Compag Confidential

21464 Internal Design
Specification

Available Internally from: HTTP://segsrv.hlo.dec.com/arana

This document specifies the internal design for the Alpha microprocessor
that is also known as EV8 and Araiia.

Revision/Update Information: Revision 1.1k, January, 2001

Compaq Computer Corporation
Shrewsbury, Massachusetts

Compay Confidential

January 2001
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compaq Computer Corporation 2001.
All rights reserved. Printed in the U.S.A.
COMPAQ, the Compaq logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

Compag Confidential
S danuary 2001 - Subject to Change

Contents

Preface

1 Introduction‘

1.1 Terminology and Conventions. e e e

2 Architecture Overview

2.1 NeW FeatUrest i i ittt it e ettt
211 Processor FeatUres oottt e et e
21.2 Memory FeatUres.o i ittt i et i e e e e e
21.3 MUHIProcessor Features. v vttt i i et e e e et e
2.2 Microarchitecture Diagram i e e e e
23 Simultaneous Multithreading (SMT) . .. oottt it e it e e e eeae s
24 Instruction Unit i e et
2.4.1 Instruction Fetch Unit—the [box. i i e e
2.4.2 Dependency Mapper Unit —the Pbox.o
243 Instruction Issue and Retire Unit —the Qbox i,
25 ExecUtion Unit. i i e e e
25.1 Register File.o i e e e e et
25.2 Integer Instruction Execution Unit—the Ebox it
253 Floating-Point Instruction Execution Unit—the Fbox
2.5.31 Functional Unitsottt e e i e
2.6 Memory Controller Unit — the MboX.ottt e ee et
27 External Interface i et
271 Scache Controller —the Cbox.
27.2 Router —the RboX oo e e e
27.3 Rambus Interfface —the Zbox i i i e
27.4 Cache Coherency Protocol i it
2.7.441 Introductionto the Protocol. i e s
274.2 Structures that Maintain the Cache Coherence
2.8 Pipeline Organization it e e e
2.8.1 Pipeline Diagram it e e
2.8.2 Conversion Between Negative Integerand Alphabet
2.8.3 Basic Pipeline Stage Conversion Equations i,
2.8.4 Conversion Table. i i i i ettt s
2.9 Instruction Execution Pipelinesand Latency. i,
2.10 Instruction Issueand Retire Rules i e
2.10.1 Issue RUles e e
2.10.1.1 Bidding Rules oo ittt e e
2.10.2 Retirement Rules oot i e ittt
2.10.2.1 Completion Rulest i e e et e
2.11 Implementation-Specific Architecture Features. i il
21141 New Instructions. o e e e
211.11 Thread Synchronization i
211.1.2 Short Vector SIMD (Single Instruction Stream, Multiple Data Streams).
2.11.2 CMOV Instruction Processingov ittt ittt ittt e i enaannnns
2.11.21 Integer CMOV Specification.
2.11.2.2 Native CMOV e e e
21123 Floating-Point FCMOVxx Specification.o,
2.11.24 Native FCMOV . .. i e it e ettt et e

Compag Confidential
§ January 2001 -~ Subject To Change

1-1

2-11
2-11
2-11
2—-14
2-15
2-16
2-17
2-17
2-18
2-18
2-18
2-18
2-19
2-19
2-20
2-21
2-21
2-21
2-22
2-27
2-27
2-27
2—-29
2-29
2-29
2-29
2-29
2-30
2-32
2-32
2-33
2-33
2-34

iii

iv

2.11.25 Implementationo it ettt
2.11.2.5.1 Native CMOV. i e s ittt e e
2.11.25.2 Legacy CMOV . .. i i s i i ittt sttt s
2113 Mapper Alignment e
2.12 101 =T 0]
2.12.1 IPR Access Mechanismttt i i e e e
2.12.1.1 HW_MFPR and HW_MTPR PALcode Instructions. ccvviivivvenen .
2.13 AMASK and IMPLVER Instruction Processingand Values.

2.14

Performance Monitoring

Instruction Fetch Unit — the Ibox

3.1

3.2

3.3

34

34.1
3.4.2
343
3.4.3.1
3.4.3.1.1
3.4.3.1.2
34.3.1.3
3.4.3.2
3.4.4

3.5

3.5.1
3.5.2
3.5.3
354
3.5.4.1
35411
3.5.4.1.2
3.5.4.2
3.5.4.2.1
35422

2 ANN
AR B 2V AN

35424
3.6

3.6.1
3.6.1.1
3.6.1.1.1
3.6.1.1.2
3.6.1.1.3
3.6.1.1.4
3.6.1.1.5
3.6.1.2
3.6.1.2.1
3.6.1.2.2
3.6.1.3
3.6.2
3.6.3

3.7

3.7.1
3.7.2
3.7.21
3.7.2.2

Featureso e e e e
Major SeCtioNS.ttt
Forward Path Pipeline. i e
IndeX UnNit ... e e e e e

Fetch TPU ChooSer. .ot it ittt ittt it e it i et s ettt e ereriinaneenns
Line Prediclor. .. oot i e e e ettt e

Thread Index Latchesottt it i et ittt ettt nenens

(Re)Starting/Resuming the Pipe.o i i i i
EXCEpPONS . .. oot e e et e e
Misprediction-PC Calc. oot it i e e e e i
Thread Resume - Line Predictor (twoindexes)

Other Index Latch Tracking Functions it

Thread Training Latches it i i et et i et c e ie e
Instruction Processing Unit i i it i e

lcache Data Armayttt i i et e ittt e e e
Icache Tag ArTaY . ..ottt et et e ettt e e e

Store-Sets Based Memory Dependence Predictor
Collapsing Buffert i i e et et e e e

Instruction Buffer.t i e et e
Data Path. i e e e e

L0011 o T =Y
Data Path.t i i i i e e e e et e

Nawr Qéavt O alanilatinn
NSW Uildit wvaiLui

Control Flow Prediction Unitt it et e et ettt it
Conditional Branch Prediction i i e e e e e e eas

Branch PredictionComponents it iiiiiinannn.n.
Branch History (LGHist). oo i i
Prediction Tables.ot e e e
Bank Selection. i e

Unshuffle Network i i i
Backend logic and checkpoint information

Branch Training. oot i e e e e
Predictor Trainingccvtiiinin it ittt ie e
Hysteresis Training oottt i i e et e eae s

PALMOTE . ..ottt e e e e

Jump Target Predictor i e e
Return Address Stackt i i i e e e
O U
P Calculation oo e e i e e e it
Pl G oMPare ...ttt e e e

Index Mispredictscoiit i i e
Icache Hit Determination. it i it e i ettt tte et innens

Compag Confidential

2-34
2-34
2-34
2-35
2-35
2-36
2-36
2-36
2-36

3-1
3-2
3-4
3-4
3-4
3-5
3-7
37
3-7
3-8
3-9
3-9

3-10

3-11

311

3-12

3-14

3-16

3-16

3-16

3-17

3-18

3-18

3-18

a-18

3-18

3-19

3-19

3-20

3-20

3-21

3-22

3-22

3-23

3-24

3-24

3-25

3-26

3-26

3-27

3-28

3-28

3-32

3-33

3-33

§ January 2007 - Subject To Change

3723
37.24
37.25
38
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.3.1
3.8.1.3.2
3.8.1.3.3
3.8.2
3.8.2.1
3.8.2.1.1
3.8.2.1.2
3.8.2.1.3
3.8.2.1.4
3.8.2.2
3.8.2.2.1
3.8.2.2.2
3.8.2.2.3
3.8.2.2.4
3.8.2.2.5
3.8.2.3
3.8.2.3.1
3.8.2.3.2
3.8.2.3.3
3.9
3.9.1
3.9.1.1
3.9.1.1.1
3.9.1.1.2
3.9.1.1.3
3.10
3.10.1
3.10.2
3.103
3.10.4
3.10.5

FilLUNit . .o et e e e e e e e e s
Instruction Translation Buffer.ttt e e
ArChItECtUre. . . . ot e e e e e e

Fills oo e e e e

Demandcase: Simplet iiriiii i i e e e,
Demand case: index and way match of active request: "piggybacking”
Demand case: flip_wayactive.t
Demand case: capacity stall
Prefetching i e
Prefetchcasersimpleottt ienaen
Prefetch cases: tag match or page boundary crossing
Prefetch.case: Index CAMmatch i,
Prefetch case: altemate TPU demand during prefetching.
Prefetch cases: badpath indication during prefetching

Fill Data Routingcivit it it e e et et et e eeeeae s

Checkpoint Unit. i it i et e ettt e
Checkpoint Table Componentst ittt ettt e e e
Checkpoint Table Functions i e i e
Restartingonanexception i

Restoring Predictor States.oo i i e

Predictor Trainingo vut ittt et e et ettt e

Ibox Interfaces. i e i e e e,

4 Dependency Mapper Unit — the Pbox

4.1

4.2
4241
4.3
4.3.1
43.11
43.1.2
43.1.3
43.2
4.3.2.1
43.2.2
4.3.3
4.3.3.1
43.3.2
4333

Dependency Analysis: General Concepts.vv vttt ittt it i ii it i
INUM S, . . vttt it i e ittt et et et ettt e e e e
INUM Age CompariSon.ttt ettt ae ettt i e s eaeee e enaneannn
Component Detailscutiiii it ittt it e e e
INum Mapper (IMP) i i i i e e it e et e e
Design considerations.uiii ittt i i e

Design Architecture. it e e

Map Predecode Bits fromthelbox e

Physical Register Map (PMP) i i e e e et e eane e
Design Considerationsiu i iiie ittt i it e

Design Architecture. ittt i i it i e i i e e e,

INum Allocator (INA)ot i e e ittt et e et
Design Considerationsoutiiit i e e

Design Architecture. i e e

Map Thread Chooser (MTC).ottt it e et ieee e

Compag Confidential

& January 2001 - Subject To Change

3-34
3-35
3-35
3-36
3-36
3-37
3-40
3-40
3-40
3-41
3-41
3-41
3-42
3-43
3-44
3-44
3-45
3-45
3-46
3-47
3-47
3-47
3-48
3-48
3-49
3-53
3-55
3-55
3-56
3-59
3-60
3-61
3-62
3-62
3-62
3-62
3-62
3-62

- 3-62

4-2
4-4
4-5

4-7
4-7
4-7
4-9

4-10

4-10

4-11

4-13

4-13

4-13

4-14

4.3.4
4.3.4.1
43.4.2
435
4.3.5.1
435.2
4353
4.3.5.4
4355
43.5.6
43.5.7
43.5.8
4.3.5.9
4.3.6
4.3.6.1
4.3.6.2
4.3.7
43.71
43.7.2
4.3.8
4.3.8.1
43.8.2
4.3.9
4.3.9.1
4.3.9.2
4.3.10
4.3.10.1
4.3.10.2
4.3.11
43.11.1
43.11.2

Mapper Exception Logic (MEX) oot e, 4-15

Design Considerationst iiiiin et 4-15
Design Architecture. it i i it e e 4-15
Memory Queue Allocation Unit (MQA). oot i e e e 4-15
YT = o 4-15
Background and Terminology.t i e 4-16
Basic Allocation Loopo it e e i 4-16
Reset. . . i e e e 417
Deallocationciii it e 4-17
1] 1= 4-17
T [>T 4-18
L0 =TT P 4-19
Merge Buffer Purgingot e 4-19
Instruction Decoder (IDC)t e et s 4-19
Design Considerations, e e 4-19
Design ArchitectUre.ottt i et e e e e e e 4-19
Load/Store Serial Number Allocator (LSN) ... 4-20
Design Considerations it e 4-20
Design Architecture. i i e 4-20
Post-Map Skid Buffer (PSB).ooii it e e e 4-22
Design Considerationsc..otiiii ittt i s 4-22
Design Architecture. it i i et e 4-22
RC/RS Interrupt FlagWidget (RIF)o e 4-23
Design Considerationsc it e s 4-23
Desigh Architecture.ot i i e e e 4-23
Bid/Grant Exception Logic (BEL)o v ittt i e e e e e 4-24
Design Considerationsit ittt ittt in ettt 4-24
Design Architecture. i i e 4-24
Retire/Kill Unit (RKU)o i i it e e ittt eeaennn s 4-25
Design Considerationsottt ittt et e et 4-25
Design Architecture. i i e e 4-25

5 Instruction Issue and Retire Unit — the Qbox

5.1

5.2
5.2.1
5.2.1.1
6.2.1.2
62.2
5.2.2.1
52.2.2
52221
5.2.2.3
5.2.3
5.2.3.1
5.2.3.2
5233
52.4
5.2.4.1
52.4.2
525
5.2.6.1
52.5.2
5.2.6.3
5.2.6
527

vi

Scheduling Decisions — General Conceptsot i i in i e 5-2
Component Details i i e e e 5-3
Instruction Queue (IQ) Generalities o i e 5-3
Design Considerations o i e e 5-3
Design Architecture. ot e 5-3
Queue Entry Table (QET) and Reallocation Logic (RAL) 5-9
Design Considerationsttt i 5-9
Design Architecture.ot i i e i e 5-9
Algorithm e e 5-9

Physical Organization.c.oi it i e 5-11
Dependency Arrays (DAS) oottt e e 5-12
Design Considerationsot ittt e et 5-12
Design Architecture.t in i e e it e ettt 5-12
Physical Organizationt i i i e e 5-13
Picker Arrays (PKS)v it i e e 5-13
Design Considerationsc.iiiiiii ittt iiria ey 6-13
Design Architecture.ot i i e i it s 5-13

Bid Enable Logic (BID).ot e s 5-14
Design Considerationsccoiiiiii i ittt ie it 5-14
Design Architecture. it i i e e 5-14
Physical Organization ittt e i e 5-14
FPCRControl Unit (FCR). . ..ot ittt it i ittt et e e e aenns 5-14
Profile-Me Data Collection (PRM) i i i 5-14

Compag Confidential
& January 2001 - Subjsct To Change

5.2.8 Source Register Number Arrays (SBNS)o e

5.2.8.1 Design Considerationsv it ini it ittt it
5.2.8.2 Design Architecture.t i i e e e
5.2.9 Destination Register Number Array (DRN) i,
5.2.9.1 Design Considerationscoiiini ittt i i
5.2.9.2 Design Architecture. e
5.2.10 Load/Store Number High-Water Marker (HWM) oo,
5.2.10.1 Design Considerationsuuiit ittt e e
5.2.10.2 Design Architecture. i e e
56.2.11 Load/Poison Re-Arm Widget (LPR)o e
5.2.11.1 Design Considerations it et i e
5.2.11.2 Design Architecture. i e e
5.2.12 Post-lssue Logic (PIL)ot i i e e e
5.2.12.1 Design Considerationsc.ciitiiiii ettt iiaaeaens
5.2.12.2 Design Architecture. it iit i i it i e e e e
5.2.13 Oldest CBR Selector (OCS).ttt i e et e e et e e e e
5.2.13.1 Design Considerationscoviiiieii it i e
5.2.13.2 Design Architecture. i i i e e e
5.2.14 Queue Chunk Allocator/Deallocator (ALC)t
5.2.14.1 Design Considerationsottt ir i ettt e e
5.2.14.2 Design Architecture. i i e e e
5.2.15 in-Flight Table (IFX) i i e i i e et e e e e eaen e
5.2.15.1 Design Considerationsttt ittt e
5.2.15.2 Design Architecture. it i e e
5.2.16 Completion Unit (CMP)ot i i e e e it in e
5.2.16.1 Design Considerationscciiit ittt et et it r e
5.2.16.2 Design Architecture. it i it e e e it ittt e
5.2.16.2.1 Completion. e e e
5.2.16.2.2 =
5.2.16.2.3 Retirement o e e e
5.2.16.2.4 Mbox Interface. e
5.2.17 Payload Array (PAY) ... e e e e
5.2.171 Design Considerations it it e i e e
5.2.17.2 Design Architecture. e
5.2.18 Exception KillLogic (EKC)ot i i et i et
5.2.18.1 Design Considerationsiitiet ittt et it
5.2.18.2 Design Architecture. e

6 Integer Execution Unit — the Ebox

6.1 Y = 1o 0o oo T T=Y o
6.1.1 Datapath. e e
6.1.2 L1 1112 T T
6.2 Integer ClUStErS.ot e e e
6.2.1 Ve Lo 1=
6.2.2 Shifter. . . oot e et
6.2.3 LOgiC BOX . .ttt e e e
6.24 Register File Operand iInterface. ittt e it ie e
6.2.5 Virtual Address Generator ittt i et
6.2.6 Load Datalnterface i e i e e
6.2.7 Multimedia Interface. i i e e e
6.2.8 Global Control ... vv ittt e i e i e e e i
6.2.9 Store Datalnterface.ottt e
6.3 Operand SteerNg . ..o vttt it e i e e e et
6.4 Register Caches it i ittt e et e et e e
6.4.1 Writing the Rcache. o i e e i i e e
6.4.2 Readingthe Rcache. ...ttt i it it e it e et

Compag Confidential
& Sanuary 2001 ~ Subjsct To Change

5-15
5-15
5-15
5-15
5-15
5-15
5-16
5-16
5-16
5-18
65-18
5—-19
5-20
5-20
5-20
5-21
6-21
5-21
5-22
5-22
5-22
5-23
5-23
5-23
5-24
5-24
5-25
5-25
5-25
5-25
5-26
5—-26
5-26
5-26
5-27
5-27
5-27

6-1
6-2
6-3
6—-4
6—6

6-8

6-8

6-9
6-10
6-10
6-11
6-11
6-12
6-12
6-16
6-17

vii

6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.6.1
6.5.6.2
6.5.6.3
6.5.6.4
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.6
6.7
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.9
6.10
6.11
6.12

MultimediaUnit et ettt 6-18

Inputs and QUIPUES.ottt e ittt i ettt et e e, 6-18
SignalNomenclature oot i it e e e 6-18
L1112V T 6-18
Instruction Decode/Control Sectionttt et i e 6-19

MV SN ..ot i e e e 6-19
Y 6-20
TADD, TSUB PADD, PSUB, CMPWGE, MIN, MAX Instructions 6-21
TABSERR Instruction it it i e e e e e 6-21
TSQERR INStruction i i e e e et i 6-21
Min/Max Instruction. i i i e e e 6-21
MU Er ArTaY . . oo e e e e e e e e i e e e 6-22
CoUNt LOgIC .+ . ettt e et e e et 6-24
Compare Word, Saturation, andthe 21264 MinMax. 6-25
MINMaX LogiC. .. ot e e i e e e et e 6-25
Pack, Unpack, Permute Byteottt i i e e e it e 6-26

S 3111 6-26
Delay . .. e e 6-27
Integer Multiplier. i e e e 6-27
Debug Features. ii it i it i it e ettt e e e 6-29
Testability Features. o e e 6-30
External Interfaces: Ibox, Qbox, Pbox, Mbox, Register File, Fbox 6-30
7' P 6-30
[T 6-31

[oo 6-32

11] e 6-32
Register File.ot i e i e i e e e e e 6-33
0T 6-33
Global. ... e e e e 6-33

| 6-34
EXCOPHIONS . . ot ittt e e e e e e 6-34
Poisoned Data.ot e e e e e 6-35
Format ConVersioNSt itit ittt it it sttt et ittt e 6-36

7 Register File

71

711
71.2
7.1.3
7.2

7.2.1
7.2.2
723
72.4

TSt StrUCIUIES . . . i et e i e e e e 7-2
LI {121 7-2
Read Timing. i e i e ettt e it e 7-3
Write/Read Timing o i i e e et e 7-3

External Interfaces i e e 7-3
Qboxto RegisterFile Interface ittt 7-3
Ebox to RegisterFile Interface. o it i i e 7-4
Fboxto Register File Interface. o i i i e 7-4
Global Register File Interface.ot i i e 7-4

8 Floating-Point Execution Units — the Fbox

8.1

8.2

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

M or SECtIONS. . o\ ottt i i e e e et et 8-3
Interface SeCtioN ottt i e e e e e e e 8-3
Extemal interface. i i e e e 8-3
QboxX TIMING 10 FBOX .. .t i it i it e ittt et st ettt aaaannnnn 8-3
Fbox Pipeling Timing vvii ittt ittt ittt i ittt reennnannns 84
Register File/Operand Bus. ittt i i e e i e e e 8-4
Loads/Stores toffrom FboX. i e e, 8-5
Register Cache (F_RGC).ttt i it i i ittt i ea i iaeeannn 8-6

Compayg Confidential
& January 2001 — Subject To Change

8.2.7 The Operand Steering Unit (F_OSU). i e e e

8.2.8 Interface Control (F_INT)ot e e
829 Divide and SQRT —Qboxinterfacet i i ie e e
8.2.10 FOX EXCOPONS. . . ittt ettt i et et et e
8.3 Fbox Floating-Point Control Register (FPCR). i
8.3.1 FPCR Fomat. .. . ottt e et e e e
8.4 Fbox Multiplier Unit —F_MULand F_GML i,
8.4.1 FMUL Operation.ttt ittt it et ettt et ettt et e it aaneenn
8.5 Fhox Add Pipeline o e
8.6 Fbox Add Pipel — F_ AP T .. it i i e e e
8.6.1 10473 =1 4T o
8.6.1.0.1 Phase FOA i i i e e s
8.6.1.0.2 Phase FOB i e e e
8.6.1.0.3 Phase F1A i e e e e
8.6.1.0.4 Phase FIB. i e e et e et et
8.6.1.0.5 Phase F2A i e e
8.6.1.0.6 Phase F2B i e
8.7 Fbhox Add Pipe2 — F_AP 2 i e e e
8.7.1 Cycle 1 Operationot i ittt
8.7.1.1 =V (o7 o
8.7.1.2 (T 1= o |
8.7.1.3 L7070t
8.7.2 Cycle 2 0peration it i e et e e
8.7.2.1 Fraction . . oo e e e e e e
8.7.2.2 Exponent/Controlt e e e e e
87.3 Cycle BOperation i i e e et
8.7.3.1 Fraction e e e e et
8.7.3.2 Exponent/Control e s
8.8 Fbox Short Pipe — F_SHP i i i e e e e s
8.8.1 Short Instructions e e e e
8.8.1.1 CPYS, CPYSN, CPYSE ... i i e e e e et eee s
8.8.1.2 FCMOVEQ, FCMOVGE, FCMOVGT, FCMOVLE, FCMOVLT, FCMOVNE......
8.8.2 Unusual Input Operands v ittt ittt e ettt ettt
8.8.2.1 Unusual Cases . ..ottt ittt ittt it sttt it e
8.8.2.2 IEEE Data. . ..o e e e e
8.8.2.2.1 ADD S, ADD T . ottt e e e e e
8.8.2.2.2 DIV, DIV L e e e e e
8.8.2.2.3 MULS, MULT .. o et e ettt ettt
8.8.2.2.4 SQARTS, SQRTT & ittt ittt et e e e e e i et e
8.8.22.5 SUBS, SUBT ..o e i e e e e e
8.8.3 Floating-Point Control Register (FPCR). coiii it i
8.8.3.1 Reading the FPCR i i i e ittt e ee e
8.8.3.2 Dynamic Roundingot i e e e
8.8.3.3 (o =Y o [T -
8.9 Fbox Divider — F_ DIV . .. i e e
8.9.1 Divider Descriptiont e e et
8.9.2 The DividerinDetail. i i e e et e i enne s
893 Over-Redundant Digits to BinaryandRounding
8.10 Fbox Square-RootUnit—F_SQR e e
8.11 Fbox Graphics Pipelinettt i i i sttt i i s
8.11.1 Paired SP Floating-point Operate Instruction Format
8.11.2 Registerand Memory Formats. i i e
8.11.3 Rounding Modesttt i i i i e e et
8.11.4 o= oo o
8.11.5 Paired Single-Precision Instructions oottt imii it ine it inneeneen
8.11.5.1 Graphics Add Pipeline: F_GAD ittt
8.11.5.2 Fraction Datapath ii it i e e i e it
8.11.5.2.1 O MUX i e e e e
8.11.5.2.2 1 U e 1

Compag Confidential
8 January 2001 — Subjsct To Change

8-10
810
811
814
8-14
8-16
8-16
8-18
8-19
8-21
8-21
8-22
8-23
8-23
8-25
8-26
8-26
8-26
8-26
8-28
8-28
8-29
8-29
8-29
8-30
8-30
8-30
8-31
8-32
8-32
8-32
8-32
8-33
8-34
8-34
8-34
8-34
8-35
8-35
8-35
8-36
8-36
8-37
8-39
8-39
8-39
8-41
844
8-45
8-46
8-46
8-46
8-46
8-47
8-50
8-51
8-51
8-51

" 8.115.23 N 8-52

8.115.24 LXDand EXP PRED it it ittt ettt te e anas 8-52
8.115.2.5 LXS and LXE it e e e e et e 8-52
8.115.2.6 FH/FI2 MUX and the LEFT/LR Shifters.c. it 8-52
8.115.2.7 RNDCSAand ADDERttt ittt ittt i st nenens 8-53
8.11.5.3 ExponentDataPath i i e 8-54
8.11.5.3.1 EDIFF ADDER. . . .ot i e it e et i e e e 8-54
8.11.5.3.2 EDIFF DETECT . . ittt ittt e it ettt e tere e ee e e et enananns 8-54
8.115.3.3 ERMUX. oo i i e e e ettt e e 8-54
8.11.5.3.4 EXP _RES _ADD. i e e e e e 8-54
8.12 LI - I I 7o o1 (| 8-55
8.12.1 Fraction Data Path i i i it e et e e e 8-55
8.13 Sticky Bit Calculation. i i i et e 8-56

Memory Instruction Execution Unit — the Mbox

9.1 Major Inputs & OUIPULSottt e e et i ce e e 9-2
9.1.1] o 1 9-2
9.1.2 L T 7o 9-2
9.2 L5 o o T 9-2
9.3 I 2= Vo L= P 9-3
94 Load QUEUE. . . oottt ittt i e e e e e e e e, 9-3
9.5 Merge Buffero i e e 9-4
9.6 Pre-MAF . e e e e e e e 9-5
9.7 Store Queue (SQAand SQD) i i s 9-5
9.8 Translation Buffers i i i ittt e e 9-5
9.9 Back ENA BUSottt ittt e e e e e 9-6
9.10 10071 = 4o o - J 9-6
9.10.1 Read RequUestst i it e et et e e 9-6
9.10.2 Prefetchesot e e e 9-6
9.10.3 Write ReqUestS. . . . ot i e e e, 9-7
9.104 0= =Y 9-7
9.105 Deache MiSSes. i ittt it it e ittt ettt e 9-8
9.10.6 Load Locked/Store Conditionalottt it e 9-8
9.10.7 1= o 9-9
9.10.8 Invalidates/Probeso e s 9-10
9.10.9 Memory Barmiers.o e e e e 9-10
9.10.10 Multithreadingo e e e et 9-10
9.11 1Y =1 1 = V- N 9-10
9.11.1 Pipeline Legend i e e e 9-10
9.12 Data address Translation buffer DTB)t it 9-11
9.12.1 11211 9-12
9.12.2 What Data are Comparedona DTB Lookup?, 9-13
9.12.2.1 The TPU GroUD. .« ottt it it e i e e ettt e et et aaananenenn 9-14
9.12.2.2 Granularity Hints i i i i e e e e e 9-14
9.123 [(G = Vo T 9-15
9.124 Hit Determination i i i it e et e s 9-15
9.125 Retumed Status. i i e e e e e 9-16
9.12.6 Effects of a DTB MiSS.ottt i e ittt i et st e e 9-17
9.12.6.1 Speculative and Duplicate DTBentries, 9-17
9.12.7 Data Storage inthe PTE i e et ieaees 9-18
9.12.8 IPRs That Affect the Contents or Behaviorofthe DTB 9-18
9.12.9 0 o= (=T 1T 9-20
9.12.10 Possible Support for Generic Superpages. ottt it e 9-21
9.12.10.1 Page Table Array(PTA) Implementation.t 9-21
9.12.10.2 Virtual Address Array(VAA) Implementation.oviiiiienenn. .. 9-21
9.12.11 Replacement POCY oo ittt i i e e ittt e e e e e 9-21

Compag Confidential
§ January 2001 - Subject To Change

9.12.12 DB SiZe ..ottt ittt i e e e e et i i,

9.12.13 LI = 310 - Vo TP
9.12.14 Resetand Testability iiiiiii i i i i et taenaens
9.12.15 TS 1=
9.13 1] (ot L= oo
9.13.1 L Y=Y o
9.13.2 Storelssue Flow i e e e
9.13.3 Load IssUe FloW. i i i et e e et e
9.134 Store Copy-OUt FIowo i i i e e et
9.135 Block Allocate Flow (TBD)o i e iii e

9.13.6 ThiNngs NOt DONe . ..ottt ettt et st et ettt ettt et ianen
9.14 Merge Buffer e
9.141 L oY T
9.14.2 Merge Buffer Allocation,

9.14.2.1 BoundaryCase.ouiiiiiii i e e
9.14.3 Merge Buffer WritestoDcache

9.14.4 Scache WHEES i i i i i i i e it e e e e
9.145 Probe handling in the Merge Buffer

9.14.6 Line filand Merge Buffer.

9.14.7 10 0] o=
9.14.8 Store Conditional Support

9.14.9 MBand WMBProcessingcovviiiiinniennnn..

9.14.10 M AR egUESE. . o ittt it et e et e e e e e e
9.14.11 Cache Movement ops (WH64, Evict).

9.14.12 Merge Buffer States.ot i e e e e e
9.14.13 2= = 1 LY = P
9.14.14 AdAreSS AITaY ..ttt i e e e e e e e e e
9.14.15 Control Section.t i e e e e et e
9.15 Load QUEBUE. . .. ot ittt e e e e
9.15.1 Load Queue Allocation. it e e
9.15.2 (Age) Young Vectorgeneration

9.16.3 Load Queue Limit and Block Allocation

9.15.4 Thread ChoosiNgo i i e e et et e e ettt e e
9.156.5 Block AsSignment. it i e e e e e
9.15.6 Load ISSUEottt e e e e
9.15.7 Load Retries.t e e
9.15.8 Deache Miss.t e e e e
9.15.8.1 MAF PickK. .. e e e e e
9.15.8.2 Load Queue Pick e
9.156.9 Scache Line Miss.t i i e e e
9.15.10 Load Queue retry - Bank Conflict.

9.15.11 Retry atretirement it i i e it ettt e
9.15.12 Retry Block. . ..o e e e e e
9.15.12.1 Pick Oldest Retryooi it i i e e e e ettt ee s
9.15.12.2 Oldest and Next Oldest Retry Chooser.

9.15.12.3 LI == T 7 4T o LT
9.15.13 Prefetches o e
9.16 Load TraPS ..ot ittt e e e
9.16.1 I 1= T o T
9.16.1.1 Load/store Order Trapttt

9.16.1.2 Inval Trap (Traps Due to Probe-invalidates)............

9.16.1.3 MGB Trap (Traps Due To Merge Buffer Dispatches On Back End Bus)

9.16.1.4 QL= o IR 1T =
9.16.2 Trap Resolutionttt e i i e e e e et
9.16.3 Thread Chooserot i i i it ettt e et e e
9.16.4 L = 11
9.16.5 Litmus THandlingottt ittt et et ettt e neannn
9.17 [T ot T =T
9.17.1 Front ENd Tags uit ittt ittt it it et et e ittt e et

& January 2001 — Subject To Change

Compag Confidential

9-21
9-21
9-22
9-22
9-23
9-23
9-25
9-25
9-25
9-26
9-26
9-26
9-26
9-27
9-27
9-28
9-29
9-31
9-31
9-32
9-32
9-33
9-33
9-33
9-33
9-34
9-35
9-35
9-35
9-36
9-36
9-36
9-37
9-37
9-37
9-37
9-38
9-38
9-38
9-38
9-39
9-39
9-39
9-39
9-39
9-39
9-40
9-40
9-40
9-40
9-40
9-40
9-41
9-41
9-41
9-42
9-42
9-42
9-42

10

11

Xii

9.17.1.1 L1111 T T 9-43
9.17.1.2 LI K o= =1 Lo g - 9-43
9.17.2 Back ENd Tag. ..o v iv it ittt i e i e i e e e e 9-43
9.17.2.0.1 Tag Operationsttt ittt it ettt e 9-43
9.173 1 9-44
9.18 DCaChe AMTay. . ..o ittt e e e e e et 9-44
9.18.1 Read Dcacheot it i it e i ittt e e e e, 9-45
9.18.2 Write Deache e e et e e e 9-45
9.18.3 Bypass Fill Data i i it e ettt e 9-45
9.184 SHUCHUNE.ot i e i e e e 9-45
9.19 Pre-M AR L e e e e e 9-45
9.19.1 Merge Buffer Requeststtt it it it e it 9-47
9.19.2 D-stream QUEBUE.t ittt i et ettt et e 9-47
9.19.3 [Ta Y T 5 1= 1= 9-48
9.19.4 -Stream QUEBUE . . .ottt e i e e e e, 9-48
9.20 MboxX Back ENd BUSottt i e e i e e e e e 9-48
9.21 Internal Processor Registers. ittt i i i i e e e e 9-48
9.21.1 Implicitly Written IPRs e 9-49

Internal Ring Bus

Second-Level Cache and Controller (Cbox)

11.1 CbOX OVEIVIEBW . . oottt it s e e e 11-~-1
11.2 ShOX OVeIVIEW . . . e e e e e e 11-3
11.3 Scache Control —the CS Partition.ot i i e e e 11-3
11.3.1 Overall Pipeline Flowot i i i e i e e et e 11-4
11.3.2 Miss Address File —the MAF i it it e e e 11-6
11.3.2.1 LY o 11-6
11.3.2.2 Principle of Operationttt 11-7
11.3.2.2.1 Requestsfromthe Core itit i i 11-7
11.3.2.2.2 Fills/Responses fromthe System vt ittt i i i 11-7
11.3.2.2.3 Probes From Other Processorsot it iiii i nienennnn. 11-7
11.3.2.3 MAF Pipeline Timing Diagram and Pipeline Overview 11-7
11.3.2.3.1 CZ, CO: MAF ArbitrationLogic. i i e e e 11-8
11.3.2.3.2 C1: MAF Bank Conflict Detection Logic / MAF CAM/MAFRD 11-8
11.3.2.3.3 EXCEptioNs e e et i e 11-9
11.3.2.3.4 ClLMAF CAM /MAF RD. .ottt et e et e et 11-9
11.3.2.35 c2: MAFlogic e e e e e e 11-9
11.3.2.3.6 C3-C6: Scache Tag ACCeSS. .. .t i i it ittt it e e e e eaaaenns 11-10
11.3.2.3.7 C7: FillPipeControl it e e e e e eieie s 11-10
11.32.4 Contents of MAF Entries. oiiiiiii i i e e i e ee i eee e s 11-10
11.3.2.5 MAF Allocation/Merge/Retry.coori i it et i i e it 11-12
11.3.2.6 MAF Deallocation . ..ottt i it i et e i e e e 11-14
11.3.3 RO . i e e e e e e 11-15
11.34 Internal Probe Queue —the IPQ. oot i i i 11-15
11.35 Probe Queue—the PRQ it i e i i ittt i 11-16
11.3.5.0.1 Principleof Operation i i it 11-16
11.35.1 Probe Address File (MAF) ContentsperEntry 11-17
11.3.6 Victim Address File —the VAF i i it 11-17
11.3.6.1 Victim Address File (VAF) ContentsperEntry 11-18
11.3.6.2 Principle of Operation i e e 11-19
11.3.6.3 Secondary VAF Flows i i i i e et 11-20
11.3.6.4 Reserved VAF Entriesot iiii i ie it et cia i 11-20
11.37 System Interface (SY) ... iii i i i i e e e 11-20
11.3.7.1 Principle of Operation:ttt it it i e e e e 11-21

Compag Confidential
& January 2001 - Subject To Change

11.3.7.1.1 Response FIFOEntry Fieldst i 11-21

11.3.7.1.2 Request FIFOEntry Fieldso i, 11-22
11.3.8 System RequestQueue (SRQ) ittt i e e i e 11-22
11.3.8.1 Principle of Operationot i i e e e 11-22
11.3.9 Retry Queue (RTQ) . ..ottt e it ittt ettt et et s iiieeeanannn 11-23
11.3.9.1 Principleof Operation ittt e e e 11-23
11.3.10 L 1 2P 11-24
11.4 Fill Datapath —the CF Partition oiit it it ettt e ie e iananen 11-24
11.4.1 2 = 11-24
11.4.2 70 11-24
11.4.3 0 11-24
11.4.4 52] 11-25
11.45 {2 11-25
11.4.6 12 11-25
11.5 Scache Tag Array —the ST Partition.ot i it ea e 11-25
11.56.0.1 Principleof Operation i e 11-25
11.5.0.2 Pipeline Stages.ot i e e e 11-26
11.5.0.3 State Transition.t e e 11-26
11.5.04 Stale Fill Tablet i i et et enas 11-28
11.5.0.5 The 21464 Scache Least Recently Used (LRU) Scheme.................... 11-28
11.5.0.6 Scache TagECC Code. ... i ittt ittt s ettt i i ieane s 11-30
11.6 Scache Data Array —the SG Partition. i i i i i 11-32
11.7 oW S . L ot e e e e e et e e 11-32
11.7.1 Overall Pipeline FIOWot i e e et e et e 11-32
11.7.1.1 Pipe Operation i e e e 11-32
11.714.2 Pipeline Timing Diagrams i i e e et i e e 11-37
11.7.1.2.1 Scache Control Pipeline Stages ..., 11-37
11.7.1.3 Resource Conflict ot i i i e e e e 11-39
11.7.1.4 Scache Bank Conflict Check. i e 11-40
11.7.2 Filland LRUEVICt Flowottt it e e it e et iea e 1142
11.7.2.1 HicoUp FloW . ..ot i it et it e e ettt e e 11-42
11.7.3 Probe Flow. . ..o e e e et e i e 11-42
11.7.4 Mbox Request FIow oot i i i e it s et et et e 11-42
11.75 Victim Flow. ..o e e e e 11-43
11.7.6 1 =128 o 11-46
11.8 Special SUPPOM. . . oo e e e e e e 11-46
11.8.1 INpUt — OUIDUL .. . L e e e 11-46
11.8.1.1 I/O Request Orderingand Merging. oi ittt it einee s 11-46
11.8.1.2 /O System Request c.oiiiii it i i e e e e 11-47
11.8.1.3 1603 T= € 11-47
11.8.1.4 VO Request FIow ot e i e ettt e e e 11-47
11.8.1.5 1/O Specific Structures/Operationsc.iiii ittt 11-49
11.8.1.6 I/O System Request Timingottt it et ee e 11-49
11.8.1.7 I/O Request Packet Format e 11-50
11.8.1.7.1 Read HO (RDIO) .. .ot e e e e sttt e 11-50
11.8.1.7.2 Write IO (WRIO)o e it e ettt e 11-51
11.8.2 Memory Barriers —the MB Instruction i i 11-51
11.8.3 Load-Locked Store-Conditional (LDx_L/STx_C) Instruction Processing 11-51
11.8.3.1 Lock RegisterforEach Thread ittt i i i i 11-53
11.8.3.2 S ISSUING + o vttt ittt e i e e e et e e 11-53
11.84 Prefetch/Modify i it i ettt i e 11-53
11.9 IPRs, CSRs,and ErrorHandling.ottt it i e i ittt teiaee s 11-53
11.9.1 Required IPRSand CSRSottt ittt it e it aeeae s 11-53
11.9.2 ErrorHandlingottt i e e e e e s 11-55
11.9.3 Cbox Deadlock Avoidance Mechanismst iinnneanns 11-55
11,10 Profiling Suppomt o e e e e 11-55
11.11 Stuff From Original Cbox Spec NotinOutline. i .. 11-565
11.11.1 Scache Index (paddr<18:6>) Conflict. i 11-55
11.11.2 ShrToDIRYSTCIREq .. oot i it i ittt e e et ettt e 11-56

Compag Confidential
8 January 2001 — Subject To Change xdii

12

11.11.3 Scache TaglLaunch Pipe. i i e i i e e e e 11-57
11.11.4 Probe Processing in ChoxXo ii ittt ittt it it ettt e 11-60
11.11.5 Order DependenCy oo ittt it it et e e e e 11-61
11.11.6 Possible Race Conditions and OtherConcems.o, 11-62
11.11.7 CBOXMEChaNISMSottt it et e et 11-62
Cache Coherence Protocol Processing
12.1 Introduction to the Protocol i i i e et e e 12-1
12.2 Structures that Maintain the Cache Coherence 12-2
12.2.1 Miss Address File (MAF) . ..o ottt i e et e ittt e e eaenans 12-3
12.2.2 System Request Queue (SRQ)ottt i e e 12-3
12.2.3 Victim BUffer. . ..o e e e 12-3
12.2.4 Probe Queue (PRQ).ottt i e e e 12-4
12.2.5 0| 12-5
12.3 Overview of the Cache Coherency Protocols it 12-5
12.3.1 Comparison Between 21363 and 21464 Cache Coherence Protocols 12-5
12.3.2 Onchip Directory Cache i i e it it e e e e e 12-6
12.33 Coherence Messages are Splitinto Three Typescoiiiiiiiiieinnn... 12-6
12.4 Protocol Racesot e e e e 12-7
12.5 Probe ProcessiNg « ..o ittt e i e i e e e 12-8
12.6 Coherence State it it e et e e e 12-10
12.7 MAF Address CAM i i i e it e ettt e e 12-11
12.8 Scache Hit. i i i e e e e e 12-14
12.9 VAF Address CAM i e et e it e e 12-17
12,10 DireCtory ResPONnSeS . . ot v it vttt e in et et et et e e 12-18
12,11 System Command Opcodes v. ittt i it i it e e i 12-20
12.12 Protocol Message Descriptions.o ittt e e 12-21
12.12.1 IO CHANNEL Message Details ittt ieenns 12-21
12.12.1.1 RdBytes, RALWs, RAQWs, RdIPRo e 12-21
12.12.1.2 WrBytes, WrLWs, WrQWs, WrIPR it 12-22
12.12.2 REQUEST CHANNEL MessageDetails it 12-24
12.12.2.1 ReadReq. ... oot e e i e e 12-24
12.12.2.2 ReadSharedReqttt it i ittt ittt e 12-24
12.12.2.3 ReadModReqt e i e e e e et e 12-24
12.12.2.4 FetchReq ... o i e 12-24
12.12.2.5 SharedtoDirtyReqot e e 12-25
12.12.2.6 SharedtoDirtySTCREq vttt it et e 12-25
12.12.2.7 InvaltoDityReqo oo e 12-25
12.12.3 FORWARD CHANNEL Message Details. i, 12-26
12.12.3.1 ReadForward, ReadSharedForward, ReadModForward, FetchForward, InvaltoDirtyFor-
1722 T 12-26

12.12.3.2 SharedlnvalSingle. 12-26
12.12.3.3 SharedinvalBroadcast.ttt e e e 12-27
12.12.4 RESPONSE CHANNEL Message Details it 12-27
12.12.4.1 BlKShared e e e e 12-27
12.12.4.2 BIKEXCIUSIVECNT ...t e e 12-27
12.12.4.3 BIKINVAlt e e e et e e e 12-27
12.12.4.4 2 PP 12-28
2 17 Victim 12-29
12.12.4.6 VictimtoShared i i it 12-30
12.12.4.7 VictimACKEXCHo e e et 12~30
12.12.4.8 VictimAckShared. i e 12~30
12.12.4.9 InvaltoDirtyRespCnt it e 12-30
12.12.4.10 SharedtoDirtySuccessCnt. oo ottt e e 12-31
12.12.4.11 SharedtoDirtyProbCnt. e e e 12-31
12.12.4.12 SharedtoDirtyFailt i e e 12-31

