RHF DEPTH FIRST

0x20000000 Depth-first symbol resolution

RHF_USE_31BIT_ADDRESSES  0x40000000 TASO (Truncated Address Support

Option) objects

6.2.2 Dynamic Symbol Entry

typedef struct {

coff uint st_name;
coff uint reserved;
coff addr st_value;
coff uint st_size;
coff ubyte st_info;
coff ubyte st_other;
coff ushort st_shndx;
} Coff Sym;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

See Section 6.3.3 for related information.

Dynamic Symbol Entry Fields

st_name

reserved

st _value

st _size

st_info

st_other

6-6 Dynamic Loading Information

Contains the offset of the symbol’'s name in the dynamic
string section.

Must be zero.

Contains the quickstart address if the symbol is defined
within the object. Contains O for undefined external
symbols, the alignment value for commons, or any
arbitrary value for absolute symbols.

For undefined external conflict symbols (see Section 6.3.6.2)
this field will contain the quickstart address of the symbol
in the first shared library in which the linker found a
definition of the symbol.

Identifies the size of symbols with common storage
allocation; otherwise, contains the value zero. For
STB_DUPLICATE symbols (see Table 6-4). The size field
holds the index of the primary symbol.

Identifies the symbol’s binding and type. The macros
COFF_ST BIND and COFF_ST TYPE are used to access
the individual values. See Table 6-3 and Table 6-4 for
the possible values.

Currently has a value of zero and no defined meaning.



st_shndx Identifies the symbol's dynamic storage class. See
Table 6-5 for the possible values.

Table 6-3: Dynamic Symbol Type (st _info) Constants

Name Value Description

STT_NOTYPE 0 Indicates that the symbol has no type or its type is unknown.
STT_OBJECT 1 Indicates that the symbol is a data object.

STT_FUNC 2 Indicates that the symbol is a function.

STT_SECTION 3 Indicates that the symbol is associated with a program section.
STT_FILE 4 Indicates that the symbol is the name of a source file.

Table 6-4: Dynamic Symbol Binding (st info) Constants

Name Value Description

STB_LOCAL 0 Indicates that the symbol is local to the object (or
designated as hidden).

STB_GLOBAL 1 Indicates that the symbol is visible to other objects.

STB_WEAK 2 Indicates that the symbol is a weak global symbol.

STB_DUPLICATE 13 Indicates the symbol is a duplicate. (Used for objects

that have multiple GOTSs.)

Table 6-5: Dynamic Section Index (st shndx) Constants

Name Value Description

SHN_UNDEF 0x0000 Indicates that the symbol is undefined.

SHN_ACOMMON 0x£f00 Indicates that the symbol has common storage (allocated).
SHN_TEXT Oxffo0l Indicates that the symbol is in a text segment.

SHN_DATA 0xffo2 Indicates that the symbol is in a data segment.

SHN_ABS Oxfffl Indicates that the symbol has an absolute value.
SHN_COMMON Oxfff2 Indicates that the symbol has common storage (unallocated).

6.2.3 Dynamic Relocation Entry

typedef struct {

coff addr r offset;

coff uint r_info;

coff uint reserved;
} Coff Rel;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 6.3.5 for related information.

Dynamic Relocation Entry Fields

r offset Indicates the quickstart address within the object that
contains the value requiring relocation.

r info Indicates the relocation type and the index of the dynamic
symbol that is referenced. The macros COFF_R SYM
and COFF_R_TYPE access the individual attributes. The
relocation type must be R_REFQUAD, R_REFLONG, Or
R NULL.
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reserved

6.2.4 Msym Table Entry

typedef struct {

Must be zero.

coff uint ms_hash value;

coff uint ms_info;

} Coff Msym;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See Section 6.3.3.4 for related information.

Msym Table Entry Fields

ms_hash value

ms_info

6.2.5 Library List Entry

typedef struct {
coff uint 1 name;

Contains the hash value computed from the name of the
corresponding dynamic symbol.

Contains both the dynamic relocation index and the
symbol flags field. The macros COFF_MS_REL_ INDEX and
COFF_MS_FLAGS are used to access the individual values.
The dynamic relocation index identifies the first entry in
the . rel.dyn section that references the dynamic symbol
corresponding to this msym entry. If the index is 0, no
dynamic relocations are associated with the symbol. The
symbol flags field is reserved for future use and should
be zero.

coff uint 1 time stamp;
coff uint 1 checksum;
coff uint 1 version;

coff uint 1 flags;

} Coff Lib;

SIZE - 20 bytes, ALIGNMENT - 4 bytes

See Section 6.3.2 for related information.

Library List Entry Fields

1 name

1 time_stamp

1 checksum

1 version

1 flags
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Records the name of a shared library dependency. The
value is a string table index. This name can be a full
pathname, relative pathname, or file name.

Records the time stamp of a shared library dependency.
The value can be combined with the 1 _checksum value
and the 1 _version string to form a unique identifier
for this shared library file.

Records the checksum of a shared library dependency.

Records the interface version of a shared library
dependency. The value is a string table index.

Specifies a set of 1-bit flags. The 1 _flags field can have
one or more of the flags described in Table 6-6.



Table 6-6: Library List Flags
Name Value Description

LL EXACT MATCH 0x01 Requires that the run-time dynamic shared
library file match exactly the shared library
file used at static link time.

LL_IGNORE INT VER 0x02 Ignores any version incompatibility between
the dynamic shared library file and the shared
library file used at link time.

LL_USE_SO_SUFFIX 0x04 Marks shared library dependencies that should be
loaded with a suffix appended to the name. The
DT _SO_SUFFIX entry in the .dynamic section
records the name of this suffix. This is used
by object instrumentation tools to distinguish
instrumented shared libraries.

LL_NO_LOAD 0x08 Marks entries for shared libraries that are not
loaded as direct dependencies of an object. Object
instrumentation tools may use LI, NO_LOAD
entries to set the LI, USE_SO_SUFFIX for
dynamically loaded shared libraries or for indirect
shared library dependencies.

If neither L. EXACT MATCH nor LL._IGNORE_INT_ VER bits are set, the dynamic
loader requires that the version of the dynamic shared library match at least one of
the colon-separated version strings indexed by the 1 _version string table index.

6.2.6 Conflict Entry

typedef struct {
coff uint c_index;
} Coff Conflict;

SIZE - 4 bytes, ALIGNMENT - 4 bytes
The conflict entry is an index into the dynamic symbols (. dynsym) section. See

Section 6.3.6.2 for related information.

6.2.7 GOT Entry

typedef struct {
coff addr g_index;
} Coff Got;

SIZE - 8 bytes, ALIGNMENT - 8 bytes
The GOT entry is a 64-bit address. Most GOT entries map to dynamic symbols.
See Section 6.3.3 for details.

6.2.8 Hash Table Entry

The hash table is implemented as an array of 32-bit values. The structure is
declared internal to system utilities.

See Section 6.3.3.5 for more information.

6.2.9 Dynamic String Table

The dynamic string table consists of null-terminated character strings. The strings
are of varying length and separated only by a single character. Offsets into the
dynamic string table give the number of bytes from the beginning of the string
space to the beginning of the name in question.

Offset 0 in the dynamic string table is reserved for the null string.
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6.3 Dynamic Loading Information Usage

6.3.1 Shared Object Identification

A shared object is either a dynamic executable or a shared library. The file header
flags indicate whether the object is a shared object and, if so, what type of shared
object it is. The layout of the object is also stated in the file header. Normally
shared objects use a ZMAGIC image layout (see Section 2.3.2.3).

Additional information on the shared object is located in the dynamic header
(.dynamic section). When the dynamic loader is invoked by the kernel's exec ()
routine, this header information is read.

The kernel and loader take the following steps upon receiving a user command to
execute a dynamic executable:

1. User enters command.
2. Shell calls exec () in kernel.
3. exec () opens the file and reads the file header.
4. If the file is a dynamic executable, exec () calls /sbin/loader.
5. The loader then:
a. Reads file header and dynamic header information.
b. Maps the executable into memory.

c. Locates each shared library dependency, maps it into memory, and
relocates it if necessary.

d. Resolves symbols for all shared objects.

®

Sets the heap address.

=h

Transfers control to program entry point.
6. The program entry point (__start in crt0.o0) then:
a. Calls special symbol  istart which invokes the loader routine to run

INIT routines

b. Callsmain() with Argc, Argv, environand auxv.

6.3.2 Shared Library Dependencies

Dynamic executables usually rely on shared libraries. At load time, these shared
libraries must be located, validated, and mapped with the process image.

If an executable object refers to a symbol whose definition resides in a shared
library, the executable is dependent on that library. This relationship is described
as a direct dependency. A shared library dependency also exists if a library is
used by any previously identified dependency. This is an indirect dependency
for the executable.

In the example shown in Figure 6-2, 1iba, 1ibB, and libcool are all shared
library dependencies for a.out. The library 1iba is a direct dependency, and
the others are indirect dependencies.
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Figure 6-2: Shared Library Dependencies

a.out
b 4
libd.50
- x_
libB 50 libcool so

Although the possibility of duplicate dependencies exists, as in the preceding
example, each library is mapped only once with the image. The linker also prevents
recursive inclusion, which could occur in a case of cyclic dependencies.

6.3.2.1 Identification

A shared object’s dependencies are stored in its .1iblist entries and in
DT_NEEDED entries in the .dynamic section. The linker records this information
as dependencies are encountered.

The library list (. 1iblist section) has name, timestamp, checksum, and version
information for every entry, along with a flags field. Taken together, the timestamp
and checksum value and the version string form a unique identifier for a shared
library. An entry is created for each shared library dependency.

A DT NEEDED tag in the dynamic header also indicates a shared library
dependency. The value of the entry is the string table offset for the needed library’s
name. Note that this representation of the dependency information is redundant
with that contained in the library list. The loader relies on the library list only.
The DT NEEDED entries are maintained for historical reasons.

As an example, an object linked against 1ibc has the following dependency
information:

***DYNAMIC SECTION***

LIBLISTNO: 1.
LIBLIST: 0x0000000120000690
NEEDED: libc.so

***L,IBRARY LIST SECTION***

Name Time-Stamp CheckSum Flags Version
a.out:
libc.so May 19 22:18:46 1996 0x£f937323b 0 osf.l

A shared library’s checksum is computed by the linker when the library is created
or updated, and the value is written into the dynamic header. When an application
is linked against the library, the linker copies the library’s current checksum into
its entry in the application’s .1iblist.

The checksum computation is a summation of the names of dynamic symbols that
meet the following criteria:

e Defined
< Not local
< Not hidden

= Not duplicate
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Common storage class symbol names are included, along with their size. Weak
symbols are included, but the calculation for weak symbols differs from that used
for non-weak symbols.

For a single symbol, the checksum is computed using this algorithm :

if (SYMBOL.st shndx == SHN COMMON || SYMBOL.st shndx == SHN ACOMMON)
CHECKSUM = SYMBOL.st_size

else
CHECKSUM = 0

for (# of characters in symbol name)
CHECKSUM = (CHECKSUM << 5) + character value

if (weak symbol)
CHECKSUM = (CHECKSUM << 5) + CHECKSUM + 1

A change in the number of weak symbols or a change in the size of a common
storage class symbol is therefore reflected in the checksum. However, the checksum
calculation is insensitive to symbol reordering.

The checksums for all symbols included are summed to produce the shared object’s
checksum.

6.3.2.2 Searching
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After loading an executable, the loader loads the executable’s shared library
dependencies. The loader searches for shared libraries that match the names
contained in the executable’s .1iblist entries. Subject to the search guidelines
described in this section, the loader will load the first matching shared library that
it finds for each dependency.

Certain directories are searched by default, in the following order:

1 /usr/shlib

2 /usr/ccs/1lib

3 /usr/lib/cmplrs/cc
4. /usr/lib

5 /usr/local/lib

6 /var/shlib

The loader’s search path can be altered by several methods:
= -soname linker option
= -rpath linker option

e environment variables

The -soname option is used to set internal shared library names. The default
soname is the output file name of the library when it is built. The linker uses

an soname value to record shared library dependencies in the library list.
Dependencies containing pathnames are located without prepending search
directories to their paths. A pathname is identified by the presence of one or more
slashes in the string.

The RPATH is included in a shared object’s . dynamic section under an entry
tagged DT RPATH. It is a colon-separated list of shared library search directories.
The RPATH is set using the -rpath linker option. The loader will search RPATH
directories prior to searching LD LIBRARY PATH and default directories.

The environment variables that impact the search order are LD LIBRARY PATH
and RLD ROOT. LD LIBRARY PATH has the same format as RPATH.

No root directories are prepended to the LD LIBRARY PATH directories.

LD LIBRARY PATH can also be set by a program before it calls dlopen ().
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The RLD ROOT environnment variable is a colon-separated list of "root" directories
that are prepended to other search directories. It modifies RPATH and the default
search directories.

The precedence (highest to lowest) of search directories used by the loader is as
follows:

1. soname (if it includes a path)
2. _RLD ROOT + RPATH

3. LD LIBRARY PATH
4

_RLD ROOT + default search directories

When using non-system libraries, it is often necessary to specify the search path
rather than relying on the defaults. Here is one example:

$ 1d -shared -o my.so mylib.o -lc

$ cc -o hello hello.c my.so

$ hello

7526 :hello: /sbin/loader: Fatal Error: cannot map my.so

$ LD LIBRARY PATH=.

$ export LD LIBRARY PATH

S hello
Hello, World!

6.3.2.3 Validation

One of the loader’s jobs is to ensure that correct shared libraries are available

to the program. Shared library versioning is used to distinguish incompatible
versions of shared libraries. The loader tests for matching versions when shared
library dependencies are loaded. If the application is found to be incompatible with
a needed shared library, the program may have to be recoded or relinked. Causes
of binary incompatibility include altered global data definitions and changes to
documented interfaces.

Each shared library is built with a version identifier. This identifier is recorded in
the .dynamic section with the tag DT IVERSION. Each entry in the dependency
information (.1iblist section) also records the version identifier of a shared
library dependency. The -set version linker option is used to provide the version
identifier. Without this option, the linker will build a shared library with a null
version. Version identifiers can be any ASCII string.

Version checking can also be controlled by the user. The linker option
-exact_version leads to more rigorous version testing by the loader. When this
option is in effect, timestamps and checksums are checked in addition to version
numbers. The linker-recorded dependency information for the timestamp and
checksum must precisely match the load-time values for all shared libraries.
Normally, a mismatch leads to additional symbol resolution work instead of a
rejected object.

Version checking can be disabled through use of the loader environment variable
_RLD ARGS. Setting this variable to -ignore all versions disables version
testing for all shared library dependencies. Setting it to -ignore version with a
library name parameter turns off version checking for that specific dependency.

By default, versions are checked, but not checksums or timestamps. If version
testing fails, the loader searches for the matching version of the shared library.

The version identifiers are used to locate version-specific libraries. The loader
looks for these libraries in:

1. dirnamelversion id

2. /usr/shlib/version id
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where dirname is the first directory where a library with a matching name but
non-matching version is found.

For example, if an application needs version 1 of a shared library but the loader
first encounters version 2, it continues looking for the correct version.

6.3.2.3.1 Backward Compatibility

When shared libraries are modified and new versions built, the older versions
are frequently retained to support previously linked applications. Maintaining
multiple versions of the library helps ensure backward compatibility for existing
applications even after binary-incompatible changes have been made.

Backward-compatible shared libraries can be:
= Complete independent shared libraries

= Partial shared libraries that import missing symbols from other versions of the
same shared libraries

The advantage of partial shared libraries is that they require less disk space; a
disadvantage is that they require more swap space.

The linker’'s -1 option can be used to link with backward-compatible shared
libraries. Warnings are generated when a shared library is linked with
dependencies on different versions of the same shared library. However, the linker
tests direct dependencies only. The option -transitive link should be used to
uncover all multiple-version dependencies.

Multiple versions of the same shared library can only be loaded to support partial
shared library dependencies. Otherwise, dependencies on multiple versions of a
library are invalid.

Figure 6—3 shows examples of valid uses of multiple versions.

Figure 6-3: Valid Shared Library with Multiple Versions

Example 1

app_1

L

libc.so (osfl1.0)

-

libc.so (osf2.0)

Example 2

app_2

libc_rso{osf1.0) libc.so [osf1.0)

l

libc_rso [osf2.0)

r

libc.so (osf2.0)

Figure 6—4 shows examples of invalid uses of multiple versions.
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Figure 6-4: Invalid Shared Library with Multiple Versions

Example 1
app_3
layered! so layeredz so
libc.so (osf1.0) libc.so (0sf2.0)
Example 2
app_4
layeredl so libc.so(osf1.0)
libc.so (osf2.0)

6.3.2.4 Loading

The executable object is placed in memory first, at the segment base addresses
designated by the linker and recorded in the a.out header. These addresses are
never changed during the lifetime of the executable’s image. After the executable
file's segments have been mapped into memory, shared library dependencies are
loaded. Shared library dependencies are mapped recursively.