Compayg Confidential
§ January 2001 - Subject To Change

12.12.4.13 NXMRESD .« v vttt e et e e e e e e e e e e e e
12.12.4.14 ERRRESD ..ot i e e e et e
12.12.4.15 INValACK . ..o e e e
12.12.4.16 WO ACK . .t e et e
12.12.4.17 WHIONACK . . o e e e
12.12.4.18 VictimClean. S
12.12.4.19 VictimCleantoShared i i i i it iaaan
12.12.4.20 ForwardAckEXCl e e e
12.12.4.21 ForwardAckShared. i i e e e
12.12.4.22 ForwardMissot i i e e it e e
12.12.4.23 SharedtoDirtyComplete. oottt i i it e i e
12.12.4.24 SharedtoDityRelease.o it i it i e e e
12.12.5 SPECIAL CHANNEL Message Detailscovtiiiiiiiiiinnnnn...
12.12.5.1 NZN O P . . e e e e e e e
12.12.5.2 SpeciallnvalBroadcastcviiiiiii i e e e e
12.13 Protocol Race Descriptions. vi ittt i i e e e e
12.13.1 Early Forward Race i i i e e e
12.13.2 Late Forward Race. i it ittt e e e e
12.13.3 Dual Victim Race i i e e e e e
12.13.4 Early InvalAck Race.o e e e e e e
12.13.5 Early InvalShared Racet e i e et c et
12.13.6 Wrong SharedtoDirtySuccess Race. iiiii it e i i e
12.13.7 A Note on SharedtoDirties and their Resolution
12.13.8 Special Store-Conditional Support.t e e
12.13.9 Local CBOX TooFar Aheadttt in ittt i e eaeanaann

13 Router Intérface — the Rbox

13.1 Protocol Messagesot e e e e
13.1.1 Messagesonthe [O_CHANNEL i
13.1.2 Messages onthe REQUEST_CHANNEL i,
13.1.3 Messages onthe FORWARD_CHANNEL. i,
13.1.4 Messages onthe RESPONSE_CHANNEL i i ..
13.1.5 Messagesona SPECIAL_CHANNEL ittt
13.2 Message Format Details i i i s
13.2.1 Route Information i e e e
13.2.2 Flow Control and Dealloc Information it i,
13.23 Packet Formatst i i e it i et et e
13.2.3.1 IO _CHANNEL Formatsviiit ittt it ittt ettt s e i
13.2.3.2 "REQUEST_CHANNEL Formatccoouiiiiiiiii i,
13.23.3 FORWARD_CHANNEL Format it e i i e ee
13.2.34 RESPONSE_CHANNELFormatsciitiiiii i iiiiii i ieinnnnnn
13.2.3.5 SPECIAL_CHANNEL Formatsciiitii it it iiiieennns
13.2.3.6 INPUT I/O PORTHEADER TICKFormatscoviiiiiinneennnn.
13.2.3.7 ROUTE FIELD FOrMat . . oottt it it e et it e ee et i naeiaeaaaenenan
13.3 SharedinvalBroadcastDetails i e
13.4 I/O Port and 1/0 ASIC ASSUMPHIONS . ..ot vt ittt it et it et i it et et en s
13.5 Interrupt Deliveryo e
13.6 DMA Device ASSUMPHONS.ottt ittt et i et e ie ittt et iaaeaennns
13.6.1 I/O DMA Access and Exclusive Caching . ..ottt iiie i
13.6.2 I/ODMA Access Via TImeoUtSo v vt ittt et e ittt caaeenecnnens
13.7 1/O Space Ordering and ASSUMPONS.t it ittt it e e i e

14 Rambus Interface — the Zbox
14.1 The 5th Rambus Channelt e e e et et

Compag Confidential
§ January 2001 - Subject To Change

XV

15 Miscellaneous Interfaces

16

Xvi

156.1
16.1.1
16.1.2
15.1.3
156.1.31
15.1.3.2
156.1.3.3
15.1.4
16.1.4.1

L L= € 1 2 T
ST T 1

LI 22T = o 1o T T
Registers . ..o i e e e e e e e e

GIO CNFG . .. i e e e e i e e e e

GlIO _ADDD R . .. e e e e
GlO D AT A . e e e e e

Internal Processor Registers

16.1
16.1.1
16.1.2
16.1.3
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6
16.2.7
16.2.8
16.2.9
16.2.10
16.2.11
16.2.12
16.2.13
16.2.14
16.2.15
16.2.16
16.2.17
16.2.18
16.2.19
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.3.7
16.3.8
16.3.9
16.3.10
16.3.11
16.3.12
16.3.13
16.3.14
16.4
16.4.1
16.5
16.5.1

Internal Processor Register Summary ot i e e
PALcode CodingRules it it e e

Lo
DOX P RS, . e e e e e e e
Cycle Counter Register — CCtpu]ottt it e et
DTB Single-Miss Return Address Register - DTBMS_RET_ADDR[tpu]
Exception Address Register — EXC_ADDR[tpu].ccvvriiriiinn...
Exception Summary Register —EXC_SUM[tpu].,
Ibox CPU Configuration Register —CPU_CNFG
Ibox TPU Configuration Register — TPU_CNFG.
Ibox Control Register — |_CTLIPU]. . . oot e e e s
Ibox Process Mode Register — I_MODE[tpu] oo i i i it i i i e e
Ibox Process Context Register — |_PCTX[tpu]c.ciiiiiiiiinn...
Icache Status Register — IC_STAT[tpul.ot et
lcache Flush Register — IC_FLUSH[tpu]
lcache Flush (ASM=0) Register — IC_FLUSH_ASMf[tpu]
ITB Invalidate Multiple Register — ITB_IM[tpu] oot i i ...
ITB Invalidate Single Register — {TB_IS[tpu].o vt i i
Instruction PTE Array Write Register — ITB_PTE[tpu].........................
Instruction Tag Array Write Register — ITB_TAG[tpu].............o ...
Instruction Virtual Address Format Register — IVA_FORM[tpu].
PALcode Base Address Register- PAL_BASE[tpu]
PAlLcode Temp Registers — PAL_TEMP1jtpu], PAL_TEMP2[tpu]
MBOX P RS, ..ot e e e e
Dcache Control Register — DC_CTLottt e e et
Dcache Status Register — DC_STATHPU]o v it e
DTB Invalidate Multiple Register — DTB_IM[tpu]c.ciiiiiinenn..
DTB Invalidate Single Register— DTB_IS[tpu],
DTB PTE Array Write Registers — DTB_PTEO[tpu], DTB_PTE1[tpu]
DTB Tag Array Write Registers — DTB_TAGO[tpu], DTB_TAG1[tpu]
Mbox Control Register — M_CTL[tpu] ...ttt
Mbox Process Mode Register — M_MODE[tpu]. i,
Mbox Process Context register — M_PCTX[tpu]
Mbox Memory Management Status Register — M_STAT[tpu].
Quiesce Timeout Register — QUIESCE_TIMEOUT[tpu],
Virtual Address Register — VA[tpu] i
Virtual Address Format Register — VA_FORM[tpu]. i,
Watch Physical Address Register — WATCH_PHYS_ADDRI[tpu]
L8700 g | o T
Hardware Interrupt Clear Register — HW_INT_CLR[tpu]
o) g

Compag Confidential

151
151
152
15-2
156-2
16-3
15-3
15—-4
15-6

& January 2001 - Subject To Change

16.56.2 Router Configuration2 (R,W) — R_CFG2........... ... o i, 16-39

16.5.3 Router Channel {N,S,E,W} Configurationt (RW) —R_n_CFG1 16-40
16.54 Router Channel {N,S,E,W} Configuration2 (R,W) —R_n_ CFG2 1642
16.5.5 Router Channel {N,S,E,W} Timer1 Configuration (RW) —R_n_T1ICFG 16-43
16.5.6 Router Channel {N,S,E,W} Timer2 Configuration (R,W) —R_n_T2CFG 16-43
16.5.7 Router Channel {N,S,E,W} Error Status (R, W1C) —R_n_ERR.................. 16-44
16.5.8 Router Channel {N,S,E,W} Performance Counter (R, W)— R_n_PERF 16-44
16.5.9 Router I/O-Port Configuration1 Register (R, W) — R_IO_CFG1.................. 16-45
16.5.10 Router I/O-Port Configuration2 Register (R, W) —R_IO_CFG2.................. 16-47
16.5.11 Router I1/O-Port Buffer Size (RRW)—R_IO BUFSIZ. i, 16—-47
16.5.12 Router 1/O-Port Timer1 Configuration (RW) —R_IO_TI1ICFG 16-48
16.5.13 Router I/0-Port Timer2 Configuration (RW)—R_IO_T2CFG.................... 16-48
16.5.14 Router 1/0-Port Error Status (R, WIC) —R_IO_ERR.............., 16-48
16.5.16 Router I/O-Port Performance Counter (R, W) —R_IO_PERF.................... 16—-49
16.5.16 Router Local-Port Error Status Register (R, W1C) —R_LOC_ERR............... 16-49
16.5.17 Router Routing Table Register RW) —R_ROUT, 16-50
16.5.18 Router WHOAMI Register (RW) — R_WHOAMI i, 16-51
16.5.19 Router Overall-Timer-Control Register RRW) —R_OVER 16-51
'16.5.20 Router Interrupt Status (R, WIC) — R_INT_STAT. ..ottt it ieaeen 16-51
16.5.21 Router Interrupt Mask (R, W) — R_INT_MASK. it 16-51
16.5.22 Router Interrupt Request (WO) — R_INT_ REQottt 16-52
16.5.23 Router interrupt Queue Register (RO) —R_INT_ QUE.............. 16-52
16.5.24 Router Interrupt Queue Add Register (WO) —R_INT_QUEADD. 16-52
16.5.25 Router Interval Timer Register (R,W) —R_INTER_TIM 16-52
16.5.26 Router Scratch Register 1 (R,W) — R_SCRATCH1 16-52
16.5.27 Router Scratch Register 2 (RW) — R_SCRATCH2 16-52
16.6 ZbOX PR . oot e e e e e 16-52
16.6.1 DRAM Error Status 1 — ZBOXn_DRAM_ERR_STATUST v, 16-52
16.6.2 DRAM Error Status 2 — ZBOXn_DRAM_ERR_STATUS2ccovun.. 16-53
16.6.3 DRAM Error Status 3 — ZBOXn_DRAM_ERR_STATUS3 i, 16-54
16.6.4 DRAM Error Control — ZBOXn_DRAM_ERROR_CTL........ . it 16-56
16.6.5 DRAM Timing Control 1 — ZBOXn_DRAM_TIMING_CTL1, 16-58
16.6.6 DRAM Timing Control 2 - ZBOXn_DRAM_TIMING _CTL2 16-61
16.6.7 DRAM Timing Control 3 — ZBOXn_DRAM_TIMING_CTL3ot 16-62
16.6.7.1 Calculating Read to Write and Writeto Read Spacing. 16-64
16.6.7.2 1= 141127 Lo 16-65
16.6.7.3 Ideal Rambus i i i ittt e et e et 16-65
16.6.7.4 Non-ldeal Rambust i et ettt et e 16-65
16.6.8 DRAM Refresh Control - ZBOXn_DRAM_REFR_CTL i, 16-66
16.6.9 DRAM Calibration Control 1 — ZBOXn_DRAM_CALIB_CTL1t 16-68
16.6.9.1 Temperature Calibration Interval 16-69
16.6.9.2 Current Control Interval.ot i i it e e et e e 16-69
16.6.10 DRAM Calibration Control 2 — ZBOXn_DRAM_CALIB_CTL2 16-69
16.6.10.1 Read to Current Control Transition.o ii i i ieie e 16-70
16.6.10.2 Temperature Calibrate to Read transition.c vttt ieeinnnnn. 16-70
16.6.10.3 Read to Temperature Calibrate transition., 16-70
16.6.11 DRAM Timing Controt 4 — ZBOXn_DRAM_TIMING_CTL4ccoivia... 16-71
16.6.12 DRAM Refresh Row — ZBOXn_DRAM_REFRESH_ROW.covivinn.. 16-71
16.6.13 DRAM Initialization Control — ZBOXn_DRAM_INIT_CTLot 16-72
16.6.14 DIFT Control = ZBOXN_DIFT_CTL ..ttt e e ittt s et eeet e eenennn 16-73
16.6.15 DRAM Error Address — ZBOXn_DRAM_ERR_ADR vttt 16-75
16.6.16 DIFT Timeout— ZBOXn_DIFT_TIMEOUT it e e e 16-76
16.6.17 DRAM Mapper Control - ZBOXn_DRAM_MAPPER_CTL..............c.cooo... 16-77
16.6.18 Zbox Performance Counter 0 —ZBOXn_ZPM_CTRO ... it 16-83
16.6.19 Zbox Performance Counter 1 —ZBOXn_ZPM_CTR1 16-84
16.6.20 Zbox Performance Control = ZBOXn_ZPM_CTL. it i et 16-85
16.6.21 Zbox Sweep Directory Bits — ZBOXn_DRAM_SWEEP_ DIR..................... 16-88
16.6.22 Zbox Force-Error Address register - ZBOXn_FRC_ERR_ADR 16—-89
16.6.23 Zbox DIFT Error Status — ZBOXn_DIFT_ERR_STATUS 16-90
Compag Confidential

8 January 2001 - Subjsct To Change xvii

17

18

19

Xviii

16.6.24 Zbox RAC Control —ZBOXN_RAC_CTL ... iiii it ittt ittt rneee e 16-91

Privileged Architecture Library Code

17.1 HW_LD and HW_ST Instructionsc.ci vttt i et e e iieanas 17-1
17.2 HW_MFPRand HW_MTPR Instructions.ottt e et ie e e iieae e 17-3
17.2.1 HW_MFPR Instruction i i i i et et i a e e eeann 17-3
17.2.2 HW_MTPRInstruction i i i e e ettt eeeens 17-4
17.3 Execution of the RET Instructionin PALmode i, 17-5
17.4 CMOV Execution Within PALcodeottt i i e ciinnennns 17-6
17.5 PALcode Restrictions and Guidelines. i i e 17-7
17.5.1 Restriction 1: PALcode Must Guarantee That IPR Writes Retire Before Returning . . . 17-7
17.5.2 Restriction 2: IFETCHB Required Between IPR Writes in the Same IPR Group 17-7
17.5.3 Restriction 3: Mbox IPRs Must be Written Twice to Ensure Correct Slotting 17-7
17.5.4 Restriction 4: All Instructions in the DTB Writer Block Must be in the Same Map Block 17-8
1755 Restriction 5: All Four DTB MTPR Instructions Must Appear in the Same Fetch Block. 17-8
17.5.6 Restriction 6: Non-DTB Writer Block DTBMS_RET_ADDR MFPRs Require IFETCHB 17-9
17.5.7 Restriction 7: IFETCHB Required Between Non-DTB Writer Block DTB Writer Block MxPRs
.. 17-9
17.5.8 Restriction 8: Padding Required Between DTB Writer Block and DTB-Dependent Instructions
.. 17-9
17.5.9 Restriction 9: PALcode Must Not Allow Writes INVALID DTB_PTE Entries to Retire.. 17-10
17.5.10 Restriction 10: TAG and PTE Must be Written as Pairs with TAG Writes Before PTE Writes
.. 17-10
17.5.11 Restriction 11: Register-Dependent MTPRs Must Not Have Read Class Dependent MxPRs
.. 17-10
17.5.12 Restriction 12: CMOYV instructions Cannot Specify PALcode Shadow Registers as Destinations
.. 17-11
17.5.13 Restriction 13: PALmode Native CMOYV Instructions Cannot Specify R24 or R25 as Destinations
.. T a4
17.5.14 Restriction 14: PALmode JMP Instructions Must be Followed by IFETCHB 17-12
17.5.15 Guideline 15: No Push or Pop Instructions in the First Fetch Block of a PALmode Flow 17-13
17.5.16 Restriction 16: PALmode MT_FPCR Must be Followed by IFETCHB. 17-13

Initialization and Configuration

Performance Monitoring

19.1 Instruction Based Profiling.i ittt i it ittt et e 19-1
19.1.1 Profiling Methodology. i i i i et et 19-2
19.1.2 Initiating an Instruction Profile Sample. i i e 19-2
19.1.3 Instruction Profile Record IPRs i ittt et i e et i e e 19-6
19.1.3.1 Data/lEvent IPRS oot i e e et e, 19-6
19.1.3.2 Timeline/Latency IPRS it i e e e 19-12
19.1.3.3 Aggregate Event/Data IPRsottt e 19-15
19.2 Memory Reference Performance Monitoring. oo i 19-17
19.2.1 Chox Performance CORS.ttt ittt ittt e ettt et it ennnenn 19-17
19.2.1.1 Cbox Performance Control — CBOX_PRF_CTL<31:0>ccivivnnn... 19-17
19.2.1.2 Cbox Performance Address — CBOX_PRF_ADR<63:0> 19-18
19.2.1.3 Cbox Performance Status — CBOX_PRF_STS<25:0>civiiinnn .. 19-18
19.2.1.4 Cbox Performance Match — CBOX_PRF_MAT<25:0>cc.ivvvnennn 19-18
19.2.1.5 Cbox Performance Match Value — CBOX_PRF_MATV<25:0>............... 19-19
19.2.1.6 Cbox Performance Counter — CBOX_PRF_CNT<31:0>.................... 19-19
19.2.2 Zbox Performance CORS it it it e e e e 19-19
19.2.2.1 Zbox Performance Counter 0 — ZBOXn_ZPM_CTRO0<31:0> 19-19

Compag Confidential
& January 2001 - Bubject To Change

20

21

22

23

19.2.2.2 Zbox Performance Counter 1 — ZBOXn_ZPM_CTR1<31:0> 1920

19.2.2.3 Zbox Performance Control — ZBOXn_ZPM_CTL<31:0>. 19-20
19.2.3 Rbox Peformance CSRSottt ittt it it anenns e 19-22
19.2.3.1 Rbox Port Performance Counter — RBOX_n_PERF<27:0> 19-23
19.2.3.2 Rbox 10 Port Performance Counter — RBOX_IO_PERF<27:0>.............. 19-23
19.3 Addendum: Implemention Notes. it iin i i e i 19-23
19.3.1 FromData/lEvent IPRS i i i i e et e 19-23
19.3.2 Following Table 17-4 i i i et e e naaanas 19-24
Hardware Debug Features
20.1 DebUg Processo it e e et 20-1
20.2 Feature OVerVieW i it i e et ettt et e 20-2
20.2.1 T o 20-2
20.2.2 Trace BUS. . .. ot i e et 20-3
20.2.3 Internal Processor Registersttt ittt i ittt e e e 20-4
20.2.4 Derived Signals e 20-4
20.3 Global Support e e e e e e 204
20.3.1 Lo Y o 204
20.3.2 =TT =30 = 11 20-5
20.3.3 THgger LogiC . ..o e e e 20-6
20.4 2 701 o oo s 20-7
20.4.1] o7, . 207
20.4.2 [0T ¢] 1o " P 20-8
20.4.3 Ebox/Register File oot i i i i et et e 20-8
20.4.4 MK Lt e e e 20-8
20.5 Software SUPPO. e 20-8
Testability and Diagnostics
21.1 Global Block Diagram it i e et et e e 21-2
21.1.1 Group 1 — Array BiST/BiSR Satellites it 21-3
21.1.2 Group2—BiStSatellitest i i i e e 21-3
21.1.3 Group 3 — Observability Registers (LFSRS) ii i ns 21-4
21.14 Group4—Scanislands (TBD)cc it e et e e e eaas 21-4
21.1.5 Group5—Boundary Scan Register.c.ci ittt e i e 21-4
21.2 =5 3 e 3T 21-4
21.3 Central Port Controller. i i i i e et 21-5
21.3.1 IEEE1149.1 Test Access PortController. it nn 21-6
21.3.2 Port Configuration and FireWall Logic oot i 21-7
21.33 Clock Control Unit i i e e ettt 21-7
21.34 Thox Reset Engine. i e e e 21-7
21.35 SROM ENGINE .. i i e e e e et 21-8
21.4 Dot1 Test Decode and Dispatch Logic i e ee et 21-10
Error Detection and Error Handling
22.1 [T 477 T 3 22—1
22.1.1 High-Level Features. i it i i it et e it cieaeae e 22-3
221.2 Low-level Features oot i e e 22-8
Hardware Interface
23.1 Signal Pad Requirements i i 23-1

Compayg Confidential

8 January 2001 - Subject To Change xix

24

25

26

27

XX

New Instructions

System Configurations

Physical Addressing and Input/Output
Requirements to Support "Tandem"

Instruction Decoding

A1 InstructioN Formato i i i i e it e e A-2
A2 Predecodeso e e e ettt A-3
A3 INStrUCHON LatenCy .. .o v i i et e i e e et e e A-4
A4 Execution Pipelines.ottt i i e e e e e e e e, A-4
A5 Instruction Info (INST_INFO<15:05) i ittt ittt it it it i et s et e eanaens A-56
A6 Specific Opcode and Instruction Type Decodingt ie i A-5
A6.1 Opcode 00, CALL _PAL i it i it e ettt et eaan e A-5
AB.2 Opcodes 01 through 07, Reservedcciiiiiniiii ittt A-5
AB.3 Opcode 10, Integer Add/Subtract/Compare.cov ittt ieiinne e A-6
A6.4 Opcode 11, IntegerLogicalttt ittt ettt ennnnns A-7
A6.5 Opcode 12, Integer Shiftttt i e ittt c ettt ieeanns A-7
A6.6 Opcode 13, Integer Multiply i i e e e e A-8
AB.7 Opcode 14, ITOFx and Floating-Point Square Root A-9
A.6.8 Opcode 15, VAX Floating-Point oot i i e e e i ca s A-10
A6.9 Opcode 16, IEEE Floating-Pointttt iannenn A-11
A6.10 Opcode 17, Miscellaneous Floating-Point A-12
A.6.11 Opcode 18, Miscellaneous.ottt ittt ettt e et e A-13
A6.12 Load and Store Instructions it e i e A-13
A6.13 Opcode 1C, Integer Multimedia i it i et iee e A-14
A.6.14 Branchand Jump Instructionso i e e A-16
A6.15 PALcode INStructionso v ittt i s i i e e e e A-17

LDx_ARM/QUIESCE Instruction Characteristics

B.1 Relationship Between SMT and LDx_ ARM/QUIESCEo ieion... B-1
B.2 Goals for the LDx_ARM and QUIESCE Instruction Definition. B-2
B.2.1 Specific LDx_ARM Instruction Characteristics.coviiin i, B-2
B.2.1.1 Instruction Description i e e e B-3
B.2.2 Specific QUIESCE Instruction Characteristics.o, B-6
B.2.2.1 Data Sharing Using LDXx_ARM/Quiesceo ivin it ieiii e cnae s B-8
B.3 Proposed Opcode Assignmentsottt in ettt innennenns B-9
B.4 Implementationcout it it i e i e e e e e B-10
B4.1 Interaction of Interrupts and QUIESCE it B-11
B4.2 Quiesce-Related Hardwareciiiii ittt et it eiii e B-12
B.4.3 Reallocation Hardware Resources During Quiesce............. e B-13
B.4.4 Issues to Consider While Finalizing the Hardware Design. B-13
B.5 Alternative Proposals to the LDx_ARM/QUIESCE CurrentDesign. B-14
B5.1 TimerBased.ot e e e e e B-14
B.5.2 Unified QUIESCE Instruction.ot i et e e et eas B-14
B5.3 Use architectural Registers to Enforce LDx_ARM/QUIESCE Dependency.......... B-14
B5.4 Add LDx_ARM Functionalityto LDx_L.ot iieaes B-15
B.5.5 Define QUIESCE tobealoadandtest i, B-16
B.5.6 Define QUIESCE to be a read of memory and compare with a register B-16

Compag Confidentiai
§ January 2001 — Subfect To Change

B.6 PN SSUES . ittt e e e i e et e e B-17

C Proposed Memory Management IPR Design

C.1 Motivation for This Design.ottt ittt it e e ittt et aeaee e C-1
Cc.2 Page Table AsSUMPIONSo vttt et e e ittt te e e C—1
C3 I-Stream (I_CTL) and D-Stream (M_CTL) Control Registers C-3
C.3.1 1O 1 Cc-3
C.3.2 1 O I C-5
C.3.3 PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE Field Combinations. C-6
C4 VA_FORM and IVA _FORM. it i i e e i ettt ettt e e C-6
C.4A1 The Transformation From VAto VA_FORM i, C-7
C4.2 43-bit VA /B KB Page . .. oottt ettt it e et e C-7
C43 B2-bit VA /B4 KB PaGE .. v ottt ittt it e e e et e C-8
C4a4 52-bit VA/64 KB Page /ReducedPage Tablescciiiiiiann.. C-9
C5 Sign Extension Checkingottt i i i ittt C-10
C5.1 Previous Implementation i e C-10
C5.2 Proposed Implementationttt i e e C-11

Glossary

Index

Compag Confidentia
8 January 2001 ~ Subject To Change xxi

Figures

XXii

2-1
2-2
3-1
3-2
33
34
3-5
3-6
3-7
3-8
4-1
4-2
5-1
5-2
53
54
6-1
6-2
6-3
64
6-5
6-6
6—7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
7-1
8-1

8-3
84

8-6
8—7
8-8

8-10

8-11 -

9-1
9-2
9-3
9-4
15-1
16-2
16-3
15-4
16-6

21464 Block Diagramttt e e e, 2-5
21464 Pipeline Stage Diagram ittt i i e et e 2-20
Ibox Block Diagramo it e e e e e e 3-2
Line Predictor Block Diagram it i it et i 3-5
High level diagram of the 21464 branch predictor. i, 3-20
Jump Predictor Block Diagram it i e e e 3-26
Instruction Fill Unit (IFU) Requestand Fill Sections 3-42
Instruction Fill Unit (IFU) Demand Subsectiono i, 3-43
Instruction Fill Unit (IFU) Prefetch Subsection. i, 3-46
Instruction Fill Unit (IFU) Fill Section.ot i i e e e e 3-48
Pbox Block Diagramot ittt i e e e e e e i e 4-1
The INUM Circle i i i st it et i ettt e e aennens 4-4
Simplified View of One-Half of the InstructionQueue.ccoont. 5-5
Simplified View of Full Instruction Queue it 5-7
Simplified Diagram of QET and Pickers for Two Pipelines. 5-11
Tracking Data-Ready Instructions. it i i i 5-18
Ebox Block Diagram i e e 62
Ebox Datapath Block Diagram it i i it i e e e, 6-3
Cluster Section Organization. iit ittt it it it i e e ennen s 6-6
Ebox ITOFx and FTOIx Floating-Point Store Data Paths 6-12
Ebox Register Cache Block Diagram i i e 6-13
Ebox Register Cache Multiport Static RAM Block Diagram 6-13
Ebox Register Cache Single-Cycle ResultFlow 6-14
Ebox Register Cache Multi-Cycle Result Flow i, 6-15
Writing Entries in the Ebox RegisterCacheottt 6-17
Ebox Multimedia Unit Block Diagram ittt e, 6-18
Ebox Multimedia Unit Pipeline Timing. i i i e 6-18
Ebox Multimedia Unit MVI Section Block Diagram 6-20
Ebox Multimedia Unit Arithmetic LogicUnit. it 6-20
Ebox Multimedia Unit Computation of the Min/Max Instruction. 6-21
Ebox Multimedia Unit Multiplier Array Block Diagramcooiiiii i, 6-23
Ebox Multimedia Unit Multiplier Array Tree Adder. i i, 6—24
Ebox Multimedia Unit Min/Max Logic Block Diagramccoviiunnn.. 6-26
Ebox Multimedia Unit Shifter. i i e e 6-27
Ebox Multimedia Unit Integer Multiplier. i i, 6-28
Register File Block Diagram it i e e 7-2
FboX Organization. oot i i i i e et e 82
Register Cache vttt i it ittt e e e e et e 8-8
FPCR Update Mechanism.c.itt ittt e ittt et it et taeeaeannn 8-16
F AP Block Diagram . ..ot ittt i it e e e et e e e e 8-21
CMP Instruction Logico vii ittt i it e e ittt et e et it 8-24
F AP 2 Block Diagramo ittt st i e i e et e e e, 8-31
Fbox Floating-Point Control Registers i i i, 8-36
F_SHP Block Diagramottt ittt ettt 8-38
F_DIVBlock Diagramttt e et et et 8-44
F_SQRBlock Diagramt it e et e ettt i e e 8-45
F_GAD Block Diagram for One-Halfofthe Pair i, 8-50
Address and Data Path ot i i i i e i e 9-2
Scache Write-Through Process ittt ittt i i 9-30
Merge Buffer Entry Statesot ittt it ittt e 9-34
Pre-MAF QUEUEottt ittt ittt it e e e et e, 9-46
GIO Port Read Transaction Timingo it ii it e i i e i ee e enannn 15-2
GIO Port Write Transaction Timing o ittt it it et e et i v eaeaennn 16-2
GIO_CNFG Register. . ..ottt it it ittt e ittt e ettt et ennannas 15-3
GIO_ADDR Register.o i e e e e 15-3
Gl D AT A L i e e e e e 15—4

Compag Confidential
& January 2001 ~ Subject To Change

16-1

16-2

16-3

16-4

16-5

16-6

16-7

16-8

16-9

16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
16-38
16-39
16-40
16-41
16-42
16-43
16-44
16-45
16-46
16-47
16-48
16-49
16-50
16-51
16-52
16-53
16-54
16-55
16-56
16-57
16-58
16-59

Cycle Counter Register — CCOIpU] it e e it it e e e ne e 16-7

DTB Single-Miss Return Address Register — DTBMS_RET_ADDR[tpu]............... 16-8
Exception Address Register — EXC_ADDR[tpu] ittt i e e 16-8
Exception Summary Register —EXC_SUM[tpu]t 16-10
Ibox CPU Configuration Register— CPU_CNFG. i, 16-11
Ibox TPU Configuration Register — TPU_CNFG ciiiiiiiiianannn., 16-12
Ibox Control Register — |_CTLPU] . ..o vttt ettt e st e e i e e e ennanns 16-13
Ibox Process Mode Register — |_MODE[tpu]. it 16-15
Ibox Process Context Register — |_PCTX[tpu].ottt 16-16
lcache Status Register — IC_STATIPU]. ottt e e e et eeaanns 16-16
Icache Flush Register — IC_FLUSHI[tpu] ot e i i e et 16-17
Icache Flush (ASM = 0) Register — IC_FLUSH_ASM[tpu], 16-18
ITB Invalidate Multiple Register — ITB_IM[tpu] i 16-18
ITB Invalidate Single Register — ITB_IS[tpu] oot e 16-19
Instruction PTE Array Write Register — ITB_PTE[tpu]ccviieernna... 16-20
Instruction Tag Array Write Register — ITB_TAG[tpul.o ii i 16-21
Instruction Virtual Address Format Register — IVA_FORM[tpu} 16-21
PALcode Base Address Register — PAL_BASE[tpu], 16-23
PALcode Temp Registers — PAL_TEMP1[tpu], PAL_TEMP2ftpu] 16-24
Dcache Control Register — DC_CTL. it i e e et et st iaaaaas 16-24
Dcache Status Register — DC_STAT[pUL.ot i it 16-25
DTB Invalidate Address Space Register — DTB_IASN[tpu]ccoiva... 16-26
DTB Invalidate Multiple Register — DTB_IM[tpu]ot 1627
DTB Invalidate Single Register — DTB_IS[tpu].o ir it e i eeeann 16-27
DTB PTE Array Write Registers — DTB_PTEO[tpu], DTB_PTE1[tpu] 16-28
DTB Tag Array Write Registers — DTB_TAGO[tpu], DTB_TAG1[tpu].. 16—29
Mbox Control Register — M_CTL[tpu]. i e e et i e e 16-30
Mbox Process Mode Register — M_MODE[tpu]ottt 16-32
Mbox Process Context Register — M_PCTX[tpu]o i, 16-33
Mbox Memory Management Status Register — M_STAT[tpu] 16-34
Quiesce Timeout Register — QUIESCE_TIMEOUT[tpu].o oo i i i ei e a . 16-35
Virtual Address Register — VA[tpU]. i e 16-36
Virtual Address Format Register — VA_FORM[tpu]t 16-36
Watch Physical Address Register — WATCH_PHYS_ADDR[tpu). 16-37
Hardware Interrupt Clear Register — HW_INT_CLR[tpu]. i, 16-38
DRAM Error Status 1.t i it e it e e e i et e 16-52
DRAM Error Status 2.t i i e i e i e 16-53
DRAM Error Status 3. e e et 16-55
DRAM Error Controlttt ittt et et 16-57
DRAM Timing Control 1 o i e e i et e e et e eanens 16-59
DRAM Timing Control 2 it i e e e e ettt e 16-62
DRAM Timing Control 3 ittt it i it ettt et e e 16-63
DRAM Refresh Control i i i i e et e i i e 16-66
DRAM Calibration Control 1 it i i e ittt e ettt n i 16-68
DRAM Calibration Control 2ottt it it e et i e et 16-69
DRAM Timing Control 4 i i i it et e e e et et 16-71
DRAM Refresh Row i i et et ettt e 16-72
DRAM Initialization Control i e e 16-72
DIFT Control . ..o e e e e e 16-74
DRAM Ertor Address. . .. oo v ittt it et et e e e e e 16-76
I I I =T | 16-76
DRAM Mapper Controlttt e e e e et e 16-78
Interpretation of Row High. i e e 16-83
Zbox Performance Counter 0 oo ittt ittt e e i e e 1683
Zbox Performance Counter 1t it ittt ittt ettt i in e 16—-84
Zbox Performance Control it i i e e e 16-85
ZboX SWeep DireCtory Bits . ..o vt ittt it et e e e e e e 16-88
Zbox Force-Error Address Register i 16-89
Zbox DIFT Error Status Register. vttt it it ettt e e 16-90

Compag Confidential

& January 2001 ~ Subjsct To Change Xxiii

XXiv

16-60
17-1
17-2
17-3
17-4
19-1
20-1
20-2
20-3
21-1
21-2
21-3
21-4
21-5
21-6
21-7
A-1

Zbox RAC Control Register.o ii ittt et i et e ittt ia e 16-91

HW_LD/HW _ST Instruction Formatottt nnens 17-1
HW_MFPR Instruction Format ittt it iinaaae s 17-3
HW_MTPR Instruction Format i i e e iaaans 17-4
RET Instruction Fields.ot i i i ittt i et aa e i e 17-6
Captured Timeline for Each Profiled Instruction it 19-12
Trace Bus Timing Relationships i i i i e e e 20-3
Trace Bus ROULING.ottt i i e et ettt et e e e 20-5
QLI T 1= g I L 20-6
Basic Thox Contract i i i it ittt et e 21-1
Tbox Global Block Diagram. i e ittt e e 21-2
Central Port Controller. i i ittt it ettt 21-6
TAP Controller State Machine. . ..ottt i i i it e e 217
Tbox Reset ENgiNe ou ittt et it ittt e st e 21-8
Tbox Reset Engine State Diagramottt ittt ittt iiae e 21-8
SROM Engine State Diagramottt e 21-9
Instruction Formatso i e e e A-2

Compag Confidential
§ January 2001 - Subjsct To Change

Tables

2-1
2-2
2-3
2-4
2-5
2—6
2—-7
2-8

2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
4-1
4-2
4-3
5-1
61
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

Microarchitecture Major Sections Summaryccoiii it i
Ibox Major Component SUMMATYottt it e i et ae e aeaaannnns
Pbox Major Component Summaryttt ittt et
Qbox Major Component SUMMATYitiit ettt einee e i ieentaeanannnns
Ebox Major Component SUMMaAryiiit ittt it i et iean e
Ebox Cluster Section Summary it ittt i it it e e
Fbox Major Component SUMmMaryuiuiiinin et it tieietneneneennas
Fbox Functional Unit Summaryou ittt ettt aanas
Mbox Major Component SUMMaAIYou ittt ittt ittt ettt e iien e nnaanas
Chox Major Component SUMMANYtieitn it teneraneerarrenennnn
Negative Integers to Alphabetics Conversion. oottt
Pipeline Stage Conversion Equations.ttt ittt iiinineenanns
Pipeline Stage Conversion it e e e e
Instruction Execution Pipelinesand Latency.t in i,
Thread Synchonization Instructions i,
Short Vector SIMD Instructions. oottt et et e
bOX M or SeCtiONS. . o ottt it i e i e et e e e
Ibox Main Pipeline. i e
Icache Data Array Cache Block Contents.ttt innnnn,
Icache Tag Array Predecode for FetchBlocks,
Fields in the Start/End Buffer ittt e i
Fetch-Block Exit Conditions ittt it i it e
PC1Calculation. i it e e e e e
Conditions that Sqaush the Second FetchChunk.
Hardware PC Calculation Components.oiivt ittt it e e e e s
Matrix Legend i e e e e e
NextPC 0 Calculation Matrixttt i it e ittt e et aaaeans
lcache Mispredict Signallingot i i e e e e
Superpage supportinthe Main ITB.o i i et e e
Granularity Hint (GH) Mappingo i i i e i e e e
IPRs that Affectthe ITB. i e e it e et e ieiaeaens
ITB Invalidate Operationsttt ittt it et ittt e te it et eaeaens
Predecode Bits Defined by the Ibox Instruction FillUnit
Ibox Predecode Bit Summary i e e
Fieldsina Pre-Map Table Entry i e e
Collapsed fields Stored Into a Post-map Table EntryatMap Time.
Post-Map Table Entry Fields i e
Fields that are Available from Collapsing BufferatMap Time........................
Fields in Post-Map Table Entry That are Created During Execute (E) and Kill Time (K) . ..
Exception Types and Restart Address. . ..ottt it i
Creating Slot-Based Predictor States From Mapped Information in the Post-Map Table. . .
Restoring Predictor Statesona Restart i i,
PboX ComPONENtS. .. ot ittt it i e e e et
INum Age Relationshipot i i ittt e e,
Predecode Value Meaning for [%MAP_INST_I4A_H[7:0}<35:32>covviinn e,
Qbox Component SUMMEAIY . ..o vt ittt ittt ae s et e taeanaaeeeannanns
Ebox Major Component SUMMANYttt et
Interbox Timing Relationships. o i
Integer Cluster Sectionsttt i et e
Instructions Serviced by the Ebox AddrUnit. i,
Instructions Serviced by the Ebox ShifterUnit i,
Instructions Serviced by the Ebox Logic Box Unit.ciiiiiiii ...
Instructions Serviced by the Ebox Virtual Address Generator Unit.
Instructions Serviced by the Ebox Load Data Interface Unit.
Instructions Serviced by the Ebox Multimedia Interface Unit
Instructions Serviced by the Ebox Store Data Inteface Unit

Compag Confidential

& Jareary 2001 - Subjsct To Change

2-10
2-12
2-12
2-15
2-16
2-17
2-18
2-21
2-21
2-21
2-22
2-29
2-30

3-3

3-4
3-12
3-14
3-18
3-29
3-29
3-31
3-31
3-31
3-32
3-35
3-38
3-39
3-40
3-41
3-49
3-54
3-56
3-57
3-57
3-568
3-58
3-61
3-61
3-61

Xxvi

6-11
6-12
6-13
6-14
6-15
6~-16
6-17
6-18
7-1
7-2
8-1
8-2
8-3
84
8-5
86
8-7
8-8

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
91
9-2
9-3
94
9-5
9-6
9-7
9-8
9-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16

Ebox Register Cache Single-Cycle Result Flow oottt 6-14

Ebox Register Cache Multi-Cycle Result Flow ittt 6-15
Ebox Cycle Timing of Operand Control Infformation oot 6-17
Ebox Multimedia Unit Min/Max Instruction Byte Reshuffling. 6-22
Instruction Information From the QboxtotheEbox., 6-31
Exceptions Reported by the EboX.o oo iii it i i i i e it 6-34
Ebox Reserved Opcode Exceptionscov ettt it i i i 6-35
Ebox/Fbox/Mbox Data Conversion MatriX.couuiiiiin it ieenennnnnnns 6-36
Register File Read Timing. oit i it i i it it ettt e e e i 7-3
Register File Write/Read Timingo e e es 7-3
Fbox Pipeline Functional Units, Instructions, and Latencies 8-1
Operation of a Single Fbox Pipe — all Operands From Register File. 8-4
Timing forLoad Data. ittt ettt et et 8-6
Pipeline Stages of Fbox RegisterCache. i i ... 8-6
FDIV_SP (9cycles) ,FDIV_DP (14 cycles). . .. oo oo i i i e i e e et e et 8-11
FSQRT_SP (12 CYCLES), FSQRT_DP(28 CYCLES)ciii it ii e 8-11
Arithmetic EXxceptions ittt i i e e i e e e 8-11
Fbox Exception Signaling Timingottt ittt e e iee s 8-12
FPCR Update/Floating-Point Arithmetic TrapLegend. 8-13
Fbox Retire-Time Exception (RTE) Encodings ottt nns 8-13
Floating-Point Control Register Format. i it 8-14
Exponent Difference Estimation it e i e 8-22
Filing of Extension Word for F_AP2 Instructions.o it iiiienn.. 8-27
Arithmetic Instruction Explicit Dynamic Rounding Bitsccoout. 8-36
FPCR Dynamic Rounding Bits it i 8-37
Maskable Exceptions it e 8-37
F_DIV Timing SeqUeNCeottt ittt it e e et et e ettt e 8-39
Paired SP Floating-point Operate InstructionFormat 8-46
Paired Single-Precision. i i i e e 8-46
Paired Single-Precision Instructionsttt e i e 8-47
FI1/F12 Shifter Operand/Control Selection i, 8-53
Fraction Data Path i i i et s e ittt 8-55
Operand Data Fraction and ExponenetDataPaths 8-55
Equations of Sticky Bit Calculation 8-56
Mbox Major Componentsuuutei ittt ettt e e 9-1
Memory Operation (Launch) it i e ettt 9-12
HW_MTPR TB Invalidate, TAGor PTEISSUE.ottt ittt e s et ie e ee e e 9-12
HW_MTPR TB Invalidate or PTERetireot ot i e i i i 9-12
HW_MTPRTB PTERetireBubblecciiii i it it e i ineen e 9-12
HW_MTPR TB Invalidate Retire Bubble i e e e n 9-12
Granularity Hint Encoding it i i e 9-14
LI £= T o30S 11121 =T 7 9-41
Dcache Front-End Tag Timing ottt i it ittt siieenennnns 9-43
Chox Pipeline Stagesottt it ittt i e i et e e e 11-4
MAF Pipeline Timing Diagram. i ittt i i ittt enns 117
Scache Tag Array Bank Conflicts i e e 11-8
Contents of Each MAF Entry. i ittt ie e et 11-10
PRQContentsforEach Entry o i i i i et e 11-17
VAFCommandsccooivniaennn.. e e 11-18
VAF Contents ForEach Entry.o i ittt e et et e et 11-18
Main Victim Flow for Each Cbox Pipeline Stage i, 11-19
System Interface Section Response FIFOEntry Fields 11-21
System Interface Section Response FIFOEntry Fields 11-22
Scache Tag Array Pipeline Stageso vttt i e i e e 11-26
Scache Tag State Transition Table. it i it ien e 11-26
Stale Fill Table (SFT) ... vt ittt i i i i e i ittt e ettt i et aneaaas 11-28
Scache Least Recently Used (LRU) State Bits.coiii ittt in i, 11-29
Scache TAG Syndrome Bits . . .o ..ottt it i it e et it i e i, 11-30
Scache Control Pipeline Diagramottt it ettt e i e 11-33

Compag Confidentiai
§ January 2001 — Subject To Change

11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
156-1
16-2
16-3
15-4
16-5
16-1
16-2
16-3
16-4
16-5

Resource and Order Conflicts.o vttt et ittt e 11-35

Scache Control Pipeline Stages i i i i it 11-37
Required ResoUrCeottt i it i e e ittt it e e 11-39
Scache Bank Conflict Timingttt i it et et cieaaanans 11-40
Miss Request Command Summary.ttt i e 11-42
Victim Command Summary. i e et 11-44
/O Request Packet Format. i i e e e 11-50
Scache Block Stateu it i i e i e e 11-57
Scache Tag Request Commandttt ittt it eennnnn. 11-60
Scache Access Order to the Same CacheBlocko o i, 11-61
Comparison Between 21364 and 21464 Cache Coherence Protocols................. 12-5
MAF Coherence State Bits ittt i i e 12-10
Forwards hit MAF (Full Address Match)ttt 12-11
Response Hit MAF (MAF Index)o iiiin ittt it ittt ittt it e e 12-12
Miss Requests from MboX. oottt ittt it i et 12-14
Forwards From (Remote) Directory.t i et i e i e e 12-15
Responses (Fills) from System e 12—-16
VAR Hit .o e e 12-18
Directory State Request Responsesttt i e i e e e 12-18
System Command Opcodesottt i it it e e e e e 12-20
Location of Useful Data for Fully-Merged WrQW's and WrlPR’s 12-22
Location of Useful Data for Fully-Merged WrLlW'sot 12-23
Location of Useful Data for Quadword Specified by QWADD(5,3) ofa WrByte 12-23
Location of Useful Data in a BIkIO in Response to a Fully-Merged RdQW or RdIPR.. 12-28
Location of Useful Data in Response to Fully-Merged RALW’s. 12-28
Location of Useful Data in Quadword Specified by QWADD(5,3) of a BIKIO Packet 12-29
ALERT Wire Allocation cv ittt i it e i ittt et it i e 12-35
Messagesonthe IO_CHANNEL i i iiiiainnn. 13-2
Messages onthe REQUEST_CHANNEL i i 13-3
Messages on the FORWARD_CHANNEL, e 13-3
Messages onthe RESPONSE_CHANNEL. i 13-4
Messages ona SPECIAL_CHANNEL. i i e e i 13-5
Route Information Bits. i i e e e 13-6
Dealloc 3-Bit Variable-Length Encoding (IPs). it eiean 13-7
Buffer Message Formats. i e e 13-8
Dealloc 3-Bit Encoding (/O port). oot e e e 13-9
I/0O Port Buffer Size and Number. e 13-9
Zport Buffer Message Format i i e 13-9
Cport Buffer Message Format. i i e e 13-10
Packet Formats i e e e 13-11
1/O_CHANNEL Formmats (B3 TicKS) . .. oo ii vttt it ettt et et eeee e e eaanennnn 13-12
REQUEST_CHANNEL Format iitii ittt et e it ieeacaeaeannnnns 13-13
FORWARD_CHANNEL Formatcoiiiiiiiiiii it ittt i iean e, 13-13
RESPONSE_CHANNEL Formats.iitiiii i ittt tiiineennneennn 13-14
SPECIAL_CHANNEL Formats it i e e et e e 13-15
INPUT I/O PORT HEADER TICK Formats oottt e i it i i ieciii e eaeaaeans 13-15
ROUTEFIELD Format i e i et ettt e e aeanas 13-16
Interrupt Level SoUrCeS ittt i e e e e e e 13-19
Router IO_CHANNEL Point-to-PointRules. it 13-22
GlO Port SIgNals ot e i e e e e e e, 15-1
GIO_CNFG Register Field Descriptionsottt it i eee e enn 15-3
GIO_ADDR Register Fields Descriptionttt ittt i e e iannn 15-3
GIO_DATA Register Fields Descriptionci ittt 15-4
GIO Address Space Registers DefinedbyMarvel i, 15-4
Internal Processor Register Summaryttt iiiinieaneaan 16—1
IPR Initialization Classification ittt it 16-6
IPR Reserved Field Type Definitionso, 16-6
Cycle Counter Register Fields Description ittt ien e 16-7
DTB Miss Retum Address Register Field Descriptions.ccoiivna. .. 16-8

Compag Confidential

8 Jarnuary 2001 - Subject To Change Xxvii

XXviii

16-6
16-7
16-8
16-9
16-10

16-11-

16-12
16-13
16-14
16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
16-38
16-39
16-40
16-41
16-42
16-43
16-44
16-45
16-46
16-47
16-48
16-49
16-50
16-51
16-52
16-53
16-54
16-56
16-56
16-57
16-58
16-59
16-60
16-61
16-62
16-63
16-64

Exception Address Register Field Descriptions.coi ittt 16-9

Exception Summary Register Field Descriptionsccciiiiiiiiinanan.. 16-10
CPU Configuration Register Fields Description.o i, 16-11
Ibox TPU Configuration Register Field Descriptions.t .. 16-12
Ibox Control Register Field Descriptions.ttt ittt ieeeiiaes 16-13
Ibox Process Mode Register Fields Descriptiont 16-15
Ibox Process Context Register Field Descriptions oo, 16-16
lcache Status Register Fields Descriptions.ot iiiiniiinan.. 16-17
lcache Flush Register Fields Description ittt 16-17
Icache Flush (ASM = 0) Register Fields Description.cociivin ... 16-18
ITB Invalidate Multiple Register Fields Descriptionsc i iiiiiii i, 16-18
ITB Invalidate Single Register Fields Descriptionot 16-19
Instruction PTE Array Write Register Field Descriptions. 16-20
Instruction Tag Array Write Register Fields Description 16-21
Instruction VA Format Register (43-Bit VA) Fields Description. 16-21
Instruction VA Format Register (52-Bit VA, REDUCED-PT=0) Fields Description 16-22
Instruction VA Format Register (52-Bit VA, REDUCED-PT=1) Fields Description........ 16-22
PAlLcode Base Address Entry Pointsand Offsets. 16-22
PALcode Base Address Register Fields Description.o iiiiat. 16-23
Dcache Control Register Field Descriptions ittt 16-24
Dcache Status Register Field Descriptions. i it i i i 16-25
DTB Invalidate Multiple Register Fields Description............ 16-27
DTB Invalidate Single Register Fields Description 16-27
DTB_PTE Array Write Registers Fields Descriptionsc.coiiiiinnenn. 16-28
DTB Tag Array Write Registers Fields Description.o oot 16-30
Mbox Control Register Fields Description.ttt ii i 16-30
Mbox Process Mode Register Field Descriptions i, 16-32
Mbox Process Context Register Field Descriptions 16-33
Mbox Memory Management Status Register Field Descriptions. 16-34
Quiesce Timeout Register Field Descriptionso it 16-35
Instruction VA Format Register (43-Bit VA) Fields Description. 16-36
Instruction VA Format Register (62-Bit VA, REDUCED-PT=0) Fields Description........ 16-36
Instruction VA Format Register (52-Bit VA, REDUCED-PT=1) Fields Description........ 16-37
Watch Physical Address Register Fields Description 16-37
Hardware Interrupt Clear Register Fields Description. 16-38
Router-Configuration1 Register Fields Description.o ittt 16-38
Router-Configuration2 Register Fields Description. oot 16-39
Router-{N,S,E,W}-Configuration1 Register Fields Description 16-41
Router Channel {N,S,E,W} Configuration2 Register Fields Description 16-42
Router {N,S,E,W} Timer1 Configuration Register Fields Description 16-43
Router {N,S,E,W} Timer2 Configuration Register Fields Description 16-43
Router {N,S,E,W} Error Status Register Fields Description 16-44
Router {N,S,E,W} Performance Counter Register Fields Description.................. 16-45
Router 1/0-Port Configuration Register Fields Description 16-45
Router I/O-Port Configuration 2 Register Field Description. 16-47
Router I//0-Port Buffer Size Register Fields Description 16-47
Routerl/O-Port Timer1 Configuration Register Fields Description. 16-48
Router 1/0-Port Timer2 Configuration Register Fields Description.................... 16-48
Router |/0-Port Error Status Register Fields Description 16-48
Router I/O-Port Performance Counter Register Fields Description. 16-49
Router I/O-Port Error Status Register Fields Descriptiont 16-50
Router Routing Table Register Fields Description i, 16-50
WhoAm| Register Fields Description. oot i e i 16-51
Router Overall-Timer-Control Register Fields Description 16-51
Router Overall-Timer-Control Register Fields Description 16-52
DRAM Error Status 1 Fields Description. o i i iee s 16-53
DRAM Error Status 2 Fields Description. i e 16-54
DRAM Error Status 3 Register Fields Description., 16-56
DRAM Error Control Register Fields Description 16-57

Compaqg Confidentiad
& January 2001 ~ Subject To Changse

16-65 DRAM Timing Control 1 Fields Description. i, 16-59

16-66 DRAM Timing Control 2 Fields Description i, 16-62
16-67 DRAM Timing Control 3 Fields Description. i, 16-64
16-68 DRAM Refresh Control Fields Descriptionco it i ittt 16-67
16-69 DRAM Calibration Control 1 Fields Description. ittt 16-69
16-70 DRAM Calibration Control 2 Fields Description. 16-70
16-71 DRAM Timing Control 4 Fields Description. i it i ann 16-71
16-72 DRAM Refresh Row Fields Description. ittt ianann 16-72
16-73 DRAM Initialization Control Fields Description i, 16-73
16-74 PID Control Fields Description i it i e e ca e e 16-75
16-75 DRAM Error Address Fields Description. oottt it eieeee s 16-76
16~76 DIFT Timeout Fields Description.ottt i i i e i ieine s 16-76
16~77 DRAM Mapper Control Fields Description.oiitit it e 16-78
16-78 Zbox Performance Counter 0 Fields Description.o oot 16-84
16-79 Zbox Performance Counter 1 Fields Description.ot n. 16-85
16-80 Zbox Performance Control Fields Description. i, 16-85
16-81 Zbox Sweep Directory Bits Fields Description. 16-88
16-82 Zbox Force-Error Address Fields Description.c. ittt ee i i e 16-89
16-83 Zbox DIFT Error Status Fields Description ittt i iie i 16-91
16-84 Zbox RAC Control Fields Descriptionccviiiiiit i it i iie i i aaenn 16-92
17-1 HW_LD/HW_ST Instruction Fields Description. it 17-1
17-2 HW_MFPR Fields Description.ottt it e i ettt it ene s 17-3
17-3 MT_MTPR Instruction Fields Descriptionttt iieannnn 17-4
17-4 GPR[1:01ENcodingttt it it e e, 17-5
17-5 RET Instruction Mode Transitions. it i et e e eae e 17-6
17-6 RET Instruction Fields Descriptionttt ie i 17-6
19-1 Control IPRs for Instruction-Based Profiling i 19-3
192 |IAGG_EVENT and MAGG_EVENT IPRsttt et e e et i i 19-5
19-3 Fields in the PRO_PC<63:0> and PR1_PC<B3:0>ttt it it i i ieeiaees 19-6
19-4 Fields in PR_I_INFO<B3I0> ... ittt ittt it it sttt e st aninan e 19-7
19-5 Fields in PR_Q_INFO<B3:0> ... ittt ittt ittt ettt e te et teaannannn 19-10
19-6 Fields in PRO_MEM_INFO<63:0> and PR1_MEM_INFO<63:0>c.iinnn. 19-11
19-7 Fields in PRO_DMISS_INFO<«63:0> and PR1_DMISS_INFO<63:0> 19-11
19-8 PRN_TIMELINE IPRS e e e e et e e e e iae s 19-13
19-9 Fields in PR_ST _LATENCY<B3:05.ttt ittt it et i ettt ans 19-15
19-10 Aggregate Event Counter IPRS ittt ittt sttt e e 19-17
19-11 Fields in CBOX _PRF_CTL<B31:05. ...ttt ittt ae i e et 19-17
19-12 Fields in CBOX _PRF_ADR<B3:0> . ..ot ittt ittt ittt e ittt ieiaaaaaeans 19-18
19-13 Fields in CBOX _PRF_STS<25:0> ittt ittt e et e e e 19-18
19-14 Fields in CBOX _PRF_CNT <3105 ..ttt ittt et ittt ettt e s it te et et 19-19
19-15 Fields in ZBOXN_ZPM_CTRO<B1:0> ... ottt ittt ittt e ettt i ieiaaeaenns 19-19
19-16 Fields in ZBOXN_ZPM_CTL1<31:0>. ... oot ii ettt it ittt et ieieeeaens 19-20
19-17 Fields in ZBOXN_ZPM_CTL<B1i0>. . .ottt i it it e et e et ettt e 19-20
19-18 Fields in RBOX_Nn_PERF<27:0>. it i e it et i it 19-23
19-19 Fields in RBOX _IO_PERF<27:0> oottt i it i et et et 19-23
21-1 Array Test Command Broadcast Busc ittt et i 21-3
21-2 Simple BiSt Command Bus.ottt e 21-4
21-3 Observability Register Command Busciiitiinintiennninennnnnnns 21-4
21-4 Dedicated Test PO Pins.o ittt it i i it e it sttt e 21-4
21-5 Shared Test PiNso i it ettt e e e 21-5
22-1 Key to Table 22—-2, “Summary of Disruption High-Level Features’. 22-3
22-2 Summary of Disruption High-Level Features. it iin e, 22-3
22-3 Disruption PALcode Entry Points i i it e 22-7
22-4 Key to Table 22-5, “Summary of Disruption Low-Level Features’ 22-8
22-5 Summary of Disruption Low-Level Features 22-8
23-1 Signal Pad Requirements P 23-1
A-1 10 oYl Te L €7 (o T o - A-1
A-2 Predecode Logic GroUpS. .« .. vt v ittt it it et e et ettt e e e A-3
A-3 Opcode 10 Instruction Decoding.ottt i et ee i A-6

Compag Confidential
& January 2001 — Subjsct To Change XXix

A-4 Opcode 10 Specific Logic Functions Within the Integer Adder....................... A-6

A-5 Opcode 11 Instruction Decoding. oot ii et eaeee e it e i aas, A-7
A-6 Opcode 12 Instruction Decoding.ttt ittt e ettt A-7
A7 Opcode 13 Instruction Decoding.ottt i e e ettt A-8
A-8 Opcode 13 Specific Logic Functions Within the Integer Adder. A-9
A-9 Opcode 14 Instruction Decoding.ottt i it i ee e e e A-9
A-10 Opcode 15 Instruction Decoding.ttt it i i i i etie e e A-10
A-11 Opcode 16 Instruction Decoding. vttt it ittt i ittt e ittt et e A-11
A-12 Opcode 17 Instruction Decoding.o iiiit ittt i e i it ien i A-12
A-13 Opcode 18 Instruction Decoding.ttt i i e it it i A-13
A-14 Load and Store Instruction Decoding oottt i i e e A-13
A-15 Opcode 1C Instruction Decodingottt it it i A-14
A-16 Branch and Jump Instruction Decodingt A-16
A-17 PAlcode Instruction Decodingttt i e e e e A-17
B-1 SMT AMASK Instruction Bit ottt e e st ettt et eiens B-2
B-2 Proposed LDx_ARM/QUIESCE Opcode Assignments.ccuiureneen.. B-9
C-1 I_CTL Field Definitionsttt ettt et Cc-3
c-2 M_CTL Field Definitionsottt it e e et e et Cc-5

C-3 Valid and Invalid PAGE_SIZE, VA_SIZE, and REDUCED_PAGE_TABLE Combinations. . C-6

Compayg Confidential
§ January 2001 - Subject To Change

Preface

Audience

This specification is for system designers and programmers who are involved in the
Alpha 21464 microprocessor engineering project.

Organization

This specification contains the following chapters. A top-level presentation of the main
topics in these chapters is presented in Chapter 2.

Chapter 1, Introduction, which describes the terminology and conventions that are used
in this specification.

Chapter 2, Architecture Overview, which summarizes the 21464 new features and
design organization.

Chapter 3, Instruction Fetch Unit — the Ibox, which describes the first part of the
instruction unit microarchitecture.

Chapter 4, Dependency Mapper Unit — the Pbox, which describes the second part of
the instruction unit microarchitecture.

Chapter 5, Instruction Issue and Retire Unit — the Qbox, which describes the third part
of the instruction unit microarchitecture.

Chapter 6, Integer Execution Unit — the Ebox, which describes how integer instruc-
tions are executed.

Chapter 7, Register File, which describes the creation and management of the virtual
and physical registers in that file.

Chapter 8, Floating-Point Execution Units — the Fbox, which describes how floating-
point instructions are executed.

Chapter 9, Memory Instruction Execution Unit — the Mbox, which describes how
memory-reference instructions are executed.

Chapter 10, Internal Ring Bus, which describes the bus that connects the Cbox, Rbox,
and Zbox.

Chapter 11, Second-Level Cache and Controller (Cbox), which describes how the sec-
ond-level cache is controlled.

Chapter 12, Cache Coherence Protocol Processing, which describes how caches in a
multprocessor system maintain their coherency.

Compag Confidentiai
8 January 2001 — Subjsct To Change XXXi

Chapter 13, Router Interface — the Rbox , which describes the interprocessor switch.
Chapter 14, Rambus Interface — the Zbox, which describes that interface.

Chapter 15, Miscellaneous Interfaces, which describes the GIO Port.

Chapter 16, Internal Processor Registers, which describes those registers.

Chapter 17, Privileged Architecture Library Code, which describes the interface
between the microarchitecture and the PALcode environment.

Chapter 18, Initialization and Configuration, which describes the sequences that are
used in the initialization and configuration of the microprocessor, along with their char-
acteristics.

Chapter 19, Performance Monitoring, which describes the means available for monitor-
ing the performance of the 21464.

Chapter 20, Hardware Debug Features, which describes the physical capabilities that
have been placed in the 21464 to aid debugging.

Chapter 21, Testability and Diagnostics, which describes the capabilities that have been
placed in the 21464 to aid in testing and performing diagnostics.

Chapter 22, Error Detection and Error Handling, which describes the various error
detection mechanisms that have been placed in the 21464 and the corresponding recov-
ery procedures.

Chapter 23, Hardware Interface, which describes the 21464 at the level of its interface
pins.

Chapter 24, New Instructions, which describes instructions that are new for the 21464.

Chapter 25, System Configurations, which describes considerations for configuring
systems.

Chapter 26, Physical Addressing and Input/Output, which describes physical address-
ing and Input/output considerations.

Chapter 27, Requirements to Support "Tandem", which describes those parts of the
design that are significant to Tandem machines that will use the 21464.

A Glossary, which provides the definition of the terms used in the specification for
which the definitions can be specific to this specification.

An Index, which provides the appropriate references into the specification.

Related Documentation

XXXii

The following documents are included by reference in this specification:
¢ The Alpha System Reference Manual (the SRM), Version 7

¢ The ALPHA_SRM notesfile, which includes an on-going discussion of topics
related to this design

To obtain an SRM and access to the ALPHA_SRM notesfile, send mail to
Audrey.Reith@Compaq.com.

Compag Confidential
8 January 2001 ~ Subject To Change

The following documents are referenced in this specification. These documents can
provide historical context, supporting information, additional information, or be of
general interest to those using this specification. These documents are available in the
same general directory as the specification and can be viewed in your browser.

Compayg Confidential
8 January 2001 - Subject To Change XXXiii

Compag Confidentisi
XXXiv 8 January 2601 ~ Subject To Change

Terminology and Conventions

1

Introduction

1.1 Terminology and Conventions

This section defines the abbreviations, terminoclogy, and other conventions used
throughout this document.

Abbreviations

Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 219024

M = 2%0(1,048,576)

G = 230(1,073,741,824)

For example:

2KB = 2kilobytes = 2x2!0bytes
4MB = 4 megabytes = 4x2%0 bytes
8GB = 8gigabytes = 8x2% bytes
2K pixels = 2kilopixels = 2x 210 pixels
4Mpixels = 4 megapixels = 4 x 220 pixels

Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore

Bits and fields specified are ignored on writes.

MBZ Must Be Zero

Software must never place a nonzero value in bits and fields specified as
MBZ. A nonzero read produces an Ilegal Operand exception. Also, MBZ
fields are reserved for future use.

RAZ Read As Zero

Bits and fields return a zero when read.

Compayg Confidential

& January 2001 - Subject To Change Introduction 1-1

Terminology and Conventions

Abbreviation Meaning

RC Read Clears
Bits and fields are cleared when read. Unless otherwise specified, such bits
cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used; however,
zeros can be written to reserved fields that cannot be masked.

RO Read Only
The value may be read by software. It is written by hardware. Software write
operations are ignored.

RO,n Read Only, and takes the value n at power-on reset.
The value may be read by software. It is written by hardware. Software write
operations are ignored.

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the value # at power-on reset.
Bits and fields can be read and written.
wIi1C Write One to Clear

If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be cleared by hardware. Software write operations of a 0 do not
modify the state of the bit.

AN Write One to Set
If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be set by hardware. Software write operations of a 0 do not modify
the state of the bit.

WO Write Only
Bits and fields can be written but not read.

WO,n Write Only, and takes the value n at power-on reset.
Bits and fields can be written but not read.

¢ Sign extension

SEXT(x) means x is sign-extended to the required size.
Addresses
Unless otherwise noted, all addresses and offsets are hexadecimal.
Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2# is stored in memory at a
byte address that is a multiple of 2#; that is, one that has n low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 27 is unaligned if it is stored in a byte address that is not a multiple of
2.

Compag Confidential
1-2 Introduction 8 January 2001 — Subject To Change

Terminclogy and Conventions

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square
brackets ([1). Multiple contiguous bits are indicated by a pair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See
also Field Notation.

Caution
Cautions indicate potential damage to equipment or loss of data.
Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte 7] 1 8 —

Word 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword
Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example, RegisterName[LowByte] specifies RegisterName[7:0].

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 100, is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in square brackets ([]) separated by a colon
() and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.

Compag Confidential
8 Japuary 2001 - Subject To Change Introduction 1-3

Terminology and Conventions

1-4

Register Figures
The gray areas in register figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
are included in the register. The bit range may, but need not necessarily, correspond to
the bit Extent in the register.

Signal Names
The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21464 (that is, the sig-
nal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lower-
case italic x represents the assertion states. For example,
SignalName_x[3:0] represents SignalName_H[3:0] and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

¢ Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

¢ An UNPREDICTABLE result may acquire an arbitrary value subject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

* Anoccurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Compayg Confidential

Introduction § January 2001 - Subjsct To Change

Terminoclogy and Conventions

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

X

Do not care. A capital X represents any valid value.

Compaqg Confidential
& January 2001 - Subject To Change Introduction 1-5

New Fealures

2

Architecture Overview

This chapter presents an overview of the major parts of the 21464 microarchitecture.

L

[]

The new features of the 21464
Microarchitecture diagram, a high-level view of the overall architecture

Simultaneous multithreading (SMT), the essential new performance element of the
21464 design

Instruction unit, composed of the Ibox, Pbox, and Qbox
Execution unit, composed of the Register File, Ebox, and Fbox
Memory controller unit, composed of the Mbox

External interface, composed of the Cbox, Rbox, and Zbox
Pipeline organization

Instruction Execution Pipelines and Latency

Instruction issue and retire rules

New Instructions

Implementation-specific execution of the CMOV and FCMOYV instructions
Interrupt handling

AMASK and IMPLVER instruction values

Performance monitoring features

2.1 New Features

The 21464 can be summarized as follows.

2.1.1 Processor Features

The processor has the following characteristics:

Instruction issue and execute out of order
Dynamic four-way simultaneous multi-threading (SMT)

Up to eight instructions mapped, issued, executed, and retired per cycle, from the
following menu:

— Up to eight integer operations, including branches

Compag Confidential

8 January 2001 - Subjsct To Change Architecture Overview 2-1

New Features

— Up to four floating-point operations
— Up to four memory references
— Up to four multimedia operations

¢ Latency is one cycle for most integer operations and three cycles for loads and most
floating-point operations

¢ Store-sets memory dependence predictor — for predicting store-load dependencies
¢ Fetches up to 16 instructions for each cycle
¢ (Collapsing instruction buffer for merging basic blocks
* Upto 256 instructions in flight
® 128 entry instruction queue
* 1.4 GHz clock rate, resulting in a 700 psec cycle
¢ Peak instruction rate exceeds 11 billion instructions per second (gigaops)
® New SIMD instructions for video, graphics, and signal-processing applications
® Unified register file (integer and floating point)
— 512 quadword capacity
— 16 read ports
— 8 write ports
® Instruction L1 cache (Icache)
— 64 KB capacity, 2-way pseudo-set associative
— 64 byte (16-instruction) block size
— 8 instructions per cycle from each of two addresses
— Bandwidth is 90 GB/sec
— Parity protected
¢ Data L1 cache (Dcache)
— 64 KB capacity
— Two-way set associative
— 64 byte (8-quadword) block size
— 8 bytes per cycle read from each of three addresses
— Wirite-through concurrent with reads, subject to bank conflict
— Function unit bandwidth: 32 bytes per cycle, resulting in 45 GB/sec
— Hit latency is three cycles
— Fill/write bandwidth is 64 bytes per cycle, resulting in 90 GB/sec
— Parity protected
®* Onchip L2 cache (Scache)
— 3 MB capacity

Compaqg Confidential
2-2 Architecture Overview § January 2001 ~ Subjsct To Change

New Features

— Six-way set-associative

— 64 byte block size

— Write-back

— DCJ/IC fill bandwidth: 64 bytes per cycle, resulting in 90 GB/sec

— Best-case hit latency is 10 cycles

— DC write-through bandwidth is 16 bytes per cycle, resulting in 22 GB/sec
— Peak Scache fill rate is 32 bytes per cycle, resulting in 45 GB/sec

— ECC protected by quadwords

52-bit virtual address, 48-bit physical address, 8-bit ASN

8K and 64K page sizes, granularity hint for bigger contiguous regions

Independent 128-entry fully-associative ITB and D'TB, with superpages for kernel
maps

2.1.2 Memory Features

The memory has the following characteristics:

Glueless interface to Rambus main memory

Two independent interleavable RDRAM ports per processor, with optional four-
way processor striping

Each port consists of four channels

All transactions in units of 64-byte (512-bit) blocks

Optional redundant fifth channel protects against full-chip failure

Each channel supports up to 32 RDRAM chips

Each processor can support up to 256 RDRAM chips (plus redundancy)
With 1 GB parts, 32 GB per processor (35 address bits)

Peak processor memory bandwidth is 200M blocks per second, or 12.8 GB per sec-
ond.

With redundant channel deployed, system tolerates total failure of a memory chip
plus single-bit errors in another chip.

Without redundant channel, system corrects single-bit errors in memory and detects
double-bit errors.

2.1.3 Multiprocessor Features

The 21464 provides the following support for multiprocessor configurations:

Up to 512 processors with main memory and coherent caches
Fully-distributed, non-blocking, directory-based CC-NUMA coherence protocol

Optional I/0 node per processor, may have cache and/or I/O memory but not cache-
able main memory

Glueless torus configuration — others possible with switch ASIC's
Compag Confidential

8 Sanuary 2001 — Subject To Change Architecture Overview 2-3

Microarchitecture Diagram

¢ Maximum total physical memory is 2% bytes = 16 Terabytes.

¢ Peak instruction rate exceeds 5.7 trillion instructions per second (teraops).

® Buffered crossbar switch fabric with virtual circuits

¢ In 21364 mode, each network port supports 3.2 GB per second in and out

Four-port network throughput is 12.8 GB per second

¢ In 21464 mode, each port supports 4.8 GB per second in and out.

Five-port network throughput is 24 GB per second

® Bisection bandwidth of a 16x32 torus, cut across the narrow axis, is more than 300
GB per second

2.2 Microarchitecture Diagram

Figure 2-1 shows a simplified block diagram of the 21464 microarchitecture. As listed
in Table 2-1, the microarchitecture of the 21464 is separated into four major sections or
units, each of which contain one or more functional subsections, called boxes.

Table 2-1 Microarchitecture Major Sections Summary

Major Section Subsection Description
Instruction Unit Ibox Instruction fetch unit
Pbox Instruction processing (dependency resolution) unit
Qbox Instruction issue and retire unit
Execution Unit Register file
Ebox Integer instruction execution unit
Fbox Floating-point instruction execution unit
Memory Controller Unit Mbox Memory-reference instruction execution unit
External Interface Unit Cbox Second-level cache (Scache) controller
Rbox Router controller
Zbox Rambus memory controller

2-4 Architecture Overview

Compag Confidential

& January 2001 ~ Subfect To Change

Simultanecus Multithreading (SMT)

Figure 2-1 21464 Block Diagram

L e Pedca
N A
Fil Icache Store
] unt [] (B4kB) Sets
2 e
- Instruction Buffer K—1 Checlqait
Table
LM
¢ Allocate
8 [Gonz]] [] [=
a LSmap 2P er map Unk
J 1 A J
[S BUfer]
]
T 1T T T 1771
§ Instruction Fckers (8)
ljr‘qr':r‘q:‘w'j:‘j:'r Inflght Compietion
o N3 Table Unk

EFBOX

Register Fie
(512 entry)

\[r N

] Vonegr® /
Execution Units Floating (4) /

| Register Cache I

MBOX

DCACHE
(64KB)

Exception
Processin

Store Load
Addr Addr

Queue Queue

—k—l Mes Address Fie |

ZBOX |CBOX

Rambus \ Router o

Interface ‘| (processor Interconnect)

RN

RBOX

Rambus Rambus
RIMV RiMM

2.3 Simultaneous Multithreading (SMT)

8 January 2001 - Subject To Change

SMT differs from the more traditional forms of hardware multithreading in that every
thread can compete for issue slots at every cycle. Traditional multithreading designs
tend to invoke alternative threads only on second-level cache misses or to schedule the
threads in a rigid, round-robin fashion. The result is less resource utilization and less
performance improvement.

Compag Confidential
Architecture Overview 2-5

Simultaneous Multithreading {SMT)

The 21464 can execute up to four programs simultaneously, each program running in
one of the four thread processing units (TPUs). While each TPU has some dedicated
hardware, most resources are shared between the four TPUs. Maximum single-stream
performance occurs when a single program is the only active thread in the CPU. In that
case, most chip resources are available to the active TPU (the single program) and the
design makes no compromises in single-stream performance. On the other hand,
because many programs cannot always use all the chip resources, it is often possible to
at least double overall throughput by running four programs simultancously.

SMT adds very little cost to a single processor and can be used either to increase
throughput while executing independent programs or to speed up a single task that has
been decomposed into separate threads. The 21464 adds two instructions, LDx_ARM
and QUIESCE, to provide easy synchronization between cooperating threads.
LDx_ARM sets up a memory address register that monitors memory traffic. QUIESCE
suspends a thread until the memory location is written or a time-out counter expires; the
thread does not consume any resources while waiting for the signal to continue. See
Appendix B for information on the LDx_L and QUIESCE instructions.

Each TPU has its own dedicated program state that consists of 32 integer registers, 32
floating-point registers, a PC, and internal processor registers (IPRs). Also, some
microarchitectural structures, such as the Return Stack and the Instruction Buffer, are
statically divided into four parts, with each part dedicated to a TPU. However, most
microarchitecture structures are dynamically shared among the TPUs on an as-needed
basis. Dynamically shared structures include the caches, the translation buffers, the
branch predictor, functional execution units, and the instruction queue.

Overview of SMT Operation

Most thread-specific operations take place in the Ibox, the front end of the CPU pipe-
line. The Ibox is time-multiplexed on a cycle-by-cycle basis between four active
threads, each being given equal priority. The Ibox thread fetch chooser normally fetches
instructions from that thread with the fewest instructions in the instruction queue. This
policy helps programs with high ILP go as fast as they can, yet provides instructions to
programs with low ILP as those instructions are needed.

The Ibox accesses the line predictor after the thread fetch chooser selects a thread from
which to fetch an instruction. At the next cycle, the resulting indexes are used to access
the Icache and the branch predictor. The two fetch chunks are stored in the instruction
buffer. The thread map chooser selects a thread and reads its two oldest fetch chunks
from the instruction buffer and collapses them into a single map chunk, which is sent to
the mapper in the Pbox. The mapper maps the registers, assigns INums, and slots the
instructions to the various pickers as the instructions are entered into the instruction
queue. The INum space is divided into a four segments for the four threads (the four
TPUs) and the INums are thread-specific because they keep track of program order.

The instruction queue then contains a mix of instructions from the four threads. Once
instructions are in the instruction queue, they are eligible to issue when their source
operands are available, regardless of which thread they belong to. The oldest, issue-
ready instruction is chosen by each picker and sent to the appropriate Ebox or Fbox
execution unit, Because the threads have no register dependencies on each other, it is
much more likely that eight instructions are continuously ready to issue.

Compag Confidential
2-6 Architecture Overview § January 2001 — Subject To Change

Instruction Unit

2.4 Instruction Unit

The instruction unit consists of the Ibox, Pbox, and Qbox. The Ibox is the instruction
fetch engine. It provides high instruction-stream bandwidth to the remainder of the
chip. Specifically, the Ibox delivers instructions directly to the Pbox, which is responsi-
ble for instruction number (INum) resource management, dependence analysis and reg-
ister renaming. From there, instructions proceed to the Qbox, where they await the
resolution of their source register dependencies. Once an instruction's register depen-
dencies have been resolved, the instruction is issued, provided that it wins arbitration
for an appropriate functional unit in the Ebox (arithmetic and logic integer operations),
Fbox (arithmetic floating point operations) or Mbox (memory operations). Once an
instruction has completed execution, it retires when it is the oldest non-retired instruc-
tion in the machine for the appropriate thread processing unit (TPU) context.

2.4.1 Instruction Fetch Unit — the Ibox

Instruction stream bandwidth is one of the major factors in overall chip performance. A
program cannot execute faster than the rate of its instructions entering the machine.
Achieving sufficient instruction bandwidth for a machine that can execute up to eight
instructions per cycle poses several challenges. In order to meet those challanges, the
Ibox contains many new features that were not designed into prior Alpha implementa-
tions.

Features

The Ibox delivers up to eight instructions per cycle to the remainder of the machine.
The Ibox maintains the correct program counter (PC) while the CPU executes programs
and receives interrupts and exceptions to properly redirect the machine.

The Ibox contains the following new features to support high-bandwidth instruction-
stream fetching, advanced control flow prediction, simultaneous multithreading (SMT),
and memory dependence prediction:

¢ AnlIcache size of 64 KB or 16K instructions

¢ Up to two potentially noncontiguous cache blocks are fetched per cycle

¢ A fetch TPU chooser that creates a resource-balanced SMT fetch engine

* Advanced branch prediction that predicts up to 16 branches per cycle

® History-based jump target prediction

* A collapsing buffer that facilitates over-fetching and merging fetch blocks
¢ Memory dependence prediction that uses store sets

¢ Advanced hardware Istream prefetching

¢ A simultaneous multithreaded fill unit

* An anti-thrashing Icache fill policy

Compag Confidential
& Jasary 2001 - Subject To Change Architecture Overview 2-7

instruction Unit

The Ibox components can be grouped into the following major sections:

Table 2-2 Ibox Major Component Summary

Name

Description

Checkpoint
Unit

Control Flow
Prediction
Unit

Fill Unit

Index Unit

Instruction
Processing
Unit

PC Unit

The Checkpoint Unit maintains state for restarting the CPU in the event of an exception, and
trains the control flow predictors and the memory dependence predictor. In the event of an
exception, the Checkpoint Unit resets the PC, branch predictor, jump target predictor, and return
stack to the state that existed just before the fetch of the instruction that caused an exception.
Training information for the branch and jump target predictors is also kept and used to train the
predictors at the retirement time of branch or jump instructions.

The Control Flow Prediction Unit predicts PC changes at fetch-time for instructions that can
change control flow when executed: conditional branches, computed jumps, and subroutine
returns. There is a corresponding dedicated predictor for each: the conditional branch predictor,
the jump target predictor, and the return address stack.

The Fill Unit fetches instructions from lower-level memory and can fetch instruction blocks for
multiple TPUs simultaneously. The Fill Unit maintains a dynamic hardware prefetcher that
attempts to fill the Icache with blocks that would have missed in the future. The Fill Unit also
contains the Icache Translation Buffer (ITB) that translates virtual PC miss addresses to physical
addresses before making memory requests.

The Index Unit produces up to two indexes per cycle. The indexes are usually predictions from
the Line Predictor that are used to access the Icache, Branch Predictor, and Store Sets Array. The
Index Unit also contains the Fetch TPU Chooser that arbitrates among multiple TPUs that are
ready to fetch instructions. The indexes that are produced will have an associated TPU that is
sent along with the indexes down the Ibox pipeline. The Line Predictor itself consists of a
sequential and non-sequential component, to address the sequential and non-sequential code
sequences of the running programs.

The Instruction Processing Unit stores and retrieves instructions and associated tags and data
into its 64KB Icache and associated tag array. Instruction pre-decode bits are also stored in the
Icache data and tag arrays to speed instruction processing in the Ibox and instruction format
decoding in the Pbox. The Instruction Processing Unit also contains the Store Sets Array, which
produces memory synchronization identifiers called store sets for potentially every load and
store operation. The store sets instruct the Pbox to create explicit dependencies between certain
loads and stores. The Instruction Processing Unit also contains the Collapsing Buffer, which
stores instruction blocks that are driven by the Icache and collapses up to two instruction blocks
per cycle to deliver up to 8 instructions per cycle to the Pbox.

The PC Unit maintaines the program counters for each TPU. Typically, the PC Unit calculates
PCs based on the exiting instructions of the fetch blocks (such as branches, jumps, returns, fall-
through, and so forth), but it also can be reset by interrupts and exceptions. The PC Unit is also
responsible for determining Icache misses, index mispredicts, and way mispredicts in the Ibox
pipeline.

2.4.2 Dependency Mapper Unit — the Pbox

The Pbox processes instructions that are fetched by the Ibox. The Pbox assigns INums
(instruction numbers) to the instructions, analyzes the data dependencies between
instructions, and maps their architectural source and destination values into physical
registers. The Pbox also maintains data structures that allow recovery of all relevant
processor state that corresponds to the architectural state of the machine prior to any un-
retired instruction. This allows the processor to perform rapid trap recovery in the pres-
ence of branch mispredicts or other exception conditions. The Pbox passes the renamed
instructions to the Qbox for scheduling and dispatch.

Compayg Confidentiai

2-8 Architecture Overview § January 2001 — Subjset To Change

instruction Unit

The Pbox consists of the following components:

Table 2-3 Pbox Major Component Summary

Name

Description

Bid/Grant Exception ~ Chooses which of the pending kills from all TPUs should be broadcast to the rest of the

Logic

chip.

Instruction Decoder Decodes each of the eight instructions that arrive in a cycle. The decoder is placed early

in the pipe to aid slotting decisions and to provide inputs to the load/store flow control
mechanisms and to the IPR interlock mechanisms

INum Allocator Allocates INums to new map blocks sent down by the Ibox. Also contains the Map
Thread Chooser, which picks the next thread that will map instruction blocks and subse-
quently informs the Ibox

INum Mapper Maps source operand registers (VReg) into the INum of the last writer for the source
operand

Load/Store Serial Associates a sequential identifier with each load instruction (LUum) and a second iden-

Number Allocator tifier with each store instruction (SNum). These LNums and SNums prevent deadlock

and manage flow control into the Mbox load and store queues

Mapper Exception When notified of an exception by the Bid/Grant Exception Logic, rolls the Inum Map-

Logic

per, Physical Register May, Load/Store Serial Number, and RC/RS Interupt Flag Widget
state back to the trap point

Physical Register Map Allocates physical destination registers to each dispatched instruction. This table is also

used to map virtual register operands into the corresponding physical registers

Post-Map Skid Buffer Holds a silo of the last few map blocks that have passed through the Pbox forward path

RC/RS Interrupt Flag Maintains state necessary to implement the RC/RS instructions

Widget
Retire/Kill Unit

Communicates the identity of retired and/or killed instructions to all concerned boxes
by way of the Retire/Kill bus

Memory Queue Allo- Governs the allocation and deallocation of load queue (LQ) and store queue (SQ)

cation Unit

chunks to memory instructions. Also controls the High-Water Mark (HWM) that is sent
to the Qbox to regulate the issuing of loads and stores.

2.4.3 Instruction Issue and Retire Unit — the Qbox

The Qbox processes instructions that are renamed by the Pbox, and determines an
appropriate schedule for those instructions. Instructions cannot be executed until they
are "data ready", until their dependencies have been resolved. The Qbox can identify a
data-ready instruction by checking to see that both of its parent entries have asserted
their result-ready signals. This method is called a ““decoded-space’” dependence array.

The Qbox attempts to choose the "best” 8 instructions to execute for each tic of the
clock from a "window" of 128 candidates that are received from the Pbox. Each of the
eight scheduling pipelines can handle a subset of the 128 candidate instructions.
Because the subset can contain (in some cases) up to half of the instructions in the win-
dow, the Qbox includes "pickers" that choose the best instruction out of a set of 64 can-
didates.

Scheduling is a four step process:

1. Identify all data-ready instructions.

Compag Confidentiai

& January 2001 ~ Subjsct To Change Architecture Overview 2-9

instruction Unit

2.

For each pipe, select the ““oldest" data-ready instruction enabled for execution in
that pipe.

Assert the result-ready signal that corresponds to each selected instruction, so that
all instructions that are stored in the instruction queue can see that the chosen
instructions have been issued.

For each instruction in the instruction queue, test the result-ready signal for each
operand for each instruction in that queue.

The Qbox selects the eight best "data ready" instructions for execution in eight integer
pipeline units and four floating-point pipeline units. In addition, the Qbox selects up to
four data-ready branch instructions for resolution in each cycle. It also retires all eligi-
ble instructions, committing them to architectural state.

The Qbox consists of the following components:

Table 2-4 Qbox Major Component Summary

Name Description

Bid Enable Logic Prevents otherwise-ready instructions from bidding in pipes that cannot service them,
either because of a slotting decision or because of non-data-related resource conflict.

Completion Unit Tracks which instructions have issued, which have passed their trap points, which are
I/O instructions, and which have retired.

Dependency Arrays Contains an identifier for the producer of each operand for each instruction in the
instruction queue.

Destination Contains the destination register specifiers for each instruction. This array are sepa-

Register Number Array rately located from the SRN because it is not on any performance-critical paths.

Exception Kill Logic Removes from the Instruction Queue any instructions that have been killed due to an
exception.

FPCR Control Controls the update of the FPCR in the Fbox. The FCR, along with the native mode
FPCR trap and PALmode fetch barrier, guarantees the correct architecture (in-order)
behavior of writing and reading the FPCR register.

InFlight Table Tracks instructions that have issued and feeds INums that have passed their trap

Tnstruction Queue

Load/Poison
Re-arm Widget

Load/Store
Number
High-Water Marker

Oldest CBR Selector

Payload Array
Picker Arrays
Post-Issue Logic

points to the Completion unit.
The queue from which instructions are picked for execution.

Handles notification of load/miss events from the Mbox and ensures that all instruc-
tions that depend on a missed load will replay at some later time. The LPR also deter-
mines when individual instructions are eligible to be deallocated.

Disables load and store instructions whose LSNums indicate that there may not be
space available for them in the Mbox load/store queues. Also contains the logic for
preserving the consistency of the DTB on misses.

Identifies the oldest conditional branch issuing in the current cycle (that is, the one
most likely to cause a misprediction).

Contains all the instructions and the register file addresses of all operands.
On each cycle, chooses the oldest data-ready instruction for each execution pipeline.

Gathers bubble requests and routes them to the appropriate pipelines. The Post-Issue
Logic is also responsible for sequencing completion signals for the floating-point
pipelines.

Compag Confidential

2-10 Architecture Overview & January 2001 - Subject To Change

Execution Unit

Table 2-4 Qbox Major Component Summary (Continued)

Name Description

Profile-Me Collection Collects the following instruction-time-oriented performance data for the two in-
flight profile-me instructions: data ready, bid, issue, deallocation, and queue chunk

deallocation.
Queue Chunk Allocator/ Manages the 32 chunks for instruction queue allocation. Picks the two chunks to be
Deallocator allocated to the next group of eight instructions.
Queue Entry Table Translates INum dependencies delivered from the Pbox INum Mapper stage into

queue entry number dependencies. The queue entry table also sets the No Live
Dependency bits, when, for example, an instruction is data-ready upon entry into the
queue.

Source Registers Num- Contain the indexes of the physical registers assigned to each source operand of each
ber Arrays instruction. These arrays (there are two) are kept close to the dependence/bid/grant
logic as the launch of the input physical register specifiers may be a critical path.

2.5 Execution Unit

The execution unit receives instruction information from the Qbox Payload Array and
the Qbox source and destination register number arrays (SRNs and DRN). The former
is received directly by the Ebox or Fbox execution units; the latter by the Register File.

2.5.1 Register File

Although the Alpha architecture only defines 64 registers, the 21464 is a multi-
threaded, out-of-order machine that requires many more than 64 registers to keep its
pipelines full. The four independent threads each require 64 registers, and an additional
256 temporary registers are used to rename registers of inflight instructions to elimi-
nate write-after-read and write-after-write conflicts. At 65 bits per entry, 512-entries
result in a 4KB register file.