The linker chooses quickstart addresses for the text and data regions of shared
libraries. The loader attempts to map shared libraries to their quickstart addresses.
If this attempt fails because another library has already been mapped to the same
address range, the library is relocated to a different address. Note that this problem
could be caused by a library mapped by another process. The system tries to map
no more than one shared library at a particular virtual address range, system-wide.

Additional dependencies, not present in the library list, can be dynamically loaded
using a dlopen () call. Again, the loader will attempt to load the library at its
guickstart addresses and will relocate it if necessary.

When a shared library is relocated, its text and data segments must move the same
distance in memory. By fixing the distance between these segments at link time,
the number of dynamic relocations is minimized and restricted to the data segment.

6.3.2.4.1 Dynamic Loading and Unloading

Dependencies can be loaded and unloaded during execution by using the dlopen ()
and dlclose () system functions.

The dlopen () routine accepts a library name and loads the library and its
dependencies. The loader resolves all symbols in all shared objects while processing
a dlopen () call. If the library was previously loaded, dlopen ( ) re-resolves
global symbols and returns a handle without loading any new objects.
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The loader maintains a count of references made to all shared objects that have
been loaded. For example, if 1ibm. so is dependent upon libc. so, 1ibc’s
reference count is incremented when the libraries are loaded. This reference
counting is part of an effort to ensure that a library is never unloaded prematurely.
As an additional precaution to avoid unloading a library that is still needed, the
number of existing dlopen ( ) handles is tracked by the loader. This dlopen ()
count is incremented each time a dlopen ( ) call is made for a particular object.

The dlclose () routine unloads a shared library and its dependencies. It accepts
a handle that was returned by dlopen ().

The dlclose () routine will not unload shared libraries that are still in use. Both
the dlopen ( ) count and the reference count are checked and should be zero before
a library is unloaded.

The dlclose () routine cannot unload an executable. It is designed for shared
libraries only. It also cannot unload a shared library that was not dynamically
loaded by dlopen ().

Objects with TLS data can be dynamically loaded or unloaded during process
execution. A new TLS region is allocated for all existing threads when an object
with TLS data is loaded. Similarly, the TLS region will be deallocated for all
threads when the object is unloaded.

6.3.3 Dynamic Symbol Information
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The dynamic symbol table is created at link time for shared objects. Its primary
purpose is to enable dynamic symbol resolution. Run-time address information for
dynamic symbols is contained in the GOT section (.got).

The dynamic symbol section (.dynsym) provides information on globally scoped
symbols that are defined or used by the object. This section consists of a table of
dynamic symbol entries. The entries are ordered as follows:

A single null entry

Symbols local to the object

Unreferenced global symbols

Referenced global symbols (corresponding to GOT entries)

o~ wbd e

Relocations-referenced global symbols (corresponding to special final GOT)

Local symbols are global in scope but are not exported to other objects. The local
portion of the dynamic symbol table contains system symbols representing the
sections of the object: . text, .data, and other linker-defined symbols. Typically,
they do not have GOT entries.

Unreferenced globals are symbols that can be exported but are not referenced by the
defining object. They are present in the dynamic symbol table so that other shared
objects can import and use them. Unreferenced globals do not have GOT entries.

Referenced globals are exported and are used internally. Dynamic symbols in
this category have global GOT entries.

Global symbols that are referenced only by the object’s dynamic relocation entries
are grouped at the end of the dynamic symbol table, corresponding to a special final
GOT. These symbols require GOT entries to record their run-time addresses used
in processing dynamic relocations. This special GOT is only used by the loader and
is never directly referenced by the program itself.

All linker-defined TLS symbols (see Section 2.3.7) have dynamic symbol entries.
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Note that the dynamic symbol table itself is never relocated; it contains only
link-time addresses (in the st_value field).

6.3.3.1 Symbol Look-Up

Dynamic symbol look-up is performed by the dlsym( ) (handle,name) routine.
The routine searches for the symbol name beginning in the object associated with
the handle. By default, the search is breadth-first. The search is depth-first for
objects that were built with the linker’'s -B symbolic option and for objects that
were loaded with neither the RTLD LOCAL nor RTLD GLOBAL dlopen( ) flag.

If the handle is null, the routine performs a depth-first search beginning at the
main executable.

Itis important to use the dlsym () interface for symbol look-up to avoid using an
outdated address. This problem can be caused by an improper compiler assumption
that a symbol’s address will not change after load time. A symbol’'s address may be
cached as an optimization and not reloaded thereafter. However, that address may
be changed during execution as the result of dynamic loading and unloading.

6.3.3.2 Scope and Binding

The concept of scope in the dynamic symbol table differs somewhat from the
concept of scope in the debug symbol table because the dynamic symbol table
contains only global user-program symbols. The terms "local" and "external” thus
have different meanings in this context.

The two scoping levels for symbols in the dynamic symbol table are object scope and
process scope. A symbol with object scope is local to the shared object and can only
be referenced in the library or executable where it is defined. A symbol with process
scope is visible to all program components, and may be referenced anywhere. A
symbol with process scope can also be preempted by a higher-precedence definition
in another shared object.

Note that the distinction between object scope and process scope does not
correspond directly to the local/global symbol division in the dynamic symbol table.
All symbols in the local part of the table have object scope, but global dynamic
symbols can be internal to the object as well. Another factor, called binding, comes
into play.

The possible bind values in the dynamic symbol table are local, global, weak, and
duplicate. These values are encoded in the st _info field of the dynamic symbol
entry. (See Section 6.2.2 for details.)

Users are able to designate global symbols as "hidden". In the dynamic symbol
table, hidden symbols have a local binding. This representation ensures that
they will not be exported from the object and will not preempt any other symbol
definition. Also, internal references to hidden symbols will not be preempted. The
linker's "-hidden_ symbol symbol" option can be used to specify a hidden symbol.

Weak symbols are also a special-case category of global symbols that have the
same scope as globals but a lower precedence for symbol resolution conflicts. See
Section 6.3.4.2 for details.

6.3.3.3 Multiple GOT Representation

The GOT contains address information for all referenced external symbols in the
dynamic symbol table. Observe that the GOT is the source of final, run-time
addresses, whereas the symbol table contains only link-time addresses. To access
a dynamic symbol, the GOT must be referenced. To associate GOT entries with
dynamic symbol table entries, the symbol table and GOT are aligned as shown
in Figure 6-5.
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Figure 6-5: Dynamic Symbol Table and Multiple-GOT
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Note that the GOT also contains entries that do not correspond to dynamic
symbols. These are placed at the top of each GOT table.

The maximum number of entries in a GOT is 8189. A single GOT may be sufficient
to represent all necessary addresses for an object, but one or more additional GOTs
are sometimes required, as illustrated in Figure 6-5. One GOT table can contain
entries from multiple input objects, but a single object’s entries cannot be split
between two tables. The linker also builds a separate, final GOT for relocatable
global symbols, referenced only in the dynamic relocation section. These constraints
generally result in some unused GOT entries at the bottom of each table.

The loader recognizes a multiple-GOT object by examining the dynamic header.
A DT GOTSYM entry exists in the dynamic header for each GOT. This entry holds
the index of the first dynamic symbol table entry corresponding to a GOT entry.
A DT _LOCAL_GOTNO entry exists for each GOT as well. This entry contains the
index of the first global entry in that GOT. The number of DT _GOTSYM entries and
DT _LOCAL_GOTNO entries in the dynamic header should match. They are also
expected to occur in ascending numerical order.

The first (zero-indexed) entry for every GOT in a multiple-GOT object points to the
loader’'s lazy text resolwve () entry point. In the final GOT (consisting of
relocatable symbols), it is present even though it is unused.

Multiple-GOT objects may contain duplicate symbols. A symbol appears only once
per GOT, but it can be duplicated in other GOTs. All duplicate symbols, marked
in the symbol table as STB DUPLICATE, have an associated primary symbol. The
primary symbol is simply the first instance of a duplicate symbol. The st _size
field for a duplicate symbol is the dynamic symbol table index of the primary
symbol. When a symbol is resolved in a multiple-GOT situation, all duplicates
must be found and resolved as well.
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6.3.3.4 Msym Table

The msym table, which is stored in the .msym section of a shared object file, maps
dynamic symbol hash values to the first of any dynamic relocations for that symbol.
This optional section is included for performance reasons by building shared objects
with the linker’s -msym option.

An entry in the msym table contains a hash value and an information field. The
information field can be masked to obtain a dynamic relocation index and a flags
field. The size of the msym table is the same as the size of the dynamic symbol
table; the two tables line up directly and have matching indices.

The msym table is referenced repeatedly when an object is opened. The loader
resolves symbols by searching all shared objects for matching definitions. The
search requires a hash value computed from the symbol name. The msym table
provides precomputed hash values for symbols to avoid the costly hash computation
at load time.

Figure 6-6: Msym Table

Object 1 (current) Ohject 2 (searched)
dynsym 5 hash
hash | dvnamic
11+ value synbol
index
JANETm dynsym

If the .msym section is not present in a shared object, the loader will create the
table each time that the object is loaded. For this reason, it is often preferable to
specify the .msym section’s inclusion when building shared objects.

6.3.3.5 Hash Table

A hash table, stored in the .hash section of a shared object file, provides fast
access to symbol entries in the dynamic symbol section. The table is implemented
as an array of 32-bit integers.

The hash table has the format shown in Figure 6-7.
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Figure 6-7: Hash Table

nbucket
nchain

bucket[d]

bucket
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chain[(]
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The entries in the hash table contain the following information:
= The nbucket entry indicates the number of entries in the bucket array.
= The nchain entry indicates the number of entries in the chain array.

= The bucket and chain arrays both hold dynamic symbol table indices, and
the entries in chain parallel the dynamic symbol table. The value of nchain
is equal to the number of symbol table entries. Symbol table indices can be
used to select chain entries.

The hashing function accepts a symbol name and returns the hash value, which
can be used to compute a bucket index. If the hashing function returns the
value X for a name, Xx%nbucket is the bucket index. The hash table entry
bucket [X%nbucket] gives an index, Y, into the dynamic symbol table.

The loader must determine whether the indexed symbol is the correct one. It checks
the corresponding dynamic symbol’s hash value in the msym table and its name.

If the symbol table entry indicated is not the correct one, the hash table entry
chain[Y] indicates the next symbol table entry for a dynamic symbol with the
same hash value. The indexed symbol is again checked by the loader. If it is
incorrect, the same index is used in the chain array to try the next symbol that
has the same hash value. The chain links can be followed in this manner until
the correct symbol table entry is located or until the chain entry contains the
value STN_UNDEF.

As an example, assume that a symbol with the hash value 12 is sought. If

there are ten buckets, the calculation 12 % 10 gives the bucket index 2, which
signifies the third bucket. A bucket index translates into a hash table index

as bucket [i]=hash[i+2]. If that bucket contains a 3, the dynamic symbol
table entry with an index of 3 is checked. If the symbol is incorrect, the hash
table entry chain [3] is accessed to get the next possible symbol index. A chain
index translates into a hash table index as chain [i] =hash [nbucket+2+1i]. If
chain[3] is 7, the dynamic symbol table entry with an index of 7 is checked. If it
is the correct symbol, the search is successful and halts.

The structures used in this example are shown in Figure 6-8.
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Figure 6-8: Hashing Example
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6.3.4 Dynamic Symbol Resolution

The dynamic loader must perform symbol resolution for unresolved symbols that
remain after link time. A post-link unresolved symbol is one that was not defined
in a shared object or in any of the shared object’s shared library dependencies
searched by the linker. If a dependency is changed before execution or additional
libraries are dynamically loaded, the loader will attempt to resolve the symbol.

The linker accepts unresolved symbols when linking shared objects and records
them in the dynamic symbol (.dynsym) section. The loader recognizes an
unresolved symbol by a symbol type of undefined (st _shndx == SHN UNDEF) and
a symbol value of zero (st _value == 0) in the dynamic symbol table. For such
symbols, the GOT value distinguishes imported symbols from symbols that are
unresolved across all shared objects.

Table 6-7 gives a rough idea of different categories of symbols and how they are
represented in the dynamic symbol table. Run-time addresses are stored in the
GOT. They can be pre-computed by the linker and adjusted at load time.

Table 6-7: Dynamic Symbol Categories

Description Type Section Value GOT
defined item STT_OBJECT, SHN_TEXT, address address
STT FUNC SHN DATA,
SHN ACOMMON

imported function STT_FUNC SHN_UNDEF 0 address (in defining
object)

imported data STT_OBJECT  SHN_UNDEF 0 address (in defining
object)

common STT_OBJECT  SHN_COMMON  alignment address of allocated
common (in defining
object)
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Table 6-7: Dynamic Symbol Categories (cont.)

Description Type Section Value GOT

unresolved STT_FUNC SHN_UNDEF 0 lazy text stub address
function

unresolved data STT OBJECT SHN_ UNDEF 0 0

The loader performs symbol resolution during initial load of a program. The amount
of symbol resolution work required by a program varies (see Section 6.3.4.6).

The loader can also perform dynamic symbol resolution for particular symbols
during program execution. If new dependencies are added or existing dependencies
are rearranged, externally visible symbols (those with process scope) may be
bound to a new address. Rebinding after a dlopen () or dlclose () call is only
performed for symbol references in shared libraries that were not loaded with a
dlopen () flag of RTLD LOCAL Or RTLD GLOBAL.

Unresolved text symbols can be resolved at run time instead of load time (see
Section 6.3.4.5).

6.3.4.1 Symbol Preemption and Namespace Pollution
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A namespace is a scope within which symbol names should all be unique. In a
namespace, a given name is bound to a single item, wherever it may be used. This
generic use of the term "namespace" is distinct from the C++ namespace construct,
which is discussed in Section 5.3.6.4.

Dynamic executables running on Tru64 UNIX share a namespace with their shared
library dependencies. This policy is implemented with symbol preemption. Symbol
preemption, also referred to as "hooking", is a mechanism by which all references
to a multiply-defined symbol are resolved to the same instance of the symbol.

Advantages of symbol preemption include:
= All shared objects use one global namespace.
= Dynamic and static executables behave more consistently.

= Applications can replace library routines to debug, improve, or customize them.

Disadvantages include extra load time for symbol resolution and potential
problems resulting from namespace pollution.

Namespace pollution can occur during the use of shared libraries. A library routine
may malfunction if it calls or accesses a global symbol that is redefined by another
shared library or application. Figure 6—9 presents an example of this situation.
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Figure 6-9: Namespace Pollution

a.ouf

int open=0;
main()
FILE *fd;
if (fd=fopen("fnames","rw")
open=1;

libe
fopen() {

tl:;fjen(...),'
=

Namespace pollution is partly covered by ANSI standards. Namespace conflicts
that occur between libc and ANSI-compliant programs must not affect the
behavior of ANSI-defined functions implemented in 1ibc.

The identifiers reserved for use by the library are:
< Names beginning with underscores

= ANSI-defined symbols (fopen (), malloc (), and so forth)

All other names are available to user programs. User versions of non-reserved
identifiers preempt library versions.

Historically, system libraries have used many unreserved symbols. To achieve
compliance with the ANSI standard, global symbols have undergone a name
change. Documented interfaces have been retained as weak symbols (see
Section 6.3.4.2). Their strong counterparts have names that are formed by
prepending two underscores to the corresponding weak symbol’'s name.

Hidden symbols do not cause namespace pollution problems and cannot be
preempted because they are not exported from the shared object where they are
defined.

The linker options -hidden symbol and -exported symbol turn the
hidden attribute on or off for a given symbol name. The options -hidden and
-non_hidden turn the hidden attribute on or off for all subsequent symbols.

TLS data symbols have the same name scope as hidden symbols. The names are
not shared among multiple threads.

6.3.4.2 Weak Symbols

Weak symbols are global symbols that have a lower precedence in symbol resolution
than other globals. Strong symbols are any symbols that are not marked as weak.

Weak symbols can be used as aliases for other weak or strong symbols. This
technique can be useful when it is desirable to provide both a low-precedence name
and a high-precedence name for the same data item or procedure. When the weak
symbol is referenced, its strong counterpart is the one actually used.
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This aliasing approach employing weak symbols is used in 1ibc. so to avoid
namespace pollution problems. In the example in Figure 6-10, the strong symbol
definition in the application takes precedence over the weak library definition, and
the program functions properly.