Eight parallel execution units can consume up to 16 source operands and can produce
up to eight results per cycle. The 21464 implements each of 32K 'not-so-little’ RAM
cells with 16 read ports and 8 write ports. Although such an implementation is not triv-
ial, defining a register file with fewer ports would have forced the Qbox to either issue
instructions based on the number of operands needed from the register file, or trap
whenever the set of issued instructions needed more than the available number of ports.

2.5.2 Integer Instruction Execution Unit — the Ebox

The Ebox executes those Alpha instructions that do not reference memory and are not
floating point. The Ebox contains multiple copies of its various processing elements,
allowing the Qbox to schedule as many as eight instructions per cycle.

Compag Confidential
8 January 2001 - Subject To Change Architecture Overview 2-11

- Execution Unit

Table 2-5 lists the Ebox major components.

Table 2-5 Ebox Major Component Summary

Component Description

Integer Units (8) The integer functional units execute the traditional integer arithmetic
and logical instructions as well as performing the address generation
and data formatting of memory instructions.

Multimedia Units (4) The multimedia units execute the newer integer instructions targeted
at accelerating multimedia operations and also perform integer multi-
plication.

Register Caches (4) The register caches store recently written register values allowing
dependent instructions to issue before the register file is updated.

Structurally, the Ebox processing elements are organized into eight functional units,
each of which executes a predefined subset of the instruction set, as listed in Table 2-6.
Each integer functional unit is a logical collection of processing elements that collec-
tively execute a specific set of Alpha instructions, and each functional unit is organized
as four clusters of two units each.

Table 2-6 Ebox Cluster Section Summary

Section Name In Units Description

Adder 0-7 A full 64-bit signed integer adder that produces a complete result each cycle. Services
the following instructions:
Type Instructions
Add ADDL, ADDL/V, ADDQ, ADDQ/V, S4ADDL, SSADDL,
S4ADDQ, SSADDQ
Sub SUBL, SUBLYV, SUBQ, SUBQ/V, S4SUBL, S8SUBL, S4SUBQ,
S8SUBQ
Compare CMPBGE, CMPULT, CMPEQ, CMPULE, CMPLT, CMPLE
Other LDAH, LDA, RS, RC
Cross Cluster 0-7 Receives one-cycle results from the other functional units, bypasses the data onto the
Result operand busses if immediately needed, and latches the data for writing into the local
Interface register cache.
Global Con- 0-7 Decodes the instruction information sent by the Qbox and coordinates the various
trol processing elements within a functional unit.
Load Data 4-7 Interfaces the data returned from the Mbox to the functional units and register caches.
Interface Services the following instructions:
Type Instructions
Load LDL, LDQ, LDQ_U,LDL_L,LDQ_L, LDBU, LDWU, LDG, LDS,
LDT, LDF
Special HW_LD, STx_C

Compag Confidential
2-12 Architecture Overview 8 January 2001 - Subject To Change

Execution Unit

Table 2-6 Ebox Cluster Section Summary (Continued)

Section Name In Units Description

Logic Box 0-7 Performs logical and arithmetic operations. Services the following instructions:

Type

Instructions

Cmove CMOVLBS, CMOVLBC, CMOVNE, CMOVLT, CMOVGE,
CMOVLE, CMOVGT

Branch BLBC, BEQ, BLT, BLE, BLBS, BNE, BGE, BGT

Logical AND, BIC, BIS, ORNOT, XOR, EQV

Special AMASK, IMPLVER, SEXTB, SEXTW
Multimedia 4-7 Forwards the instruction operands from the corresponding integer functional unit to
Operand the multimedia clusters. Each multimedia cluster is associated with the lower integer
Interface functional unit in a cluster and derives its operands from that functional unit. Services

the following instructions:

Type Instructions

Multiply MULL, MULL/V, MULQ, MULQ/V, UMULH

Multimedia Opcode 1C.XX, except SEXTB, SEXTW

Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG STS, STT,

STF

Special ITOFE ITOFS, ITOFT, HW_ST
Register File 0-7 Interfaces the operands from the register file to the Ebox opbusses. Also bypasses lit-
Operand erals onto the opbusses.
Interface
Register File 0-3 Handles staging of different result latencies, floating-point load format conversion
Result Pipe and forwarding of results to the register file.

& January 2001 ~ Subject To Change

Compag Confidentiai
Architecture Overview 2-13

Execution Unit

Table 2-6 Ebox Cluster Section Summary (Continued)

Section Name In Units Description

Shifter 0-3 A full 64-bit shifter that produces a complete result each cycle. Services the following
instructions:
Type Instructions
Shift SRL, SLL, SRA
Mask MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH
Extract EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH, EXTQH
Insert INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH
Zap ZAP, ZAPNOT
Store Data — Interfaces to the store data buses (to the Mbox). This unit is not actually part of the
Interface integer clusters but resides in a separate partition to the right of the integer clusters.
Services the following instructions:
Type Instructions
Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG STS, STT,
STF
Special ITOFS, ITOFF, ITOFT, FTOIS, FTOIT
Virtual 4-7 Computes the 16-bit displacement add and factors the big/little endian control to form
Address a correct virtual memory address. Services the following instructions:
Generator Type Instructions
Load LDL, LDQ, LDQ_U,LDL_L,LDQ_L, LDBU, LDWU, LDG LDS,
LDT, LDF
Store STL, STQ, STQ_U, STL_C, STQ_C, STB, STW, STG STS, STT,
STF
Jump JMP, JSR, RET, JSR_COROUTINE
Special TRAPB, EXCB, MB, WMB, ECB, FETCH, FETCH_M, WH64,

HW_LD, HW_ST, HW_MTPR, LDx_ARM, QUIESCE

2.5.3 Floating-Point Instruction Execution Unit — the Fbox

The Fbox executes all current Alpha floating-point instructions and the new paired sin-
gle-precision instructions. The Fbox receives instructions from the Qbox, by way of the
Ebox, and receives operands from the register file, the load data buses (up to three), or
its own register caches. The Fbox returns floating-point results to the Register File and
floating-point store data to the Mbox, again by way of the Ebox. The Fbox returns
exception information to the Qbox.

Compag Confidential
2-14 Architecture Overview 8 January 2001 - Subjsct To Change

Execution Unit

Table 27 lists the Fbox major components.

Table 2-7 Fbox Major Component Summary

Component

Description

Floating-point control register
(FPCR)

Interface control (F_INT)

Operand steering unit (F_OSU)

Pipeline Clusters (F_Pn)

Register cache (F_RGC)

Contains rounding information and trap disable bits used by the floating-point
operate instructions, and exception status information from floating-point
operate instructions. The FPCR is read from and written to the floating-point
registers by the MF_FPCR and MT_FPCR instructions. In addition, all opet-
ate instructions use the dynamic rounding mode bits to round the results and
the trap disable bits to signal traps when an exception is detected.

Performs a partial decode of the opcode, function code, and thread processor
unit (TPU) to determine if a valid floating-point instruction has been issued.
The F_INT also contains logic that allows direct access to internal operand
buses from Register File operand buses, and logic to dispatch floating-point
store data to the Ebox from either the result data of pipelines F_P0 and F_P1,
or from the register cache.

Performs comparisons against incoming physical register (Preg) numbers to
determine the source of input operands to the Fbox pipelines.

The Fbox is organized as four identical clusters, each cluster consisting of one
execution pipeline. The four pipelines, F_P0O through F_P3, allow up to four
floating-point operate instructions to be issued at each cycle. Two copies of a
register cache, one for each set of two pipelines, are included to allow the
results of recently completed instructions to be used with minimal delay. Each
pipeline contains the functional units needed to execute the various floating-
point instructions.

Contains staging logic and static RAM that latch and hold recently generated
result data of the Fbox pipelines as well as copies of incoming floating-point
loads. The result data is eventually dispatched to the Register File. However,
this result and load data can be used in subsequent floating-point operations
without incurring the transit time delay in returning data from the Register
File

2.5.3.1 Functional Units

Table 2-8 lists the instructions that are executed by each functional unit in the

Compag Confidential

& January 2001 ~ Subject To Change Architecture Overview 2-15

Memory Controlier Unit — the Mbox

Fbox.
Table 2-8 Fbox Functional Unit Summary
Functional Unit Instructions
Add pipe 1: F_AP1 ADD,SUB,CMP
Addpipe 2 : F_AP2 ADD/SUB (align>1), CVTff, CVTfq, CVTqf, CVTql, CVTIq
Divider : F_DIV DIv!
Graphics ADD : F_GAD Paired single-precision except PMUL, PARCPL, and PARSQRT
Graphics MUL : F_GML Paired single-precision MUL type instructions: PMUL, PARCPL, PARSQRT
Mull Unit : F_ MUL MUL
Short pipe : F_SHP CPYSx, FCMOY, FBxx
Special operands (Zeros, Denormal OPD, NANs, INF,RES.OPD),INPUT
EXCEPTIONS, Mx_FPCR
Square root : F_SQR SQRT1

1

See Section 2.4.3 for instruction issue rules regarding the DIV and SQRT instructions.

2.6 Memory Controller Unit — the Mbox

The Mbox executes Alpha memory access instructions, including integer and floating-
point load and store, memory barrier, prefetch, write-hint, load-locked, and store-condi-
tional.

The Mbox can process up to four instructions per cycle, out of order. At each cycle, the
Mbox can accept as many as three load instructions and as many as two store instruc-
tions, for a maximum of four operations. The Mbox is solely responsible for tracking
memory reference instructions that have issued but not retired, and for ensuring that the
final effect of memory reference instructions is equivalent to sequential execution of the
thread, within the Alpha SRM definition of equivalence. The Mbox also receives fill
data from the Cbox and, to maintain cache coherence, processes probes that the Cbox
receives from the rest of the system.

There are two data input busses, each of which is associated with a store port.

The Mbox has four instruction ports to handle loads, stores, and prefetches. The Mbox
can return data on three of those ports, so the Mbox can accept a maximum of three
loads issued per cycle.

Of the four ports:
¢ Two can perform loads and prefetches
* One can perform loads, stores and prefetches

® One can perform only stores

Compaqg Confidential

2-16 Architecture Overview & January 2007 ~ Subject To Changse

External Interface

Table 2-9 lists the Mbox major components.

Table 2-9 Mbox Major Component Summary

Component Description

Dcache 64KB of data storage, with a write-allocate, write-through write-policy

Dtags 1K entries of tag storage, arranged as 2-way set-associative with 4 read ports and 1 write
port

Load Queue 64-entry queue that holds issued, but not-retired load addresses. Handles load ordering
traps and re-issuing of loads

Merge Buffer 16-entry buffer that accumulates Store data before writing it into the Dcache and Cbox
16-entry buffer that holds the addresses of loads that have missed in the Dcache and need

Pre-MAF
Store Queue

Translation Buffers

further activity in the Cbox.

64-entry queue that holds store addresses & data before stores have retired. Used to sat-
isfy load requests to addresses with uncompleted stores

128-entry, fully-associative with 4 read ports to perform the virtual-to-physical address
transactions

2.7 External Interface

The responsibilites of the external interface unit include:

Resolve misses in the Icache and Dcache, either in the Scache, local memory, or
remote memory.

Ensure that data written by the processor is made visible coherently to other proces-
sors and I/O nodes.

Communicate with other nodes in a multiprocessor configuration so that the total
memory space can be shared.

Control Rambus memories to provide physical memory to the multiprocessor.

Implement a coherence protocol that ensures that all processors have a consistent
image of memory.

Accept and prioritize interrupt requests, delivering thread-specific requests to the
Qbox.

The external interface unit consists of three major subsections that work together, in
conjunction with the cache coherency protocol, to present a distributed, shared, coher-
ent, cached, multiprocessor memory (CC-NUMA) to the 21464 core.

2.7.1 Scache Controller — the Cbox

The Cbox controls the second-level cache (Scache). In particular, the Cbox controls:

Requests for cache blocks from the Ibox and Mbox
Write-through from the Mbox
Fills and displaced victims

Probes from the system

Compag Confidential

8 January 2001 - Subject To Change Architecture Overview 2-17

External interface

The Cbox contains the following major components:

Table 2-10 Cbhox Major Component Summary

Component

Description

Miss address file (MAF) Holds requests from the processor whilst being processed.

Victim address file (VAF) Hold blocks being sent back to the system either as displacement victims or in
Victim data buffer (VDB) response to system probes.

Probe address file (PAF) Holds probes waiting to be processed.

2.7.2 Router — the Rbox

The Rbox provides the interprocessor switch — the communication fabric by which
21464 processors are interconnected to form glueless multiprocessor systems. The
Rbox interfaces the local processor and memory to I/0 controllers, all other processors,
and their associated memories, through five bidirectional ports.

The Rbox includes the following physical components:

Port input queues — packets received from interface but not yet transferred to an
output queue

Port output queues — packets waiting to be transferred to a connected processor

Routing tables — translate destination node number or mask into output port selec-
tion and virtual channel

Arbitration — selects among port input queues for transfer to output queues

2.7.3 Rambus Interface — the Zbox

The Zbox provides a glueless interface to two independent interleaved arrays of Ram-
bus memories for processor's main memory, including cache-coherence directory. Each
array consists of four busses, each accessing up to 32 DRAM chips.

The Zbox includes the following physical components:

Rambus queues and sequencer — controls attached Rambus memories for read and
write operations. Includes scheduling table and page status.

Directory management and coherence protocol state machine.

Directory in flight table— DIFT records requests to the local memory that cannot
complete immediately because required data is "in-flight" somewhere in the sys-
tem.

2.7.4 Cache Coherency Protocol

The 21464 adopts the 21364 cache coherence protocol with small enhancements. The
protocol is a directory based CC-NUMA and tolerates out-of-order channels except for
the I/O channel, thereby supporting an adaptive packet routing.

2.7.4.1 Introduction to the Protocol

The coherence protocol is the mechanism that lets numerous processors maintain a con-
sistent image of the contents of memory, as required by the Alpha SRM.

Compayg Confidential

2-18 Architecture Overview & January 2001 - Subject To Change

Fipeline Organization

The 21464 increases reliability and load-distribution by using multiple resources for
enforcing cache coherence. Further, the 21464 uses nondeterministic routing, which
makes the best use of available network resources. Such routing allows two messages
to take different paths and get out of order, even if they start and end at the same nodes.

The protocol is designed to ensure that all processors that cause and/or observe changes
in memory, see those changes occur in the same apparent order, even though the mes-
sages between processors and memories may get out of order. The order observed by all
processors is the order in which requests are serviced in their home memory and, in par-
ticular, in the Mbox directory in-flight table (the DIFT). Caches communicate with the
DIFT as they manipulate memory data, and the DIFT delays multiple requests for any
individual block until it has coordinated previous requests with any caches affected by
those requests.

The protocol, as managed by the DIFT, is concerned with the transitions between states,
and with performing the transitions in such a way that as much of the communication
latency as possible is kept out of the critical paths.

The memory system is designed with the expectation that a disproportionate fraction of
the memory traffic produced by any processor is addressed to its own local memory;
this is true for most multiprocessor applications, though precisely how much is highly
application-dependent. The protocol uses this fact, and the onchip communication
between a cache and its local controller, to optimize references to the local memory.
The Dcache optimizes the directory accesses for requests from local and remote pro-
cessors. The onchip Dcache stores the directory information of most frequently used
cache blocks to minimize memory accesses for directory information. The Dcache is
updated by requests from the local Cbox and remote processors, thereby eliminating the
need for the LPR.

2.7.4.2 Structures that Maintain the Cache Coherence
Cache coherence is maintained by using the following structures:
® Miss address file (MAF)
* System request pending queue (SRQ)
* Victim buffer
— Victim address file (VAF)
— Victim data buffer (VDB)
* Probe queue (PRQ): probe queue
* Directory in-flight table (DIFT)

2.8 Pipeline Organization

The pipeline is organized as follows.

Compayg Confidential
& January 2001 ~ Subject To Change Architecture Overview 2-19

Pipeline Organization

2.8.1 Pipeline Diagram

Symbol

V8

CMP1
RET1
CMP2

RET2

CMP3
RET3

Figure 2-2 shows the 21464 pipeline stages. Note the following symbol meanings in
Figure 2-2:

Meaning
Exception funnel timing

The cycle at which an exception kill is driven onto the Retire/Kill Bus. Its position in this diagram
is relative to the first good path instruction block after the exception kill is posted on the Retire/
Kill bus.

Completion of instructions issued from the 4 main computation pipes and caused no exceptions.
The earliest retire cycle (Retire Bus cycle) of instructions completed in CMP1.

Completion of instructions issued from the 4 main computation pipes which may cause an excep-
tion (including all the floating-point instructions).

The earliest retire cycle (Retire Bus cycle) of instructions completed in CMP2. This is also the V3
timing of a Retire Time Exception.

Completion of instructions issued from the 4 memory pipes.

The earliest retire cycle (Retire Bus cycle) of instructions completed in CMP3. This is also the V3
timing of a Retire Time Exception.

In Figure 2-2, alphabetic characters that follow the box letter (such as the W in the sec-
ond row’s PW) signify negative integers and are defined in Table 2—11.

Figure 2-2 21464 Pipeline Stage Diagram

T w
o o =] a & T e o 9
m < 7 = AT s I m
™ = 12 o r O o O e
s:«mq-l,-,\o(\wo\S";‘SQE'ﬁES?ﬁSg&‘SQﬁQﬁR
[T I~ R = R S T e T e T T T = T T o T e T e T I e B e T e T e T o T = B~ T = B = R = |
; S - Nt <t N O~ D - N N
E RN E R AR L E X RAEAREARMREARARASRSR
D> B X XN ® = & ¢ % @Pw09:g2:ﬂ£=ﬁag§
5085000000088 083003000000000 9
O & wn) < N o ¢ = a S oo oI
R R AN EE E R R EEEEE EEEEE:
D e AN N
o - — e o e
B E e XM EREE N BN R e S E R R e m i
SO e N N
PR Rr PR e E R EE RN EE R R R R ERREE R R
= Z O o O v H D P> B X M2 NOSOMSMONM-T I N O~ 0 O o o
2%22222222222222222222222222
oo M A 2 Z 0 a0 HRD>BENXMNNS =M TN O~ 0 S
O0oo0o000oUDovouoobLobULbouoLLULULLDUTUOLDO
O~ ®w a2 FTeeEXLIaIdYIIQS8ER n)
S N N N NN AN > >

2-20 Architecture Overview

Compaqg Confidential
§ January 2001 - Subject To Change

Pipeline Qrganization

2.8.2 Conversion Between Negative Integer and Alphabet
Table 2—-11 shows the conversion between negative integers and the alphabet.

Table 2-11 Negative Integers to Alphabetics Conversion

26 25 24 23 -22 -21 20 -19 -18 -17 -16 15 14 13 12 -11 10 9 -8 7 6 -5 -4 -3 -2 -1

A B €C D E F G H 1 J K L M N O P Q R S T UV WX Y Z

2.8.3 Basic Pipeline Stage Conversion Equations

The basic pipeline stage conversion equations are as follows. The conversions are tabu-
lated in Table 2-13.

Table 2-12 Pipeline Stage Conversion Equations

To From
P+4
Q+2
R+4
E+4
F+0
M+l
C+3

zZ 1o RO v

2.8.4 Conversion Table

As listed in Table 2—12, from box X<a> to box Y, =<a>+<intersection of boxes
X and Y>. The intersection in Table 2—13 is bolded.

Table 2-13 Pipeline Stage Conversion

Tol [From —

| P Q R E F M C \'/
1 +4 +6 +10 +14 +14 +15 +18 -6
P -4 +2 +6 +10 +10 +11 +14 -10
Q -6 -2 +4 +8 +8 +9 +12 -12
R -10 -6 -4 +4 +4 +5 +8 -16
E -14 -10 -8 -4 +0 +1 +4 -20
F -14 -10 -8 -4 -0 +1 +4 -20
M -15 -11 -9 -5 -1 -1 +3 21
C -18 -14 -12 -8 -4 -4 -3 -24
v +6 +10 +12 +16 +20 +20 +21 +24

Compayg Confidential
& January 2001 - Subject To Change Architecture Overview 2-21

instruction Execution Pipelines and Latency

2.9 Instruction Execution Pipelines and Latency

Instruction Latency

Defines the parent-to-child issue latency. Also identifies any cross-pipeline delay asso-
ciated with broadcasting the parents results to other pipelines. Instructions that are not
pipelined are also identified as "bubbling" for completion. Latency is shown in Table
2-14 in the following formats:

Format Meaning

n N cycle latency to a child in any pipeline

m+n M cycle latency plus extra n cycle to other pipelines.

n+B N cycle latency non-pipelined, requires bubble (B) to signal completion.

Execution Pipelines

In Table 2-14, the pipelines column identifies those of the eight pipelines in which the
instruction can execute. The actual slotting algorithm is a function of the types and
positions of the instructions in each map block. Details about instruction slotting can
be found in Section 2.10. Because an instruction is slotted to a particular pipeline does
not mean it must execute there. Follow-me capabilities in the Qbox allow instructions
for which operands are data-ready in another altowed pipeline in the same half of the
queue to issue from that pipeline. Pipelines 0, 2, 5 and 7 are in one-half of the queue,
pipes 1, 3, 4, 6 are in the other half.

Pipelines are described in Table 2—14 in the following formats:

Format Meaning
0-7 Can execute in any pipe
] 0-3 Can execute in pipes 0, 1, 2, or 3.
0,3 Can execute in only pipes 0 or 3
| 0~1 Can execute in only pipes 0 or 1 and not both in the same cycle.
Alt0-3 Can execute in pipes 0, 1, 2, or 3, but does not issue to the same pipe in con-

secutive cycles

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency
PALcode (Opcodes as follows:)
00 CALL_PAL 0~1 5 ID HW_MTPR 6,7 1/31
0~1 1!
| 1B HW_LD 6,7 3 1F HW_ST —
I 19 HW_MFPR 0-~1 5 1E IFETCHB 4.5 —
Add/Subtract/Compare (Opcode 10)
ADDL 0-7 1+1 S4ADDQ 0-7 1+1
ADDQ 0-7 1+1 S4SUBL 0-7 1+1
CMPBGE 07 1+1 S4SUBQ 0-7 1+1

2-22 Architecture Overview

Compaqg Confidential

§ January 2001 — Subject To Change

instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency
CMPEQ 0-7 1+1 S8ADDL 0-7 1+1
CMPLE 0-7 1+1 S8ADDQ 0-7 1+1
CMPLT 0-7 1+1 S8SUBL 0-7 1+1
CMPULE 0-7 1+1 S8SUBQ 0-7 1+1
CMPULT 0-7 1+1 SUBL 0-7 1+1
S4ADDL 0-7 1+1 SUBQ 0-7 1+1
Integer Logical (Opcode 11)
AMASK 0-7 1+1 CMOVLE 0-7 1+1
AND 0-7 1+1 CMOVLT 0-7 1+1
BIC 0-7 1+1 CMOVNE 0-7 1+1
BIS 0-7 I+1 CMOV2 0-7 1+1
CMOVEQ 0-7 1+1 EQV 0-7 1+1
CMOVGE 0-7 1+1 INOP 0-7 1+1
CMOVGT 0-7 1+1 ORNOT 0-7 1+1
CMOVLBC 0-7 1+1 XOR 0-7 1+1
CMOVLBS 0-7 1+1
Integer Shift (Opcode 12)

extbh? 0-3 1+1 INSWH 0-3 1+1
EXTBL 0-3 1+1 INSWL 0-3 1+1
EXTLH 0-3 1+1 mskbh? 0-3 1+1
EXTLL 0-3 1+1 MSKBL 0-3 1+1
EXTQH 0-3 1+1 MSKLH 0-3 1+1
EXTQL 0-3 1+1 MSKLL 0-3 1+1
EXTWH 0-3 1+1 MSKQL 0-3 1+1
EXTWL 0-3 1+1 MSKWH 0-3 1+1
insbh 2 0-3 1+1 MSKWL 0-3 1+1
INSBL 0-3 1+1 SLL 0-3 1+1
INSLH 0-3 1+1 SRA 0-3 1+1
INSLL 0-3 1+1 SRL 0-3 1+1
INSQH 0-3 1+1 ZAP 0-3 1+1
INSQL 0-3 1+1 ZAPNOT 0-3 I+1

Compag Confidential
& January 2001 -~ Subject To Change Architecture Overview 2-23

instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency

Integer Multiply (Opcode 13)
MULL 4-5 5 UMULH 4-5 5
MULQ 4-5 5

Integer to Floating Register Transfer (Opcode 14)
ITOFF 6,7 5 SQRTG Alt 0-3 18+1
ITOFS 6,7 5 SQRTS Alt 0-3 33+1
ITOFT 6,7 5 SQRTT Alt 0-3 33+1
SQRTF Alt0-3 18+1

VAX Floating-Point (Opcode 15)
ADDF 0-3 3+1 CVTQF 0-3 3+1
ADDG 0-3 3+1 CVTQG 0-3 3+1
CMPGEQ 0-3 3+1 DIVF Alt 0-3 9+B+1
CMPGLE 0-3 3+1 DIVG Alt 0-3 13+B+1
CMPGLT 0-3 3+1 MULF 0-3 3+1
CVIDG 0-3 3+1 MULG 0-3 3+1
CVTGD 0-3 3+1 SUBF 0-3 3+1
CVTGF 0-3 3+1 SUBG 0-3 3+1
CVTGQ 0-3 3+1

IEEE Floating-Point (Opcode 16)
ADDS 0-3 3+1 CVTTQ 0-3 3+1
ADDT 0-3 3+1 CVTTS 0-3 3+1
CMPTEQ 0-3 3+1 DIVS Alt0-3 9+B+1
CMPTLE 0-3 341 DIVT Alt 0-3 13+B+1
CMPILT 0-3 3+1 MULS 0-3 3+1
CMPTUN 0-3 3+1 MULT 0-3 3+1
CVTQS 0-3 3+1 SUBS 0-3 3+1
CVT1QT 0-3 3+1 SUBT 0-3 3+1

Miscellaneous Floating-Point (Opcode 17)
CPYS 0-3 1+1 FCMOVGE 0-3 1+1
CPYSE 0-3 1+1 FCMOVGT 0-3 1+1

Compag Confidential

2-24 Architecture Overview § January 2001 - Subject To Change

instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency
CPYSN 0-3 1+1 FCMOVLE 0-3 1+1
CVTLQ 0-3 3+1 FCMOVLT 0-3 1+1
CVTQL 0-3 3+1 FCMOVNE 0-3 1+1
FCMOV2 03 1+1 MF_FPCR 0,3 341
FCMOVEQ 0-3 1+1 MT_FPCR 0,3 —

Miscellaneous (Opcode 18)

CCB 4,5 QUIESCE 4,5

ECB 4,5 RC 4,5 1+1
EXCB RPCC 0~1 5
FETCH_M? RS 4,5 1+1
FETCH? TRAPB

LDL_ARM 6,7 3 WH64 4,5

LDQ_ARM 6,7 3 WH64EN*

MB? WMB 4,5

Multimedia (Opcode 1C)

CMPLGE 2,3 5 TSQERRzzz 2,3 5
CMPWGE 2,3 5 TSUBzzz 2,3 5
CTLZ 2,3 5 UNPKBL 0,1 5
CTPOP 2,3 5 UNPKBW 0,1 5
CTTZ 2,3 5 UPKSBW4 0,1 5
FTOIS 4,5 5 UPKSWL2 0,1 5
FTOIT 4, 5 UPKUBW4 0,1 5
GPKBLB4 0,1 5 UPKUWL2 0,1 5
MAXzzz 2,3 5 VADDSL?2 2,3 5
MINSBS 2 5 VADDUL2 2,3 5
MINSW4 2,3 5 VADDzzz 2,3 5
MINUBS8 5 VMINMAXSL?2 2,3 5
MINUW4 2,3 5 VMINMAXUL?2 2 5
PERMBS 0,1 5 VMINMAXzzz 2,3 5
PERR 2,3 5 VMULHUW4 2,3 5
PKLB 0,1 5 VMULLUW4 2,3 5
PKSLW4 0,1 5 VSLBS8 0,1 5

Compag Confidential
& January 2001 — Subject To Change Architecture Overview 2-25

instruction Execution Pipelines and Latency

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency
PKSWBS 0,1 5 VSLL2 0,1 5
PKULW4 0,1 5 VSLW4 0,1 5
PKUWBS 0,1 5 VSRABS 0,1 5
PKWB 0,1 5 VSRAL2 0,1 5
SEXTB 0-7 1+1 VSRAW4 0,1 5
SEXTW 0-7 1+1 VSRBS 0,1 5
TABSERRzzz 2,3 5 VSRL2 0,1 5
TADDzzz 2,3 5 VSRW4 0,1 5
TMULUSBS 2,3 5 VSUBSL2 2,3 5
TMULUSW4 2,3 5 VSUBUL2 2,3 5
TMULzzz 2,3 5 VSUBzzz 2,3 5
Load and Store (Opcodes as follows:)
08 LDA 0-7 1+1 |26 STS 4,5 36
09 LDAH 0-7 1+1 |27 STT 4,5 36
0A LDBU 6,7 3 28 LDL 6,7 3
0B LDQ U 6,7 3 29 LDQ 6,7 3
0C LDWU 6,7 3 2A LDL_L 6,7 3
0D STW 4-5 36 2B LDQ_L 6,7 3
OE STB 4-5 36 2C STL 4-5 36
OF STQ_U 45 36 2D STQ 4-5 36
20 LDF 6,7 5 2E STL C 4-57 3
21 LDG 6,7 5 2F STQ.C 4-57 3
22 LDS 6,7 5
23 LDT 6,7 5
24 STF 4-5 36
25 STG 4-5 36
Branch and Jump (Opcodes as follows:)
1A0 IMP 0~1 5 36 FBGE 0,1 —
1A.1 JSR 0~1 5 37 FBGT 0,1 —
1A.2 RET 0~1 5 38 BLBC 0-7 —
1A3 JSR_CO 0~1 5 39 BEQ 0-7 —
30 BR 0~1 5 3A BLT 0-7 —

2-26 Architecture Overview

Compayg Confidential

§ January 2001 - Subject To Change

instruction lssus and Retire Rules

Table 2-14 Instruction Execution Pipelines and Latency

Mnemonic Pipelines Latency Mnemonic Pipelines Latency
31 FBEQ 0,1 — 3B BLE 0-7 —
32 FBLT 0,1 — 3C BLBS 0-7 —
33 FBLE 0,1 — 3D BNE 0-7 —
34 BSR 0~1 5 3E BGE 0-7 —
35 FBNE 0-3 — 3F BGT 0-7 —

HW_MTPR instructions can specify a writer class to create an issue dependency to future
HW_MxPR instructions. HW_MxPR instructions that indentify a reader class dependency are sched-
uled to issue no earlier than 1 cycle after the HW_MTPR instruction that wrote the class dependency.
HW_MTPR instructions can also specify writer class dependencies that are satisfied on completion,
rather than issue. HW_MxPR instructions that identify a reader class dependency against this type of
writer class are scheduled to issue no earlier than three cycles after the issue of the completion bubble
signal to the writer. The 21464 only allows specifying completion dependencies against HW_MTPR
instructions that target the Mbox; those that target the Ibox are ignored.

2 The mskbh, insbh and extbh decodes are not formally defined by the Alpha SRM because all combi-
nations of inputs produce a zero result. The generalized decoding in the 21464 Integer Shifter does
not special case these code points and produces a zero result.

FETCHx instructions never actually issue from the Qbox but are completed immediately and there-
fore act as NOPs.

4 The WH64EN instruction is currently proposed as ECO#127 to the Alpha SRM,

3 MB instructions never formally issue from the Qbox but are instead sent to the Mbox as soon as they
enter the Qbox. MB instructions do not complete until the Mbox notifies the Qbox that the necessary
conditions have been met.

Although store instructions do not produce a register result and therefore do not have normal depen-
dents, the Ibox store-set logic can create dependency groups of loads and stores. A load that is a store-
set dependent on a store instruction has an effective issue latency of three cycles from the issue of the
store.

Store conditional instructions issue as stores to pipelines 4 and 5, but bubble back completion to the
Qbox. Final completion of the STx_C instruction appears on the load pipes 6 and 7.

2.10 Instruction Issue and Retire Rules

2.10.1 Issue Rules

In order to issue from the Qbox instruction queue (the IQ), instructions must bid in, and
be granted by, a picker. Slotting determines each instruction's "preferred pipe", i.e. in
which picker it may bid. Each cycle, the oldest bidding instruction in a picker is
granted. Only instructions that are bidding in a given cycle are candidates for grants.

2.10.1.1 Bidding Rules

The following rules apply to initial issue; there are additional qualifications for instruc-
tions that must re-issue.

General Bids

In general, instructions may bid when all of their source operands are result-ready.
Additional conditions apply in the following cases.

Compag Confidential
8 January 2001 - Subject To Change Architecture Overview 2-27

instruction issue and Retire Rules

* Stores and loads that are slotted for a load picker may bid if the following are true:
— They are result-ready

— They are below their high-water mark (which signifies that the Mbox has suffi-
cient resources to exectute them)

- They are not dependent on a DTB writer block
¢ Loads must satisfy any store-set dependencies prior to being enabled to bid.

® Allloads and stores are speculatively assumed to be below their high-water mark
when they first allocate into the IQ; their actual status is available one cycle later.
Any loads or stores that are granted as the result of a bid that was based on false
high-water mark speculation are retracted and do not issue from the IQ.

* Jumps (JMP, JSR, JSR_COROUTINE, RET), direct branches (BR, BSR), RPCC,
CALL_PAL, HW_MTPR/HW_MTPR for Ibox IPRs, and HW_LD/WrChk may
only bid if they are result-ready and their slotted picker is load-enabled in the cur-
rent cycle.

¢ Because floating-point divide and square root instructions are not pipelined opera-
tions, they must not issue from the same picker on subsequent cycles and are thus
enabled to bid only on every other cycle.

Unfortunately, the IQ logic does not have time to disable bids for an FDIV or
FSQRT functional unit for which an instruction has been been granted on the
immediately preceding cycle. Therefore, the 21464 globally disables all FDIV and
FSQRT bids every other cycle to give the IQ time to determine exactly which
instructions may safely bid.

¢ Instructions expressly identified as NOPs do not bid or issue but are allocated into
the IQ as invalid (i.e. empty) entries.

* MB instructions do not issue from the IQ but are subject to special retire conditions
as described in Section 2.10.2.

¢ Instructions stop bidding if they are killed. Instructions that are killed after being
granted, but before being issued from the IQ, do not issue.

Follow Me Bids:

Instructions that have a cross cluster delay become "locally” result-ready in the cluster
in which their result is produced one cycle earlier than they become "globally" result-
ready in the rest of the IQ. Instructions that are locally result-ready, and meet all other
bid criteria, may bid in the relevant picker for that one-cycle window, even if it is not
their preferred picker. This is known as a "follow me" bid, since the dependent instruc-
tions follows their parent into a cluster.

Instructions are only enabled to make a follow me bid in pickers from which they may
actually issue — in other words, they must be of a type supported by the functional
units serviced by the picker.

Compag Confidential
2-28 Architecture Overview § January 2001 ~ Subfect To Change

implementation-Specific Archilecture Features

2.10.2 Retirement Rules

An instruction is eligible to retire if it is complete and all older, unretired instructions
within its TPU are also complete. The Qbox Completion Unit (CMP) retires instruc-
tions one INum block at a time, but signals retire eligibility to the Retire/Kill Bus on as
fine as a per-instruction granularity (see the Completion Unit descripton for more
details).

2.10.2.1 Completion Rules

In general, instructions that have passed their poison point and their trap point — that
is, the last point in time when they can cause a disruption — are completed, with the
following exceptions.

* Some memory instructions pass their trap point very late in the pipeline and are
therefore speculatively completed and subsequently uncompleted when any disrup-
tion information becomes available.

* Instructions identified as NOPs complete immediately upon allocation into the IQ.
* Killed instructions are automatically completed.

¢ MB and STx_C instructions are completed only when the Mbox indicates to the
CMP that it may do so.

¢ The Mbox flags I/O operations for the CMP. 1/0O operations may complete nor-
mally, but the CMP may not retire any block containing them until the Mbox sig-
nals that this is permitted.

* There is a facility to drain the Completion Unit pipeline in the event of an external
probe, in order in insure consistency between TPUs and/or CPUs.

Note that the time interval between an instruction’s issue and completion depends on
the particular picker from which the instruction issues. Instructions issuing on the four
primary ALU pickers have a faster completion path than the others.

2.11 Implementation-Specific Architecture Features

2.11.1 New Instructions

2.11.1.1 Thread Synchronization

Using a multithreading architecture, the 21464 implements three new instructions that
enhance the performance of multithread processing.

Table 2-15 Thread Synchonization Instructions

Mnemonic Operation

LDL_ARM Load Longword and Arm the Watch Register
LDQ_ARM Load Quadword and Arm the Watch Register
Quiesce Wait on Access to the Watch Register

Compag Confidential
& January 2001 ~ Subject To Change Architecture Overview 2-29

implementation-Specific Architecture Features

2.11.1.2 Short Vector SIMD (Single Instruction Stream, Multiple Data Streams)

The short vector SIMD instructions provide a complete set of vectorized integer opera-
tions for multimedia and signal processing applications. They allow the processing of
multiple elements in each machine cycle by vectoring smaller data types that are

packed into a quadword.

Table 2-16 Short Vector SIMD Instructions

Mnemonic Operation

Tree Operations

TABSERRSBS Tree Absolute Error Byte

TABSERRSW4 Tree Absolute Error Word

TABSERRUBS Unsigned Tree Absolute Error Byte
TABSERRUW4 Unsigned Tree Absolute Error Word
TADDSBS Tree Add Byte

TADDSW4 Tree Add Word

TADDUBS Unsigned Tree Add Byte

TADDUW4 Unsigned Tree Add Word

TMULSBS Tree Multiply Byte

TMULSW4 Tree Multiply Word

TMULUBS Unsigned Times Unsigned Tree Multiply Byte
TMULUSBS Unsigned Times Signed Tree Multiply Byte
TMULUSW4 Unsigned Times Signed Tree Multiply Word
TMULUW4 Unsigned Times Unsigned Tree Multiply Word
TSQERRSBS Tree Squared Error Byte

TSQERRSW4 Tree Squared Error Word

TSQERRUBS Unsigned Tree Squared Error Byte
TSQERRUW4 Unsigned Tree Squared Error Word
TSUBSB8 Tree Subtract Byte

TSUBSW4 Tree Subtract Word

TSUBUBS Unsigned Tree Subtract Byte

TSUBUW4 Unsigned Tree Subtract Word

Vector Operations

CMPLGE Compare LongWord

CMPWGE Compare Word

GPKBLB4 Graphics Pack Byte

PERMBS Permute Bytes

PKSLW4 Pack Signed Longwords to Words

2-30 Architecture Overview

Compag Confidential

§ January 2001 — Subject To Change

implementation-Specific Architecture Features

Table 2-16 Short Vector SIMD Instructions

Mnemonic Operation

PKSWBS Pack Signed Words to Bytes
PKULW4 Pack Unsigned Longwords to Words
PKUWBS Pack Unsigned Words to Bytes
UPKSBW4 Unpack Signed Bytes to Words
UPKSWL2 Unpack Signed Words to Longwords
UPKUBW4 Unpack Unsigned Bytes to Words
UPKUWL2 Unpack Unsigned Words to Longwords
VADDSBS Parallel Add Byte

VADDSL2 Parallel Add Longword

VADDSW4 Parallel Add Word

VADDUBS Unsigned Parallel Add Byte
VADDUL?2 Unsigned Parallel Add Longword
VADDUW4 Unsigned Parallel Add Word
VMINMAXSBS8 Parallel MIN/MAX Byte
VMINMAXSL2 Parallel MIN/MAX LongWord
VMINMAXSW4 Paralle]l MIN/MAX Word
VMINMAXUBS Parallel Unsigned MIN/MAX Byte
VMINMAXUL2 Unsigned Paralle]l MIN/MAX LongWord
VMINMAXUW4 Unsigned Parallel MIN/MAX Word
VMULHUW4 Parallel High Multiply Word
VMULLUW4 Parallel Multiply Word

VSLBS Parallel Shift Left Byte

VSLL2 Parallel Shift Left Longword
VSLW4 Parallel Shift Left Word

VSRABS Parallel Shift Right Arithmetic Byte
VSRAL?2 Parallel Shift Right Arithmetic Longword
VSRAW4 Paraliel Shift Right Arithmetic Word
VSRBS Parallel Shift Right Byte

VSRL2 Parallel Shift Right Longword
VSRW4 Parallel Shift Right Word
VSUBSBS Parallel Subtract Byte

VSUBSL2 Parallel Subtract Longword
VSUBSW4 Parallel Subtract Word

& January 2001 ~ Subjsct To Change

Compayg Confidential
Architecture Overview 2-31

implementation-Specific Architecture Features

Table 2-16 Short Vector SIMD Instructions

Mnemonic Operation

VSUBUBS Unsigned Parallel Subtract Byte
VSUBUL2 Unsigned Parallel Subtract Longword
VSUBUW4 Unsigned Parallel Subtract Word

2.11.2 CMOV Instruction Processing

With register renaming, the CMOYV instructions must be treated as having three source
operands. A CMOVx Ra, Rb, Rc instruction tests Ra for the x condition and, if true,
moves the contents of Rb into Rec. If the condition is false, Rc is left alone. Because of
renaming, the newly assigned Rc register does not already have a copy of the old R, so
a move has to be done in this case as well. This requires the hardware to read Ra, Rb,
and Rc as sources, and to write Rc as a destination as well.

Because the Pbox can only map two source registers and one destination register per
instruction, the third source is a problem.The 21264 solved the problem by breaking
the CMOYV instruction into two separate instructions, CMOV1 and CMOV?2,

The 21464 adopts a similar solution — when the 21464 encounters a CMOY, it insetts
an additional instruction, CMOV?2, into the instruction stream. However, unlike the
21264, if the instruction following the CMOYV is the NOP that is described in Section
2.11.2.2, the 21464 replaces that NOP with the CMOV?2, instead of creating a new
space. That allows the 21464 to map up to four CMOYV instructions per cycle. This pair
of instructions is called the native CMOYV, its implementation is described in Section
2.11.2.5. The pair of native CMOYV instructions is mapped at full bandwidth and they
require no further treatment in the 21464 pipeline.

2.11.2.1 Integer CMOV Specification
CMOY instructions use the architected integer operate instruction format:
CMOVxx Ra.rq, Rb.aq, Re.wq
Ra.rq, #b.ib, Rc.wq

The operation consists of testing Ra for the condition specified by the xx condition and,
if true, the value in Rb is written to register Rc, as follows:

IF TEST(Rav, Condition_based_on_Opcode) THEN Rc <— Rbv
The different conditions specified by the function field are:

CMOVxx Opcode.Function Field Condition Under Which Rc <— Rbv
CMOVEQ 11.24 Rc <— Rbv if Rav=10

CMOVGE 11.46 Rc<— Rbvif Rav=0

CMOVGT 11.66 Rc <—Rbvif Rav >0

CMOVLBC 11.16 Rc <— Rbv if Rav bit 0 is clear
CMOVLBS 11.14 Rc <—— Rbv if Rav bit 0 is set
CMOVLE 11.64 Rc <— Rbvif Rav <0

CMOVLT 11.44 Rc<— Rbvif Rav< 0

CMOVNE 11.26 Rc <— Rbv if Rav#0

Compayg Confidential
2-32 Architecture Overview § January 2001 — Sublect To Change

Implementation-Specific Architecture Features

As described in Section 2.11.2, the 21464 breaks CMOYV instructions into CMOVxx1
and CMOV?2. For each of these instructions, the CMOVxx1 instruction has the form:

CMOVxx Ra.rq, Rc.rq, Re.wqg
For each of these instructions, the CMOV?2 instruction has the form:
CMOV2 Rcurq,Rb.rq,Rc.wqg

Rce.rq, #b.ib, Re.wq

CMOV?2 has opcode/function field 11.68, which is currently an unused function field
in the Alpha architecture. Because the architecture does not require that unused func-
tion code to trap, there is no conflict with the 21464 opcode detector.

2.11.2.2 Native CMOV
The native CMOV-nop that is recognized and replaced with CMOV2 is:
NOP R31,R31,R31 |
NOP has opcode/function field 11.20 (same as BIS).

2.11.2.3 Floating-Point FCMOVxx Specification

Floating-point CMOYV instructions use the architected floating-point operate instruction
format:

FCMOVxx Fa.q, Fb.rq, Fc.wq

The operation consists of testing Fa for the condition specified by the xx condition and,
if true, the value in Fb is written to register Fc, as follows:

IF TEST(Fav, Condition_based_on_Opcode) THEN Fc <— Fbv

The different conditions specified by the function field are:

FCMOVxx Opcode.function field Condition Under Which Fc <— Fbv
FCMOVEQ 17.02A Fc <— Fbvif Fav=0
FCMOVGE 17.02D Fc<—FbvifFav> 0
FCMOVGT 17.02F Fc <— Fbv if Fav > 0
FCMOVLE 17.02E Fc <— Fbvif Fav<0
FCMOVLT 17.02C Fc<—FbvifFav< 0
FCMOVNE 11.02 Fc <— Fbvif Fav#0

As described in Section 2.11.2, the 21464 breaks FCMOYV instructions into
FCMOVxx1 and FCMOV?2. For each of these instructions, the FCMOVxx1 instruction
has the form:

FCMOVzxx1 Fc.rq, Fc.rq, Fc.wq
The FCMOV?2 instruction has the form;
FCMOV2 Fc.aq, Fb.rq, Fc.wq

FCMOV2 has opcode/function field 17.068, which is currently an unused field in the
Alpha architecture for that opcode. Because the architecture does not require that
unused function code to trap, there is no conflict with the 21464 opcode detector.

Compag Confidential
& January 2001 - Subject To Change Architecture Overview 2-33

implementation-Specific Architecture Features

2.11.2.4 Native FCMOV
The native FCMOV-nop that is recognized and replaced with the above FCMOV?2 is:
FNOP F31, F31, F31
FNOP has opcode/function field 17.020 (same as CPYS).
2.11.2.5 Implementation
2.11.2.5.1 Native CMOV

At Icache fill time, the Ibox does a partial decode of the 16 instructions being loaded
into the Icache. Within each halfblock of eight instructions, pairs of CMOVs and
CMOV-nops are detected, and the CMOV-nop is replaced by the CMOV2 instruction.
The CMOV-nop instruction is only decoded to a degree sufficient to guarantee that it is
an effective NOP. This includes detecting that the destination register is number 31 and
making sure that the opcode is 11 or 17.

Predicate Bit

When the Ebox (or Fbox in the case of FCMOYV) sees the CMOVxx Ra, Rc, Rc instruc-
tion, it tests Rav for the xx condition, copies Rcv into the low 64 bits of the renamed Rc
register, and if the xx condition is true, sets a sixty-fifth bit (the predicate bit) in the reg-
ister. If the condition is false, the bit is cleared.

When the Ebox (or Fbox in the case of FCMOYV) sees the CMOV2 Rc, Rb, Rc instruc-
tion, it tests the predicate bit in Rc, and if set, copies Rbv into the new Rc. If the predi-
cate bit is not set, the Ebox (or Fbox) copies Rcv into the new Rc.

The predicate bit is never set unless the 21464 is in the middle of executing the two
parts of a CMOYV instruction. A CMOV?2 with the predicate bit clear is a NOP, since it
copies Rcv into Rc. Since interrupts are taken on aligned eight-instruction boundaries,
and CMOYV does not cause exceptions, the 21464 never takes an interrupt or exception
with the predicate bit set.

A CMOV2 instruction can be executed in isolation if software branches to the CMOV2
half of a native CMOYV sequence. The original placeholder with a destination of R31/
F31 has been remapped to a CMOV2 with the same destination as the original
CMOVzx instruction. Since the predicate is guaranteed to be false, the CMOV2
instruction is effectively a NOP that just copies Rc to Re.

Execution within PALmode

Because the shadow register replacement process in PALmode is keyed to different
registers numbers for Rb and Rc, the 21464 does not correctly replace the inserted ref-
erence to Rc for native CMOVxx1 instructions in PAL mode. See Section 17.4 for
information.

2.11.2.5.2 Legacy CMOV

Legacy CMOVs are CMOYV instructions not followed by the designated native
CMOV-nop instruction. Legacy CMOYV instructions are detected at Icache fill time,
and a predecode bit is set for each such instruction. When this instruction is fetched, the
Collapsing Buffer notices the set bit and creates a CMOV?2 instruction by making a
whole new instruction chunk. This new chunk can still be merged with the next fetch-
chunk, but this method is limited to mapping at-most one CMOYV per cycle.

Compag Confidential
2-34 Architecture Overview § January 2001 — Subject To Change

interrupts

2.11.3 Mapper Alignment

Although the 21464 hardware tries to schedule instructions in an optimal way, there are
occasions where software would like some control of how instructions are mapped and
assigned to functional units. For this purpose, the 21464 defines the MAP_ALIGN
instruction. When MAP_ALIGN is placed in the last slot of an aligned half-block of
eight instructions, it causes that chunk to start a new map-chunk when mapped. That is,
the last chunk is not merged in the collapsing buffer with the previous fetch chunk.

The encoding for the MAP_ALIGN instruction is:
XOR R31,R31,R31

The Opcode/function field is 11.40
Implementation

At Icache fill time, the Ibox looks for the MAP_ALIGN instruction in the last slot of
the aligned fetch chunk. If found, it sets the MA predecode bit. When this chunk is
fetched, the Collapsing Buffer sees the set predecode bit and starts a new map-chunk,
beginning with the current fetch chunk. See Table 3-17.

This instruction is only partly decoded. Probably all instructions of the type

XOR ** R31 have the effect of starting a new map block when fetched as the last
instruction in a fetch chunk.

2.12 Interrupts

Interrupt handling in the 21464 is unlike most earlier processors in three important
respects:

¢ It has no external mechanism for continuously-asserted interrupt requests; all
requests are made as network transactions, and held in the processor awaiting ser-
vice. This implies a requirement for handshaking around the clearing of interrupt
requests, to ensure that future requests are propagated to the processor.

® The processor has multiple threads, each capable of running PAL code, interrupt-
level service, or user code while the others are active. This implies a requirement
for interlocking among the threads which might be servicing interrupts which was
not necessary in earlier uniprocessors.

®* J/O devices can implement a programmable Interrupt ID register, whose value can
be sent with an interrupt request to permit PALcode to vector directly to the appro-
priate service routine.

External interrupt requests are transmitted through the network as IOWr messages to a
block of processor-specific registers. The requestor will receive WrIOAck, except in
the case that the message is directed to the Interrupt ID (IID) queue, and that queue is
full, when the response will be WrIONack. After receiving WrIOAck, the requestor is
expected not to retransmit the request until it has received an explicit release from inter-
rupt software, or it times out. After WrIONack, the requestor can choose to send the
request to another processor, retry the same one, or wait for a software timeout.

Compag Confidential
8§ January 2001 ~ Subjsct To Change Architecture Overview 2-35

AMASK and IMPLVER instruction Processing and Values

2.12.1 IPR Access Mechanism

2.12.1.1 HW_MFPR and HW_MTPR PALcode Instructions

PALcode uses the HW_MFPR and HW_MTPR instructions to access the internal pro-
cessor registers. The HW_MFPR instruction reads the value from the specified IPR
into the integer register specified by the Ra field. The HW_MTPR instruction writes
the value from the integer register specified by the Rb field into the specified IPR. See
Section 17.2 for information.

2.13 AMASK and IMPLVER Instruction Processing and Values

The AMASK and IMPLVER instructions appear to the rest of the 21464 as normal
Integer Logic Box (Opcode 11) instructions, but are handled specially by the Ebox.

The Ebox ignores the registers specified in the instruction and forces the CPU feature
mask constant onto the Ra operand bus whenever an AMASK instruction is decoded
and the implementation version constant onto the Rb operand bus whenever the
IMPLVER instruction is decoded. For both these instructions the logic box performs
the following operation:

Rc = Rb & ~Ra;

Given that the Alpha SRM requires Ra == R31, the equations reduce to:

AMASK Rc = Rb & ~CPU_feature_mask
IMPLVER Rc = Implementation_version

The curtent constant values are:

CPU_feature_mask (AMASK) 0x 1FQ7
Implementation_version IMPLVER) 0x04

2.14 Performance Monitoring

Performance monitoring hardware provides information about the running CPU in
order to:

* Drive profiling-directed-feedback optimizations to improve application perfor-
mance.

® Guide the OS Scheduler to better utilize the TPU contexts.

* Provide architectural feedback for future alpha microprocessor and system imple-
mentations.

To satisfy those goals, the 21464 supports three types of performance monitoring:
* Aninstruction-based profiling algorithm called ProfileMe.

Instruction-based profiling is performed by sampling the dynamic instruction
stream running on the 21464, Sampled instructions are chosen at fetch time based
upon a software-programmable IPR and are monitored while in-flight in the CPU.
Latencies and events are recorded for two separate instructions into a set of profile
record IPRs. When both instructions have finished utilizing CPU resources, a gen-
eral interrupt to PALcode is triggered.

Compayg Confidential
2-36 Architecture Overview & January 2001 ~ Subject To Change

Performance Monitoring

The general interrupt service routine reads the INTERRUPT-SUMMARY IPR to
determine that the interrupt was caused by an instruction profile event. A privileged
PAL routine can then read out the associated data for each profiled instruction by
issuing MFPRs to the profile record IPRs. In continuous sampling, software would
record the data from the current sample and reinitialize the software-programmable
IPR to begin the process for selecting the next pair of sampled instructions.

* Aggregate event-based performance counters for monitoring IPC per TPU, as well
as intra-thread resource contention of Caches, TBs, and the branch predictor.

Aggregate performance counters provide expedient insight into chip resource con-
tention problems, especially among processes running on the different TPUs simul-
taneously. The most potentially problematic resources are the caches (Icache,
Dcache and Scache), the translation buffers (ITB, DTB) and the branch predictor.
Misses/mispredicts in each of these structures can be counted. Overall performance
can also be monitored by using the cycle counter and the retired instructions
counter to obtain retired instructions per cycle per TPU.

There are three aggregate performance counters: the cycle counter, the retired
instructions counter, and one general event counter that can count one of the other
specified events (Icache miss, Dcache miss, Scache miss, I'TB miss, DTB miss or
Branch mispredict). The retired instructions, and general event counter are actually
four counters that count events per TPU simultaneously.

¢ Hardware for monitoring memory addresses that was developed for the 21364 and
is being supported by the 21464.

Memory reference performance monitoring hardware is identical to that of the
21364. While the 21464 designers intend to support the same functionality, this
specification may change to reflect architectural differences in the memory sub-
system of the two processors.

Instead of IPRs, this performance monitoring hardware is controlled and collected
via IO mapped CSRs. There are separate sections for the Cbox, Zbox and Rbox.

Compag Confidential
& January 2001 - Subjsct To Change Architecture Overview 2-37

Performance Monitoring

Compay Confidential
2-38 Architecture Overview § January 2001 - Subject To Change

Features

3

Instruction Fetch Unit — the Ibox

The Ibox is the instruction fetch engine for the 21464. It is responsible for providing
high instruction stream bandwidth to the remainder of the chip. Specifically, the Ibox
delivers instructions directly to the Pbox, which is responsible for instruction number
(INum) resource management, dependence analysis, and register renaming. From there,
instructions proceed to the Qbox, where they await the resolution of their source regis-
ter dependencies. Once an instruction's register dependencies have been resolved, it is
issued, provided that it wins arbitration for an appropriate functional unit in the Ebox
(arithmetic and logic integer operations), Fbox (arithmetic floating point operations), or
Mbox (memory operations). When an instruction has completed execution, it retires
when it is the oldest non-retired instruction in the machine for the appropriate Thread
Processing Unit (TPU) context.

Instruction stream bandwidth is one of the major factors in overall chip performance. A
program cannot execute faster than the rate of instructions entering the machine.
Achieving sufficient instruction bandwidth for a machine that can execute up to eight
instructions per cycle poses several challenges. In order to meet those challanges, the
Ibox contains many new features that were not designed into prior Alpha implementa-
tions.

3.1 Features

The Ibox is responsible for:

¢ Delivering up to eight instructions per cycle to the remainder of the machine

* Maintaining the correct program counter (PC) while the CPU executes programs
* Receiving interrupts and exceptions to properly redirect the machine

The following new features have been added to the Ibox to support high bandwidth
instruction stream fetching, advanced control flow prediction, simultancous multi-
threading (SMT), and memory dependence prediction:

¢ Fetching up to two potentially non-contiguous cache blocks per cycle

¢ Fetch TPU Chooser — to create a resource-balanced SMT fetch engine
¢ Advanced Branch Prediction — predicting up to 16 branches per cycle

* History based Jump Target Prediction.

¢ Collapsing Buffer — to facilitate over-fetching and merging fetch blocks

* Memory Dependence Prediction using Store Sets

Compayg Confidential
8§ January 2001 —~ Subject To Change Instruction Fetch Unit — the Ibox 3-1

Major Sections

¢ Advanced Hardware I-Stream pre-fetching

¢ Simultaneous Multithreaded Fill Unit

® Anti-thrashing Instruction Cache fill policy
3.2 Major Sections

Figure 3—1 Shows the Ibox block diagram. Following the figure is a list of the major
sections.

Figure 3-1 Ibox Block Diagram

lFrom EBox lFrom QBox

Checkpoint Unit
] |
Control .
Index Prediction Unit |—p| PC Unit

Unit

Instruction Unit

To PBox >

8 instructions

Fill Unit

T lTo MBox
From Cbox

Compag Confidentisd
3-2 Instruction Fetch Unit — the Ibox § January 2001 ~ Subject To Change

Major Sections

The Ibox can be thought of as containing the following major sections:

Table 3—1 Ibox Major Sections

Name

Description Section

Checkpoint
Unit

Control Flow
Prediction
Unit

Fill Unit

Index Unit

Instruction
Processing
Unit

PC Unit

The Checkpoint Unit maintains state for restarting the CPU in the event of an excep- 3.9
tion, and trains the control flow predictors and the memory dependence predictor.

Upon an exception, the Checkpoint Unit resets the following to the state that existed
just before the fetch of the instruction that caused an exception: the PC, branch predic-
tor, jump target predictor, and return stack . The Checkpoint Unit also keeps training
information for the branch and jump target predictors, to train the predictors at the
retirement time of branch or jump instructions.

The Control Flow Prediction Unit predicts PC changes at fetch-time for instructions 3.6
that can change control flow when executed.

Control flow instructions are conditional branches, computed jumps, and subroutine
returns. There is a dedicated predictor for each: the conditional branch predictor, the
jump target predictor, and the return address stack.

The Fill Unit fetches instructions from lower-level memory. 3.8

The Fill Unit can simultaneously fetch instruction blocks for multiple TPUs . The Fill
Unit also maintains a dynamic hardware prefetcher that attempts to fill the Icache
with blocks that would have missed in the future. The Fill Unit also contains the
Icache Translation Buffer (ITB) that must translate virtual PC miss addresses to phys-
ical addresses before making memory requests.

The Index Unit produces up to two indices per cycle. 3.4

The indices are usually predictions from the Line Predictor that are used to access the
Icache, Branch Predictor, and Store Sets Array. The index unit also contains the Fetch
TPU Chooser that arbitrates among multiple TPUs that are ready to fetch instructions.
The produced indices have an associated TPU that is sent along with them down the
Ibox pipeline. The Line Predictor itself consists of a sequential and non-sequential
component, to address the sequential and non-sequential code sequences of the run-
ning programs.

The Instruction Processing Unit stores and retrieves instructions and their associated 3.5
tags and data, and contains the following:

1 The 64KB Icache and it’s associated tag array. Instruction pre-decode bits are also
stored in the Icache Data and Tag Arrays to speed instruction processing in the
Ibox and instruction format decoding in the Pbox.

2 The Store Sets Array, which produces memory synchronization identifiers (store
sets) for potentially every load and store operation. The store sets instruct the Pbox
to create explicit dependencies between certain loads and stores.

3 The Collapsing Buffer, which stores instruction blocks that are driven by the
Icache and collapses up to two instruction blocks per cycle to deliver up to 8
instructions per cycle to the Pbox.

The PC Unit maintains the program counters for each TPU, 3.7

Mostly it calculates PCs based upon the exiting instructions of the fetch blocks (for
example, branches, jumps, returns, fall-through, and so forth), but it also can be reset
by interrupts and exceptions. The PC Unit is also determines Icache misses, index
mispredicts, and way mispredicts in the Ibox pipeline.

Compaqg Confidential

8 January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-3

Forward Path Pipeline

3.3 Forward Path Pipeline
The main Ibox pipeline is shown in Table 3-2:

Table 3-2 Ibox Main Pipeline

0 }] 12 13 4

TPU Select Index Gen. Icache Access Collapse Drive to Pbox
BPR Predict PC Calc
JPR Predict
RPR Predict

I0 The Index Unit comprises the functionality in stages I0 and I1. In 10, the Fetch TPU
Chooser arbitrates among TPU’s that are ready to fetch instructions, and selects one each
cycle.

I1 The Line Predictor generates up to two valid Icache indices for the selected thread. The
Icache indices are predicted because the accessing PCs are not known this early in the pipe-
line. .

12 The Icache is accessed, and two blocks of up to eight instructions each are read out, along
with their corresponding tags and other information. In parallel with the Icache access, the
control flow predictors operate to provide conditional branch, jump target or return address
predictions for branch, jump or return instructions that are being read out of the Icache
simultaneously.

I3 The instructions, along with the control flow predictions, provide enough information to
calculate two PCs. The PCs are compared with Icache tags and Line Predictor indices to
determine whether the fetches hit in the Icache and the predicted indices were correct. If the
Icache accesses were correct, the instructions are buffered in the Collapsing Buffer, which
reads out up to two fetch blocks per cycle and collapses the instructions into an eight-
instruction map block.

I4 The map blocks are sent on to the Pbox for mapping.

3.4 Index Unit

3.4.1 Fetch TPU Chooser

The Fetch TPU Chooser (FTC) is responsible for choosing one of the TPUs each cycle.
The chosen TPU’s indices will be driven to the Icache and Branch Predictor. Each
cycle, the FTC will choose the TPU that is consuming the fewest Ibox pipeline
resources, and is ready to fetch instructions. Ties can occur, and are broken using a
round robin algorithm.

In order to monitor Ibox pipeline utilization, the FTC receives input from the collapsing
buffer each cycle that indicates the number of entries consumed. The FTC also receives
input from the pipeline latches at each stage to monitor the number of in-flight fetch
- chunks that may eventually consume entries in the instruction buffer. The FTC is

responsible for not selecting a TPU if fetching its’ corresponding instructions will over-
flow the instruction buffer. The FTC evaluates whether a TPU is ready to fetch instruc-
tions each cycle by receiving input each cycle that either enable or disable a TPU for
arbitration. A TPU will be disabled from arbitration if it is awaiting a pending Icache

Compayg Confidential
34 Instruction Fetch Unit — the Ibox & January 2001 - Subject To Change

index Unit

fill, or if that TPU’s collapsing buffer is about to become full. The TPU will be re-
enabled for arbitration when the pending fill returns or when some collapsing buffer
entries are freed.

The FTC is also responsible for ensuring that every TPU makes forward progress. It
does this by detecting when a TPU has not mapped real instructions for a very long
time, and stalling the other TPUs until the starving TPU maps instructions.

The CPU can be configured to run 1,2,3 or 4 TPUs. An IPR will indicate whether each
of the TPUs is "alive" or not. Clearing a TPU’s “alive” bit will disable that TPU, that is,
the machine will no longer fetch instructions from that context.

3.4.2 Line Predictor

Figure 3-2 Line Predictor Block Diagram

N

PC Table Festart Index

V

V)
P15 : Line Predictor | 1
v —N
A r—‘/
P04
V

PC Calc %

PCO_I3

4 L Icache

—l Il

Index Mispredict Slat1

_Non-index fault Siot1
Exception

Fradiction

The primary function of the Line Predictor is to provide two indices to the Icache by
which it can look up instructions. The index for the Icache are bits <15:2> of the full
address. Bit <15> in the Icache index is a way bit; it selects which way or set stores the
instructions. One way bit implies that there are only two ways a fetch block can be
stored in the Icache. The way bit <15> can be inverted in contrast to the original bit 15
of the PC to place it the other way inside the Icache. This mechanism stops two differ-
ent addresses that have the same lower bits <15:2> from occupying the same cache slot.
This is also known as thrashing.

To maximize effectiveness, there are three different prediction arrays. Already it can be
seen that there is a need to predict two indices. One array could be used to predict both
indices, but performance can be dramatically increased if some optimizations are done.
First, predicting the two indices separately allows different index schemes and thus bet-
ter independent predictions for the two slots. Secondly, a sequential predictor requires
less area by storing a single bit that indicates a sequential index is to be predicted (a

Compag Confidential
& January 2001 ~ Subjsct To Change Instruction Fetch Unit — the Ibox 3-5

index Unit

sequential index can be generated with an adder and the current index). A non-sequen-
tial array can then have more room for storing purely non-sequential indices while the
sequential array can be made quite large due to its small storage requirements. It is
infeasible to implement a sequential index generator for Slotl due to timing constraints,
therefore only SlotQ prediction will have a sequential predictor in addition to a non-
sequential predictor.

While the line predictor is in a free-running state, meaning that it’s prediction is per-
fect, the line predictor can simply obtain its input index from its own output. This is the
secondary function of the Line Predictor, to provide itself with a lookup index. The
index that the Line Predictor will use to index itself happens to be the second index it
sends to the Icache (Slotl). The read index for the Line Predictor is actually broken up
into three indices to access each of it's three arrays. Additionally, the Line Predictor
uses a “squash” bit to index itself. There is some hashing involved of the bits to get the
final read indices. The three arrays are: slotO nonsequential array, slot0O sequential array,
and the slotl nonsequential array. Each array is indexed slightly differently, but they all
use the same bits. Since the two non-sequential arrays are actually smaller than the
addressable index space, hashing is employed to yield the best performance.

For Slot0, there are two hash indices, sequential and nonsequential.
® Sequential - <14:5>,<15>,<4:2>

* Nonsequential - <14:5>,<15>,(<4> 1 <3> | <2>)

For Slotl there is just one hashed nonsequential index

* <14:5><155,(<3> 1 <2>),(<16> N <4>)

Bits <14:5> are commonly decoded for all three predictors. Since the arrays can do the
hashing on the fly, only non-hashed index bits need to be stored in the nonsequential
arrays.

The Slot0O sequential array has 16k entries and the Slot0 nonsequential array has 4k
entries. The Slotl nonsequential array has 8k entries - more than Slot0 nonsequential
because Slotl does not have the benefit of a sequential predictor.

The Line Predictor index also has a additional “squash” bit. Sometimes the backend of
the Ibox pipe can't handle slot0O and slotl at the same time. Without a squash mecha-
nism, the Line Predictor would have restart Slot1 via a line mispredict (which costs 2-3
cycles for that TPU). Instead, the Line Preditor will be indexed by the squash bit instead
of bit <15>. In the normal, no-squash case, the squash bit is the same as bit <15>.
When PCC detects the squash case, it will simply invert the squash bit from the normal
case. Sonow the Line Predictor can be trained with an "alternate” index by inverting
the squash bit so that it now is the inverse of bit <15>. This new "alternate" index will
be trained to re-predict slotl (in the slotQ position) again. It's up to the PC calc section
to flip the squash bit for the Line Predictor after it first realizes it can't handle both slots.
This way the Line Predictor can keep moving without taking a mispredict for Slotl
every time the backend can't process it.

Compag Confidential

3-6 Instruction Fetch Unit — the Ibox 8 January 2001 — Subject To Change

index Unit

3.4.3 Thread Index Latches
3.4.3.1 (Re)Starting/Resuming the Pipe

When the Line Predictor mis-predicts, it needs to be restarted with an index other than
its own output (because it’s bad path now). There needs to be some mechanism of gen-
erating an index for the Icache and Line Predictor from somewhere other than the Line
Predictor itself. The simplest way to provide this capability is to put a mux on the look-
up index that picks between the Line Predictor output and an alternate PC. Old predic-
tions for a sleeping thread also need to be stored until the thread is awakened. We have
many different sources for an alternate PC. This forms the basis for the thread index
latches. In general, PCs from all restarts come from one of three places :

¢ PAL BASE + OFFSET
¢ Checkpoint Tables. Jump/Return addresses, alternate PC's, etc. that are stored here.
¢ PCO and PC1 - Calculated values for the PC from PC Calc section

There are correspondingly three types of restarts: exceptions, misprediction, and thread
~ resume.

3.4.3.1.1 Exceptions

There are three types of exceptions that can change the PC: Post Map, Ibox internal,
and interrupts.

¢ Post Map

Post Map exceptions have top priority. All indices for Post Map exceptions are
received from the Checkpoint Table, while the signaling of the event can come to
the Ibox through two interfaces: the fast path and the Efunnel (Exception Funnel).
Fast path exceptions are signaled by the Ebox and Qbox, while the Exception Fun-
nel is entirely contained within the Pbox.

Exceptions that are caused by mispredicted conditional branches can use the special
fast path bypass, which reduces the mispredicting branch penalty. These exceptions
can only be acted upon if nothing is coming from the exception funnel that cycle.
The Qbox sends the Ibox the INum, TPU, and prediction of the oldest issued CBR
every cycle while the Checkpoint Table sends a restart index to the Line Predictor.
Two cycles later, the Ebox will send the result of the prediction for that CBR and if
there is a mispredict, the exception is taken and the new index is ready to load into
the index latches.

The Exception Funnel is a Pbox widget that filters exceptions such that only the
oldest exceptions are signaled to the Ibox. It works by the Pbox sending the Ibox a
signal indicating what restart address to use and which TPU is excepting. The
Checkpoint Table will use this information to select an index to send to the Line
Predictor.

Since there are all sorts of delays between boxes inside the 21464, there must be
some kind of guard against taking a bad-path (younger) exception after an excep-
tion has already occurred until the kill has destroyed all remnants of the bad path.
To take a bad-path exception is bad, very bad. Older exceptions are ok, however,
since they are on the good path by definition. The main problem faced here is that it
is not known when all bad-path instructions have been killed. Luckily, there is a
large window of opportunity.

Compag Condidential
8 January 2001 ~ Subjsct To Change Instruction Fetch Unit — the Ibox 3-7

index Unit

3-8 Instruction Fetch Unit — the Ibox

Kills happen relatively quickly compared to how long it takes for the first good path
instructions to get issued. What's needed is a window of time after an exception is
taken during which younger exceptions will be masked out. This is just imple-
mented as a counter. The count wil be determined as follows: Ibox pipeline stages
+ Pbox pipeline stages + Qbox pipeline stages until earlist possible issue, which is
hopefully longer than the kill time for bad-path instructions. Note that this covers
both the fast-path CBR exception interface and the Efunnel interface

Ibox internal

Ibox internal exceptions are medium priority, only losing priority to the Post Map
exceptions. All indices for these exceptions come to the thread index latches by
way of line mispredicts and non-index faults (see below). This means that the Ibox
internal exception indices are not directly fed to the thread index latches. Instead
they are sent to PC Calc where they will cause an index mispredict. Pipe control
will guarantee that only one TPU can take an Ibox internal exception per cycle.

There are five types of internal exceptions: Reset, Warm Reset, Uncorrectable ECC
error, I'TB miss, and Read Access Violation. Each of these will be described in
more detail in another section. Although the indices physically from PC Calc, they
in fact originate from the Checkpoint Tables as a PAL BASE + OFFSET.

Interrupts

Interrupts have the lowest priority. The Cbox sends the Ibox a 4 bit TPU vector
indicating an interrupt on that TPU. Then pipe control will load Pal Base + Offset
into the PC latches. This will cause a line mispredict and PCC will send the correct
index to the Line Predictor to start on. This is the same mechanism as for Ibox
internal interrupts. It’s important to note that even though Ibox internal exceptions
and interrupts have a priority ordering, the Line Predictor can not distinguish the
difference between the two. Itis up to pipe control to prioritize these.

3.4.3.1.2 Misprediction - PC Calc

When the Line Predictor mispredicts, the new start index comes from the PCC (PC
Calc) section. There are two possiblites: PC0 and PC1, depending on which slot
mispredicted. Additionally, a restart can ocurr a cycle later because of a tag problem -
this is called a non-index fault. In this case, the PC must be piped one cycle to line up
with the restart indication. Here are all the restart cases signaled to the line predictor
from PCC in order from youngest to oldest:

1.

SLOTO mispredicts

This mispredict is the youngest mispredict and therefore has the least priority. The
index comes from PC CALC which must go directly into the thread latch. PCC will
signal this case late in I3 which makes it a critical path into the thread latches.

SLOT1 mispredict

Again, the index comes from PC CALC which must go directly into the thread
latch and is signaled late in I4A so this is also a critical path to write PC1 into the
thread latch.

3. SLOTO non-index fault

Compay Confidential
§ January 2001 -~ Subject To Change

fndex Unit

The index here is the same as SLOT0 mispredict, but is piped by one cycle (I14A) in
the index latches. A way mispredict can be signaled additionally by PCC in I4A. In
this case, bit <15> of the PC needs to be inverted before writing into the thread
index latch. Also, a bit is sent with this new "inverted" index to tell the PC CALC
section not to way mispredict again.

SLOT1 non-index fault

The index is the same as SLOT1 mispredict, but is piped by one cycle (ISA) in the
index latches. Again, a way mispredict can be signaled additionally by PCC in
ISA. In this case, bit <15> of the PC needs to be inverted before writing into the
thread index latch. Also, a bit is sent with this new "inverted" index to tell the PC
CALC section not to way mispredict again.

3.4.3.1.3 Thread Resume - Line Predictor (two indexes)

‘When the Fetch Thread Chooser switches threads, the predictions for the previously
active thread need to be saved so that when that thread is reselected in the future, the
indices for SLOTO and SLOT!1 are ready to index the Line Predictor and Icache. Other
wise, you would lose performance, as the Line Predictor would be generating indices
for the thread that just stopped and not the thread that just started. This is the default
index source if the thread is selected and no other exceptions have happened.

3.4.3.2 Other Index Latch Tracking Functions

There are few more things the index latches need to track besides indexes: Slotl Valid,
bank conflict, ITB enable, squash prediction, way mispredict restarts, and a guard
mechanism:

Slot1 Valid

Slotl valid is set if the index came from the line predictor. For all other cases it is
invalidated.

Bank Conflict

This means a read and write to the same bank has occurred. Writes take precedence
so the predictions that come out of the line predictor in the next cycle are not valid.
A bank conflict signal is sent to pipe control (PCC) so that it can invalidate the
cycle and the next cycle the index is retried.

ITB enable

When a #ITB miss has ocurred, the pipe has to be restarted and the I'TB needs to be
enabled to process the Icache miss. The thread latches hold on to the ITB enable
state so that when the TPU is selected, the ITB can be enabled.

Squash Prediction

As explained previously, the line predictor arrays hold a squash bit for squash pre-
diction. Squash prediction is calculated by XORing bit <14> from the prediction
with the squash bit. This prediction is then stored in the index latches so that the
prediction can be sent down the pipe when the 7PU is resumed from sleep.

Way Mispredict Restart

When a way mispredict is signaled from PCC, a bit of state needs to accompany the
restart index to indicate that a way mispredict is to be ignored.

Guard

Compag Confidential

8 January 2001 — Subject To Change Instruction Fetch Unit — the lbox 3-9

index Unit

As a safety precaution, there is a guard mechanism set for one cycle after any
restart. The guard causes the index latches to ignore any PC Calc exceptions (like
mispredicts). In theory, PC calc should not signal a exception after a restart since all
pipe stages are killed. The first possible index that could cause an exception is the
restart index. The guard is in place only in case pipe control can'tkill it's pipe stages
in time.

3.4.4 Thread Training Latches

In order for the Line Predictor to actually predict correctly, it needs to be trained to pre-
dict the correct indices when it is wrong. Training will require the corrected index to
write into the array, the index to write this new data with, and a write enable signal. In
truth, there are three separate arrays that are trained independently.

Slot0 Sequential, Slot0 nonsequential, and Slotl nonsequential are all read simulata-
neously. This means that the training index (the write index) for all three arrays is the
same. In fact, word lines are shared between all three arrays for both reads and writes.
Wirites, however, are exclusive between Slot0 and Slot1. This is true because if Slot0
mispredicts, Slotl is killed so it is not known if it's prediction was correct. Slotl could
be trained with the data that was already in the array but this is difficult to implement so
Slotl and Slot0 will have exclusive write enables. Similarly, if Slotl mispredicts it must
mean that Slot0 was predicted correctly so Slot0 doens't need to be trained.

Slot0 also has another case: sequential/nonsequential training. There are three training
cases:

¢ Slot0 predicted sequential and mispredicts (nonsequential) - The sequential array
must be written with a 0, or nonsequential prediction. The nonsequential array must
be trained with the nonsequential index. Two arrays are trained at the same time.

¢ Slot0 predicted nonsequential and mispredicts nonsequentially - The nonsequential
prediction was wrong and needs to be trained with a new nonsequential index.

* Slot0 predicted nonsequential and mispredicts sequentially - The sequential array
needs to be trained for a sequential prediction. The nonsequential array is left alone.
It is important that the nonsequential isn't written in this case even though it may
seem harmless. The truth is that the sequential array has many more entries than the
nonsequential array. The nonsequential prediction may have actually been the pre-
diction for a different index that happened to alias to the same entry in the array. In
this case, the nonsequential prediction should be left alone since it may be an accu-
rate prediction for a different index.

So now it can be seen that three write enables are needed. Slot0 Seq, Slot0 Nonseq, and
Slotl (nonseq). There are two more pieces to training. The training index and the train-
ing data. The training index is just the index used to access the predictions that were
wrong. The job of the training latches is to hold on to this index for each thread. The
training data is just the restart PC index bits sent back by PCC plus the squash bit.

Training will only ocur for a thread when training data is available, an index mispredict
or way mispredict has ocurred, and that thread is selected by the thread chooser. There-
fore, it is the training latches job to keep the write enables and write index for each
thread until the thread is selected. The training data comes from the thread index latches
since the write data is the same as the current read index in the line pred arrays.

Compag Confidential
3-10 Instruction Fetch Unit — the lbox & January 2001 - Subject To Change

Instruction Processing Unit

If it happens that the index being restarted is the same as the write index used for the
train then a condition known as bank conflict will ocurr. This means that both a read
and a write are trying to access the same bank and the line predictor array can't handle
both at the same time. When this happens, writes will take priority over reads. The
cycle of the write there will be no vaild indices coming out of the line predictor. The
pipe control must insert a bubble in the pipe for this thread since there are no valid
Icache read indices. During the bubble cycle what will happen is that the read index that
caused the bank conflict will be tried again so that the next cycle two valid indices will
be read out of the line predictor and sent to the Icache.

3.5 Instruction Processing Unit

The Instruction Processing Unit consists of the Icache data array, the Icache tag array,
store sets based memory dependence predictor, and the collapsing buffer.

3.5.1 lcache Data Array

The Icache is 64KB. It is pseudo 2-way associative, with a thrash-remap fill policy. A
cache block can be stored in one of two possible locations. Most blocks will be stored
using direct mapped indexing. However, if two blocks are detected as repeatedly com-
peting for the same direct mapped cache location then one of the blocks will be
remapped by inverting the MSB of its index. This condition is detected in the Fill Unit
using a thrash detector (see Section 3.8).

The Icache array is made up of 8 banks. Each cycle the Ibox attempts to fetch two half
blocks, or fetch chunks from the Icache, one for slot0, the other for slotl. If there isn’t
an Icache fill occurring in a given cycle, the slotO fetch is always allowed. The slotl
fetch is only allowed if its fetch is for an entry in a different bank from the slot0 fetch,
or if it is for the exact same block (either half) in the Icache as the slot0 fetch. This
allows fetching two "fetch chunks" per cycle without double pumping the Icache, as
long as the two fetch chunks are not for two different cache blocks in the same cache
bank. It has been observed that pairs of consecutive fetch blocks in a variety of bench-
marks are about 50% likely to be consecutive. Since consective fetch chunks are either
on the exact same cache block, or are in the next cache bank (due to bank interleaving),
sequential program access to the cache is guaranteed not to have a read bank conflict
and should always be capable of reading two fetch chunks per cycle. Non-sequential
fetch chunks that are separated by a multiple of 8 cache blocks will attempt to access
multiple cache blocks in the same cache bank, in this case the Slot0 read will be given
priority over the slotl read.

The 21464 provides the MAP_ALIGN instruction, which allows software some control
over mapping fetch chunks, in disregard for the efficiencies just described. See Section
2.11.3 for information.

When a cache miss occurs, a cache fill operation fetches and writes a full cache block of
16 instructions through the Fill Unit. Fills are given higher priority than either a slot 0
or slot 1 read. If a fill is occurring to the same bank as either a slot 0 or slot 1 read in a
given cycle, neither read will be allowed, and the two reads could be replayed the fol-
lowing cycle. The Index Unit provides the two read indices (slot O and slot 1) to the
Icache along with a valid bit per read index. The Fill Unit provides the write index dur-
ing an Icache fill along with a valid bit per Icache bank. The Icache decoders contain
logic that arbitrates slotO/slot1 read conflicts, and the read/write conflicts.

Compaqg Confidentiai
& January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-11

instruction Processing Unit

3.5.2

3-12

The Icache Data Array is parity protected.

The bits in an entire cache block of the Icache data array would consist of:

Table 3-3 Icache Data Array Cache Block Contents

Bits Description

1[15:01<31:0> Sixteen 32-bit modified instructions

CY[15:0] One overflow bit for each of the 16 instructions

CI[15:0] One incremented branch target carry bit for each of the 16 instructions

CM[15:0] Qne CMOV/FCMOV predecode bit for the CBF, for each of the 16
instructions

PQ15:0]1<3:0> Four Predecode bits for the P box, for each of the 16 instructions
DP<9:0> 10 Parity bits

Icache Tag Array

The Icache is virtually indexed, and virtually and physically tagged. The primary func-
tion of the Icache Tag Array is to hold and deliver the virtual address tags for corre-
sponding instruction blocks in the Icache Data Array. These tags are compared with the
full virtual PC calculated in the PC Unit to determine if Icache accesses were hits.
Address space numbers (ASNs) and the address space match bit (ASM) are also stored
in the tag array to determine whether the virtually addressed block that was filled into
the cache can be used by the current process that is accessing the cache, which has its
own ASN assignment. Physical tags are also stored in the cache to facilitate Icache
sharing between two processes that are addressing the same physical memory but were
not assigned the same ASN. The two processes must also be using the same virtual
index bits to be able to share the Icache. If the physical tag stored in the Icache Tag
Array is the same as the physical address of the translated virtual PC, the Ibox allows
physical Icache hits. The reason for this is to allow multiple threads to share the Icache
when running on different TPUs. There is more explanation about how Icache hits are
determined in the PC Compare section of the PC Unit documentation.,

As described above in the Icache Data Array section, the Icache is pseudo 2-way set
associative. Occasionally, when a thrash is detected by the thrash detector in the Fill
Unit, the cache will be filled using the alternate location (same as the direct location’s
index, except the top bit is inverted). The Line Predictor in the Index Unit will learn to
predict the alternate way for that fetch block. In order to do this, when the wrong “way”
is accidentally fetched, the PC compare logic needs to determine that the wrong way
was fetched, and that instead of taking an Icache miss, simply try to fetch the instruc-
tions and tags at the alternate way’s location. Instead of reading out two full tags, the
Icache tag array stores a partial tag for the alternate way. If the partial tag matches the
PC, but the primary tag does not, the Ibox attempts to fetch from the alternate way
before initiating a cache miss. The alternate tag is 9 bits in the tag array: VA<23:15>.

The Tag Array also stores and retrieves a variety of other information to support several
Ibox design choices and features:

Compag Confidential

Instruction Fetch Unit — the Ibox 8 January 2001 ~ Subject To Change

L

Instruction Processing Unit

Each TPU belongs to one of four TPU groups. Instead of having one valid bit per
TPU in the Icache, there is one valid bit per TPU group. Software can configure
multiple TPUs to be part of the same group, in which case they can virtually hit on
each others Icache blocks, provided the ASNs match or the ASM bit is set.

For Icache use by PALcode, a physical fill bit is stored. When the accessing TPU is
in fetching PALcode, it can hit on Icache blocks that have the physical-fill bit set
and bypass ASN comparison. This is needed because PALcode is always physically

mapped.

When a block is filled, its corresponding protection level is written into the Icache
tags. The protection level is either U,S,E,or K as specified in the Alpha SRM.

The Fill Unit can write an istream block into the Icache if it suffered an uncorrect-
able ECC error while residing in the Scache. Once the uncorrectible ECC error is
detected it will trigger an interrupt, but to keep the Ibox from fetching and process-
ing the bogus block, a bit indicating the uncorrectable error is set in the Icache
Tags.

In order to expidite pc calculation and fetch block processing, a number of instruc-
tion attributes are predecoded during Icache fills and then stored into the Icache Tag
Array. These bits determine whether each instruction that was filled into the Icache
was a conditional branch, unconditional branch, computed jump, or other instruc-
tion. It also determines whether the return predictor should be used (ie does the
instruction perform a push or pop operation on the stack), and whether the jump tar-
get predictor needs to be used.

The Icache Tag Array is protected by parity.

Here is a complete list of the contents of the Icache Tag Array for a 16-instruction
block:

[]

TPU group valid<3:0>

Virtual address <51:16>
ASN<7:0>

ASM

Physical address <47:13>
Alternate virtual address <23:15>
Physical fill bit

USEK<3:0>

ECC uncorrectable bit

Icache Tag Predecodes [15:0]<3:0>
Parity<3:0>

Compag Confidential

& Jarnuary 2001 ~ Subject To Change Instruction Fetch Unit — the Ibox 3-13

instruction Processing Unit

Predecodes in Icache Tag for each instruction of each fetch block:

Table 3-4 Icache Tag Array Predecode for Fetch Blocks

UE

cB

P2 P3 PUSH POP Meaning

—_— 0 OO0 O O o o O

— b e e ped e

e e e = T = T < T - B S~ S S v B e N e B]

e e = =T == N WY < B o B S A o T e B = -]

(=]

0 Fall through (CBR 0 JMP in PALMODE)
1 Not used — don't care

0 Not used — don't care

1 Not used — don't care

0 Not used — don't care

1 CBR (conditional branch)

0 Not used — don't care

1

0

Not used — don't care

IMP

BR (unconditional branch)

RET (pops return stack)

IFETCHB

JSR (pushes return stack)

BSR (pushes return stack) (JSR in PALMODE)
JCR (pops and pushes return stack)

CALLPAL (pushes return stack)

e e e R T B I I S
R R - R S - R S

The Icache Tag array has 8 banks. The slot0, slotl and fill arbitration happens exactly
as described in the Icache Data array section above.

3.5.3 Store-Sets Based Memory Dependence Predictor

3-14

Instruction Fetch Unit — the lbox

The 21464’s out-of-order core could execute a load before a prior store that writes to
the same memory location. If this happens the load will get the wrong value. When the
store finally executes, this memory order violation will be detected and the load and all
subsequent dependent instructions will be aborted and re-executed, resulting in a per-
formance penalty. This dilemma has created the need for memory dependence predic-
tion. The goals of memory dependence prediction are 1) to predict the load instructions
that if allowed to execute would cause a memory-order violation and 2) to delay the
execution of these loads only as long as is necessary to avoid a such a violation.

Our memory dependence predictor is based upon the concept of store sets. A store set
for a specific load is the set of all stores upon which the load has ever depended. A
load’s store set can be approximated in hardware by first allowing speculation of all
loads around older stores. If a load executes before a store upon which it depends, the
processor detects a memory-order violation when the store is executed and adds the
store to that load’s store set. Essentially the processor discovers and remembers a load’s
store set during program execution. The stote set is then used to predict which stores a
load must wait for before executing. The table that holds store set IDs is in the Ibox.

Compag Confidential
§ January 2001 - Subject To Change

Instruction Processing Unit

For more information about store sets see: George Chrysos and Joel Emer. Memory
Dependence Prediction using Store Sets. In Proc. ISCA2S, July 1998

Store-sets based prediction replaces the load wait table in the 21264.