Figure 6-10: Weak Symbol Resolution (1)

gt

int open=0;

main() {
FILE *fd;
if (fd=fopen"fname","rw'"))

open=1;

libe
fopen(y {
__open(..);

1
#pragme waak open=__open

—open() {
}
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Figure 6-11: Weak Symbol Resolution (I1)
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main() {
FILE *fd.

fd = open(" myfile" O);

libe
fopen(y {
_open(..); 8

1
#pragme waak open=__open

—open() {
}

If no non-weak open symbols were defined, references to open would bind to the
weak symbol definition in 1ibc. so, as shown in Figure 6-11.

Weak symbols can also be used to prevent multiple symbol definition errors or
warnings when linking. Neither the linker nor loader require a weak symbol to be
aliased to a strong symbol, but the loader will attempt to find a matching strong
symbol for any weak symbol it is attempting to resolve.

To find a weak symbol’s strong counterpart, the loader follows these steps:

1. Use hash lookup to find __name

2. If __name is not found or not a match, test each dynamic symbol for matching
attributes

3. If a strong matching symbol is found check for a preempting symbol definition
in another shared object

Matching symbols will have the same st_value, COFF_ST TYPE(st_ info)and
st shndx.

A weak symbol is identified in the dynamic symbol table by a STB WEAK bind
value. In the external symbol table, a weak symbol has its weak ext flag set
in the EXTR entry.

Users can specify weak symbols using the .weakext assembler directive or the C
#fpragma weak preprocessor directive.

6.3.4.3 Search Order

The dynamic symbol resolution policy, or symbol search order, defines the order
in which the loader searches for symbol definitions in a dynamic executable, its
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shared library dependencies, and shared libraries added to the process image
by dlopen ().

Default search order is a breadth-first, left-to-right traversal of the shared library
dependency graph.

Figure 6-12: Symbol Resolution Search Order

gt
lib& libE
litD libE
A
* libc.so

The search order in Figure 6-12 is: a.out libA 1ibB libc.so 1ibD 1ibE

Objects loaded dynamically by dlopen () are appended to the search order
established at load time. However, dlopen ( ) options will determine whether a
dynamically loaded object’s symbols are visible to objects that do not include it in
their dependency lists. See dlopen(3) for details.

Alternate search orders can be specified using linker or loader options. The -B
symbolic linker option marks an object to be loaded with "depth ring" search
order. This search order consists of a two-step process:

1. Depth-first search the referencing object and its dependencies

2. Depth-first search from the main executable

Using the depth ring search policy and the dependency graph from Figure 6-12,
the search order is:

From Search Order

a.out a.out libA 1ibD libc.so 1ibB 1libE
libAa libA 1ibD libc.so a.out 1ibB 1ibE
1ibB 1ibB 1ibE libc.so a.out 1libA 1ibD
1ibD 1ibD libc.so a.out 1libA 1ibB 1ibE
1ibE 1ibE libc.so a.out 1ibA 1ibD 1ibB
libc.so libc.so a.out 1libA 1ibD 1ibB 1ibE

6.3.4.4 Precedence
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The highest-to-lowest precedence order for dynamic symbol resolution is:

Strong text or data
Strong largest allocated common
Weak data

Weak largest allocated common

P w0 bdE
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5. Largest common

6. Weak text

In case (5), the loader allocates the common symbol. This situation only arises when
an object containing an allocated common of the same name has been changed
between link time and load time or is dynamically unloaded during run time. The

linker will always allocate a common storage class symbol, but if there are multiple
occurrences of that symbol, the others are retained as unallocated commons.

When symbols have equal precedence, the loader relies on the search order to
choose the correct definition for the symbol.

6.3.4.5 Lazy Text Resolution

Lazy text resolution allows programs to execute without resolving text symbols
that are never referenced.

Programs with unresolved text symbols are linked with stub routines.

When a program or library calls a stub routine, the stub calls the loader’s

lazy text resolve () entry point with a dynamic symbol index as an argument.
The loader then resolves the text symbol. Subsequent calls will use the true
address, which has replaced the stub in the appropriate GOT entry.

The dynamic symbol table does not contain any explicit information that indicates
whether a text symbol has a stub associated with it. The loader looks for the
following clues instead:

= Symbol's st _shndx iS SHN UNDEF
= Symbol's st_value is zero

= Symbol's GOT entry is not 0 and is in text segment’s address range

The environment variable LD _BIND NOW controls the loader’s text resolution mode.
If the variable has a non-null value, the bind mode is immediate. If the value is
null, the bind mode is deferred. Immediate binding requires all symbols to be
resolved at load time. Deferred binding allows text symbols to be resolved at run
time using lazy text evaluation. The default is deferred binding.

See Section 3.3.3 for related information.

6.3.4.6 Levels of Resolution

Conditions may exist that cause the loader to do more symbol resolution work for
some programs than for others. The amount of symbol resolution work that is
necessary can have a significant impact on a program’s start-up time.

Descriptions of the possible levels of dynamic symbol resolution follow.

Quickstart Resolution

Minimal symbol resolution. For details on quickstart, see Section 6.3.6.

Timestamp Resolution

Moderate symbol resolution. This is used when any of the following are true:

= The executable or one of its dependencies has indirect dependencies that it
was not linked with.

= The executable or one of its dependencies has unresolved text symbols that are
used in dynamic relocations.

= A shared library dependency was rebuilt so that the timestamp no longer
matches the dependency information in the executable.
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Checksum Resolution

Extensive symbol resolution. This is used when a shared library dependency has
been rebuilt and its checksum no longer matches the dependency information in
the executable. The checksum changes if any of the following conditions are met:

= Global symbols are added
= Global symbols are deleted
= Global symbols change from strong to weak or vice versa

= Common storage class symbols’ sizes change.

Immediate Binding Resolution

Re-resolve symbols marked SHN UNDEF for immediate binding. This is used by
dlopen () to apply immediate binding symbol resolution to shared objects that
were previously resolved with deferred binding.

6.3.5 Dynamic Relocation

The dynamic relocation section describes all locations that must be adjusted within
the object if an object is loaded at an address other than its linked base address.

Although an object may have multiple relocation sections, the linker concatenates
all relocation information present in its input objects. The dynamic loader is thus
faced with a single relocation table. This dynamic relocation table is stored in the
.rel.dyn section and is ordered by the corresponding dynamic symbol index.

Offset 0 in the dynamic relocation table is reserved for a null entry with all fields
zeroed.

All dynamic relocations must be of the type R_REFQUAD or R_REFLONG. This
simplifies the dynamic relocation process. These two relocation types are sufficient
to represent all information that is necessary to accomplish dynamic relocations.
Dynamic relocation entries must only apply to addresses in an object’s data
segment. The object’s text segment must not contain any relocatable addresses.

Relocation entries are updated during dynamic symbol resolution. When a dynamic
symbol’s value changes, any dynamic relocations associated with that symbol must
be updated. To update the entries, the relocation value is computed by subtracting
the old value of the from the new value. This value is then added to the contents
of the relocation targets. The old value of a dynamic symbol is always stored in

a GOT entry. The new value of a dynamic symbol is stored in that GOT entry
after dynamic relocations are processed.

Relocation types other than R_REFQUAD and R_REFLONG are not allowed for
dynamic relocations because no other relocation types apply to absolute addresses
stored in data. Most relocation types apply to values that need to be computed at
link time and do not change at run time.

A dynamic executable or shared library may also contain preserved normal
relocation sections. If normal relocation entries are present, the loader ignores
them.

6.3.6 Quickstart
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Quickstart is a loading technique that uses predetermined addresses to run a
program that depends on shared libraries. It is particularly useful for applications
that rely on shared libraries that change infrequently.

The linker chooses quickstart addresses for all shared library dependencies when
a dynamic executable is linked. These addresses are stored in the registry file
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normally named so_locations. For details on the shared library registry file,
refer to the Programmer’s Guide.

Any modification to a shared library impairs quickstarting of applications that
depend on that library. If a shared library dependency has changed, it may
be possible to use the fixso utility to update the application and thus enable
quickstart to succeed.

To verify that an application is quickstarted, use the -quickstart only loader
option. For example:
% setenv _RLD ARGS -quickstart only

% a.out
1834:a.out: /sbin/loader: Fatal Error: quickstart requirements not met

Additional information on quickstart is available in the Programmer’s Guide.

6.3.6.1 Quickstart Levels

Not all shared objects can be successfully quickstarted. If an executable cannot

be quickstarted, it still runs, but start up is slower. Quickstarting is possible for
programs requiring minimal symbol resolution at load time. A dynamic executable
is quickstarted if:

= The object’s mapped virtual address matches the quickstart address chosen
by the linker.

= The object’s dependencies have not been modified incompatibly since the object
was linked.

= The object’s indirect dependencies are all included as direct dependencies.

= The object’s dependencies also meet quickstart criteria.

Each quickstart requirement that is not met by a dynamic executable and its
dependencies leads to additional symbol resolution work.

= If all quickstart requirements are met, only undefined and multiply defined
symbols need to be resolved.

= If the mapped address differs from the quickstart address, addresses of defined
symbols must be adjusted.

= If the timestamp has been changed, external (imported) symbols must be
resolved.

= If the checksum has been changed, all symbols must be resolved.
At this point, the timesaving advantage of quickstarting has disappeared.

For quickstart purposes, a link-time shared library matches its associated
load-time shared library if the timestamp and checksum are unchanged. If they
have been changed, using the fixso tool may remedy the situation and enable
quickstart to succeed.

6.3.6.2 Conflict Table

The conflict table, stored in the .conflict section, contains a list of symbols that

are multiply defined and must be resolved by the loader. The conflict table is used

only when full quickstarting is possible. If any changes preventing quickstart have
occurred, the loader resorts to other methods of symbol resolution.

The linker records conflicts in a shared object's . conflict section if a second
definition is found for a previously-defined symbol. Common storage class symbols
are not considered conflicts unless they are allocated in more than one shared
object.
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Weak symbols aliased to a newly resolved conflict entry are also treated as
conflicts. This means the loader does not have to search for weak symbols matching
conflict symbols. The weak symbols are added to the conflict list for the first
shared library that defined the symbol in question as well as the library where the
conflicting definition was found.

Figure 6-13 shows a simple example of the use of conflict entries.

Figure 6-13: Conflict Entry Example

aout
liba so
main {
a_sort(); a_sort()q
K .
a_error(),
a_errorid }
'
a_error({exit(1);}
cotflict:
a_error

In this example, the a.out executable has been linked with liba.so, and a single
conflict has been recorded for the symbol a_error (). The conflict is recorded in
the executable file at link time because both the executable and shared library
define the symbol. At run time, any calls to a_error () from a_sort () will be
preempted by the definition of a_error () in the a.out executable. Without
the conflict entry, the call to a_error () would not be preempted properly when
a.out is quickstarted.

6.3.6.3 Repairing Quickstart

The £ixso utility updates shared libraries to permit quickstarting of applications
that utilize them, even if the libraries have changed since the executable was
originally linked against them. Given a shared object as input, it updates the object
and its dependencies to make them meet quickstart criteria. The library changes
handled by fixso are timestamp and checksum discrepancies.

The £ixso utility creates a breadth-first list of the object’s dependencies. It then
handles conflicts present in the conflict table. Next, £ixso resolves globals,
updating global symbol values, dynamic relocation entries, and GOT entries where
necessary. Lastly, if these actions are successful, fixso resets the timestamp and
checksum of its target object.

When a dependency is discovered during processing, fixso automatically opens
the associated object and adds it to the object list if possible. The dependency will
be found and opened if it is located in the default library search path, the path
indicated by the LD LIBRARY PATH environment variable, or the path specified in
the command line. Otherwise, it may be necessary to run the £ixso program on
the library separately, before fixing the target object.

Some changes made to shared libraries cannot be reconciled by fixso. The fixso
utility does not support:

= Increases in size required in the conflict list (new conflicts)
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Movement of the library in memory
Discrepancies in interface versions
Changes to a library’s path

Discrepancies in soname values
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Comment Section

The Tru64 UNIX object file format supports a mechanism for storing information
that is not part of a program’s code or data and is not loaded into memory during
execution. The comment section (. comment) is used for this purpose. Typically,
this section contains information that describes an object but is not required for the
correct operation of the object. Any kind of object file can have a comment section.

Version Note

Prior to Tru64 UNIX V5.0 the system linker ignores comment sections
in input objects.

7.1 New and Changed Comment Section Features

Tru64 UNIX V5.1 introduces the following new features for comment sections:

< New comment subsection types (see Table 7-1)

Version 3.13 of the object file format introduces the following new features for
comment sections:

< New comment subsection types (see Table 7-1)
= Tag descriptors for describing comment subsections (see Section 7.3.4.1)

= Toolversion information for tool specific versioning of object files (see
Section 7.3.4.2)

7.2 Structures, Fields, and Values of the Comment Section
All declarations described in this section are found in the header file
scncomment . h.

7.2.1 Subsection Headers

The comment section begins with a set of header structures, each describing
a separate subsection.

typedef struct {

coff uint cm_tag;
coff uint cm_len;
coff ulong cm_val;

} CMHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Subsection Header (CMHDR) Fields

cm_tag Identifies the type of data in this subsection of the
.comment section. This value may be recognized by system
tools. If it is not recognized, generic processing occurs, as
described in Section 7.3.3. Refer to Table 7-1 for a list of
system-defined comment tags.

cm_len Specifies the unpadded length (in bytes) of this subsection’s
data. If cm_len is zero, the data is stored in the cm_val
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cm_val

field. The padded length is this value rounded up to the
nearest 16-byte boundary.

Provides either a pointer to this subsection’s data or the
data itself. If cm_len is nonzero, cm_val is a relative file
offset to the start of the data from the beginning of the
.comment section. If cm_len is zero, this field contains all
data for that subsection. In the latter case, the size of the
data is considered to be the size of the field (8 bytes).

Table 7-1: Comment Section Tag Values

Tag Value Description
CM_END 0 Last subsection header. Must be present.
CM_CMSTAMP 3 First subsection header. The cm_val field contains
a version stamp that identifies the version of the
comment section format. The current definition
of CM_VERSION is 0. Must be present.
CM_COMPACT_ RLC 4 Compact relocation data. See Section 4.4 for details.
CM_STRSPACE 5 (V5.0 - ) Generic string space.
CM_TAGDESC 6 (V5.0 - ) Subsection containing flags that tell
tools how to process unfamiliar subsections. See
Section 7.2.2 and Section 7.3.4.1.
CM_IDENT 7 (V5.0 - ) ldentification string. Reserved
for system use.
CM_TOOLVER 8 (V5.0 - ) Tool-specific version information.
See Section 7.3.4.2.
CM_II_CHECKSUMS 9 (V5.1 - ) Checksum data for Atom incremental
instrumentation. Reserved for future use.
CM_II ATOMARGS 10 (V5.1 - ) Atom argument data for incremental
instrumentation. Reserved for future use.
CM_II_TOOLARGS 11 (V5.1 - ) Atom tool argument string for incremental
instrumentation. Reserved for future use.
CM_II_ANALADDRS 12 (V5.1 - ) Analysis address information
for Atom incremental instrumentation.
Reserved for future use.
CM_FLOAT_TYPE 13 (not supported) Floating point type used in
compilation. The value field will be set to one
of: F_TANDEM FLOATTYPE UNUSED, F_TAN-
DEM FLOATTYPE TANDEM, F_TANDEM FLOAT-
TYPE NEUTRAL, F_TANDEM FLOATTYPE IEEE
CM_II_OBJID 14 (V5.1 - ) Object identification number
for Atom incremental instrumentation.
Reserved for future use.
CM_LINKERDEF 15 (V5.1 - ) Relocation information for linker-defined
symbols. See Section 4.5
CM_LOUSER 0x80000000  Beginning of user tag value range (inclusive).
CM_HIUSER Oxffffffff  End of user tag value range (inclusive).

Version Note

The CM_FLOAT_TYPE tag is reserved for use on Tandem big-endian
systems. It is not supported on Tru64 UNIX.
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7.2.2 Tag Descriptor Entry

Tag descriptors are used to specify behavior for tools that modify object files and
potentially affect the accuracy of comment subsection data. They are especially
useful as processing guidelines for tools that do not understand certain subsections.
Tools which have specific knowledge of certain comment subsection types can ignore
the tag descriptor settings for subsection type. The tag descriptors are stored in the
raw data of the CM_TAGDESC subsection. See Section 7.3.4.1 for more information.

typedef struct {

coff uint tag;
cm_flags_t flags;
} em td t;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Tag Descriptor Fields

tag Tag value of subsection being described.
flags Flag settings. See Section 7.2.2.1.

7.2.2.1 Comment Section Flags

typedef struct {

coff uint cmf_strip :3;
coff uint cmf_combine :5;
coff uint cmf _modify :4;
coff uint reserved :20;

} cm flags t;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Comment Section Flags Fields

cmf strip Tells tools that perform stripping operations whether to
strip comment section data.

cmf combine Tells tools how to combine multiple input subsections of
the same.
cmf modify Tells tools that modify single object files how to rewrite the

input comment section in the output object.

Table 7-2: Strip Flags

Name Value Description
CMFS_KEEP 0x0 Do_no_t remove t_his subsection when performing
stripping operations.
CMFS_STRIP Ox1 Remove this subsection if stripping the entire symbol table.
CMFS_LSTRIP 0x2 Remove this subsection if stripping local symbolic information

or if fully stripping the symbol table.

Table 7-3: Combine Flags

Name Value Description

CMFC_APPEND 0x0 Concatenate multiple instances of input subsection data.
CMFC_CHOOSE Ox1 Choose one instance of input subsection data (randomly).
CMFC_DELETE 0x2 Do not output this subsection.
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Table 7-3: Combine Flags (cont.)

Name Value Description

CMFC_ERRMULT 0x3 Raise an error if multiple instances of this subsection
are encountered as input.

CMFC_ERROR 0x4 Raise an error if a subsection of this type is
encountered as input.

Table 7-4: Modify Flags

Name Value Description

CMFM_COPY 0x0 Copy this subsection’s data unchanged from the input
object to the output object.

CMFM_DELETE Ox1 Do not output a subsection of this type.

CMFM_ERROR 0x2 Raise an error if a subsection of this type is

encountered as input.

7.3 Comment Section Usage

7.3.1 Comment Section Formatting Requirements

The comment section is divided between subsection header structures and an
unstructured raw data area. The subsection headers contain tags that identify the
data stored in the subsequent raw data area. Each header describes a different
subsection. The raw data for all subsections follows the last header, as shown

in Figure 7-1.

Figure 7-1: Comment Section Data Organization
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Begin and end marker tags are used to denote the boundaries of the structured
portion of the comment section. The begin marker is cCM_CMSTAMP, which contains
a comments section version stamp, and the end marker is CM_END. If either of these
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headers is missing or the version indicated by the value of cM_CMSTAMP is invalid,
the comment section is considered invalid.

The ordering of the subsection headers and their corresponding raw data do not
need to match. Nor is the density of the raw data area guaranteed. However,
all subsection headers must be contiguous: no other data can be placed between
them. Furthermore, a one-to-one relationship must exist between the subsection
headers that point into the raw data and the data itself. Subsection raw data
must not overlap.

The interpretation of the cm_val field depends on the cm_len field. When cm_len
is zero, cm_val contains arbitrary data whose interpretation depends on the value
in the cm_tag field. When cm_1len is non-zero, cm_val contains a relative file
offset from the start of the comment section into the raw data area.

The start of data allocated in the raw data area must be octaword (16-byte) aligned
for each subsection. Zero-byte padding is inserted at the end of each data item as
necessary to maintain this alignment. The value stored in cm_len represents the
actual length of the data, not the padded length. Tools manipulating this data must
calculate the padded length.

7.3.2 Comment Section Contents

The comment section can contain various types of information. Each type of
information is stored in its own subsection of the comment section. Each subsection
must have a unique tag value within the section.

The comment section can include supplemental descriptive information about the
object file. For instance, the tag CM_IDENT points to one or more ASCII strings in
the raw data area that serve to identify the module. Use of this tag is reserved for
compilation system object producers such as compilers and assemblers.

User-defined comment subsections are also possible. The cM_LOUSER and
CM_HIUSER tags delimit the user-defined range of tag values. Potential uses
include product version information and miscellaneous information targeted for
specific consumers.

Although no restrictions are put on the type or amount of information that can be
placed in the comment section, it is important to be aware that users have the
capability to remove the section entirely (by using the command ostrip -¢) and
that object file consumers may ignore its presence.

The minimal valid comment section consists of a CM_CMSTAMP header and a CM_END
header. Because no structure field in the object file format holds the number of
subsections in the comment section, the presence of the CM_END header is crucial.
Without it, a consumer cannot determine the number of subsections present.

7.3.3 Comment Section Processing

Many tools that handle objects read or write the comment section. Some tools,
such as the linker and mcs, perform special processing of comment section data.
Others may be interested in extracting certain subsections. Most object-handling
tools provided on the system access the comment section to check for tool-specific
version information (see Section 7.3.4.2).

The linker is both a consumer and producer of the comment section. As with other
object file sections, the linker must combine multiple input comment sections to
form a single output section. When comment sections are encountered in input
object files, the linker reads subsection headers and merges the raw data according
to its own defaults and the flag settings of any tag descriptors that are present.
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The mecs utility provides comment section manipulation facilities. This tool allows
users to add, modify, delete, or print the comment section from the command line.
The mcs tool can only process objects that already have a . comment section header,
but actual .comment section data is not required. Compilers and assemblers
frequently write object files which have zero-sized . comment sections.

The operations performed by mcs do not affect the object’s suitability for linking or
execution. See the mcs(1) man page for more details.

Stripping tools, such as strip and ostrip, also process the comment section. They
read the tag descriptors to determine what subsections to remove. The cmf _strip
field of the tag descriptor specifies the stripping behavior. If the cmf strip field is
set to CMFS_STRIP that subsection will be removed if an object is fully stripped. If
the cmf strip field is set to CMFS_LSTRIP for a particular subsection type, that
subsection will be removed if an object is fully stripped or locally stripped.

7.3.4 Special Comment Subsections

Comment subsections can have particular structures or semantics that a consumer
must know to be able to read and process them correctly. Two system-defined
subsections with special formatting and processing rules are the tag descriptors
(cM_TAGDESC) and the tool-specific version information (CM_TOOLVER).

Another special subsection contains compact relocation data (CM_COMPACT RLC).
This topic is covered in Section 4.4.

7.3.4.1 Tag Descriptors (CM_TAGDESC)

Version Note

Tag descriptors are supported in object format VV3.13 and greater.

The tag descriptor subsection contains a table of tags and their corresponding flag
settings. This information tells tools how to handle unfamiliar subsections. The
CM_TAGDESC subsection may not be present, and if present, it may not contain
entries for subsections that are present. Also, a tag descriptor may be present for a
subsection that is not found in the object.

A list of possible tag descriptor flag settings can be found in Section 7.2.2.1. Flag
settings are divided into three categories based on the categories of object tools that
need to modify the comment section:

1. Tools that strip object files
2. Tools that combine multiple instances of comment section data

3. Tools that modify and rewrite single object files

The default flag settings for user subsections that do not have tag descriptors are
CMFS_KEEP, CMFC_APPEND, and CMFM_COPY. Tools that strip or rewrite objects
should not modify subsection data for comment subsections marked with these
default flag settings. A tool that combines multiple instances of subsection data,
should concatenate the subsection raw data for same-type input subsections
marked with the default flag settings.

A tool can ignore the tag descriptor flags and default flag settings for a subsection
if it recognizes the subsection type and understands how to process its data.

Some of the system tags have different defaults. These are shown in Table 7-5.
However, tag descriptors in the CM_TAGDESC subsection can be used to override the
default settings for system tag values as well as user tag values.
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Table 7-5: Default System Tag Flags

Tag Default Flag Settings

CM_END CMFS_KEEP, CMFC_CHOOSE, CMFM_COPY
CM_CMSTAMP CMFS_KEEP, CMFC_ CHOOSE, CMFM_COPY
CM_COMPACT RLC CMFS_STRIP, CMFC DELETE, CMFM DELETE
CM_STRSPACE CMFS_KEEP, CMFC_APPEND, CMFM_COPY
CM_TAGDESC CMFS_KEEP, CMFC CHOOSE, CMFM_COPY
CM_IDENT CMFS_KEEP, CMFC_APPEND, CMFM_COPY
CM_TOOLVER CMFS_KEEP, CMFC CHOOSE, CMFM_COPY
CM_II CHECKSUMS CMFS_STRIP, CMFC ERROR, CMFM_COPY
CM_II ATOMARGS CMFS_STRIP, CMFC ERROR, CMFM_COPY
CM_II TOOLARGS CMFS_STRIP, CMFC ERROR, CMFM_COPY
CM_II ANALADDRS CMFS_STRIP, CMFC ERROR, CMFM_COPY
CM_II OBJID CMFS_STRIP, CMFC ERROR, CMFM_COPY
CM_LINKERDEF CMFS_STRIP, CMFC ERROR, CMFM DELETE

Because the size of a tag descriptor entry is fixed, a consumer can determine the
number of entries by dividing the size of the subsection by the size of a single
tag descriptor (see Section 7.2.2). If cm_len is set to zero, a single tag descriptor
is stored as immediate data.

7.3.4.2 Tool Version Information (CM_TOOLVER)

Version Note

Tool versions are supported in object format V3.13 and greater.

The CM_TOOLVER subsection contains tool-specific version entries for system tools
that process object files. If present, this subsection may have any number of entries.
This subsection can also be used to record version information for non-system tools.

Each tool version entry consists of three parts:

Tool name (null-terminated character string)
Tool version number (unsigned 8-byte unaligned numeric value)

Printable version string (null-terminated character string)

The number of tool version entries cannot be determined from the subsection
header because the entries vary in length. The data must be read until the entry
sought is found or until the end of the subsection’s data is reached.

The encoding of the tool version number is generally tool dependent. The only
requirement is that the value, viewed as an unsigned long, must be monotonically
increasing with time.

Typically, an object file consumer uses the tool version information to verify its
ability to handle an input object file. The consumer uses an API (see 1ibst
reference pages) to look for a tool version entry with a tool name matching its own
(part one of the entry). If found, the version number (part two of the entry) must
not exceed the version number of the tool. Otherwise, the tool will print a message
instructing the user to obtain the newer version of the tool, using the printable
version string (part three of the entry). This mechanism can be used as a warning
to customers of a necessary upgrade to a newer release of a product, for instance.
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As an example, a compiler might produce object files with new symbol table
information that causes an old version of the ladebug debugger to produce a fatal
error. To provide more user-friendly behavior for old versions of the debugger, the
compiler outputs a tool version entry:

1. "ladebug"
2. 2
3. "5.0A-BL5"

This entry occupies 25 bytes. The debugger recognizes its name in the entry and
compares the version number "2" with the version number it was built with. (Note
that the version number is most likely meaningless to an end user of the debugger.)
In this case, assume that the installed debugger’s version number is "1". The
message "Please obtain version 5.0A-BL5" is output to the user.

Note that the numeric tool version number can be unaligned. This is an exception
to the general rule requiring alignment of numeric data.
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Archives

An archive is a collection of files stored and treated as a single entity. They
are used most commonly to implement libraries of relocatable objects. These
libraries simplify linking in a program development environment by allowing the
manipulation of one archive file instead of dozens or hundreds of object files.

This chapter covers the archive file format and usage. The archiver is the tool used
to create and manage archives. See ar(1) for more information on its facilities.

8.1 New and Changed

Archive Features

Tru64 UNIX V5.0 introduces archive support for extended user and group ids (see
ar_uid and ar_gid in Section 8.2.2)

8.2 Structures, Fields,

and Values for Archives

All declarations in this section are from the header file ar . h.

See Section 8.3.1 for more information on the organization of object file contents.

8.2.1 Archive Magic String

The archive magic string identifies a file as an archive.

#define ARMAG "!<arch>\n"
#define SARMAG 8

8.2.2 Archive Header

struct ar hdr {

char ar_name [16] ;
char ar_date[12];
char ar_uidl[e6];
char ar_gidl[e];
char ar_mode [8] ;
char ar_size[10];
char ar_fmag[2];

} AR HDR;

SIZE - 60 bytes, ALIGNMENT - 1 byte

Archive Header Fields

ar_name

File member name, blank-terminated if the length of the
name is less than 16 bytes.

File member names that are 16 characters or longer are
stored in the special file member called the file member
name table. In that case, this field contains /offset
where offset indicates the byte offset of the file name
within the table. The offset is a decimal humber.

The prefix ARSYMPREF, defined as the 16-byte
blank-terminated character string 64ELEL
is stored in this field for the special file member called
the symbol definitions (symdef) file and is used to
identify that file. The ar tool marks an out of date
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ar_date

ar_uid

ar gid

ar_mode

ar size

ar_fmag

symdef file by changing the last L in the name to an X
( 64ELEX ).

The blank-terminated name // is stored in this field to
identify the file member name table.

File member date (decimal).

File member user id (decimal).

For a file with a user id greater than USHRT MAX (65535U),
this field will contain //value where value is a 4-byte
unsigned integer.

Version Note

Large user ids are supported in Tru64 UNIX
V5.0 and greater.

File member group id (decimal).

For a file with a group id greater than USHRT MAX
(65535U), this field will contain //value where value is
a 4-byte unsigned integer.

Version Note

Large group ids are supported in Tru64 UNIX
V5.0 and greater.

File member mode (octal).

File member size (decimal). Sizes reflect padding for

the symdef file and the file name table, but not for file
member contents. File members always start on even
byte boundaries. Therefore, if the ar size field indicates
an odd length, it should be rounded up to the next even
number.

Archive magic string. The possible values are shown in
Table 8-1.

Table 8-1: Archive Magic Strings

Symbol Value Meaning

ARFMAG " \n" File member. May be a special file member or any type
of file other than a compressed object file.

ARFZMAG "Z\n" Compressed object file member.

General Note:

Archive header fields are stored as character strings and must be converted to

numeric types.
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8.2.3 Hash Table (ranlib) Structure

This structure is found only inside the special file member called the "symdef file".
See Section 8.3.2 for related information.

struct ranlib {

union {

int ran_strx;
} ran un;
int ran_off;

}i
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Ranlib Structure Fields

ran_strx Symdef string table index for this symbol’s name.

ran_off Byte offset from the beginning of the archive file to the
archive header of the member that defines this symbol.

General Note:

The ran_un union of this structure has only one field, as shown, for historical
reasons.

8.3 Archive Implementation

8.3.1 Archive File Format

The first SARMAG (8) bytes in an archive file identify it as an archive. To verify that
a file is an archive, these bytes should be compared with the archive magic string,
defined as ARMAG in the header file ar . h.

An archive file consists of the magic string followed by multiple file members, each
of which is preceded by an archive file member header. File members can be object
files, compressed object files, text files, or files of any other type, and an archive
can contain a mix of file types. A file member can also be one of two special file
members: the symbol definition (or symdef file) or the file member name table.
Figure 8-1 illustrates this file layout.
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Figure 8-1: Archive File Organization
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The symdef file, if present, is the first file member of an archive. Section 8.3.2
for details on the symdef file.

The file member name table consists of file member names that are too long to fit
into the 16-byte name field of the archive header. If no file member names are 16
characters or longer, this table is not created. If the table is needed, it is either the
first file member or the second (following the symdef file.

The member header for the file name table might look like this:

struct arhdr {

ar name = "// ",
ar_date = "871488454 "y
ar_uid = "0 ";

ar_gid = "0 ";

ar _mode = "0 ";

ar_size = "54 ";

ar fmag = "'\n";

}

Names in the file member name table are separated by a slash (/) and a linefeed
(\n). For example, the contents of the file name table for an archive with three
long object file names might look like this:

st_cmrlc _basic.o/

st_cmrlc_print.o/
st_object_type.o/

The file member header for a file member whose name is stored in the file name
table (in this case, the object st _cmrlc print.o) might look like this:

struct arhdr {

ar name = "/18 ",
ar_date = "871414955 ";
ar_uid = "9442 ";

ar_gid = "0 ",

ar mode = "100600 ";

ar_size = "47296 ",

ar fmag = "'\n";
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8.3.2 Symdef File Implementation

The symdef file contains external symbol information for all object file members
within an archive. When present, the symdef file is the first file member of the
archive. The member header for an up-to-date symdef file might look as follows:

struct arhdr {
ar_name " 64ELEL  ";
ar_date "871488454 "
ar_uid = "0 ";
ar_gid = "0 ";
ar_mode "0 ";
ar_size 18238 ";
ar_ fmag "r\n";

}

The symdef file is present if at least one archive file member is an object file. The
linker uses it when searching for symbol definitions, as long as the file is up to date.
Whenever an archive is modified, the symdef file must be updated or its member
name must be changed to reflect the fact that it is outdated (see Section 8.2.2).

The symdef file consists of a hash table and a string table. The contents of the
symdef file are as follows:

1. hash table size: 4 bytes indicating the number of ranlib structures in the
hash table
hash table: array of ranlib structures
string table size: 4 bytes indicating the size, in bytes, of the symdef string table
string table: string space containing symbol names

At a minimum, the symdef file should contain the sizes of the hash and string
tables, even if the tables are empty.

The hash table contains a ranlib structure for each externally visible symbol
defined in any of the archive file members. The total size of the hash table is two
times the number of symbols rounded to the next highest power of two. Each symbol
has a private hash chain that is used for symbol lookup, as shown in Figure 8-2.
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Figure 8-2: Symdef File Hash Table
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The hash function produces two values for any name it is given: a hash value and a
rehash value. The hash value is used for the first lookup. If the symbol found is not
the right one, the rehash value is used for chaining. The chain is followed until the
correct symbol is found or until the search returns to the symbol where it began.