The store sets predictor implementation has 16 store set identifiers, and has 4K entries
and the table is cleared periodically based upon an IPR. The 4k entry store sets array
and the Icache array are read simultaneously based upon an index generated by the
Index Unit. Each store set array entry is 5 bits long, one valid bit and four bits for the
store set identifier. 8 store set id’s are read out contiguously for each fetch chunk. Logic
in the Pbox determines whether the instructions are loads or stores to know whether to
utilize the store set id or not. The store set id’s then create predicted dependencies
between loads and stores in the Pbox dependence mapper.

The store set entry table in the Ibox is trained when a store/load order violation is
broadcast from the Mbox. The training of store set entries is governed by the following
rules:

1. If neither the load nor the store has been assigned a store set id, one is created and
assigned to the store instruction.

2. If the load has been assigned a store set id, but the store has not, the store is
assigned the load's store set id.

3. If the store has been assigned a store set id, but the load has not, the load is assigned
the store's store set id.

4. If both the load and the store have already been assigned store set ids, one of the
two store set ids is declared the "winner". The instruction assigned the losing store
set id is assigned the winning store set id. The winner is the lower numbered store
set ID.

Rule one mentions that when neither the store nor the load involved in the load/store
order violation that a store set id is created. The store set id is created by hashing the
lower bits of the load’s PC:

21 20 19 18
XOR 17 16 15 14
XOR 13 12 11 10
XOR 9 8 7 &
XOR 5 4 3 2

As mentioned above, the store set entry table’s valid bits are cleared periodically based
upon an IPR. The bits in the IPR that govern the store set tables clearing frequency are
defined here:

IPR Bits Clear Freq

0000 Every Cycle (Store Sets Disabled)
0001 Every 1k cycles
0010 Every 2k cycles
0011 Every 4k cycles
0100 Every 8k cycles

Compayg Confidential
8 January 2001 -~ Subject To Change Instruction Fetch Unit — the Ibox 3-15

instruction Processing Unit

IPRBits Clear Freq

0101 Every 16k cycles
0110 Every 32k cycles
0111 Every 64k cycles
1000 Every 128k cycles
1001 Every 256k cycles
1010 Every 512k cycles * - recommended setting
1011 Every 1m cycles
1100 Every 2m cycles
1100 Every 4m cycles
1101 Every 8m cycles
1111 Every 16m cycles

3.5.4 Collapsing Buffer

The job of the collapsing buffer is two-fold. It buffers instruction chunks (called fetch
chunks) from the Icache and merges usable instructions from these buffered chunks into
map-able chunks (called map chunks) that are sent to the Pbox. The collapsing buffer is
capable storing and merging 2 fetch chunks per cycle. Map chunks are only sent to the
Pbox upon request of the Pbox.

3.5.4.1 Instruction Buffer
3.5.4.1.1 Data Path

Each TPU has it’s own buffer (implemented as a queue) of 16 entries with each entry
holding one fetch chunk (8 instructions). The ICache sends the instruction buffer up to
two fetch chunks every cycle during I3 from a single TPU (slot O and slot 1). If the cor-
responding TPU’s buffer is empty and the Pbox requests a map chunk from that TPU,
then slot 0 can be bypassed as a map chunk during I3. Slot 1 cannot be bypassed. Both
fetch chunks are written during I3 into the instruction buffer queue corresponding to the
TPU they were fetched from (regardless of whether one slot was bypassed or not).

The queue addressing logic keeps track of the head and tail of each buffer by using two
single bit pointers arranged in a ring. Each buffer is addressed for write by taking into
account the position of the tail pointer, and whether there are one or two slots being
written. The queue read addressing is similar to the write addressing, except that the
head and tail pointers and their relative locations determine whether one or two slots are
read. Normally, two fetch chunks will be read from the buffer on each cycle during 13,
except in the case there is only one fetch chunk available in the buffer.

The 21464 provides the MAP_ALIGN instruction, which allows software some control
over mapping fetch chunks, in disregard for the efficiencies just described. See Section
2.11.3 for information.

Compayqg Confidential
3-16 Instruction Fetch Unit — the Ibox & January 2001 - Subject To Change

Instruction Processing Unit

In the event that there has been an internal Ibox fault (misprediction, cache miss, etc...
Not a branch or jump mispredict) corresponding to slot O, then the collapsing buffer can
catch this by not advancing the write pointers, although the fetch chunks are written. If
the buffer was empty before the write, a bypass occurs and all of the valid bits sent to
the Pbox are pulled low, as that slot is invalid.

Unfortunately, faults for Slot1 occurs one cycle after Slot0 events. This leads to trouble
because slotl can be written and then read out of the buffer at the same time a Slot1fault
happens. In the event that there has been an internal Ibox fault corresponding to slot 1,
each buffer has the ability to "undo” the last write by backing up the write pointers.
Additionally, all instructions in the map chunk are invalidated just as they are sent to the
Pbox. This undo ability allows the collapsing buffer to capture wrong instructions
before they get sent to the Pbox. This is vital, since it means that the Ibox will not have
to hunt down and kill instructions in other boxes.

3.5.4.1.2 Control Path

To ensure that only map chunks with valid instructions get sent to the Pbox, some addi-
tional signaling is needed. First, the Pbox must tell the collapsing buffer some informa-
tion.

The first thing the Pbox needs to do is request a map chunk. It does so by selecting a
TPU in I3 and informing the collapsing buffer of the TPU choice. Sometimes, how-
ever, the Pbox selects a TPU and finds that it can’t map the map chunk it received from
the collapsing buffer. To ensure that this map chunk is not lost, the Pbox will tell the
collapsing buffer when to advance the read pointers. When the Pbox is able to map the
chunk successfully, it will tell the collapsing buffer to advance the read pointers. Other-
wise, the pointers are left where they are so that the map chunk can be retried later.

In order for the Pbox to make choices about which TPU to map, the collapsing buffer
will send the Pbox a signal indicating which TPU has instructions in its buffer. Unfor-
tunately, there exists a lag between detecting the emptiness of a buffer and the Pbox
actually requesting map chunk. One reason for this is that the Pbox needs to know the
state of the buffer one cycle before it can be calculated! This can lead to two problems:

® The Pbox overlooks a TPU with valid instructions.

¢ The Pbox requests a map chunk from a TPU that it was told had instructions but is
actually empty when the buffer gets read. This causes the Pbox to map a chunk of
instructions that are all invalid.

A similar case occurs when there is a late kill and the buffer has only bad path instruc-
tions. The late kill, as mentioned earlier, clears the valid mask and will cause the buffer
to be emptied. In the next cycle, the write pointers will be fixed. In the cycle after this,
the buffer is finally declared empty. This will cause the TPU to indicate it is not empty
for the kill cycle, the cycle the pointers get fixed, and the cycle after that (remember the
bid signal is actually on cycle stale). In this case, the collapsing buffer will tell the
Pbox to abort any future map attempts on this TPU after the kill is detected so that no
more invalid map chunks get mapped in the mapper.

As mentioned earlier, there is a valid signal sent to the Pbox. This signal contains a
valid bit for each instruction in the collapsing buffer which indicates that the instruction
is valid for mapping. The collapsing buffer sometimes uses this valid mask for last
minute kills as described previously.

Compag Confidential
& January 2001 - Subjsct To Change Instruction Fetch Unit — the Ibox 3-17

instruction Processing Unit

3.5.4.2 Collapser

3-18

3.5.4.2.1 Data Path

The collapser’s overall job is merge two fetch chunks into one 8 instruction map chunk.
The collapsing buffer collapser receives two fetch chunks from the instruction buffer in
13. To collapse, the first valid instruction (START) and exit point instruction (END) for
each fetch chunk are read from the start/end buffer. The invalid instructions (instruc-
tions outside START and END) are stripped off of the two fetch chunks and then the
second fetch chunk is appended to first. Finally, the instructions are left justified within
the map chunk such that the first valid instruction is always the first instruction.

The operation of the collapser is fairly simple. However, when you fold in the fact that
there may be more than 8 valid instructions in two 8 instruction chunks. In this case,
the collapsing buffer needs to modify and store the START position for the left over
fetch chunk. In the case that a legacy CMOYV instruction causes the end of the block, an
additional bit needs to be stored that indicates that the instruction corresponding to the
modified START is a CMOV2 instruction.

3.5.4.2.2 Start/End Buffer

The start/end buffer not only stores the start and end of the valid instructions in a line,
but also the CMOV predecode bits. This buffer is broken up into 4 queues, much like
the instruction buffer. Each queue holds 16 entries. Each entry is 25 bits.

Table 3-5 Fields in the Start/End Buffer

Field Contents

CMOV_PRE<7:0> CMOYV mask for the corresponding FETCH_CHUNK

START<7:0> 1-hot start of valid instruction in the FETCH_CHUNK

END<T7:0> 1-hot end of valid instruction in the FETCH_CHUNK

PAL_MODE Single bit field that indicates if the fetch chunk on this line is a PAL mode

chunk or not.

The START data is written into the buffer from the Line Predictor and the END data is
written in from the Branch Predictor exit logic. The CMOYV predecodes com from the
Icache Tags and Pal mode will come from Pipe Control.

3.5.4.2.3 New Start Calculation

When two 8-instruction fetch chunks are collapsed into one 8-instruction map chunk,
there is always the possibility that there will be left over instructions in the second fetch
chunk. So, the start of FETCH_CHUNKI1 needs to be modified to the new start of the
valid instructions in that chunk. This is actually a rather simple calculation, and there is
plenty of time to do it.

A wrench gets thrown into the works if there is a CMOYV in the § instruction map
chunk. In this case, the new start will correspond with the location of the CMOYV in the
fetch chunk.

3.5.4.24 CMov

It is assumed that the reader of this document has previously read Handling CMov.

Compag Confidential

Instruction Fetch Unit — the Ibox § January 2001 ~ Subject To Change

Control Flow Prediction Unit

The CMOYV instruction needs to be spit into two halves CMOV1, and CMOV2, To
accommodate the CMOV?2 instruction, map chunks are always ended on the CMOV1
(which sits in the same position as the original CMOV). The next map chunk will then
begin with a CMOV2. The remaining 7 instructions in the map chunk will be collapsed
as normal. The legacy CMOYV will also require that the CMOYV predecode mask be
modified and stored for the next collapsing.

3.6 Control Flow Prediction Unit

3.6.1 Conditional Branch Prediction

Conditional branches are ubiquitous in most programs. However, it takes at least 13
cycles in the deeply pipelined 21464 before the outcome of the branch is known.
Hence, the 21464 processor utilizes an aggressive branch predictor to provide the abil-
ity to speculatively fetch beyond conditional branches

The 21464 branch predictor belongs to the class of skewed branch predictors. In this
class of predictors, multiple prediction tables are used that operate independently to
generate a prediction of their own while a majority vote decides the final branch s)redic—
tion. . For more details, please refer to the technical report by Sezec and Michaud®. The
21464 used a modified form of a skewed predictor in which an additional level of pre-
diction is used to choose between the majority vote and one of the prediction tables.
There are four tables that constitute the branch predictor that are termed the GO, G/,
BM and CH arrays whose sizes are 64K, 64K, 16K and 64K bits respectively. Tables
GO0, G1 and BM serve as prediction tables while CH serves as the chooser. Each entry in
the table has 8 prediction bits corresponding to 8 instructions in the fetch chunk. An
entry for each of these tables is indexed using a unique function that is based on a com-
bination of the branch history bits as well as the address bits used for accessing the
instruction cache in the current and previous fetch slot. The 8 prediction bits from each
of these tables are further rearranged (unshuffled) using another function of the history
and address bits. The final set of 8 predictions for the fetch slot is thus derived after the
unshuffle which is followed by choosing between the majority of GO, G1 and BM or the
prediction bits of BM itself using the CH (chooser) bits. The overall block diagram of
the prediction mechanism is illustrated in the figure 1.

1 A. Seznec and P. Michaud, “Dealiased hybrid branch predictors”, IRISA report, Feb 1999, http://
www.irisa.fr/caps/PROJECTS/Architecture

Compaqg Confidential
& January 2001 — Subject To Change Instruction Fetch Unit — the lbox 3-19

Control Flow Prediction Unit

Figure 3-3 High level diagram of the 21464 branch predictor

The prediction tables are further complemented with additional hysteresis tables. The
sizes of the individual hysteresis tables for GO, G1, CH and BM are 32K, 64K, 32K and
16K bits respectively. It must be noted that unlike traditional schemes, the 21464 pre-
dictor does not have a unique hysteresis bit associated with every prediction bit. Rather,
the prediction entries are permitted to share hysteresis bits as can be seen from the GO
table that has 64K prediction bits but only 32K hysteresis bits. A reduction in the num-
ber of hysteresis bits was shown to have little performance impact while saving valu-
able die-space. The hysteresis bits prevent the prediction bits to change on the first
incorrect prediction thereby disregarding transient changes in branch behavior. The
hysteresis bits may be strengthened on a correct prediction and weakened on an incot-
rect prediction. Unlike the hysteresis bits, the prediction bits may change only on incor-
rect predictions based upon the state of their corresponding hysteresis bits. The
complete training of the hysteresis and predictor arrays is done at instruction retire time.
In the following sections, we describe in greater detail the different components and
functionality of the branch predictor and training mechanism.

3.6.1.1 Branch Prediction Components

3.6.1.1.1 Branch History (LGHist)

It has been shown that using the past behavior of the branches is extremely helpful in
predicting future branches. The traditional method of maintaining the global history
(also known as ghist) is to record the outcome of each and every branch that is executed
in the program.

To ease implementation, the 21464 uses a modified version of ghist called the line-
based ghist (or 1ghist for short) that records branch history on a fetch line basis. The
Ighist scheme takes into consideration only the behavior of the last branch of the fetch
line. If the branch is in the first half of the fetch line (words 0, 1, 2 or 3), a 0 is entered
for a not taken branch while a 1 is entered for a faken branch. On the other hand, if the
last branch happens to be in the second half of the fetch line (words 4, 5, 6 or 7), a 1 is
entered for a not taken branch while a 0 is entered for a taken branch,

Compag Confidential
3-20 Instruction Fetch Unit — the lbox § January 2007 ~ Subject To Change

Control Flow Prediction Unit

It must be mentioned that the branch history used for predicting the branches in the slot
that is currently being fetched would not include the information of the slots fetched in
the previous cycle. This is because an extra pipeline stage is required to record the pre-
dicted outcome of the branches in the 1ghist. The predicted outcome can be recorded
only after discarding those predictions that would play no role when the instructions in
the fetch slot are executed. This is achieved by considering (a) entry point in the fetch
slot (b) identifying the true conditional branches among the 8 instructions in the fetch
slot using pre-decode information and (c) unconditional exit instructions (such as jump,
return or unconditional branch instructions). Furthermore, in a given cycle, if two slots
are being fetched, the second slot would not only lack the history of the slots that were
fetched in the previous cycle but also of the first one that is currently being fetched.
Hence, to maintain consistency, the history information used for prediction is always
made three slots old for both the slots in a given cycle. The fact that the 1ghist was mod-
ified for a particular fetch slot is maintained using the shift distance bits. Note that the
Ighist would change only in the presence of valid conditional branches in the fetch slot.
The shift distance information is particularly valuable on restarts when the restored
Ighist has to be aged by three slots before being used to access the branch predictor. A
maximum of 3 shift distance bits needs to be maintained corresponding to the three-slot
aging factor.

In addition to the shift distance bits, another bit called the no shift bit is used. This bit
prevents the shift distance bits from being modified more than once for the same fetch
slot when it is restarted (on an exception). On a restart from an exception, the check-
point table restores the Ighist and shift distance after updating them appropriately
depending upon the presence of a conditional branch before and after the restart posi-
tion in the fetch slot. If the restart position occurs in the same fetch slot and no branches
are present after the restart position, the 1ghist (as well as the shift distance bits) needs
to be updated to incorporate any branches before the restart. To prevent future updates
to the shift distance for the remainder of the fetch slot that has no conditional branches,
the checkpoint table also sets the no shift bit. It is this bit that is used to determine if the
shift distance bits needs to be updated for the current fetch slot. Note that the no shift bit
is applicable only for the first fetch slot as a restart on an exception always results in
only one slot to be fetched.

Even though all prediction tables are common to all threads, the 1ghist, shift distance
and no shift bit are maintained on a per-thread basis.

3.6.1.1.2 Prediction Tables

As mentioned before, the branch predictor logically consists of four tables: GO, G1, BM
and CH. However, this is implemented as one array where each word line in a bank is
made up of the four different components. The array is further sub-divided into four
single-ported banks with each bank containing 64 word lines. Even though logically
each table entry contains 8 prediction bits, implementation constrains each wordline to
have several 8-bit entries clustered together, The address bits for indexing the table
allow us to select from among the different clusters or “columns” of 8-bit entries.

The address bits that are used to access each of the tables is generated using bits <14:5>
of the line predictor index (denoted as A) and bits <20:0> of the three slot old 1ghist
(denoted as H). The lower bits <4:2> of the line predictor index are not used for the
array access. These bits, which denote the entry point in a fetch slot, are used solely to
discard predictions prior to the starting point. The address bits are as follows:

Compag Confidential
8 January 2001 — Subject To Change Instruction Fetch Unit — the lbox 3-21

Control Flow Prediction Unit

3-22

a. Word address (6 bits): This is to access one of the 64 wordlines in the array.
Since each component resides in the same wordline, these bits are common to
all the tables. Moreover, since the address bits must be available at the begin-
ning of the cycle, the address bits are generated directly without any hashing
involved. The 6 address bits are: H<3:0>, A<8:7>

b. Column select address: Each wordline consists of multiple entries of GO, G1,
BM and CH. These address bits choose from among the many 8-bit “columns”
present in a wordline. Since 8 bits are to be chosen from 256 bits of G0, G1 and
CH, each of these tables need 5 address bits to choose the appropriate one from
a 32-1 column multiplexer. Only 3 address bits are needed for selecting 8 bits
from 64 bits of BM (which requires only an 8-1 column multiplexer). The col-
umn select bits for each table are as follows:

G0 H<7>® H<11> H<8>® H<12> H<4>® H<5> A<9>® H<9> H<10>® H<6>
Gl H<19>® H<12> H<18>® H<11> H<17>® H<10> H<16>® H<4> H<15>® H<20>
CH | H<7>® H<11> H<8>® H<12> H<5>® H<13> H<4>® H<9> A<9>® H<6>
BM | NA NA A<ll> A<9>D A<5> A<10> ® A<6>

Instruction Fetch Unit — the lbox

3.6.1.1.3 Bank Selection

As mentioned before, the predictor arrays are sub-divided into four banks, each of
which has only one read port. Since the branch predictor must be able to predict two
fetch slots every cycle, it is necessary that the two slots do not access the same bank in
a given cycle. To achieve this, the bank identifier is constructed in such a way that no
two consecutive slots would access the same bank.

Since the bank identifier must be available at the beginning of the cycle when the array
access is performed, it would not be possible to use any information from the current to
slots to generate the bank identifier. For this reason, we use bits 5 and 6 of the line pre-
dictor index and the bank identifier of previous slots. Assume that, in the current cycle,
the predictor array is being accessed for slots N-2 and N-1 with bank identifiers By,
and By, used for the access. Also, let Zy_, and Zy_¢ be bits 5 and 6 of the line predic-
tor index used to access slots N-2 and N-1 respectively. The generation of bank identifi-
ers for slots N and N+1 for accessing the array in the following cycle is done as follows:
To generate the bank identifier for slot N (By), Zy.; is compared to By_1. If they match,
By is set to (Zy,+1) otherwise, it is set to Ay_,. The generation of the bank identifier
for slot N+1 is also similar; the newly calculated By is compared to Zy_¢. In this fash-
ion, the bank identifiers for the subsequent two slots are generated in advance by using
information that is available in the current cycle.

3.6.1.1.4 Unshuffle Network

Imagine that the branch predictor is implemented such that each entry in the array has

only 1-prediction bit. In this case, we would hash bits <14:2> of the line predictor index
with the 1ghist to generate an index for each table entry. In reality, however, each entry
stores a set of 8 predictions for each table. Hence the low bits <4:2> of the line predic-
tor index is not used for the access. But these bits are eventually used as they denote the
entry point in the fetch slot, and in conjunction with the instruction pre-decode bits that
denote the actual conditional branches in the fetch slot, allow us to choose only a sub-

Compag Confidentiai
§ January 2001 ~ Subject To Change

Control Fiow Prediction Unit

set of the 8 predictions. For performance reasons, however, it is desirable that the low
bits are also hashed with the Ighist bits when accessing the predictor arrays. Thus, the
set of 8 predictions would need to be rearranged (unshuffled) to give the same set of 8
predictions that we would have got in the event of indexing a 1-prediction bit based
tables 8 times (to span the low bits<4:2> ranging from 000 to 111)

Let £5f;f, be the bits that are used for XOR-ing with the low bits of the line predictor
index while agasa, denote the position of a particular branch prediction bit. After the
unshuffling, the prediction bit occupies the new position ag® f, as®f; a4 ®fy For
instance, if f,f1fy= 101 and the 8 prediction bits are b;bgbsbsbsb,b by, the new posi-
tions after the unshufifling would be bybs;bgbbgb7b4bs,

The hash function used here can be quite complex as the unshuffling is performed only
in the later part of the cycle after the array access and column selection has been per-
formed. The address bits used for the hashing include the line predictor index (denoted
as A), Ighist (denoted as H) and bits 5 and 6 of the index used to access the previous slot
(denoted as Z). The function used for the different tables are listed below:

Table Unshuffle bits <2:0>

GO A<9>® A<12>® A<13>@ H<5>® H<8>® H<11>0Z<5>
A<5>® A<11>® H<9>® H<10>® H<12>® Z<6>
A<6>® A<10>® A<14>® H<4>® H<6>@ H<T>
G1 A<6>® A<11>® A<14>® H<4>@ H<6>® H<9>® H<14>® H<15>® H<16>® Z<6>
A<10>® A<13>® H<5>@ H<11>@ H<13>® H<18>® H<19>® H<20>® Z<5>
A<5>® A<9>0 H<4>® H<7>@® H<10>® H<12>® H<13>® H<14>® H<17>
CH A<5>® A<10>® H<7>® H<10>® H<13>0 H<14>® Z<5>
A<6>® A<12>® A<14>@ H<4>® H<6>® H<8>® H<14>
A<9>® A<11>@® A<13>@® H<5>® H<9>® H<11>® H<12>® 7<6>
BM NONE
Z<6>
7<5>

3.6.1.1.5 Backend logic and checkpoint information

The final set of 8 branch predictions for each fetch slot is available after the chooser is
used to decide between the majority of GO, G1, BM and the BM predictions. However,
not all of the final 8 predictions may be useful the following reasons:

1. The instruction for which a branch was predicted taken may not be a conditional
branch instruction

2. The entry point in the fetch slot may not be the first instruction

Not all instructions may be executed in the fetch slot due to a taken prediction for a
conditional branch or the presence of an unconditional exit point in the fetch slot
(for instance, a jump or a return instruction)

Compayg Confidential
& January 2001 ~ Subject To Change Instruction Fetch Unit — the Ibox 3-23

- Control Flow Prediction Unit

The branch predictor backend logic incorporates additional information using the low
bits <4:2> of the line predictor index, instruction types using predecode information as
well as the branch predictions itself to calculate the exact exit position in the fetch slot.
This information is used by the PC calculation logic to determine the PC of the follow-
ing fetch slot.

The information that needs to be check-pointed includes the following: 1ghist, shift dis-
tance, no shift, bank identifiers and bits <6,5> of the previous line predictor indices.
Furthermore, on restarts, branches after the restart point would have to be considered if
the restart occurs in the same fetch slot. If there are branches prior to the restart position
but none after, then it must be incorporated in the restored Ighist and shift distance.
Hence, we also checkpoint the conditional branch attributes that spans all instructions
until the first unconditional exit point. Finally, the 8 bits read from each of the predictor
tables (GO, G1, CH and BM) are also stored in the checkpoint table for training the
branch predictor at retire time. This avoids reading the single-ported predictor array at
training time as doing so may result in conflict with the accesses made during fetch
time.

3.6.1.2 Branch Training

The validity of the branch predictions is known when the branches are executed in the
Ebox. A misprediction causes the branch predictor states such as Ighist to be restored.
However, the actual branch training does not take place until the Pbox retires the
instruction.

As mentioned earlier, the predictor makes use of hysteresis tables to prevent modifica-
tion of the prediction bits on transient branch behavior. Each prediction table has a cor-
responding hysteresis table with sizes of the individual tables for GO, G1, CH and BM
being 32K, 64K, 32K and 16K bits respectively. Note that the sizes of GO and CH hys-
teresis tables are half the size of the corresponding predictor tables. This results in two
entries in the predictor table to share an entry in the hysteresis table. As with the predic-
tor tables, the hysteresis tables are implemented as a single array that is interleaved
between four single-ported banks. The only difference is the size of the wordline that
results due to the reduction in the sizes of GO and CH tables. Consequently, one parti-
tion in the wordline contains 256 bits that comprise of 128 bits each of GO and CH
while the other partition contains 320 bits that consists of 256 bits of G1 and 64 bits of
BM. The address bits used to access the wordline, column select and for performing the
“unshuffle” are the same as that for the predictor tables except that the high order bit for
the column select is no longer applicable for GO and CH due to their reduced sizes.

When a map chunk is retired, the checkpoint table produces the relevant information
regarding the fetch slots comprising the map chunk. This includes information on
whether a branch was mispredicted for the fetch slot and if so, the mispredicted posi-
tion. To avoid reading the single-ported predictor array during training, the predictions
that were read from each table at fetch time is also available from the checkpoint table.
Using this information, both the prediction and the actual outcome for the fetch slot can
be reconstructed.

3.6.1.2.1 Predictor Training

The predictor tables need not be updated on a correct prediction. On an incorrect pre-
diction, only one of the fetch slots that is retired would have an incorrect prediction.
This implies that only one of four predictor banks would be accessed for writing the

Compag Confidential
3-24 Instruction Fetch Unit — the Ibox § January 2001 - Bubject To Change

Control Flow Prediction Unit

training information. However, the write to the predictor table may conflict with a read
access performed at fetch time. To minimize this conflict, each of the banks has a one-
entry write buffer to hold the write data whenever it conflicts with a read to the bank.
However, this may not be sufficient when there are back to back retirement of map
chunks with a mispredicted branch. Dropping one of the writes to the predictor array is
not preferred as it may impair the performance of the predictor. To accommodate this
situation, the predictor bank-conflict detection mechanism keeps track of pending
writes to each bank. If necessary, a bubble is inserted during the fetch stage to put future
reads on hold so as to allow a write pending in the buffer to be cleared.

The predictor tables are trained using the following rules:
1. Nothing to be done on a correct prediction

2. If either the majority or BM is correct, update chooser to the correct state provided
the hysteresis is weak

3. For each of GO, G1 and BM, modify entry when the table’s prediction is incorrect
and its hysteresis is weak provided also that:

a. Neither the majority or BM is correct

b. Either the majority or BM is correct but the chooser continues to point to the
wrong predictor after the update (i.e. the chooser had a strong hysteresis)

3.6.1.2.2 Hysteresis Training

Unlike the predictor tables, the hysteresis tables would have to be updated for both cor-
rect and incorrect predictions. For correct predictions, the hysteresis tables can be writ-
ten without being read as they are always strengthened. However, for incorrect
predictions, we need to perform a read-modify-write of the hysteresis bits for the fetch
slot with the mispredicted branch. As with the predictor arrays, a write buffer holds
pending data for each bank. This still does not prevent bank conflicts due to read and
writes occurring at the same time. Overall, there are three different types of accesses to
the hysteresis array that may lead to bank conflicts:

1. ‘Writes for a fetch slot with a mispredicted branch
2. Read table for a mispredicted branch
3. Writes to strengthen the hysteresis bits for fetch slots correctly predicted branches

Unlike the predictor training where a bubble inserted at the fetch point permits reads to
be put on hold, we cannot stall retires to avoid hysteresis bank conflicts. Hence, we pri-
oritize accesses and drop the access with the lower priority in favor of the higher one.
For the three types of accesses mentioned above, type (i) has the highest priority fol-
lowed by (ii) and finally (iii). The ordering is such that no training done for a mispre-
dicted branch is dropped. If a bank’s write buffer holds a mispredicted hysteresis write
with another mispredicted write to the same bank to follow, the read is disabled and a
weak hysteresis is assumed as the default read value. If, on the other hand, the incoming
write is for a correctly predicted branch, it is dropped in favor of the read access.

The hysteresis tables are trained using the following set of rules:
1. Incorrect prediction

a. If the majority and BM differ, the chooser hysteresis is weakened

Compag Confidential
& January 2001 — Subject To Change Instruction Fetch Unit — the Ibox 3-25

Control Flow Prediction Unit

b. For the GO, G1 and BM hysteresis, strengthen if table prediction is correct. If
the table prediction is incorrect, then weaken the hysteresis, provided:

Neither the majority or BM is correct

Either the majority or BM is correct but the chooser continues to point to the
wrong predictor after the update (i.e. the chooser had a strong hysteresis)

2. Correct prediction
a. If GO, G1 and BM are all correct, hysteresis is unchanged for all tables
b. Strengthen BM if it is correct

c. Strengthen GO or G1 if it is correct and majority was used by the chooser for
prediction

3.6.1.3 PAL mode

In PAL mode, the predecode bits for conditional branches are not set by the instruction
fill unit. This implies that the branch predictor is not utilized during PAL code and all
branches are predicted as not taken. Since branches in PAL mode are rare, this would
have little effect on performance. Moreover, we do not want the application specific
branch history (Ighist) to be corrupted by PAL code branches.

3.6.2 Jump Target Predictor

3-26

The Jump Target Predictor is responsible for predicting the targets of Alpha’s computed
jump instructions: JMP and JSR. The Jump Target Predictor keeps track of partial
addresses from the last four jump target predictions — called jghist. It hashes together
those partial addresses to form an index into a 512 entry target table. The target table is
trained with the real computed targets from the execution units. A jghist is maintained
for each of the four TPUs, but the 512 entry target table is shared among the threads.
The jump predictor can predict one jump per cycle . If both fetch blocks that are fetched
in a cycle contain a jump instruction, the first one is processed, and the second fetch
block is squashed (see PC Unit). ’

Figure 3—4 Jump Predictor Block Diagram

Indexing into the jump predictor table is a result of hashing of the most recent predicted
jump targets as follows:

Compayg Confidential

Instruction Fetch Unit — the Ibox § January 2001 - Subject To Change

Control Flow Prediction Unit

Assume the four most recent jump targets, from most recent to least recent are:
D<51,2>, C<51,2>, B<51,2>, A<51,2>

The 9 bit index into the 512 jump target table for the next predicted jump target is:

D<19, 11>
XOR D<10, 2>
XOR CONCAT (C<18,11> | 0)
XOR CONCAT {(C< 9, 2> | 0)
XOR CONCAT {B<17,11> | 00)
XOR CONCAT (B< 8, 2> | 00)
XOR CONCAT (A<1l6,11> | 000)
XOR CONCAT (&< 7, 2> | 000)

The hash was chosen to ensure position independence of the prior targets, (eg so that
the target history A, B, A, B hashes to a different table location than B, A, B, A, since
the first should predict target A and the second should predict target B.) Zeros are
shifted into the older targets to ensure that older targets count less in the hash.

The jghist registers are checkpointed to facilitate restarting the jump target predictor in
case of an exception. When the machine is restarted the appropriate last four targets will
overwrite the jghist state that had progressed since the instruction that caused the
exception.

Jump mispredictions are trained by writing the correct target into the jump address pre-
dictor’s table when the mispredicting jump retires. The Checkpoint Unit receives the
correct jump target from the Ebox when the jump executes. The Checkpoint Unit will
detect a jump mispredict at that time and will keep a record of the correct target to facil-
itate training once the jump retires.

3.6.3 Return Address Stack

The Return Address Stack is responsible for predicting the targets of returning instruc-
tions. The return address predictor is affected by instructions that jump to subroutines
and those that return from subroutines. There are several calling instructions:

BSR Branch Subroutine
JSR Jump Subroutine
CPL Call Pal

JSC Jump Co-Routine

There are also multiple returning instructions:

RET Return
JSC Jump Co-Routine

In order to predict return addresses, we use the simple concept of a stack. When a call-
ing instruction is fetched, the PC following the calling instruction is pushed onto a
stack. When a return instruction is fetched, the stack is popped, and the PC is redirected
to the popped value. The stack holds 64 return PCs per thread.

Compag Confidential
& January 2001 — Subject To Change Instruction Fetch Unit — the Ibox 3-27

PC Unit

The return stack must be check-pointed. Upon a abort (branch mispredict, load/store
order trap, etc), any pushing or popping that has been done to the stack by instructions
on the badpath must be undone to restore the stack to a coherent state. In order to facil-
itate a fully checkpointed return address stack, we are implementing a structure that
behaves like a linked list. We have an array of elements. Each element consists of a PC,
and a previous top of stack pointer (PTOS_PTR). Externally we access the array with a
top of stack pointer (TOS_PTR). In order to pop the "stack" the array is accessed at the
address specified by the TOS_PTR. The PC that is read out is the return target PC, or
PopPC, and the PTOS_PTR that is read out corresponds to the next top of stack. When
performing a pop, the PTOS_PTR that is read out is written into the TOS_PTR latch. In
order to push a value onto the "stack" we need another pointer into the array, which is
the next element of the array to be allocated (NALLOC). On a push the array is written
at the location specified by NALLOC. The PC written is computed by incrementing the
address of the pushing instruction (PushPC) and the current TOS_PTR is written into
the PTOS_PTR component of the array element. Then NALLOC is written into the
TOS_PIR latch, and NALLOC itself is incremented by 1 (modulo the size of the
array). Checkpointing is performed by storing the array pointer corresponding to the
current top of stack element in the Checkpoint Unit (See Checkpoint Unit Documenta-
tion) for each instruction chunk. The current NALLOC pointer is also stored into the
Checkpoint Unit for each instruction chunk in order to reclaim space used by badpath
pushes and pops. The stack state is restored by restoring the TOS_PTR and the NAL-
LOC pointer that were stored when the instruction causing the abort was fetched.

Since the 21464 is a multithreaded machine, we need to have a return address predictor
that can accommodate multiple code paths without getting confused. In the interest of
simplicity, we have decided to simply replicate the return stack atray itself. Each of the
four (one per TPU) return stack arrays contains 64 entries.

In the 21464, we fetch up to two 8-instruction chunks from the Icache each cycle. Each
of those chunks has can contain an instruction that manipulates the return stack. The
return stack cannot, however, handle any combinations of pushes and pops in one cycle.
It can handle:

® Onec Push

* OnePop

® One JCR (Pop followed by a Push)
¢ Pop in slotO, Push in slotl

In the event that two Icache blocks are fetched that do not correspond to one of the four
scenarios above, the second block is squashed. (See Documentation for squashing in
the PC Unit PC Calculation section).

3.7 PC Unit
3.7.1 PC Calculation

The Program Counter(PC) is a register which holds the address of the instructions to
fetch next. In the 21464, there are four TPUs, each of which has an independent instruc-
tion stream. To keep track of all the TPUs’ instruction addresses, the Ibox maintains
four PCs. The PC changes based upon either sequential fetching of the code, or based

Compag Confidential

3-28 Instruction Fetch Unit — the Ibox § January 2001 ~ Subject To Change

PC Unit

upon PC changing instructions such as branches, jumps and returns. The computation
of a new PC must occur ever time instructions are fetched; this computation is refered
to as PC Calculation.

As mentioned above, the Ibox fetches up to two non-contiguous fetch-blocks of instruc-
tions each cycle. A fetch block begins with the PC of the first instruction, and all subse-
quent instructions' PCs in the fetch block must be a sequential increment to the first.
Between fetch-blocks, however, the PC’s sequential stream can be broken. Since the
ibox can fetch up to two non-contiguous fetch blocks in the same cycle, a PC must be
generated for each of the fetch blocks. A PC is needed for each fetch block to compare
with the fetched Icache blocks’ tags for hit determination, and check that the Icache
indicies produced by the line predictor were correct and pertained to the correct Icache
way. The transition from one fetch-block to another is governed by the exiting condi-
tion of the first fetch-block. The list of potential exits to a fetch block are listed in Table
3-6.

Table 3-6 Fetch-Block Exit Conditions

Last Instruction of a 32B Cache Line (Sequential)

Predicted Taken Conditional Branch Instruction (CBR)
Unconditional Branch Instruction (BR, BSR)

Jump Instruction(JSR, IMP, JSR_COROUTINE)

Return Instruction (RET)

IFETCHB Instruction (Halt Fetching until Retirement of IFETCHB)
Call PAL Instruction (CALL_PAL)

Starting with the PC (PCO0) of the beginning of the first fetch block, the starting PC
(PC1) of the second fetch block is determined by the exiting condition of the first fetch
block:

Table 3-7 PC1 Calculation

Something Something
Sequential No PC Changing instructions in the first block
PC1 = CONCAT(PC0<51:5> 1 00000) + 1 fetch block (32B)
Taken Branch Predicted Taken CBR, BSR, or BR
PC1 = CONCAT(PC0<51:5> 1 00000) + Branch Instruction Position Offset in Fetch Block +
Branch Displacement
Jump Predicts JSR, JMP
PC1 = Output of Jump Predictor
Stack Pops RET, JSR_COROUTINE
PC1 = Pop of Return Stack
Call Pal

Compag Confidential

& January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-29

PC Unit

Table 3-7 PC1 Calculation

Something

Something

IFETCHB

PC1 =PAL Base Address + Trap Vector Offset

PC1 =PC of the IFETCHB + 4

In order to calculate the PCs, the fetch block exits must be known, as well as the branch
predictions, jump target prediction, and the current return address on the top of the
return stack. The fetch block exits come from the instructions themselves, ie the Icache
data array, and the predictors operate ahead of time to ensure that all the information for
PC Calculation is produced as soon as possible. For speed of PC calculation on taken
branches, the lower bits of the taken address are pre-calculated and stored in the offset
field of the instruction text in the Icache. This happens at fill time. This means that the
lower bits: <21:2> of the target pc are not calculated, but simply read from the Icache
with the instruction. The higher bits <51:22> need to be calculated. They could be
incremented by one, decremented by one, or not change at all based on whether the off-
set of the taken branch was positive or negative, and whether it caused a carry or bor-
row (we refer to both as "overflow") above bit 21. The overflow bit and sign bit are
stored with the offset in the instruction text at Icache fill time.

Two PCs are calculated per cycle. At the beginning of the cycle the current PC is
“PC0”, which pertains to the start of the slot O fetch block. The two PCs that are calcu-
lated are “PC1”, which pertains to the start of the slot 1 fetch block, and “NextPC0”
which pertains to the start of next cycle’s slot O fetch block. In effect NextPCO becomes
PCO for the next cycle. In order to maintain two fetched blocks every cycle both PC1
and NextPCO are calculated together. The table above showed how exit condition of
slot 0 determined the calculation of PC1. In order to determine the calculation for
NextPCO, both the slot 0 and slot 1 exit conditions need to be considered. This is
because the computation of NextPCO must start with PCO, and not PC1, which is being
computed simultaneously. Considering all of the possible exit combinations, that is 6x6
cross products, is quite a large task.

Several restrictions on combinations of slot 0 and slot 1 fetch chunk exits reduce this
considerably. Some of the restrictions are imposed due to hardware limitations (eg, the
jump predictor can only handle one jump per cycle, so the slot 0 and slot 1 fetch blocks
cannot both end in jmp or jsr). Others were imposed to make the PC calculation logic
feasible. The first time the Ibox attempts to fetch two fetch-blocks in the same cycle
that violate one of the restrictions, the PC comparison logic will abort the fetch of the
second block, and cause a three cycle restart penalty. Thereafter the Line Predictor will
remember that the two fetch blocks are incompatible and only the first fetch block will
be accessed in that cycle. The second fetch block will be fetched in the following cycle

Compag Confidential

3-30 Instruction Fetch Unit — the Ibox § January 2001 - Subject To Change

PU—

PC Unit

and it can be combined with a subsequent fetch block. The term for this is squashing.
The following table specifies the cases when the line predictor will learn to squash the
natural occurance of a slot 1.

Table 3-8 Conditions that Sqaush the Second Fetch Chunk

Both fetch chunks are to the same Icache bank (of 8).

Both fetch chunks end in a JMP or JSR or JSR-COROUTINE.

Both fetch chunks end in a RET or JSR-COROUTINE.

The first fetch chunk ends in JSR, BSR, and the second in RET

The first or second fetch chunk ends in a CALL_PAL

The PC cannot cross a 4Mb virtual address space region delimiter going from fetch chunk 0 to fetch chunk 1

A JSR, JSR-COROUTINE, or BSR is the last instruction of a 4Mb virtual address space region for slot 0 or slot 1

In the hardware, PC calculation is broken down into three components:

Table 3—-9 Hardware PC Calculation Components

Component Bits
The high bits <51:22>
The middle bits <21:5>
The low bits <4:0>

For full functionality, PC1 is always calculated correctly (the Ibox will never squash
slot 0, only slot 1). NextPCO calculation is governed by the squash rules above. The
matrixes in Table 3-10 show the three components for the calculation for NextPCO,
given those rules.

Table 3-10 Matrix Legend

Matrix Description

SEQ Slot exited sequentially, ie no PC changing instruction
TBR Slot exited with a taken branch — taken CBR or BR or BSR
JPR Slot exited with a JMP or JSR

RET Slot exited with a RET

CPL Slot exited with a CALL_PAL

PCO Input from the original PCO

PCO+1 PC0<21:5>+1
PC0+2 PC0<21:5>+2

Jp Input from Jump Predictor
JP+1 Input from Jump Predictor <21:5>+1
RP nput from top of Return Stack

Compayg Confidential
8 January 2001 -~ Subjsct To Change Instruction Fetch Unit — the Ibox 3-31

PC Unit

Table 3-10 Matrix Legend

Matrix Description

RP+1 Input from top of Return Stack <21:5>+1

OF0 Input from the computed branch target <21:5> stored in the Icache Data Array for slot 0

OF0+1 Input from the computed branch target <21:5> stored in the Icache Data Array + 1 for slot 0

OF1 Input from the computed branch target <21:5> stored in the Icache Data Array for slot 1

XXX Not a legal combination of slot exits, output comes from the computed PC1, indicated in Table 3-9

Table 3—11 NextPC 0 Calculation Matrix

S1_Exit

S0_Exit SEQ TBR JPR RET CPL
PC0<51:22>

SEQ PCO PCO JP RP XXX
TBR PCO PCO P RP XXX
JPR JP JP XXX XXX XXX
RET RP RP JP XXX XXX
CPL XXX XXX XXX XXX XXX
PC0<21:5>

SEQ PCO+2 OF1 JP RP XXX
TBR OF0+1 OF1 JP RP XXX
JPR JP+1 OF1 XXX XXX XXX
RET RP+1 OF1 JP XXX XXX
CPL XXX XXX XXX XXX XXX
PC0<4:0>

SEQ 0 OF1 Jp RP XXX
TBR 0 OF1 Jp RP XXX
JPR 0 OF1 XXX XXX XXX
RET 0 OF1 Jp XXX XXX
CPL XXX XXX XXX XXX XXX

3.7.2 PC Compare

The PC Comparison Logic uses the newly calculated PCs to determine the following:
¢ Ifthe slot 0 and slot 1 predicted Icache indices were correct

¢ [Ifthe slot 0 and slot 1 cache accesses were hits.

¢ If there was an instruction access violation

¢ [fslot 1 should be squashed. (see PC Calc section above)

Compag Confidential
3-32 Instruction Fetch Unit — the lbox & January 2001 ~ Subject To Change

3.7.21

PL Unit

¢ Ifslot 0 and slot 1 accessed the correct way in the Icache

®* When to make a fill request for an Icache miss

Index Mispredicts

Each cycle, the line predictor produces up to two Icache indices, which are necessary to
maintain a fully pipelined instruction fetch engine. The actual PCs needed to determine
the correct next Icache locations to access are not available for a cycle (slotO) or
two(slotl) after they are really needed. So the predicted indices that are generated by
the line predictor are checked by the real calculated PCs later in the pipeline. The indi-
ces produced by the line predictor are bits <14:2> of the anticipated PC. These bits are
compared directly with bits <14:2> of the calculated PCs. If the bits match, the index
was predicted correctly. If not, an index mispredict is signaled. The slot 0 index is com-
pared in pipe-stage I3 below and the slot 1 index is compared in 14:

I1 12 I3 14
Index Pred Icache Access PCO IDX Comp PC1 IDX Comp

The Icache can be accessed with the correct index the cycle following an index mispre-
dict. So, for a slot 0 index mispredict there is a 2 cycle penalty, and a 3 cycle penalty for
a slot 1 index mispredict.