The linker uses the hash structure field ran_off to locate a symbol's definition in
the archive. This field contains the byte offset from the beginning of the archive
file to the file member header of the member containing the symbol’s definition.

Note that symbols appear only once in the symdef file hash table, regardless of
how many file members define them.

8.4 Archive Usage

8.4.1 Role As Libraries

One important use of archives is to serve as static libraries that programs can link
against. Such archives contain a collection of relocatable object files that can be
selectively included in an executable image as required. Archive libraries are

the only libraries used in creating static executables. They can also be used in
conjunction with shared libraries in dynamic executables.

The linker searches archive libraries during symbol resolution. See the
Programmer’s Guide or 1d4(1) for more information.
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8.4.2 Portability

The archive file format is designed to meet current UNIX standards in order to
assure portability with other UNIX systems.

The format of compressed object files within archives is specific to Tru64 UNIX.
See Section 1.4.3 for details.
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Symbol Table Examples

This chapter contains sample programs that illustrate the symbol table
representations of various language constructs. The examples are organized by
source language and each consists of a program listing and the partial symbol
table contents for that program. The system symbol table dumpers stdump(1) and
odump(1l) were used to produce the output.

91 C

9.1.1 Unnamed Structure

See Section 5.3.8.3 for related information.

Source Listing

Struct S1 {
int abc;
struct {int x; signed int y; unsigned int z;};
int rst;

} sl;

Symbol Table Contents

File 0 Local Symbols:

0 (0) ( 0) unname.c File Text symref 12

1 (1) ( O0xc) Block Info symref 6

2. (2)¢( 0) x Member Info [ 3] int

3 (2) (0x20) vy Member Info [ 3] int

4 (2) (0x40) b4 Member Info [ 4] unsigned int
5 (1) ( 0) End Info symref 1

6 (1) (0x14) S1 Block Info symref 11

7 (2) ( 0) abc Member Info [ 3] int

8 (2) (0x20) Member Info [ 5] struct(file O,

index 2)

9. (2) (0x80) rst Member Info [ 3] int
10. (1) ( 0) S1 End Info symref 6
11. (0) ( 0) unname.c End Text symref 0

Externals Table:

0. (file 0) (0x14) sl Global Common [7] struct(file O,
index 6)

9.2 C++

9.2.1 Base and Derived Classes

See Section 5.3.8.6 for related information.

Source Listing
#include <iostream.h>
class employee {
char *name;
short age;

short deparment;
int salary;

public:

static int stest;
employee *next;
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void print () const;

}i

class manager : public employee {
employee emp;
employee *group;
short level;

public:

void print () const;
}i
void employee::print () const

{

cout << "name is " << name << ’‘\n’;
}
void manager::print () const
{
employee: :print () ;
}
void f ()
{
manager ml,m2;
employee el, e2;
employee *elist;
elist=&ml;
ml.next=6&el;
el.next=6&m2;
m2.next=&e2;
e2.next=0;
}
Symbol Table Contents
File 0 Local Symbols:
0. ( 0)¢( 0) bs6.cxx File Text symref 51
1. (1) ¢( 0) employee Tag Info [25] Class(extended file 0,
index 2)
2. ( 1) (0x18) employee Block Info symref 17
3. (2)( 0) name Member Info [28] Pointer to char
4. ( 2)(0x40) age Member Info [29] short
5. ( 2) (0x50) deparment Member Info [29] short
6. ( 2)(0x60) salary Member Info [30] int
7. ( 2)(0x80) next Member Info [31] Pointer to
Class (extended file 0,
index 2)
8. ( 2)( 0) employee::stest
Static Info [30] int
9. ( 2)( 0) employee::print (void) const
Proc Info [43] endref 12, void
10. ( 3)( 0) this Param Info [40] Const Pointer to Const
Class (extended file 0,
index 2)
11. ( 2)( 0) employee::print (void) const
End Info symref 9
12. ( 2)( 0) employee::operator =(const employeeé&)
Proc Info [57] endref 16, Reference
Class (extended file 0,
index 2)
13. ( 3)( 0) this Param Info [48] Const Pointer to
Class (extended file 0,
index 2)
14. ( 3)( 0) Param Info [54] Reference Const
Class (extended file 0,
index 2)
15. ( 2)( 0) employee::operator =(const employeeé&)
End Info symref 12
16. (1) ( 0) employee End Info symref 2
17. (1) ( 0) manager Tag Info [61] Class(extended file 0,
index 18)
18. ( 1) (0x40) manager Block Info symref 31
19. ( 2)( 0) employee Base Class Info [25] Class (extended file 0,
index 2)
20. ( 2) (0xc0) emp Member Info [25] Class(extended file 0,
index 2)
21. ( 2)(0x180) group Member Info [31] Pointer to Class (extended
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file 0, index 2)
22. ( 2) (0x1lc0) level Member Info [29] short
23. ( 2)( 0) manager::print (void) const
Proc Info [73] endref 26, void
24. ( 3)( 0) this Param Info [70] Const Pointer to Const
Class (extended file 0,
index 18)
25. ( 2)( 0) manager::print (void) const
End Info symref 23
26. ( 2)( 0) manager::operator =(const manager&)
Proc Info [90] endref 30, Reference
Class (extended file 0,
index 18)
27. ( 3)( 0) this Param Info [81] Const Pointer to
Class (extended file 0,
index 18)
28. ( 3)( 0) Param Info [87] Reference Const
Class (extended file 0,
index 18)
29. ( 2)( 0) manager::operator =(const manager&)
End Info symref 26
30. (1) ¢ 0) manager End Info symref 18
31. (1) ¢ 0) employee::print (void) const
Proc Text [414] endref 36, void
32. ( 2)( 0x9) this Param Register [416] Const Pointer to Const
Class (extended file 0,
index 2)
33. ( 2)(0x18) Block Text symref 35
34. ( 2)(0x60) End Text symref 33
35. ( 1) (0x70) employee::print (void) const
End Text symref 31
36. ( 1) (0x70) manager::print (void) const
Proc Text [419] endref 41, void
37. ( 2)( 0x9) this Param Register [421] Const Pointer to Const
Class (extended file 0,
index 18)
38. ( 2) (0x18) Block Text symref 40
39. ( 2) (0x2c) End Text symref 38
40. ( 1) (0x3c) manager::print (void) const
End Text symref 36
41. ( 1) (0oxac) f (void) Proc Text [424] endref 50, void
42. ( 2)( 0ox8) Block Text symref 49
43. ( 3)(-64) ml Local Abs [61] Class(extended file 0,
index 18)
44 . ( 3)(-128) m2 Local Abs [61] Class(extended file 0,
index 18)
45. ( 3)(-152) el Local Abs [25] Class(extended file 0,
index 2)
46. ( 3)(-176) e2 Local Abs [25] Class(extended file 0,
index 2)
47. ( 3)( 0) elist Local Register [31] Pointer to Class (extended
file 0, index 2)
48. ( 2) (0x28) End Text symref 42
49. ( 1) (0x30) f(void) End Text symref 41
50. ( 0)( 0) bs6.cxx End Text symref 0

9.2.2 Virtual Function Tables and Interludes

Source Listing

class Basel
public:
virtual
}i

int virtual mem func() { return 1; }

class Base2
public:
virtual
}i

virtual public Basel ({

int virtual mem func() { return 2; }

class Base3
public:
virtual
}i

public Base2 {

int virtual mem func() { return 3; }

int foo(Basel *bl)
return bl->virtual mem func() ;
}

int main() {

Symbol Table Examples



Basel *bl;
Base2 *b2;
Basel3 *b3;

int
i =

j =
k =

Symbol Table Contents

File 0 Local Symbols:

0. (0)( 0)
1. (1)( 0) Basel
2. (1) ( 0x8) Basel
3. (2)( 0) _ vptr
4. (2)( 0) Basel:
5. (3)¢( 0) this
6. (2)( 0) Basel:
7. (2)( 0) Basel:
8. ( 3)( 0) this
9. ( 3)( 0)
10. ( 2)( 0) Basel:
11. ( 2)( 0) Basel:
12. ( 3)( 0) this
13. ( 3)( 0)
14. ( 2)( 0) Basel:
15. ( 2) ( 0x1l) Basel:
16. ( 3)( 0) this
17. ( 2)( 0) Basel:
18. (1) ( 0) Basel
19. ( 1) ( 0) Base2
20. ( 1) (0x18) Base2
21. ( 2)( 0) _ vptr
22. ( 2)(0x40) _ bptr
23. ( 2)( 0) Basel
24. ( 2)( 0) Base2:
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interlude.cxx

File Text
Tag Info
Block Info
Member Info
Basel (void)
Proc Info
Param Info
Basel (void)
End Info
Basel (const Basel&)
Proc Info
Param Info
Param Info
Basel (const Basel&)
End Info
operator =(const Baselé&)
Proc Info
Param Info
Param Info

operator =(const Baselé&)

End Info
virtual mem_ func(void)

Proc Info

Param Info

virtual mem_ func(void)

End Info
End Info
Tag Info
Block Info
Member Info
Member Info

Virtual Base Class
Info

:Base2 (void)

symref 113

[17] Class(extended file 0,
index 2)

symref 19

[20] Pointer to Array

[ (extended file 0, aux

3)0-1:64] of Virtual func
table

[35] endref 7, Reference
Class (extended file 0,
index 2)

[32] Const Pointer to
Class (extended file 0,
index 2)

symref 4

[45] endref 11, Reference
Class (extended file 0,
index 2)

[32] Const Pointer to
Class (extended file 0,
index 2)

[42] Reference Const
Class (extended file 0,
index 2)

symref 7

[49] endref 15, Reference
Class (extended file 0,
index 2)

[32] Const Pointer to
Class (extended file 0,
index 2)

[42] Reference Const
Class (extended file 0,
index 2)

symref 11

[53] endref 18, int

[32] Const Pointer to
Class (extended file 0,
index 2)

symref 15

symref 2

[55] Class(extended file 0,
index 20)

symref 42

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[17] Class(extended file 0,

index 2)



25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.
44 .

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

3)( 0)
3)( 0)
2)( 0)
2)( 0)
3)( 0)
3)( 0)
3)( 0)
2)( 0)
2)( 0)
3)( 0)
3)( 0)
3)( 0)
2)( 0)
2) ( 0x1)
3)( 0)
2)( 0)
1) ( 0)
1) ( 0)
1) (0x18)
2)( 0)
2) (0x40)
2)( 0)
2)( 0)
3)( 0)
3) ( 0)
2)( 0)
2)( 0)
3)( 0)
3)( 0)
3) ( 0)
2)( 0)
2)( 0)

Proc Info
this Param Info
<control> Param Info
Base2: :Base2 (void)

End Info
Base2: :Base2 (const Base2&)

Proc Info
this Param Info
<control> Param Info

Param Info

Base2: :Base2 (const Base2&)

End Info
Base2::o0perator =(const Base2&)
Proc Info
this Param Info
<control> Param Info
Param Info
Base2::operator =(const Base2&)
End Info
Base2::virtual mem_func (void)
Proc Info
this Param Info
Base2::virtual mem_func (void)
End Info
Base2 End Info
Base3 Tag Info
Base3 Block Info
__vptr Member Info
_ _bptr Member Info
Base2 Base Class Info

Base3: :Base3 (void)

Proc Info
this Param Info
<control> Param Info
Base3: :Base3 (void)

End Info
Base3l: :Base3 (const Basel3&)

Proc Info
this Param Info
<control> Param Info

Param Info

Base3l: :Base3 (const Basel3&)

End Info
Base3::operator =(const Base3&)
Proc Info

[67] endref 28, Reference
Class (extended file 0,
index 20)

[64] Const Pointer to
Class (extended file 0,
index 20)

[ 3] int

symref 24

[77] endref 33, Reference
Class (extended file 0,
index 20)

[64] Const Pointer to
Class (extended file 0,
index 20)

[ 3] int

[74] Reference Const
Class (extended file 0,
index 20)

symref 28

[81] endref 38, Reference
Class (extended file 0,
index 20)

[64] Const Pointer to
Class (extended file 0,
index 20)

[ 3] int

[74] Reference Const
Class (extended file 0,
index 20)

symref 33

[85] endref 41, int

[64] Const Pointer to
Class (extended file 0,
index 20)

symref 38

symref 20

[87] Class (extended file 0,
index 43)

symref 65

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[20] Pointer to Array
[ (extended file 0, aux
3)0-1:64] of Virtual func
table

[55] Class (extended file 0,
index 20)

[99] endref 51, Reference
Class (extended file 0,
index 43)

[96] Const Pointer to
Class (extended file 0,
index 43)

[ 3] int

symref 47

[109] endref 56, Reference

Class (extended file 0,
index 43)
[96] Const Pointer to
Class (extended file 0,
index 43)
[ 3] int
[106] Reference Const
Class (extended file 0,
index 43)

symref 51

[113] endref 61, Reference

Class (extended file 0,
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index 43)

57. ( 3)( 0) this Param Info [96] Const Pointer to
Class (extended file 0,
index 43)
58. ( 3)( 0) <controls> Param Info [ 3] int
59. ( 3)( 0) Param Info [106] Reference Const
Class (extended file 0,
index 43)
60. ( 2)( 0) Base3::operator =(const Base3&)
End Info symref 56
61. ( 2)( 0x1) Base3::virtual mem_ func(void)
Proc Info [117] endref 64, int
62. ( 3)( 0) this Param Info [96] Const Pointer to
Class (extended file 0,
index 43)
63. ( 2)( 0) Base3::virtual mem func(void)
End Info symref 61
64. (1) ( 0) Base3l End Info symref 43
65. ( 1)( 0) _ INTER_ Base3_virtual mem func Basel Base2 Xv
Interlude Info thunk (extended file 0, index
61), proc(extended file
0, index 104)
66. ( 1)( 0) _ INTER_ Base2 virtual mem func_Basel Xv
Interlude Info thunk (extended file 0, index
38), proc(extended file
0, index 108)
67. ( 1) (0x160) _ vtbl 5Basel
Static SDhata [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
68. ( 1) (0x168) _ vtbl 5Base2
Static SDhata [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
69. ( 1) (0x170) _ btbl 5Base2
Static SDhata [138] Const Array [ (extended
file 0, aux 3)0-0:64] of
long
70. ( 1) (0x178) _ vtbl 5Basel5Base2
Static SDhata [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
71. ( 1) (0x180) _ vtbl 5Base3
Static SDhata [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
72. ( 1) (0x188) _ btbl 5Base3
Static SDhata [138] Const Array [ (extended
file 0, aux 3)0-0:64] of long
73. ( 1) (0x190) _ vtbl 5Basel5Base25Base3
Static SDhata [126] Const Array [ (extended
file 0, aux 3)0-0:64] of
Pointer to void
74. (1) ( 0) Basel::virtual mem func(void)
StaticProc Text [152] endref 79, int
75. ( 2)( 0x1l) this Param Register [32] Const Pointer to
Class (extended file 0,
index 2)
76. ( 2)( 0x4) Block Text symref 78
77. ( 2)( 0x8) End Text symref 76
78. ( 1) ( Oxc) Basel::virtual mem_ func(void)
End Text symref 74
79. ( 1) (0x14) Base2::virtual mem_ func(void)
StaticProc Text [154] endref 84, int
80. ( 2)( 0x1l) this Param Register [64] Const Pointer to
Class (extended file 0,
index 20)
81. ( 2)( 0x4) Block Text symref 83
82. ( 2)( 0x8) End Text symref 81
83. ( 1) ( O0xc) Base2::virtual mem_ func(void)
End Text symref 79
84. ( 1) (0x28) Base3::virtual mem_ func(void)
StaticProc Text [156] endref 89, int
85. ( 2)( 0x1l) this Param Register [96] Const Pointer to
Class (extended file 0,
index 43)
86. ( 2)( 0x4) Block Text symref 88
87. ( 2)( 0x8) End Text symref 86
88. ( 1) ( Oxc) Base3::virtual mem_ func(void)
End Text symref 84
89. ( 1) (0x34) foo(Basel*) Proc Text [158] endref 94, int
90. ( 2)( 0x9) b1l Param Register [29] Pointer to Class (extended
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file 0, index 2)

91. ( 2)(0x10) Block Text symref 93
92. ( 2) (0x28) End Text symref 91
93. ( 1) (0x38) foo(Basel*) End Text symref 89
94. ( 1) (0x6c) main Proc Text [160] endref 104, int
95. ( 2) ( 0xc) Block Text symref 103
96. ( 3)(-8) bl Local Abs [29] Pointer to Class (extended
file 0, index 2)
97. ( 3)(-16) b2 Local Abs [61] Pointer to Class (extended
file 0, index 20)
98. ( 3)( 0x9) b3 Local Register [93] Pointer to Class (extended
file 0, index 43)
99. ( 3)(-24) i Local Abs [ 3] int
100. ( 3)(-28) 3 Local Abs [ 3] int
101. ( 3)(-32) k Local Abs [ 3] int
102. ( 2) (0x70) End Text symref 95
103. ( 1) (0x80) main End Text symref 94
104. ( 1) (0x20) _ INTER_ Base3_virtual mem func Basel Base2 Xv
StaticProc Text [162] endref 108, btNil
105. ( 2)( 0) Block Text symref 107
106. ( 2) (0x28) End Text symref 105
107. ( 1) ( 0x8) _ INTER_Base3_virtual mem func Basel Base2 Xv
End Text symref 104
108. ( 1) ( Oxc) _ INTER_Base2 virtual mem func Basel Xv
StaticProc Text [164] endref 112, btNil
109. ( 2)( 0) Block Text symref 111
110. ( 2) (0x14) End Text symref 109
111. ( 1) ( 0x8) _ INTER_Base2 virtual mem func Basel Xv
End Text symref 108
112. ( 0) ( 0) interlude.cxx
End Text symref 0O
9.2.3 Namespace Definitions and Uses
See Section 5.3.6.4 for related information.
Source Listing
nsl.h:
namespace nsl {
class Cobj {};
extern int 1i1l;
}
ns2.h:
namespace nsl {
int x1(void) ;
}
ns.C:
#include "nsl.h"
#include "ns2.h"
namespace nsl {
extern int part3;
}
int nsl::1i1 = 1000;
int nsl::part3 = 3;
int nsl::x1(void) ({
using namespace nsl;
return 11*10;
}
Symbol Table Contents
File 0 Local Symbols:
0. ( 0)¢( 0) ns.C File Text symref 7
1. (1) ¢( 0) nsl::x1(void) Proc Text [4] endref 6, int
2. (2)( 0) Using Info [6] symref (file 1, index 1)
3. ( 2)( o0x8) Block Text symref 5
4. ( 2)(0x14) End Text symref 3
5. (1) (0x18) nsl::x1(void) End Text symref 1
6. ( 0)( 0) ns.C End Text symref 0

File 1 Local Symbols:
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0. ( 0)¢( 0) nsl.h File Text symref 8
1. (1) ¢( 0) nsl Namespace Info symref 7
2. (2)¢( 0) nsl::x1(void) Proc Info [2] endref 4, int
3. (2)( 0) nsl::x1(void) End Info symref 2
4. (2)( 0) i1 Member Info [4] int
5. (2)¢( 0) part3 Member Info [4] int
6. (1)( 0) nsl End Info symref 1
7. (0)( 0) nsl.h End Text symref 0
Externals Table:
0. (file 0) (0x50) nsl::1i1l Global SDhata [3] int
1. (file 0) (0x58) nsl::part3 Global Sdata [3] int
2. (file 0) ( 0) nsl::x1(void) Proc Text symref 1

9.2.4 Unnamed Namespaces

See Section 5.3.6.4.3 for related information.

Source Listing

uns.C:
namespace {

int usvl;
int usv2;

}

int privat(void) {
return usvl + usv2;

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)¢( 0) uns.C File Info symref 13

1. (1) ¢( 0) _ NI1AQSbNU3PTE Namespace Info symref 5

2. (2)( 0) <unnamed namespace>::usvl Member Info [3] int

3. (2)( 0) <unnamed namespace>::usv2 Member Info [3] int

4. (1) ( 0) _ NI1AQSbNU3PTE End Info symref 1

5. (1)¢( 0) Using Info [4] symref (file 0, index 1)
6. ( 1) (0x50) <unnamed namespace>::usvl Static SBss [3] int

7. ( 1) (0x54) <unnamed namespace>::usv2 Static SBss [3] int

8. (1) 0) privat (void) Proc Text [5] endref 12, int
9. ( 2)( ox8) Block Text symref 11

10. ( 2) (0xle) End Text symref 9

11. ( 1) (0x20) End Text symref 8

12 (0)( 0) End Text symref 0

9.2.5 Namespace Aliases

See Section 5.3.6.4.2 for related information.

Source Listing

alias.C:
namespace long namespace name {

extern int nmem;

int get nmem(void)
namespace nknm = long namespace_name;
namespace nknm2 = nknm;
return nknm: :nmem;

Symbol Table Contents

File 0 Local Symbols

0. ( 0)¢( 0) alias.C File Text symref 11
1. (1) ¢( 0) long namespace name Namespace Info symref 4
2. (2)( 0) nmem Member Info [3] int
3. (1)¢ 0) long namespace_name End Info symref 1
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4. (1) ( 0) get_nmem(void) Proc Text [4] endref 10, int
5. ( 2)( ox8) Block Text symref 9
6 (2)¢( 0) nknm Alias Info [5] symref (file 0,index 1)
7 (2)¢( 0) nknm2 Alias Info [6] symref (file 0,index 6)
8. ( 2)(0x10) End Text symref 5
9. ( 1) (0x14) get_nmem(void) End Text symref 4
10. ( 0) ( 0) alias.C End Text symref 0
Externals Table
0. (file 0) (0x4) long namespace_name::nmem Global Undefined [3]int
1. (file 0) ( 0) get nmem(void) Proc Text symref 4
9.2.6 Exception-Handling
See Section 3.3.8 for related information.
Source Listing
#include <iostream.h>
class Vector ({
int *p;
int sz;
public:
enum { max=1000 };
Vector (int) ;
class Range { };
class Size { };
int operator([] (int 1i);
}; // Vector
Vector: :Vector (int i) {
if (i>max) throw Size();
p=new int[i];
if (p) sz=i;
else sz=0;
}
int Vector::operator[] (int i) {
if (0<=1 && i<sz) return pli];
throw Range () ;
}
void £() {
int 1i;
try {
cout<<"gize?";
cin>>i;
Vector v (i) ;
cout<<v[i] <<"\n";
}
catch (Vector::Range) ({
cout<< "bad news; outta here...\n";
}
catch (Vector::Size) ({
cout<< "can’t initialize to that size...\n";
}
} /£
main() {
£0);
}
Symbol Table Contents
File 0 Local Symbols:
0. ( 0)¢( 0) multiexc.cxx File Text symref 83
1. (1) ¢( 0) Vector Tag Info [16] Class(extended file 0,
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index 2)

2. ( 1) (0x10) Vector Block Info symref 40
3. (2)( 0) <generated name_0005>
Tag Info [19] enum(extended file O,
index 4)
4. (2)( 0) <generated name_0005>
Block Info symref 7
5. ( 3) (0x3e8) max Member Info [ 2] btNil
6. (2)( 0) <generated name 0005> End Info symref 4
7. (2)¢( 0) Range Tag Info [22] Class(extended file 0,
index 8)
8. ( 2)( 0xl) Range Block Info symref 14
9. ( 3)( 0) Vector::Range::operator =(const Vector::Range&)
Proc Info [40] endref 13, Reference
Class (extended file 0,
index 8)
10. ( 4) ( 0) this Param Info [31] Const Pointer to
Class (extended file 0,
index 8)
11. ( 4) ( 0) Param Info [37] Reference Const
Class (extended file 0,
index 8)
12. ( 3)( 0) Vector::Range::operator =(const Vector::Range&)
End Info symref 9
13. ( 2)( 0) Range End Info symref 8
14. ( 2)( 0) Size Tag Info [44] Class(extended file 0,
index 15)
15. ( 2) ( 0x1l) Size Block Info symref 21
16. ( 3)( 0) Vector::Size::operator =(const Vector::Size&)
Proc Info [62] endref 20, Reference
Class (extended file 0,
index 15)
17. ( 4) ( 0) this Param Info [53] Const Pointer to
Class (extended file 0,
index 15)
18. ( 4) ( 0) Param Info [59] Reference Const
Class (extended file 0,
index 15)
19. ( 3)( 0) Vector::Size::operator =(const Vector::Size&)
End Info symref 16
20. ( 2)( 0) Size End Info symref 15
21. ( 2)( 0) p Member Info [66] Pointer to int
22. ( 2) (0x40) sz Member Info [ 3] int
23. ( 2)( 0) Vector::Vector (int)
Proc Info [76] endref 27, Reference
Class (extended file 0,
index 2)
24. ( 3)( 0) this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
25. ( 3)( 0) 1 Param Info [ 3] int
26. ( 2)( 0) Vector::Vector (int)
End Info symref 23
27. ( 2)( 0) Vector::Vector (const Vector&)
Proc Info [86] endref 31, Reference Class (extended
file 0, index 2)
28. ( 3)( 0) this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
29. ( 3)( 0) Param Info [83] Reference Const
Class (extended file 0,
index 2)
30. ( 2)( 0) Vector::Vector (const Vector&)
End Info symref 27
31. ( 2)( 0) Vector::operator [] (int)
Proc Info [90] endref 35, int
32. ( 3)( 0) this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
33. ( 3)( 0) 1 Param Info [ 3] int
34. ( 2)( 0) Vector::operator [] (int)
End Info symref 31
35. ( 2)( 0) Vector::operator =(const Vector&)
Proc Info [92] endref 39, Reference
Class (extended file 0,
index 2)
36. ( 3)( 0) this Param Info [73] Const Pointer to
Class (extended file 0,
index 2)
37. ( 3)( 0) Param Info [83] Reference Const
Class (extended file 0,
index 2)
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38.

39.
40.

41.

42.

43.
44 .

45.

46.

47.

48.

49.
50.
51.

52.

53.
54.

55.
56.

57.

58.

59.
60.
61.

62.

63.
64 .

65.
66 .
67.
68.

69.
70.

71.
72.
73.
74 .
75.
76.
77.
78.
79.
80.
81.
82.

2) ( 0) Vector::operator =(const Vector&)

End Info
1) ( 0) Vector End Info
1) ( 0) _ throw QléVector4Size

Tag Info
1) (0x10) _ throw QléVector4Size

Block Info
2) ( 0) type_signature

Member Info
2) (0x40) thunk Member Info
1) ( 0) _ throw QléVector4Size

End Info
1) (0x3c0) _ throw_QléVector4Size

Static Data
1) (0x3a0) _ throw_QléVector5Range

Static Data
1) ( 0) Vector::Vector (int)

Proc Text
2) ( Oxa) this Param
2) ( 0x9) 1 Param
2) (0x20) Block Text
3) (-8) _ ts8 Local Abs
3) (0x3c0) _ throw QléVector4Size

Static Data
3)(-16) _ t9 Local Abs
3)(-24) _ tlo Local Abs
2) (0x74) End Text
1) (0xb4) Vector::Vector (int)

End Text
1) (0xb4) Vector::operator [] (int)

Proc Text
2) (0x28) this Param Abs
2)( 0x9) 1 Param
2) (0x1lc) Block Text
3)(-16) _ t11 Local Abs
3) (0x3a0) _ throw_QléVector5Range

Static Data
2) (0x44) End Text
1) (0x7c) Vector::operator [] (int)

End Text
1) (0x130) f (void) Proc Text
2) (0x1lc) Block Text
3) (-32) i Local Abs
3) (-48) _ current_try block decl

Local Abs
3) (0x28) Block Text
4) (-24) v Local Abs
3) (0xab) End Text
3) (0xac) Block Text
3) (0xe3) End Text
3) (0xe4) Block Text
3) (0x113) End Text
2) (0x1llc) End Text
1) (0x130) f (void) End Text
1) (0x260) main Proc Text
2) (0x10) Block Text
2) (0x18) End Text
1) (0x24) main End Text
0) ( 0) multiexc.cxx End Text

Register

Register

Register

symref 35
symref 2

[96] struct (extended file O,
index 41)

symref 45

[99] Pointer to char
[99] Pointer to char

symref 41

[176] Array [(extended file 7,
aux 9)0-1:128] of
struct (extended file O,
index 41)

[176] Array [(extended file 7,
aux 9)0-1:128] of
struct (extended file O,
index 41)

[184] endref 57, Reference
Class (extended file 0,
index 2)

[73] Const Pointer to

Class (extended file 0,

index 2)

[ 3] int

symref 56

[44] Class(extended file 0,
index 15)

indexNil

[10] unsigned long
[194] Pointer to Array
[ (extended file 7, aux
9)0-0:32] of int
symref 50

symref 47

[200] endref 65, int

[73] Const Pointer to
Class (extended file 0,
index 2)

[ 3] int

symref 64

[22] Class(extended file 0,
index 8)

indexNil
symref 60

symref 57
[202] endref 78, void
symref 77
[ 3] int

indexNil

symref 72

[16] Class(extended file 0,

index 2)

symref 69

symref 74

symref 72

symref 76

symref 74

symref 66

symref 65

[204] endref 82, int
symref 81

symref 79

symref 78

symref 0
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9.3 Fortran

9.3.1 Common Data

9-12

See Section 5.3.6.6 for related information.

Source Listing

comm. f:

C main program
INTEGER IND, CLASS(
REAL MARKS (50)
COMMON CLASS, MARKS,
CALL EVAL(5)
STOP
END

SUBROUTINE EVAL (PER
INTEGER PERF,JOB (10
REAL GRADES (50)

10)

IND

F)
) , PAR

COMMON JOB, GRADES, PAR

RETURN
END

Symbol Table Contents

File 0 Local Symbols:
0. ( 0)¢( 0) comm.f File Text symref 13
1. (1) ¢( 0) comm$main_ Proc Text [25] endref 6, btNil
2. ( 2)(0x10) Block Text symref 5
3. ( 3)( 0) _BLNK Static Common [39] struct (extended file 1,
index 1)
4. ( 2)(0x44) End Text symref 2
5. ( 1) (0x44) comm$main_ End Text symref 1
6. ( 1) (0x44) eval_ Proc Text [42] endref 12, btNil
7. (2)( 0) PERF Param VarRegister [11] 32-bit long
8. ( 2)( ox4) Block Text symref 11
9. ( 3)( 0) _BLNK Static Common [56] struct (extended file 2,
index 1)
10 (2)( 0x4) End Text symref 8
11. ( 1) ( 0x8) eval_ End Text symref 6
12. ( 0) ( comm. f End Text symref 0
File 1 Local Symbols:
0. ( 0)¢( 0) _BLNK File Text symref 7
1. ( 1) (0xf4) BLNK Block Common symref 6
2. ( 2)(0x780) IND Member Info [ 5] 32-bit long
3. (2)( 0) CLASS Member Info [ 6] Array [(extended file O,
aux 11)1-10:4] of 32-bit
long
4. ( 2)(0x140) MARKS Member Info [12] Array [(extended file O,
aux 11)1-50:4] of float
5. (1)¢( 0) End Common symref 1
6. ( 0)¢( 0) _BLNK End Text symref 0
File 2 Local Symbols:
0. ( 0)¢( 0) _BLNK File Text symref 7
1. ( 1) (0xf4) BLNK Block Common symref 6
2. (2)( 0) JOB Member Info [ 5] Array [(extended file O,
aux 11)1-10:4] of 32-bit
long
3. ( 2)(0x780) PAR Member Info [11] 32-bit long
4. ( 2)(0x140) GRADES Member Info [12] Array [(extended file O,
aux 11)1-50:4] of float
5. (1)¢( 0) End Common symref 1
6. (0)( 0) _BLNK End Text symref 0
Externals table
0 (file 0) ( 0) MAIN_ Proc Text symref 1
1. (file 0) (0xf4) _BLNK Global Common indexNil
2. (file 0) ( 0) comm$main_ Proc Text symref 1
3. (file 0) (0x44) eval_ Proc Text symref 6
4. (file 0) ( 0) for_stop Proc Undefined indexNil
5. (file 0) ( 0) for_set_reentrancy
Proc Undefined indexNil
6 (file 0) ( 0) _fpdata Global Undefined indexNil
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filename
cbLine --------
1nOffset sym
comm.oO:
comm. £
0 0
5 13
_BLNK___
0 13
0
_BLNK__
0 20
0

***FILE DESCRIPTOR TABLE***

address

line pd
0x0000000000000000

0 0

20 2
0x0000000000000000

0 2

0 0
0x0000000000000000

0 2

0 0

9.3.2 Alternate Entry Points

See Section 5.3.6.7 for related information.