3.7.2.2 Icache Hit Determination

Whether an Icache access hits or misses is also determined by PC comparison. The
Icache tag array produces the tag contents of the accessed cache block. The tag contains
several components including virtual and physical tags, as described in Section 3.5.2.
The Ibox supports two methods of hitting in the Icache for non-PALcode instructions:

1. Virtual tag hit — occurs when:

The virtual tag matches the bits of the calculated PC <51:15> AND

the ASN of the tag matches the Current ASN of the accessing TPU’s process con-
text

OR

The ASM bit in the tag is set AND

the accessing TPU’s tpu group matches the tags TPU group valid designation

2. Physical tag hit — occurs when:

PC matches the Micro Translation Buffer’s (Micro TB) virtual address <51:13>
AND

the Micro TB’s valid bit is set AND

the Micro TB’s physical address matches the Tags Physical address<47:13> AND
the Micro TB’s ASN matches the Current ASN of the accessing TPU’s context
OR

The ASM bit in the Micro TB is set AND the tag is valid for any TPU group

Virtual tag hits are expected to be the normal way of hitting in the Icache. Essentially,
the virtual tag matches and the address space number is correct, or the address space
match bit is set and the valid bit is set for that TPU’s group. Physical tag hits are sup-
ported in the Ibox to facilitate sharing common code among different TPUs. Basically,
two programs running on different TPUs should be able to share instructions in the
Icache if they map to the same physical address. To facilitate this sharing, the Icache tag

Compag Confidential

& January 2001 ~ Subjsct To Change Instruction Fetch Unit — the Ibox 3-33

FC Unit

array holds the physical as well as the virtual tags for all Icache blocks. Since the PC is
virtual, a fast virtual to physical address translation also needs to be done to compare
with the physical tags coming out of the Icache.

The Micro Translation Buffer (Micro TB), holds just one page table entry (PTE) per
TPU, and so is inexpensive and provides very fast translation for the newly computed
PCs. The MicroTB holds the virtual and physical tags as well as the ASN, ASM and
TPU group valid bits of the last block that was fetched from the Icache and was a vir-
tual tag hit. Effectively, its a cache of the tag of the most recent virtual Icache hit. If two
TPUs address memory at the same physical address, and use the same virtual index to
access the Icache, they can share Icache blocks. The first time a TPU attempts to fetch

from a page of Icache blocks that are shared by another TPU, it will miss because the

ASN or TPU group valid bits will not match for a virtual cache hit, and the MicroTB
will be out of date since this is the first access to a new virtual page. But when this first
block is brought into the Icache, it will result in a virtual Icache hit, and the PTE infor-
mation from the newly fetched block’s tag will be written into the microTB so that sub-
sequent Istream accesses to that physical page will physically hit in the cache.

PALcode uses a slightly different mechanism to hit in the Icache. All PALcode instruc-
tion blocks are mapped physically, so ASN and ASM are not relevant. The virtual tag in
the Icache will contain the actual physical address of the instruction block. When PAL-
code is fetched into the Icache, a bit in the Icache tag is set indicating that the block was
physically filled. In order to access physically filled blocks in the Icache, the TPU must
be operating in PALmode. An Icache hit occurs in PALmode if the PC matches the vir-
tual tag or physical tag and the TPU and the block was physically filled.

Icache miss determination occurs roughly the same time as index mispredict determina-
tion in the Ibox pipeline. Once the PCs have been calculated, they are compared with
cache tags to determine if there is an Icache miss. If there is an Icache miss, the pipeline
stages prior to the cycle that the Icache miss has been determined are aborted, the fill
unit is informed of the newly requested address. The Fetch Thread Chooser is also
informed so that it will not choose TPUs with Icache fill requests in progress.

3.7.2.3 lIcache Access Violation:

An Icache access violation occurs when an Icache block is fetched and is a hit, but the
context of the running process does not have privileges to access that particular block.
Each block in the Icache has one of the four privileges:

U — user read enable

S — supervisor read enable
E — executive read enable
K — kernel read enable

The USEK bits are set in the PTE entry for a particular block, and are filled into the
Icache Tag Array during a normal Icache fill flow. The current process context for a
TPU also has a designated USEK privilege level. An access violation interrupt is initi-
ated when the process context USEK for a TPU does not match the USEK designation
written into the tag array for an Icache block that is a hit.

Compay Confidential

3-34 Instruction Fetch Unit — the Ibox § January 2001 - Subject To Changs

PC Unit

3.7.2.4 Icache Way Mispredict Determination:

The Icache is pseudo-2way set-associative. It is 2way set-associative because instruc-
tion blocks can map into two different indexed locations in the Icache. In a standard
2way set-associative cache, both potential block locations are read out, the both sets of
tags are compared and if either of the tags matches the accessing address, a hit is sig-
naled and the appropriate block is selected. In the 21464°s “pseudo” 2way set-associa-
tive Icache, instead of the simultaneous access method used in a standard 2way set-
associative cache, one way is predicted and that block is read out. If that block is the
wrong one, the other block is read out subsequently. This avoids extending an already
critical path in the Icache access path, and keeps the processor’s cycle time short.

The PC Compare logic is responsible for determining if an Icache access was to the cor-
rect way. If the index generated by the line predictor is correct (ie, bits <15:2> of the
index match the PC), but the tag does not match, there is a potential way mispredict.
Each blocks tag in the Icache Tag Array stores a subset of the tag that was last filled in
the alternate way (See Icache Tag Array subsection in the Instruction Unit section). If
those alternate tag virtual address bits <23:15> match those of the accessing PC, a way
misprediction is signaled. The Line Predictor, which is responsible for predicting the
Icache way, is trained to predict the alternate way next time. On a way mispredict the
Ibox pipeline is aborted for the faulting TPU and then restarted accessing the alternate
way in the Icache. Since not all the alternate tags virtual address bits were matched, the
second access is not guaranteed to be an Icache hit. It could result in an Icache miss if
the upper bits of the virtual address tag did not end up matching. It could also result in
another way mispredict, if bits <23:15> of the originally accessed way also match the
PC, but the upper bits do not match. This can result in a deadlock, where the two Icache
locations ping pong back and forth, cach time resulting in a way mispredict. To avoid
deadlock, the Line Predictor remembers if we already suffered a way mispredict while
trying to access the current PC. The second time, an Icache miss will be signaled
instead.

Icache way mispredicts are signaled in the cycle after index mispredicts are normally
signaled:

Table 3-12 Icache Mispredict Signalling
Il 2 I3 14 I5
Way Pred IC Access PCO IDX Cmp PC0 Way Misp
PC1 Index Cmp PC1 Way Misp

3.7.2,5 Instruction Cache Fill Request:

When a correctly indexed Icache access is not a hit and not a way mispredict, a fill
request is signaled to fetch the instruction block from lower level memory. Since the
21464’s second level cache is physically indexed and tagged, the Ibox must send a
physical address along with the fill request to receive the appropriate data. The Ibox has
two sources for translating the virtual PC into a physical address:

¢ The MicroTB (See Section 3.7.2.2.)
¢ The 128 Entry Instruction Translation Buffer (ITB) (See Section 3.8.)

Compag Confidential
& January 2001 — Subject To Change Instruction Fetch Unit — the Ibox 3-35

Fill Unit

In order to save power, the main 128 Entry I'TB is not accessible every cycle. Further-
more, it is only necessary to access the main I'TB when the MicroTB does not contain
the proper PTE. If there is an Icache miss and the MicroTB VA tag matches the upper
PC bits and the address space comparison matches, the PA found in the PTE is the cor-
rect missing physical page frame number. The page frame number <47:13> is the upper
portion of the physical address. It is concatinated with the page offset <12:6> to form
the complete physical address of the missing Icache block. If the correct PTE is not
found in the 1 entry MicroTB, the main ITB must be accessed to retrieve the page trans-
lation. The ITB cannot be accessed immediately because it was not operating to reduce
power consumption. The PC Compare logic causes an Ibox pipeline abort and restart,
and sends a signal to the Line Predictor indicating that the main ITB needs to be
enabled for the next fetch attempt. The next time the missing TPU is chosen by the
Index Unit, the Line Predictor will send a signal to the main I'TB, which prepares it to
be accessed. The next time the Icache miss is detected the I'TB will lookup the PC’s VA
and use the page frame number found in the matching entry to generate the physical
address for the fill request.

3.8 Fill Unit

3.8.1 Instruction Translation Buffer

The 21464 has a virtually addressed instruction cache. All memory references outside

the CPU core (including the Scache and off-chip memory) are physically addressed. In
the event of an Icache miss, the translation buffer's main task is to determine, as quickly
as possible, the physical address of the cache line in which the miss occurred so that it
can be fetched by the Cbox.

The I'TB contains only a subset of all possible address translations, called page table
entries (PTEs). Because the I'TB itself is a 'cache' of PTEzs, it is possible that when an
Tcache miss occurs and the virtual address is given to the ITB for translation, the PTE is
not found. In this case, a trap causes a PALcode routine to lookup the correct PTE from
a software table and use an IPR to write the translation into the I'TB.

So far, this operation is consistent with the 21264 ITB. However, unlike the 21264, the
21464 includes hardware support for simultaneous multithreading, which has the fol-
lowing implications for the ITB:

® When an Icache miss occurs, only one TPU is affected. It is important that perform-
ing the PTE lookup and doing the Icache fill does not stall the pipeline so that other
TPUs can continue execution.

* Because ITB fills are completely independant of I'TB lookups, care must be taken
to reduce the possibility of one TPU's writes interfering with another TPU’s read.

¢ TPUs operating independantly of each other in separate thread groups (TGs) can
access the same physical page. To prevent the Icache from storing the same data
twice (and thus requesting two I'TB lookups), a new mechanism is needed to detect
physical address sharing between TPUs. For operating system code, sharing
already occurs between processes within a TG (identified by a distinct ASN) by
using the ASM mechanism.

Compag Confidential
3-36 Instruction Fetch Unit — the Ibox § January 2001 - Subject To Change

Fill Unit

* Because each TG is an independant entity to which TPUs can belong (like separate
CPUs), PTEs belong to exactly one TG. The ITB stores four one-hot valid bits that
indicate to which TG the PTE belongs. TGs do not share PTE entries. The Icache,
however, does not signal a miss when there is physical address match, thus prevent-
ing the I'TB lookup. A PTE hit is determined as follows:

— pte_VA<51:13> == current_PC<51:13> AND
— pte_TG<3:0> == current_TG<3:0> AND
~ (pte_ASN<7:0> == current_ASN<7:0> OR pte_ASM =="1")

An Icache miss penalty is significantly reduced because the 21464 includes an on-
board, second-level cache (Scache). Thus, time taken for address translation becomes a
significant part of the Icache miss penalty, and it is important that the ITB provides a
physical address for the fill as soon as possible.

As in the 21264, 8k page sizes are supported. The 21464 can additionally support 64k
pages sizes. Granularity hinting is allowed on 64k pages to provide up to 512MB effec-
tively sized pages.

3.8.1.1 Architecture

For the first time in an Alpha implementation, the ITB consists of a pseudo two-level
'cache’ of PTEs: a first-level micro ITB (uITB) and a second-level main ITB (the ITB).

The first-level ul'TB is a single PTE entry for each TPU. It effectively contains the last
good address translation that the Icache accessed for each TPU; the ulTB is updated
any time a TPU virtually hits in the Icache. The PTE information for the update comes
from the Icache tag and not from the main ITB array. For ease of implementation, only
the first fetch can update the uITB (the 21464 fetches twice per cycle). When there is an
Icache miss, the ul'TB is quickly checked to see if it contains the correct PTE for the fill.
If the PTE is good, it is sent to the fill unit and a cache miss is signaled. The physical
address is available at the fill unit just two cycles after the miss was detected.

The second-level ITB is a 128-entry fully associative 'cache’. Writes are organized as
round-robin by using simple head/tail pointer logic. Simultaneous read/write is not pos-
sible, so read scheduling is important. Reads are pipelined across one and a half cycles
as follows:

i3b Cam ASN/ASM and Group Valid
i4a Cam VA

i4b Read PTE

i5a Send PTE to fill unit

Compag Confidential
8 January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-37

Fill Unit

To save power, the main ITB is only activated for lookup operations upon a ulTB miss
(cache miss is implied). This causes a penalty of at least six cycles between cache miss
detection and when the physical address is available to the fill unit. For simplicity, the

non-index restart mechanism in pipe control is used to enable main I'TB lookup. What

happens is as follows:

Cycle Event

0(@3) Cache miss detection, 4ITB determined to be wrong.

1 (d4) Non-index fault is signalled causing the PC to be replayed in the pipe. Icache miss is
NOT signaled.

2 (1) Index is sent to Icache

3(2) Icacheis read

4(I3) MainITB is enabled. Icache miss detection

5d4) Icache miss signaled. Main I'TB lookup in progress
6 (I5) PTE sent to fill unit

It is possible for the this penalty to be longer than six cycles if the TPU is not selected
immediately after the non-index fault.

The main ITB is very similar the 21264 I'TB. Super page detection and invalidation
operates the same. Additionally, a new invalidate, TBIAG, invalidates all entries in all
TGs. Superpages are supported in the main ITB as follows:

Table 3—-13 Superpage support in the Main ITB

Superpage Description

Superpage0 Direct maps one quarter of WindowsNT's 32bit address space. The kernel code is kept in this
area of memory. It is believed that 64-bit NT will use the Unix superpage mode.

Superpagel Direct maps the least significant 41 bits of the physical address space (bits <47:41> sign
extended) to support older versions of UNIX and VMS. This superpage is consistent with the
43 bit virtual address supported by EV4, EVS and the size of the 3 level VPTEs used in Digital
UNIX. (see SRM Digital UNIX II-B section 3.1.1).

Superpage2 Direct maps the whole of the physical address space for more recent versions of UNIX and

VMS which may use four level PTEs.

If I_CTL[SPE<2>]=1AND VA<51:50>="10" Then PA<47:13>=VA<47:13>, USEK="0001"

If I_CTL[SPE<1>]=1AND VA<51:40> = Then PA<47:13>= "1111111",VA<40:13>, USEK="0001"
*111111111101"

If I_CTL[SPE<1>]=1AND VA<51:40> = Then PA<47:13>= "0000000",VA<40:13>, USEK="0001"
"111111111100"

If I_CTL[SPE<0>]=1AND VA<51:30> = Then PA<47:13>= #00000,VA<29:13>, USEK="0001"

"1111111111111111111110"

Compag Confidential

3-38 Instruction Fetch Unit — the Ibox § January 2001 ~ Subject To Change

Filf Unit

Address Space Match (ASM) is supported as in the 21264. When an entry in the main
ITB has the ASM bit set, matches against the ASN are ignored when determining TB
hit. The ulTB also includes this support for hit detection.

Both the main ITB and the ulTB utilize the full physical address space permitted
<47:13>. PFNs are limited to 32 bits by software, which yields a 64K-page PFN of
<47:16> and an 8K-page PFN of <44:13>. When in 8K-page mode, the main I'TB sign
extends the 45 bit physical address up to bit <47> when filling PTEs, and in 64K-page
mode, the ITB bypasses VA bits <15:13> from the PC into the physical address bits
<15:13> when reading. To correctly match entries in 64K-page mode, the main ITB
ignores VA bits <15:13> because they aren't part of the PFN. The uITB also ignores VA
bits <15:13> when performing a VA match in 64K-page mode.

Granularity Hint (GH) is taken care of in the main ITB in the same manner as the
21264. Special CAM structures on the VA bits affected by GH can disable miss detec-
tion on those bits thus giving the appearance of an I'TB hit on a seemingly larger page.
Upon reading the PA out of the main ITB, the affected VA bits are muxed into the cor-
responding bits of the PA to return the physical PFN. Note that the I'TB will always
return PTEs for base size (8k or 64k) pages. Essentially, GH allows an I'TB entry to
cover multuple contiguous base size page translations. Here are the differnent GH map-

pings:

Table 3—-14 Granularity Hint (GH) Mapping

GH Mode =
Page Mode U gh<1:0> == 00 gh<1:0> == 01 gh<1:0> == 10 gh<1:0> == 11
8k page size TB entry covers 8K TB entry covers 64K TB entry covers TB entry covers 4M
512K
64k page size TB entry covers 64K TB entry covers 2M TB entry covers 64M TB entry covers

512M

The ulTB will not have support for granularity hinting or super pages explicitly. This is
taken care of since the ul'TB will just contain an explicit page translation that comes
from the main ITB in a round about fashion. For example, the first request in a super
page region will result in a main ITB read. The result of this read will return the hard-
wired superpage PA for that VA. The fill unit will fetch the required Icache blocks and
write the hardwired PA into the Icache tags. The next time that block is fetched from the
Icache successfuly, the ulTB will be updated to contain the hardwired superpage PA.
Granularity Hinted pages will only be stored as a base page size translation in the uITB.
Jumps outside of a base page will cause a ulTB miss although the main ITB will hit on
the same translation that filled the uITB.

Compag Confidsrtial

8 January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-39

Fill Unit

3.8.1.2 IPRs That Affect the ITB

Table 3-15 IPRs that Affect the ITB

IPR

Affect on the ITB

ITB_TAG

ITB_PTE

ITB_JASN

ITB_IA

ITB_IS

ITB_IAP

I_CTL

PCTX

This IPR contains the VA used for filling the main ITB and also performing invalidate opera-
tions. There is one for each TPU.

This IPR contains the PTE used for filling the main ITB. Retiration of the MTPR to this IPR
causes the ITB_TAG and ITB_PTE contents to be written into the main ITB. There is one for
each TPU.

When a MTPR to this IPR retires, all entries for the current ASN and TG are invalidated. The
Icache must be invalidated for the current TG and the uITB invalidated. There is one for each
TPU.

When aMTPR to this IPR retires, all entries in the current TPU's thread group are invalidated.
The Icache must be invalidated for the TG of the current TPU. The #ITB must also be invali-
dated for the TPU. There is one for each TPU.

When aMTPR to this IPR retires, any entry that matches the VA in ITB_TAG and matches the
current TPU's ASN and TG will be invalidated. The Icache must be flushed and the »ITB invali-
dated. There is one for each TPU.

‘When aMTPR to this IPR retires, any entry that is valid for the current 7G and whose ASM bit
is not set will be invalidated. The Icache must be flushed and the #ITB invalidated. There is one
for each TPU.,

When a MTPR to this IPR retires, the SPE<2:0> bits in this IPR enable the 3 super page modes.
Each TPU has it's own I_CTL IPR.

When a MTPR to this IPR retires, the ASN<7:0> bits in this IPR will indicate which ASN is
assigned to the TPU. Also, the TPU_GRP<3:0> bits in this IPR indicate which thread group the
TPU bvelongs to. Each TPU has it's own PCTX IPR.

3.8.1.3 [TB Operations

3.8.1.3.1 Fills

Writes stem from an ITB miss flow (PAL code). Here's a break down of what happens
from the miss code:

* A MTPR (Move To Processor Register) to the ITB_TAG IPR is issued. The data is
written into a speculative register.

¢ AMTPR to ITB_PTE is issued. The data is written into a speculative register.

¢ When the MTPR to ITB_PTE retires, the data in the speculative registers are writ-
ten into the main ITB array. The ASN of the current process is also written into the
array from the PCTX IPR. Note that there is no real ITB_PTE or ITB_TAG IPR
register, only a speculative register.

¢ The MTPR to the ITB_PTE register must be followed by an IFETCHB to ensure
the main ITB state is updated before it is used.

The ulTB gets written by a much more ciruitous route. It starts with a cache miss which
requires the main uITB to supply the fill unit with a PTE (PA, USEK bits, and the ASM
bit) for the page being requested. When the fill data returns, the fill unit supplies this

Compag Confidential

3-40 Instruction Fetch Unit — the lbox & January 2001 - Subject To Change

Fill Unit

PTE to the Icache Tags for writing. The final step to writing the #ITB requires that the
Icache virtually hits on an entry containing the this PTE. The virutal hit causes the uITB
to be written with PTE from the Icache Tags.

3.8.1.3.2 Reads

Reads are explained previously.
3.8.1.3.3 Invalidates

There are four invalidate operations for the ITB.

Table 3-16 ITB Invalidate Operations

Operation

Description

Invalidate All

Invalidates all entries within the current 7PU's TG. Requires only a MTPR to the
TB_IA IPR. The actual invalidate is performed upon retire of the MTPR. Addi-
tionally, the Icache must be invalidated for this 7G. An IFETCHB must follow the
MTPR to ensure the ITB is up to date before it is accessed again.

Invalidate ASN specific Invalidates all entries in the I'TB that match ASN and TG of the current TPU.

Invalidate Single

Requires only a MTPR to the TB_IASN IPR. The actual invalidate is performed
upon retire of the MTPR. Additionally, the Icache must be invalidated for the cur-
rent 7G. An IFETCHB must follow to ensure the ITB is up to date before it is
accessed again.

Invalidates a single entry specified by VA, ASN, and 7G. Two MTPRs are
required. The MTPR to the ITB_TAG IPR must ocurr before the MTPR to the
TB_IS IPR. Upon retireation of the TB_IS MTPR, the ITB_TAG VA, the current
ASN, and the TG of the current TPU will cam against the contents of the main
ITB. Any matching entries will be invalidated. Additionally, the Icache must be
invalidated for this 7G. An IFETCHB must follow to ensure the ITB is up to date
before it is accessed again.

Invalidate Process Specific Invalidates all entries within the current TPU's TG which do not have the ASM bit

set. The actual invalidate is performed upon retire of the MTPR. Additionally, the
Icache must be invalidated for this 7G. An IFETCHB must follow the MTPR to
ensure the ITB is up to date before it is accessed again.

3.8.2 Instruction Fill Unit

& January 2001

The Instruction Fill Unit (IFU) is responsible for fetching instructions when an ICache
miss occurs. It consists of two sections: Request and Fill. The Request section itself is
made up of two subsections: Demand and Prefetch. The Demand subsection handles
ICache misses detected by the Ibox pipeline, while also recording and sending all Ibox
memory requests to the Mbox preMAF for servicing. The Prefetch subsection generates
a fixed number of consecutive memory requests ahead of the original miss and routes
them to the Demand unit for Mbox handling. The Mbox preMAF funnels together both
Instruction stream and Data stream requests and delivers them to the Cbox for fetching.
As the I stream requests are satisfied, the resultant instructions are sent from the Cbox
to the Fill section of the IFU for predecoding and loading into the ICache. The follow-
ing simplified block diagram shows the IFU and its Request and Fill sections in relation
to the ICache, Ibox Pipeline, Mbox preMAF, and Cbox return logic.

Compayg Confidential
- Subjsct To Change Instruction Fetch Unit — the Ibox 3-41

Fill Unit

Flgure 3-5 Instruction Fill Unit (IFU) Request and Fill Sections

A fundamental assumption in the design of the IFU is that memory requests are never
cancelled once they have been sent to the Mbox. Dropping an unneeded request would
be dangerous because a remote part of the IFU might simultaneously decide that the
request was required after all. Furthermore, the minor benefit of cancelling certain
requests would not be worth the additional hardware cost of tracking dropped requests.

3.8.2.1 Demand Misses

3-42 Instruction Fetch Unit — the Ibox

The Demand subsection of the Request portion of the IFU is responsible for sending
ICache miss requests to the Mbox preMAF for servicing by the SCache and/or Mem-
ory. A simplified block diagram of the Demand subsection appears in the figure below.
The physical address (PA) and pte_valid input signals come from the I'TB, while all of
the others are from the Ibox pipeline. The fill_request signal serves as the valid bit for
demand requests from that pipeline.

Compayg Confidential
& January 2001 - Subject To Change

s

Fi#l Unit

Figure 3—-6 Instruction Fill Unit (IFU) Demand Subsection

The Index CAM Array is used to determine if there is another fill request currently out-
standing to the same ICache index and way as the current valid miss. For a 64 kB
instruction cache, fill_VA<14:6> is the index, while fill_VA<15> is the way bit unless
the flip_way signal from the Thrash Detector indicates that bit should be inverted. The
Pretag Array stores fill_VA<51:6> and ITB information for each request, all of which is
retrieved when the fill instructions return from the Cbox. Together, these two arrays are
referred to as the Entry Arrays; simulation studies have shown that 32 entries are appro-
priate.

The Freelist is a stack whose top indicates the next available free location in the Entry
Arrays. Because there can exist at most only one demand for each TPU, the Demand
Array contains four pointers (with valid bits) that indicate the index of a given TPU's
demand resides in the Entry Arrays. Each Demand Array entry also contains a "piggy-
back" bit detailed below. The Stall Logic is used to record which TPUs attempted to use
the IFU when it was full, or when either the Mbox preMAF or Cbox MAF were full.

3.8.2.1.1 Demand case: simple

The first case to consider is a simple demand. The fill_request signal goes high at the
start of cycle IS, indicating a valid miss. The pte_valid signal is true for this simple
case, while both PMF_full and flip_way are not. The Index CAM Array is probed: in a
simple demand, there is no match with any valid entry. Starting in I6, the output of the

Compayg Confidential
& January 2001 ~ Subject To Change Instruction Fetch Unit — the Ibox 3-43

Fill Unit

Index CAM Array therefore indicates that this is a legitimate miss, so Ifetch_vld goes
high. The Mbox preMAF uses this signal to validate the Ifetch_pa, consisting of
PA<47:13> from the ITB and fill_VA<12:6> from the Ipipe; and the Ifetch_ptr, which
is a token used to uniquely identify this request.

Simultaneous with the request shipment to the Mbox in I6, the Entry Arrays are written
with data at the index indicated by Ifetch_ptr; and in the following phase, the Freelist
stack is popped. The Pretag Array caches the following signals: fill_VA<51:15> and
ASN<T7:0> from the Ipipe, PA<47:13> from the ITB, and 11 bits of control called the
hit conditionals. These latter bits consist of physical_fill, console, and tg_valid<3:0>
from the Ipipe, along with ASM and USEK<3:0> from the ITB. Finally, the fill_way bit
is appended to fill_VA<14:6> and stored in both of the Entry Arrays. The Demand
Array is written in 16 with the Ifetch_ptr at the location indicated by the TPU number.

3.8.2.1.2 Demand case: index and way match of active request: "piggybacking”

In order to avoid potential livelock cases, the IFU allows only one outstanding memory
request to a given ICache index and way at any time. A novel technique, denoted "pig-
gybacking”, is used to handle the request if such a match occurs. Following the simple
case above, the input control signals are the same, but here, the Index CAM Array indi-
cates a match. This forces the Ifetch_vld signal to become false to prevent the fetch
from occurring. The Demand Array is written at the requesting TPU with the pointer to
the entry that matched the request, and the piggyback bit for the same TPU is set.

When the instructions from the original request arrive from the Cbox, the Fetch Thread
Chooser (FTC) is notified to restart the corresponding TPU. A few cycles later, the FTC
is allowed to restart any other TPU that piggybacked onto that request. The use of the
term "piggybacking" for this method is now apparent, because any subsequent demand
misses that match an active request ride along with that request.

Recall that only the ICache index and way are checked for piggybacking, not the
higher-order VA bits. Simulation studies have shown that these bits often match as well.
Most often, this is caused when a redirected goodpath restart requests a block already
desired during badpath execution, or when a demand miss contains a short forward
branch to code being prefetched. If the higher-order VA bits to not match, the TPU
restart of any piggybacked entry results in a new miss.

3.8.2.1.3 Demand case: flip_way active

The ICache way into which a given miss will fill is determined at miss time. The major-
ity of requests will fill into their "natural" way, which is fill_VA<15> in a 64 kB
ICache. The Thrash Detector determines under which circumstances flip_way goes
high, indicating that the complement of fill_VA<15> (known as the "alternate” way)
should be used.

The decision whether or not a demand miss must piggyback is a function of what the
fill_way is determined to be. Consequently, the Thrash Detector output must be read
and the fill_way altered before the Index CAM Array is probed for a match. Otherwise,
a miss that doesn't match an active request in its natural way might have its way toggled
and have an alternate way match that is not detected.

Compag Confidential
3-44 Instruction Fetch Unit — the Ibox & January 2001 - Subject To Change

Fi#l Unit

3.8.2.1.4 Demand case: capacity stall

There is finite storage for handling memory requests, both in the IFU (in the Entry
Arrays) and beyond (in the Mbox preMAF and the Cbox MAF). A full_resource signal
is raised when any or all of these storage areas are full, taking into account any in-flight
delays. If a demand miss arrives when full_resource is high, a stall bit corresponding to
the TPU number of the request is set. When the full_resource line falls, the stall bits are
sent to FT'C, indicating which threads must retry their requests.

3.8.2.2 Prefetching

Once a demand miss has been confirmed by the Ibox pipeline, the Prefetch subsection
can generate memory requests. Because the IFU interface to the Mbox preMAF can
accept one memory request per cycle, the Prefetch subsection generates a single request
per cycle and routes it to the Mbox through the Demand subsection interface. The
prefetch requests are for consecutive ICache blocks beyond the confirmed miss address.
The maximum number of such prefetch requests that are generated for a given miss is
determined by a per-TPU IPR value. The actual number sent to the Mbox may be less
than the maximum due to filtering.

A simplified block diagram of the Prefeich subsection appears in the figure below.
There are four 101-bit Capture Registers (one per TPU), each of which saves all of the
required information about a confirmed Demand miss that will be needed to generated
prefetch requests (specifically, fill_VA<51:6>, ASN<7:0>, and fill_way from the
Demand subsection, PA<47:13> from the ITB, and the 11-bit hit conditionals from
both). The Filter Array is essentially a copy of the ICache Tag array in that it contains 2
sets of 512 entries each (for a 64 kB ICache), but this copy stores a hashed version of
the tags in order save chip area. The Index CAM Probe determines if another active
request shares the same ICache index and way as the feedback_VA. It is shared with the
Index CAM Array in the Demand subsection.

Coempag Confidential
8§ January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-45

Fill Unit

Figure 3—7 Instruction Fill Unit (IFU) Prefetch Subsection

An unusual characteristic of the Prefetch Subsection is that it conceptually exists in two
different time domains. Simulation studies have shown that demand misses should
always proceed ahead of prefetch requests, so a portion of the design uses recirculating
latches between clock stages to "freeze" the prefetch state while a demand miss is sent
to the Mbox. Yet certain inputs arrive from the Demand and Fill Subsections that can-
not be frozen without data loss, so they must be handled immediately. More specifi-
cally, the inputs to the Capture Registers and the Filter Array are stored as soon as they
are valid. The different time domain "worlds" in the prefetcher are distinguished by a
dashed line in the figure.

3.8.2.2.1 Prefetch case: simple

Activity in the prefetcher begins when an ICache miss is confirmed by fill_request in
the Demand subsection. When that is using the Index CAM Array to check the index
and way of the demand miss, the prefetcher feeds the VA through the Source Mux to
look up the hashed tag, while the same fill_VA is both incremented and hashed in paral-
lel. Ideally, an incremented fill_VA would be used to index the Filter Array, but there is
insufficient time to do both the increment and the lookup in a single cycle; instead, the
index to which the hashed version of the banked_VA is written is decremented before
writing the array. ICache_miss confirmation also initializes the per-TPU Range Counter
in IS.

Compag Confidential
3-46 Instruction Fetch Unit — the Ibox & January 2001 - Subject To Change

Fiil Unit

The appropriate Ipipe contents are latched into one of the Capture Registers in I6. This
also triggers the Tag Compare of the hashed Filter Array tags with the hashed fill_VA:
in the simple case, there are no matches. The Index CAM Array probe also occurs in I6,
as long as the Demand subsection does not need the shared hardware. The Capture Reg-
ister data is then used to construct a request that is sent to the Mbox via the port in the
Demand Subsection. Because this prefetch pipeline is one cycle longer than the demand
one, the first prefetch can be sent to the Mbox in the cycle after the demand has been
sent. This is critical, because the prefetched blocks most likely to be needed for execu-
tion are those most near the demand miss.

Once it is confirmed that this prefetch request has been accepted, the Confirm box
sends a decrement signal to the per-TPU Range Counter, which stops the generation of
new prefetch requests when the range becomes zero. Until then, the Source Mux will
select the feedback_VA as its input, which is the fill_VA from the previous cycle incre-
mented by the ICache block address. Simulation studies have shown that the optimal
number of consecutive blocks to fetch ahead of the demand miss is usually between 2
and 4. The Range Counters are therefore 3-bit counters, allowing a maximum fetch-
ahead distance of 7 ICache blocks.

3.8.2.2.2 Prefetch cases: tag match or page boundary crossing

A variety of conditions may keep the number of prefetch requests sent to the Mbox
below the value specified by initial Range Counter value. First, if the Tag Compare unit
detects that a hashed tag in the Filter Array matches a hashed version of the Source
Mux VA, it is highly likely that the stream of prefetch requests will be for instructions
already (or soon to be) resident in the ICache. In order to preserve memory bandwidth,
prefetching is squashed (stopped) by zeroing the proper Range Counter and invalidat-
ing the matching request before it is sent to the Mbox. Any request that crosses an 8K
page boundary is also squashed because its PA would require an I'TB translation differ-
ent from that stored in its Capture Register (superpage handling is TBD).

3.8.2.2.3 Prefetch case: Index CAM match

If the Index CAM Probe reports a match without a Tag Compare match or page cross-
ing, the given request is skipped (by forcing Ifetch_vld false) but prefetching is not
squashed. Recall that an Index CAM match indicates that there is another currently-out-
standing request to the same index and way as the probe. Because prefetching is inher-
ently speculative, it is considered too risky to have a prefetch request displace another
ICache request, particularly if the other is a demand miss.

3.8.2.2.4 Prefetch case: alternate TPU demand during prefetching

One TPU may produce a demand miss and start prefetching when another TPU also
confirms a miss. When this happens, the recirculating latches "freeze" the state of the
prefetcher while the new demand miss is sent to the Mbox and the new demand state is
captured in the proper Capture Register. The prefetcher then resumes running in the fol-
lowing cycles until the appropriate Range Counter is zero. The New Start logic then
notices that the new demand state for the alternate TPU is ready, so prefetching pro-
ceeds for that TPU.

More than one Capture Register may have valid state ready for prefetching. This
requires the New Start logic to implement a picker to select amongst multiple ready
TPUs. Simulation has shown that this is a very rare occurrence, so any simple picking
algorithm is acceptable.

Compag Confidential
& January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-47

Fill Unit

3.8.2.3 Fill

3.8.2.2,5 Prefetch cases: badpath indication during prefetching

Again, once a request has been sent to the Mbox, it cannot be cancelled. However,
unsent requests in the Prefetch Subsection pipeline are dropped if a badpath indication
is received for the same TPU as the prefetch requests. This allows new prefetch
requests on the goodpath to proceed in the Mbox and/or Cbox without having to stall
behind the badpath ones. If a badpath indication is received for a TPU having valid
Capture Register state, that state is invalidated.

The Fill Section of the IFU contains the circuitry between the Cbox and the ICache for
the predecoding and parity generation of instructions returning from the SCache or
memory system. A simplified block diagram of the Fill Section appears in the figure
below. The Cbox initiates the transfer of instructions to the IFU by supplying the
early_warning_ptr corresponding to the request for those instructions. This pointer is
used for probing two arrays in the Demand Subsection. The Demand Array Probe deter-
mines if the returning instructions are non-piggybacked demand requests for any of the
TPUs, while the Entry Array Probe looks up the VA and tag data stored earlier for this
request. This data, combined with the returning instructions themselves, are fed into the
Predecode Br_Offset Gen and Parity Gen boxes to determine predecode bits, branch
target offsets, and parity. The aggregation of these bits, combined with the tag and
instruction bits, is called the Fill Packet.

Figure 3-8 Instruction Fill Unit (IFU) Fill Section

Compag Confidential
3-48 Instruction Fetch Unit — the Ibox § January 2001 - Subject Te Changs

Fill Unit

The branch offset calculations calculate a portion of the target address for both condi-
tional and unconditional branches.

Carry predecodes are generated during branch targe precalculation. If an integer or
floating-point conditional branch or unconditional branch is detected, the branch target
is precalculated and the displacement field is replaced with the target as follows.

The overflow predecode bit is calculated as follows, where the circumflex (~) repre-
sents an XOR operation:

[(PC <21:2> + 1) + I<19:0>] ~ I<20>

The increment predecode bit is calculated as follows, where the increment is to the next
address that falls on an 8-instruction boundary:

[(PC <21:2> + 1) + I<19:0>] + 8

Because the displacement is overwritten by the target address when the branch is stored
and because the displacement field is 21 bits long, only the lower 20 bits of the result
are calculated. By leaving the sign bit <20> intact and including the overflow bit in the
Icache to hold the carry-out, the rest of the addition can be performed when the PC’s are
calculated. Because the sign and overflow bits can both be 0 or 1, the high bits of the
target can be incremented or decremented or unchanged.

The predecodes are split between those needed in the Ibox and those passed further
down the pipeline.

3.8.2.3.1 Predecode Bit Generation

Table 3-17 shows an overview of the predecode bits that are generated in the Instruction Fill
Unit (IFU). In the table, the last column shows the Pbox predecode bits as A, B, C, and D, and
the Tbox predecode bits as UE, CB, P2, P3, CM, and MA.

Table 3-17 is sorted according to opcode value. In the table:

¢ The first column lists the instructions.

* The second column lists each of the 23 possible Pbox-assigned instruction types.
¢ The third column lists the opcode for each instruction or group of instructions.

¢ The fourth column lists the function field bits in the instruction that the IFU uses to
determine the instruction type.

* The fifth column lists the predecodes that the IFU generates. The Pbox assigns the
instruction type (column two) according to the EDCBA predecode bits. Similarly,
the Ibox assigns the other encoding bits for the control flow instructions, desctribed
in Table 3-18.

Table 3—17 Predecode Bits Defined by the Ibox Instruction Fill Unit

Opcode Bits: | Function Field Bits:? Predecode Bits:?
Instruction Type’ 31— 26 151413121110 98 76 5 P |EDCBA UE CB P2 P3 CM MA
CALL PAL XXp 000000 | —-—-—-—--—-——-——~— 00010 1 11 1 0 O
RES XXX 000001 | - -—--=--=-—- - -~ 01601 0 0 0 0 0 O
RES XXX 000010 | - ---=--=-—-—- -~ 01001 0 0 0 0 0 O

Compag Confidential

8 January 2001 - Subject To Change Instruction Fetch Unit — the Ibox 3-49

Fill Unit

Table 3-17 Predecode Bits Defined by the Ibox Instruction Fill Unit (Continued)

Opcode Bits: | Function Field Bits:2 Predecode Bits:3
Instruction Type! 31— 26 151413121110 987 6 5 P (EDCBA UE CB P2 P3 CM MA
RES XXX 000011 | — - ————— - -~ -~ 01001 0 0 00 0 0
RES XXX 000100 | — -~ ——— = — — 01001 0 0 00 0 0
RES XXX 000101 | — - ———— - - - —— - 01001 0 0 00 0 0
RES XXX 000110 | —— - —— = - — -~ 01001 0 0 00 0 0
Praoct XXX 000111 | - == — = - - - —— - — 01001 0 0 00 0 0©
LDA X11 001000 | — -~ - — - -~ -~ — - 11011 0 0 00 0 ©
LDAH X11 001001 | — - = — == — = —— — 11011 0 0 00 0 0
LDBU SII 001010 | — - ———————— - 10000 0 0 00 0 0
LDQU SUI 001011 | —— — = — = — — = — — - 11001 0 0 00 0 0
LDWU SII 001100 | —— - - === —— -~ 10000 0 0 00 0 0
STW 118 001101 | — = ———————— —— 1111 0 0 00 0 0
STB 118 001110 | — = — = — = — — — = — 1111 0 0 00 0 O
STQ U 118 001111 | — = — = — = — = = — — — 1 0 0 00 0 0
INTA 111 010000 S 00100 0 0 00 0 0
INTA IXI 010000 S 00101 0 0 00 0 0
INTL 111 010001 = =0-—---0---100100 0 0 00 0 O
INTL IX1 010001 ——-1----0---100101 0 000 0 O
INTL 111 010001 -==0---11---100100 0 0 00 0 0
INTL IXI 010001 —==1---11---100101 00 00 0 0
CMOVx I11 010001 - = ~-0---01---100100 0 0 00 1 0
CMOVx IXI 010001 —==1-=-01---100101 0 0 00 1 0
MA 111 010001 -=-010-00---100100 0 0 00 0 1
MA X1 010001 -=-110-00---100101 00 00 0 1
INOP 111 010001 -=-001-00---100100 00 00 0 O
INOP IXI 010001 ——-101-00---100101 0 0 00 0 O
INTS 111 010010 S | JE - 00100 0 0 00 0 0
INTS IXI 010010 SR 00101 0 0 00 0 0
INTM 111 010011 _———0 - - - - - = 00100 0 0 0O O O
INTM IXI 010011 S 00101 0 0 00 0 0
FLTS FFF 010100 | - - - - - - - 1---- (11100 0 0 00 0 ©
ITOFx IXF 010100 | - - - - - — - 0----100111 0 0 00 0 ©
FLTV FFF 010101 | - - - - - - -~ 11100 0 0 00 0 0
FLTI FFF 010110 | - - - - - - - - - 11100 0 0 00 0 0

Compay Confidential
3-50 Instruction Fetch Unit — the lbox 8 January 2001 - Subject To Change

Fill Unit

Table 3-17 Predecode Bits Defined by the Ibox Instruction Fill Unit (Continued)

Opcode Bits: | Function Field Bits:? Predecode Bits:>
Instruction Type1 31— 26 151413121110 98 76 5 P |EDCBA UE CB P2 P3 CM MA
FCMOVx FFF 00111 | - = - - -~ 0l ---—- (11100 0 0 00O I O
CPYSx FFF o0111 | - - == - - 000-—-- 11100 0 0 00O 0O O
MT_FPCR FFC oo111 | - = - - - - 001-0- {11120 0 0 00 O O
MF_FPCR FFF o011 | - = - - - - 001-1- 11100 0 0 0 O O O
CVTxx FFF 010111 | - == —- - - 1 - -=--= 11100 0 0 0 0 0 O
FNOP FFF ool | - =----- 00000~ (11100 0 0 00O O O
TRAPB XXX 011000 00---0-=---~-- 01001 0 0 00 O O
EXCB XXX 011000 00---1------ 01001 0 0 00 O O
MB XXX 011000 01--00----~-- 01001 0 0 00O O O
(MB) XXX 011000 01 --1--—-~---- 01001 0 0 00 O O
WMB IIxX 011000 01--01-~—-~—-- 01111 0 0 00 O O
FETCH XXX 011000 100----—-—-~-—-- 01001 0 0 00 O O
FETCH_M XXX 011000 1010 ---—---—-- 01001 0 0 00 0 O
RPCC X1Y 011000 110-----—-—-~- 01011 0 0 0 O O O
Rx XXN 011000 111-0----=--- 00011 0 0 00 O O
xCB IrxX 011000 11101 -----—-- 01111 0 0 00 O O
WH64x ITX 011000 11111 --~=~—-- 01111 0 0 0 0 O O
LDx_ARM SII 011000 10110---=--—-- 10000 0 0 00O O O
QUIESCE IIX 011000 10111 ~------ 01111 0 0 0 0 0 O
HW_MFPR RXI 011001 | - === = = == = = = — 00110 0 0 00 O O
IMP XII 011010 00--------- 01011 1 0 0O O O
IMP XII 011010 00----—--—--- 111011 0 0 00 O O
RET XII 011010 10— ———— 11011 1 0 t 0 0 O
JSR XII 011010 01l - -~ -~ - 11011 1 1 00 O O
JCR XII 011010 11l - - - =-—-—-- 11011 1 1 10 O O
HW_LD SII 011011 | - - - = - - - = - - - - 10000 0 0 00 O O
INTV ITI 011100 ~--=00-=-=-==--- 00100 0 0 00 O O
INTV IXI 011100 ~-=-=-10-=--=-=-=- 00101 0 0 00 0 O
INTV I 011100 -=-=010~-=--=-+-- 00100 0 0 00 O O
INTV IX1 011100 -—=-110------ 00101 0 0 00 O O
INTV 111 011100 --—=-0110-~---- 00100 0 0 00 O O
INTV IXI 011100 --=-1110----- 00101 0 0 00 O O
FTOLx FXI 011100 ——==111-==== 01110 0 0 0 0 0 O
HW_MTPR RIW 011101 | - = - = = == - = = = =~ 10110 0 0 0 0 0 O

Compag Confidential

& January 2001 ~ Subject To Change

Instruction Fetch Unit — the Ibox 3-51

Fifl Unit

Table 3—-17 Predecode Bits Defined by the Ibox Instruction Fill Unit (Continued)

Compag Confidential

3-52 Instruction Fetch Unit — the Ibox

§ January 2001 ~ Subject To Change

Opcode Bits: | Function Field Bits:2 Predecode Bits:?
Instruction Type‘ 31— 26 151413121110 987 6 5 P |EDCBA UE CB P2 P3 CM MA
IFETCHB XXX 011110 | - = = = = = = = = — — = 01001 1 0 11 0 O
HW_ST IIS ()1 N e 11111 0 0 00 0 O
LDF SIF 100000 | — - —-=— == - - - - 11000 0 0 00 0 O
LDG SIF 100000 | ~ = === = - -~ 11000 0 0 0 0 O O
LDS SIF 100010 | - - =— == === - - - — 11000 0 0 00 O O
LDT SIF 100011 | - - - - — - -~ = — — — 11000 0 0 0 0 O O
STF FIS 100100 | - = = - = = - = — = — — 11101 0 0 0 0 O O
STG FIS 100101 | — = = = = = - = - = — - 11101 0 0 0 0 O O
STS FIS 100110 | - - - - - - - = - - — - 11101 0 0 00 O O
STT FIS 100111 | - - === === - = - - 11101 0 0 0 0 O O
LDL SII 101000 | - - === == = == -~ 10000 0 0 0 0 0 O
LDQ SII 101001 | — - = = = = = = = = — — 10000 0 0 0 0 0 O
LDL_L STI 101010 §{ — - =-=-——- === - - — 10000 0 0 00 0 O
LDQ L SII 101011 | - - - = -~ = — = - = — ~ 10000 0 0 00 O O
STL I1IS 101100 | = - — = = = = — = — — — 1M1t 0 0 00 O O
STQ 118 101101 | = = === = = = == — - 11111 0 0 0 0 O O
STL_C IIL 10110 | - - =-=-—-=-=-= == - = 00000 0 0 00O O O
STQ_C IIL 11 | - == === == - - 00000 0 0 0O O O
BR XX1 110000 | —- - - - - - == - - - - 00001 1 0 01 O O
FBEQ FXX 110008 | - - == = - = = - - — 0 (01100 0 1 01 O O
FBEQ FXX 110001 | - - - - = - — - — - ~ 1 (01100 0 O 0O O O
FBLT FXX 110010 | — - = - = = = = — - — 0 o100 0 1 01t 0 O
FBLT FXX 110010 | - - - - - - == — - - 1101100 0 0 00 O O
FBLE FXX 110011} - - - — - = = = — = — 0101100 0 1 01 0 O
FBLE FXX 110011 | — = == = - = - — — — 1101100 0 0 00 O O
BSR XX1 110100 | - - - - - - — = — — — = 00001 1 1 01 0 O
FBNE FXX 110101 | - - - - = = — = — - — 001100 0 1 61 0 O
FBNE FXX 110101 | = = - = = = = — — — — 1101100 0 0 0 0 O O
FBGE FXX 110110 | — - = - = = = - — = - 0101100 0 1 01 0 O
FBGE FXX 110110 | = = - = - = = — = = — 1101100 0 0 00 O O
FBGT FXX 1ol | - - == = == = - - - 001100 0 1 01 0 O
FBGT FXX 110111 | = = === = — — — - — 1101100 0 0 0 0 0 O
BLBC IXX 111000 | - - == === - = =~ 001000 0 1 01 0 O

Fitl Unit

Table 3-17 Predecode Bits Defined by the Ibox Instruction Fill Unit (Continued)

Opcode Bits: | Function Field Bits:2 Predecode Bits:?
Instruction Type! 31— 26 151413121110 98 76 5 P |[EDCBA UE CB P2 P3 CM MA
BLBC IXX 111000 . | - - === === - - - 1101000 0 0 00 O O
BEQ XX 111001 | = = - = = = - = — — —~ 0 (01000 0 1 01 O O
BEQ IXX 111001 | = = = = = = - = — — ~ 1101000 0 0 OO O O
BLT XX | 11010 | = - - == - = = — — ~ 0 (01000 0 1 01 O O
BLT XX 1w | - === === - - — = 1101000 0 0 0O O O
BLE XX 111011 | = = = - = = = = - - — 0 (01000 0 1 01 0 O
|BLE IXX 1101 | - mm e e e - = 1 (01000 0 0 00 0 0
BLBS IXX 1110 | - - - == — - - — - - 0 (01000 0 1 01 © O
BLBS XX 111100 | — = = = = = = = — — = 1 {01000 0 0 00 O O
BNE IXX 11101 | - - - = = = - — — — ~ 0 (01000 O 1 01 O O
BNE IXX 11 | - = === === - - - 101000 0 0 00 O O
BGE IXX 111110 | = = = = = = — — — — — 0101000 0 1 01 O O
BGE XX 111110 | = - - = = = — — = — — 1 {01000 0 0 00 O O
BGT XX mmm - - == - - - - - - - 001000 01 0t 0 O
BGT XX 1 | - - - - - - = - - - = 1 (01000 0 0 00 0 O

' The predecode type (or logic group) is described in Section A.2.