Source Listing

aent.f:
program entryp

print *,
call anentry()
call anentryl(2,3
call anentryla(2,
call asubr()
print *, "exiting

end

subroutine asubr

real*4 areal /1.2
print *, "In asub
return

entry anentry
print *, "In anen
return

"In entryp,

the main routin

)
3,4,5,6,7)

345E-6/
o

try"

entry anentryl(a,b,c,d,e, f)

a =1

b =2

print *, "In anen
return

include ’‘entrya.h

tryl"

’

entry anentry2(b,a)
print *, "In anentry2"
return
entry anentry3
include ’‘entryb.h’
return
end

Symbol Table Contents

File 0 Local Symbols:

vstamp -g sex lang flags
——————— iBase/count------------—“~““~—“—~ -~~~
string opt aux rfd
0x0000 0 el Fortran readin
0 0 0 0
44 0 59 0
0x0000 0 el Fortran merge
44 0 59 0
33 0 18 0
0x0000 0 el Fortran merge
77 0 77 0
32 0 18 0
en
0. ( 0)¢( 0) aent.f File Text symref 30
1. (1) ¢( 0) entryp Proc Text [ 4] endref 5, btNil
2. ( 2)(0x14) Block Text symref 4
3. ( 2) (0xf8) End Text symref 2
4. (1) (0x108) entryp_ End Text symref 1
5. ( 1) (0x108) asubr_ Proc Text [ 6] endref 29, btNil
6. ( 2)(0x20) Block Text symref 28
7. ( 3)(0x610) AREAL Static Data [ 8] float
8. ( 3)(0x17c) anentry_  Proc Text [ 9] endref -1, btNil
9. ( 4) (0x1f0) anentryl Proc Text [11] endref -1, btNil
10. ( 5)( Oxa) A Param VarRegister [ 8] float
11. ( 5)( 0x9) B Param VarRegister [ 8] float
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12. ( 5)(-144) C Param Var [ 8] float
13. ( 5)(-152) D Param Var [ 8] float
14. ( 5)(-160) E Param Var [ 8] float
15. ( 5)(-168) F Param Var [ 8] float
16. ( 5) (0x290) anentryla_ Proc Text [13] endref -1, btNil
17. ( 6) ( 0Oxa) A Param VarRegister [ 8] float
18. ( 6)( 0x9) B Param VarRegister [ 8] float
19. ( 6) (-144) C Param Var [ 8] float
20. ( 6)(-152) D Param Var [ 8] float
21. ( 6)(-160) E Param Var [ 8] float
22. ( 6)(-168) F Param Var [ 8] float
23. ( 6) (0x330) anentry2 Proc Text [15] endref -1, btNil
24. ( 7)( 0x9) B Param VarRegister [ 8] float
25. ( 7)( Oxa) A Param VarRegister [ 8] float
26. ( 7) (0x3ac) anentry3_  Proc Text [17] endref -1, btNil
27. ( 7) (0x384) End Text symref 6
28. ( 6) (0x3a0) asubr_ End Text symref 5
29. ( 5)( 0) aent.f End Text symref 0
Externals table:
0. (file 0) ( 0) MAIN__ Proc Text symref 1
1. (file 0) ( 0) entryp_ Proc Text symref 1
2. (file 0) (0x108) asubr_ Proc Text symref 5
3. (file 0) (0x290) anentryla_ Proc Text symref 16
4. (file 0) (0x1f0) anentryl  Proc Text symref 9
5. (file 0) (0x17c) anentry Proc Text symref 8
6. (file 0) ( 0) for set reentrancy
Proc Undefined indexNil
7. (file 0) ( 0) for write seq lis
Proc Undefined indexNil
8. (file 0) (0x330) anentry2  Proc Text symref 23
9. (file 0) (0x3ac) anentry3  Proc Text symref 26
10. (file 0) ( 0) _fpdata Global Undefined indexNil
***PROCEDURE DESCRIPTOR TABLE***
name prof rfrm isym iline iopt regmask regoff fpoff fp
address guse gpro 1nOff InLow lnHigh fregmask frgoff lcloff pc
aent.o:
aent . f [0 for 7]
entryp_ 0 0 1 0 -1 0x04000200 -112 112 30
0x000 1 8 0 1 10 0x00000000 0 0 26
asubr 0 0 5 66 -1 0x04001e00 -256 256 30
0x108 1 8 8 12 37 0x00000000 0 0 26
anentry 0 0 8 95 -1 0x04001e00 -256 256 30
0x17¢c 1 8 11 17 -1 0x00000000 0 0 26
anentryl 0 0 9 124 -1 0x04001e00 -256 256 30
0x1fo 1 8 14 21 -1 0x00000000 0 0 26
anentryla 0 0 16 164 -1 0x04001e00 -256 256 30
0x290 1 8 20 1 -1 0x00000000 0 0 26
anentry2 0 0 23 204 -1 0x04001e00 -256 256 30
0x330 1 8 25 29 -1 0x00000000 0 0 26
anentry3 0 0 26 235 -1 0x04001e00 -256 256 30
0x3ac 1 8 28 33 -1 0x00000000 0 0 26

9.3.3 Array Descriptors

See Section 5.3.8.9 for related information.

Source Listing

arraydescs.f:

! -*- Fortran -*-

integer, allocatable, dimension(:,:) alloc_int_2d
real, pointer, dimension(:) pointer real 1d

allocate(alloc_int_2d(10,20))
call zowie(alloc_int_ 2d)
end

contains

subroutine zowie (assumed_int_2d)
integer, dimension(:, :) assumed_int_2d
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print *, assumed_int 2d
return
end subroutine

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)¢( 0) arraydescs.f File
1. (1) ¢( 0) main$arraydescs_
Proc
2 ( 2) (0x40) $f90$£f90_ array desc
Block
3. ( 3)( 0) dim Member
4. ( 3)(0x40) element_ length Member
5. ( 3)(0x80) ptr Member
6. ( 3)(0x140) iesl Member
7. ( 3)(0x180) ubl Member
8. ( 3)(0x1lcO) 1b1l Member
9. (2)( 0) $£90$f90 array desc
End
10. ( 2) (0x58) s$f90$f90_array desc
Block
11. ( 3)( 0) dim Member
12. ( 3) (0x40) element length
Member
13. ( 3) (0x80) ptr Member
14. ( 3) (0x140) iesl Member
15. ( 3) (0x180) ubl Member
16. ( 3) (0x1lcO) 1lbl Member
17. ( 3) (0x200) ies2 Member
18. ( 3) (0x240) ub2 Member
19. ( 3) (0x280) 1b2 Member
20. ( 2)( 0) $£90$f90_array desc
End
21. ( 2) (0x14) Block
22. ( 3)(0x450) POINTER_REAL_1D
Static
23. ( 3)(0x3c0) ALLOC_INT 2D
Static
24. ( 2)(0x160) End
25. ( 1) (0x170) mainSarraydescs_
End
26. ( 1) (0x170) zowie_ Proc
27. ( 2)(0x58) $£90$f90_array desc
Block
28. ( 3)( 0) dim Member
29. ( 3)(0x40) element length
Member
30. ( 3)(0x80) ptr Member
31. ( 3)(0x140) iesl Member
32. ( 3)(0x180) ubl Member
33. ( 3)(0x1lc0) 1bl Member
34. ( 3)(0x200) ies2 Member
35. ( 3) (0x240) ub2 Member
36. ( 3)(0x280) 1b2 Member
37. ( 2)( 0) $£90$f90_array desc
End
38. ( 2)( 0x9) ASSUMED_INT 2D
Param
39. ( 2) (0x34) Block
40. ( 2) (0x1f4) End
41. ( 1) (0x220) zowie_ End
42. ( 0)( 0) arraydescs.f End

9.4 Pascal

9.4.1 Sets

See Section 5.3.8.13 for related information.

Source Listing

program sets (input,output) ;

type digitset=set of 0..9;

Text

Text

Info
Info
Info
Info
Info
Info
Info

Info

Info
Info

Info
Info
Info
Info
Info
Info
Info
Info

Info
Text

Data

Text

Text
Text

Info
Info

Info
Info
Info
Info
Info
Info
Info
Info

Info

VarRegister [41

Text
Text
Text
Text

symref 43
[ 4] endref 26, btNil

symref 10
[ 6] 8-bit int

[ 7] 32-bit long
[ 9] Pointer to float
[10] 32-bit long
[11] 32-bit long
[12] 32-bit long

symref 2

symref 21
[16] 8-bit int

[17] 32-bit long
[19] Pointer to 32-bit long
[20] 32-bit long
[21] 32-bit long
[22] 32-bit long
[23] 32-bit long
[24] 32-bit long
[25] 32-bit long

symref 10
symref 25

[13] struct (extended file O,
index 2)

[26] struct (extended file O,
index 10)
symref 21

symref 1
[29] endref 42, btNil

symref 38
[31] 8-bit int

[32] 32-bit long
[34] Pointer to 32-bit long
[35] 32-bit long
[36] 32-bit long
[37] 32-bit long
[38] 32-bit long
[39] 32-bit long
[40] 32-bit long

symref 27

struct (extended file 0,
index 27)

symref 41

symref 39

symref 26

symref 0
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var odds,evens:digitset;
begin

odds:=[1,3,5,7,9];
evens:=[0,2,4,6,8];

end.

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)¢( 0) set.p File Text
1. ( 1) (0x50) $dat Static SBss
2. (1) ¢ 0) main Proc Text
3. ( 2)( 0ox4) Block Text
4. ( 3)( 0) digitset Typdef Info
5. ( 3)(-8) odds Local Abs

6. ( 3)(-16) evens Local Abs

7. ( 2)(0x1lc) End Text
8. ( 1) (0x24) main End Text
9. ( 0)¢( 0) set.p End Text

9.4.2 Subranges

See Section 5.3.8.12 for related information.
Source Listing

subrange.p:

program years (input,output) ;

type century=0..99;

var year:century;

begin

readln (year) ;

end.

Symbol Table Contents

File 0 Local Symbols:

0. ( 0)¢( 0) subrange.p File Text
1. ( 1) (0xc0) $dat Static SBss
2. (1) ¢ 0) main Proc Text
3. ( 2)(0x10) Block Text
4. ( 3)( 0) century Typdef Info
5. ( 3)(-8) year Local Abs

6. ( 2)(0x68) End Text
7. (1) (0x74) main End Text
8. ( 0)( 0) subrange.p End Text

9.4.3 Variant Records

See Section 5.3.8.11 for related information.

Source Listing

variant.p:

program variant (input, output) ;

type employeetype=(h,s,m) ;
employeerecord=record

id:integer;
case status: employeetype of

9-16 Symbol Table Examples

symref 10

indexNil

[ 8] endref 9, btNil

symref 8

[16] set of (extended file O,
index 10)

[16] set of (extended file O,
index 10)

[16] set of (extended file O,
index 10)

symref 3

symref 2

symref 0O

symref 9

indexNil

[ 8] endref 8, btNil

symref 7

[10] rangeO0..99 of (extended
file 0, index 2): 8

[10] rangeO0..99 of (extended
file 0, index 2): 8

symref 3

symref 2

symref 0



h: (rate:real;
hours:integer;) ;
s: (salary:real);
(profit:real) ;
end; { record }
var employees:array([l..100] of employeerecord;

begin

employees[1] .id:=1;
employees [1] .profit:=0.06;

end.

Symbol Table Contents

File 0 Local Symbols

0. (0)( 0) variant.p File Text symref 28
1. (1) ¢( 0) VARIANT StaticProc Text [2] endref 27, btNil
2 (2) ( 0) EMPLOYEETYPE
Block Info symref 7
3. (3)( 0) H Member Info [0] btNil
4. (3)( ox1) s Member Info [0] btNil
5. (3)( 0x2) M Member Info [0] btNil
6. (2)( 0) EMPLOYEETYPE
End Info symref 2
7 (2) (0x10) EMPLOYEERECORD
Block Info symref 23
8 (3) ( 0) ID Member Info [1] int
9 (3) (0x20) STATUS Member Info [5] enum(extended file 1, index
2)
10. (3) ( 0x9) Block Variant symref 22
11. (4) ( 0oxc) Block Info symref 15
12. (5) (0x40) RATE Member Info [11] float
13. (5) (0x60) HOURS Member Info [1] int
14 (4) ( 0) End Info symref 11
15. (4) (0x11) Block Info symref 18
16. (5) (0x40) SALARY Member Info [11] float
17. (4) ( 0) End Info symref 15
18. (4) (0x16) Block Info symref 21
19. (5) (0x40) PROFIT Member Info [11] float
20. (4) ( 0) End Info symref 18
21. (3) ( 0x9) End Variant symref 10
22. (2)( 0) EMPLOYEERECORD
End Info symref 7
23. (2) (0x18) Block Text symref 26
24. (3)(-1600) EMPLOYEES Local Abs [32] Array [(extended file 1,

aux 27)1-100:128] of struct
(extended file 1, index 7)

25. (2) (0x30) End Text symref 23
26. (1) (0x40) VARIANT End Text symref 1
27. (0) ( 0) variant.p End Text symref 0
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10

Programming Examples

This chapter provides complete examples of programs that access object file and
symbol table structures. These examples are meant to reinforce the descriptions
of these structures and their use. In many cases APIs exist that could be used to
simplify these examples. Use of these APIs is strongly encouraged, but they are not
employed in these programming examples, because they would hide the details of
the structure access and data interpretation.

10.1 Packed Line Numbers

This example illustrates the use of structures described in Section 5.3.2.2.1. The
following program will read packed line numbers and display them in expanded
form.

Source Listing

readline.c:

/* Expand packed line numbers and display ranges of addresses
* and line numbers. For simplicity, file and procedure names are
* omitted.

*/

#include <filehdr.hs>
#include <scnhdr.hs>
#include <sym.h>
#include <stdio.h>

main(int argc, char **argv){

FILE *fd; /* fopen handle */

FILHDR fhead; /* object file header */

HDRR hdrr; /* symbol table header */
unsigned char *pline; /* buffer for packed lines */
FDR *fdr; /* buffer for FDRs */

PDR *pdr; /* buffer for PDRs */

if (argc < 2) {
printf ("Usage: readline <OBJECT>\n") ;
exit (1) ;

}

/* Open file argument */

if ((fd = fopen(argv[l], "r")) == (FILE *)NULL) {
printf ("Bad file %s!\n", argv[1]);
exit (1) ;

}
/* Read file header and test magic id */

if (fread(&fhead, FILHSZ, 1, £d) != 1) {
printf ("fread filheader!\n");
exit (1) ;
} else if (fhead.f magic != ALPHAMAGIC) ({
if (fhead.f magic == ALPHAUMAGIC)
printf ("Compressed object not supported\n") ;
else
printf ("%s is not an object file\n", argv[1]);
exit (1) ;

}

/* Read symbolic header */

if (fhead.f symptr == 0)
printf ("no syms!\n");
exit (1) ;
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fseek (fd, fhead.f symptr, 0);

if (fread(&hdrr, sizeof (HDRR), 1, fd) != 1) {
printf ("symheader read failed!\n");
exit (1) ;

}

/* Test for FDRs, PDRs, and packed line numbers */

if (!hdrr.ifdMax) {
printf ("No file descriptors!\n");

exit (1) ;
} else if (!hdrr.ipdMax) ({
printf ("No procedure descriptors!\n");
exit (1) ;
} else if (hdrr.cbLine == 0) {
printf ("No lines!\n");
exit (1) ;

}

/* Read FDRs */

fseek (fd, hdrr.cbFdOffset, 0);

if (! (fdr = (FDR *)malloc (hdrr.ifdMax * sizeof (FDR)))) {
printf ("FDR malloc failed\n");
exit (1) ;

if (fread(fdr, sizeof (FDR), hdrr.ifdMax, £fd) != hdrr.ifdMax) {
printf ("FDR read failed\n");
exit (1) ;

}

/* Read PDRs */

fseek (fd, hdrr.cbbPdOffset, 0);

if (! (pdr = (PDR *)malloc (hdrr.ipdMax * sizeof (PDR)))) {
printf ("PDR malloc failed\n");
exit (1) ;

if (fread(pdr, sizeof (PDR), hdrr.ipdMax, fd) != hdrr.ipdMax) {
printf ("PDR read failed\n");
exit (1) ;

}

/* Read packed lines */

fseek (fd, hdrr.cbLineOffset, 0);

if (! (pline = (unsigned char *)malloc (hdrr.cbLine))) {
printf ("pline malloc failed\n");
exit (1) ;

if (fread(pline, 1, hdrr.cbLine, fd) != hdrr.cbLine) {
printf ("pline read failed\n");
exit (1) ;

}

/* Dump expanded packed lines */

expand_lines (fdr, hdrr.ifdMax, pdr, pline);

}

expand lines (FDR *fdr, int ifdmax, /* FDRs and count */
PDR *pdr, /* PDRs */
unsigned char *pline) { /* Packed lines */
int ifd;
/* Iterate through FDRs */
for (ifd = 0; ifd < ifdmax; ifd++) {

/* Ignore FDRs without line numbers */

if (fdr[ifd] .cbLine == 0)
continue;

printf ("File %d:\n", ifd);
/* Dump expanded lines for this FDR */
expand_file lines(&fdr[ifd],

&pdr [fdr [1fd] .ipdFirst],
fdr [1ifd] .cpd,
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&pline [fdr [ifd] .cbLineOffset],
fdr [1£d] .cbLine) ;

proc_pline count (FDR *fdr, /* FDR */
PDR *pdr, /* First PDR for FDR */
int ipd) /* Index of current PDR */

int nextipd; /* Index of next PDR with line numbers */
int i; /* Index to iterate through PDRs */

/* Return the number of packed line entries for a PDR.
To simplify processing, a procedure with alternate
entries is treated as a set of contiguous procedures.
In this program the calling procedure does not need
to know that the packed lines associated with the
alternate entry actually belong to the containing
procedure.

* ok ko ok ok ok ok

/* Test for no lines */

if (pdrlipd] .iline == ilineNil)
return (0) ;
nextipd = -1; /* Next PDR not found yet. */

/* Iterate through all PDRs for this FDR */
for (i=0; i < fdr->cpd; i++) {

/* Find PDRs with packed line offsets the same or
* greater than the current PDR’Ss.

*/
if (1 != ipd &&
pdr[i] .iline != ilineNil &&
pdr[i] .cbLineOffset >= pdr[ipd] .cbLineOffset) {
/* Save PDR index of closest offset found so far.
* Do not assume the PDRs are arranged with
* ascending packed line offsets.
*/
if (nextipd == -1 ||
pdr[i] .cbLineOffset < pdr[nextipd].cbLineOffset)
nextipd = i;
}
}
if (nextipd == -1)

/* Current PDR is the last one in the file with line
* numbers. Use the file’s packed line count to compute
* the PDRs packed line count.

*/

return (fdr->cbLine - pdr[ipd].cbLineOffset) ;

else

return (pdr[nextipd].cbLineOffset - pdr[ipd] .cbLineOffset) ;

expand file lines (FDR *fdr, /* FDR */

PDR *pdr, /* First PDR for FDR */
int npdr, /* PDR count for FDR */
unsigned char *pline, /* First packed line for FDR */
int numline) /* Packed line count for FDR */

int ipd; /* PDR index */

int pli, next pli; /* Packed line index */

int plcount; /* Packed line count for PDR */

long curline; /* Current source line number */

long start_address; /* First address for curline */

long end_address; /* First address of next source line */

/* Iterate through procedures and alternate entries */
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for (ipd=0; ipd < npdr; ipd++) {
/* Ignore procedures without line numbers */

if (pdr(ipd] .iline == ilineNil)
continue;

/* Identify Procedure or Alternate entry */

if (pdrl[ipd] .lnHigh != -1) {
printf (" Proc %d:\n", ipd);

} else {
printf (" Alt Ent %d:\n", ipd);

}

start_address = pdr[ipd] .adr; /* 1lst address of proc */
curline = pdr[ipd] .lnLow; /* 1st line number of proc */

/* Compute packed line count for this PDR */
plcount = proc_pline count (fdr, pdr, ipd);

pli = pdr([ipd] .cbLineOffset; /* Packed line index */
next pli = pli + plcount; /* End index */

/* Iterate through packed line numbers */
for (; pli < next pli; pli++)
long delta; /* temp for computing line delta */

/* Use the instruction count to compute the first
* address of the next line number.

*/

end_address = start_address +
(((pline[pli] & 0xfU) + 1) << 2);
/* Use the line delta to compute the current
* line number. Test for extended deltas that
* use two additional packed line bytes.

*/
if ((pline[pli] & 0xf0U) == 0x80U) ({
/* extended delta */
pli++;
delta = ((signed char)pline[pli]) << 8;
pli++;
delta |= plinel[plil;
} else {

delta = (signed char)pline([pli] >> 4;

}

curline += delta;
/* Display current address range and source line */

printf (" 0x%1lx - 0x%1lx : Line %1d\n",
start_address, end_address - 4, curline);

/* Prepare for next iteration */

start_address = end_address;

Sample Output

cc -g -o readline readline.c
./readline readline

o
s
o
s

File 1:
Proc 0:
0x120001290 - 0x1200012b4 : Line 11
0x1200012b8 - 0x1200012cO0 : Line 19
0x1200012c4 - 0x1200012d8 : Line 20
0x1200012dc - 0x1200012e8 : Line 21
0x1200012f0 - 0x120001310 : Line 26
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0x120001314 - 0x120001330 : Line 27

10.2 Extended Source Location Information

This example illustrates the use of structures described in Section 5.3.2.2.2. The
following program will read extended source location information and display
the intrepreted line numbers. This example includes a few lines of source from a
header file in order to illustrate a typical use of ESLI.

Source Listing

usage.h:

if (argc < 2) {
printf ("Usage: readesli <OBJECT>\n") ;
exit (1) ;

}

readesli.c:

/* readesli.c: Interpret ESLI and display ranges of addresses with
* file, line, and column numbers.
*
* Omissions for simplification purposes:
* - file and procedure names. These can be found by following
* the file or procedure’s first local symbol entry.
* - alternate entries. These can be included in the output by
* comparing the current PC address (maintained in the ESLI
* computation) to the address of the next successive
* alternate entry procedure descriptor.
* - selecting between ESLI and packed line numbers. If PDRs
* have both, ESLI should be prefered.
* - relative file interpretation. File numbers within ESLI
* can be converted to actual FDR indexes using the relative
* file descriptor table.
*/

#include <stdio.h>
#include <filehdr.hs>
#include <scnhdr.hs>
#include <sym.h>
#include <symconst.h>
#include <linenum.hs>

main(int argc, char **argv){

FILE *f£d; /* fopen handle */

FILHDR fhead; /* object file header */

HDRR hdrr; /* symbol table header */

char *optbfr; /* buffer for optimization symbols */
FDR *fdr; /* buffer for FDRs */

PDR *pdr; /* buffer for PDRs */

#include "usage.h"

/* Open file argument */

if ((fd = fopen(argv[l], "r")) == (FILE *)NULL) {
printf ("Bad file %s!\n", argv[1l]);
exit (1) ;

}

/* Read file header and test magic id */

if (fread(&fhead, FILHSZ, 1, £d) != 1) {
printf ("fread filheader!\n");
exit (1) ;

} else if (fhead.f magic != ALPHAMAGIC) ({
if (fhead.f magic == ALPHAUMAGIC)
printf ("Compressed object not supported\n") ;
else
printf ("%s is not an object file\n", argv[l]);
exit (1) ;

}

/* Read symbolic header */

if (fhead.f symptr == 0)
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printf ("no syms!\n");
exit (1) ;

fseek (fd, fhead.f symptr, 0);

if (fread(&hdrr, sizeof (HDRR), 1, fd) != 1) {
printf ("symheader read failed!\n");
exit (1) ;

}

/* Test for FDRs, PDRs, and optimization symbols */

if (!hdrr.ifdMax) {
printf ("No file descriptors!\n");
exit (1) ;
} else if (!hdrr.ipdMax) ({
printf ("No procedure descriptors!\n");

exit (1) ;

} else if (hdrr.ioptMax == 0) ({
printf ("No ESLI!\n");
exit (1) ;

}

/* Read FDRs */

fseek (fd, hdrr.cbFdOffset, 0);

if (! (fdr = (FDR *)malloc (hdrr.ifdMax * sizeof (FDR)))) {
printf ("FDR malloc failed\n");
exit (1) ;

if (fread(fdr, sizeof (FDR), hdrr.ifdMax, £fd) != hdrr.ifdMax) {
printf ("FDR read failed\n");
exit (1) ;

}

/* Read PDRs */

fseek (fd, hdrr.cbbPdOffset, 0);

if (! (pdr = (PDR *)malloc (hdrr.ipdMax * sizeof (PDR)))) {
printf ("PDR malloc failed\n");
exit (1) ;

}

if (fread(pdr, sizeof (PDR), hdrr.ipdMax, fd) != hdrr.ipdMax) {
printf ("PDR read failed\n");
exit (1) ;

}

/* Read optimization symbols */

fseek (fd, hdrr.cbOptOffset, 0);

if (! (optbfr = (char *)malloc (hdrr.ioptMax))) {
printf ("opt malloc failed\n");
exit (1) ;
if (fread(optbfr, 1, hdrr.ioptMax, £fd) != hdrr.ioptMax) {
printf ("opt read failed\n");
exit (1) ;
}

/* Dump ESLI for all procedures */

dump_esli(fdr, hdrr.ifdMax, pdr, optbfr);

}
dump_esli (FDR *fdr, int ifdmax, /* FDRs and count */
PDR *pdr, /* PDRs */
char *optbfr) { /* optimization symbols */
int ifd;

/* Iterate through FDRs */
for (ifd = 0; ifd < ifdmax; ifd++) {
/* Ignore FDRs without optimization symbols */

if (fdr[ifd].copt == 0)
continue;

printf ("File %d:\n", ifd);

/* Dump ESLI for PDRs in this FDR */
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dump_esli for file(&fdr[ifd],
&pdr [fdr [1fd] .ipdFirst],
fdr[1ifd] .cpd,
optbfr + fdr[ifd].ioptBase) ;

dump_esli for file(FDR *fdr, /* FDR */
PDR *pdr, /* First PDR for FDR */
int npdr, /* PDR count for FDR */
char *optbfr) { /* Optimization symbols for FDR */
int ipd; /* PDR index */
char *pdr optbfr; /* Optimization symbols for PDR */
PPODHDR *ppod; /* PPOD headers */

/* Iterate through procedures and dump ESLI */
for (ipd=0; ipd < npdr; ipd++) {
/* Ignore procedures without optimization symbols */

if (pdr[ipd] .iopt == ioptNil)
continue;

/* Set PPOD header pointer and verify content */

pdr_optbfr = optbfr + pdr[ipd].iopt;
ppod = (PPODHDR *)pdr optbfr;

if (ppod->ppode tag != PPODE STAMP ||

ppod->ppode val > PPOD VERSION) {
continue;

}

/* Search for ESLI PPOD in optimization symbols */

for (ppod++; ppod-s>ppode tag != PPODE END; ppod++) {

if (ppod->ppode tag == PPODE EXT SRC) {
char *esli data; /* ESLI data for procedure */
int esli count; /* Number of bytes of data */
if (ppod->ppode len == 0) {
/* Immediate data */
esli data = (char *)&ppod->ppode val;
esli count = 8;
} else {

esli_data = pdr_optbfr + ppod->ppode val;
esli_ count = ppod->ppode_len;

}
printf (" Proc %d:\n", ipd);

dump_esli for proc(esli_data,
esli count,
pdr [ipd] .adr,
pdr [ipd] .1nLow) ;
break;

unsigned long

read_uleb (unsigned char **uleb) { /* Pointer to LEB pointer */

/* Read an unsigned LEB value and advance the
* LEB pointer past the LEB bytes.

*/
unsigned char *byte; /* ULEB byte pointer */
unsigned long value; /* Return value */
int shift; /* Accumulated bit shift */
int morebits; /* Loop control */
value = 0;
shift = 0;
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byte = *uleb;
for (morebits=1; morebits; byte++) {

/* Get 7 bits */
value |= ((*byte) & 0x7f) << shift;

/* Increment shift count */
shift += 7;

/* Test continue bit */
morebits = (*byte) & 0x80;

}

/* Advance data pointer past ULEB bytes */
*uleb = byte;

return (value) ;

long
read_sleb (unsigned char **sleb) { /* Pointer to SLEB pointer */

/* Read a signed LEB value and advance the
* LEB pointer past the LEB bytes.

*/
unsigned char *byte; /* SLEB byte pointer */
long value; /* Return value */
int shift; /* Accumulated bit shift */
int morebits; /* Loop control */
value = 0;
shift = 0;

byte = *sleb;
for (morebits=1; morebits; byte++) {

/* Get 7 bits */
value |= ((*byte) & 0x7f) << shift;

/* Increment shift count */
shift += 7;

/* Test continue bit */

morebits = (*byte) & 0x80;
}
/* Extend sign bit if set */
if ((*byte) & 0x40)

value |= (-1L << shift);

/* Advance data pointer past SLEB bytes */
*sleb = byte;

return (value) ;

dump_esli for proc(char *esli data, /* Raw ESLI data */
int esli_count, /* Byte size of ESLI data */
long pdr_address, /* Start address from PDR */
long pdr lnLow) { /* First source line from PDR */

/* Read ESLI data for a procedure and display address
* ranges with file, line, and column information.

*/
unsigned char *edp; /* ESLI data pointer */
unsigned char cmd; /* ESLI command */
int data mode = 1; /* Data mode 1 or 2 */
int omd mode = 0; /* Command mode flag */
long cur file = 0; /* Current fileno (not fdr index) */
long cur_column = 0; /* Current column number */
long cur line = pdr lnLow; /* Current line number */
long start_address; /* Start of PC address range */
long end address; /* End of PC address range */

/* Just like packed-line data, ESLI assumes a starting
* address and computes the end of the PC range along
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* with the source line information that applies to that
* range.

*/

start_address = pdr_address;
end_address = start_address;

/* Iterate through ESLI data. Loop pointer is incremented
* within loop and LEB reading subroutines.

*/

for (edp = (unsigned char *)esli data;
edp < ((unsigned char *)esli data + esli_count); ) {

/* Data Modes */
if (!lcmd _mode) {

/* Test for escape to command mode */

if (( (*edp) & 0xfOU) == 0x80U) {
cmd _mode = 1;
edp++;
continue;

}

/* Use the instruction count to compute the first
* address of the next line number.

*/
end_address = start_address +
((( (*edp) & 0xfU) + 1) << 2);
cur_line += (signed char) (*edp) >> 4;

if (data_mode == 2)
cur_column = * (++edp) ;

/* Display current address range and source line */

printf (" 0x%1lx - 0x%1x : File %1d Line %1d Col %1d\n",
start_address, end address - 4,
cur_file, cur_line, cur column);

/* Prepare for next iteration */

edp++;
start_address = end_address;

} else {
/* Command Mode */
cmd = *edp++;
/* Do command (CMD_MASK is O0x3F) */
switch(cmd & CMD_MASK) {

case ADD PC: /* PC delta */
end_address += read _sleb(&edp) << 2;
break;

case ADD LINE: /* Line delta */
cur_line += read_sleb(&edp);
break;

case SET COL: /* Column */
cur_column = read uleb(&edp) ;
break;

case SET FILE: /* File number */
cur_file = read uleb(&edp);
break;

case SET DATA MODE: /* Mode */
data _mode = read uleb (&edp) ;
break;

case ADD LINE PC: /* Line and PC delta */
cur_line += read_sleb(&edp);
end_address += read _sleb(&edp) << 2;
break;
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case ADD LINE PC COL: /* Line/PC delta, column */
cur_line += read sleb(&edp);
end_address += read sleb(&edp) << 2;
cur_column = read uleb(&edp) ;
break;

case SET LINE: /* Line */
cur_line = read uleb(&edp);

break;

case SET LINE COL: /* Line and column */

cur_line = read uleb(&edp);
cur_column = read uleb(&edp) ;
break;

case SEQUENCE BREAK: /* PC gap */
end_address += read sleb(&edp) << 2;

start_address = end_address;
break;
default:
fprintf (stderr, "Unkown ESLI command\n") ;
exit (1) ;

}

/* check mark (0x80) flag */

if ((cmd & MARKb) && end address > start_address) {
printf (" 0x%1lx - 0x%1x : File %1d Line %1d Col %1d\n",
start_address, end address - 4,
cur_file, cur_ line, cur_ column);

}

/* Check resume (0x40) flags */

if (cmd & RESUMEb) {
cmd _mode = 0;
}
}
}
}

Sample Output

cc -g -o readesli readesli.c
./readesli readesli

o
s
o
s

File 1:
Proc 0:
0x1200013b0 - 0x1200013d4 : File 0 Line 25 Col 0
0x1200013d8 - 0x1200013e0 : File 13 Line 1 Col O
0x1200013e4 - 0x1200013f8 : File 13 Line 2 Col 0
0x1200013fc - 0x12000140c : File 13 Line 3 Col 0
0x120001410 - 0x120001430 : File 0 Line 37 Col O
0x120001434 - 0x120001450 : File 0 Line 38 Col 0
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Reader's Comments

Tru64 UNIX
Object File and Symbol Table Format Specification
ObjSpec

Compag welcomes your comments and suggestions on this manual. Your input will help us to write documentation
that meets your needs. Please send your suggestions using one of the following methods:

=  This postage-paid form
= Internet electronic mail: readers_comment@zk3.dec.com
< Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and the
product name and version.

Please rate this manual:

Excellent Good Fair P

=

Accuracy (software works as manual says)

Clarity (easy to understand)

Organization (structure of subject matter) O

Figures (useful) O

Examples (useful) O
O
O

oo

Index (ability to find topic)
Usability (ability to access information quickly)

ooooooo
ooooooo
ooooooosg

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name, title, department
Mailing address
Electronic mail
Telephone
Date
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