2 In the function field bit listing, P represents the physical bit, described below.
3 See Table 3-18 for information about predecode bits other than EDCBA.

4 Paired single-precision floating-point instructions.

3.8.2.3.2 Predecode Bits for Control Flow Instructions

Table 3-18 describes the meaning for those predecode bits that are generated by the
IFU for control flow instruction processing. In the table:

¢ UE is an unconditional exit and CB is a conditional branch. The UE and CB prede-
codes are used by the branch predictor to quickly determine the exit point of the
two fetch slots.

P2 is popstack and normally means to pop the return stack. P3 (or branch) normally
means Bxx. P2 and P3 are used to determine how the return stack and jump predic-
tor outputs are used. The following attributes can be determined for all 16 fetched
instructions during the A phase of I3 when the branch predictor is determining the

exit point:
JPRED = UE&!P2&!P3
POP = P2&!P3
PUSH = UE&CB
TBR = IP2&P3
CPL = CB&P2&P3
IFETCHB = ICB &P2&P3

Compag Confidential

& January 2001 — Subject To Change Instruction Fetch Unit — the Ibox 3-53

Fill Unit

3-54

For detailed information, see Section 3.7

For "legacy” CMOV/FCMOY instructions (see Section 2.11.2), a set CM bit causes
the Collapsing Buffer to create a CMOV2 instruction by making a new instruction
chunk. Legacy CMOV/FCMOY instructions are always the first instruction in the

map chunk.

The MA bit is set when an XOR (11.40) instruction with destination R31 is
detected as the final instruction in either half-block of eight instructions received by
the IFU. When MA is set and the chunk is fetched from the Icache, the Collapsing
Buffer starts a new map chunk that begins with the current fetch chunk. See also
Section 2.11.3 for more information.

The physical bit, P, in the function field bits column indicates that no address trans-
lation was performed when fetching instructions. When set, the VA field in the
TAG represents the actual PA from which the instructions were fetched, and not a
translation.

Table 3-18 Ibox Predecode Bit Summary

UE CB P2 P3 CM MA Meaning

0

»—nr—nn—ab—lr—-u;—-ox

o O o o o o =

000 O O Fall through (integer and floating-point conditional branch in
PALmode, physical bit = 1)
000 1 0 Fall through and Collapsing Buffer starts a new map chunk to

begin with a CMOV2 instruction

ol

Collapsing Buffer starts a new map chunk at current fetch chunk

—_

Integer and flaoting-point conditional branch (physical bit = 0)

(=]

Jump

Unconditional branch

Return (pops the return stack)

IFETCHB, (stops thread, next PC = PC + 4)

JSR (pushes return stack)

BSR (pushes return stack)

JSR_COROUTINE (pops and pushes return stack)
CALL_PAL (pushes return stack)

S O o O O o o o O

Not used - do not care
Not used - do not care
Not used - do not care
Not used - do not care

Not used - do not care

»—A»—au—ooo»—tr—in—»—loooov—nx
e = S S = R R N e = ==
—_ OO O = O OO

XXX X X X

Not used - do not care

Compag Confidential

Instruction Fetch Unit — the Ibox § January 2001 - Subject To Change

Checkpoint Unit

3.8.2.3.3 Fill Data Routing

A few simple rules govern the routing of information in the Fill Section. First, the Cbox
returns its data in 16-instruction chunks, whether or not the request hit the Scache.
Next, if the Demand Array Probe indicates that the returning instructions are for a non-
piggybacked demand miss, the wake_tpu signal for the corresponding thread is acti-
vated, which is read by the FTC. Finally, the ICache is designed to give writes priority
over reads, so buffering of writes is not necessary.

"The early warning signals sent in cycle C10 are latched in cycle IX. The array probes
occur inIY, and the fill_inst instruction bus latches its C12 signals on the IZ edge. The
discard_fill and dbl_ecc_err error signals are used in IZ. If the former is true, all pro-
cessing for this fill is terminated, and all IFU state will behave as if the
early_warning_ptr had never been active for this fill. At some later time, the Cbox will
again try to complete the fill for this request. The discard_fill signal covers a number of
late-kill cases, including single-bit error detection, that occur too late to affect sending
of the early_warning_ptr.

If discard_fill is false, but dbl_ecc_err is true, the fill proceeds as normal, but with the
resultant Fill Packet being written into the ICache with its ecc_uncor bit set. Any reads
of this ICache line will force a late exception. This method allows for fast processing of
double-bit errors when the machine is in PAL mode, because the normal handling via
Cbox interrupt is not possible in PALmode.

3.9 Checkpoint Unit

The checkpoint table, as the name implies, serves as a repository for important informa-
tion flowing through the pipeline every clock cycle. This information is later used for
(a) restoring state when restarting on an exception and (b) for training predictors in the
Ibox.

The checkpoint table plays a pivotal role in restarting the pipeline for all exceptions
except those that are specific to the Ibox such as those caused due to line or way
mispredictions. Specifically, the checkpoint table handles only restarts for instructions
that have been mapped and assigned an INum by the Pbox. The class of exceptions that
is handled by the checkpoint table is also known as the “post-map” exceptions. Another
important role played by the checkpoint table is to provide sufficient information at
instruction retire time for training the branch and jump predictor. The information
stored in the checkpoint table is also leveraged to allow mispredicted jumps to be iden-
tified as well as to generate the return address whenever a subroutine call is made.

Effectively, the checkpoint table acts as a link between the pre-mapped and post-
mapped world of instructions. Before the mapping is performed, an instruction is iden-
tified using its address. Once the instructions are mapped and dispatched from the Ibox
to the Pbox, the INum associated with the instruction becomes its sole identifier. How-
ever, the address of an instruction may be needed occasionally during its lifetime. This
is especially true when an instruction restarts on an exception or a return address is
needed by the Ebox to be pushed into a stack register when a subroutine call is exe-
cuted. The checkpoint table enables such operations to be performed with its ability to
reverse-map the INum of an instruction to its address using the information stored in it.

Compayg Confidential
8 January 2001 — Subjsct To Change Instruction Fetch Unit — the Ibox 3-55

Checkpoint Unit

It must be noted that the amount of information that needs to be checkpointed for \
restarts and training is non-trivial. However, due to area constraints on the die, the

information cannot be stored in a naive fashion. Hence, several optimizations are per-

formed to condense the information for reduced storage without losing any details.

The following sections provide additional details of the checkpoint table.
3.9.1 Checkpoint Table Components

The checkpoint table consists of a pre-map and post-map table. The pre-map table
reflects the instruction buffer and stores information on a fetch-slot basis while the
post-map table stores information on a map-chunk basis. The post-map table forms the
core of the check-pointing mechanism. The pre-map table acts only as a temporary
store to hold data until the collapsing buffer creates a new map-chunk from fetch slots
in the instruction buffer. Once this operation is completed, the information for the col-
lapsed fetch slots flows from the pre-map table to the post-map table and is stored in a
collapsed form to reduce storage requirements.

As with the instruction buffer, the pre-map table consists of 16 entries per thread for a
total of 64 entries. Information corresponding to each of the two slots that may be
fetched every cycle is written into the pre-map table using the same index that is used to
write into the instruction buffer. Table 3-19 lists the different fields that are stored for
each slot along with the producer of that information. Since a fetch slot cannot have a
valid jump as well as a return instruction, the jump and return predictions share single
field. The appropriate data is written based on the type of the exit instruction. For more
information on each specific field, please refer to the appropriate producer section.

Table 3-19 Fields in a Pre-Map Table Entry

Producer Information

PC calc logic PC<51:5>, PC<0> (palmode bit)

Jump predictor Jghist<35:0>,

Jump or Return predictor ~ Jump or return prediction<51:2>

Branch Predictor Lghist<23:0>. Shift distance<2:0>, No shift

Branch Predictor Bank<6:5>, Next Bank<6:5>, Next to Next Bank <6:5>
Branch Predictor Previous index <6:5>, Next to Previous index <6:5>
Branch Predictor Prediction entries: G0<7:0>, G1<7:0>, CH<7:0>, BM<7:0>
Branch Predictor Jump, Push, Pop exit attributes and sequential exit flag
Branch Predictor Conditional branch attributes<7:0>

Retum Predictor Nalloc<5:0>, Tos<5:0>, Ptos<5:0>

The post-map table contains 32 entries, each of which corresponds to an in-flight map
chunk. The table is indexed using the map chunk INum. Most of the information is
stored on a map-chunk basis though some information needs to be stored on a per-slot
or per-instruction basis. The information stored in the post-map table mostly originates
either from the pre-map table or from the collapsing buffer. Since up to two fetch slots
may be collapsed to create a map-chunk, the information stored in one entry of the post-

Compag Confidentis!
3-56 Instruction Fetch Unit — the Ibox § January 2001 — Subject To Change

Checkpoint Unit

map table spans the information from two adjacent entries of the pre-map table. How-
ever, the information for the two fetch slots is not stored as such. Instead, itis collapsed
such that the storage space is vastly reduced without losing any information.

Most of the fields in a post-map table entry are written during map time. However, there
are a few fields that are not created until instruction execution time or when the Pbox
signals a kill due to some exception.

We now list the different fields for an entry in the post-map table. Table 3-20 lists those
fields that store a collapsed form of the fields read from the pre-map table for two adja-
cent slots: slot A and slot B. Table 321 lists those fields that are stored in the same for-
mat (for each slot) as they are read from the pre-map table. Table 3-22 lists the
remaining fields that do not use any pre-map table entries and are written directly using
information provided by the collapsing buffer. Finally, Table 3—23 lists the fields that
are created during execution or kill time. We also provide a brief description for some
of the fields that include details on how the collapsing is performed.

Table 3-20 Collapsed fields Stored Into a Post-map Table Entry at Map Time

ID Data from Pre-Map Table Collapsed fields in Post-Map Table Entry
1 Slot A LGhist<23:0> Stot B LGhist<23:0> LGhist<24:0>
2 Slot A ShiftDist<2:0> Siot B ShiftDist<2:0> ShiftDist<3:0>
3 Slot A Bank<6:5> Slot B Bank<1:0> Bank<6:5>
Slot A Bank_next<6:5> Slot B Bank_next<6:5> Bank_next<6:5>
Slot A Bank_next_next<6:5> Slot B Bank_next_next<6:5> Bank_next_next<6:5>
Bank_next_next_next<6:5>
4 Slot A prev_index<6:5> Slot B prev_index<6:5> Prev_index<6:5>
Slot A prev_index_next<6:5> Slot B prev_index_next<6:5> Prev_index_next<6:5>
Prev_index_next_next<6:5>
5 Slot A Nalloc<5:0> Slot B Nalloc<5:0> Slot A Nalloc<5:0>
Slot A Tos<5:0> Slot B Tos<5:0> Slot B Nalloc<5:0>
Slot A Ptos<5:0> Slot B Ptos<5:0> Slot A Tos<5:0>
Siot B Tos<5:0>
Slot B Ptos<5:0>
6 Slot A noshift Slot B noshift Slot A noshift

Table 3-21 shows the fields in the post-map table entry that is maintained for each slot in
a map-chunk and is directly transferred from the pre-map table at map time.

Table 3-21 Post-Map Table Entry Fields

ID Fields in the Post-Map Table entry
7 PC<51:5>, PC<0> (palmode bit), PC+4<15:5>
Jump, Push, Pop exit attributes and sequential exit flag
9 Branch prediction entries: G0<7, 0>, G1<7, 0>, CH<7, 0>, BM<7, 0>
10 Conditional branch attributes<7:0>
11 Jghist<35:0>, Jump prediction<51:2>

Compag Confidential

& January 2001 — Subject To Change Instruction Fetch Unit — the Ibox 3-57

Checkpoint Unit

Table 3-22 Fields that are Available from Collapsing Buffer at Map Time

1D Fields in the Post-Map Table entry

12 Alternate PC<21:0> (8 in all; 1 for each map-chunk instruction)

13 Store Set ID<4:0> (8 in all; 1 for each map-chunk instruction)

14 Slot Mask<7:0>

15 Map Chunk information: length<2:0>, slot 0 start position<2:0>, slot 1 start position<2:0>, slot 0
length<2:0>

Table 3-23 Fields in Post-Map Table Entry That are Created During Execute (E) and Kill Time (K)

ID Fields in the Post-Map Table entry
16 Jump Target<51:0>, Jump Target Valid (Execute)
17 Kill location <2:0> Kill Valid (Kil))

Notes for Tables 3-20 through 3-23:

For some of the fields mentioned above, we give a brief description that includes details
on how information is collapsed before it is written into the post-map table. Note that
we use the ID in the above tables to describe the corresponding field.

Lghist for Slot B can have at most one new bit added to it with the rest of the bits
overlapping with that of Slot A. To determine if there was indeed a new bit added to
slot B’s ighist, we use the newest Shift Distance bit for Slot B. The collapsed Lghist
is created as follows:

If Slot B ShiftDist<0>

IGhist<24:0> = CONCAT (Slot A LGhist<23:0>, Slot A Lghist<0>)

Else

Ighist<24:0> = CONCAT (0, Slot A Lghist<23:0>)

The Shift Distance for Slot B has one new bit while the other two bits overlap with
that of Slot A.

ShiftDist<3:0> = CONCAT (Slot A ShiftDist<2:0>, Slot B ShiftDist<0>)

The two successors to Slot A Bank are exactly the same as Slot B Bank and its suc-
cessor, Hence, we need to store only 4 out of the 6 bank identifier fields.

As with the bank identifiers, the next prev_index of Slot A is the same as that of
Slot B prev_index. So we store only 3 out of the 4 fields.

Ptos (previous top of stack) is used solely when restarting after an instruction that
pops the return stack. If Slot A had such an instruction, Slot B’s top of stack would
indeed be slot A’s Ptos. Hence, there is no need to store the PTos for slot A.

Compayg Confidentiad

3-58 Instruction Fetch Unit — the Ibox & January 2001 - Subject To Change

Checkpoint Unit

¢ The no shift bit, which prevents the shift distance bits from being modified more
than once for the same fetch slot when it is restarted (on an exception), is relevant
only for the first slot (see branch predictor section for more details).

¢ The low PC bits <4:2> are created only on a need basis for a particular instruction
in one of the fetch slots comprising the map chunk. The PC+4 field is not present in
the pre-map table and is created on the fly from the corresponding PC bits. Pre-cal-
culating this field is necessary for restarting the line predictor latches with a new
index as fast as possible.

* For conditional branches that are predicted as not taken, we need to store the alter-
nate address (alternate PC) to handle mispredicts. This address would be used on a
restart from a mispredicted not-taken branch. Since a branch instruction can occur
in any position of the map chunk, provision must be for storing up to 8 alternate
addresses.

* As with branches, a load or store instruction may occur in any position in the map-
chunk. Hence, we need to provide storage for all instruction positions in the map-
chunk.

* The slot mask specifies whether a particular instruction originated from slot A or
slot B.

¢ Slot 0 length is not directly available from the collapsing buffer. It is calculated
using the slot mask that is provided by the collapsing buffer.

¢ The Jump Target Valid bit enables two jump instructions each belonging to slot A
and slot B to share the same location for storing the actual target on a jump mispre-
diction. The following section provides more details on the sharing mechanism.

¢ To ease implementation, both the pre-map and post-map tables are partitioned such
that a particular partition resides close to the check-pointed component. For
instance, in the partition residing close to the branch predictor, we need to store
only those fields that are relevant to the branch predictor such as Lghist, shift dis-
tance, no shift, prediction entries etc. while fields such as store set identifiers and
Jump predictions need not be.

3.9.1.1 Checkpoint Table Functions

As mentioned earlier, the fields in the checkpoint table are not only written during
instruction map time but also during the execution phase as well as when instructions
are killed due to an exception.

When the Ebox executes a jump instruction, it forwards the actual target of the jump to
the checkpoint table so as to validate the jump prediction. The checkpoint table
accesses the corresponding entry in the post-map table using the INum that is provided
by the Ebox to access the predicted jump address. If a mismatch occurs between the
true target and the predicted address, the checkpoint table signals a jump mispredict to
the Ebox. At the same time, it stores the true target into the table. This target value will
eventually be used for restarting the pipeline as well as for training the jump predictor.
The jump valid bit is also set on a jump mispredict when the correct target is stored.
Since an earlier exception overrides a younger exception, a mispredicted jump in slot A
can always store its true target while a mispredicted jump in slot B may do so only
when a jump instruction in slot A has not already mispredicted.

Compag Confidential
8 January 2001 ~ Subjsct To Change Instruction Fetch Unit — the Ibox 3-59

Checkpoint Unit

Occasionally, the Ebox requires the return address that needs to be saved in the stack
register when executing a subroutine call. The checkpoint table uses the INum provided
to find the associated PC of the subroutine call instruction and sends the PC of the sub-
sequent instruction (PC+4) to the Ebox.

When the Ebox eventually executes the “return” instruction in the subroutine, execution
is redirected to the address that was provided by the checkpoint table. Note that the
return address also needs to be validated. The description given for jumps for signaling
mispredicts is also true for “return” instructions. This is because the address predicted
by the return and jump predictors share the same field as only a jump or a return
instruction can be valid in a fetch slot.

3.9.1.1.1 Restarting on an exception

The checkpoint table is responsible for restarting the pipeline on an exception by pro-
viding the line predictor and PC calc logic with the new address. An exception may
occur appear through the exception funnel (E-funnel) from the Pbox or on the fast-path
used for early signaling of branch mispredictions.

The E-funnel exceptions take priority over the fast-path exceptions. The information
available to the checkpoint table from the E-funnel includes the type of exception and
the exception INum. The checkpoint uses the exception type and the INum to access the
post-map table to get the appropriate restart address. The slot mask (Table 3—-22) lets us
determine the slot in which the misprediction occurred. With this information, we can
choose the appropriate address from a set of addresses that is stored on a fetch-slot basis
(PC). The low bits of the exception INum helps us to choose an address from a set of 8
addresses stored on an instruction basis in the map-chunk (Alternate PC). Remember
that the low bits<4:2> of the PC are not stored in the post-map table. However, by using
the map chunk information (Table 3-22) and the position of the instruction in the map
chunk, the low bits of the restart address can be easily determined.

The restart may cause control to be transferred to PAL code in which case the check-
point table also needs to provide the address to which control has to resume after return
from PAL code. The PAL starting address itself is created by adding the offset provided
through the exception funnel to the base address that is read from a PAL base register.

If no exceptions are present in the E-funnel, the fast-path, which is used for early reso-
lution of conditional branch mispredictions, is checked for the presence of an excep-
tion. Information on whether the conditional branch instruction was a mispredicted
taken or not-taken type as well as its INum is also available on the fast path.

Table 3-24 lists the different restart scenarios that are handled by the checkpoint table.
The different types of restart addresses mentioned for the non-PAL exceptions are
available in the post-map table. Note that the complete restart address is needed only by
the PC calc logic while just the low bits of the restart address <14:2> are needed by the
line predictor latches but a cycle earlier than PC calc. Due to timing constraints in the
implementation, the low bits<14:5> of the incremented PC (PC+4) are stored apriori in
the post-map table. This would be used whenever the restart address is PC+4 rather
than calculating the value at the time of restart.

Compag Confidentiai
3-60 Instruction Fetch Unit — the lbox § January 2001 — Subject To Change

Checkpoint Unit

Table 3-24 Exception Types and Restart Address

Exception Restart Address Return Address for PAL
Mispredicted not-taken Conditional branch, IFETCHB = PC+4 N.A

Mispredicted taken Conditional branch Alternate PC N.A

Mispredicted jumps Jump Target N.A

Replay, Load Store order violation PC N.A

DTB Miss PALbase + offset PC

Unalign, Write FPCR, Integer/FP Trap PALbase + offset PC+4

3.9.1.1.2 Restoring Predictor States

In addition to providing the restart address, the checkpoint table also needs to restore
the states of the different predictors in the Ibox namely, the branch, jump and return pre-
dictors. Due to the complex nature of the branch history bits, the control for restoring
the state is non-trivial. Table 3-25 shows how we create the initial 1ghist and shift dis-
tance from the post-map entry based on whether the restart occurs in slot A or slot B.
Table 3-26 details the complete restoration process.

Table 3—25 Creating Slot-Based Predictor States From Mapped Information in the Post-Map Table

LGHIST SHIFT DISTANCE
Slot_A if (MappedShiftDist<0>) Slot_ShiftDist = MappedShiftDist<3:1>
Slot_Ghist = MappedGhist<24:1>
else
Slot_Ghist = MappedGhist<23:0>
Slot_B Slot_Ghist = MappedGhist<23:0> Slot_ShiftDist = MappedShiftDist<2:0>

Table 3-26 shows.....

Table 3-26 Restoring Predictor States on a Restart

Type of
Excepting
instruction

LGHIST, SHIFT DISTANCE, NOSHIFT JGHIST NALLOC/TOS

Conditional
Branch (Bxx)

PUSH (BSR)

Tump JMP)

Restart in 1st half of slot?
Taken?
Ghist = Slot_Ghist, 1; ShiftDist =Slot_ShiftDist,1; NoShift =0
Not taken & No valid Bxx insn after?
Ghist = Slot_Ghist,0; ShiftDist =Slot_ShiftDist, 1; NoShift = 1

Restart in 2nd half?
Taken?
Ghist = Slot_Ghist,0; ShiftDist = Slot_ShiftDist,1; NoShift = 0
Not taken & No valid Bxx insn after?
Ghist = Slot_Ghist,1; ShiftDist = Slot_ShiftDist, 1
NoShift = 1 (=0if slot ends i.e PC_low<4:2> == 0x7)

If valid insn before? Nalloc = Slot_Nalloc + 1
If restart in 1st half |l no valid Bxx insn in 2nd half? Tos = Slot_Nalloc
Ghist = Slot_Ghist,0; ShiftDist = Slot_ShiftDist, 1; NoShift=0
else /* restart in 2nd half & valid Bxx insn in 2nd half */
Ghist = Slot_Ghist,1; ShiftDist = Slot_ShiftDist, 1; NoShift = 0

*** Same as for Push(BSR) *** JGhist = Slot_JGhist<26:0>,
(Jtarget<19:11> A Jtarget<10:2>)

Compag Confidentiai

8 January 2001 ~ Subject To Change Instruction Fetch Unit — the lbox 3-61

ibox Interfaces

Table 3—-26 Restoring Predictor States on a Restart

Type of
Excepting
instruction LGHIST, SHIFT DISTANCE, NOSHIFT JGHIST NALLOC/TOS
Push + Jump (JSR) *** Same as for Push(BSR) *** IGhist = Slot_JGhist<26:0>, Nalloc = Slot_Nailoc + 1
(JTarget<19:11> A Jtarget<10:2>) Tos = Slot_Nalloc
Pop (RET) *** Same as for Push(BSR) *#* Nalloc = Slot_Nalloc
if (Slot A restart)
Tos = Slot B Tos
else
Tos = Slot B Ptos
Pop + Push **% Same as for Push(BSR) *** Nalloc = Slot_Nalloc + 1 Tos =
(JSR_COROUTINE) Slot_Nalloc

Any otherinstruction If no valid Bxx insn after & valid insn before?
(restart wouldbe "at” If restart in 1st half /Ino valid Bxx insn in 2nd half?
this instruction) Ghist = Slot_Ghist,0; ShiftDist = Slot_ShiftDist, 1; NoShift =1

else /* restart in 2nd half & valid Bxx insn in 2nd half *
Ghist = Slot_Ghist,1; ShiftDist = Slot_ShiftDist, 1; NoShift = 1

Default State Ghist = Slot_Ghist JGhist = Slot_JGhist Nalloc = Slot_Nalloc Tos =
ShiftDist = Slot_ShiftDist Slot_Tos
if (Slot A restart)

NoShift = NoShift_old (from post-map table)
else
NoShift =0

3.9.1.1.3 Predictor Training

The checkpoint table is also used for training the branch and jump predictors. The jump
predictor is trained only on a misprediction while the branch predictor is trained on both
correct and incorrect predictions. The mispredict information is available in the kill
field of the post-map table (Table 3-23).

The following state information is provided to the branch predictor for training each
slot in the map chunk: Ighist, shift distance, bank, previous index and prediction bits
(Table 3-20). In addition, using the kill position and the map-chunk information (Table
3-22), the actual instructions retired in each slot are also provided. This includes infor-
mation on whether there was a mispredict in any of the slot as well as the position in the
map-chunk where the mispredict occurred. For more details on how the training is
done, please refer to the branch predictor section.

As for the jump predictor training, the checkpoint table provides the true target to the
jump predictor. It also uses the slot Jghist to calculate the index into the jump predictor
array. The hash function for the index calculation is mentioned in the jump predictor
section.

3.10 Ibox Interfaces
3.10.1 Pbox Interface
3.10.2 Qbox Interface
3.10.3 Ebox Interface
3.10.4 Mbox Interface
3.10.5 Cbox Interface

Compag Confidential
3-62 Instruction Fetch Unit — the lbox § January 2001 — Subject To Change

4

Dependency Mapper Unit — the Pbox

The Pbox processes instructions that are fetched by the Ibox. The Pbox assigns INums
(instruction numbers) to the instructions, analyzes the data dependencies between
instructions, and maps their architectural source and destination values into physical
registers. The Pbox also maintains data structures that allow recovery of all relevant
processor state that corresponds to the architectural state of the machine prior to any un-
retired instruction. This allows the processor to perform rapid trap recovery in the pres-
ence of branch mispredicts or other exception conditions. The Pbox passes the renamed
instructions to the Qbox for scheduling and dispatch.

Figure 4—1 Pbox Block Diagram

Insts Avail

(to bax)
% Forward Path
Trap/Retire Path

8§ Instructions

({from Tbox)
rap Rollback Pointers
Trap Inst Virt Reg
(to Ihox)
Retire/Kill INum/TPU Bus

F
L J

Compaqg Confidential
8 January 2001 - Subject To Change Dependency Mapper Unit — the Pbox 4-1

Dependency Analysis: General Concepts

The Pbox consists of the following components:

Table 4-1 Pbox Components

Described
Name Mnemonic Description in Section
Bid/Grant Exception BEL Chooses which of the pending kills from all TPUs shouldbe 4.3.10
Logic ' broadcast to the rest of the chip.
Instruction Decoder IDC Decodes each of the eight instructions that arrive in a cycle. 4.3.6
The decoder is placed early in the pipe to aid slotting deci-
sions and to provide inputs to the load/store flow control
mechanisms and to the IPR interlock mechanisms
INum Allocator INA Allocates INums to new map blocks sent down by the Ibox. 4.3.3
The INA also contains the Map Thread Chooser (see Section
4.3.3.3), which picks the next thread that will map instruction
blocks and informs the Ibox
INum Mapper ™MP Responsible for mapping source operand registers (VReg) 43.1
into the INum of the last writer for the source operand
Load/Store Serial LSN Associates a sequential identifier with each load instruction, 4.3.7
Number Allocator and a second identifier with each store instruction. These
LNums and SNums are used to prevent deadlock and manage
flow control into the Mbox load and store queues
Mapper Exception MEX Rolls the IMP, PMP, LSN, and RIF state back to the trap point 4.3.4
Logic when the MEX is notified by the BEL of an exception
Memory Queue Allo- MQA Governs the allocation and deallocation of load queue (LQ) 4.3.5
cation and store queue (SQ) chunks to memory instructions. Also
controls the High-Water Mark (HWM) that is sent to the
Qbox to regulate the issuing of loads and stores.
Physical Register Map PMP Allocates physical destination registers to each dispatched 43.2

instruction. This table is also used to map virtual register
operands into the corresponding physical registers

Post-Map Skid Buffer PSB Holds a silo of the last few map blocks that have passed 438
through the Pbox forward path

RC/RS Interrupt Flag RIF Maintains state necessary to implement the RC/RS instruc- 4.3.9
Widget tions
Retire/Kill Unit RKU Communicates the identity of retired and/or killed instruc- 4.3.11

tions to all concerned boxes by way of the Retire/Kill bus

4.1 Dependency Analysis: General Concepts

Previous "out of order" processors detected dependencies between instructions in dif-
ferent ways. The key goal is to recognize real dependencies between instructions (i.e.
true read-after-write (RAW) dependencies) while "untangling" dependencies that are an
artifact of the processor archi tecture (like write-after-write (WAW) or write-after-read
{(WAR) dependencies). For example, take a look at the following chunk of C code:
a=Db+c;

d=a* a;

a=e+ £;

Compaqg Confidentiai
4-2 Dependency Mapper Unit — the Pbox § January 2001 - Subjsct To Change

Dependency Analysis: General Concepts

Note that there is a RAW dependency (a = b+ ¢ must be computed before d = a * a), a
WAR dependency (d must be computed before the result of a = e + f is written), and an
apparent WAW dependency if the compiler chooses to use the same register for the first
value of a as for the second. Let's look at the macro for this C code. (Again, all macro
programs are stylized and not meant to reflect actual Alpha assembler code.)

; Als in R1, B in R2...
001 ADDL R2,R3 -> R1
002 MULL R1,R1 -> R4
003 ADDL: R5,R6 -> R1

As you already know, the key to out of order execution is to recognize that R1 in this
case has many different lifetimes in the course of a program. The lifetime of R1 in lines
1 and 2 is separate and distinct from the lifetime of R1 in lines 3 and thereafter. If the
processor architecture provided a bazillion registers, the compiler would use a new reg-
ister for each lifetime of a value. That is, it would create a new name for each lifetime
of the variable a. Let's pretend that the C code was compiled into such an instruction
set:

001 ADDL: R2,R3 -> R1
002 MULL R1,R1 -> R4
003 ADDL R5,R6 -> R11

In this case the second lifetime of a is stored in R11. This removes the WAW and WAR
spurious dependencies. Now a suitably intelligent scheduler can recognize that instruc-
tion 003 can be executed in parallel with (or even before!) instruction 001 or 002.

® Alas, we don't have an infinite (or even very large) number of architectural regis-
ters, so sooner or later a compiler that creates a new name for every register lifetime
would run out of new names. Fortunately, there are lots of ways to create these new
lifetime names at execution time in hardware, rather than at compile time. We
believe that execution time mechanisms offer the best opportunities to squeeze
the last bit of performance from a program. The two most frequently encoun-
tered renaming approaches are;

— Rename each destination register (in the architectural register space) into a
physical register (in a larger physical register space). If two different instruc-
tions that are in flight (that is, they have been fetched and have entered the
scheduling unit and have not yet retired), write architectural register R1, then
each lifetime of R1 will be assigned to a different physical register. This mech-
anism removes WAW and WAR dependencies. In some cases it is used to
detect RAW dependencies. (The 21264 uses detects RAW dependencies by
comparing physical register names.)

— Rename each destination register into a serial number. Each in-flight instruc-
tion has a unique serial number. This instruction serial number (or INum) can
be used for RAW dependency detection. Unfortunately, it cannot be used to
eliminate WAW or WAR dependencies unless (as in the case of machines using
a re-order buffer) the microarchitecture provides a separate architectural regis-
ter file. (Since the INum space is finite, each INum is reused fairly often. If
instruction 51 writes R1 at time t1 and then writes RS the next time INum 51 is

~re-allocated at t2, then we have no way of referring to the lifetime of the R1
that was written at t1. If the write at t1 was the last time R1 was written, then

Compag Confidential

& January 2001 - Subject To Change Dependency Mapper Unit — the Pbox 4-3

iNum Space

we have lost its state. The solution to this problem is to copy R1's value to the
architectural register file sometime before t2. This copy operation is the reason
we don't use a classic re-order buffer organization in the 21464 Qbox.)

The 21464 Pbox renames incoming register operands into an INum space to facilitate
the scheduling decision. We rename incoming register operands into a physical register
space to eliminate WAW and WAR dependencies.

4.2 INum Space

Similarly to the 21264, 21464 uses instruction numbers (INums) to uniquely identify
in-flight instructions. All TPUs share a single INum space, so INums are unique across
TPUs. It is the INum Allocator (see Section 4.3.3) that allocates INums and the Qbox
Completion Unit (see Section 5.2.16) that frees them upon retirement.

We use INums in the range O to 511. We consider the INum space to be cyclic, so after
511 we wrap back to 0. One can visualize the space as a circle (as in the diagram below)
that increases in the clockwise direction, except where we wrap from 511 back to 0. We
allocate INums within a TPU in an increasing order (i.e. clockwise). Therefore, within a
TPU, younger instructions have larger INums, except in the case of a wrap. In the dia-
gram, INum A is younger than INum B. Imagine that the space between A and B shows
the total range of INums in use. Then A represents the insert pointer (the youngest
INum is use) while B represents the retire pointer (the next INum to retire).

Figure 4-2 The INum Circle

Why do we have 512 INums? The architecture group did a number of studies and deter-
mined that we need to support a scheduling window of 128 entries, and we need to
allow at most 256 in-flight instructions at any given time. Therefore, we need to choose

Compag Confidential
4-4 Dependency Mapper Unit — the Pbox § January 2001 — Subject To Change

iNum Space

an INum space containing at least 256 INums to uniquely identify all in-flight instruc-
tions. In addition to uniquely identifying instructions, we need to be able to compare
INums of the same TPU to determine which of two instructions is older. With only 256
INums we cannot accomplish this without additional information, namely which INum
represents the youngest in-flight instruction for a given TPU. However, by increasing
the INum space to 512 values - tacking a 9th wrap bit onto the lower 8 bits - we can.

42.1 INum Age Comparison

A TPU's allocated (i.e. in-flight) INums will never cover more than a contiguous half of
the INum circle, 256 of the 512 possible values. This is a very important point; it is this
fact that allows us to determine which of two instructions in that TPU is older. In fact
there is a simple, robust method for making this determination. First of all, note that we
can interpret the INum space as consisting of 9-bit 2's complement signed numbers
rather than unsigned values; i.e. the wrap bit becomes a sign bit. The diagram below
visualizes the INum circle using this interpretation. Given this fact, the rule for deter-
mining the relative age of INums A and B is as follows:

if (A - B > 0)
A is younger than B
else if (A - B < 0)
A is older than B
Where A-B is a 9-bit 2's complement subtraction. Note that the outcome A-B==0 is not
possible because of the constraint that in-flight INums cover no more than a contiguous

half of the space and are therefore, by definition, unique. To understand why this algo-
rithm works, consider the diagram below. Let A and B be the youngest and oldest in-

Compag Confidential
§ January 2001 ~ Subject To Change Dependency Mapper Unit — the Pbox 4-5

iNum Space

flight INums, respectively. The contstraint on the distance between oldest and youngest
means that the relative values of A and B break down into four cases, illustrated below.
Note again that in every instance, A is younger than B.

Table 4-2 INum Age Relationship

Case iﬁ? Signof B Magnitude Relationship Sign of A-B Sign of B-A
1 + + IAl > IBI + -
2 - + 256 < |Al+IBl< 512 + (overflow) - (overflow)
3 - - IAl < [BI + -
4 + - 0 <Al + Bl < 256 + -

Table 4-2 shows the relationship in greater detail. The first four columns merely tran-
scribe what is evident from the illustration, while the last two show that the algorithm
gives the correct result for each case. Case 1 is very straightforward; A-B subtracts a
positive number from a larger positive one, yielding a positive result. Case 3 is the dual
of Case 1, with the signs and relative magnitudes of A and B reversed. In Case 4, A-B
subtracts a negative number from a postive one where |Al and IB! add up to a max of
255, so the result is positive and within the range of 9-bit 2's complement representation
[-256,255]. For all of these cases, B—A is simply the negation of A-B. Case 2 is a little
less intuitive. A-B subtracts a positive number from a negative one, but since IAl+B| >
256 the result is negative yet out of the range of 9-bit representation — which means
that it wraps around to the positive side of the circle. Likewise, B—A subtracts a nega-
tive number from a positive one, giving a positive, out-of-range result — which there-

Compayg Confidential
4-6 Dependency Mapper Unit — the Pbox § January 2001 - Subject To Change

Component Details

fore maps to a negative value in 9 bits. Notice that [Al+|Bl < 512 which means that
neither A-B nor B—A can wrap all the way around from positive to positive or negative
to negative. Thus 9-bit 2's complement subtraction is sufficient to determine the relative
age of any two INums.

In places where we use INums as unique identifiers, and do not need to do age compar-
isons, we need not store the 9th bit of the INum. Dependency detection is one situtation
where uniqueness is sufficient. Therefore, in most places in the Instruction Queue, the
21464 stores only the lower 8 bits of the INum.

4.3 Component Details
4.3.1 INum Mapper (IMP)

4.3.1.1 Design considerations

The central problem in scheduling for out-of-order-issue processors is the identification
of dependencies between instructions. Each instruction that reads results from a register
file depends on the instruction that last wrote the required result to the register file.
Before the issue mechanism can decide that an instruction X is ready to issue, it must
know what other instructions produce the data that X requires. (These instructions are
the parents of X.)

As an example, consider the following code fragment:
I1: LD R3 <~ (R4)

I2: CIR R2

I3: ADD R5 <- R3 + R2

(All code fragments in this report are stylized and not meant to be in the form of legiti-
mate Alpha assembler notation.)

Assume for the moment that R4 was loaded by an instruction that executed a very long
time ago. I1 then is data ready when it is fetched and passed from the Ibox to the Qbox.
It has no known parents. Similarly, I2 doesn't read any input operands. It is data ready
when it arrives at the Qbox. I3 on the other hand, requires inputs generated by I1 and 12.
I3 has two parents, (I1,12). Until I1 and I2 are issued, I3 is not ready. As it turns out, I1
is a load, so it has a latency of two cycles, thus I3 can't be issued any earlier than two
cycles AFTER I1 has issued.

We can determine the dependencies between instructions via several different mecha-
nisms. 21464 has chosen to use INum mapping. In this scheme, a mapper remembers
the INum of the last instruction to write each register. At map time, we rename each
input register for each instruction from its original virtual register name to the INum of
the last writer for that register. This mapping operation maps dependencies from the
(limited) virtual register name space with all its spurious write-after-read and write-
after-write dependencies into the INum space which is free of these false dependencies.

4.3.1.2 Design Architecture

The INum Mapper (IMP) processes each map chunk (8 instructions) in parallel. It maps
the source register specifier for each instruction from the 6 bit virtual register space (31
int registers, 31 floating point register, 2 PAL permanent registers) into INum space (8
bits), each source virtual register being replaced with the INum of the in-flight instruc-

Compag Confidential
8§ January 2001 - Subject To Change Dependency Mapper Unit — the Pbox 4-7

Component Details

tion that last wrote the virtual register (from the point of view of program order.) Addi-
tionally, the IMP remembers which INum last wrote each of the 64 virtual registers in
the CMAP (current map) vector. There is a CMAP vector for each of the four hardware
threads. The vector is indexed by virtual